Unnamed: 0
int64 0
0
| repo_id
stringlengths 5
186
| file_path
stringlengths 15
223
| content
stringlengths 1
32.8M
⌀ |
---|---|---|---|
0 | repos/DirectXShaderCompiler/test/tools/llvm-symbolizer | repos/DirectXShaderCompiler/test/tools/llvm-symbolizer/pdb/pdb.test | RUN: llvm-symbolizer -obj="%p/Inputs/test.exe" < "%p/Inputs/test.exe.input" | \
RUN: FileCheck %s --check-prefix=CHECK
RUN: llvm-symbolizer -obj="%p/Inputs/test.exe" -demangle=false < \
RUN: "%p/Inputs/test.exe.input" | FileCheck %s --check-prefix=CHECK-NO-DEMANGLE
CHECK: foo(void)
CHECK-NEXT: test.cpp:10
CHECK: _main
CHECK-NEXT: test.cpp:13:0
CHECK: NS::Foo::bar(void)
CHECK-NEXT: test.cpp:6:0
CHECK-NO-DEMANGLE: foo
CHECK-NO-DEMANGLE-NEXT: test.cpp:10
CHECK-NO-DEMANGLE: _main
CHECK-LINKAGE-NAME-NEXT: test.cpp:13:0
CHECK-NO-DEMANGLE: bar
CHECK-LINKAGE-NAME-NEXT: test.cpp:6:0
|
0 | repos/DirectXShaderCompiler/test/tools/llvm-symbolizer/pdb | repos/DirectXShaderCompiler/test/tools/llvm-symbolizer/pdb/Inputs/test.cpp | // To generate the corresponding EXE/PDB, run:
// cl /Zi test.cpp
namespace NS {
struct Foo {
void bar() {}
};
}
void foo() {
}
int main() {
foo();
NS::Foo f;
f.bar();
}
|
0 | repos/DirectXShaderCompiler | repos/DirectXShaderCompiler/gcp-pipelines/x86_64-windows-msvc.yml | steps:
- name: 'gcr.io/shaderc-build/shader-compiler-team:dxc-win-builder'
env:
- BUILD_ID=$BUILD_ID
- SOURCE_IMAGE=dxc-builder-windows-vs22
- COMMIT_SHA=$COMMIT_SHA
logsBucket: 'gs://public-github-building-logs'
options:
logging: LEGACY
pool:
name: projects/shaderc-build/locations/us-central1/workerPools/dxc
artifacts:
objects:
location: 'gs://public-directx-shader-compiler/$COMMIT_SHA'
paths:
- dxc-artifacts.zip
|
0 | repos/DirectXShaderCompiler | repos/DirectXShaderCompiler/gcp-pipelines/x86_64-linux-clang.yml | steps:
- name: gcr.io/cloud-builders/git
args: ['fetch', '--unshallow']
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
args:
- git
- submodule
- update
- '--init'
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
args:
- cmake
- '-Bbuild'
- '-GNinja'
- '-DCMAKE_BUILD_TYPE=Release'
- '-DCMAKE_CXX_COMPILER=clang++'
- '-DCMAKE_C_COMPILER=clang'
- '-DCMAKE_INSTALL_PREFIX=artifacts'
- '-DENABLE_SPIRV_CODEGEN=ON'
- '-DSPIRV_BUILD_TESTS=ON'
- '-DLLVM_ENABLE_WERROR=On'
- '-C'
- 'cmake/caches/PredefinedParams.cmake'
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
args:
- ninja
- '-C'
- build
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
args:
- ninja
- '-C'
- build
- check-all
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
args:
- ninja
- '-C'
- build
- install-distribution
- name: 'gcr.io/shaderc-build/shader-compiler-team:kokoro-dxc-builder'
script: |
#!/usr/bin/env bash
zip -r dxc-artifacts.zip /workspace/artifacts/*
logsBucket: 'gs://public-github-building-logs'
options:
logging: LEGACY
pool:
name: projects/shaderc-build/locations/us-central1/workerPools/dxc
artifacts:
objects:
location: 'gs://public-directx-shader-compiler/$COMMIT_SHA'
paths:
- dxc-artifacts.zip
|
0 | repos/DirectXShaderCompiler | repos/DirectXShaderCompiler/cmake/config-ix.cmake | if( WIN32 AND NOT CYGWIN )
# We consider Cygwin as another Unix
set(PURE_WINDOWS 1)
endif()
include(CheckIncludeFile)
include(CheckIncludeFileCXX)
include(CheckLibraryExists)
include(CheckSymbolExists)
include(CheckFunctionExists)
include(CheckCXXSourceCompiles)
include(TestBigEndian)
include(HandleLLVMStdlib)
if( UNIX AND NOT BEOS )
# Used by check_symbol_exists:
set(CMAKE_REQUIRED_LIBRARIES m)
endif()
# x86_64 FreeBSD 9.2 requires libcxxrt to be specified explicitly.
if( CMAKE_SYSTEM MATCHES "FreeBSD-9.2-RELEASE" AND
CMAKE_SIZEOF_VOID_P EQUAL 8 )
list(APPEND CMAKE_REQUIRED_LIBRARIES "cxxrt")
endif()
# Helper macros and functions
macro(add_cxx_include result files)
set(${result} "")
foreach (file_name ${files})
set(${result} "${${result}}#include<${file_name}>\n")
endforeach()
endmacro(add_cxx_include files result)
function(check_type_exists type files variable)
add_cxx_include(includes "${files}")
CHECK_CXX_SOURCE_COMPILES("
${includes} ${type} typeVar;
int main() {
return 0;
}
" ${variable})
endfunction()
# include checks
check_include_file(dirent.h HAVE_DIRENT_H)
check_include_file(dlfcn.h HAVE_DLFCN_H)
check_include_file(errno.h HAVE_ERRNO_H)
check_include_file(execinfo.h HAVE_EXECINFO_H)
check_include_file(fcntl.h HAVE_FCNTL_H)
check_include_file(inttypes.h HAVE_INTTYPES_H)
check_include_file(limits.h HAVE_LIMITS_H)
check_include_file(link.h HAVE_LINK_H)
check_include_file(malloc.h HAVE_MALLOC_H)
check_include_file(malloc/malloc.h HAVE_MALLOC_MALLOC_H)
check_include_file(ndir.h HAVE_NDIR_H)
if( NOT PURE_WINDOWS )
check_include_file(pthread.h HAVE_PTHREAD_H)
endif()
check_include_file(signal.h HAVE_SIGNAL_H)
check_include_file(stdint.h HAVE_STDINT_H)
check_include_file(sys/dir.h HAVE_SYS_DIR_H)
check_include_file(sys/ioctl.h HAVE_SYS_IOCTL_H)
check_include_file(sys/mman.h HAVE_SYS_MMAN_H)
check_include_file(sys/ndir.h HAVE_SYS_NDIR_H)
check_include_file(sys/param.h HAVE_SYS_PARAM_H)
check_include_file(sys/resource.h HAVE_SYS_RESOURCE_H)
check_include_file(sys/stat.h HAVE_SYS_STAT_H)
check_include_file(sys/time.h HAVE_SYS_TIME_H)
check_include_file(sys/uio.h HAVE_SYS_UIO_H)
check_include_file(sys/wait.h HAVE_SYS_WAIT_H)
check_include_file(termios.h HAVE_TERMIOS_H)
check_include_file(unistd.h HAVE_UNISTD_H)
check_include_file(utime.h HAVE_UTIME_H)
check_include_file(valgrind/valgrind.h HAVE_VALGRIND_VALGRIND_H)
check_include_file(zlib.h HAVE_ZLIB_H)
check_include_file(fenv.h HAVE_FENV_H)
check_symbol_exists(FE_ALL_EXCEPT "fenv.h" HAVE_DECL_FE_ALL_EXCEPT)
check_symbol_exists(FE_INEXACT "fenv.h" HAVE_DECL_FE_INEXACT)
check_include_file(mach/mach.h HAVE_MACH_MACH_H)
check_include_file(mach-o/dyld.h HAVE_MACH_O_DYLD_H)
check_include_file(histedit.h HAVE_HISTEDIT_H)
# size_t must be defined before including cxxabi.h on FreeBSD 10.0.
check_cxx_source_compiles("
#include <stddef.h>
#include <cxxabi.h>
int main() { return 0; }
" HAVE_CXXABI_H)
# library checks
if( NOT PURE_WINDOWS )
check_library_exists(pthread pthread_create "" HAVE_LIBPTHREAD)
if (HAVE_LIBPTHREAD)
check_library_exists(pthread pthread_getspecific "" HAVE_PTHREAD_GETSPECIFIC)
check_library_exists(pthread pthread_rwlock_init "" HAVE_PTHREAD_RWLOCK_INIT)
check_library_exists(pthread pthread_mutex_lock "" HAVE_PTHREAD_MUTEX_LOCK)
else()
# this could be Android
check_library_exists(c pthread_create "" PTHREAD_IN_LIBC)
if (PTHREAD_IN_LIBC)
check_library_exists(c pthread_getspecific "" HAVE_PTHREAD_GETSPECIFIC)
check_library_exists(c pthread_rwlock_init "" HAVE_PTHREAD_RWLOCK_INIT)
check_library_exists(c pthread_mutex_lock "" HAVE_PTHREAD_MUTEX_LOCK)
endif()
endif()
check_library_exists(dl dlopen "" HAVE_LIBDL)
check_library_exists(rt clock_gettime "" HAVE_LIBRT)
if (LLVM_ENABLE_ZLIB)
check_library_exists(z compress2 "" HAVE_LIBZ)
else()
set(HAVE_LIBZ 0)
endif()
if (HAVE_HISTEDIT_H)
check_library_exists(edit el_init "" HAVE_LIBEDIT)
endif()
if(LLVM_ENABLE_TERMINFO)
set(HAVE_TERMINFO 0)
foreach(library tinfo terminfo curses ncurses ncursesw)
string(TOUPPER ${library} library_suffix)
check_library_exists(${library} setupterm "" HAVE_TERMINFO_${library_suffix})
if(HAVE_TERMINFO_${library_suffix})
set(HAVE_TERMINFO 1)
set(TERMINFO_LIBS "${library}")
break()
endif()
endforeach()
else()
set(HAVE_TERMINFO 0)
endif()
endif()
# function checks
check_symbol_exists(arc4random "stdlib.h" HAVE_DECL_ARC4RANDOM)
check_symbol_exists(backtrace "execinfo.h" HAVE_BACKTRACE)
check_symbol_exists(getpagesize unistd.h HAVE_GETPAGESIZE)
check_symbol_exists(getrusage sys/resource.h HAVE_GETRUSAGE)
check_symbol_exists(setrlimit sys/resource.h HAVE_SETRLIMIT)
check_symbol_exists(isatty unistd.h HAVE_ISATTY)
check_symbol_exists(futimens sys/stat.h HAVE_FUTIMENS)
check_symbol_exists(futimes sys/time.h HAVE_FUTIMES)
if( HAVE_SETJMP_H )
check_symbol_exists(longjmp setjmp.h HAVE_LONGJMP)
check_symbol_exists(setjmp setjmp.h HAVE_SETJMP)
check_symbol_exists(siglongjmp setjmp.h HAVE_SIGLONGJMP)
check_symbol_exists(sigsetjmp setjmp.h HAVE_SIGSETJMP)
endif()
if( HAVE_SYS_UIO_H )
check_symbol_exists(writev sys/uio.h HAVE_WRITEV)
endif()
check_symbol_exists(mallctl malloc_np.h HAVE_MALLCTL)
check_symbol_exists(mallinfo malloc.h HAVE_MALLINFO)
check_symbol_exists(mallinfo2 malloc.h HAVE_MALLINFO2)
check_symbol_exists(malloc_zone_statistics malloc/malloc.h
HAVE_MALLOC_ZONE_STATISTICS)
check_symbol_exists(mkdtemp "stdlib.h;unistd.h" HAVE_MKDTEMP)
check_symbol_exists(mkstemp "stdlib.h;unistd.h" HAVE_MKSTEMP)
check_symbol_exists(mktemp "stdlib.h;unistd.h" HAVE_MKTEMP)
check_symbol_exists(closedir "sys/types.h;dirent.h" HAVE_CLOSEDIR)
check_symbol_exists(opendir "sys/types.h;dirent.h" HAVE_OPENDIR)
check_symbol_exists(readdir "sys/types.h;dirent.h" HAVE_READDIR)
check_symbol_exists(getcwd unistd.h HAVE_GETCWD)
check_symbol_exists(gettimeofday sys/time.h HAVE_GETTIMEOFDAY)
check_symbol_exists(getrlimit "sys/types.h;sys/time.h;sys/resource.h" HAVE_GETRLIMIT)
check_symbol_exists(posix_spawn spawn.h HAVE_POSIX_SPAWN)
check_symbol_exists(pread unistd.h HAVE_PREAD)
check_symbol_exists(realpath stdlib.h HAVE_REALPATH)
check_symbol_exists(sbrk unistd.h HAVE_SBRK)
check_symbol_exists(srand48 stdlib.h HAVE_RAND48_SRAND48)
if( HAVE_RAND48_SRAND48 )
check_symbol_exists(lrand48 stdlib.h HAVE_RAND48_LRAND48)
if( HAVE_RAND48_LRAND48 )
check_symbol_exists(drand48 stdlib.h HAVE_RAND48_DRAND48)
if( HAVE_RAND48_DRAND48 )
set(HAVE_RAND48 1 CACHE INTERNAL "are srand48/lrand48/drand48 available?")
endif()
endif()
endif()
check_symbol_exists(strtoll stdlib.h HAVE_STRTOLL)
check_symbol_exists(strtoq stdlib.h HAVE_STRTOQ)
check_symbol_exists(strerror string.h HAVE_STRERROR)
check_symbol_exists(strerror_r string.h HAVE_STRERROR_R)
check_symbol_exists(strerror_s string.h HAVE_DECL_STRERROR_S)
check_symbol_exists(setenv stdlib.h HAVE_SETENV)
if( PURE_WINDOWS )
check_symbol_exists(_chsize_s io.h HAVE__CHSIZE_S)
check_function_exists(_alloca HAVE__ALLOCA)
check_function_exists(__alloca HAVE___ALLOCA)
check_function_exists(__chkstk HAVE___CHKSTK)
check_function_exists(__chkstk_ms HAVE___CHKSTK_MS)
check_function_exists(___chkstk HAVE____CHKSTK)
check_function_exists(___chkstk_ms HAVE____CHKSTK_MS)
check_function_exists(__ashldi3 HAVE___ASHLDI3)
check_function_exists(__ashrdi3 HAVE___ASHRDI3)
check_function_exists(__divdi3 HAVE___DIVDI3)
check_function_exists(__fixdfdi HAVE___FIXDFDI)
check_function_exists(__fixsfdi HAVE___FIXSFDI)
check_function_exists(__floatdidf HAVE___FLOATDIDF)
check_function_exists(__lshrdi3 HAVE___LSHRDI3)
check_function_exists(__moddi3 HAVE___MODDI3)
check_function_exists(__udivdi3 HAVE___UDIVDI3)
check_function_exists(__umoddi3 HAVE___UMODDI3)
check_function_exists(__main HAVE___MAIN)
check_function_exists(__cmpdi2 HAVE___CMPDI2)
endif()
if( HAVE_DLFCN_H )
if( HAVE_LIBDL )
list(APPEND CMAKE_REQUIRED_LIBRARIES dl)
endif()
check_symbol_exists(dlerror dlfcn.h HAVE_DLERROR)
check_symbol_exists(dlopen dlfcn.h HAVE_DLOPEN)
if( HAVE_LIBDL )
list(REMOVE_ITEM CMAKE_REQUIRED_LIBRARIES dl)
endif()
endif()
check_symbol_exists(__GLIBC__ stdio.h LLVM_USING_GLIBC)
if( LLVM_USING_GLIBC )
add_llvm_definitions( -D_GNU_SOURCE )
endif()
set(headers "sys/types.h")
if (HAVE_INTTYPES_H)
set(headers ${headers} "inttypes.h")
endif()
if (HAVE_STDINT_H)
set(headers ${headers} "stdint.h")
endif()
check_type_exists(int64_t "${headers}" HAVE_INT64_T)
check_type_exists(uint64_t "${headers}" HAVE_UINT64_T)
check_type_exists(u_int64_t "${headers}" HAVE_U_INT64_T)
# available programs checks
function(llvm_find_program name)
string(TOUPPER ${name} NAME)
string(REGEX REPLACE "\\." "_" NAME ${NAME})
find_program(LLVM_PATH_${NAME} NAMES ${ARGV})
mark_as_advanced(LLVM_PATH_${NAME})
if(LLVM_PATH_${NAME})
set(HAVE_${NAME} 1 CACHE INTERNAL "Is ${name} available ?")
mark_as_advanced(HAVE_${NAME})
else(LLVM_PATH_${NAME})
set(HAVE_${NAME} "" CACHE INTERNAL "Is ${name} available ?")
endif(LLVM_PATH_${NAME})
endfunction()
if (LLVM_ENABLE_DOXYGEN)
llvm_find_program(dot)
endif ()
if( LLVM_ENABLE_FFI )
find_path(FFI_INCLUDE_PATH ffi.h PATHS ${FFI_INCLUDE_DIR})
if( EXISTS "${FFI_INCLUDE_PATH}/ffi.h" )
set(FFI_HEADER ffi.h CACHE INTERNAL "")
set(HAVE_FFI_H 1 CACHE INTERNAL "")
else()
find_path(FFI_INCLUDE_PATH ffi/ffi.h PATHS ${FFI_INCLUDE_DIR})
if( EXISTS "${FFI_INCLUDE_PATH}/ffi/ffi.h" )
set(FFI_HEADER ffi/ffi.h CACHE INTERNAL "")
set(HAVE_FFI_FFI_H 1 CACHE INTERNAL "")
endif()
endif()
if( NOT FFI_HEADER )
message(FATAL_ERROR "libffi includes are not found.")
endif()
find_library(FFI_LIBRARY_PATH ffi PATHS ${FFI_LIBRARY_DIR})
if( NOT FFI_LIBRARY_PATH )
message(FATAL_ERROR "libffi is not found.")
endif()
list(APPEND CMAKE_REQUIRED_LIBRARIES ${FFI_LIBRARY_PATH})
list(APPEND CMAKE_REQUIRED_INCLUDES ${FFI_INCLUDE_PATH})
check_symbol_exists(ffi_call ${FFI_HEADER} HAVE_FFI_CALL)
list(REMOVE_ITEM CMAKE_REQUIRED_INCLUDES ${FFI_INCLUDE_PATH})
list(REMOVE_ITEM CMAKE_REQUIRED_LIBRARIES ${FFI_LIBRARY_PATH})
else()
unset(HAVE_FFI_FFI_H CACHE)
unset(HAVE_FFI_H CACHE)
unset(HAVE_FFI_CALL CACHE)
endif( LLVM_ENABLE_FFI )
# Define LLVM_HAS_ATOMICS if gcc or MSVC atomic builtins are supported.
include(CheckAtomic)
if( LLVM_ENABLE_PIC )
set(ENABLE_PIC 1)
else()
set(ENABLE_PIC 0)
endif()
check_cxx_compiler_flag("-Wno-variadic-macros" SUPPORTS_NO_VARIADIC_MACROS_FLAG)
set(USE_NO_MAYBE_UNINITIALIZED 0)
set(USE_NO_UNINITIALIZED 0)
# Disable gcc's potentially uninitialized use analysis as it presents lots of
# false positives.
if (CMAKE_COMPILER_IS_GNUCXX)
check_cxx_compiler_flag("-Wmaybe-uninitialized" HAS_MAYBE_UNINITIALIZED)
if (HAS_MAYBE_UNINITIALIZED)
set(USE_NO_MAYBE_UNINITIALIZED 1)
else()
# Only recent versions of gcc make the distinction between -Wuninitialized
# and -Wmaybe-uninitialized. If -Wmaybe-uninitialized isn't supported, just
# turn off all uninitialized use warnings.
check_cxx_compiler_flag("-Wuninitialized" HAS_UNINITIALIZED)
set(USE_NO_UNINITIALIZED ${HAS_UNINITIALIZED})
endif()
endif()
# By default, we target the host, but this can be overridden at CMake
# invocation time.
if (NOT DEFINED LLVM_INFERRED_HOST_TRIPLE)
include(GetHostTriple)
get_host_triple(LLVM_INFERRED_HOST_TRIPLE)
endif()
set(LLVM_HOST_TRIPLE "${LLVM_INFERRED_HOST_TRIPLE}" CACHE STRING
"Host on which LLVM binaries will run")
# Determine the native architecture.
string(TOLOWER "${LLVM_TARGET_ARCH}" LLVM_NATIVE_ARCH)
if( LLVM_NATIVE_ARCH STREQUAL "host" )
string(REGEX MATCH "^[^-]*" LLVM_NATIVE_ARCH ${LLVM_HOST_TRIPLE})
endif ()
if (LLVM_NATIVE_ARCH MATCHES "i[2-6]86")
set(LLVM_NATIVE_ARCH X86)
elseif (LLVM_NATIVE_ARCH STREQUAL "x86")
set(LLVM_NATIVE_ARCH X86)
elseif (LLVM_NATIVE_ARCH STREQUAL "amd64")
set(LLVM_NATIVE_ARCH X86)
elseif (LLVM_NATIVE_ARCH STREQUAL "x86_64")
set(LLVM_NATIVE_ARCH X86)
elseif (LLVM_NATIVE_ARCH MATCHES "sparc")
set(LLVM_NATIVE_ARCH Sparc)
elseif (LLVM_NATIVE_ARCH MATCHES "powerpc")
set(LLVM_NATIVE_ARCH PowerPC)
elseif (LLVM_NATIVE_ARCH MATCHES "aarch64")
set(LLVM_NATIVE_ARCH AArch64)
elseif (LLVM_NATIVE_ARCH MATCHES "arm64")
set(LLVM_NATIVE_ARCH AArch64)
elseif (LLVM_NATIVE_ARCH MATCHES "arm")
set(LLVM_NATIVE_ARCH ARM)
elseif (LLVM_NATIVE_ARCH MATCHES "mips")
set(LLVM_NATIVE_ARCH Mips)
elseif (LLVM_NATIVE_ARCH MATCHES "xcore")
set(LLVM_NATIVE_ARCH XCore)
elseif (LLVM_NATIVE_ARCH MATCHES "msp430")
set(LLVM_NATIVE_ARCH MSP430)
elseif (LLVM_NATIVE_ARCH MATCHES "hexagon")
set(LLVM_NATIVE_ARCH Hexagon)
elseif (LLVM_NATIVE_ARCH MATCHES "s390x")
set(LLVM_NATIVE_ARCH SystemZ)
elseif (LLVM_NATIVE_ARCH MATCHES "wasm32")
set(LLVM_NATIVE_ARCH WebAssembly)
elseif (LLVM_NATIVE_ARCH MATCHES "wasm64")
set(LLVM_NATIVE_ARCH WebAssembly)
elseif (LLVM_NATIVE_ARCH MATCHES "riscv64")
set(LLVM_NATIVE_ARCH RISCV)
elseif (LLVM_NATIVE_ARCH MATCHES "e2k")
set(LLVM_NATIVE_ARCH E2K)
else ()
message(FATAL_ERROR "Unknown architecture ${LLVM_NATIVE_ARCH}")
endif ()
# If build targets includes "host", then replace with native architecture.
list(FIND LLVM_TARGETS_TO_BUILD "host" idx)
if( NOT idx LESS 0 )
list(REMOVE_AT LLVM_TARGETS_TO_BUILD ${idx})
list(APPEND LLVM_TARGETS_TO_BUILD ${LLVM_NATIVE_ARCH})
list(REMOVE_DUPLICATES LLVM_TARGETS_TO_BUILD)
endif()
list(FIND LLVM_TARGETS_TO_BUILD ${LLVM_NATIVE_ARCH} NATIVE_ARCH_IDX)
if (NATIVE_ARCH_IDX EQUAL -1)
message(STATUS
"Native target ${LLVM_NATIVE_ARCH} is not selected; lli will not JIT code")
else ()
message(STATUS "Native target architecture is ${LLVM_NATIVE_ARCH}")
set(LLVM_NATIVE_TARGET LLVMInitialize${LLVM_NATIVE_ARCH}Target)
set(LLVM_NATIVE_TARGETINFO LLVMInitialize${LLVM_NATIVE_ARCH}TargetInfo)
set(LLVM_NATIVE_TARGETMC LLVMInitialize${LLVM_NATIVE_ARCH}TargetMC)
set(LLVM_NATIVE_ASMPRINTER LLVMInitialize${LLVM_NATIVE_ARCH}AsmPrinter)
# We don't have an ASM parser for all architectures yet.
if (EXISTS ${CMAKE_SOURCE_DIR}/lib/Target/${LLVM_NATIVE_ARCH}/AsmParser/CMakeLists.txt)
set(LLVM_NATIVE_ASMPARSER LLVMInitialize${LLVM_NATIVE_ARCH}AsmParser)
endif ()
# We don't have an disassembler for all architectures yet.
if (EXISTS ${CMAKE_SOURCE_DIR}/lib/Target/${LLVM_NATIVE_ARCH}/Disassembler/CMakeLists.txt)
set(LLVM_NATIVE_DISASSEMBLER LLVMInitialize${LLVM_NATIVE_ARCH}Disassembler)
endif ()
endif ()
if( MINGW )
set(HAVE_LIBPSAPI 1)
set(HAVE_LIBSHELL32 1)
# TODO: Check existence of libraries.
# include(CheckLibraryExists)
endif( MINGW )
if (NOT HAVE_STRTOLL)
# Use _strtoi64 if strtoll is not available.
check_symbol_exists(_strtoi64 stdlib.h have_strtoi64)
if (have_strtoi64)
set(HAVE_STRTOLL 1)
set(strtoll "_strtoi64")
set(strtoull "_strtoui64")
endif ()
endif ()
if( MSVC )
set(SHLIBEXT ".lib")
set(stricmp "_stricmp")
set(strdup "_strdup")
# See if the DIA SDK is available and usable.
set(MSVC_DIA_SDK_DIR "$ENV{VSINSTALLDIR}DIA SDK")
# Due to a bug in MSVC 2013's installation software, it is possible
# for MSVC 2013 to write the DIA SDK into the Visual Studio 2012
# install directory. If this happens, the installation is corrupt
# and there's nothing we can do. It happens with enough frequency
# though that we should handle it. We do so by simply checking that
# the DIA SDK folder exists. Should this happen you will need to
# uninstall VS 2012 and then re-install VS 2013.
if (IS_DIRECTORY ${MSVC_DIA_SDK_DIR})
set(HAVE_DIA_SDK 1)
else()
set(HAVE_DIA_SDK 0)
endif()
else()
set(HAVE_DIA_SDK 0)
endif( MSVC )
if( PURE_WINDOWS )
CHECK_CXX_SOURCE_COMPILES("
#include <windows.h>
#include <imagehlp.h>
extern \"C\" void foo(PENUMLOADED_MODULES_CALLBACK);
extern \"C\" void foo(BOOL(CALLBACK*)(PCSTR,ULONG_PTR,ULONG,PVOID));
int main(){return 0;}"
HAVE_ELMCB_PCSTR)
if( HAVE_ELMCB_PCSTR )
set(WIN32_ELMCB_PCSTR "PCSTR")
else()
set(WIN32_ELMCB_PCSTR "PSTR")
endif()
endif( PURE_WINDOWS )
# FIXME: Signal handler return type, currently hardcoded to 'void'
set(RETSIGTYPE void)
if( LLVM_ENABLE_THREADS )
# Check if threading primitives aren't supported on this platform
if( NOT HAVE_PTHREAD_H AND NOT WIN32 )
set(LLVM_ENABLE_THREADS 0)
endif()
endif()
if( LLVM_ENABLE_THREADS )
message(STATUS "Threads enabled.")
else( LLVM_ENABLE_THREADS )
message(STATUS "Threads disabled.")
endif()
if (LLVM_ENABLE_ZLIB )
# Check if zlib is available in the system.
if ( NOT HAVE_ZLIB_H OR NOT HAVE_LIBZ )
set(LLVM_ENABLE_ZLIB 0)
endif()
endif()
set(LLVM_PREFIX ${CMAKE_INSTALL_PREFIX})
if (LLVM_ENABLE_DOXYGEN)
message(STATUS "Doxygen enabled.")
find_package(Doxygen REQUIRED)
if (DOXYGEN_FOUND)
# If we find doxygen and we want to enable doxygen by default create a
# global aggregate doxygen target for generating llvm and any/all
# subprojects doxygen documentation.
if (LLVM_BUILD_DOCS)
add_custom_target(doxygen ALL)
endif()
option(LLVM_DOXYGEN_EXTERNAL_SEARCH "Enable doxygen external search." OFF)
if (LLVM_DOXYGEN_EXTERNAL_SEARCH)
set(LLVM_DOXYGEN_SEARCHENGINE_URL "" CACHE STRING "URL to use for external searhc.")
set(LLVM_DOXYGEN_SEARCH_MAPPINGS "" CACHE STRING "Doxygen Search Mappings")
endif()
endif()
else()
message(STATUS "Doxygen disabled.")
endif()
if (LLVM_ENABLE_SPHINX)
message(STATUS "Sphinx enabled.")
find_package(Sphinx REQUIRED)
if (LLVM_BUILD_DOCS)
add_custom_target(sphinx ALL)
endif()
else()
message(STATUS "Sphinx disabled.")
endif()
set(LLVM_BINDINGS "")
if(WIN32)
message(STATUS "Go bindings disabled.")
else()
find_program(GO_EXECUTABLE NAMES go DOC "go executable")
if(GO_EXECUTABLE STREQUAL "GO_EXECUTABLE-NOTFOUND")
message(STATUS "Go bindings disabled.")
else()
execute_process(COMMAND ${GO_EXECUTABLE} run ${CMAKE_SOURCE_DIR}/bindings/go/conftest.go
RESULT_VARIABLE GO_CONFTEST)
if(GO_CONFTEST STREQUAL "0")
set(LLVM_BINDINGS "${LLVM_BINDINGS} go")
message(STATUS "Go bindings enabled.")
else()
message(STATUS "Go bindings disabled, need at least Go 1.2.")
endif()
endif()
endif()
find_program(GOLD_EXECUTABLE NAMES ${LLVM_DEFAULT_TARGET_TRIPLE}-ld.gold ld.gold ${LLVM_DEFAULT_TARGET_TRIPLE}-ld ld DOC "The gold linker")
set(LLVM_BINUTILS_INCDIR "" CACHE PATH
"PATH to binutils/include containing plugin-api.h for gold plugin.")
if(APPLE)
find_program(LD64_EXECUTABLE NAMES ld DOC "The ld64 linker")
endif()
include(FindOCaml)
include(AddOCaml)
if(WIN32)
message(STATUS "OCaml bindings disabled.")
else()
find_package(OCaml)
if( NOT OCAML_FOUND )
message(STATUS "OCaml bindings disabled.")
else()
if( OCAML_VERSION VERSION_LESS "4.00.0" )
message(STATUS "OCaml bindings disabled, need OCaml >=4.00.0.")
else()
find_ocamlfind_package(ctypes VERSION 0.4 OPTIONAL)
if( HAVE_OCAML_CTYPES )
message(STATUS "OCaml bindings enabled.")
find_ocamlfind_package(oUnit VERSION 2 OPTIONAL)
set(LLVM_BINDINGS "${LLVM_BINDINGS} ocaml")
else()
message(STATUS "OCaml bindings disabled, need ctypes >=0.4.")
endif()
endif()
endif()
endif()
string(REPLACE " " ";" LLVM_BINDINGS_LIST "${LLVM_BINDINGS}")
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/ChooseMSVCCRT.cmake | # The macro choose_msvc_crt() takes a list of possible
# C runtimes to choose from, in the form of compiler flags,
# to present to the user. (MTd for /MTd, etc)
#
# The macro is invoked at the end of the file.
#
# CMake already sets CRT flags in the CMAKE_CXX_FLAGS_* and
# CMAKE_C_FLAGS_* variables by default. To let the user
# override that for each build type:
# 1. Detect which CRT is already selected, and reflect this in
# LLVM_USE_CRT_* so the user can have a better idea of what
# changes they're making.
# 2. Replace the flags in both variables with the new flag via a regex.
# 3. set() the variables back into the cache so the changes
# are user-visible.
### Helper macros: ###
macro(make_crt_regex regex crts)
set(${regex} "")
foreach(crt ${${crts}})
# Trying to match the beginning or end of the string with stuff
# like [ ^]+ didn't work, so use a bunch of parentheses instead.
set(${regex} "${${regex}}|(^| +)/${crt}($| +)")
endforeach(crt)
string(REGEX REPLACE "^\\|" "" ${regex} "${${regex}}")
endmacro(make_crt_regex)
macro(get_current_crt crt_current regex flagsvar)
# Find the selected-by-CMake CRT for each build type, if any.
# Strip off the leading slash and any whitespace.
string(REGEX MATCH "${${regex}}" ${crt_current} "${${flagsvar}}")
string(REPLACE "/" " " ${crt_current} "${${crt_current}}")
string(STRIP "${${crt_current}}" ${crt_current})
endmacro(get_current_crt)
# Replaces or adds a flag to a variable.
# Expects 'flag' to be padded with spaces.
macro(set_flag_in_var flagsvar regex flag)
string(REGEX MATCH "${${regex}}" current_flag "${${flagsvar}}")
if("${current_flag}" STREQUAL "")
set(${flagsvar} "${${flagsvar}}${${flag}}")
else()
string(REGEX REPLACE "${${regex}}" "${${flag}}" ${flagsvar} "${${flagsvar}}")
endif()
string(STRIP "${${flagsvar}}" ${flagsvar})
# Make sure this change gets reflected in the cache/gui.
# CMake requires the docstring parameter whenever set() touches the cache,
# so get the existing docstring and re-use that.
get_property(flagsvar_docs CACHE ${flagsvar} PROPERTY HELPSTRING)
set(${flagsvar} "${${flagsvar}}" CACHE STRING "${flagsvar_docs}" FORCE)
endmacro(set_flag_in_var)
macro(choose_msvc_crt MSVC_CRT)
if(LLVM_USE_CRT)
message(FATAL_ERROR
"LLVM_USE_CRT is deprecated. Use the CMAKE_BUILD_TYPE-specific
variables (LLVM_USE_CRT_DEBUG, etc) instead.")
endif()
make_crt_regex(MSVC_CRT_REGEX ${MSVC_CRT})
foreach(build_type ${CMAKE_CONFIGURATION_TYPES} ${CMAKE_BUILD_TYPE})
string(TOUPPER "${build_type}" build)
if (NOT LLVM_USE_CRT_${build})
get_current_crt(LLVM_USE_CRT_${build}
MSVC_CRT_REGEX
CMAKE_CXX_FLAGS_${build})
set(LLVM_USE_CRT_${build}
"${LLVM_USE_CRT_${build}}"
CACHE STRING "Specify VC++ CRT to use for ${build_type} configurations."
FORCE)
set_property(CACHE LLVM_USE_CRT_${build}
PROPERTY STRINGS ;${${MSVC_CRT}})
endif(NOT LLVM_USE_CRT_${build})
endforeach(build_type)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES} ${CMAKE_BUILD_TYPE})
string(TOUPPER "${build_type}" build)
if ("${LLVM_USE_CRT_${build}}" STREQUAL "")
set(flag_string " ")
else()
set(flag_string " /${LLVM_USE_CRT_${build}} ")
list(FIND ${MSVC_CRT} ${LLVM_USE_CRT_${build}} idx)
if (idx LESS 0)
message(FATAL_ERROR
"Invalid value for LLVM_USE_CRT_${build}: ${LLVM_USE_CRT_${build}}. Valid options are one of: ${${MSVC_CRT}}")
endif (idx LESS 0)
message(STATUS "Using ${build_type} VC++ CRT: ${LLVM_USE_CRT_${build}}")
endif()
foreach(lang C CXX)
set_flag_in_var(CMAKE_${lang}_FLAGS_${build} MSVC_CRT_REGEX flag_string)
endforeach(lang)
endforeach(build_type)
endmacro(choose_msvc_crt MSVC_CRT)
# List of valid CRTs for MSVC
set(MSVC_CRT
MD
MDd
MT
MTd)
choose_msvc_crt(MSVC_CRT)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/HCT.cmake | option(HLSL_COPY_GENERATED_SOURCES "Copy generated sources if different" Off)
option(HLSL_DISABLE_SOURCE_GENERATION "Disable generation of in-tree sources" Off)
mark_as_advanced(HLSL_DISABLE_SOURCE_GENERATION)
add_custom_target(HCTGen)
find_program(CLANG_FORMAT_EXE NAMES clang-format)
if (NOT CLANG_FORMAT_EXE)
message(WARNING "Clang-format is not available. Generating included sources is not supported.")
if (HLSL_COPY_GENERATED_SOURCES)
message(FATAL_ERROR "Generating sources requires clang-format")
endif ()
endif ()
if (WIN32 AND NOT DEFINED HLSL_AUTOCRLF)
find_program(git_executable NAMES git git.exe git.cmd)
execute_process(COMMAND ${git_executable} config --get core.autocrlf
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
TIMEOUT 5
RESULT_VARIABLE result
OUTPUT_VARIABLE output
OUTPUT_STRIP_TRAILING_WHITESPACE)
if( result EQUAL 0 )
# This is a little counterintuitive... Because the repo's gitattributes set
# text=auto, autocrlf behavior will be enabled for autocrlf true or false.
# For reasons unknown to me, autocrlf=input overrides the gitattributes, so
# that is the case we need special handling for.
set(val On)
if (output STREQUAL "input")
set(val Off)
endif()
set(HLSL_AUTOCRLF ${val} CACHE BOOL "Is core.autocrlf enabled in this clone")
message(STATUS "Git checkout autocrlf: ${HLSL_AUTOCRLF}")
endif()
endif()
function(add_hlsl_hctgen mode)
cmake_parse_arguments(ARG
"BUILD_DIR;CODE_TAG"
"OUTPUT"
""
${ARGN})
if (NOT ARG_OUTPUT)
message(FATAL_ERROR "add_hlsl_hctgen requires OUTPUT argument")
endif()
if (HLSL_DISABLE_SOURCE_GENERATION AND NOT ARG_BUILD_DIR)
return()
endif()
set(temp_output ${CMAKE_CURRENT_BINARY_DIR}/tmp/${ARG_OUTPUT})
set(full_output ${CMAKE_CURRENT_SOURCE_DIR}/${ARG_OUTPUT})
if (ARG_BUILD_DIR)
set(full_output ${CMAKE_CURRENT_BINARY_DIR}/${ARG_OUTPUT})
endif()
set(hctgen ${LLVM_SOURCE_DIR}/utils/hct/hctgen.py)
set(hctdb ${LLVM_SOURCE_DIR}/utils/hct/hctdb.py)
set(hctdb_helper ${LLVM_SOURCE_DIR}/utils/hct/hctdb_instrhelp.py)
set(output ${full_output})
set(hct_dependencies ${LLVM_SOURCE_DIR}/utils/hct/gen_intrin_main.txt
${hctgen}
${hctdb}
${hctdb_helper})
get_filename_component(output_extension ${full_output} LAST_EXT)
if (CLANG_FORMAT_EXE AND output_extension MATCHES "\.h|\.cpp|\.inl")
set(format_cmd COMMAND ${CLANG_FORMAT_EXE} -i ${temp_output})
endif ()
set(copy_sources Off)
if(ARG_BUILD_DIR OR HLSL_COPY_GENERATED_SOURCES)
set(copy_sources On)
endif()
if(ARG_CODE_TAG)
set(input_flag --input ${full_output})
if (UNIX)
execute_process(COMMAND file ${full_output} OUTPUT_VARIABLE output)
if (output MATCHES ".*, with CRLF line terminators")
set(force_lf "--force-crlf")
endif()
endif()
list(APPEND hct_dependencies ${full_output})
if (HLSL_COPY_GENERATED_SOURCES)
# The generation command both depends on and produces the final output if
# source copying is enabled for CODE_TAG sources. That means we need to
# create an extra temporary to key the copy step on.
set(output ${temp_output}.2)
set(second_copy COMMAND ${CMAKE_COMMAND} -E copy_if_different ${temp_output} ${temp_output}.2)
endif()
endif()
# If we're not copying the sources, set the output for the target as the temp
# file, and define the verification command
if(NOT copy_sources)
set(output ${temp_output})
if (CLANG_FORMAT_EXE) # Only verify sources if clang-format is available.
set(verification COMMAND ${CMAKE_COMMAND} -E compare_files ${temp_output} ${full_output})
endif()
endif()
if(WIN32 AND NOT HLSL_AUTOCRLF)
set(force_lf "--force-lf")
endif()
add_custom_command(OUTPUT ${temp_output}
COMMAND ${Python3_EXECUTABLE}
${hctgen} ${force_lf}
${mode} --output ${temp_output} ${input_flag}
${format_cmd}
COMMENT "Building ${ARG_OUTPUT}..."
DEPENDS ${hct_dependencies}
)
if(copy_sources)
add_custom_command(OUTPUT ${output}
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${temp_output} ${full_output}
${second_copy}
DEPENDS ${temp_output}
COMMENT "Updating ${ARG_OUTPUT}..."
)
endif()
add_custom_command(OUTPUT ${temp_output}.stamp
COMMAND ${verification}
COMMAND ${CMAKE_COMMAND} -E touch ${temp_output}.stamp
DEPENDS ${output}
COMMENT "Verifying clang-format results...")
add_custom_target(${mode}
DEPENDS ${temp_output}.stamp)
add_dependencies(HCTGen ${mode})
endfunction()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/AddLLVMDefinitions.cmake | # There is no clear way of keeping track of compiler command-line
# options chosen via `add_definitions', so we need our own method for
# using it on tools/llvm-config/CMakeLists.txt.
# Beware that there is no implementation of remove_llvm_definitions.
macro(add_llvm_definitions)
# We don't want no semicolons on LLVM_DEFINITIONS:
foreach(arg ${ARGN})
set(LLVM_DEFINITIONS "${LLVM_DEFINITIONS} ${arg}")
endforeach(arg)
add_definitions( ${ARGN} )
endmacro(add_llvm_definitions)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/AddOCaml.cmake | # CMake build rules for the OCaml language.
# Assumes FindOCaml is used.
# http://ocaml.org/
#
# Example usage:
#
# add_ocaml_library(pkg_a OCAML mod_a OCAMLDEP pkg_b C mod_a_stubs PKG ctypes LLVM core)
#
# Unnamed parameters:
#
# * Library name.
#
# Named parameters:
#
# OCAML OCaml module names. Imply presence of a corresponding .ml and .mli files.
# OCAMLDEP Names of libraries this library depends on.
# C C stub sources. Imply presence of a corresponding .c file.
# CFLAGS Additional arguments passed when compiling C stubs.
# PKG Names of ocamlfind packages this library depends on.
# LLVM Names of LLVM libraries this library depends on.
# NOCOPY Do not automatically copy sources (.c, .ml, .mli) from the source directory,
# e.g. if they are generated.
#
function(add_ocaml_library name)
CMAKE_PARSE_ARGUMENTS(ARG "NOCOPY" "" "OCAML;OCAMLDEP;C;CFLAGS;PKG;LLVM" ${ARGN})
set(src ${CMAKE_CURRENT_SOURCE_DIR})
set(bin ${CMAKE_CURRENT_BINARY_DIR})
set(ocaml_pkgs)
foreach( ocaml_pkg ${ARG_PKG} )
list(APPEND ocaml_pkgs "-package" "${ocaml_pkg}")
endforeach()
set(sources)
set(ocaml_inputs)
set(ocaml_outputs "${bin}/${name}.cma")
if( ARG_C )
list(APPEND ocaml_outputs
"${bin}/lib${name}${CMAKE_STATIC_LIBRARY_SUFFIX}")
if ( BUILD_SHARED_LIBS )
list(APPEND ocaml_outputs
"${bin}/dll${name}${CMAKE_SHARED_LIBRARY_SUFFIX}")
endif()
endif()
if( HAVE_OCAMLOPT )
list(APPEND ocaml_outputs
"${bin}/${name}.cmxa"
"${bin}/${name}${CMAKE_STATIC_LIBRARY_SUFFIX}")
endif()
set(ocaml_flags "-lstdc++" "-ldopt" "-L${LLVM_LIBRARY_DIR}"
"-ccopt" "-L\\$CAMLORIGIN/.."
"-ccopt" "-Wl,-rpath,\\$CAMLORIGIN/.."
${ocaml_pkgs})
foreach( ocaml_dep ${ARG_OCAMLDEP} )
get_target_property(dep_ocaml_flags "ocaml_${ocaml_dep}" OCAML_FLAGS)
list(APPEND ocaml_flags ${dep_ocaml_flags})
endforeach()
if( NOT BUILD_SHARED_LIBS )
list(APPEND ocaml_flags "-custom")
endif()
explicit_map_components_to_libraries(llvm_libs ${ARG_LLVM})
foreach( llvm_lib ${llvm_libs} )
list(APPEND ocaml_flags "-l${llvm_lib}" )
endforeach()
get_property(system_libs TARGET LLVMSupport PROPERTY LLVM_SYSTEM_LIBS)
foreach(system_lib ${system_libs})
list(APPEND ocaml_flags "-l${system_lib}" )
endforeach()
string(REPLACE ";" " " ARG_CFLAGS "${ARG_CFLAGS}")
set(c_flags "${ARG_CFLAGS} ${LLVM_DEFINITIONS}")
foreach( include_dir ${LLVM_INCLUDE_DIR} ${LLVM_MAIN_INCLUDE_DIR} )
set(c_flags "${c_flags} -I${include_dir}")
endforeach()
foreach( ocaml_file ${ARG_OCAML} )
list(APPEND sources "${ocaml_file}.mli" "${ocaml_file}.ml")
list(APPEND ocaml_inputs "${bin}/${ocaml_file}.mli" "${bin}/${ocaml_file}.ml")
list(APPEND ocaml_outputs "${bin}/${ocaml_file}.cmi" "${bin}/${ocaml_file}.cmo")
if( HAVE_OCAMLOPT )
list(APPEND ocaml_outputs
"${bin}/${ocaml_file}.cmx"
"${bin}/${ocaml_file}${CMAKE_C_OUTPUT_EXTENSION}")
endif()
endforeach()
foreach( c_file ${ARG_C} )
list(APPEND sources "${c_file}.c")
list(APPEND c_inputs "${bin}/${c_file}.c")
list(APPEND c_outputs "${bin}/${c_file}${CMAKE_C_OUTPUT_EXTENSION}")
endforeach()
if( NOT ARG_NOCOPY )
foreach( source ${sources} )
add_custom_command(
OUTPUT "${bin}/${source}"
COMMAND "${CMAKE_COMMAND}" "-E" "copy" "${src}/${source}" "${bin}"
DEPENDS "${src}/${source}"
COMMENT "Copying ${source} to build area")
endforeach()
endif()
foreach( c_input ${c_inputs} )
get_filename_component(basename "${c_input}" NAME_WE)
add_custom_command(
OUTPUT "${basename}${CMAKE_C_OUTPUT_EXTENSION}"
COMMAND "${OCAMLFIND}" "ocamlc" "-c" "${c_input}" -ccopt ${c_flags}
DEPENDS "${c_input}"
COMMENT "Building OCaml stub object file ${basename}${CMAKE_C_OUTPUT_EXTENSION}"
VERBATIM)
endforeach()
set(ocaml_params)
foreach( ocaml_input ${ocaml_inputs} ${c_outputs})
get_filename_component(filename "${ocaml_input}" NAME)
list(APPEND ocaml_params "${filename}")
endforeach()
if( APPLE )
set(ocaml_rpath "@executable_path/../../lib")
elseif( UNIX )
set(ocaml_rpath "\\$ORIGIN/../../lib")
endif()
list(APPEND ocaml_flags "-ldopt" "-Wl,-rpath,${ocaml_rpath}")
add_custom_command(
OUTPUT ${ocaml_outputs}
COMMAND "${OCAMLFIND}" "ocamlmklib" "-o" "${name}" ${ocaml_flags} ${ocaml_params}
DEPENDS ${ocaml_inputs} ${c_outputs}
COMMENT "Building OCaml library ${name}"
VERBATIM)
add_custom_command(
OUTPUT "${bin}/${name}.odoc"
COMMAND "${OCAMLFIND}" "ocamldoc"
"-I" "${bin}"
"-I" "${LLVM_LIBRARY_DIR}/ocaml/"
"-dump" "${bin}/${name}.odoc"
${ocaml_pkgs} ${ocaml_inputs}
DEPENDS ${ocaml_inputs} ${ocaml_outputs}
COMMENT "Building OCaml documentation for ${name}"
VERBATIM)
add_custom_target("ocaml_${name}" ALL DEPENDS ${ocaml_outputs} "${bin}/${name}.odoc")
set_target_properties("ocaml_${name}" PROPERTIES
OCAML_FLAGS "-I;${bin}")
set_target_properties("ocaml_${name}" PROPERTIES
OCAML_ODOC "${bin}/${name}.odoc")
foreach( ocaml_dep ${ARG_OCAMLDEP} )
add_dependencies("ocaml_${name}" "ocaml_${ocaml_dep}")
endforeach()
foreach( llvm_lib ${llvm_libs} )
add_dependencies("ocaml_${name}" "${llvm_lib}")
endforeach()
set(install_files)
set(install_shlibs)
foreach( ocaml_output ${ocaml_outputs} )
get_filename_component(ext "${ocaml_output}" EXT)
if( NOT (ext STREQUAL ".cmo" OR
ext STREQUAL CMAKE_C_OUTPUT_EXTENSION OR
ext STREQUAL CMAKE_SHARED_LIBRARY_SUFFIX) )
list(APPEND install_files "${ocaml_output}")
elseif( ext STREQUAL CMAKE_SHARED_LIBRARY_SUFFIX)
list(APPEND install_shlibs "${ocaml_output}")
endif()
endforeach()
install(FILES ${install_files}
DESTINATION lib/ocaml)
install(FILES ${install_shlibs}
PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE
GROUP_READ GROUP_EXECUTE
WORLD_READ WORLD_EXECUTE
DESTINATION lib/ocaml)
foreach( install_file ${install_files} ${install_shlibs} )
get_filename_component(filename "${install_file}" NAME)
add_custom_command(TARGET "ocaml_${name}" POST_BUILD
COMMAND "${CMAKE_COMMAND}" "-E" "copy" "${install_file}"
"${LLVM_LIBRARY_DIR}/ocaml/"
COMMENT "Copying OCaml library component ${filename} to intermediate area"
VERBATIM)
endforeach()
endfunction()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/LLVMProcessSources.cmake | include(AddFileDependencies)
include(CMakeParseArguments)
function(llvm_replace_compiler_option var old new)
# Replaces a compiler option or switch `old' in `var' by `new'.
# If `old' is not in `var', appends `new' to `var'.
# Example: llvm_replace_compiler_option(CMAKE_CXX_FLAGS_RELEASE "-O3" "-O2")
# If the option already is on the variable, don't add it:
if( "${${var}}" MATCHES "(^| )${new}($| )" )
set(n "")
else()
set(n "${new}")
endif()
if( "${${var}}" MATCHES "(^| )${old}($| )" )
string( REGEX REPLACE "(^| )${old}($| )" " ${n} " ${var} "${${var}}" )
else()
set( ${var} "${${var}} ${n}" )
endif()
set( ${var} "${${var}}" PARENT_SCOPE )
endfunction(llvm_replace_compiler_option)
macro(add_td_sources srcs)
file(GLOB tds *.td)
if( tds )
source_group("TableGen descriptions" FILES ${tds})
set_source_files_properties(${tds} PROPERTIES HEADER_FILE_ONLY ON)
list(APPEND ${srcs} ${tds})
endif()
endmacro(add_td_sources)
function(add_header_files_for_glob hdrs_out glob)
file(GLOB hds ${glob})
set(${hdrs_out} ${hds} PARENT_SCOPE)
endfunction(add_header_files_for_glob)
function(find_all_header_files hdrs_out additional_headerdirs)
add_header_files_for_glob(hds *.h)
list(APPEND all_headers ${hds})
foreach(additional_dir ${additional_headerdirs})
add_header_files_for_glob(hds "${additional_dir}/*.h")
list(APPEND all_headers ${hds})
add_header_files_for_glob(hds "${additional_dir}/*.inc")
list(APPEND all_headers ${hds})
endforeach(additional_dir)
set( ${hdrs_out} ${all_headers} PARENT_SCOPE )
endfunction(find_all_header_files)
function(llvm_process_sources OUT_VAR)
cmake_parse_arguments(ARG "" "" "ADDITIONAL_HEADERS;ADDITIONAL_HEADER_DIRS" ${ARGN})
set(sources ${ARG_UNPARSED_ARGUMENTS})
llvm_check_source_file_list( ${sources} )
if( MSVC_IDE OR XCODE )
# This adds .td and .h files to the Visual Studio solution:
add_td_sources(sources)
find_all_header_files(hdrs "${ARG_ADDITIONAL_HEADER_DIRS}")
if (hdrs)
set_source_files_properties(${hdrs} PROPERTIES HEADER_FILE_ONLY ON)
endif()
set_source_files_properties(${ARG_ADDITIONAL_HEADERS} PROPERTIES HEADER_FILE_ONLY ON)
list(APPEND sources ${ARG_ADDITIONAL_HEADERS} ${hdrs})
endif()
set( ${OUT_VAR} ${sources} PARENT_SCOPE )
endfunction(llvm_process_sources)
function(llvm_check_source_file_list)
set(listed ${ARGN})
file(GLOB globbed *.c *.cpp)
foreach(g ${globbed})
get_filename_component(fn ${g} NAME)
# HLSL Change - case insensitive
string(TOLOWER "${fn}" fn_lower)
string(TOLOWER "${listed}" listed_lower)
# Don't reject hidden files. Some editors create backups in the
# same directory as the file.
if (NOT "${fn}" MATCHES "^\\.")
list(FIND LLVM_OPTIONAL_SOURCES ${fn} idx)
if( idx LESS 0 )
list(FIND listed_lower ${fn_lower} idx) # HLSL Change - case insensitive
if( idx LESS 0 )
# HLSL Change - support HLSL_IGNORE_SOURCES
if( idx LESS 0 )
list(FIND HLSL_IGNORE_SOURCES ${fn} idx)
if( idx LESS 0 )
message(SEND_ERROR "Found unknown source file ${g}
Please update ${CMAKE_CURRENT_LIST_FILE} or HLSL_IGNORE_SOURCES\n")
endif()
endif()
endif()
endif()
endif()
endforeach()
endfunction(llvm_check_source_file_list)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/FindTAEF.cmake | # Find the TAEF path that supports x86 and x64.
get_filename_component(WINDOWS_KIT_10_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots;KitsRoot10]" ABSOLUTE CACHE)
get_filename_component(WINDOWS_KIT_81_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots;KitsRoot81]" ABSOLUTE CACHE)
# Find the TAEF path, it will typically look something like this.
# "C:\Program Files (x86)\Windows Kits\8.1\Testing\Development\inc"
set(pfx86 "programfiles(x86)") # Work around behavior for environment names allows chars.
find_path(TAEF_INCLUDE_DIR # Set variable TAEF_INCLUDE_DIR
Wex.Common.h # Find a path with Wex.Common.h
HINTS "$ENV{TAEF_PATH}/../../../Include"
HINTS "$ENV{TAEF_PATH}/../../../Development/inc"
HINTS "${CMAKE_SOURCE_DIR}/external/taef/build/Include"
HINTS "${WINDOWS_KIT_10_PATH}/Testing/Development/inc"
HINTS "${WINDOWS_KIT_81_PATH}/Testing/Development/inc"
DOC "path to TAEF header files"
HINTS
)
macro(find_taef_libraries targetplatform)
set(TAEF_LIBRARIES)
foreach(L Te.Common.lib Wex.Common.lib Wex.Logger.lib)
find_library(TAEF_LIB_${L} NAMES ${L}
HINTS ${TAEF_INCLUDE_DIR}/../Library/${targetplatform}
HINTS ${TAEF_INCLUDE_DIR}/../lib/${targetplatform})
set(TAEF_LIBRARIES ${TAEF_LIBRARIES} ${TAEF_LIB_${L}})
endforeach()
set(TAEF_COMMON_LIBRARY ${TAEF_LIB_Te.Common.lib})
endmacro(find_taef_libraries)
if(CMAKE_C_COMPILER_ARCHITECTURE_ID STREQUAL "ARM64EC")
find_taef_libraries(arm64)
elseif(CMAKE_C_COMPILER_ARCHITECTURE_ID STREQUAL "ARMV7")
find_taef_libraries(arm)
else()
find_taef_libraries(${CMAKE_C_COMPILER_ARCHITECTURE_ID})
endif()
set(TAEF_INCLUDE_DIRS ${TAEF_INCLUDE_DIR})
# Get TAEF binaries path from the header location
set(TAEF_NUGET_BIN ${TAEF_INCLUDE_DIR}/../Binaries/Release)
set(TAEF_SDK_BIN ${TAEF_INCLUDE_DIR}/../../Runtimes/TAEF)
if ((CMAKE_GENERATOR_PLATFORM STREQUAL "x64") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x64"))
set(TAEF_BIN_ARCH "amd64")
set(TAEF_ARCH "x64")
elseif ((CMAKE_GENERATOR_PLATFORM STREQUAL "x86") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x86"))
set(TAEF_BIN_ARCH "x86")
set(TAEF_ARCH "x86")
elseif ((CMAKE_GENERATOR_PLATFORM MATCHES "ARM64.*") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" MATCHES "ARM64.*"))
set(TAEF_BIN_ARCH "arm64")
set(TAEF_ARCH "arm64")
elseif ((CMAKE_GENERATOR_PLATFORM MATCHES "ARM.*") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" MATCHES "ARM.*"))
set(TAEF_BIN_ARCH "arm")
set(TAEF_ARCH "arm")
endif((CMAKE_GENERATOR_PLATFORM STREQUAL "x64") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x64"))
set (TAEF_ARCH ${TAEF_ARCH} CACHE INTERNAL "arch for taef test")
find_program(TAEF_EXECUTABLE te.exe PATHS
$ENV{TAEF_PATH}
${CMAKE_SOURCE_DIR}/external/taef/build/Binaries/${TAEF_BIN_ARCH}
$ENV{HLSL_TAEF_DIR}/${TAEF_BIN_ARCH}
${TAEF_NUGET_BIN}/${TAEF_ARCH}
${TAEF_SDK_BIN}/${TAEF_ARCH}
${WINDOWS_KIT_10_PATH}
${WINDOWS_KIT_81_PATH}
)
if (TAEF_EXECUTABLE)
get_filename_component(TAEF_BIN_DIR ${TAEF_EXECUTABLE} DIRECTORY)
else()
message(FATAL_ERROR "Unable to find TAEF binaries.")
endif()
include(FindPackageHandleStandardArgs)
# handle the QUIETLY and REQUIRED arguments and set TAEF_FOUND to TRUE
# if all listed variables are TRUE
find_package_handle_standard_args(TAEF DEFAULT_MSG
TAEF_COMMON_LIBRARY TAEF_INCLUDE_DIR)
mark_as_advanced(TAEF_INCLUDE_DIR TAEF_LIBRARY)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/VersionFromVCS.cmake | # Adds version control information to the variable VERS. For
# determining the Version Control System used (if any) it inspects the
# existence of certain subdirectories under CMAKE_CURRENT_SOURCE_DIR.
function(add_version_info_from_vcs VERS)
string(REPLACE "svn" "" result "${${VERS}}")
if( EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.svn" )
set(result "${result}svn")
# FindSubversion does not work with symlinks. See PR 8437
if( NOT IS_SYMLINK "${CMAKE_CURRENT_SOURCE_DIR}" )
find_package(Subversion)
endif()
if( Subversion_FOUND )
subversion_wc_info( ${CMAKE_CURRENT_SOURCE_DIR} Project )
if( Project_WC_REVISION )
set(SVN_REVISION ${Project_WC_REVISION} PARENT_SCOPE)
set(result "${result}-r${Project_WC_REVISION}")
endif()
endif()
elseif( EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.git )
set(result "${result}git")
# Try to get a ref-id
if( EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.git/svn )
find_program(git_executable NAMES git git.exe git.cmd)
if( git_executable )
set(is_git_svn_rev_exact false)
execute_process(COMMAND ${git_executable} svn log --limit=1 --oneline
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if( git_result EQUAL 0 )
string(REGEX MATCH r[0-9]+ git_svn_rev ${git_output})
string(LENGTH "${git_svn_rev}" rev_length)
math(EXPR rev_length "${rev_length}-1")
string(SUBSTRING "${git_svn_rev}" 1 ${rev_length} git_svn_rev_number)
set(SVN_REVISION ${git_svn_rev_number} PARENT_SCOPE)
set(git_svn_rev "-svn-${git_svn_rev}")
# Determine if the HEAD points directly at a subversion revision.
execute_process(COMMAND ${git_executable} svn find-rev HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if( git_result EQUAL 0 )
string(STRIP "${git_output}" git_head_svn_rev_number)
if( git_head_svn_rev_number EQUAL git_svn_rev_number )
set(is_git_svn_rev_exact true)
endif()
endif()
else()
set(git_svn_rev "")
endif()
execute_process(COMMAND
${git_executable} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if( git_result EQUAL 0 AND NOT is_git_svn_rev_exact )
string(STRIP "${git_output}" git_ref_id)
set(GIT_COMMIT ${git_ref_id} PARENT_SCOPE)
set(result "${result}${git_svn_rev}-${git_ref_id}")
else()
set(result "${result}${git_svn_rev}")
endif()
endif()
else()
# HLSL Change - if no .git/svn, grab the hash
find_program(git_executable NAMES git git.exe git.cmd)
if( git_executable )
execute_process(COMMAND ${git_executable} describe --tags --always --dirty
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if( git_result EQUAL 0 )
string(STRIP "${git_output}" git_ref_id)
set(result "3.7-${git_ref_id}")
else()
message (WARNING "failed to run git describe to get version")
endif()
endif()
endif()
endif()
set(${VERS} ${result} PARENT_SCOPE)
endfunction(add_version_info_from_vcs)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/FindSphinx.cmake | # CMake find_package() Module for Sphinx documentation generator
# http://sphinx-doc.org/
#
# Example usage:
#
# find_package(Sphinx)
#
# If successful the following variables will be defined
# SPHINX_FOUND
# SPHINX_EXECUTABLE
find_program(SPHINX_EXECUTABLE
NAMES sphinx-build sphinx-build2
DOC "Path to sphinx-build executable")
# Handle REQUIRED and QUIET arguments
# this will also set SPHINX_FOUND to true if SPHINX_EXECUTABLE exists
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Sphinx
"Failed to locate sphinx-build executable"
SPHINX_EXECUTABLE)
# Provide options for controlling different types of output
option(SPHINX_OUTPUT_HTML "Output standalone HTML files" ON)
option(SPHINX_OUTPUT_MAN "Output man pages" ON)
option(SPHINX_WARNINGS_AS_ERRORS "When building documentation treat warnings as errors" ON)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/AddLLVM.cmake | include(LLVMProcessSources)
include(LLVM-Config)
find_package(Python3 REQUIRED)
function(llvm_update_compile_flags name)
get_property(sources TARGET ${name} PROPERTY SOURCES)
if("${sources}" MATCHES "\\.c(;|$)")
set(update_src_props ON)
endif()
# LLVM_REQUIRES_EH is an internal flag that individual
# targets can use to force EH
if(LLVM_REQUIRES_EH OR LLVM_ENABLE_EH) # HLSL Change - allow CLANG_CL to use EH.
if(NOT (LLVM_REQUIRES_RTTI OR LLVM_ENABLE_RTTI))
message(AUTHOR_WARNING "Exception handling requires RTTI. Enabling RTTI for ${name}")
set(LLVM_REQUIRES_RTTI ON)
endif()
else()
if(LLVM_COMPILER_IS_GCC_COMPATIBLE)
list(APPEND LLVM_COMPILE_FLAGS "-fno-exceptions")
elseif(MSVC)
list(APPEND LLVM_COMPILE_DEFINITIONS _HAS_EXCEPTIONS=0)
list(APPEND LLVM_COMPILE_FLAGS "/EHs-c-")
endif()
if (CLANG_CL)
# FIXME: Remove this once clang-cl supports SEH
list(APPEND LLVM_COMPILE_DEFINITIONS "GTEST_HAS_SEH=0")
endif()
endif()
# LLVM_REQUIRES_RTTI is an internal flag that individual
# targets can use to force RTTI
if(NOT (LLVM_REQUIRES_RTTI OR LLVM_ENABLE_RTTI))
list(APPEND LLVM_COMPILE_DEFINITIONS GTEST_HAS_RTTI=0)
if (LLVM_COMPILER_IS_GCC_COMPATIBLE)
list(APPEND LLVM_COMPILE_FLAGS "-fno-rtti")
elseif (MSVC)
list(APPEND LLVM_COMPILE_FLAGS "/GR-")
endif ()
endif()
# HLSL Changes Start
if (LLVM_ENABLE_EH)
if (MSVC)
list(APPEND LLVM_COMPILE_FLAGS "/EHsc")
else (MSVC)
# This is just the default exception handling on Linux
endif (MSVC)
endif (LLVM_ENABLE_EH)
if (NOT HLSL_ENABLE_DEBUG_ITERATORS)
add_definitions(/D_ITERATOR_DEBUG_LEVEL=0)
endif (NOT HLSL_ENABLE_DEBUG_ITERATORS)
# HLSL Changes End
# Assume that;
# - LLVM_COMPILE_FLAGS is list.
# - PROPERTY COMPILE_FLAGS is string.
string(REPLACE ";" " " target_compile_flags "${LLVM_COMPILE_FLAGS}")
if(update_src_props)
foreach(fn ${sources})
get_filename_component(suf ${fn} EXT)
if("${suf}" STREQUAL ".cpp")
set_property(SOURCE ${fn} APPEND_STRING PROPERTY
COMPILE_FLAGS "${target_compile_flags}")
endif()
endforeach()
else()
# Update target props, since all sources are C++.
set_property(TARGET ${name} APPEND_STRING PROPERTY
COMPILE_FLAGS "${target_compile_flags}")
endif()
set_property(TARGET ${name} APPEND PROPERTY COMPILE_DEFINITIONS ${LLVM_COMPILE_DEFINITIONS})
endfunction()
function(add_llvm_symbol_exports target_name export_file)
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(native_export_file "${target_name}.exports")
add_custom_command(OUTPUT ${native_export_file}
COMMAND sed -e "s/^/_/" < ${export_file} > ${native_export_file}
DEPENDS ${export_file}
VERBATIM
COMMENT "Creating export file for ${target_name}")
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-exported_symbols_list,${CMAKE_CURRENT_BINARY_DIR}/${native_export_file}")
elseif(LLVM_HAVE_LINK_VERSION_SCRIPT)
# Gold and BFD ld require a version script rather than a plain list.
set(native_export_file "${target_name}.exports")
# FIXME: Don't write the "local:" line on OpenBSD.
add_custom_command(OUTPUT ${native_export_file}
COMMAND echo "{" > ${native_export_file}
COMMAND grep -q "[[:alnum:]]" ${export_file} && echo " global:" >> ${native_export_file} || :
COMMAND sed -e "s/$/;/" -e "s/^/ /" < ${export_file} >> ${native_export_file}
COMMAND echo " local: *;" >> ${native_export_file}
COMMAND echo "};" >> ${native_export_file}
DEPENDS ${export_file}
VERBATIM
COMMENT "Creating export file for ${target_name}")
if (${CMAKE_SYSTEM_NAME} MATCHES "SunOS")
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-M,${CMAKE_CURRENT_BINARY_DIR}/${native_export_file}")
else()
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,--version-script,${CMAKE_CURRENT_BINARY_DIR}/${native_export_file}")
endif()
else()
set(native_export_file "${target_name}.def")
add_custom_command(OUTPUT ${native_export_file}
COMMAND ${Python3_EXECUTABLE} -c "import sys;print(''.join(['EXPORTS\\n']+sys.stdin.readlines(),))"
< ${export_file} > ${native_export_file}
DEPENDS ${export_file}
VERBATIM
COMMENT "Creating export file for ${target_name}")
set(export_file_linker_flag "${CMAKE_CURRENT_BINARY_DIR}/${native_export_file}")
if(MSVC)
set(export_file_linker_flag "/DEF:\"${export_file_linker_flag}\"")
endif()
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " ${export_file_linker_flag}")
endif()
add_custom_target(${target_name}_exports DEPENDS ${native_export_file})
set_target_properties(${target_name}_exports PROPERTIES FOLDER "Misc")
get_property(srcs TARGET ${target_name} PROPERTY SOURCES)
foreach(src ${srcs})
get_filename_component(extension ${src} EXT)
if(extension STREQUAL ".cpp")
set(first_source_file ${src})
break()
endif()
endforeach()
# Force re-linking when the exports file changes. Actually, it
# forces recompilation of the source file. The LINK_DEPENDS target
# property only works for makefile-based generators.
# FIXME: This is not safe because this will create the same target
# ${native_export_file} in several different file:
# - One where we emitted ${target_name}_exports
# - One where we emitted the build command for the following object.
# set_property(SOURCE ${first_source_file} APPEND PROPERTY
# OBJECT_DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/${native_export_file})
set_property(DIRECTORY APPEND
PROPERTY ADDITIONAL_MAKE_CLEAN_FILES ${native_export_file})
add_dependencies(${target_name} ${target_name}_exports)
# Add dependency to *_exports later -- CMake issue 14747
list(APPEND LLVM_COMMON_DEPENDS ${target_name}_exports)
set(LLVM_COMMON_DEPENDS ${LLVM_COMMON_DEPENDS} PARENT_SCOPE)
endfunction(add_llvm_symbol_exports)
if(NOT WIN32 AND NOT APPLE)
execute_process(
COMMAND ${CMAKE_C_COMPILER} -Wl,--version
OUTPUT_VARIABLE stdout
ERROR_QUIET
)
if("${stdout}" MATCHES "GNU gold")
set(LLVM_LINKER_IS_GOLD ON)
endif()
endif()
function(add_link_opts target_name)
# Don't use linker optimizations in debug builds since it slows down the
# linker in a context where the optimizations are not important.
if (NOT uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG")
# Pass -O3 to the linker. This enabled different optimizations on different
# linkers.
if(NOT (${CMAKE_SYSTEM_NAME} MATCHES "Darwin|SunOS" OR WIN32))
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-O3")
endif()
if(LLVM_LINKER_IS_GOLD)
# With gold gc-sections is always safe.
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,--gc-sections")
# Note that there is a bug with -Wl,--icf=safe so it is not safe
# to enable. See https://sourceware.org/bugzilla/show_bug.cgi?id=17704.
endif()
if(NOT LLVM_NO_DEAD_STRIP)
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
# ld64's implementation of -dead_strip breaks tools that use plugins.
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-dead_strip")
elseif(${CMAKE_SYSTEM_NAME} MATCHES "SunOS")
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-z -Wl,discard-unused=sections")
elseif(NOT WIN32 AND NOT LLVM_LINKER_IS_GOLD)
# Object files are compiled with -ffunction-data-sections.
# Versions of bfd ld < 2.23.1 have a bug in --gc-sections that breaks
# tools that use plugins. Always pass --gc-sections once we require
# a newer linker.
set_property(TARGET ${target_name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,--gc-sections")
endif()
endif()
endif()
endfunction(add_link_opts)
# Set each output directory according to ${CMAKE_CONFIGURATION_TYPES}.
# Note: Don't set variables CMAKE_*_OUTPUT_DIRECTORY any more,
# or a certain builder, for eaxample, msbuild.exe, would be confused.
function(set_output_directory target bindir libdir)
# Do nothing if *_OUTPUT_INTDIR is empty.
if("${bindir}" STREQUAL "")
return()
endif()
# moddir -- corresponding to LIBRARY_OUTPUT_DIRECTORY.
# It affects output of add_library(MODULE).
if(WIN32 OR CYGWIN)
# DLL platform
set(moddir ${bindir})
else()
set(moddir ${libdir})
endif()
if(NOT "${CMAKE_CFG_INTDIR}" STREQUAL ".")
foreach(build_mode ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_mode}" CONFIG_SUFFIX)
string(REPLACE ${CMAKE_CFG_INTDIR} ${build_mode} bi ${bindir})
string(REPLACE ${CMAKE_CFG_INTDIR} ${build_mode} li ${libdir})
string(REPLACE ${CMAKE_CFG_INTDIR} ${build_mode} mi ${moddir})
set_target_properties(${target} PROPERTIES "RUNTIME_OUTPUT_DIRECTORY_${CONFIG_SUFFIX}" ${bi})
set_target_properties(${target} PROPERTIES "ARCHIVE_OUTPUT_DIRECTORY_${CONFIG_SUFFIX}" ${li})
set_target_properties(${target} PROPERTIES "LIBRARY_OUTPUT_DIRECTORY_${CONFIG_SUFFIX}" ${mi})
endforeach()
else()
set_target_properties(${target} PROPERTIES RUNTIME_OUTPUT_DIRECTORY ${bindir})
set_target_properties(${target} PROPERTIES ARCHIVE_OUTPUT_DIRECTORY ${libdir})
set_target_properties(${target} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${moddir})
endif()
endfunction()
# If on Windows and building with MSVC, add the resource script containing the
# VERSIONINFO data to the project. This embeds version resource information
# into the output .exe or .dll.
# TODO: Enable for MinGW Windows builds too.
#
function(add_windows_version_resource_file OUT_VAR)
set(sources ${ARGN})
if (WIN32)
set(resource_file ${LLVM_SOURCE_DIR}/resources/windows_version_resource.rc)
if(EXISTS ${resource_file})
set(sources ${sources} ${resource_file})
source_group("Resource Files" ${resource_file})
set(windows_resource_file ${resource_file} PARENT_SCOPE)
endif()
endif(WIN32)
set(${OUT_VAR} ${sources} PARENT_SCOPE)
endfunction(add_windows_version_resource_file)
# set_windows_version_resource_properties(name resource_file...
# VERSION_MAJOR int
# Optional major version number (defaults to LLVM_VERSION_MAJOR)
# VERSION_MINOR int
# Optional minor version number (defaults to LLVM_VERSION_MINOR)
# VERSION_PATCHLEVEL int
# Optional patchlevel version number (defaults to LLVM_VERSION_PATCH)
# VERSION_STRING
# Optional version string (defaults to PACKAGE_VERSION)
# PRODUCT_NAME
# Optional product name string (defaults to "LLVM")
# )
function(set_windows_version_resource_properties name resource_file)
cmake_parse_arguments(ARG
""
"VERSION_MAJOR;VERSION_MINOR;VERSION_PATCHLEVEL;VERSION_STRING;PRODUCT_NAME"
""
${ARGN})
if (NOT DEFINED ARG_VERSION_MAJOR)
set(ARG_VERSION_MAJOR ${LLVM_VERSION_MAJOR})
endif()
if (NOT DEFINED ARG_VERSION_MINOR)
set(ARG_VERSION_MINOR ${LLVM_VERSION_MINOR})
endif()
if (NOT DEFINED ARG_VERSION_PATCHLEVEL)
set(ARG_VERSION_PATCHLEVEL ${LLVM_VERSION_PATCH})
endif()
if (NOT DEFINED ARG_VERSION_STRING)
set(ARG_VERSION_STRING ${PACKAGE_VERSION})
endif()
if (NOT DEFINED ARG_PRODUCT_NAME)
set(ARG_PRODUCT_NAME "LLVM")
endif()
if (MSVC)
set_property(SOURCE ${resource_file}
PROPERTY COMPILE_FLAGS /nologo)
endif()
set_property(SOURCE ${resource_file}
PROPERTY COMPILE_DEFINITIONS
"RC_VERSION_FIELD_1=${ARG_VERSION_MAJOR}"
"RC_VERSION_FIELD_2=${ARG_VERSION_MINOR}"
"RC_VERSION_FIELD_3=${ARG_VERSION_PATCHLEVEL}"
"RC_VERSION_FIELD_4=0"
"RC_FILE_VERSION=\"${ARG_VERSION_STRING}\""
"RC_INTERNAL_NAME=\"${name}\""
"RC_PRODUCT_NAME=\"${ARG_PRODUCT_NAME}\""
"RC_PRODUCT_VERSION=\"${ARG_VERSION_STRING}\"")
# HLSL change begin - set common version
if(${HLSL_EMBED_VERSION})
if (DEFINED resource_file)
add_dependencies(${name} hlsl_version_autogen)
set_property(SOURCE ${resource_file}
PROPERTY COMPILE_DEFINITIONS
"INCLUDE_HLSL_VERSION_FILE=1")
set_property(SOURCE ${resource_file}
PROPERTY COMPILE_OPTIONS
"-I" "${HLSL_VERSION_LOCATION}")
endif (DEFINED resource_file)
endif(${HLSL_EMBED_VERSION})
# HLSL change ends
endfunction(set_windows_version_resource_properties)
# llvm_add_library(name sources...
# SHARED;STATIC
# STATIC by default w/o BUILD_SHARED_LIBS.
# SHARED by default w/ BUILD_SHARED_LIBS.
# MODULE
# Target ${name} might not be created on unsupported platforms.
# Check with "if(TARGET ${name})".
# OUTPUT_NAME name
# Corresponds to OUTPUT_NAME in target properties.
# DEPENDS targets...
# Same semantics as add_dependencies().
# LINK_COMPONENTS components...
# Same as the variable LLVM_LINK_COMPONENTS.
# LINK_LIBS lib_targets...
# Same semantics as target_link_libraries().
# ADDITIONAL_HEADERS
# May specify header files for IDE generators.
# )
function(llvm_add_library name)
cmake_parse_arguments(ARG
"MODULE;SHARED;STATIC"
"OUTPUT_NAME"
"ADDITIONAL_HEADERS;DEPENDS;LINK_COMPONENTS;LINK_LIBS;OBJLIBS"
${ARGN})
list(APPEND LLVM_COMMON_DEPENDS ${ARG_DEPENDS})
if(ARG_ADDITIONAL_HEADERS)
# Pass through ADDITIONAL_HEADERS.
set(ARG_ADDITIONAL_HEADERS ADDITIONAL_HEADERS ${ARG_ADDITIONAL_HEADERS})
endif()
if(ARG_OBJLIBS)
set(ALL_FILES ${ARG_OBJLIBS})
else()
llvm_process_sources(ALL_FILES ${ARG_UNPARSED_ARGUMENTS} ${ARG_ADDITIONAL_HEADERS})
endif()
if(ARG_MODULE)
if(ARG_SHARED OR ARG_STATIC)
message(WARNING "MODULE with SHARED|STATIC doesn't make sense.")
endif()
if(NOT LLVM_ENABLE_PLUGINS)
message(STATUS "${name} ignored -- Loadable modules not supported on this platform.")
return()
endif()
else()
if(BUILD_SHARED_LIBS AND NOT ARG_STATIC)
set(ARG_SHARED TRUE)
endif()
if(NOT ARG_SHARED)
set(ARG_STATIC TRUE)
endif()
endif()
# Generate objlib
if(ARG_SHARED AND ARG_STATIC)
# Generate an obj library for both targets.
set(obj_name "obj.${name}")
add_library(${obj_name} OBJECT EXCLUDE_FROM_ALL
${ALL_FILES}
)
llvm_update_compile_flags(${obj_name})
set(ALL_FILES "$<TARGET_OBJECTS:${obj_name}>")
# Do add_dependencies(obj) later due to CMake issue 14747.
list(APPEND objlibs ${obj_name})
set_target_properties(${obj_name} PROPERTIES FOLDER "Object Libraries")
endif()
if(ARG_SHARED AND ARG_STATIC)
# static
set(name_static "${name}_static")
if(ARG_OUTPUT_NAME)
set(output_name OUTPUT_NAME "${ARG_OUTPUT_NAME}")
endif()
# DEPENDS has been appended to LLVM_COMMON_LIBS.
llvm_add_library(${name_static} STATIC
${output_name}
OBJLIBS ${ALL_FILES} # objlib
LINK_LIBS ${ARG_LINK_LIBS}
LINK_COMPONENTS ${ARG_LINK_COMPONENTS}
)
# FIXME: Add name_static to anywhere in TARGET ${name}'s PROPERTY.
set(ARG_STATIC)
endif()
if(ARG_MODULE)
add_library(${name} MODULE ${ALL_FILES})
elseif(ARG_SHARED)
add_windows_version_resource_file(ALL_FILES ${ALL_FILES})
add_library(${name} SHARED ${ALL_FILES})
else()
add_library(${name} STATIC ${ALL_FILES})
endif()
if(DEFINED windows_resource_file)
set_windows_version_resource_properties(${name} ${windows_resource_file})
set(windows_resource_file ${windows_resource_file} PARENT_SCOPE)
endif()
set_output_directory(${name} ${LLVM_RUNTIME_OUTPUT_INTDIR} ${LLVM_LIBRARY_OUTPUT_INTDIR})
llvm_update_compile_flags(${name})
add_link_opts( ${name} )
if(ARG_OUTPUT_NAME)
set_target_properties(${name}
PROPERTIES
OUTPUT_NAME ${ARG_OUTPUT_NAME}
)
endif()
if(ARG_MODULE)
set_target_properties(${name} PROPERTIES
PREFIX ""
SUFFIX ${LLVM_PLUGIN_EXT}
)
endif()
if(ARG_SHARED)
if(WIN32)
set_target_properties(${name} PROPERTIES
PREFIX ""
)
endif()
# HLSL Change Begin - Don't generate so versioned files.
set_target_properties(${name}
PROPERTIES
SOVERSION ${LLVM_VERSION_MAJOR}.${LLVM_VERSION_MINOR}
VERSION ${LLVM_VERSION_MAJOR}.${LLVM_VERSION_MINOR}.${LLVM_VERSION_PATCH}${LLVM_VERSION_SUFFIX}
NO_SONAME On)
if (APPLE)
set_property(TARGET ${name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-install_name,@rpath/${CMAKE_SHARED_LIBRARY_PREFIX}${name}${CMAKE_SHARED_LIBRARY_SUFFIX}")
elseif(UNIX)
set_property(TARGET ${name} APPEND_STRING PROPERTY
LINK_FLAGS " -Wl,-soname,${CMAKE_SHARED_LIBRARY_PREFIX}${name}${CMAKE_SHARED_LIBRARY_SUFFIX}")
endif()
# HLSL Change End - Don't generate so versioned files.
endif()
if(ARG_MODULE OR ARG_SHARED)
# Do not add -Dname_EXPORTS to the command-line when building files in this
# target. Doing so is actively harmful for the modules build because it
# creates extra module variants, and not useful because we don't use these
# macros.
set_target_properties( ${name} PROPERTIES DEFINE_SYMBOL "" )
if (LLVM_EXPORTED_SYMBOL_FILE)
add_llvm_symbol_exports( ${name} ${LLVM_EXPORTED_SYMBOL_FILE} )
endif()
endif()
# Add the explicit dependency information for this library.
#
# It would be nice to verify that we have the dependencies for this library
# name, but using get_property(... SET) doesn't suffice to determine if a
# property has been set to an empty value.
get_property(lib_deps GLOBAL PROPERTY LLVMBUILD_LIB_DEPS_${name})
llvm_map_components_to_libnames(llvm_libs
${ARG_LINK_COMPONENTS}
${LLVM_LINK_COMPONENTS}
)
if(CMAKE_VERSION VERSION_LESS 2.8.12)
# Link libs w/o keywords, assuming PUBLIC.
target_link_libraries(${name}
${ARG_LINK_LIBS}
${lib_deps}
${llvm_libs}
)
elseif(ARG_STATIC)
target_link_libraries(${name} INTERFACE
${ARG_LINK_LIBS}
${lib_deps}
${llvm_libs}
)
else()
# We can use PRIVATE since SO knows its dependent libs.
target_link_libraries(${name} PRIVATE
${ARG_LINK_LIBS}
${lib_deps}
${llvm_libs}
)
endif()
if(LLVM_COMMON_DEPENDS)
add_dependencies(${name} ${LLVM_COMMON_DEPENDS})
# Add dependencies also to objlibs.
# CMake issue 14747 -- add_dependencies() might be ignored to objlib's user.
foreach(objlib ${objlibs})
add_dependencies(${objlib} ${LLVM_COMMON_DEPENDS})
endforeach()
endif()
endfunction()
macro(add_llvm_library name)
cmake_parse_arguments(ARG
"SHARED"
""
""
${ARGN})
if( BUILD_SHARED_LIBS )
llvm_add_library(${name} SHARED ${ARGN})
else()
llvm_add_library(${name} ${ARGN})
endif()
# The gtest libraries should not be installed or exported as a target
if ("${name}" STREQUAL gtest OR "${name}" STREQUAL gtest_main)
set(_is_gtest TRUE)
else()
set(_is_gtest FALSE)
set_property( GLOBAL APPEND PROPERTY LLVM_LIBS ${name} )
endif()
if( EXCLUDE_FROM_ALL )
set_target_properties( ${name} PROPERTIES EXCLUDE_FROM_ALL ON)
elseif(NOT _is_gtest)
if (NOT LLVM_INSTALL_TOOLCHAIN_ONLY OR ${name} STREQUAL "LTO")
if(ARG_SHARED OR BUILD_SHARED_LIBS)
if(WIN32 OR CYGWIN)
set(install_type RUNTIME)
else()
set(install_type LIBRARY)
endif()
else()
set(install_type ARCHIVE)
endif()
install(TARGETS ${name}
EXPORT LLVMExports
${install_type} DESTINATION lib${LLVM_LIBDIR_SUFFIX}
COMPONENT ${name})
if (NOT CMAKE_CONFIGURATION_TYPES)
add_custom_target(install-${name}
DEPENDS ${name}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${name}
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
endif()
endif()
set_property(GLOBAL APPEND PROPERTY LLVM_EXPORTS ${name})
endif()
set_target_properties(${name} PROPERTIES FOLDER "Libraries")
endmacro(add_llvm_library name)
macro(add_llvm_loadable_module name)
llvm_add_library(${name} MODULE ${ARGN})
if(NOT TARGET ${name})
# Add empty "phony" target
add_custom_target(${name})
else()
if( EXCLUDE_FROM_ALL )
set_target_properties( ${name} PROPERTIES EXCLUDE_FROM_ALL ON)
else()
if (NOT LLVM_INSTALL_TOOLCHAIN_ONLY)
if(WIN32 OR CYGWIN)
# DLL platform
set(dlldir "bin")
else()
set(dlldir "lib${LLVM_LIBDIR_SUFFIX}")
endif()
install(TARGETS ${name}
EXPORT LLVMExports
LIBRARY DESTINATION ${dlldir}
ARCHIVE DESTINATION lib${LLVM_LIBDIR_SUFFIX})
endif()
set_property(GLOBAL APPEND PROPERTY LLVM_EXPORTS ${name})
endif()
endif()
set_target_properties(${name} PROPERTIES FOLDER "Loadable modules")
endmacro(add_llvm_loadable_module name)
macro(add_llvm_executable name)
llvm_process_sources( ALL_FILES ${ARGN} )
add_windows_version_resource_file(ALL_FILES ${ALL_FILES})
if( EXCLUDE_FROM_ALL )
add_executable(${name} EXCLUDE_FROM_ALL ${ALL_FILES})
else()
add_executable(${name} ${ALL_FILES})
endif()
if(DEFINED windows_resource_file)
set_windows_version_resource_properties(${name} ${windows_resource_file})
endif()
llvm_update_compile_flags(${name})
add_link_opts( ${name} )
# Do not add -Dname_EXPORTS to the command-line when building files in this
# target. Doing so is actively harmful for the modules build because it
# creates extra module variants, and not useful because we don't use these
# macros.
set_target_properties( ${name} PROPERTIES DEFINE_SYMBOL "" )
if (LLVM_EXPORTED_SYMBOL_FILE)
add_llvm_symbol_exports( ${name} ${LLVM_EXPORTED_SYMBOL_FILE} )
endif(LLVM_EXPORTED_SYMBOL_FILE)
set(EXCLUDE_FROM_ALL OFF)
set_output_directory(${name} ${LLVM_RUNTIME_OUTPUT_INTDIR} ${LLVM_LIBRARY_OUTPUT_INTDIR})
llvm_config( ${name} ${LLVM_LINK_COMPONENTS} )
if( LLVM_COMMON_DEPENDS )
add_dependencies( ${name} ${LLVM_COMMON_DEPENDS} )
endif( LLVM_COMMON_DEPENDS )
endmacro(add_llvm_executable name)
function(export_executable_symbols target)
if (NOT MSVC) # MSVC's linker doesn't support exporting all symbols.
set_target_properties(${target} PROPERTIES ENABLE_EXPORTS 1)
endif()
endfunction()
set (LLVM_TOOLCHAIN_TOOLS
llvm-ar
llvm-objdump
)
macro(add_llvm_tool name)
if( NOT LLVM_BUILD_TOOLS )
set(EXCLUDE_FROM_ALL ON)
endif()
add_llvm_executable(${name} ${ARGN})
list(FIND LLVM_TOOLCHAIN_TOOLS ${name} LLVM_IS_${name}_TOOLCHAIN_TOOL)
if (LLVM_IS_${name}_TOOLCHAIN_TOOL GREATER -1 OR NOT LLVM_INSTALL_TOOLCHAIN_ONLY)
if( LLVM_BUILD_TOOLS )
install(TARGETS ${name}
EXPORT LLVMExports
RUNTIME DESTINATION bin
COMPONENT ${name})
if (NOT CMAKE_CONFIGURATION_TYPES)
add_custom_target(install-${name}
DEPENDS ${name}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${name}
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
endif()
endif()
endif()
if( LLVM_BUILD_TOOLS )
set_property(GLOBAL APPEND PROPERTY LLVM_EXPORTS ${name})
endif()
set_target_properties(${name} PROPERTIES FOLDER "Tools")
endmacro(add_llvm_tool name)
macro(add_llvm_example name)
if( NOT LLVM_BUILD_EXAMPLES )
set(EXCLUDE_FROM_ALL ON)
endif()
add_llvm_executable(${name} ${ARGN})
if( LLVM_BUILD_EXAMPLES )
install(TARGETS ${name} RUNTIME DESTINATION examples)
endif()
set_target_properties(${name} PROPERTIES FOLDER "Examples")
endmacro(add_llvm_example name)
macro(add_llvm_utility name)
add_llvm_executable(${name} ${ARGN})
set_target_properties(${name} PROPERTIES FOLDER "Utils")
if( LLVM_INSTALL_UTILS )
install (TARGETS ${name}
RUNTIME DESTINATION bin
COMPONENT ${name})
if (NOT CMAKE_CONFIGURATION_TYPES)
add_custom_target(install-${name}
DEPENDS ${name}
COMMAND "${CMAKE_COMMAND}"
-DCMAKE_INSTALL_COMPONENT=${name}
-P "${CMAKE_BINARY_DIR}/cmake_install.cmake")
endif()
endif()
endmacro(add_llvm_utility name)
macro(add_llvm_target target_name)
include_directories(BEFORE
${CMAKE_CURRENT_BINARY_DIR}
${CMAKE_CURRENT_SOURCE_DIR})
add_llvm_library(LLVM${target_name} ${ARGN})
set( CURRENT_LLVM_TARGET LLVM${target_name} )
endmacro(add_llvm_target)
# Add external project that may want to be built as part of llvm such as Clang,
# lld, and Polly. This adds two options. One for the source directory of the
# project, which defaults to ${CMAKE_CURRENT_SOURCE_DIR}/${name}. Another to
# enable or disable building it with everything else.
# Additional parameter can be specified as the name of directory.
macro(add_llvm_external_project name)
set(add_llvm_external_dir "${ARGN}")
if("${add_llvm_external_dir}" STREQUAL "")
set(add_llvm_external_dir ${name})
endif()
list(APPEND LLVM_IMPLICIT_PROJECT_IGNORE "${CMAKE_CURRENT_SOURCE_DIR}/${add_llvm_external_dir}")
string(REPLACE "-" "_" nameUNDERSCORE ${name})
string(TOUPPER ${nameUNDERSCORE} nameUPPER)
#TODO: Remove this check in a few days once it has circulated through
# buildbots and people's checkouts (cbieneman - July 14, 2015)
if("${LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR}" STREQUAL "${CMAKE_CURRENT_SOURCE_DIR}/${add_llvm_external_dir}")
unset(LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR CACHE)
endif()
if(NOT LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR)
set(LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/${add_llvm_external_dir}")
else()
set(LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR
CACHE PATH "Path to ${name} source directory")
endif()
if (EXISTS ${LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR}/CMakeLists.txt)
option(LLVM_EXTERNAL_${nameUPPER}_BUILD
"Whether to build ${name} as part of LLVM" ON)
if (LLVM_EXTERNAL_${nameUPPER}_BUILD)
add_subdirectory(${LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR} ${add_llvm_external_dir})
endif()
endif()
endmacro(add_llvm_external_project)
macro(add_llvm_tool_subdirectory name)
list(APPEND LLVM_IMPLICIT_PROJECT_IGNORE "${CMAKE_CURRENT_SOURCE_DIR}/${name}")
add_subdirectory(${name})
endmacro(add_llvm_tool_subdirectory)
macro(ignore_llvm_tool_subdirectory name)
list(APPEND LLVM_IMPLICIT_PROJECT_IGNORE "${CMAKE_CURRENT_SOURCE_DIR}/${name}")
endmacro(ignore_llvm_tool_subdirectory)
function(add_llvm_implicit_external_projects)
set(list_of_implicit_subdirs "")
file(GLOB sub-dirs "${CMAKE_CURRENT_SOURCE_DIR}/*")
foreach(dir ${sub-dirs})
if(IS_DIRECTORY "${dir}")
list(FIND LLVM_IMPLICIT_PROJECT_IGNORE "${dir}" tool_subdir_ignore)
if( tool_subdir_ignore EQUAL -1
AND EXISTS "${dir}/CMakeLists.txt")
get_filename_component(fn "${dir}" NAME)
list(APPEND list_of_implicit_subdirs "${fn}")
endif()
endif()
endforeach()
foreach(external_proj ${list_of_implicit_subdirs})
add_llvm_external_project("${external_proj}")
endforeach()
endfunction(add_llvm_implicit_external_projects)
# Generic support for adding a unittest.
function(add_unittest test_suite test_name)
if( NOT LLVM_BUILD_TESTS AND NOT SPIRV_BUILD_TESTS ) # SPIRV change
set(EXCLUDE_FROM_ALL ON)
endif()
include_directories(${LLVM_MAIN_SRC_DIR}/utils/unittest/googletest/include)
include_directories(${LLVM_MAIN_SRC_DIR}/utils/unittest/googlemock/include) # HLSL Change - Pulled in from LLVM 4.0
if (NOT LLVM_ENABLE_THREADS)
list(APPEND LLVM_COMPILE_DEFINITIONS GTEST_HAS_PTHREAD=0)
endif ()
if (SUPPORTS_NO_VARIADIC_MACROS_FLAG)
list(APPEND LLVM_COMPILE_FLAGS "-Wno-variadic-macros")
endif ()
set(LLVM_REQUIRES_RTTI OFF)
add_llvm_executable(${test_name} ${ARGN})
set(outdir ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_CFG_INTDIR})
set_output_directory(${test_name} ${outdir} ${outdir})
target_link_libraries(${test_name}
gtest
gtest_main
LLVMSupport # gtest needs it for raw_ostream.
)
add_dependencies(${test_suite} ${test_name})
get_target_property(test_suite_folder ${test_suite} FOLDER)
if (NOT ${test_suite_folder} STREQUAL "NOTFOUND")
set_property(TARGET ${test_name} PROPERTY FOLDER "${test_suite_folder}")
endif ()
endfunction()
function(llvm_add_go_executable binary pkgpath)
cmake_parse_arguments(ARG "ALL" "" "DEPENDS;GOFLAGS" ${ARGN})
if(LLVM_BINDINGS MATCHES "go")
# FIXME: This should depend only on the libraries Go needs.
get_property(llvmlibs GLOBAL PROPERTY LLVM_LIBS)
set(binpath ${CMAKE_BINARY_DIR}/bin/${binary}${CMAKE_EXECUTABLE_SUFFIX})
set(cc "${CMAKE_C_COMPILER} ${CMAKE_C_COMPILER_ARG1}")
set(cxx "${CMAKE_CXX_COMPILER} ${CMAKE_CXX_COMPILER_ARG1}")
set(cppflags "")
get_property(include_dirs DIRECTORY PROPERTY INCLUDE_DIRECTORIES)
foreach(d ${include_dirs})
set(cppflags "${cppflags} -I${d}")
endforeach(d)
set(ldflags "${CMAKE_EXE_LINKER_FLAGS}")
add_custom_command(OUTPUT ${binpath}
COMMAND ${CMAKE_BINARY_DIR}/bin/llvm-go "cc=${cc}" "cxx=${cxx}" "cppflags=${cppflags}" "ldflags=${ldflags}"
${ARG_GOFLAGS} build -o ${binpath} ${pkgpath}
DEPENDS llvm-config ${CMAKE_BINARY_DIR}/bin/llvm-go${CMAKE_EXECUTABLE_SUFFIX}
${llvmlibs} ${ARG_DEPENDS}
COMMENT "Building Go executable ${binary}"
VERBATIM)
if (ARG_ALL)
add_custom_target(${binary} ALL DEPENDS ${binpath})
else()
add_custom_target(${binary} DEPENDS ${binpath})
endif()
endif()
endfunction()
# This function provides an automatic way to 'configure'-like generate a file
# based on a set of common and custom variables, specifically targeting the
# variables needed for the 'lit.site.cfg' files. This function bundles the
# common variables that any Lit instance is likely to need, and custom
# variables can be passed in.
function(configure_lit_site_cfg input output)
foreach(c ${LLVM_TARGETS_TO_BUILD})
set(TARGETS_BUILT "${TARGETS_BUILT} ${c}")
endforeach(c)
set(TARGETS_TO_BUILD ${TARGETS_BUILT})
set(SHLIBEXT "${LTDL_SHLIB_EXT}")
# Configuration-time: See Unit/lit.site.cfg.in
if (CMAKE_CFG_INTDIR STREQUAL ".")
set(LLVM_BUILD_MODE ".")
else ()
set(LLVM_BUILD_MODE "%(build_mode)s")
endif ()
# They below might not be the build tree but provided binary tree.
set(LLVM_SOURCE_DIR ${LLVM_MAIN_SRC_DIR})
set(LLVM_BINARY_DIR ${LLVM_BINARY_DIR})
string(REPLACE ${CMAKE_CFG_INTDIR} ${LLVM_BUILD_MODE} LLVM_TOOLS_DIR ${LLVM_TOOLS_BINARY_DIR})
string(REPLACE ${CMAKE_CFG_INTDIR} ${LLVM_BUILD_MODE} LLVM_LIBS_DIR ${LLVM_LIBRARY_DIR})
# SHLIBDIR points the build tree.
string(REPLACE ${CMAKE_CFG_INTDIR} ${LLVM_BUILD_MODE} SHLIBDIR "${LLVM_SHLIB_OUTPUT_INTDIR}")
# FIXME: "ENABLE_SHARED" doesn't make sense, since it is used just for
# plugins. We may rename it.
if(LLVM_ENABLE_PLUGINS)
set(ENABLE_SHARED "1")
else()
set(ENABLE_SHARED "0")
endif()
if(LLVM_ENABLE_ASSERTIONS AND NOT MSVC_IDE)
set(ENABLE_ASSERTIONS "1")
else()
set(ENABLE_ASSERTIONS "0")
endif()
set(HOST_OS ${CMAKE_SYSTEM_NAME})
set(HOST_ARCH ${CMAKE_SYSTEM_PROCESSOR})
set(HOST_CC "${CMAKE_C_COMPILER} ${CMAKE_C_COMPILER_ARG1}")
set(HOST_CXX "${CMAKE_CXX_COMPILER} ${CMAKE_CXX_COMPILER_ARG1}")
set(HOST_LDFLAGS "${CMAKE_EXE_LINKER_FLAGS}")
configure_file(${input} ${output} @ONLY)
endfunction()
# A raw function to create a lit target. This is used to implement the testuite
# management functions.
function(add_lit_target target comment)
cmake_parse_arguments(ARG "" "" "PARAMS;DEPENDS;ARGS" ${ARGN})
set(LIT_ARGS "${ARG_ARGS} ${LLVM_LIT_ARGS}")
separate_arguments(LIT_ARGS)
if (NOT CMAKE_CFG_INTDIR STREQUAL ".")
list(APPEND LIT_ARGS --param build_mode=${CMAKE_CFG_INTDIR})
endif ()
if (LLVM_MAIN_SRC_DIR)
set (LIT_COMMAND ${Python3_EXECUTABLE} ${LLVM_MAIN_SRC_DIR}/utils/lit/lit.py)
else()
find_program(LIT_COMMAND llvm-lit)
endif ()
list(APPEND LIT_COMMAND ${LIT_ARGS})
foreach(param ${ARG_PARAMS})
list(APPEND LIT_COMMAND --param ${param})
endforeach()
if (ARG_UNPARSED_ARGUMENTS)
add_custom_target(${target}
COMMAND ${LIT_COMMAND} ${ARG_UNPARSED_ARGUMENTS}
COMMENT "${comment}"
${cmake_3_2_USES_TERMINAL}
)
else()
add_custom_target(${target}
COMMAND ${CMAKE_COMMAND} -E echo "${target} does nothing, no tools built.")
message(STATUS "${target} does nothing.")
endif()
if (ARG_DEPENDS)
add_dependencies(${target} ${ARG_DEPENDS})
endif()
# Tests should be excluded from "Build Solution".
set_target_properties(${target} PROPERTIES EXCLUDE_FROM_DEFAULT_BUILD ON)
endfunction()
# A function to add a set of lit test suites to be driven through 'check-*' targets.
function(add_lit_testsuite target comment)
cmake_parse_arguments(ARG "" "" "PARAMS;DEPENDS;ARGS" ${ARGN})
# EXCLUDE_FROM_ALL excludes the test ${target} out of check-all.
if(NOT EXCLUDE_FROM_ALL)
# Register the testsuites, params and depends for the global check rule.
set_property(GLOBAL APPEND PROPERTY LLVM_LIT_TESTSUITES ${ARG_UNPARSED_ARGUMENTS})
set_property(GLOBAL APPEND PROPERTY LLVM_LIT_PARAMS ${ARG_PARAMS})
set_property(GLOBAL APPEND PROPERTY LLVM_LIT_DEPENDS ${ARG_DEPENDS})
set_property(GLOBAL APPEND PROPERTY LLVM_LIT_EXTRA_ARGS ${ARG_ARGS})
endif()
# Produce a specific suffixed check rule.
add_lit_target(${target} ${comment}
${ARG_UNPARSED_ARGUMENTS}
PARAMS ${ARG_PARAMS}
DEPENDS ${ARG_DEPENDS}
ARGS ${ARG_ARGS}
)
endfunction()
function(add_lit_testsuites project directory)
if (NOT CMAKE_CONFIGURATION_TYPES)
cmake_parse_arguments(ARG "EXCLUDE_FROM_CHECK_ALL" "FOLDER" "PARAMS;DEPENDS;ARGS" ${ARGN})
if (NOT ARG_FOLDER)
set(ARG_FOLDER "Test Subdirectories")
endif()
# Search recursively for test directories by assuming anything not
# in a directory called Inputs contains tests.
file(GLOB_RECURSE to_process LIST_DIRECTORIES true ${directory}/*)
foreach(lit_suite ${to_process})
if(NOT IS_DIRECTORY ${lit_suite})
continue()
endif()
string(FIND ${lit_suite} Inputs is_inputs)
string(FIND ${lit_suite} Output is_output)
if (NOT (is_inputs EQUAL -1 AND is_output EQUAL -1))
continue()
endif()
# Create a check- target for the directory.
string(REPLACE ${directory} "" name_slash ${lit_suite})
if (name_slash)
string(REPLACE "/" "-" name_slash ${name_slash})
string(REPLACE "\\" "-" name_dashes ${name_slash})
string(TOLOWER "${project}${name_dashes}" name_var)
add_lit_target("check-${name_var}" "Running lit suite ${lit_suite}"
${lit_suite}
${EXCLUDE_FROM_CHECK_ALL}
PARAMS ${ARG_PARAMS}
DEPENDS ${ARG_DEPENDS}
ARGS ${ARG_ARGS}
)
set_target_properties(check-${name_var} PROPERTIES FOLDER ${ARG_FOLDER})
endif()
endforeach()
endif()
endfunction()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/FindOCaml.cmake | # CMake find_package() module for the OCaml language.
# Assumes ocamlfind will be used for compilation.
# http://ocaml.org/
#
# Example usage:
#
# find_package(OCaml)
#
# If successful, the following variables will be defined:
# OCAMLFIND
# OCAML_VERSION
# OCAML_STDLIB_PATH
# HAVE_OCAMLOPT
#
# Also provides find_ocamlfind_package() macro.
#
# Example usage:
#
# find_ocamlfind_package(ctypes)
#
# In any case, the following variables are defined:
#
# HAVE_OCAML_${pkg}
#
# If successful, the following variables will be defined:
#
# OCAML_${pkg}_VERSION
include( FindPackageHandleStandardArgs )
find_program(OCAMLFIND
NAMES ocamlfind)
if( OCAMLFIND )
execute_process(
COMMAND ${OCAMLFIND} ocamlc -version
OUTPUT_VARIABLE OCAML_VERSION
OUTPUT_STRIP_TRAILING_WHITESPACE)
execute_process(
COMMAND ${OCAMLFIND} ocamlc -where
OUTPUT_VARIABLE OCAML_STDLIB_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE)
execute_process(
COMMAND ${OCAMLFIND} ocamlc -version
OUTPUT_QUIET
RESULT_VARIABLE find_ocaml_result)
if( find_ocaml_result EQUAL 0 )
set(HAVE_OCAMLOPT TRUE)
else()
set(HAVE_OCAMLOPT FALSE)
endif()
endif()
find_package_handle_standard_args( OCaml DEFAULT_MSG
OCAMLFIND
OCAML_VERSION
OCAML_STDLIB_PATH)
mark_as_advanced(
OCAMLFIND)
function(find_ocamlfind_package pkg)
CMAKE_PARSE_ARGUMENTS(ARG "OPTIONAL" "VERSION" "" ${ARGN})
execute_process(
COMMAND "${OCAMLFIND}" "query" "${pkg}" "-format" "%v"
RESULT_VARIABLE result
OUTPUT_VARIABLE version
ERROR_VARIABLE error
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_STRIP_TRAILING_WHITESPACE)
if( NOT result EQUAL 0 AND NOT ARG_OPTIONAL )
message(FATAL_ERROR ${error})
endif()
if( result EQUAL 0 )
set(found TRUE)
else()
set(found FALSE)
endif()
if( found AND ARG_VERSION )
if( version VERSION_LESS ARG_VERSION AND ARG_OPTIONAL )
# If it's optional and the constraint is not satisfied, pretend
# it wasn't found.
set(found FALSE)
elseif( version VERSION_LESS ARG_VERSION )
message(FATAL_ERROR
"ocamlfind package ${pkg} should have version ${ARG_VERSION} or newer")
endif()
endif()
string(TOUPPER ${pkg} pkg)
set(HAVE_OCAML_${pkg} ${found}
PARENT_SCOPE)
set(OCAML_${pkg}_VERSION ${version}
PARENT_SCOPE)
endfunction()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/GetSVN.cmake | # CMake project that writes Subversion revision information to a header.
#
# Input variables:
# FIRST_SOURCE_DIR - First source directory
# FIRST_NAME - The macro prefix for the first repository's info
# SECOND_SOURCE_DIR - Second source directory (opt)
# SECOND_NAME - The macro prefix for the second repository's info (opt)
# HEADER_FILE - The header file to write
#
# The output header will contain macros FIRST_REPOSITORY and FIRST_REVISION,
# and SECOND_REPOSITORY and SECOND_REVISION if requested, where "FIRST" and
# "SECOND" are substituted with the names specified in the input variables.
# Chop off cmake/modules/GetSVN.cmake
get_filename_component(LLVM_DIR "${CMAKE_SCRIPT_MODE_FILE}" PATH)
get_filename_component(LLVM_DIR "${LLVM_DIR}" PATH)
get_filename_component(LLVM_DIR "${LLVM_DIR}" PATH)
# Handle strange terminals
set(ENV{TERM} "dumb")
macro(get_source_info_svn path revision repository)
# If svn is a bat file, find_program(Subversion) doesn't find it.
# Explicitly search for that here; Subversion_SVN_EXECUTABLE will override
# the find_program call in FindSubversion.cmake.
find_program(Subversion_SVN_EXECUTABLE NAMES svn svn.bat)
# FindSubversion does not work with symlinks. See PR 8437
if (NOT IS_SYMLINK "${path}")
find_package(Subversion)
endif()
if (Subversion_FOUND)
subversion_wc_info( ${path} Project )
if (Project_WC_REVISION)
set(${revision} ${Project_WC_REVISION} PARENT_SCOPE)
endif()
if (Project_WC_URL)
set(${repository} ${Project_WC_URL} PARENT_SCOPE)
endif()
endif()
endmacro()
macro(get_source_info_git_svn path revision repository)
find_program(git_executable NAMES git git.exe git.cmd)
if (git_executable)
execute_process(COMMAND ${git_executable} svn info
WORKING_DIRECTORY ${path}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if (git_result EQUAL 0)
string(REGEX REPLACE "^(.*\n)?Revision: ([^\n]+).*"
"\\2" git_svn_rev "${git_output}")
set(${revision} ${git_svn_rev} PARENT_SCOPE)
string(REGEX REPLACE "^(.*\n)?URL: ([^\n]+).*"
"\\2" git_url "${git_output}")
set(${repository} ${git_url} PARENT_SCOPE)
endif()
endif()
endmacro()
macro(get_source_info_git path revision repository)
find_program(git_executable NAMES git git.exe git.cmd)
if (git_executable)
execute_process(COMMAND ${git_executable} log -1 --pretty=format:%H
WORKING_DIRECTORY ${path}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if (git_result EQUAL 0)
set(${revision} ${git_output} PARENT_SCOPE)
endif()
execute_process(COMMAND ${git_executable} remote -v
WORKING_DIRECTORY ${path}
TIMEOUT 5
RESULT_VARIABLE git_result
OUTPUT_VARIABLE git_output)
if (git_result EQUAL 0)
string(REGEX REPLACE "^(.*\n)?[^ \t]+[ \t]+([^ \t\n]+)[ \t]+\\(fetch\\).*"
"\\2" git_url "${git_output}")
set(${repository} "${git_url}" PARENT_SCOPE)
endif()
endif()
endmacro()
function(get_source_info path revision repository)
if (EXISTS "${path}/.svn")
get_source_info_svn("${path}" revision repository)
elseif (EXISTS "${path}/.git/svn")
get_source_info_git_svn("${path}" revision repository)
elseif (EXISTS "${path}/.git")
get_source_info_git("${path}" revision repository)
endif()
endfunction()
function(append_info name path)
get_source_info("${path}" revision repository)
string(STRIP "${revision}" revision)
string(STRIP "${repository}" repository)
file(APPEND "${HEADER_FILE}.txt"
"#define ${name}_REVISION \"${revision}\"\n")
file(APPEND "${HEADER_FILE}.txt"
"#define ${name}_REPOSITORY \"${repository}\"\n")
endfunction()
append_info(${FIRST_NAME} "${FIRST_SOURCE_DIR}")
if(DEFINED SECOND_SOURCE_DIR)
append_info(${SECOND_NAME} "${SECOND_SOURCE_DIR}")
endif()
# Copy the file only if it has changed.
execute_process(COMMAND ${CMAKE_COMMAND} -E copy_if_different
"${HEADER_FILE}.txt" "${HEADER_FILE}")
file(REMOVE "${HEADER_FILE}.txt")
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/LLVM-Config.cmake | function(get_system_libs return_var)
message(AUTHOR_WARNING "get_system_libs no longer needed")
set(${return_var} "" PARENT_SCOPE)
endfunction()
function(link_system_libs target)
message(AUTHOR_WARNING "link_system_libs no longer needed")
endfunction()
function(is_llvm_target_library library return_var)
# Sets variable `return_var' to ON if `library' corresponds to a
# LLVM supported target. To OFF if it doesn't.
set(${return_var} OFF PARENT_SCOPE)
string(TOUPPER "${library}" capitalized_lib)
string(TOUPPER "${LLVM_ALL_TARGETS}" targets)
foreach(t ${targets})
if( capitalized_lib STREQUAL t OR
capitalized_lib STREQUAL "LLVM${t}" OR
capitalized_lib STREQUAL "LLVM${t}CODEGEN" OR
capitalized_lib STREQUAL "LLVM${t}ASMPARSER" OR
capitalized_lib STREQUAL "LLVM${t}ASMPRINTER" OR
capitalized_lib STREQUAL "LLVM${t}DISASSEMBLER" OR
capitalized_lib STREQUAL "LLVM${t}INFO" )
set(${return_var} ON PARENT_SCOPE)
break()
endif()
endforeach()
endfunction(is_llvm_target_library)
macro(llvm_config executable)
explicit_llvm_config(${executable} ${ARGN})
endmacro(llvm_config)
function(explicit_llvm_config executable)
set( link_components ${ARGN} )
llvm_map_components_to_libnames(LIBRARIES ${link_components})
get_target_property(t ${executable} TYPE)
if("x${t}" STREQUAL "xSTATIC_LIBRARY")
target_link_libraries(${executable} INTERFACE ${LIBRARIES})
elseif("x${t}" STREQUAL "xSHARED_LIBRARY" OR "x${t}" STREQUAL "xMODULE_LIBRARY")
target_link_libraries(${executable} PRIVATE ${LIBRARIES})
else()
# Use plain form for legacy user.
target_link_libraries(${executable} ${LIBRARIES})
endif()
endfunction(explicit_llvm_config)
# This is Deprecated
function(llvm_map_components_to_libraries OUT_VAR)
message(AUTHOR_WARNING "Using llvm_map_components_to_libraries() is deprecated. Use llvm_map_components_to_libnames() instead")
explicit_map_components_to_libraries(result ${ARGN})
set( ${OUT_VAR} ${result} ${sys_result} PARENT_SCOPE )
endfunction(llvm_map_components_to_libraries)
# This is a variant intended for the final user:
# Map LINK_COMPONENTS to actual libnames.
function(llvm_map_components_to_libnames out_libs)
set( link_components ${ARGN} )
if(NOT LLVM_AVAILABLE_LIBS)
# Inside LLVM itself available libs are in a global property.
get_property(LLVM_AVAILABLE_LIBS GLOBAL PROPERTY LLVM_LIBS)
endif()
string(TOUPPER "${LLVM_AVAILABLE_LIBS}" capitalized_libs)
# Expand some keywords:
list(FIND LLVM_TARGETS_TO_BUILD "${LLVM_NATIVE_ARCH}" have_native_backend)
list(FIND link_components "engine" engine_required)
if( NOT engine_required EQUAL -1 )
list(FIND LLVM_TARGETS_WITH_JIT "${LLVM_NATIVE_ARCH}" have_jit)
if( NOT have_native_backend EQUAL -1 AND NOT have_jit EQUAL -1 )
list(APPEND link_components "jit")
list(APPEND link_components "native")
else()
list(APPEND link_components "interpreter")
endif()
endif()
list(FIND link_components "native" native_required)
if( NOT native_required EQUAL -1 )
if( NOT have_native_backend EQUAL -1 )
list(APPEND link_components ${LLVM_NATIVE_ARCH})
endif()
endif()
# Translate symbolic component names to real libraries:
foreach(c ${link_components})
# add codegen, asmprinter, asmparser, disassembler
list(FIND LLVM_TARGETS_TO_BUILD ${c} idx)
if( NOT idx LESS 0 )
if( TARGET LLVM${c}CodeGen )
list(APPEND expanded_components "LLVM${c}CodeGen")
else()
if( TARGET LLVM${c} )
list(APPEND expanded_components "LLVM${c}")
elseif( NOT c STREQUAL "None" ) # HLSL Change
message(FATAL_ERROR "Target ${c} is not in the set of libraries.")
endif()
endif()
if( TARGET LLVM${c}AsmPrinter )
list(APPEND expanded_components "LLVM${c}AsmPrinter")
endif()
if( TARGET LLVM${c}AsmParser )
list(APPEND expanded_components "LLVM${c}AsmParser")
endif()
if( TARGET LLVM${c}Desc )
list(APPEND expanded_components "LLVM${c}Desc")
endif()
if( TARGET LLVM${c}Info )
list(APPEND expanded_components "LLVM${c}Info")
endif()
if( TARGET LLVM${c}Disassembler )
list(APPEND expanded_components "LLVM${c}Disassembler")
endif()
elseif( c STREQUAL "native" )
# already processed
elseif( c STREQUAL "nativecodegen" )
list(APPEND expanded_components "LLVM${LLVM_NATIVE_ARCH}CodeGen")
if( TARGET LLVM${LLVM_NATIVE_ARCH}Desc )
list(APPEND expanded_components "LLVM${LLVM_NATIVE_ARCH}Desc")
endif()
if( TARGET LLVM${LLVM_NATIVE_ARCH}Info )
list(APPEND expanded_components "LLVM${LLVM_NATIVE_ARCH}Info")
endif()
elseif( c STREQUAL "backend" )
# same case as in `native'.
elseif( c STREQUAL "engine" )
# already processed
elseif( c STREQUAL "all" )
list(APPEND expanded_components ${LLVM_AVAILABLE_LIBS})
elseif( c STREQUAL "AllTargetsAsmPrinters" )
# Link all the asm printers from all the targets
foreach(t ${LLVM_TARGETS_TO_BUILD})
if( TARGET LLVM${t}AsmPrinter )
list(APPEND expanded_components "LLVM${t}AsmPrinter")
endif()
endforeach(t)
elseif( c STREQUAL "AllTargetsAsmParsers" )
# Link all the asm parsers from all the targets
foreach(t ${LLVM_TARGETS_TO_BUILD})
if( TARGET LLVM${t}AsmParser )
list(APPEND expanded_components "LLVM${t}AsmParser")
endif()
endforeach(t)
elseif( c STREQUAL "AllTargetsDescs" )
# Link all the descs from all the targets
foreach(t ${LLVM_TARGETS_TO_BUILD})
if( TARGET LLVM${t}Desc )
list(APPEND expanded_components "LLVM${t}Desc")
endif()
endforeach(t)
elseif( c STREQUAL "AllTargetsDisassemblers" )
# Link all the disassemblers from all the targets
foreach(t ${LLVM_TARGETS_TO_BUILD})
if( TARGET LLVM${t}Disassembler )
list(APPEND expanded_components "LLVM${t}Disassembler")
endif()
endforeach(t)
elseif( c STREQUAL "AllTargetsInfos" )
# Link all the infos from all the targets
foreach(t ${LLVM_TARGETS_TO_BUILD})
if( TARGET LLVM${t}Info )
list(APPEND expanded_components "LLVM${t}Info")
endif()
endforeach(t)
else( NOT idx LESS 0 )
# Canonize the component name:
string(TOUPPER "${c}" capitalized)
list(FIND capitalized_libs LLVM${capitalized} lib_idx)
if( lib_idx LESS 0 )
# The component is unknown. Maybe is an omitted target?
is_llvm_target_library(${c} iltl_result)
if( NOT iltl_result )
message(FATAL_ERROR "Library `${c}' not found in list of llvm libraries.")
endif()
else( lib_idx LESS 0 )
list(GET LLVM_AVAILABLE_LIBS ${lib_idx} canonical_lib)
list(APPEND expanded_components ${canonical_lib})
endif( lib_idx LESS 0 )
endif( NOT idx LESS 0 )
endforeach(c)
set(${out_libs} ${expanded_components} PARENT_SCOPE)
endfunction()
# Perform a post-order traversal of the dependency graph.
# This duplicates the algorithm used by llvm-config, originally
# in tools/llvm-config/llvm-config.cpp, function ComputeLibsForComponents.
function(expand_topologically name required_libs visited_libs)
list(FIND visited_libs ${name} found)
if( found LESS 0 )
list(APPEND visited_libs ${name})
set(visited_libs ${visited_libs} PARENT_SCOPE)
get_property(lib_deps GLOBAL PROPERTY LLVMBUILD_LIB_DEPS_${name})
foreach( lib_dep ${lib_deps} )
expand_topologically(${lib_dep} "${required_libs}" "${visited_libs}")
set(required_libs ${required_libs} PARENT_SCOPE)
set(visited_libs ${visited_libs} PARENT_SCOPE)
endforeach()
list(APPEND required_libs ${name})
set(required_libs ${required_libs} PARENT_SCOPE)
endif()
endfunction()
# Expand dependencies while topologically sorting the list of libraries:
function(llvm_expand_dependencies out_libs)
set(expanded_components ${ARGN})
set(required_libs)
set(visited_libs)
foreach( lib ${expanded_components} )
expand_topologically(${lib} "${required_libs}" "${visited_libs}")
endforeach()
list(REVERSE required_libs)
set(${out_libs} ${required_libs} PARENT_SCOPE)
endfunction()
function(explicit_map_components_to_libraries out_libs)
llvm_map_components_to_libnames(link_libs ${ARGN})
llvm_expand_dependencies(expanded_components ${link_libs})
# Return just the libraries included in this build:
set(result)
foreach(c ${expanded_components})
if( TARGET ${c} )
set(result ${result} ${c})
endif()
endforeach(c)
set(${out_libs} ${result} PARENT_SCOPE)
endfunction(explicit_map_components_to_libraries)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/CMakeLists.txt | set(LLVM_INSTALL_PACKAGE_DIR share/llvm/cmake)
set(llvm_cmake_builddir "${LLVM_BINARY_DIR}/${LLVM_INSTALL_PACKAGE_DIR}")
get_property(LLVM_EXPORTS GLOBAL PROPERTY LLVM_EXPORTS)
export(TARGETS ${LLVM_EXPORTS}
FILE ${llvm_cmake_builddir}/LLVMExports.cmake)
get_property(LLVM_AVAILABLE_LIBS GLOBAL PROPERTY LLVM_LIBS)
foreach(lib ${LLVM_AVAILABLE_LIBS})
get_property(llvm_lib_deps GLOBAL PROPERTY LLVMBUILD_LIB_DEPS_${lib})
set(all_llvm_lib_deps
"${all_llvm_lib_deps}\nset_property(GLOBAL PROPERTY LLVMBUILD_LIB_DEPS_${lib} ${llvm_lib_deps})")
endforeach(lib)
# Generate LLVMConfig.cmake for the build tree.
set(LLVM_CONFIG_CODE "
# LLVM_BUILD_* values available only from LLVM build tree.
set(LLVM_BUILD_BINARY_DIR \"${LLVM_BINARY_DIR}\")
set(LLVM_BUILD_LIBRARY_DIR \"${LLVM_LIBRARY_DIR}\")
set(LLVM_BUILD_MAIN_INCLUDE_DIR \"${LLVM_MAIN_INCLUDE_DIR}\")
set(LLVM_BUILD_MAIN_SRC_DIR \"${LLVM_MAIN_SRC_DIR}\")
")
set(LLVM_CONFIG_INCLUDE_DIRS
"${LLVM_MAIN_INCLUDE_DIR}"
"${LLVM_INCLUDE_DIR}"
)
set(LLVM_CONFIG_LIBRARY_DIRS
"${LLVM_LIBRARY_DIR}"
)
set(LLVM_CONFIG_CMAKE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
set(LLVM_CONFIG_TOOLS_BINARY_DIR "${LLVM_TOOLS_BINARY_DIR}")
set(LLVM_CONFIG_EXPORTS_FILE "${llvm_cmake_builddir}/LLVMExports.cmake")
configure_file(
LLVMConfig.cmake.in
${llvm_cmake_builddir}/LLVMConfig.cmake
@ONLY)
# For compatibility with projects that include(LLVMConfig)
# via CMAKE_MODULE_PATH, place API modules next to it.
# This should be removed in the future.
file(COPY .
DESTINATION ${llvm_cmake_builddir}
FILES_MATCHING PATTERN *.cmake
PATTERN .svn EXCLUDE
PATTERN CMakeFiles EXCLUDE
)
# Generate LLVMConfig.cmake for the install tree.
set(LLVM_CONFIG_CODE "
# Compute the installation prefix from this LLVMConfig.cmake file location.
get_filename_component(LLVM_INSTALL_PREFIX \"\${CMAKE_CURRENT_LIST_FILE}\" PATH)")
# Construct the proper number of get_filename_component(... PATH)
# calls to compute the installation prefix.
string(REGEX REPLACE "/" ";" _count "${LLVM_INSTALL_PACKAGE_DIR}")
foreach(p ${_count})
set(LLVM_CONFIG_CODE "${LLVM_CONFIG_CODE}
get_filename_component(LLVM_INSTALL_PREFIX \"\${LLVM_INSTALL_PREFIX}\" PATH)")
endforeach(p)
set(LLVM_CONFIG_INCLUDE_DIRS "\${LLVM_INSTALL_PREFIX}/include")
set(LLVM_CONFIG_LIBRARY_DIRS "\${LLVM_INSTALL_PREFIX}/lib\${LLVM_LIBDIR_SUFFIX}")
set(LLVM_CONFIG_CMAKE_DIR "\${LLVM_INSTALL_PREFIX}/${LLVM_INSTALL_PACKAGE_DIR}")
set(LLVM_CONFIG_TOOLS_BINARY_DIR "\${LLVM_INSTALL_PREFIX}/bin")
set(LLVM_CONFIG_EXPORTS_FILE "\${LLVM_CMAKE_DIR}/LLVMExports.cmake")
configure_file(
LLVMConfig.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/LLVMConfig.cmake
@ONLY)
# Generate LLVMConfigVersion.cmake for build and install tree.
configure_file(
LLVMConfigVersion.cmake.in
${llvm_cmake_builddir}/LLVMConfigVersion.cmake
@ONLY)
if (NOT LLVM_INSTALL_TOOLCHAIN_ONLY)
install(EXPORT LLVMExports DESTINATION ${LLVM_INSTALL_PACKAGE_DIR})
install(FILES
${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/LLVMConfig.cmake
${llvm_cmake_builddir}/LLVMConfigVersion.cmake
LLVM-Config.cmake
DESTINATION ${LLVM_INSTALL_PACKAGE_DIR})
install(DIRECTORY .
DESTINATION ${LLVM_INSTALL_PACKAGE_DIR}
FILES_MATCHING PATTERN *.cmake
PATTERN .svn EXCLUDE
PATTERN LLVMConfig.cmake EXCLUDE
PATTERN LLVMConfigVersion.cmake EXCLUDE
PATTERN LLVM-Config.cmake EXCLUDE
PATTERN GetHostTriple.cmake EXCLUDE
PATTERN VersionFromVCS.cmake EXCLUDE
PATTERN CheckAtomic.cmake EXCLUDE)
endif()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/FindD3D12.cmake | # Find the Win10 SDK path.
if ("$ENV{WIN10_SDK_PATH}$ENV{WIN10_SDK_VERSION}" STREQUAL "" )
get_filename_component(WIN10_SDK_PATH "[HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots;KitsRoot10]" ABSOLUTE CACHE)
if (CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION)
set (WIN10_SDK_VERSION ${CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION})
else()
# CMAKE_VS_WINDOWS_TARGET_PLATFORM_VERSION may not be defined if, for example,
# the Ninja generator is used instead of Visual Studio. Attempt to retrieve the
# most recent SDK version from the list of paths under "${WIN10_SDK_PATH}/Include/".
file(GLOB sdk_dirs RELATIVE "${WIN10_SDK_PATH}/Include/" "${WIN10_SDK_PATH}/Include/10.*")
if (sdk_dirs)
list(POP_BACK sdk_dirs WIN10_SDK_VERSION)
endif()
unset(sdk_dirs)
endif()
elseif(TRUE)
set (WIN10_SDK_PATH $ENV{WIN10_SDK_PATH})
set (WIN10_SDK_VERSION $ENV{WIN10_SDK_VERSION})
endif ("$ENV{WIN10_SDK_PATH}$ENV{WIN10_SDK_VERSION}" STREQUAL "" )
# WIN10_SDK_PATH will be something like C:\Program Files (x86)\Windows Kits\10
# WIN10_SDK_VERSION will be something like 10.0.14393 or 10.0.14393.0; we need the
# one that matches the directory name.
if (IS_DIRECTORY "${WIN10_SDK_PATH}/Include/${WIN10_SDK_VERSION}.0")
set(WIN10_SDK_VERSION "${WIN10_SDK_VERSION}.0")
endif (IS_DIRECTORY "${WIN10_SDK_PATH}/Include/${WIN10_SDK_VERSION}.0")
# Find the d3d12 and dxgi include path, it will typically look something like this.
# C:\Program Files (x86)\Windows Kits\10\Include\10.0.10586.0\um\d3d12.h
# C:\Program Files (x86)\Windows Kits\10\Include\10.0.10586.0\shared\dxgi1_4.h
find_path(D3D12_INCLUDE_DIR # Set variable D3D12_INCLUDE_DIR
d3d12.h # Find a path with d3d12.h
HINTS "${WIN10_SDK_PATH}/Include/${WIN10_SDK_VERSION}/um"
DOC "path to WIN10 SDK header files"
HINTS
)
find_path(DXGI_INCLUDE_DIR # Set variable DXGI_INCLUDE_DIR
dxgi1_4.h # Find a path with dxgi1_4.h
HINTS "${WIN10_SDK_PATH}/Include/${WIN10_SDK_VERSION}/shared"
DOC "path to WIN10 SDK header files"
HINTS
)
set(D3D12_INCLUDE_DIRS ${D3D12_INCLUDE_DIR} ${DXGI_INCLUDE_DIR})
# List of D3D libraries
set(D3D12_LIBRARIES d3d12.lib dxgi.lib d3dcompiler.lib)
include(FindPackageHandleStandardArgs)
# handle the QUIETLY and REQUIRED arguments and set D3D12_FOUND to TRUE
# if all listed variables are TRUE
find_package_handle_standard_args(D3D12 DEFAULT_MSG
D3D12_INCLUDE_DIRS D3D12_LIBRARIES)
mark_as_advanced(D3D12_INCLUDE_DIRS D3D12_LIBRARIES)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/CheckAtomic.cmake | # atomic builtins are required for threading support.
INCLUDE(CheckCXXSourceCompiles)
# Sometimes linking against libatomic is required for atomic ops, if
# the platform doesn't support lock-free atomics.
function(check_working_cxx_atomics varname)
set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "-std=c++11")
CHECK_CXX_SOURCE_COMPILES("
#include <atomic>
std::atomic<int> x;
int main() {
return x;
}
" ${varname})
set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
endfunction(check_working_cxx_atomics)
# This isn't necessary on MSVC, so avoid command-line switch annoyance
# by only running on GCC-like hosts.
if (LLVM_COMPILER_IS_GCC_COMPATIBLE)
# First check if atomics work without the library.
check_working_cxx_atomics(HAVE_CXX_ATOMICS_WITHOUT_LIB)
# If not, check if the library exists, and atomics work with it.
if(NOT HAVE_CXX_ATOMICS_WITHOUT_LIB)
check_library_exists(atomic __atomic_fetch_add_4 "" HAVE_LIBATOMIC)
if( HAVE_LIBATOMIC )
list(APPEND CMAKE_REQUIRED_LIBRARIES "atomic")
check_working_cxx_atomics(HAVE_CXX_ATOMICS_WITH_LIB)
if (NOT HAVE_CXX_ATOMICS_WITH_LIB)
message(FATAL_ERROR "Host compiler must support std::atomic!")
endif()
else()
message(FATAL_ERROR "Host compiler appears to require libatomic, but cannot find it.")
endif()
endif()
endif()
## TODO: This define is only used for the legacy atomic operations in
## llvm's Atomic.h, which should be replaced. Other code simply
## assumes C++11 <atomic> works.
CHECK_CXX_SOURCE_COMPILES("
#ifdef _MSC_VER
#include <Intrin.h> /* Workaround for PR19898. */
#include <windows.h>
#endif
int main() {
#ifdef _MSC_VER
volatile LONG val = 1;
MemoryBarrier();
InterlockedCompareExchange(&val, 0, 1);
InterlockedIncrement(&val);
InterlockedDecrement(&val);
#else
volatile unsigned long val = 1;
__sync_synchronize();
__sync_val_compare_and_swap(&val, 1, 0);
__sync_add_and_fetch(&val, 1);
__sync_sub_and_fetch(&val, 1);
#endif
return 0;
}
" LLVM_HAS_ATOMICS)
if( NOT LLVM_HAS_ATOMICS )
message(STATUS "Warning: LLVM will be built thread-unsafe because atomic builtins are missing")
endif()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/CrossCompile.cmake | function(llvm_create_cross_target_internal target_name toochain buildtype)
if(NOT DEFINED LLVM_${target_name}_BUILD)
set(LLVM_${target_name}_BUILD "${CMAKE_BINARY_DIR}/${target_name}")
set(LLVM_${target_name}_BUILD ${LLVM_${target_name}_BUILD} PARENT_SCOPE)
message(STATUS "Setting native build dir to " ${LLVM_${target_name}_BUILD})
endif(NOT DEFINED LLVM_${target_name}_BUILD)
if (EXISTS ${LLVM_MAIN_SRC_DIR}/cmake/platforms/${toolchain}.cmake)
set(CROSS_TOOLCHAIN_FLAGS_${target_name}
-DCMAKE_TOOLCHAIN_FILE=\"${LLVM_MAIN_SRC_DIR}/cmake/platforms/${toolchain}.cmake\"
CACHE STRING "Toolchain file for ${target_name}")
endif()
add_custom_command(OUTPUT ${LLVM_${target_name}_BUILD}
COMMAND ${CMAKE_COMMAND} -E make_directory ${LLVM_${target_name}_BUILD}
COMMENT "Creating ${LLVM_${target_name}_BUILD}...")
add_custom_command(OUTPUT ${LLVM_${target_name}_BUILD}/CMakeCache.txt
COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}"
${CROSS_TOOLCHAIN_FLAGS_${target_name}} ${CMAKE_SOURCE_DIR}
WORKING_DIRECTORY ${LLVM_${target_name}_BUILD}
DEPENDS ${LLVM_${target_name}_BUILD}
COMMENT "Configuring ${target_name} LLVM...")
add_custom_target(CONFIGURE_LLVM_${target_name}
DEPENDS ${LLVM_${target_name}_BUILD}/CMakeCache.txt)
set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES
${LLVM_${target_name}_BUILD})
if(NOT IS_DIRECTORY ${LLVM_${target_name}_BUILD})
message(STATUS "Configuring ${target_name} build...")
execute_process(COMMAND ${CMAKE_COMMAND} -E make_directory
${LLVM_${target_name}_BUILD} )
message(STATUS "Configuring ${target_name} targets...")
if (buildtype)
set(build_type_flags "-DCMAKE_BUILD_TYPE=${buildtype}")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} ${build_type_flags}
-G "${CMAKE_GENERATOR}" -DLLVM_TARGETS_TO_BUILD=${LLVM_TARGETS_TO_BUILD}
${CROSS_TOOLCHAIN_FLAGS_${target_name}} ${CMAKE_SOURCE_DIR}
WORKING_DIRECTORY ${LLVM_${target_name}_BUILD} )
endif(NOT IS_DIRECTORY ${LLVM_${target_name}_BUILD})
endfunction()
function(llvm_create_cross_target target_name sysroot)
llvm_create_cross_target_internal(${target_name} ${sysroot} ${CMAKE_BUILD_TYPE})
endfunction()
llvm_create_cross_target_internal(NATIVE "" Release)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/CoverageReport.cmake | # if coverage reports are not enabled, skip all of this
if(NOT LLVM_BUILD_INSTRUMENTED_COVERAGE)
return()
endif()
file(TO_NATIVE_PATH
"${LLVM_SOURCE_DIR}/utils/prepare-code-coverage-artifact.py"
PREPARE_CODE_COV_ARTIFACT)
# llvm-cov and llvm-profdata need to match the host compiler. They can either be
# explicitly provided by the user, or we will look them up based on the install
# location of the C++ compiler.
# HLSL Change Begin - This is probably worth upstreaming. Some Linux packages
# install versions of the LLVM tools that are versioned. This handles that case.
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang")
string(REGEX REPLACE "(^[0-9]+)(\\.[0-9\\.]+)" "-\\1" HOST_LLVM_VERSION_SUFFIX ${CMAKE_CXX_COMPILER_VERSION})
endif()
get_filename_component(COMPILER_DIRECTORY ${CMAKE_CXX_COMPILER} DIRECTORY)
find_program(LLVM_COV NAMES llvm-cov llvm-cov${HOST_LLVM_VERSION_SUFFIX} PATHS ${COMPILER_DIRECTORY} NO_DEFAULT_PATH)
find_program(LLVM_PROFDATA NAMES llvm-profdata llvm-profdata${HOST_LLVM_VERSION_SUFFIX} PATHS ${COMPILER_DIRECTORY} NO_DEFAULT_PATH)
# HLSL Change End - Detect versioned tools.
if(NOT LLVM_COV OR NOT LLVM_PROFDATA)
message(WARNING "Could not find code coverage tools, skipping generating targets. You may explicitly specify LLVM_COV and LLVM_PROFDATA to work around this warning.")
return()
endif()
set(LLVM_CODE_COVERAGE_TARGETS "" CACHE STRING "Targets to generate coverage reports against (defaults to all exported targets if empty)")
mark_as_advanced(LLVM_CODE_COVERAGE_TARGETS)
# HLSL Change Begin - This is probably worth upstreaming...
set(LLVM_CODE_COVERAGE_TEST_TARGETS "" CACHE STRING "Targets to run to generate coverage profiles.")
mark_as_advanced(LLVM_CODE_COVERAGE_TEST_TARGETS)
if (LLVM_CODE_COVERAGE_TEST_TARGETS)
set(COV_DEPENDS DEPENDS ${LLVM_CODE_COVERAGE_TEST_TARGETS})
endif()
# HLSL Change End
if(NOT LLVM_CODE_COVERAGE_TARGETS)
# by default run the coverage report across all the exports provided
get_property(COV_TARGETS GLOBAL PROPERTY LLVM_EXPORTS)
endif()
file(TO_NATIVE_PATH
"${CMAKE_BINARY_DIR}/report/"
REPORT_DIR)
foreach(target ${LLVM_CODE_COVERAGE_TARGETS} ${COV_TARGETS})
get_target_property(target_type ${target} TYPE)
if("${target_type}" STREQUAL "SHARED_LIBRARY" OR "${target_type}" STREQUAL "EXECUTABLE")
list(APPEND coverage_binaries $<TARGET_FILE:${target}>)
endif()
endforeach()
set(LLVM_COVERAGE_SOURCE_DIRS "" CACHE STRING "Source directories to restrict coverage reports to.")
mark_as_advanced(LLVM_COVERAGE_SOURCE_DIRS)
foreach(dir ${LLVM_COVERAGE_SOURCE_DIRS})
list(APPEND restrict_flags -restrict ${dir})
endforeach()
# Utility target to clear out profile data.
# This isn't connected to any dependencies because it is a bit finicky to get
# working exactly how a user might want.
add_custom_target(clear-profile-data
COMMAND ${CMAKE_COMMAND} -E
remove_directory ${LLVM_PROFILE_DATA_DIR})
# This currently only works for LLVM, but could be expanded to work for all
# sub-projects. The current limitation is based on not having a good way to
# automaticall plumb through the targets that we want to run coverage against.
add_custom_target(generate-coverage-report
COMMAND ${Python3_EXECUTABLE} ${PREPARE_CODE_COV_ARTIFACT}
${LLVM_PROFDATA} ${LLVM_COV} ${LLVM_PROFILE_DATA_DIR}
${REPORT_DIR} ${coverage_binaries}
--unified-report ${restrict_flags}
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
${COV_DEPENDS}) # Run tests
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/FindDiaSDK.cmake | # Find the DIA SDK path.
# It will typically look something like this:
# C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\DIA SDK\include
# CMAKE_GENERATOR_INSTANCE has the location of Visual Studio used
# i.e. C:/Program Files (x86)/Microsoft Visual Studio/2019/Community
set(VS_PATH ${CMAKE_GENERATOR_INSTANCE})
get_filename_component(VS_DIA_INC_PATH "${VS_PATH}/DIA SDK/include" ABSOLUTE CACHE)
# Starting in VS 15.2, vswhere is included.
# Unclear what the right component to search for is, might be Microsoft.VisualStudio.Component.VC.DiagnosticTools
# (although the friendly name of that is C++ profiling tools). The toolset is the most likely target.
set(PROGRAMFILES_X86 "ProgramFiles(x86)")
execute_process(
COMMAND "$ENV{${PROGRAMFILES_X86}}/Microsoft Visual Studio/Installer/vswhere.exe" -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath
OUTPUT_VARIABLE VSWHERE_LATEST
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
find_path(DIASDK_INCLUDE_DIR # Set variable DIASDK_INCLUDE_DIR
dia2.h # Find a path with dia2.h
HINTS "${VS_DIA_INC_PATH}"
HINTS "${VSWHERE_LATEST}/DIA SDK/include"
HINTS "${MSVC_DIA_SDK_DIR}/include"
DOC "path to DIA SDK header files"
)
if ((CMAKE_GENERATOR_PLATFORM STREQUAL "x64") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x64"))
find_library(DIASDK_GUIDS_LIBRARY NAMES diaguids.lib HINTS ${DIASDK_INCLUDE_DIR}/../lib/amd64 )
elseif ((CMAKE_GENERATOR_PLATFORM STREQUAL "ARM") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "ARM"))
find_library(DIASDK_GUIDS_LIBRARY NAMES diaguids.lib HINTS ${DIASDK_INCLUDE_DIR}/../lib/arm )
elseif ((CMAKE_GENERATOR_PLATFORM MATCHES "ARM64.*") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" MATCHES "ARM64.*"))
find_library(DIASDK_GUIDS_LIBRARY NAMES diaguids.lib HINTS ${DIASDK_INCLUDE_DIR}/../lib/arm64 )
else ((CMAKE_GENERATOR_PLATFORM STREQUAL "x64") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x64"))
find_library(DIASDK_GUIDS_LIBRARY NAMES diaguids.lib HINTS ${DIASDK_INCLUDE_DIR}/../lib )
endif((CMAKE_GENERATOR_PLATFORM STREQUAL "x64") OR ("${CMAKE_C_COMPILER_ARCHITECTURE_ID}" STREQUAL "x64"))
set(DIASDK_LIBRARIES ${DIASDK_GUIDS_LIBRARY})
set(DIASDK_INCLUDE_DIRS ${DIASDK_INCLUDE_DIR})
include(FindPackageHandleStandardArgs)
# handle the QUIETLY and REQUIRED arguments and set DIASDK_FOUND to TRUE
# if all listed variables are TRUE
find_package_handle_standard_args(DiaSDK DEFAULT_MSG
DIASDK_LIBRARIES DIASDK_INCLUDE_DIR)
mark_as_advanced(DIASDK_INCLUDE_DIRS DIASDK_LIBRARIES)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/TableGen.cmake | # LLVM_TARGET_DEFINITIONS must contain the name of the .td file to process.
# Extra parameters for `tblgen' may come after `ofn' parameter.
# Adds the name of the generated file to TABLEGEN_OUTPUT.
function(tablegen project ofn)
# Validate calling context.
foreach(v
${project}_TABLEGEN_EXE
LLVM_MAIN_SRC_DIR
LLVM_MAIN_INCLUDE_DIR
)
if(NOT ${v})
message(FATAL_ERROR "${v} not set")
endif()
endforeach()
file(GLOB local_tds "*.td")
file(GLOB_RECURSE global_tds "${LLVM_MAIN_INCLUDE_DIR}/llvm/*.td")
if (IS_ABSOLUTE ${LLVM_TARGET_DEFINITIONS})
set(LLVM_TARGET_DEFINITIONS_ABSOLUTE ${LLVM_TARGET_DEFINITIONS})
else()
set(LLVM_TARGET_DEFINITIONS_ABSOLUTE
${CMAKE_CURRENT_SOURCE_DIR}/${LLVM_TARGET_DEFINITIONS})
endif()
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
# Generate tablegen output in a temporary file.
COMMAND ${${project}_TABLEGEN_EXE} ${ARGN} -I ${CMAKE_CURRENT_SOURCE_DIR}
-I ${LLVM_MAIN_SRC_DIR}/lib/Target -I ${LLVM_MAIN_INCLUDE_DIR}
${LLVM_TARGET_DEFINITIONS_ABSOLUTE}
-o ${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
# The file in LLVM_TARGET_DEFINITIONS may be not in the current
# directory and local_tds may not contain it, so we must
# explicitly list it here:
DEPENDS ${${project}_TABLEGEN_TARGET} ${local_tds} ${global_tds}
${LLVM_TARGET_DEFINITIONS_ABSOLUTE}
COMMENT "Building ${ofn}..."
)
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${ofn}
# Only update the real output file if there are any differences.
# This prevents recompilation of all the files depending on it if there
# aren't any.
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
${CMAKE_CURRENT_BINARY_DIR}/${ofn}
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/${ofn}.tmp
COMMENT "Updating ${ofn}..."
)
# `make clean' must remove all those generated files:
set_property(DIRECTORY APPEND
PROPERTY ADDITIONAL_MAKE_CLEAN_FILES ${ofn}.tmp ${ofn})
set(TABLEGEN_OUTPUT ${TABLEGEN_OUTPUT} ${CMAKE_CURRENT_BINARY_DIR}/${ofn} PARENT_SCOPE)
set_source_files_properties(${CMAKE_CURRENT_BINARY_DIR}/${ofn} PROPERTIES
GENERATED 1)
endfunction()
# Creates a target for publicly exporting tablegen dependencies.
function(add_public_tablegen_target target)
if(NOT TABLEGEN_OUTPUT)
message(FATAL_ERROR "Requires tablegen() definitions as TABLEGEN_OUTPUT.")
endif()
add_custom_target(${target}
DEPENDS ${TABLEGEN_OUTPUT})
if(LLVM_COMMON_DEPENDS)
add_dependencies(${target} ${LLVM_COMMON_DEPENDS})
endif()
set_target_properties(${target} PROPERTIES FOLDER "Tablegenning")
set(LLVM_COMMON_DEPENDS ${LLVM_COMMON_DEPENDS} ${target} PARENT_SCOPE)
endfunction()
macro(add_tablegen target project)
set(${target}_OLD_LLVM_LINK_COMPONENTS ${LLVM_LINK_COMPONENTS})
set(LLVM_LINK_COMPONENTS ${LLVM_LINK_COMPONENTS} TableGen)
add_llvm_utility(${target} ${ARGN})
set(LLVM_LINK_COMPONENTS ${${target}_OLD_LLVM_LINK_COMPONENTS})
set(${project}_TABLEGEN "${target}" CACHE
STRING "Native TableGen executable. Saves building one when cross-compiling.")
# Upgrade existing LLVM_TABLEGEN setting.
if(${project} STREQUAL LLVM)
if(${LLVM_TABLEGEN} STREQUAL tblgen)
set(LLVM_TABLEGEN "${target}" CACHE
STRING "Native TableGen executable. Saves building one when cross-compiling."
FORCE)
endif()
endif()
# Effective tblgen executable to be used:
set(${project}_TABLEGEN_EXE ${${project}_TABLEGEN} PARENT_SCOPE)
set(${project}_TABLEGEN_TARGET ${${project}_TABLEGEN} PARENT_SCOPE)
if(LLVM_USE_HOST_TOOLS)
if( ${${project}_TABLEGEN} STREQUAL "${target}" )
if (NOT CMAKE_CONFIGURATION_TYPES)
set(${project}_TABLEGEN_EXE "${LLVM_NATIVE_BUILD}/bin/${target}")
else()
set(${project}_TABLEGEN_EXE "${LLVM_NATIVE_BUILD}/Release/bin/${target}")
endif()
set(${project}_TABLEGEN_EXE ${${project}_TABLEGEN_EXE} PARENT_SCOPE)
add_custom_command(OUTPUT ${${project}_TABLEGEN_EXE}
COMMAND ${CMAKE_COMMAND} --build . --target ${target} --config Release
DEPENDS CONFIGURE_LLVM_NATIVE ${target}
WORKING_DIRECTORY ${LLVM_NATIVE_BUILD}
COMMENT "Building native TableGen...")
add_custom_target(${project}-tablegen-host DEPENDS ${${project}_TABLEGEN_EXE})
set(${project}_TABLEGEN_TARGET ${project}-tablegen-host PARENT_SCOPE)
endif()
endif()
if( MINGW )
if(CMAKE_SIZEOF_VOID_P MATCHES "8")
set_target_properties(${target} PROPERTIES LINK_FLAGS -Wl,--stack,16777216)
endif(CMAKE_SIZEOF_VOID_P MATCHES "8")
endif( MINGW )
if (${project} STREQUAL LLVM AND NOT LLVM_INSTALL_TOOLCHAIN_ONLY)
install(TARGETS ${target}
EXPORT LLVMExports
RUNTIME DESTINATION bin)
endif()
set_property(GLOBAL APPEND PROPERTY LLVM_EXPORTS ${target})
endmacro()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/HandleLLVMOptions.cmake | # This CMake module is responsible for interpreting the user defined LLVM_
# options and executing the appropriate CMake commands to realize the users'
# selections.
# This is commonly needed so make sure it's defined before we include anything
# else.
string(TOUPPER "${CMAKE_BUILD_TYPE}" uppercase_CMAKE_BUILD_TYPE)
include(HandleLLVMStdlib)
include(AddLLVMDefinitions)
include(CheckCCompilerFlag)
include(CheckCXXCompilerFlag)
if(NOT LLVM_FORCE_USE_OLD_TOOLCHAIN)
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if(CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.7)
message(FATAL_ERROR "Host GCC version must be at least 4.7!")
endif()
elseif(CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
if(CMAKE_CXX_COMPILER_VERSION VERSION_LESS 3.1)
message(FATAL_ERROR "Host Clang version must be at least 3.1!")
endif()
if (CMAKE_CXX_SIMULATE_ID MATCHES "MSVC")
if (CMAKE_CXX_SIMULATE_VERSION VERSION_LESS 18.0)
message(FATAL_ERROR "Host Clang must have at least -fms-compatibility-version=18.0")
endif()
set(CLANG_CL 1)
elseif(NOT LLVM_ENABLE_LIBCXX)
# Otherwise, test that we aren't using too old of a version of libstdc++
# with the Clang compiler. This is tricky as there is no real way to
# check the version of libstdc++ directly. Instead we test for a known
# bug in libstdc++4.6 that is fixed in libstdc++4.7.
set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
set(OLD_CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES})
set(CMAKE_REQUIRED_FLAGS "-std=c++0x")
check_cxx_source_compiles("
#include <atomic>
std::atomic<float> x(0.0f);
int main() { return (float)x; }"
LLVM_NO_OLD_LIBSTDCXX)
if(NOT LLVM_NO_OLD_LIBSTDCXX)
message(FATAL_ERROR "Host Clang must be able to find libstdc++4.7 or newer!")
endif()
set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_LIBRARIES ${OLD_CMAKE_REQUIRED_LIBRARIES})
endif()
elseif(CMAKE_CXX_COMPILER_ID MATCHES "MSVC")
if(CMAKE_CXX_COMPILER_VERSION VERSION_LESS 18.0)
message(FATAL_ERROR "Host Visual Studio must be at least 2013")
elseif(CMAKE_CXX_COMPILER_VERSION VERSION_LESS 18.0.31101)
message(WARNING "Host Visual Studio should at least be 2013 Update 4 (MSVC 18.0.31101)"
" due to miscompiles from earlier versions")
endif()
endif()
endif()
if( LLVM_ENABLE_ASSERTIONS )
# MSVC doesn't like _DEBUG on release builds. See PR 4379.
# HLSL Note: the above comment referrs to llvm.org problem, not pull request:
# https://bugs.llvm.org/show_bug.cgi?id=4379
if( NOT MSVC )
add_definitions( -D_DEBUG )
endif()
# On non-Debug builds cmake automatically defines NDEBUG, so we
# explicitly undefine it:
if( NOT uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG" )
add_definitions( -UNDEBUG )
# Also remove /D NDEBUG to avoid MSVC warnings about conflicting defines.
foreach (flags_var_to_scrub
CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_CXX_FLAGS_MINSIZEREL
CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS_MINSIZEREL)
string (REGEX REPLACE "(^| )[/-]D *NDEBUG($| )" " "
"${flags_var_to_scrub}" "${${flags_var_to_scrub}}")
endforeach()
endif()
if (LLVM_ASSERTIONS_TRAP)
add_definitions( -DLLVM_ASSERTIONS_TRAP )
endif()
if (LLVM_ASSERTIONS_NO_STRINGS)
add_definitions( -DLLVM_ASSERTIONS_NO_STRINGS )
endif()
else()
# Disable assertions in Debug builds
if( uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG" )
add_definitions( -DNDEBUG )
endif()
endif()
string(TOUPPER "${LLVM_ABI_BREAKING_CHECKS}" uppercase_LLVM_ABI_BREAKING_CHECKS)
if( uppercase_LLVM_ABI_BREAKING_CHECKS STREQUAL "WITH_ASSERTS" )
if( LLVM_ENABLE_ASSERTIONS )
set( LLVM_ENABLE_ABI_BREAKING_CHECKS 1 )
endif()
elseif( uppercase_LLVM_ABI_BREAKING_CHECKS STREQUAL "FORCE_ON" )
set( LLVM_ENABLE_ABI_BREAKING_CHECKS 1 )
elseif( uppercase_LLVM_ABI_BREAKING_CHECKS STREQUAL "FORCE_OFF" )
# We don't need to do anything special to turn off ABI breaking checks.
elseif( NOT DEFINED LLVM_ABI_BREAKING_CHECKS )
# Treat LLVM_ABI_BREAKING_CHECKS like "FORCE_OFF" when it has not been
# defined.
else()
message(FATAL_ERROR "Unknown value for LLVM_ABI_BREAKING_CHECKS: \"${LLVM_ABI_BREAKING_CHECKS}\"!")
endif()
if(WIN32)
set(LLVM_HAVE_LINK_VERSION_SCRIPT 0)
if(CYGWIN)
set(LLVM_ON_WIN32 0)
set(LLVM_ON_UNIX 1)
else(CYGWIN)
set(LLVM_ON_WIN32 1)
set(LLVM_ON_UNIX 0)
endif(CYGWIN)
else(WIN32)
if(UNIX)
set(LLVM_ON_WIN32 0)
set(LLVM_ON_UNIX 1)
if(APPLE)
set(LLVM_HAVE_LINK_VERSION_SCRIPT 0)
else(APPLE)
set(LLVM_HAVE_LINK_VERSION_SCRIPT 1)
endif(APPLE)
else(UNIX)
MESSAGE(SEND_ERROR "Unable to determine platform")
endif(UNIX)
endif(WIN32)
set(EXEEXT ${CMAKE_EXECUTABLE_SUFFIX})
set(LTDL_SHLIB_EXT ${CMAKE_SHARED_LIBRARY_SUFFIX})
# We use *.dylib rather than *.so on darwin.
set(LLVM_PLUGIN_EXT ${CMAKE_SHARED_LIBRARY_SUFFIX})
if(APPLE)
# Darwin-specific linker flags for loadable modules.
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} -Wl,-flat_namespace -Wl,-undefined -Wl,suppress")
endif()
# Pass -Wl,-z,defs. This makes sure all symbols are defined. Otherwise a DSO
# build might work on ELF but fail on MachO/COFF.
if(NOT (${CMAKE_SYSTEM_NAME} MATCHES "Darwin" OR WIN32 OR CYGWIN OR
${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD") AND
NOT LLVM_USE_SANITIZER)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -Wl,-z,defs")
endif()
function(append value)
foreach(variable ${ARGN})
set(${variable} "${${variable}} ${value}" PARENT_SCOPE)
endforeach(variable)
endfunction()
function(append_if condition value)
if (${condition})
foreach(variable ${ARGN})
set(${variable} "${${variable}} ${value}" PARENT_SCOPE)
endforeach(variable)
endif()
endfunction()
macro(add_flag_if_supported flag name)
check_c_compiler_flag("-Werror ${flag}" "C_SUPPORTS_${name}")
append_if("C_SUPPORTS_${name}" "${flag}" CMAKE_C_FLAGS)
check_cxx_compiler_flag("-Werror ${flag}" "CXX_SUPPORTS_${name}")
append_if("CXX_SUPPORTS_${name}" "${flag}" CMAKE_CXX_FLAGS)
endmacro()
function(add_flag_or_print_warning flag name)
check_c_compiler_flag("-Werror ${flag}" "C_SUPPORTS_${name}")
check_cxx_compiler_flag("-Werror ${flag}" "CXX_SUPPORTS_${name}")
if (C_SUPPORTS_${name} AND CXX_SUPPORTS_${name})
message(STATUS "Building with ${flag}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${flag}" PARENT_SCOPE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${flag}" PARENT_SCOPE)
else()
message(WARNING "${flag} is not supported.")
endif()
endfunction()
if( LLVM_USE_LINKER )
set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} -fuse-ld=${LLVM_USE_LINKER}")
check_cxx_source_compiles("int main() { return 0; }" CXX_SUPPORTS_CUSTOM_LINKER)
if ( NOT CXX_SUPPORTS_CUSTOM_LINKER )
message(FATAL_ERROR "Host compiler does not support '-fuse-ld=${LLVM_USE_LINKER}'")
endif()
set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
append("-fuse-ld=${LLVM_USE_LINKER}"
CMAKE_EXE_LINKER_FLAGS CMAKE_MODULE_LINKER_FLAGS CMAKE_SHARED_LINKER_FLAGS)
endif()
if( LLVM_ENABLE_PIC )
if( XCODE )
# Xcode has -mdynamic-no-pic on by default, which overrides -fPIC. I don't
# know how to disable this, so just force ENABLE_PIC off for now.
message(WARNING "-fPIC not supported with Xcode.")
else()
if( NOT WIN32 AND NOT CYGWIN )
# On Windows all code is PIC. MinGW warns if -fPIC is used.
add_flag_or_print_warning("-fPIC" FPIC)
endif()
if( (MINGW AND NOT CLANG) OR CYGWIN )
# MinGW warns if -fvisibility-inlines-hidden is used.
else()
check_cxx_compiler_flag("-fvisibility-inlines-hidden" SUPPORTS_FVISIBILITY_INLINES_HIDDEN_FLAG)
append_if(SUPPORTS_FVISIBILITY_INLINES_HIDDEN_FLAG "-fvisibility-inlines-hidden -fvisibility=hidden" CMAKE_CXX_FLAGS)
endif()
endif()
endif()
if( CMAKE_SIZEOF_VOID_P EQUAL 8 AND NOT WIN32 )
# TODO: support other platforms and toolchains.
if( LLVM_BUILD_32_BITS )
message(STATUS "Building 32 bits executables and libraries.")
add_llvm_definitions( -m32 )
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -m32")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -m32")
set(CMAKE_MODULE_LINKER_FLAGS "${CMAKE_MODULE_LINKER_FLAGS} -m32")
endif( LLVM_BUILD_32_BITS )
endif( CMAKE_SIZEOF_VOID_P EQUAL 8 AND NOT WIN32 )
if (LLVM_BUILD_STATIC)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static")
endif()
if( XCODE )
# For Xcode enable several build settings that correspond to
# many warnings that are on by default in Clang but are
# not enabled for historical reasons. For versions of Xcode
# that do not support these options they will simply
# be ignored.
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_ABOUT_RETURN_TYPE "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_ABOUT_MISSING_NEWLINE "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_UNUSED_VALUE "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_UNUSED_VARIABLE "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_SIGN_COMPARE "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_UNUSED_FUNCTION "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_INITIALIZER_NOT_FULLY_BRACKETED "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_HIDDEN_VIRTUAL_FUNCTIONS "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_UNINITIALIZED_AUTOS "YES")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_WARN_BOOL_CONVERSION "YES")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_WARN_EMPTY_BODY "YES")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_WARN_ENUM_CONVERSION "YES")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_WARN_INT_CONVERSION "YES")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_WARN_CONSTANT_CONVERSION "YES")
set(CMAKE_XCODE_ATTRIBUTE_GCC_WARN_NON_VIRTUAL_DESTRUCTOR "YES")
endif()
# On Win32 using MS tools, provide an option to set the number of parallel jobs
# to use.
if( MSVC_IDE )
set(LLVM_COMPILER_JOBS "0" CACHE STRING
"Number of parallel compiler jobs. 0 means use all processors. Default is 0.")
if( NOT LLVM_COMPILER_JOBS STREQUAL "1" )
if( LLVM_COMPILER_JOBS STREQUAL "0" )
add_llvm_definitions( /MP )
else()
message(STATUS "Number of parallel compiler jobs set to " ${LLVM_COMPILER_JOBS})
add_llvm_definitions( /MP${LLVM_COMPILER_JOBS} )
endif()
else()
message(STATUS "Parallel compilation disabled")
endif()
endif()
if( MSVC )
include(ChooseMSVCCRT)
if( NOT (${CMAKE_VERSION} VERSION_LESS 2.8.11) )
# set stack reserved size to ~10MB
# CMake previously automatically set this value for MSVC builds, but the
# behavior was changed in CMake 2.8.11 (Issue 12437) to use the MSVC default
# value (1 MB) which is not enough for us in tasks such as parsing recursive
# C++ templates in Clang.
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} /STACK:10000000")
endif()
if( MSVC11 )
add_llvm_definitions(-D_VARIADIC_MAX=10)
endif()
# Add definitions that make MSVC much less annoying.
add_llvm_definitions(
# For some reason MS wants to deprecate a bunch of standard functions...
-D_CRT_SECURE_NO_DEPRECATE
-D_CRT_SECURE_NO_WARNINGS
-D_CRT_NONSTDC_NO_DEPRECATE
-D_CRT_NONSTDC_NO_WARNINGS
-D_SCL_SECURE_NO_DEPRECATE
-D_SCL_SECURE_NO_WARNINGS
)
set(msvc_warning_flags
# Disabled warnings.
-wd4146 # Suppress 'unary minus operator applied to unsigned type, result still unsigned'
-wd4180 # Suppress 'qualifier applied to function type has no meaning; ignored'
-wd4244 # Suppress ''argument' : conversion from 'type1' to 'type2', possible loss of data'
-wd4258 # Suppress ''var' : definition from the for loop is ignored; the definition from the enclosing scope is used'
-wd4267 # Suppress ''var' : conversion from 'size_t' to 'type', possible loss of data'
-wd4291 # Suppress ''declaration' : no matching operator delete found; memory will not be freed if initialization throws an exception'
-wd4345 # Suppress 'behavior change: an object of POD type constructed with an initializer of the form () will be default-initialized'
-wd4351 # Suppress 'new behavior: elements of array 'array' will be default initialized'
-wd4355 # Suppress ''this' : used in base member initializer list'
-wd4456 # Suppress 'declaration of 'var' hides local variable'
-wd4457 # Suppress 'declaration of 'var' hides function parameter'
-wd4458 # Suppress 'declaration of 'var' hides class member'
-wd4459 # Suppress 'declaration of 'var' hides global declaration'
-wd4503 # Suppress ''identifier' : decorated name length exceeded, name was truncated'
-wd4624 # Suppress ''derived class' : destructor could not be generated because a base class destructor is inaccessible'
-wd4722 # Suppress 'function' : destructor never returns, potential memory leak
-wd4800 # Suppress ''type' : forcing value to bool 'true' or 'false' (performance warning)'
-wd4100 # Suppress 'unreferenced formal parameter'
-wd4127 # Suppress 'conditional expression is constant'
-wd4512 # Suppress 'assignment operator could not be generated'
-wd4505 # Suppress 'unreferenced local function has been removed'
-wd4610 # Suppress '<class> can never be instantiated'
-wd4510 # Suppress 'default constructor could not be generated'
-wd4702 # Suppress 'unreachable code'
-wd4245 # Suppress 'signed/unsigned mismatch'
-wd4706 # Suppress 'assignment within conditional expression'
-wd4310 # Suppress 'cast truncates constant value'
-wd4701 # Suppress 'potentially uninitialized local variable'
-wd4703 # Suppress 'potentially uninitialized local pointer variable'
-wd4389 # Suppress 'signed/unsigned mismatch'
-wd4611 # Suppress 'interaction between '_setjmp' and C++ object destruction is non-portable'
-wd4805 # Suppress 'unsafe mix of type <type> and type <type> in operation'
-wd4204 # Suppress 'nonstandard extension used : non-constant aggregate initializer'
# Ideally, we'd like this warning to be enabled, but MSVC 2013 doesn't
# support the 'aligned' attribute in the way that clang sources requires (for
# any code that uses the LLVM_ALIGNAS macro), so this is must be disabled to
# avoid unwanted alignment warnings.
# When we switch to requiring a version of MSVC that supports the 'alignas'
# specifier (MSVC 2015?) this warning can be re-enabled.
-wd4324 # Suppress 'structure was padded due to __declspec(align())'
# Promoted warnings.
# HLSL Change - don't do this - -w14062 # Promote 'enumerator in switch of enum is not handled' to level 1 warning.
# Promoted warnings to errors.
-we4238 # Promote 'nonstandard extension used : class rvalue used as lvalue' to error.
)
# HLSL Changes Start
if (HLSL_ENABLE_ANALYZE)
append("/analyze" CMAKE_CXX_FLAGS)
endif ()
# Change release to always build debug information out-of-line, but
# also enable Reference optimization, ie dead function elimination.
append("/Zi" CMAKE_CXX_FLAGS_RELEASE)
append("/DEBUG /OPT:REF" CMAKE_SHARED_LINKER_FLAGS_RELEASE)
append("/DEBUG /OPT:REF" CMAKE_EXE_LINKER_FLAGS_RELEASE)
# HLSL Changes End
# Enable warnings
if (LLVM_ENABLE_WARNINGS)
append("/W4" msvc_warning_flags)
# CMake appends /W3 by default, and having /W3 followed by /W4 will result in
# cl : Command line warning D9025 : overriding '/W3' with '/W4'. Since this is
# a command line warning and not a compiler warning, it cannot be suppressed except
# by fixing the command line.
string(REGEX REPLACE " /W[0-4]" "" CMAKE_C_FLAGS "${CMAKE_C_FLAGS}")
string(REGEX REPLACE " /W[0-4]" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
if (LLVM_ENABLE_PEDANTIC)
# No MSVC equivalent available
endif (LLVM_ENABLE_PEDANTIC)
if (CLANG_CL)
append("-Wall -W -Wno-unused-parameter -Wwrite-strings -Wimplicit-fallthrough" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wcast-qual" CMAKE_CXX_FLAGS)
# Disable unknown pragma warnings because the output is just too long with them.
append("-Wno-unknown-pragmas" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
add_flag_if_supported("-Wno-unused-but-set-variable" UNUSED_BUT_SET_VARIABLE)
append("-Wno-switch" CMAKE_CXX_FLAGS)
append("-Wmissing-field-initializers" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
# enable warnings explicitly.
append("-Wnonportable-include-path -Wunused-function" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wtrigraphs -Wconstant-logical-operand -Wunused-variable" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif (CLANG_CL)
endif (LLVM_ENABLE_WARNINGS)
if (LLVM_ENABLE_WERROR)
append("/WX" msvc_warning_flags)
endif (LLVM_ENABLE_WERROR)
foreach(flag ${msvc_warning_flags})
append("${flag}" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endforeach(flag)
# Disable sized deallocation if the flag is supported. MSVC fails to compile
# the operator new overload in User otherwise.
check_c_compiler_flag("/WX /Zc:sizedDealloc-" SUPPORTS_SIZED_DEALLOC)
append_if(SUPPORTS_SIZED_DEALLOC "/Zc:sizedDealloc-" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
elseif( LLVM_COMPILER_IS_GCC_COMPATIBLE )
if (LLVM_ENABLE_WARNINGS)
append("-Wall -W -Wno-unused-parameter -Wwrite-strings -Wimplicit-fallthrough" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wcast-qual" CMAKE_CXX_FLAGS)
# Disable unknown pragma warnings because the output is just too long with them.
append("-Wno-unknown-pragmas" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
if (MINGW)
append("-Wno-implicit-fallthrough" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wno-missing-exception-spec" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wno-reorder-ctor" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wno-sign-compare" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wno-unused-const-variable" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
append("-Wno-unused-function" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
add_flag_if_supported("-Wno-unused-but-set-variable" UNUSED_BUT_SET_VARIABLE)
add_flag_if_supported("-Wno-deprecated-copy" DEPRECATED_COPY)
# Colorize GCC output even with ninja's stdout redirection.
if (CMAKE_COMPILER_IS_GNUCXX)
append("-fdiagnostics-color" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif (CMAKE_COMPILER_IS_GNUCXX)
# Turn off missing field initializer warnings for gcc to avoid noise from
# false positives with empty {}. Turn them on otherwise (they're off by
# default for clang).
check_cxx_compiler_flag("-Wmissing-field-initializers" CXX_SUPPORTS_MISSING_FIELD_INITIALIZERS_FLAG)
if (CXX_SUPPORTS_MISSING_FIELD_INITIALIZERS_FLAG)
if (CMAKE_COMPILER_IS_GNUCXX)
append("-Wno-missing-field-initializers" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
else()
append("-Wmissing-field-initializers" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
endif()
append_if(LLVM_ENABLE_PEDANTIC "-pedantic -Wno-long-long" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
# add_flag_if_supported("-Wcovered-switch-default" COVERED_SWITCH_DEFAULT_FLAG) # HLSL Change
append("-Wno-switch" CMAKE_CXX_FLAGS) # HLSL Change
append_if(USE_NO_UNINITIALIZED "-Wno-uninitialized" CMAKE_CXX_FLAGS)
append_if(USE_NO_MAYBE_UNINITIALIZED "-Wno-maybe-uninitialized" CMAKE_CXX_FLAGS)
# HLSL Change Starts
# Windows' and by extension WinAdapter's non-Windows implementation for IUnknown
# use virtual methods without virtual destructor, as that would add two extra
# function-pointers to the vtable in turn offsetting those for every subclass,
# resulting in ABI mismatches:
# https://github.com/microsoft/DirectXShaderCompiler/issues/3783.
# The -Wnon-virtual-dtor warning is disabled to allow this, conforming
# with MSVC behaviour.
# # Check if -Wnon-virtual-dtor warns even though the class is marked final.
# # If it does, don't add it. So it won't be added on clang 3.4 and older.
# # This also catches cases when -Wnon-virtual-dtor isn't supported by
# # the compiler at all.
# set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
# set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} -std=c++11 -Werror=non-virtual-dtor")
# CHECK_CXX_SOURCE_COMPILES("class base {public: virtual void anchor();protected: ~base();};
# class derived final : public base { public: ~derived();};
# int main() { return 0; }"
# CXX_WONT_WARN_ON_FINAL_NONVIRTUALDTOR)
# set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
# append_if(CXX_WONT_WARN_ON_FINAL_NONVIRTUALDTOR
# "-Wnon-virtual-dtor" CMAKE_CXX_FLAGS)
# HLSL Change Ends
# Check if -Wcomment is OK with an // comment ending with '\' if the next
# line is also a // comment.
set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} -Werror -Wcomment")
CHECK_C_SOURCE_COMPILES("// \\\\\\n//\\nint main() {return 0;}"
C_WCOMMENT_ALLOWS_LINE_WRAP)
set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
if (NOT C_WCOMMENT_ALLOWS_LINE_WRAP)
append("-Wno-comment" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
endif (LLVM_ENABLE_WARNINGS)
append_if(LLVM_ENABLE_WERROR "-Werror" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
if (NOT LLVM_ENABLE_TIMESTAMPS)
add_flag_if_supported("-Werror=date-time" WERROR_DATE_TIME)
endif ()
if (LLVM_ENABLE_MODULES)
set(OLD_CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} -fmodules -fcxx-modules")
# Check that we can build code with modules enabled, and that repeatedly
# including <cassert> still manages to respect NDEBUG properly.
CHECK_CXX_SOURCE_COMPILES("#undef NDEBUG
#include <cassert>
#define NDEBUG
#include <cassert>
int main() { assert(this code is not compiled); }"
CXX_SUPPORTS_MODULES)
set(CMAKE_REQUIRED_FLAGS ${OLD_CMAKE_REQUIRED_FLAGS})
if (CXX_SUPPORTS_MODULES)
append_if(CXX_SUPPORTS_MODULES "-fmodules" CMAKE_C_FLAGS)
append_if(CXX_SUPPORTS_MODULES "-fmodules -fcxx-modules" CMAKE_CXX_FLAGS)
else()
message(FATAL_ERROR "LLVM_ENABLE_MODULES is not supported by this compiler")
endif()
endif(LLVM_ENABLE_MODULES)
endif( MSVC )
macro(append_common_sanitizer_flags)
# Append -fno-omit-frame-pointer and turn on debug info to get better
# stack traces.
add_flag_if_supported("-fno-omit-frame-pointer" FNO_OMIT_FRAME_POINTER)
if (NOT uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG" AND
NOT uppercase_CMAKE_BUILD_TYPE STREQUAL "RELWITHDEBINFO")
add_flag_if_supported("-gline-tables-only" GLINE_TABLES_ONLY)
endif()
# Use -O1 even in debug mode, otherwise sanitizers slowdown is too large.
if (uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG" AND LLVM_OPTIMIZE_SANITIZED_BUILDS)
add_flag_if_supported("-O1" O1)
endif()
endmacro()
# Turn on sanitizers if necessary.
if(LLVM_USE_SANITIZER)
if (LLVM_ON_UNIX)
if (LLVM_USE_SANITIZER STREQUAL "Address")
append_common_sanitizer_flags()
append("-fsanitize=address" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
elseif (LLVM_USE_SANITIZER MATCHES "Memory(WithOrigins)?")
append_common_sanitizer_flags()
append("-fsanitize=memory" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
if(LLVM_USE_SANITIZER STREQUAL "MemoryWithOrigins")
append("-fsanitize-memory-track-origins" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
elseif (LLVM_USE_SANITIZER STREQUAL "Undefined")
append_common_sanitizer_flags()
append("-fsanitize=undefined -fno-sanitize=vptr,function,alignment -fno-sanitize-recover=all"
CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
elseif (LLVM_USE_SANITIZER STREQUAL "Thread")
append_common_sanitizer_flags()
append("-fsanitize=thread" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
elseif (LLVM_USE_SANITIZER STREQUAL "Address;Undefined" OR
LLVM_USE_SANITIZER STREQUAL "Undefined;Address")
append_common_sanitizer_flags()
append("-fsanitize=address,undefined -fno-sanitize=vptr,function,alignment -fno-sanitize-recover=all"
CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
else()
message(FATAL_ERROR "Unsupported value of LLVM_USE_SANITIZER: ${LLVM_USE_SANITIZER}")
endif()
else()
if (LLVM_USE_SANITIZER STREQUAL "Address")
append("-fsanitize=address" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
else()
message(FATAL_ERROR "Unsupported value of LLVM_USE_SANITIZER: ${LLVM_USE_SANITIZER}")
endif()
endif()
if (LLVM_USE_SANITIZE_COVERAGE)
append("-fsanitize-coverage=edge,indirect-calls,8bit-counters,trace-cmp" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
endif()
# Turn on -gsplit-dwarf if requested
if(LLVM_USE_SPLIT_DWARF)
add_definitions("-gsplit-dwarf")
endif()
add_llvm_definitions( -D__STDC_CONSTANT_MACROS )
add_llvm_definitions( -D__STDC_FORMAT_MACROS )
add_llvm_definitions( -D__STDC_LIMIT_MACROS )
# clang doesn't print colored diagnostics when invoked from Ninja
if (UNIX AND
CMAKE_CXX_COMPILER_ID MATCHES "Clang" AND # HLSL Change - Update to CMake 3.13.4
CMAKE_GENERATOR STREQUAL "Ninja")
append("-fcolor-diagnostics" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
# HLSL Change Starts
# Enable -fms-extensions for clang to use MS uuid extensions for COM.
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang")
append("-fms-extensions -Wno-language-extension-token" CMAKE_C_FLAGS CMAKE_CXX_FLAGS)
endif()
# HLSL Change Ends
# Add flags for add_dead_strip().
# FIXME: With MSVS, consider compiling with /Gy and linking with /OPT:REF?
# But MinSizeRel seems to add that automatically, so maybe disable these
# flags instead if LLVM_NO_DEAD_STRIP is set.
if(NOT CYGWIN AND NOT WIN32)
if(NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin" AND
NOT uppercase_CMAKE_BUILD_TYPE STREQUAL "DEBUG")
check_c_compiler_flag("-Werror -fno-function-sections" C_SUPPORTS_FNO_FUNCTION_SECTIONS)
if (C_SUPPORTS_FNO_FUNCTION_SECTIONS)
# Don't add -ffunction-section if it can be disabled with -fno-function-sections.
# Doing so will break sanitizers.
add_flag_if_supported("-ffunction-sections" FFUNCTION_SECTIONS)
endif()
add_flag_if_supported("-fdata-sections" FDATA_SECTIONS)
endif()
endif()
if(CYGWIN OR MINGW)
# Prune --out-implib from executables. It doesn't make sense even
# with --export-all-symbols.
string(REGEX REPLACE "-Wl,--out-implib,[^ ]+ " " "
CMAKE_C_LINK_EXECUTABLE "${CMAKE_C_LINK_EXECUTABLE}")
string(REGEX REPLACE "-Wl,--out-implib,[^ ]+ " " "
CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE}")
endif()
if(MSVC)
# Remove flags here, for exceptions and RTTI.
# Each target property or source property should be responsible to control
# them.
# CL.EXE complains to override flags like "/GR /GR-".
string(REGEX REPLACE "(^| ) */EH[-cs]+ *( |$)" "\\1 \\2" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
string(REGEX REPLACE "(^| ) */GR-? *( |$)" "\\1 \\2" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
endif()
# Provide public options to globally control RTTI and EH
option(LLVM_ENABLE_EH "Enable Exception handling" OFF)
option(LLVM_ENABLE_RTTI "Enable run time type information" OFF)
if(LLVM_ENABLE_EH AND NOT LLVM_ENABLE_RTTI)
message(FATAL_ERROR "Exception handling requires RTTI. You must set LLVM_ENABLE_RTTI to ON")
endif()
if (MINGW)
if (LLVM_ENABLE_EH)
append("-fexceptions" CMAKE_CXX_FLAGS)
endif()
if (LLVM_ENABLE_RTTI)
append("-frtti" CMAKE_CXX_FLAGS)
endif()
endif()
# HLSL Change Begin
option(LLVM_ENABLE_LTO "Enable building with LTO" ${HLSL_OFFICIAL_BUILD})
if (LLVM_ENABLE_LTO)
if(MSVC)
if (CMAKE_CONFIGURATION_TYPES)
set(_SUFFIX _RELEASE)
endif()
append("/GL" CMAKE_C_FLAGS${_SUFFIX} CMAKE_CXX_FLAGS${_SUFFIX})
append("/LTCG" CMAKE_MODULE_LINKER_FLAGS${_SUFFIX} CMAKE_MODULE_LINKER_FLAGS${_SUFFIX} CMAKE_EXE_LINKER_FLAGS${_SUFFIX})
else()
add_flag_if_supported("-flto" SUPPORTS_FLTO)
endif()
endif()
# HLSL Change End
option(LLVM_BUILD_INSTRUMENTED "Build LLVM and tools with PGO instrumentation (experimental)" Off)
mark_as_advanced(LLVM_BUILD_INSTRUMENTED)
append_if(LLVM_BUILD_INSTRUMENTED "-fprofile-instr-generate='${LLVM_PROFILE_FILE_PATTERN}'"
CMAKE_CXX_FLAGS
CMAKE_C_FLAGS
CMAKE_EXE_LINKER_FLAGS
CMAKE_SHARED_LINKER_FLAGS)
option(LLVM_BUILD_INSTRUMENTED_COVERAGE "Build LLVM and tools with Code Coverage instrumentation (experimental)" Off)
mark_as_advanced(LLVM_BUILD_INSTRUMENTED_COVERAGE)
append_if(LLVM_BUILD_INSTRUMENTED_COVERAGE "-fprofile-instr-generate='${LLVM_PROFILE_FILE_PATTERN}' -fcoverage-mapping"
CMAKE_CXX_FLAGS
CMAKE_C_FLAGS
CMAKE_EXE_LINKER_FLAGS
CMAKE_SHARED_LINKER_FLAGS)
# Plugin support
# FIXME: Make this configurable.
if(WIN32 OR CYGWIN)
if(BUILD_SHARED_LIBS)
set(LLVM_ENABLE_PLUGINS ON)
else()
set(LLVM_ENABLE_PLUGINS OFF)
endif()
else()
set(LLVM_ENABLE_PLUGINS ON)
endif()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/AddSphinxTarget.cmake | # Handy function for creating the different Sphinx targets.
#
# ``builder`` should be one of the supported builders used by
# the sphinx-build command.
#
# ``project`` should be the project name
function (add_sphinx_target builder project)
set(SPHINX_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/${builder}")
set(SPHINX_DOC_TREE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees")
set(SPHINX_TARGET_NAME docs-${project}-${builder})
if (SPHINX_WARNINGS_AS_ERRORS)
set(SPHINX_WARNINGS_AS_ERRORS_FLAG "-W")
else()
set(SPHINX_WARNINGS_AS_ERRORS_FLAG "")
endif()
add_custom_target(${SPHINX_TARGET_NAME}
COMMAND ${SPHINX_EXECUTABLE}
-b ${builder}
-d "${SPHINX_DOC_TREE_DIR}"
-q # Quiet: no output other than errors and warnings.
${SPHINX_WARNINGS_AS_ERRORS_FLAG} # Treat warnings as errors if requested
"${CMAKE_CURRENT_SOURCE_DIR}" # Source
"${SPHINX_BUILD_DIR}" # Output
COMMENT
"Generating ${builder} Sphinx documentation for ${project} into \"${SPHINX_BUILD_DIR}\"")
# When "clean" target is run, remove the Sphinx build directory
set_property(DIRECTORY APPEND PROPERTY
ADDITIONAL_MAKE_CLEAN_FILES
"${SPHINX_BUILD_DIR}")
# We need to remove ${SPHINX_DOC_TREE_DIR} when make clean is run
# but we should only add this path once
get_property(_CURRENT_MAKE_CLEAN_FILES
DIRECTORY PROPERTY ADDITIONAL_MAKE_CLEAN_FILES)
list(FIND _CURRENT_MAKE_CLEAN_FILES "${SPHINX_DOC_TREE_DIR}" _INDEX)
if (_INDEX EQUAL -1)
set_property(DIRECTORY APPEND PROPERTY
ADDITIONAL_MAKE_CLEAN_FILES
"${SPHINX_DOC_TREE_DIR}")
endif()
if (LLVM_BUILD_DOCS)
add_dependencies(sphinx ${SPHINX_TARGET_NAME})
# Handle installation
if (NOT LLVM_INSTALL_TOOLCHAIN_ONLY)
if (builder STREQUAL man)
# FIXME: We might not ship all the tools that these man pages describe
install(DIRECTORY "${SPHINX_BUILD_DIR}/" # Slash indicates contents of
DESTINATION share/man/man1)
elseif (builder STREQUAL html)
install(DIRECTORY "${SPHINX_BUILD_DIR}"
DESTINATION "share/doc/${project}")
else()
message(WARNING Installation of ${builder} not supported)
endif()
endif()
endif()
endfunction()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/GetHostTriple.cmake | # Returns the host triple.
# Invokes config.guess
function( get_host_triple var )
if( MSVC )
if( CMAKE_CL_64 )
set( value "x86_64-pc-win32" )
else()
set( value "i686-pc-win32" )
endif()
elseif( MINGW AND NOT MSYS )
if( CMAKE_SIZEOF_VOID_P EQUAL 8 )
set( value "x86_64-w64-mingw32" )
else()
set( value "i686-pc-mingw32" )
endif()
else( MSVC )
set(config_guess ${LLVM_MAIN_SRC_DIR}/autoconf/config.guess)
execute_process(COMMAND sh ${config_guess}
RESULT_VARIABLE TT_RV
OUTPUT_VARIABLE TT_OUT
OUTPUT_STRIP_TRAILING_WHITESPACE)
if( NOT TT_RV EQUAL 0 )
message(FATAL_ERROR "Failed to execute ${config_guess}")
endif( NOT TT_RV EQUAL 0 )
set( value ${TT_OUT} )
endif( MSVC )
set( ${var} ${value} PARENT_SCOPE )
message(STATUS "Target triple: ${value}")
endfunction( get_host_triple var )
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/HandleLLVMStdlib.cmake | # This CMake module is responsible for setting the standard library to libc++
# if the user has requested it.
if(NOT DEFINED LLVM_STDLIB_HANDLED)
set(LLVM_STDLIB_HANDLED ON)
if(CMAKE_COMPILER_IS_GNUCXX)
set(LLVM_COMPILER_IS_GCC_COMPATIBLE ON)
elseif( MSVC )
set(LLVM_COMPILER_IS_GCC_COMPATIBLE OFF)
elseif( "${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang" )
set(LLVM_COMPILER_IS_GCC_COMPATIBLE ON)
endif()
function(append value)
foreach(variable ${ARGN})
set(${variable} "${${variable}} ${value}" PARENT_SCOPE)
endforeach(variable)
endfunction()
include(CheckCXXCompilerFlag)
if(LLVM_ENABLE_LIBCXX)
if(LLVM_COMPILER_IS_GCC_COMPATIBLE)
check_cxx_compiler_flag("-stdlib=libc++" CXX_SUPPORTS_STDLIB)
if(CXX_SUPPORTS_STDLIB)
append("-stdlib=libc++"
CMAKE_CXX_FLAGS CMAKE_EXE_LINKER_FLAGS CMAKE_SHARED_LINKER_FLAGS
CMAKE_MODULE_LINKER_FLAGS)
if(LLVM_ENABLE_LIBCXXABI)
append("-lc++abi"
CMAKE_EXE_LINKER_FLAGS CMAKE_SHARED_LINKER_FLAGS
CMAKE_MODULE_LINKER_FLAGS)
endif()
else()
message(WARNING "Can't specify libc++ with '-stdlib='")
endif()
else()
message(WARNING "Not sure how to specify libc++ for this compiler")
endif()
endif()
endif()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/LLVMConfig.cmake.in | # This file provides information and services to the final user.
@LLVM_CONFIG_CODE@
set(LLVM_VERSION_MAJOR @LLVM_VERSION_MAJOR@)
set(LLVM_VERSION_MINOR @LLVM_VERSION_MINOR@)
set(LLVM_VERSION_PATCH @LLVM_VERSION_PATCH@)
set(LLVM_PACKAGE_VERSION @PACKAGE_VERSION@)
set(LLVM_COMMON_DEPENDS @LLVM_COMMON_DEPENDS@)
set(LLVM_AVAILABLE_LIBS @LLVM_AVAILABLE_LIBS@)
set(LLVM_ALL_TARGETS @LLVM_ALL_TARGETS@)
set(LLVM_TARGETS_TO_BUILD @LLVM_TARGETS_TO_BUILD@)
set(LLVM_TARGETS_WITH_JIT @LLVM_TARGETS_WITH_JIT@)
@all_llvm_lib_deps@
set(TARGET_TRIPLE "@TARGET_TRIPLE@")
set(LLVM_ABI_BREAKING_CHECKS @LLVM_ABI_BREAKING_CHECKS@)
set(LLVM_ENABLE_ASSERTIONS @LLVM_ENABLE_ASSERTIONS@)
set(LLVM_ENABLE_EH @LLVM_ENABLE_EH@)
set(LLVM_ENABLE_RTTI @LLVM_ENABLE_RTTI@)
set(LLVM_ENABLE_TERMINFO @LLVM_ENABLE_TERMINFO@)
set(LLVM_ENABLE_THREADS @LLVM_ENABLE_THREADS@)
set(LLVM_ENABLE_ZLIB @LLVM_ENABLE_ZLIB@)
set(LLVM_NATIVE_ARCH @LLVM_NATIVE_ARCH@)
set(LLVM_ENABLE_PIC @LLVM_ENABLE_PIC@)
set(LLVM_ON_UNIX @LLVM_ON_UNIX@)
set(LLVM_ON_WIN32 @LLVM_ON_WIN32@)
set(LLVM_LIBDIR_SUFFIX @LLVM_LIBDIR_SUFFIX@)
set(LLVM_INCLUDE_DIRS "@LLVM_CONFIG_INCLUDE_DIRS@")
set(LLVM_LIBRARY_DIRS "@LLVM_CONFIG_LIBRARY_DIRS@")
set(LLVM_DEFINITIONS "-D__STDC_LIMIT_MACROS" "-D__STDC_CONSTANT_MACROS")
set(LLVM_CMAKE_DIR "@LLVM_CONFIG_CMAKE_DIR@")
set(LLVM_TOOLS_BINARY_DIR "@LLVM_CONFIG_TOOLS_BINARY_DIR@")
if(NOT TARGET LLVMSupport)
include("@LLVM_CONFIG_EXPORTS_FILE@")
endif()
include(${LLVM_CMAKE_DIR}/LLVM-Config.cmake)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/modules/LLVMConfigVersion.cmake.in | set(PACKAGE_VERSION "@PACKAGE_VERSION@")
# LLVM is API-compatible only with matching major.minor versions
# and patch versions not less than that requested.
if("@LLVM_VERSION_MAJOR@.@LLVM_VERSION_MINOR@" VERSION_EQUAL
"${PACKAGE_FIND_VERSION_MAJOR}.${PACKAGE_FIND_VERSION_MINOR}"
AND NOT "@LLVM_VERSION_PATCH@" VERSION_LESS "${PACKAGE_FIND_VERSION_PATCH}")
set(PACKAGE_VERSION_COMPATIBLE 1)
if("@LLVM_VERSION_PATCH@" VERSION_EQUAL
"${PACKAGE_FIND_VERSION_PATCH}")
set(PACKAGE_VERSION_EXACT 1)
endif()
endif()
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/platforms/iOS.cmake | # Toolchain config for iOS.
#
# Usage:
# mkdir build; cd build
# cmake ..; make
# mkdir ios; cd ios
# cmake -DLLVM_IOS_TOOLCHAIN_DIR=/path/to/ios/ndk \
# -DCMAKE_TOOLCHAIN_FILE=../../cmake/platforms/iOS.cmake ../..
# make <target>
SET(CMAKE_SYSTEM_NAME Darwin)
SET(CMAKE_SYSTEM_VERSION 13)
SET(CMAKE_CXX_COMPILER_WORKS True)
SET(CMAKE_C_COMPILER_WORKS True)
SET(DARWIN_TARGET_OS_NAME ios)
IF(NOT DEFINED ENV{SDKROOT})
execute_process(COMMAND xcodebuild -version -sdk iphoneos Path
OUTPUT_VARIABLE SDKROOT
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
ELSE()
execute_process(COMMAND xcodebuild -version -sdk $ENV{SDKROOT} Path
OUTPUT_VARIABLE SDKROOT
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
ENDIF()
IF(NOT EXISTS ${SDKROOT})
MESSAGE(FATAL_ERROR "SDKROOT could not be detected!")
ENDIF()
set(CMAKE_OSX_SYSROOT ${SDKROOT})
IF(NOT CMAKE_C_COMPILER)
execute_process(COMMAND xcrun -sdk ${SDKROOT} -find clang
OUTPUT_VARIABLE CMAKE_C_COMPILER
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
message(STATUS "Using c compiler ${CMAKE_C_COMPILER}")
ENDIF()
IF(NOT CMAKE_CXX_COMPILER)
execute_process(COMMAND xcrun -sdk ${SDKROOT} -find clang++
OUTPUT_VARIABLE CMAKE_CXX_COMPILER
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
message(STATUS "Using c compiler ${CMAKE_CXX_COMPILER}")
ENDIF()
IF(NOT CMAKE_AR)
execute_process(COMMAND xcrun -sdk ${SDKROOT} -find ar
OUTPUT_VARIABLE CMAKE_AR_val
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
SET(CMAKE_AR ${CMAKE_AR_val} CACHE FILEPATH "Archiver")
message(STATUS "Using ar ${CMAKE_AR}")
ENDIF()
IF(NOT CMAKE_RANLIB)
execute_process(COMMAND xcrun -sdk ${SDKROOT} -find ranlib
OUTPUT_VARIABLE CMAKE_RANLIB_val
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
SET(CMAKE_RANLIB ${CMAKE_RANLIB_val} CACHE FILEPATH "Ranlib")
message(STATUS "Using ranlib ${CMAKE_RANLIB}")
ENDIF()
IF (NOT DEFINED IOS_MIN_TARGET)
execute_process(COMMAND xcodebuild -sdk ${SDKROOT} -version SDKVersion
OUTPUT_VARIABLE IOS_MIN_TARGET
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
ENDIF()
SET(IOS_COMMON_FLAGS "-mios-version-min=${IOS_MIN_TARGET}")
SET(CMAKE_C_FLAGS "${IOS_COMMON_FLAGS}" CACHE STRING "toolchain_cflags" FORCE)
SET(CMAKE_CXX_FLAGS "${IOS_COMMON_FLAGS}" CACHE STRING "toolchain_cxxflags" FORCE)
SET(CMAKE_LINK_FLAGS "${IOS_COMMON_FLAGS}" CACHE STRING "toolchain_linkflags" FORCE)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/platforms/Android.cmake | # Toolchain config for Android NDK.
# This is expected to be used with a standalone Android toolchain (see
# docs/STANDALONE-TOOLCHAIN.html in the NDK on how to get one).
#
# Usage:
# mkdir build; cd build
# cmake ..; make
# mkdir android; cd android
# cmake -DLLVM_ANDROID_TOOLCHAIN_DIR=/path/to/android/ndk \
# -DCMAKE_TOOLCHAIN_FILE=../../cmake/platforms/Android.cmake ../..
# make <target>
SET(CMAKE_SYSTEM_NAME Linux)
IF(NOT CMAKE_C_COMPILER)
SET(CMAKE_C_COMPILER ${CMAKE_BINARY_DIR}/../bin/clang)
ENDIF()
IF(NOT CMAKE_CXX_COMPILER)
SET(CMAKE_CXX_COMPILER ${CMAKE_BINARY_DIR}/../bin/clang++)
ENDIF()
SET(ANDROID "1" CACHE STRING "ANDROID" FORCE)
SET(ANDROID_COMMON_FLAGS "-target arm-linux-androideabi --sysroot=${LLVM_ANDROID_TOOLCHAIN_DIR}/sysroot -B${LLVM_ANDROID_TOOLCHAIN_DIR}")
SET(CMAKE_C_FLAGS "${ANDROID_COMMON_FLAGS}" CACHE STRING "toolchain_cflags" FORCE)
SET(CMAKE_CXX_FLAGS "${ANDROID_COMMON_FLAGS}" CACHE STRING "toolchain_cxxflags" FORCE)
SET(CMAKE_EXE_LINKER_FLAGS "-pie" CACHE STRING "toolchain_exelinkflags" FORCE)
|
0 | repos/DirectXShaderCompiler/cmake | repos/DirectXShaderCompiler/cmake/caches/PredefinedParams.cmake | # This file contains the basic options required for building DXC using CMake on
# *nix platforms. It is passed to CMake using the `-C` flag and gets processed
# before the root CMakeLists.txt file. Only cached variables persist after this
# file executes, so all state must be saved into the cache. These variables also
# will not override explicit command line parameters, and can only read
# parameters that are specified before the `-C` flag.
if (DXC_COVERAGE)
set(LLVM_BUILD_INSTRUMENTED_COVERAGE ON CACHE BOOL "")
set(LLVM_PROFILE_DATA_DIR "${CMAKE_BINARY_DIR}/profile" CACHE STRING "")
set(LLVM_CODE_COVERAGE_TARGETS "dxc;dxcompiler" CACHE STRING "")
set(LLVM_CODE_COVERAGE_TEST_TARGETS "check-all" CACHE STRING "")
endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON CACHE BOOL "")
set(LLVM_APPEND_VC_REV ON CACHE BOOL "")
set(LLVM_DEFAULT_TARGET_TRIPLE "dxil-ms-dx" CACHE STRING "")
set(LLVM_ENABLE_EH ON CACHE BOOL "")
set(LLVM_ENABLE_RTTI ON CACHE BOOL "")
set(LLVM_INCLUDE_DOCS OFF CACHE BOOL "")
set(LLVM_INCLUDE_EXAMPLES OFF CACHE BOOL "")
set(LLVM_OPTIMIZED_TABLEGEN OFF CACHE BOOL "")
set(LLVM_TARGETS_TO_BUILD "None" CACHE STRING "")
set(LIBCLANG_BUILD_STATIC ON CACHE BOOL "")
set(CLANG_BUILD_EXAMPLES OFF CACHE BOOL "")
set(CLANG_CL OFF CACHE BOOL "")
set(CLANG_ENABLE_ARCMT OFF CACHE BOOL "")
set(CLANG_ENABLE_STATIC_ANALYZER OFF CACHE BOOL "")
set(HLSL_INCLUDE_TESTS ON CACHE BOOL "")
set(ENABLE_SPIRV_CODEGEN ON CACHE BOOL "")
set(SPIRV_BUILD_TESTS ON CACHE BOOL "")
set(LLVM_ENABLE_TERMINFO OFF CACHE BOOL "")
|
0 | repos/DirectXShaderCompiler | repos/DirectXShaderCompiler/tools/CMakeLists.txt | add_llvm_tool_subdirectory(llvm-config)
# Build polly before the tools: the tools link against polly when
# LINK_POLLY_INTO_TOOLS is set.
if(WITH_POLLY)
add_llvm_external_project(polly)
else(WITH_POLLY)
list(APPEND LLVM_IMPLICIT_PROJECT_IGNORE "${LLVM_MAIN_SRC_DIR}/tools/polly")
endif(WITH_POLLY)
if( LLVM_BUILD_LLVM_DYLIB )
add_llvm_tool_subdirectory(llvm-shlib)
else()
ignore_llvm_tool_subdirectory(llvm-shlib)
endif()
add_llvm_tool_subdirectory(opt) # HLSL Change
add_llvm_tool_subdirectory(llvm-as) # HLSL Change
add_llvm_tool_subdirectory(llvm-dis) # HLSL Change
# add_llvm_tool_subdirectory(llvm-mc) # HLSL Change
# HLSL Change Begins
if (MSVC)
# This target can currently only be built on Windows.
add_llvm_tool_subdirectory(dxexp)
endif (MSVC)
# HLSL Change ends
# add_llvm_tool_subdirectory(llc) # HLSL Change
# add_llvm_tool_subdirectory(llvm-ar) # HLSL Change
# add_llvm_tool_subdirectory(llvm-nm) # HLSL Change
# add_llvm_tool_subdirectory(llvm-size) # HLSL Change
# add_llvm_tool_subdirectory(llvm-cov) # HLSL Change
# add_llvm_tool_subdirectory(llvm-profdata) # HLSL Change
add_llvm_tool_subdirectory(llvm-link) # HLSL Change
# add_llvm_tool_subdirectory(lli) # HLSL Change
add_llvm_tool_subdirectory(llvm-extract) # HLSL Change
add_llvm_tool_subdirectory(llvm-diff) # HLSL Change
# add_llvm_tool_subdirectory(macho-dump) # HLSL Change
# add_llvm_tool_subdirectory(llvm-objdump) # HLSL Change
# add_llvm_tool_subdirectory(llvm-readobj) # HLSL Change
# add_llvm_tool_subdirectory(llvm-rtdyld) # HLSL Change
# add_llvm_tool_subdirectory(llvm-dwarfdump) # HLSL Change
# add_llvm_tool_subdirectory(dsymutil) # HLSL Change
# add_llvm_tool_subdirectory(llvm-cxxdump) # HLSL Change
# HLSL Change - remove llvm-jitlistener conditional on LLVM_USE_INTEL_JITEVENTS
# add_llvm_tool_subdirectory(bugpoint) # HLSL Change
# add_llvm_tool_subdirectory(bugpoint-passes) # HLSL Change
add_llvm_tool_subdirectory(llvm-bcanalyzer) # HLSL Change
add_llvm_tool_subdirectory(llvm-stress) # HLSL Change
# add_llvm_tool_subdirectory(llvm-mcmarkup) # HLSL Change
add_llvm_tool_subdirectory(verify-uselistorder) # HLSL Change
# add_llvm_tool_subdirectory(llvm-symbolizer) # HLSL Change
# add_llvm_tool_subdirectory(llvm-c-test) # HLSL Change
# add_llvm_tool_subdirectory(obj2yaml) # HLSL Change
# add_llvm_tool_subdirectory(yaml2obj) # HLSL Change
# add_llvm_tool_subdirectory(llvm-go) # HLSL Change
# add_llvm_tool_subdirectory(llvm-pdbdump) # HLSL Change
if(NOT CYGWIN AND LLVM_ENABLE_PIC)
# add_llvm_tool_subdirectory(lto) # HLSL Change
# add_llvm_tool_subdirectory(llvm-lto) # HLSL Change
else()
ignore_llvm_tool_subdirectory(lto)
ignore_llvm_tool_subdirectory(llvm-lto)
endif()
# add_llvm_tool_subdirectory(gold) # HLSL Change
add_llvm_external_project(clang)
# add_llvm_external_project(llgo) # HLSL Change
# add_llvm_external_project(lld) # HLSL Change
# add_llvm_external_project(lldb) # HLSL Change
# Automatically add remaining sub-directories containing a 'CMakeLists.txt'
# file as external projects.
# add_llvm_implicit_external_projects() # HLSL Change
set(LLVM_COMMON_DEPENDS ${LLVM_COMMON_DEPENDS} PARENT_SCOPE)
|
0 | repos/DirectXShaderCompiler | repos/DirectXShaderCompiler/tools/LLVMBuild.txt | ;===- ./tools/LLVMBuild.txt ------------------------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[common]
subdirectories =
dsymutil
llc
lli
llvm-as
llvm-bcanalyzer
llvm-cov
llvm-diff
llvm-dis
llvm-dwarfdump
llvm-extract
llvm-link
llvm-mc
llvm-mcmarkup
llvm-nm
llvm-objdump
llvm-pdbdump
llvm-profdata
llvm-rtdyld
llvm-size
macho-dump
opt
verify-uselistorder
[component_0]
type = Group
name = Tools
parent = $ROOT
; HLSL Changes: remove bugpoint, llvm-ar, llvm-jitlistener, llvm-lto
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/dxexp/dxexp.cpp | ///////////////////////////////////////////////////////////////////////////////
// //
// dxexp.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// Provides a command-line tool to detect the status of D3D experimental //
// feature support for experimental shaders. //
// //
///////////////////////////////////////////////////////////////////////////////
#define NOMINMAX
#define WIN32_LEAN_AND_MEAN
#include <atlbase.h>
#include <d3d12.h>
#include <dxgi1_4.h>
#include <stdio.h>
#include <windows.h>
#pragma comment(lib, "d3d12.lib")
#pragma comment(lib, "dxgi.lib")
#pragma comment(lib, "dxguid.lib")
// A more recent Windows SDK than currently required is needed for these.
typedef HRESULT(WINAPI *D3D12EnableExperimentalFeaturesFn)(
UINT NumFeatures, __in_ecount(NumFeatures) const IID *pIIDs,
__in_ecount_opt(NumFeatures) void *pConfigurationStructs,
__in_ecount_opt(NumFeatures) UINT *pConfigurationStructSizes);
static const GUID D3D12ExperimentalShaderModelsID =
{/* 76f5573e-f13a-40f5-b297-81ce9e18933f */
0x76f5573e,
0xf13a,
0x40f5,
{0xb2, 0x97, 0x81, 0xce, 0x9e, 0x18, 0x93, 0x3f}};
static HRESULT AtlCheck(HRESULT hr) {
if (FAILED(hr))
AtlThrow(hr);
return hr;
}
// Not defined in Creators Update version of d3d12.h:
#if WDK_NTDDI_VERSION <= NTDDI_WIN10_RS2
#define D3D12_FEATURE_D3D12_OPTIONS3 ((D3D12_FEATURE)21)
typedef enum D3D12_COMMAND_LIST_SUPPORT_FLAGS {
D3D12_COMMAND_LIST_SUPPORT_FLAG_NONE = 0,
D3D12_COMMAND_LIST_SUPPORT_FLAG_DIRECT =
(1 << D3D12_COMMAND_LIST_TYPE_DIRECT),
D3D12_COMMAND_LIST_SUPPORT_FLAG_BUNDLE =
(1 << D3D12_COMMAND_LIST_TYPE_BUNDLE),
D3D12_COMMAND_LIST_SUPPORT_FLAG_COMPUTE =
(1 << D3D12_COMMAND_LIST_TYPE_COMPUTE),
D3D12_COMMAND_LIST_SUPPORT_FLAG_COPY = (1 << D3D12_COMMAND_LIST_TYPE_COPY),
D3D12_COMMAND_LIST_SUPPORT_FLAG_VIDEO_DECODE = (1 << 4),
D3D12_COMMAND_LIST_SUPPORT_FLAG_VIDEO_PROCESS = (1 << 5)
} D3D12_COMMAND_LIST_SUPPORT_FLAGS;
typedef enum D3D12_VIEW_INSTANCING_TIER {
D3D12_VIEW_INSTANCING_TIER_NOT_SUPPORTED = 0,
D3D12_VIEW_INSTANCING_TIER_1 = 1,
D3D12_VIEW_INSTANCING_TIER_2 = 2,
D3D12_VIEW_INSTANCING_TIER_3 = 3
} D3D12_VIEW_INSTANCING_TIER;
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS3 {
BOOL CopyQueueTimestampQueriesSupported;
BOOL CastingFullyTypedFormatSupported;
DWORD WriteBufferImmediateSupportFlags;
D3D12_VIEW_INSTANCING_TIER ViewInstancingTier;
BOOL BarycentricsSupported;
} D3D12_FEATURE_DATA_D3D12_OPTIONS3;
#endif
#ifndef NTDDI_WIN10_RS3
#define NTDDI_WIN10_RS3 0x0A000004
#endif
#if WDK_NTDDI_VERSION <= NTDDI_WIN10_RS3
#define D3D12_FEATURE_D3D12_OPTIONS4 ((D3D12_FEATURE)23)
typedef enum D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER {
D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER_0,
D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER_1,
} D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER;
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS4 {
BOOL ReservedBufferPlacementSupported;
D3D12_SHARED_RESOURCE_COMPATIBILITY_TIER SharedResourceCompatibilityTier;
BOOL Native16BitShaderOpsSupported;
} D3D12_FEATURE_DATA_D3D12_OPTIONS4;
#endif
#ifndef NTDDI_WIN10_RS4
#define NTDDI_WIN10_RS4 0x0A000005
#endif
#if WDK_NTDDI_VERSION <= NTDDI_WIN10_RS4
#define D3D12_FEATURE_D3D12_OPTIONS5 ((D3D12_FEATURE)27)
typedef enum D3D12_RENDER_PASS_TIER {
D3D12_RENDER_PASS_TIER_0 = 0,
D3D12_RENDER_PASS_TIER_1 = 1,
D3D12_RENDER_PASS_TIER_2 = 2
} D3D12_RENDER_PASS_TIER;
typedef enum D3D12_RAYTRACING_TIER {
D3D12_RAYTRACING_TIER_NOT_SUPPORTED = 0,
D3D12_RAYTRACING_TIER_1_0 = 10 D3D12_RAYTRACING_TIER_1_1 = 11
} D3D12_RAYTRACING_TIER;
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS5 {
BOOL SRVOnlyTiledResourceTier3;
D3D12_RENDER_PASS_TIER RenderPassesTier;
D3D12_RAYTRACING_TIER RaytracingTier;
} D3D12_FEATURE_DATA_D3D12_OPTIONS5;
#endif
#ifndef NTDDI_WIN10_VB
#define NTDDI_WIN10_VB 0x0A000008
#endif
#if WDK_NTDDI_VERSION < NTDDI_WIN10_VB
#define D3D12_FEATURE_D3D12_OPTIONS7 ((D3D12_FEATURE)32)
typedef enum D3D12_MESH_SHADER_TIER {
D3D12_MESH_SHADER_TIER_NOT_SUPPORTED = 0,
D3D12_MESH_SHADER_TIER_1 = 10
} D3D12_MESH_SHADER_TIER;
typedef enum D3D12_SAMPLER_FEEDBACK_TIER {
D3D12_SAMPLER_FEEDBACK_TIER_NOT_SUPPORTED = 0,
D3D12_SAMPLER_FEEDBACK_TIER_0_9 = 90,
D3D12_SAMPLER_FEEDBACK_TIER_1_0 = 100
} D3D12_SAMPLER_FEEDBACK_TIER;
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS7 {
D3D12_MESH_SHADER_TIER MeshShaderTier;
D3D12_SAMPLER_FEEDBACK_TIER SamplerFeedbackTier;
} D3D12_FEATURE_DATA_D3D12_OPTIONS7;
#endif
#ifndef NTDDI_WIN10_FE
#define NTDDI_WIN10_FE 0x0A00000A
#endif
#if WDK_NTDDI_VERSION < NTDDI_WIN10_FE
#define D3D12_FEATURE_D3D12_OPTIONS9 ((D3D12_FEATURE)37)
typedef enum D3D12_WAVE_MMA_TIER {
D3D12_WAVE_MMA_TIER_NOT_SUPPORTED = 0,
D3D12_WAVE_MMA_TIER_1_0 = 10
} D3D12_WAVE_MMA_TIER;
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS9 {
BOOL MeshShaderPipelineStatsSupported;
BOOL MeshShaderSupportsFullRangeRenderTargetArrayIndex;
BOOL AtomicInt64OnTypedResourceSupported;
BOOL AtomicInt64OnGroupSharedSupported;
BOOL DerivativesInMeshAndAmplificationShadersSupported;
D3D12_WAVE_MMA_TIER WaveMMATier;
} D3D12_FEATURE_DATA_D3D12_OPTIONS9;
#endif
#ifndef NTDDI_WIN10_NI
#define NTDDI_WIN10_NI 0x0A00000C
#endif
#if WDK_NTDDI_VERSION <= NTDDI_WIN10_NI
#define D3D12_FEATURE_D3D12_OPTIONS14 ((D3D12_FEATURE)43)
typedef struct D3D12_FEATURE_DATA_D3D12_OPTIONS14 {
BOOL AdvancedTextureOpsSupported;
BOOL WriteableMSAATexturesSupported;
BOOL IndependentFrontAndBackStencilRefMaskSupported;
} D3D12_FEATURE_DATA_D3D12_OPTIONS14;
#endif
#pragma warning(disable : 4063)
#define D3D12_RAYTRACING_TIER_1_1 ((D3D12_RAYTRACING_TIER)11)
#define D3D_SHADER_MODEL_6_1 ((D3D_SHADER_MODEL)0x61)
#define D3D_SHADER_MODEL_6_2 ((D3D_SHADER_MODEL)0x62)
#define D3D_SHADER_MODEL_6_3 ((D3D_SHADER_MODEL)0x63)
#define D3D_SHADER_MODEL_6_4 ((D3D_SHADER_MODEL)0x64)
#define D3D_SHADER_MODEL_6_5 ((D3D_SHADER_MODEL)0x65)
#define D3D_SHADER_MODEL_6_6 ((D3D_SHADER_MODEL)0x66)
#define D3D_SHADER_MODEL_6_7 ((D3D_SHADER_MODEL)0x67)
#define D3D_SHADER_MODEL_6_8 ((D3D_SHADER_MODEL)0x68)
#define DXEXP_HIGHEST_SHADER_MODEL D3D_SHADER_MODEL_6_8
static const char *BoolToStrJson(bool value) {
return value ? "true" : "false";
}
static const char *BoolToStrText(bool value) { return value ? "YES" : "NO"; }
static const char *(*BoolToStr)(bool value);
static bool IsOutputJson;
#define json_printf(...) \
if (IsOutputJson) { \
printf(__VA_ARGS__); \
}
#define text_printf(...) \
if (!IsOutputJson) { \
printf(__VA_ARGS__); \
}
static const char *ShaderModelToStr(D3D_SHADER_MODEL SM) {
switch ((UINT32)SM) {
case D3D_SHADER_MODEL_5_1:
return "5.1";
case D3D_SHADER_MODEL_6_0:
return "6.0";
case D3D_SHADER_MODEL_6_1:
return "6.1";
case D3D_SHADER_MODEL_6_2:
return "6.2";
case D3D_SHADER_MODEL_6_3:
return "6.3";
case D3D_SHADER_MODEL_6_4:
return "6.4";
case D3D_SHADER_MODEL_6_5:
return "6.5";
case D3D_SHADER_MODEL_6_6:
return "6.6";
case D3D_SHADER_MODEL_6_7:
return "6.7";
case D3D_SHADER_MODEL_6_8:
return "6.8";
default:
return "ERROR";
}
}
static const char *ViewInstancingTierToStr(D3D12_VIEW_INSTANCING_TIER Tier) {
switch (Tier) {
case D3D12_VIEW_INSTANCING_TIER_NOT_SUPPORTED:
return "NO";
case D3D12_VIEW_INSTANCING_TIER_1:
return "Tier1";
case D3D12_VIEW_INSTANCING_TIER_2:
return "Tier2";
case D3D12_VIEW_INSTANCING_TIER_3:
return "Tier3";
default:
return "ERROR";
}
}
static const char *RaytracingTierToStr(D3D12_RAYTRACING_TIER Tier) {
switch (Tier) {
case D3D12_RAYTRACING_TIER_NOT_SUPPORTED:
return "NO";
case D3D12_RAYTRACING_TIER_1_0:
return "1.0";
case D3D12_RAYTRACING_TIER_1_1:
return "1.1";
default:
return "ERROR";
}
}
static const char *MeshShaderTierToStr(D3D12_MESH_SHADER_TIER Tier) {
switch (Tier) {
case D3D12_MESH_SHADER_TIER_NOT_SUPPORTED:
return "NO";
case D3D12_MESH_SHADER_TIER_1:
return "1";
default:
return "ERROR";
}
}
static const char *WaveMatrixTierToStr(D3D12_WAVE_MMA_TIER Tier) {
switch (Tier) {
case D3D12_WAVE_MMA_TIER_NOT_SUPPORTED:
return "NO";
case D3D12_WAVE_MMA_TIER_1_0:
return "1";
default:
return "ERROR";
}
}
static HRESULT
GetHighestShaderModel(ID3D12Device *pDevice,
D3D12_FEATURE_DATA_SHADER_MODEL &DeviceSM) {
HRESULT hr = E_INVALIDARG;
D3D_SHADER_MODEL SM = DXEXP_HIGHEST_SHADER_MODEL;
while (hr == E_INVALIDARG && SM >= D3D_SHADER_MODEL_6_0) {
DeviceSM.HighestShaderModel = SM;
hr = pDevice->CheckFeatureSupport(D3D12_FEATURE_SHADER_MODEL, &DeviceSM,
sizeof(DeviceSM));
SM = (D3D_SHADER_MODEL)((UINT32)SM - 1);
}
return hr;
}
static HRESULT PrintAdapters() {
HRESULT hr = S_OK;
char comma = ' ';
json_printf("{ \"adapters\" : [\n");
try {
CComPtr<IDXGIFactory2> pFactory;
AtlCheck(CreateDXGIFactory2(0, IID_PPV_ARGS(&pFactory)));
UINT AdapterIndex = 0;
for (;;) {
CComPtr<IDXGIAdapter1> pAdapter;
CComPtr<ID3D12Device> pDevice;
HRESULT hrEnum = pFactory->EnumAdapters1(AdapterIndex, &pAdapter);
if (hrEnum == DXGI_ERROR_NOT_FOUND)
break;
AtlCheck(hrEnum);
DXGI_ADAPTER_DESC1 AdapterDesc;
D3D12_FEATURE_DATA_D3D12_OPTIONS1 DeviceOptions;
D3D12_FEATURE_DATA_D3D12_OPTIONS3 DeviceOptions3;
D3D12_FEATURE_DATA_D3D12_OPTIONS4 DeviceOptions4;
D3D12_FEATURE_DATA_D3D12_OPTIONS5 DeviceOptions5;
D3D12_FEATURE_DATA_D3D12_OPTIONS7 DeviceOptions7;
D3D12_FEATURE_DATA_D3D12_OPTIONS9 DeviceOptions9;
D3D12_FEATURE_DATA_D3D12_OPTIONS14 DeviceOptions14;
memset(&DeviceOptions, 0, sizeof(DeviceOptions));
memset(&DeviceOptions3, 0, sizeof(DeviceOptions3));
memset(&DeviceOptions4, 0, sizeof(DeviceOptions4));
memset(&DeviceOptions5, 0, sizeof(DeviceOptions5));
memset(&DeviceOptions7, 0, sizeof(DeviceOptions7));
memset(&DeviceOptions9, 0, sizeof(DeviceOptions9));
memset(&DeviceOptions14, 0, sizeof(DeviceOptions14));
D3D12_FEATURE_DATA_SHADER_MODEL DeviceSM;
AtlCheck(pAdapter->GetDesc1(&AdapterDesc));
AtlCheck(D3D12CreateDevice(pAdapter, D3D_FEATURE_LEVEL_11_0,
IID_PPV_ARGS(&pDevice)));
AtlCheck(pDevice->CheckFeatureSupport(
D3D12_FEATURE_D3D12_OPTIONS1, &DeviceOptions, sizeof(DeviceOptions)));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS3,
&DeviceOptions3, sizeof(DeviceOptions3));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS4,
&DeviceOptions4, sizeof(DeviceOptions4));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS5,
&DeviceOptions5, sizeof(DeviceOptions5));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS7,
&DeviceOptions7, sizeof(DeviceOptions7));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS9,
&DeviceOptions9, sizeof(DeviceOptions9));
pDevice->CheckFeatureSupport(D3D12_FEATURE_D3D12_OPTIONS14,
&DeviceOptions14, sizeof(DeviceOptions14));
AtlCheck(GetHighestShaderModel(pDevice, DeviceSM));
const char *Format =
IsOutputJson
? "%c { \"name\": \"%S\", \"sm\": \"%s\", \"wave\": %s, \"i64\": "
"%s, \"bary\": %s, \"view-inst\": \"%s\", \"16bit\": %s, "
"\"raytracing\": \"%s\", \"mesh\": \"%s\", \"deriv-ms-as\": "
"\"%s\", \"wave-matrix\" : \"%s\", \"ato\":\"%s\" }\n"
: "%c %S - Highest SM [%s] Wave [%s] I64 [%s] Barycentrics [%s] "
"View Instancing [%s] 16bit Support [%s] Raytracing [%s] "
"Mesh Shaders [%s] Derivatives in Mesh/Amp Shaders [%s] "
"Wave Matrix [%s] Advanced Texture Ops [%s]\n";
printf(
Format, comma, AdapterDesc.Description,
ShaderModelToStr(DeviceSM.HighestShaderModel),
BoolToStr(DeviceOptions.WaveOps),
BoolToStr(DeviceOptions.Int64ShaderOps),
BoolToStr(DeviceOptions3.BarycentricsSupported),
ViewInstancingTierToStr(DeviceOptions3.ViewInstancingTier),
BoolToStr(DeviceOptions4.Native16BitShaderOpsSupported),
RaytracingTierToStr(DeviceOptions5.RaytracingTier),
MeshShaderTierToStr(DeviceOptions7.MeshShaderTier),
BoolToStr(
DeviceOptions9.DerivativesInMeshAndAmplificationShadersSupported),
WaveMatrixTierToStr(DeviceOptions9.WaveMMATier),
BoolToStr(DeviceOptions14.AdvancedTextureOpsSupported));
AdapterIndex++;
comma = IsOutputJson ? ',' : ' ';
}
} catch (ATL::CAtlException &e) {
hr = e.m_hr;
json_printf("%c { \"err\": \"unable to print information for adapters - "
"0x%08x\" }\n",
comma, (unsigned int)hr);
text_printf("%s", "Unable to print information for adapters.\n");
}
json_printf(" ] }\n");
return hr;
}
// Return codes:
// 0 - experimental mode worked
// 1 - cannot load d3d12.dll
// 2 - cannot find D3D12EnableExperimentalFeatures
// 3 - experimental shader mode interface unsupported
// 4 - other error
int main(int argc, const char *argv[]) {
BoolToStr = BoolToStrText;
IsOutputJson = false;
if (argc > 1) {
const char *pArg = argv[1];
if (0 == strcmp(pArg, "-?") || 0 == strcmp(pArg, "--?") ||
0 == strcmp(pArg, "/?")) {
printf("Checks the available of D3D support for experimental shader "
"models.\n\n");
printf("dxexp [-json]\n\n");
printf("Sets errorlevel to 0 on success, non-zero for failure cases.\n");
return 4;
} else if (0 == strcmp(pArg, "-json") || 0 == strcmp(pArg, "/json")) {
IsOutputJson = true;
BoolToStr = BoolToStrJson;
} else {
printf("Unrecognized command line arguments.\n");
return 4;
}
}
DWORD err;
HMODULE hRuntime;
hRuntime = LoadLibraryW(L"d3d12.dll");
if (hRuntime == NULL) {
err = GetLastError();
printf("Failed to load library d3d12.dll - Win32 error %u\n",
(unsigned int)err);
return 1;
}
json_printf("{ \"noexp\":\n");
text_printf(
"Adapter feature support without experimental shaders enabled:\n");
if (FAILED(PrintAdapters())) {
return 4;
}
FreeLibrary(hRuntime);
json_printf(" , \"exp\":");
text_printf(
"-------------------------------------------------------------\n");
hRuntime = LoadLibraryW(L"d3d12.dll");
if (hRuntime == NULL) {
err = GetLastError();
printf("Failed to load library d3d12.dll - Win32 error %u\n",
(unsigned int)err);
return 1;
}
D3D12EnableExperimentalFeaturesFn pD3D12EnableExperimentalFeatures =
(D3D12EnableExperimentalFeaturesFn)GetProcAddress(
hRuntime, "D3D12EnableExperimentalFeatures");
if (pD3D12EnableExperimentalFeatures == nullptr) {
err = GetLastError();
printf("Failed to find export 'D3D12EnableExperimentalFeatures' in "
"d3d12.dll - Win32 error %u%s\n",
(unsigned int)err,
err == ERROR_PROC_NOT_FOUND
? " (The specified procedure could not be found.)"
: "");
printf("Consider verifying the operating system version - Creators Update "
"or newer "
"is currently required.\n");
PrintAdapters();
return 2;
}
HRESULT hr = pD3D12EnableExperimentalFeatures(
1, &D3D12ExperimentalShaderModelsID, nullptr, nullptr);
if (SUCCEEDED(hr)) {
text_printf("Experimental shader model feature succeeded.\n");
hr = PrintAdapters();
json_printf("\n}\n");
return (SUCCEEDED(hr)) ? 0 : 4;
} else if (hr == E_NOINTERFACE) {
text_printf(
"Experimental shader model feature failed with error E_NOINTERFACE.\n");
text_printf(
"The most likely cause is that Windows Developer mode is not on.\n");
text_printf("See "
"https://msdn.microsoft.com/en-us/windows/uwp/get-started/"
"enable-your-device-for-development\n");
json_printf("{ \"err\": \"E_NOINTERFACE\" }");
json_printf("\n}\n");
return 3;
} else if (hr == E_INVALIDARG) {
text_printf(
"Experimental shader model feature failed with error E_INVALIDARG.\n");
text_printf("This means the configuration of a feature is incorrect, the "
"set of features passed\n"
"in are known to be incompatible with each other, or other "
"errors occured,\n"
"and is generally unexpected for the experimental shader model "
"feature.\n");
json_printf("{ \"err\": \"E_INVALIDARG\" }");
json_printf("\n}\n");
return 4;
} else {
text_printf("Experimental shader model feature failed with unexpected "
"HRESULT 0x%08x.\n",
(unsigned int)hr);
json_printf("{ \"err\": \"0x%08x\" }", (unsigned int)hr);
json_printf("\n}\n");
return 4;
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/dxexp/CMakeLists.txt | # Copyright (C) Microsoft Corporation. All rights reserved.
# This file is distributed under the University of Illinois Open Source License. See LICENSE.TXT for details.
add_llvm_tool(dxexp
dxexp.cpp
)
find_package(D3D12 REQUIRED)
target_link_libraries(dxexp
${D3D12_LIBRARIES}
dxguid.lib
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/dxexp/LLVMBuild.txt | ; Copyright (C) Microsoft Corporation. All rights reserved.
; This file is distributed under the University of Illinois Open Source License. See LICENSE.TXT for details.
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = dxexp
parent = Tools
required_libraries =
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/RenderingSupport.h | //===- RenderingSupport.h - output stream rendering support functions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_RENDERINGSUPPORT_H
#define LLVM_COV_RENDERINGSUPPORT_H
#include "llvm/Support/raw_ostream.h"
#include <utility>
namespace llvm {
/// \brief A helper class that resets the output stream's color if needed
/// when destroyed.
class ColoredRawOstream {
ColoredRawOstream(const ColoredRawOstream &OS) = delete;
public:
raw_ostream &OS;
bool IsColorUsed;
ColoredRawOstream(raw_ostream &OS, bool IsColorUsed)
: OS(OS), IsColorUsed(IsColorUsed) {}
ColoredRawOstream(ColoredRawOstream &&Other)
: OS(Other.OS), IsColorUsed(Other.IsColorUsed) {
// Reset the other IsColorUsed so that the other object won't reset the
// color when destroyed.
Other.IsColorUsed = false;
}
~ColoredRawOstream() {
if (IsColorUsed)
OS.resetColor();
}
};
template <typename T>
inline raw_ostream &operator<<(const ColoredRawOstream &OS, T &&Value) {
return OS.OS << std::forward<T>(Value);
}
/// \brief Change the color of the output stream if the `IsColorUsed` flag
/// is true. Returns an object that resets the color when destroyed.
inline ColoredRawOstream colored_ostream(raw_ostream &OS,
raw_ostream::Colors Color,
bool IsColorUsed = true,
bool Bold = false, bool BG = false) {
if (IsColorUsed)
OS.changeColor(Color, Bold, BG);
return ColoredRawOstream(OS, IsColorUsed);
}
}
#endif // LLVM_COV_RENDERINGSUPPORT_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/SourceCoverageView.h | //===- SourceCoverageView.h - Code coverage view for source code ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements rendering for code coverage of source code.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_SOURCECOVERAGEVIEW_H
#define LLVM_COV_SOURCECOVERAGEVIEW_H
#include "CoverageViewOptions.h"
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/Support/MemoryBuffer.h"
#include <vector>
namespace llvm {
class SourceCoverageView;
/// \brief A view that represents a macro or include expansion
struct ExpansionView {
coverage::CounterMappingRegion Region;
std::unique_ptr<SourceCoverageView> View;
ExpansionView(const coverage::CounterMappingRegion &Region,
std::unique_ptr<SourceCoverageView> View)
: Region(Region), View(std::move(View)) {}
ExpansionView(ExpansionView &&RHS)
: Region(std::move(RHS.Region)), View(std::move(RHS.View)) {}
ExpansionView &operator=(ExpansionView &&RHS) {
Region = std::move(RHS.Region);
View = std::move(RHS.View);
return *this;
}
unsigned getLine() const { return Region.LineStart; }
unsigned getStartCol() const { return Region.ColumnStart; }
unsigned getEndCol() const { return Region.ColumnEnd; }
friend bool operator<(const ExpansionView &LHS, const ExpansionView &RHS) {
return LHS.Region.startLoc() < RHS.Region.startLoc();
}
};
/// \brief A view that represents a function instantiation
struct InstantiationView {
StringRef FunctionName;
unsigned Line;
std::unique_ptr<SourceCoverageView> View;
InstantiationView(StringRef FunctionName, unsigned Line,
std::unique_ptr<SourceCoverageView> View)
: FunctionName(FunctionName), Line(Line), View(std::move(View)) {}
InstantiationView(InstantiationView &&RHS)
: FunctionName(std::move(RHS.FunctionName)), Line(std::move(RHS.Line)),
View(std::move(RHS.View)) {}
InstantiationView &operator=(InstantiationView &&RHS) {
FunctionName = std::move(RHS.FunctionName);
Line = std::move(RHS.Line);
View = std::move(RHS.View);
return *this;
}
friend bool operator<(const InstantiationView &LHS,
const InstantiationView &RHS) {
return LHS.Line < RHS.Line;
}
};
/// \brief A code coverage view of a specific source file.
/// It can have embedded coverage views.
class SourceCoverageView {
private:
/// \brief Coverage information for a single line.
struct LineCoverageInfo {
uint64_t ExecutionCount;
unsigned RegionCount;
bool Mapped;
LineCoverageInfo() : ExecutionCount(0), RegionCount(0), Mapped(false) {}
bool isMapped() const { return Mapped; }
bool hasMultipleRegions() const { return RegionCount > 1; }
void addRegionStartCount(uint64_t Count) {
// The max of all region starts is the most interesting value.
addRegionCount(RegionCount ? std::max(ExecutionCount, Count) : Count);
++RegionCount;
}
void addRegionCount(uint64_t Count) {
Mapped = true;
ExecutionCount = Count;
}
};
const MemoryBuffer &File;
const CoverageViewOptions &Options;
coverage::CoverageData CoverageInfo;
std::vector<ExpansionView> ExpansionSubViews;
std::vector<InstantiationView> InstantiationSubViews;
/// \brief Render a source line with highlighting.
void renderLine(raw_ostream &OS, StringRef Line, int64_t LineNumber,
const coverage::CoverageSegment *WrappedSegment,
ArrayRef<const coverage::CoverageSegment *> Segments,
unsigned ExpansionCol);
void renderIndent(raw_ostream &OS, unsigned Level);
void renderViewDivider(unsigned Offset, unsigned Length, raw_ostream &OS);
/// \brief Render the line's execution count column.
void renderLineCoverageColumn(raw_ostream &OS, const LineCoverageInfo &Line);
/// \brief Render the line number column.
void renderLineNumberColumn(raw_ostream &OS, unsigned LineNo);
/// \brief Render all the region's execution counts on a line.
void
renderRegionMarkers(raw_ostream &OS,
ArrayRef<const coverage::CoverageSegment *> Segments);
static const unsigned LineCoverageColumnWidth = 7;
static const unsigned LineNumberColumnWidth = 5;
public:
SourceCoverageView(const MemoryBuffer &File,
const CoverageViewOptions &Options,
coverage::CoverageData &&CoverageInfo)
: File(File), Options(Options), CoverageInfo(std::move(CoverageInfo)) {}
const CoverageViewOptions &getOptions() const { return Options; }
/// \brief Add an expansion subview to this view.
void addExpansion(const coverage::CounterMappingRegion &Region,
std::unique_ptr<SourceCoverageView> View) {
ExpansionSubViews.emplace_back(Region, std::move(View));
}
/// \brief Add a function instantiation subview to this view.
void addInstantiation(StringRef FunctionName, unsigned Line,
std::unique_ptr<SourceCoverageView> View) {
InstantiationSubViews.emplace_back(FunctionName, Line, std::move(View));
}
/// \brief Print the code coverage information for a specific
/// portion of a source file to the output stream.
void render(raw_ostream &OS, bool WholeFile, unsigned IndentLevel = 0);
};
} // namespace llvm
#endif // LLVM_COV_SOURCECOVERAGEVIEW_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageSummaryInfo.h | //===- CoverageSummaryInfo.h - Coverage summary for function/file ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These structures are used to represent code coverage metrics
// for functions/files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_COVERAGESUMMARYINFO_H
#define LLVM_COV_COVERAGESUMMARYINFO_H
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
/// \brief Provides information about region coverage for a function/file.
struct RegionCoverageInfo {
/// \brief The number of regions that were executed at least once.
size_t Covered;
/// \brief The number of regions that weren't executed.
size_t NotCovered;
/// \brief The total number of regions in a function/file.
size_t NumRegions;
RegionCoverageInfo() : Covered(0), NotCovered(0), NumRegions(0) {}
RegionCoverageInfo(size_t Covered, size_t NumRegions)
: Covered(Covered), NotCovered(NumRegions - Covered),
NumRegions(NumRegions) {}
RegionCoverageInfo &operator+=(const RegionCoverageInfo &RHS) {
Covered += RHS.Covered;
NotCovered += RHS.NotCovered;
NumRegions += RHS.NumRegions;
return *this;
}
bool isFullyCovered() const { return Covered == NumRegions; }
double getPercentCovered() const {
return double(Covered) / double(NumRegions) * 100.0;
}
};
/// \brief Provides information about line coverage for a function/file.
struct LineCoverageInfo {
/// \brief The number of lines that were executed at least once.
size_t Covered;
/// \brief The number of lines that weren't executed.
size_t NotCovered;
/// \brief The number of lines that aren't code.
size_t NonCodeLines;
/// \brief The total number of lines in a function/file.
size_t NumLines;
LineCoverageInfo()
: Covered(0), NotCovered(0), NonCodeLines(0), NumLines(0) {}
LineCoverageInfo(size_t Covered, size_t NumNonCodeLines, size_t NumLines)
: Covered(Covered), NotCovered(NumLines - NumNonCodeLines - Covered),
NonCodeLines(NumNonCodeLines), NumLines(NumLines) {}
LineCoverageInfo &operator+=(const LineCoverageInfo &RHS) {
Covered += RHS.Covered;
NotCovered += RHS.NotCovered;
NonCodeLines += RHS.NonCodeLines;
NumLines += RHS.NumLines;
return *this;
}
bool isFullyCovered() const { return Covered == (NumLines - NonCodeLines); }
double getPercentCovered() const {
return double(Covered) / double(NumLines - NonCodeLines) * 100.0;
}
};
/// \brief Provides information about function coverage for a file.
struct FunctionCoverageInfo {
/// \brief The number of functions that were executed.
size_t Executed;
/// \brief The total number of functions in this file.
size_t NumFunctions;
FunctionCoverageInfo() : Executed(0), NumFunctions(0) {}
FunctionCoverageInfo(size_t Executed, size_t NumFunctions)
: Executed(Executed), NumFunctions(NumFunctions) {}
void addFunction(bool Covered) {
if (Covered)
++Executed;
++NumFunctions;
}
bool isFullyCovered() const { return Executed == NumFunctions; }
double getPercentCovered() const {
return double(Executed) / double(NumFunctions) * 100.0;
}
};
/// \brief A summary of function's code coverage.
struct FunctionCoverageSummary {
StringRef Name;
uint64_t ExecutionCount;
RegionCoverageInfo RegionCoverage;
LineCoverageInfo LineCoverage;
FunctionCoverageSummary(StringRef Name) : Name(Name), ExecutionCount(0) {}
FunctionCoverageSummary(StringRef Name, uint64_t ExecutionCount,
const RegionCoverageInfo &RegionCoverage,
const LineCoverageInfo &LineCoverage)
: Name(Name), ExecutionCount(ExecutionCount),
RegionCoverage(RegionCoverage), LineCoverage(LineCoverage) {
}
/// \brief Compute the code coverage summary for the given function coverage
/// mapping record.
static FunctionCoverageSummary
get(const coverage::FunctionRecord &Function);
};
/// \brief A summary of file's code coverage.
struct FileCoverageSummary {
StringRef Name;
RegionCoverageInfo RegionCoverage;
LineCoverageInfo LineCoverage;
FunctionCoverageInfo FunctionCoverage;
FileCoverageSummary(StringRef Name) : Name(Name) {}
void addFunction(const FunctionCoverageSummary &Function) {
RegionCoverage += Function.RegionCoverage;
LineCoverage += Function.LineCoverage;
FunctionCoverage.addFunction(/*Covered=*/Function.ExecutionCount > 0);
}
};
} // namespace llvm
#endif // LLVM_COV_COVERAGESUMMARYINFO_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/SourceCoverageView.cpp | //===- SourceCoverageView.cpp - Code coverage view for source code --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements rendering for code coverage of source code.
//
//===----------------------------------------------------------------------===//
#include "SourceCoverageView.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/LineIterator.h"
using namespace llvm;
void SourceCoverageView::renderLine(
raw_ostream &OS, StringRef Line, int64_t LineNumber,
const coverage::CoverageSegment *WrappedSegment,
ArrayRef<const coverage::CoverageSegment *> Segments,
unsigned ExpansionCol) {
Optional<raw_ostream::Colors> Highlight;
SmallVector<std::pair<unsigned, unsigned>, 2> HighlightedRanges;
// The first segment overlaps from a previous line, so we treat it specially.
if (WrappedSegment && WrappedSegment->HasCount && WrappedSegment->Count == 0)
Highlight = raw_ostream::RED;
// Output each segment of the line, possibly highlighted.
unsigned Col = 1;
for (const auto *S : Segments) {
unsigned End = std::min(S->Col, static_cast<unsigned>(Line.size()) + 1);
colored_ostream(OS, Highlight ? *Highlight : raw_ostream::SAVEDCOLOR,
Options.Colors && Highlight, /*Bold=*/false, /*BG=*/true)
<< Line.substr(Col - 1, End - Col);
if (Options.Debug && Highlight)
HighlightedRanges.push_back(std::make_pair(Col, End));
Col = End;
if (Col == ExpansionCol)
Highlight = raw_ostream::CYAN;
else if (S->HasCount && S->Count == 0)
Highlight = raw_ostream::RED;
else
Highlight = None;
}
// Show the rest of the line
colored_ostream(OS, Highlight ? *Highlight : raw_ostream::SAVEDCOLOR,
Options.Colors && Highlight, /*Bold=*/false, /*BG=*/true)
<< Line.substr(Col - 1, Line.size() - Col + 1);
OS << "\n";
if (Options.Debug) {
for (const auto &Range : HighlightedRanges)
errs() << "Highlighted line " << LineNumber << ", " << Range.first
<< " -> " << Range.second << "\n";
if (Highlight)
errs() << "Highlighted line " << LineNumber << ", " << Col << " -> ?\n";
}
}
void SourceCoverageView::renderIndent(raw_ostream &OS, unsigned Level) {
for (unsigned I = 0; I < Level; ++I)
OS << " |";
}
void SourceCoverageView::renderViewDivider(unsigned Level, unsigned Length,
raw_ostream &OS) {
assert(Level != 0 && "Cannot render divider at top level");
renderIndent(OS, Level - 1);
OS.indent(2);
for (unsigned I = 0; I < Length; ++I)
OS << "-";
}
/// Format a count using engineering notation with 3 significant digits.
static std::string formatCount(uint64_t N) {
std::string Number = utostr(N);
int Len = Number.size();
if (Len <= 3)
return Number;
int IntLen = Len % 3 == 0 ? 3 : Len % 3;
std::string Result(Number.data(), IntLen);
if (IntLen != 3) {
Result.push_back('.');
Result += Number.substr(IntLen, 3 - IntLen);
}
Result.push_back(" kMGTPEZY"[(Len - 1) / 3]);
return Result;
}
void
SourceCoverageView::renderLineCoverageColumn(raw_ostream &OS,
const LineCoverageInfo &Line) {
if (!Line.isMapped()) {
OS.indent(LineCoverageColumnWidth) << '|';
return;
}
std::string C = formatCount(Line.ExecutionCount);
OS.indent(LineCoverageColumnWidth - C.size());
colored_ostream(OS, raw_ostream::MAGENTA,
Line.hasMultipleRegions() && Options.Colors)
<< C;
OS << '|';
}
void SourceCoverageView::renderLineNumberColumn(raw_ostream &OS,
unsigned LineNo) {
SmallString<32> Buffer;
raw_svector_ostream BufferOS(Buffer);
BufferOS << LineNo;
auto Str = BufferOS.str();
// Trim and align to the right
Str = Str.substr(0, std::min(Str.size(), (size_t)LineNumberColumnWidth));
OS.indent(LineNumberColumnWidth - Str.size()) << Str << '|';
}
void SourceCoverageView::renderRegionMarkers(
raw_ostream &OS, ArrayRef<const coverage::CoverageSegment *> Segments) {
unsigned PrevColumn = 1;
for (const auto *S : Segments) {
if (!S->IsRegionEntry)
continue;
// Skip to the new region
if (S->Col > PrevColumn)
OS.indent(S->Col - PrevColumn);
PrevColumn = S->Col + 1;
std::string C = formatCount(S->Count);
PrevColumn += C.size();
OS << '^' << C;
}
OS << "\n";
if (Options.Debug)
for (const auto *S : Segments)
errs() << "Marker at " << S->Line << ":" << S->Col << " = "
<< formatCount(S->Count) << (S->IsRegionEntry ? "\n" : " (pop)\n");
}
void SourceCoverageView::render(raw_ostream &OS, bool WholeFile,
unsigned IndentLevel) {
// The width of the leading columns
unsigned CombinedColumnWidth =
(Options.ShowLineStats ? LineCoverageColumnWidth + 1 : 0) +
(Options.ShowLineNumbers ? LineNumberColumnWidth + 1 : 0);
// The width of the line that is used to divide between the view and the
// subviews.
unsigned DividerWidth = CombinedColumnWidth + 4;
// We need the expansions and instantiations sorted so we can go through them
// while we iterate lines.
std::sort(ExpansionSubViews.begin(), ExpansionSubViews.end());
std::sort(InstantiationSubViews.begin(), InstantiationSubViews.end());
auto NextESV = ExpansionSubViews.begin();
auto EndESV = ExpansionSubViews.end();
auto NextISV = InstantiationSubViews.begin();
auto EndISV = InstantiationSubViews.end();
// Get the coverage information for the file.
auto NextSegment = CoverageInfo.begin();
auto EndSegment = CoverageInfo.end();
unsigned FirstLine = NextSegment != EndSegment ? NextSegment->Line : 0;
const coverage::CoverageSegment *WrappedSegment = nullptr;
SmallVector<const coverage::CoverageSegment *, 8> LineSegments;
for (line_iterator LI(File, /*SkipBlanks=*/false); !LI.is_at_eof(); ++LI) {
// If we aren't rendering the whole file, we need to filter out the prologue
// and epilogue.
if (!WholeFile) {
if (NextSegment == EndSegment)
break;
else if (LI.line_number() < FirstLine)
continue;
}
// Collect the coverage information relevant to this line.
if (LineSegments.size())
WrappedSegment = LineSegments.back();
LineSegments.clear();
while (NextSegment != EndSegment && NextSegment->Line == LI.line_number())
LineSegments.push_back(&*NextSegment++);
// Calculate a count to be for the line as a whole.
LineCoverageInfo LineCount;
if (WrappedSegment && WrappedSegment->HasCount)
LineCount.addRegionCount(WrappedSegment->Count);
for (const auto *S : LineSegments)
if (S->HasCount && S->IsRegionEntry)
LineCount.addRegionStartCount(S->Count);
// Render the line prefix.
renderIndent(OS, IndentLevel);
if (Options.ShowLineStats)
renderLineCoverageColumn(OS, LineCount);
if (Options.ShowLineNumbers)
renderLineNumberColumn(OS, LI.line_number());
// If there are expansion subviews, we want to highlight the first one.
unsigned ExpansionColumn = 0;
if (NextESV != EndESV && NextESV->getLine() == LI.line_number() &&
Options.Colors)
ExpansionColumn = NextESV->getStartCol();
// Display the source code for the current line.
renderLine(OS, *LI, LI.line_number(), WrappedSegment, LineSegments,
ExpansionColumn);
// Show the region markers.
if (Options.ShowRegionMarkers && (!Options.ShowLineStatsOrRegionMarkers ||
LineCount.hasMultipleRegions()) &&
!LineSegments.empty()) {
renderIndent(OS, IndentLevel);
OS.indent(CombinedColumnWidth);
renderRegionMarkers(OS, LineSegments);
}
// Show the expansions and instantiations for this line.
unsigned NestedIndent = IndentLevel + 1;
bool RenderedSubView = false;
for (; NextESV != EndESV && NextESV->getLine() == LI.line_number();
++NextESV) {
renderViewDivider(NestedIndent, DividerWidth, OS);
OS << "\n";
if (RenderedSubView) {
// Re-render the current line and highlight the expansion range for
// this subview.
ExpansionColumn = NextESV->getStartCol();
renderIndent(OS, IndentLevel);
OS.indent(CombinedColumnWidth + (IndentLevel == 0 ? 0 : 1));
renderLine(OS, *LI, LI.line_number(), WrappedSegment, LineSegments,
ExpansionColumn);
renderViewDivider(NestedIndent, DividerWidth, OS);
OS << "\n";
}
// Render the child subview
if (Options.Debug)
errs() << "Expansion at line " << NextESV->getLine() << ", "
<< NextESV->getStartCol() << " -> " << NextESV->getEndCol()
<< "\n";
NextESV->View->render(OS, false, NestedIndent);
RenderedSubView = true;
}
for (; NextISV != EndISV && NextISV->Line == LI.line_number(); ++NextISV) {
renderViewDivider(NestedIndent, DividerWidth, OS);
OS << "\n";
renderIndent(OS, NestedIndent);
OS << ' ';
Options.colored_ostream(OS, raw_ostream::CYAN) << NextISV->FunctionName
<< ":";
OS << "\n";
NextISV->View->render(OS, false, NestedIndent);
RenderedSubView = true;
}
if (RenderedSubView) {
renderViewDivider(NestedIndent, DividerWidth, OS);
OS << "\n";
}
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/gcov.cpp | //===- gcov.cpp - GCOV compatible LLVM coverage tool ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// llvm-cov is a command line tools to analyze and report coverage information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GCOV.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include <system_error>
using namespace llvm;
static void reportCoverage(StringRef SourceFile, StringRef ObjectDir,
const std::string &InputGCNO,
const std::string &InputGCDA, bool DumpGCOV,
const GCOVOptions &Options) {
SmallString<128> CoverageFileStem(ObjectDir);
if (CoverageFileStem.empty()) {
// If no directory was specified with -o, look next to the source file.
CoverageFileStem = sys::path::parent_path(SourceFile);
sys::path::append(CoverageFileStem, sys::path::stem(SourceFile));
} else if (sys::fs::is_directory(ObjectDir))
// A directory name was given. Use it and the source file name.
sys::path::append(CoverageFileStem, sys::path::stem(SourceFile));
else
// A file was given. Ignore the source file and look next to this file.
sys::path::replace_extension(CoverageFileStem, "");
std::string GCNO = InputGCNO.empty()
? std::string(CoverageFileStem.str()) + ".gcno"
: InputGCNO;
std::string GCDA = InputGCDA.empty()
? std::string(CoverageFileStem.str()) + ".gcda"
: InputGCDA;
GCOVFile GF;
ErrorOr<std::unique_ptr<MemoryBuffer>> GCNO_Buff =
MemoryBuffer::getFileOrSTDIN(GCNO);
if (std::error_code EC = GCNO_Buff.getError()) {
errs() << GCNO << ": " << EC.message() << "\n";
return;
}
GCOVBuffer GCNO_GB(GCNO_Buff.get().get());
if (!GF.readGCNO(GCNO_GB)) {
errs() << "Invalid .gcno File!\n";
return;
}
ErrorOr<std::unique_ptr<MemoryBuffer>> GCDA_Buff =
MemoryBuffer::getFileOrSTDIN(GCDA);
if (std::error_code EC = GCDA_Buff.getError()) {
if (EC != errc::no_such_file_or_directory) {
errs() << GCDA << ": " << EC.message() << "\n";
return;
}
// Clear the filename to make it clear we didn't read anything.
GCDA = "-";
} else {
GCOVBuffer GCDA_GB(GCDA_Buff.get().get());
if (!GF.readGCDA(GCDA_GB)) {
errs() << "Invalid .gcda File!\n";
return;
}
}
if (DumpGCOV)
GF.dump();
FileInfo FI(Options);
GF.collectLineCounts(FI);
FI.print(llvm::outs(), SourceFile, GCNO, GCDA);
}
int gcovMain(int argc, const char *argv[]) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
cl::list<std::string> SourceFiles(cl::Positional, cl::OneOrMore,
cl::desc("SOURCEFILE"));
cl::opt<bool> AllBlocks("a", cl::Grouping, cl::init(false),
cl::desc("Display all basic blocks"));
cl::alias AllBlocksA("all-blocks", cl::aliasopt(AllBlocks));
cl::opt<bool> BranchProb("b", cl::Grouping, cl::init(false),
cl::desc("Display branch probabilities"));
cl::alias BranchProbA("branch-probabilities", cl::aliasopt(BranchProb));
cl::opt<bool> BranchCount("c", cl::Grouping, cl::init(false),
cl::desc("Display branch counts instead "
"of percentages (requires -b)"));
cl::alias BranchCountA("branch-counts", cl::aliasopt(BranchCount));
cl::opt<bool> LongNames("l", cl::Grouping, cl::init(false),
cl::desc("Prefix filenames with the main file"));
cl::alias LongNamesA("long-file-names", cl::aliasopt(LongNames));
cl::opt<bool> FuncSummary("f", cl::Grouping, cl::init(false),
cl::desc("Show coverage for each function"));
cl::alias FuncSummaryA("function-summaries", cl::aliasopt(FuncSummary));
cl::opt<bool> NoOutput("n", cl::Grouping, cl::init(false),
cl::desc("Do not output any .gcov files"));
cl::alias NoOutputA("no-output", cl::aliasopt(NoOutput));
cl::opt<std::string> ObjectDir(
"o", cl::value_desc("DIR|FILE"), cl::init(""),
cl::desc("Find objects in DIR or based on FILE's path"));
cl::alias ObjectDirA("object-directory", cl::aliasopt(ObjectDir));
cl::alias ObjectDirB("object-file", cl::aliasopt(ObjectDir));
cl::opt<bool> PreservePaths("p", cl::Grouping, cl::init(false),
cl::desc("Preserve path components"));
cl::alias PreservePathsA("preserve-paths", cl::aliasopt(PreservePaths));
cl::opt<bool> UncondBranch("u", cl::Grouping, cl::init(false),
cl::desc("Display unconditional branch info "
"(requires -b)"));
cl::alias UncondBranchA("unconditional-branches", cl::aliasopt(UncondBranch));
cl::OptionCategory DebugCat("Internal and debugging options");
cl::opt<bool> DumpGCOV("dump", cl::init(false), cl::cat(DebugCat),
cl::desc("Dump the gcov file to stderr"));
cl::opt<std::string> InputGCNO("gcno", cl::cat(DebugCat), cl::init(""),
cl::desc("Override inferred gcno file"));
cl::opt<std::string> InputGCDA("gcda", cl::cat(DebugCat), cl::init(""),
cl::desc("Override inferred gcda file"));
cl::ParseCommandLineOptions(argc, argv, "LLVM code coverage tool\n");
GCOVOptions Options(AllBlocks, BranchProb, BranchCount, FuncSummary,
PreservePaths, UncondBranch, LongNames, NoOutput);
for (const auto &SourceFile : SourceFiles)
reportCoverage(SourceFile, ObjectDir, InputGCNO, InputGCDA, DumpGCOV,
Options);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageReport.h | //===- CoverageReport.h - Code coverage report ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements rendering of a code coverage report.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_COVERAGEREPORT_H
#define LLVM_COV_COVERAGEREPORT_H
#include "CoverageSummaryInfo.h"
#include "CoverageViewOptions.h"
namespace llvm {
/// \brief Displays the code coverage report.
class CoverageReport {
const CoverageViewOptions &Options;
std::unique_ptr<coverage::CoverageMapping> Coverage;
void render(const FileCoverageSummary &File, raw_ostream &OS);
void render(const FunctionCoverageSummary &Function, raw_ostream &OS);
public:
CoverageReport(const CoverageViewOptions &Options,
std::unique_ptr<coverage::CoverageMapping> Coverage)
: Options(Options), Coverage(std::move(Coverage)) {}
void renderFunctionReports(ArrayRef<std::string> Files, raw_ostream &OS);
void renderFileReports(raw_ostream &OS);
};
}
#endif // LLVM_COV_COVERAGEREPORT_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageViewOptions.h | //===- CoverageViewOptions.h - Code coverage display options -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_COVERAGEVIEWOPTIONS_H
#define LLVM_COV_COVERAGEVIEWOPTIONS_H
#include "RenderingSupport.h"
namespace llvm {
/// \brief The options for displaying the code coverage information.
struct CoverageViewOptions {
bool Debug;
bool Colors;
bool ShowLineNumbers;
bool ShowLineStats;
bool ShowRegionMarkers;
bool ShowLineStatsOrRegionMarkers;
bool ShowExpandedRegions;
bool ShowFunctionInstantiations;
/// \brief Change the output's stream color if the colors are enabled.
ColoredRawOstream colored_ostream(raw_ostream &OS,
raw_ostream::Colors Color) const {
return llvm::colored_ostream(OS, Color, Colors);
}
};
}
#endif // LLVM_COV_COVERAGEVIEWOPTIONS_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CMakeLists.txt | set(LLVM_LINK_COMPONENTS core support object profiledata)
add_llvm_tool(llvm-cov
llvm-cov.cpp
gcov.cpp
CodeCoverage.cpp
CoverageFilters.cpp
CoverageReport.cpp
CoverageSummaryInfo.cpp
SourceCoverageView.cpp
TestingSupport.cpp
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageFilters.h | //===- CoverageFilters.h - Function coverage mapping filters --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes provide filtering for function coverage mapping records.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_COV_COVERAGEFILTERS_H
#define LLVM_COV_COVERAGEFILTERS_H
#include "llvm/ProfileData/CoverageMapping.h"
#include <memory>
#include <vector>
namespace llvm {
/// \brief Matches specific functions that pass the requirement of this filter.
class CoverageFilter {
public:
virtual ~CoverageFilter() {}
/// \brief Return true if the function passes the requirements of this filter.
virtual bool matches(const coverage::FunctionRecord &Function) {
return true;
}
};
/// \brief Matches functions that contain a specific string in their name.
class NameCoverageFilter : public CoverageFilter {
StringRef Name;
public:
NameCoverageFilter(StringRef Name) : Name(Name) {}
bool matches(const coverage::FunctionRecord &Function) override;
};
/// \brief Matches functions whose name matches a certain regular expression.
class NameRegexCoverageFilter : public CoverageFilter {
StringRef Regex;
public:
NameRegexCoverageFilter(StringRef Regex) : Regex(Regex) {}
bool matches(const coverage::FunctionRecord &Function) override;
};
/// \brief Matches numbers that pass a certain threshold.
template <typename T> class StatisticThresholdFilter {
public:
enum Operation { LessThan, GreaterThan };
protected:
Operation Op;
T Threshold;
StatisticThresholdFilter(Operation Op, T Threshold)
: Op(Op), Threshold(Threshold) {}
/// \brief Return true if the given number is less than
/// or greater than the certain threshold.
bool PassesThreshold(T Value) const {
switch (Op) {
case LessThan:
return Value < Threshold;
case GreaterThan:
return Value > Threshold;
}
return false;
}
};
/// \brief Matches functions whose region coverage percentage
/// is above/below a certain percentage.
class RegionCoverageFilter : public CoverageFilter,
public StatisticThresholdFilter<double> {
public:
RegionCoverageFilter(Operation Op, double Threshold)
: StatisticThresholdFilter(Op, Threshold) {}
bool matches(const coverage::FunctionRecord &Function) override;
};
/// \brief Matches functions whose line coverage percentage
/// is above/below a certain percentage.
class LineCoverageFilter : public CoverageFilter,
public StatisticThresholdFilter<double> {
public:
LineCoverageFilter(Operation Op, double Threshold)
: StatisticThresholdFilter(Op, Threshold) {}
bool matches(const coverage::FunctionRecord &Function) override;
};
/// \brief A collection of filters.
/// Matches functions that match any filters contained
/// in an instance of this class.
class CoverageFilters : public CoverageFilter {
protected:
std::vector<std::unique_ptr<CoverageFilter>> Filters;
public:
/// \brief Append a filter to this collection.
void push_back(std::unique_ptr<CoverageFilter> Filter);
bool empty() const { return Filters.empty(); }
bool matches(const coverage::FunctionRecord &Function) override;
};
/// \brief A collection of filters.
/// Matches functions that match all of the filters contained
/// in an instance of this class.
class CoverageFiltersMatchAll : public CoverageFilters {
public:
bool matches(const coverage::FunctionRecord &Function) override;
};
} // namespace llvm
#endif // LLVM_COV_COVERAGEFILTERS_H
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/TestingSupport.cpp | //===- TestingSupport.cpp - Convert objects files into test files --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <system_error>
using namespace llvm;
using namespace object;
int convertForTestingMain(int argc, const char *argv[]) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
cl::opt<std::string> InputSourceFile(cl::Positional, cl::Required,
cl::desc("<Source file>"));
cl::opt<std::string> OutputFilename(
"o", cl::Required,
cl::desc(
"File with the profile data obtained after an instrumented run"));
cl::ParseCommandLineOptions(argc, argv, "LLVM code coverage tool\n");
auto ObjErr = llvm::object::ObjectFile::createObjectFile(InputSourceFile);
if (auto Err = ObjErr.getError()) {
errs() << "error: " << Err.message() << "\n";
return 1;
}
ObjectFile *OF = ObjErr.get().getBinary();
auto BytesInAddress = OF->getBytesInAddress();
if (BytesInAddress != 8) {
errs() << "error: 64 bit binary expected\n";
return 1;
}
// Look for the sections that we are interested in.
int FoundSectionCount = 0;
SectionRef ProfileNames, CoverageMapping;
for (const auto &Section : OF->sections()) {
StringRef Name;
if (Section.getName(Name))
return 1;
if (Name == "__llvm_prf_names") {
ProfileNames = Section;
} else if (Name == "__llvm_covmap") {
CoverageMapping = Section;
} else
continue;
++FoundSectionCount;
}
if (FoundSectionCount != 2)
return 1;
// Get the contents of the given sections.
uint64_t ProfileNamesAddress = ProfileNames.getAddress();
StringRef CoverageMappingData;
StringRef ProfileNamesData;
if (CoverageMapping.getContents(CoverageMappingData) ||
ProfileNames.getContents(ProfileNamesData))
return 1;
int FD;
if (auto Err =
sys::fs::openFileForWrite(OutputFilename, FD, sys::fs::F_None)) {
errs() << "error: " << Err.message() << "\n";
return 1;
}
raw_fd_ostream OS(FD, true);
OS << "llvmcovmtestdata";
encodeULEB128(ProfileNamesData.size(), OS);
encodeULEB128(ProfileNamesAddress, OS);
OS << ProfileNamesData << CoverageMappingData;
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/LLVMBuild.txt | ;===- ./tools/llvm-cov/LLVMBuild.txt ---------------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llvm-cov
parent = Tools
required_libraries = ProfileData Support Instrumentation
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CodeCoverage.cpp | //===- CodeCoverage.cpp - Coverage tool based on profiling instrumentation-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The 'CodeCoverageTool' class implements a command line tool to analyze and
// report coverage information using the profiling instrumentation and code
// coverage mapping.
//
//===----------------------------------------------------------------------===//
#include "RenderingSupport.h"
#include "CoverageFilters.h"
#include "CoverageReport.h"
#include "CoverageViewOptions.h"
#include "SourceCoverageView.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Signals.h"
#include <functional>
#include <system_error>
using namespace llvm;
using namespace coverage;
namespace {
/// \brief The implementation of the coverage tool.
class CodeCoverageTool {
public:
enum Command {
/// \brief The show command.
Show,
/// \brief The report command.
Report
};
/// \brief Print the error message to the error output stream.
void error(const Twine &Message, StringRef Whence = "");
/// \brief Return a memory buffer for the given source file.
ErrorOr<const MemoryBuffer &> getSourceFile(StringRef SourceFile);
/// \brief Create source views for the expansions of the view.
void attachExpansionSubViews(SourceCoverageView &View,
ArrayRef<ExpansionRecord> Expansions,
CoverageMapping &Coverage);
/// \brief Create the source view of a particular function.
std::unique_ptr<SourceCoverageView>
createFunctionView(const FunctionRecord &Function, CoverageMapping &Coverage);
/// \brief Create the main source view of a particular source file.
std::unique_ptr<SourceCoverageView>
createSourceFileView(StringRef SourceFile, CoverageMapping &Coverage);
/// \brief Load the coverage mapping data. Return true if an error occured.
std::unique_ptr<CoverageMapping> load();
int run(Command Cmd, int argc, const char **argv);
typedef std::function<int(int, const char **)> CommandLineParserType;
int show(int argc, const char **argv,
CommandLineParserType commandLineParser);
int report(int argc, const char **argv,
CommandLineParserType commandLineParser);
std::string ObjectFilename;
CoverageViewOptions ViewOpts;
std::string PGOFilename;
CoverageFiltersMatchAll Filters;
std::vector<std::string> SourceFiles;
std::vector<std::pair<std::string, std::unique_ptr<MemoryBuffer>>>
LoadedSourceFiles;
bool CompareFilenamesOnly;
StringMap<std::string> RemappedFilenames;
std::string CoverageArch;
};
}
void CodeCoverageTool::error(const Twine &Message, StringRef Whence) {
errs() << "error: ";
if (!Whence.empty())
errs() << Whence << ": ";
errs() << Message << "\n";
}
ErrorOr<const MemoryBuffer &>
CodeCoverageTool::getSourceFile(StringRef SourceFile) {
// If we've remapped filenames, look up the real location for this file.
if (!RemappedFilenames.empty()) {
auto Loc = RemappedFilenames.find(SourceFile);
if (Loc != RemappedFilenames.end())
SourceFile = Loc->second;
}
for (const auto &Files : LoadedSourceFiles)
if (sys::fs::equivalent(SourceFile, Files.first))
return *Files.second;
auto Buffer = MemoryBuffer::getFile(SourceFile);
if (auto EC = Buffer.getError()) {
error(EC.message(), SourceFile);
return EC;
}
LoadedSourceFiles.emplace_back(SourceFile, std::move(Buffer.get()));
return *LoadedSourceFiles.back().second;
}
void
CodeCoverageTool::attachExpansionSubViews(SourceCoverageView &View,
ArrayRef<ExpansionRecord> Expansions,
CoverageMapping &Coverage) {
if (!ViewOpts.ShowExpandedRegions)
return;
for (const auto &Expansion : Expansions) {
auto ExpansionCoverage = Coverage.getCoverageForExpansion(Expansion);
if (ExpansionCoverage.empty())
continue;
auto SourceBuffer = getSourceFile(ExpansionCoverage.getFilename());
if (!SourceBuffer)
continue;
auto SubViewExpansions = ExpansionCoverage.getExpansions();
auto SubView = llvm::make_unique<SourceCoverageView>(
SourceBuffer.get(), ViewOpts, std::move(ExpansionCoverage));
attachExpansionSubViews(*SubView, SubViewExpansions, Coverage);
View.addExpansion(Expansion.Region, std::move(SubView));
}
}
std::unique_ptr<SourceCoverageView>
CodeCoverageTool::createFunctionView(const FunctionRecord &Function,
CoverageMapping &Coverage) {
auto FunctionCoverage = Coverage.getCoverageForFunction(Function);
if (FunctionCoverage.empty())
return nullptr;
auto SourceBuffer = getSourceFile(FunctionCoverage.getFilename());
if (!SourceBuffer)
return nullptr;
auto Expansions = FunctionCoverage.getExpansions();
auto View = llvm::make_unique<SourceCoverageView>(
SourceBuffer.get(), ViewOpts, std::move(FunctionCoverage));
attachExpansionSubViews(*View, Expansions, Coverage);
return View;
}
std::unique_ptr<SourceCoverageView>
CodeCoverageTool::createSourceFileView(StringRef SourceFile,
CoverageMapping &Coverage) {
auto SourceBuffer = getSourceFile(SourceFile);
if (!SourceBuffer)
return nullptr;
auto FileCoverage = Coverage.getCoverageForFile(SourceFile);
if (FileCoverage.empty())
return nullptr;
auto Expansions = FileCoverage.getExpansions();
auto View = llvm::make_unique<SourceCoverageView>(
SourceBuffer.get(), ViewOpts, std::move(FileCoverage));
attachExpansionSubViews(*View, Expansions, Coverage);
for (auto Function : Coverage.getInstantiations(SourceFile)) {
auto SubViewCoverage = Coverage.getCoverageForFunction(*Function);
auto SubViewExpansions = SubViewCoverage.getExpansions();
auto SubView = llvm::make_unique<SourceCoverageView>(
SourceBuffer.get(), ViewOpts, std::move(SubViewCoverage));
attachExpansionSubViews(*SubView, SubViewExpansions, Coverage);
if (SubView) {
unsigned FileID = Function->CountedRegions.front().FileID;
unsigned Line = 0;
for (const auto &CR : Function->CountedRegions)
if (CR.FileID == FileID)
Line = std::max(CR.LineEnd, Line);
View->addInstantiation(Function->Name, Line, std::move(SubView));
}
}
return View;
}
static bool modifiedTimeGT(StringRef LHS, StringRef RHS) {
sys::fs::file_status Status;
if (sys::fs::status(LHS, Status))
return false;
auto LHSTime = Status.getLastModificationTime();
if (sys::fs::status(RHS, Status))
return false;
auto RHSTime = Status.getLastModificationTime();
return LHSTime > RHSTime;
}
std::unique_ptr<CoverageMapping> CodeCoverageTool::load() {
if (modifiedTimeGT(ObjectFilename, PGOFilename))
errs() << "warning: profile data may be out of date - object is newer\n";
auto CoverageOrErr = CoverageMapping::load(ObjectFilename, PGOFilename,
CoverageArch);
if (std::error_code EC = CoverageOrErr.getError()) {
colored_ostream(errs(), raw_ostream::RED)
<< "error: Failed to load coverage: " << EC.message();
errs() << "\n";
return nullptr;
}
auto Coverage = std::move(CoverageOrErr.get());
unsigned Mismatched = Coverage->getMismatchedCount();
if (Mismatched) {
colored_ostream(errs(), raw_ostream::RED)
<< "warning: " << Mismatched << " functions have mismatched data. ";
errs() << "\n";
}
if (CompareFilenamesOnly) {
auto CoveredFiles = Coverage.get()->getUniqueSourceFiles();
for (auto &SF : SourceFiles) {
StringRef SFBase = sys::path::filename(SF);
for (const auto &CF : CoveredFiles)
if (SFBase == sys::path::filename(CF)) {
RemappedFilenames[CF] = SF;
SF = CF;
break;
}
}
}
return Coverage;
}
int CodeCoverageTool::run(Command Cmd, int argc, const char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
cl::opt<std::string, true> ObjectFilename(
cl::Positional, cl::Required, cl::location(this->ObjectFilename),
cl::desc("Covered executable or object file."));
cl::list<std::string> InputSourceFiles(
cl::Positional, cl::desc("<Source files>"), cl::ZeroOrMore);
cl::opt<std::string, true> PGOFilename(
"instr-profile", cl::Required, cl::location(this->PGOFilename),
cl::desc(
"File with the profile data obtained after an instrumented run"));
cl::opt<std::string> Arch(
"arch", cl::desc("architecture of the coverage mapping binary"));
cl::opt<bool> DebugDump("dump", cl::Optional,
cl::desc("Show internal debug dump"));
cl::opt<bool> FilenameEquivalence(
"filename-equivalence", cl::Optional,
cl::desc("Treat source files as equivalent to paths in the coverage data "
"when the file names match, even if the full paths do not"));
cl::OptionCategory FilteringCategory("Function filtering options");
cl::list<std::string> NameFilters(
"name", cl::Optional,
cl::desc("Show code coverage only for functions with the given name"),
cl::ZeroOrMore, cl::cat(FilteringCategory));
cl::list<std::string> NameRegexFilters(
"name-regex", cl::Optional,
cl::desc("Show code coverage only for functions that match the given "
"regular expression"),
cl::ZeroOrMore, cl::cat(FilteringCategory));
cl::opt<double> RegionCoverageLtFilter(
"region-coverage-lt", cl::Optional,
cl::desc("Show code coverage only for functions with region coverage "
"less than the given threshold"),
cl::cat(FilteringCategory));
cl::opt<double> RegionCoverageGtFilter(
"region-coverage-gt", cl::Optional,
cl::desc("Show code coverage only for functions with region coverage "
"greater than the given threshold"),
cl::cat(FilteringCategory));
cl::opt<double> LineCoverageLtFilter(
"line-coverage-lt", cl::Optional,
cl::desc("Show code coverage only for functions with line coverage less "
"than the given threshold"),
cl::cat(FilteringCategory));
cl::opt<double> LineCoverageGtFilter(
"line-coverage-gt", cl::Optional,
cl::desc("Show code coverage only for functions with line coverage "
"greater than the given threshold"),
cl::cat(FilteringCategory));
cl::opt<cl::boolOrDefault> UseColor(
"use-color", cl::desc("Emit colored output (default=autodetect)"),
cl::init(cl::BOU_UNSET));
auto commandLineParser = [&, this](int argc, const char **argv) -> int {
cl::ParseCommandLineOptions(argc, argv, "LLVM code coverage tool\n");
ViewOpts.Debug = DebugDump;
CompareFilenamesOnly = FilenameEquivalence;
ViewOpts.Colors = UseColor == cl::BOU_UNSET
? sys::Process::StandardOutHasColors()
: UseColor == cl::BOU_TRUE;
// Create the function filters
if (!NameFilters.empty() || !NameRegexFilters.empty()) {
auto NameFilterer = new CoverageFilters;
for (const auto &Name : NameFilters)
NameFilterer->push_back(llvm::make_unique<NameCoverageFilter>(Name));
for (const auto &Regex : NameRegexFilters)
NameFilterer->push_back(
llvm::make_unique<NameRegexCoverageFilter>(Regex));
Filters.push_back(std::unique_ptr<CoverageFilter>(NameFilterer));
}
if (RegionCoverageLtFilter.getNumOccurrences() ||
RegionCoverageGtFilter.getNumOccurrences() ||
LineCoverageLtFilter.getNumOccurrences() ||
LineCoverageGtFilter.getNumOccurrences()) {
auto StatFilterer = new CoverageFilters;
if (RegionCoverageLtFilter.getNumOccurrences())
StatFilterer->push_back(llvm::make_unique<RegionCoverageFilter>(
RegionCoverageFilter::LessThan, RegionCoverageLtFilter));
if (RegionCoverageGtFilter.getNumOccurrences())
StatFilterer->push_back(llvm::make_unique<RegionCoverageFilter>(
RegionCoverageFilter::GreaterThan, RegionCoverageGtFilter));
if (LineCoverageLtFilter.getNumOccurrences())
StatFilterer->push_back(llvm::make_unique<LineCoverageFilter>(
LineCoverageFilter::LessThan, LineCoverageLtFilter));
if (LineCoverageGtFilter.getNumOccurrences())
StatFilterer->push_back(llvm::make_unique<LineCoverageFilter>(
RegionCoverageFilter::GreaterThan, LineCoverageGtFilter));
Filters.push_back(std::unique_ptr<CoverageFilter>(StatFilterer));
}
if (!Arch.empty() &&
Triple(Arch).getArch() == llvm::Triple::ArchType::UnknownArch) {
errs() << "error: Unknown architecture: " << Arch << "\n";
return 1;
}
CoverageArch = Arch;
for (const auto &File : InputSourceFiles) {
SmallString<128> Path(File);
if (!CompareFilenamesOnly)
if (std::error_code EC = sys::fs::make_absolute(Path)) {
errs() << "error: " << File << ": " << EC.message();
return 1;
}
SourceFiles.push_back(Path.str());
}
return 0;
};
switch (Cmd) {
case Show:
return show(argc, argv, commandLineParser);
case Report:
return report(argc, argv, commandLineParser);
}
return 0;
}
int CodeCoverageTool::show(int argc, const char **argv,
CommandLineParserType commandLineParser) {
cl::OptionCategory ViewCategory("Viewing options");
cl::opt<bool> ShowLineExecutionCounts(
"show-line-counts", cl::Optional,
cl::desc("Show the execution counts for each line"), cl::init(true),
cl::cat(ViewCategory));
cl::opt<bool> ShowRegions(
"show-regions", cl::Optional,
cl::desc("Show the execution counts for each region"),
cl::cat(ViewCategory));
cl::opt<bool> ShowBestLineRegionsCounts(
"show-line-counts-or-regions", cl::Optional,
cl::desc("Show the execution counts for each line, or the execution "
"counts for each region on lines that have multiple regions"),
cl::cat(ViewCategory));
cl::opt<bool> ShowExpansions("show-expansions", cl::Optional,
cl::desc("Show expanded source regions"),
cl::cat(ViewCategory));
cl::opt<bool> ShowInstantiations("show-instantiations", cl::Optional,
cl::desc("Show function instantiations"),
cl::cat(ViewCategory));
auto Err = commandLineParser(argc, argv);
if (Err)
return Err;
ViewOpts.ShowLineNumbers = true;
ViewOpts.ShowLineStats = ShowLineExecutionCounts.getNumOccurrences() != 0 ||
!ShowRegions || ShowBestLineRegionsCounts;
ViewOpts.ShowRegionMarkers = ShowRegions || ShowBestLineRegionsCounts;
ViewOpts.ShowLineStatsOrRegionMarkers = ShowBestLineRegionsCounts;
ViewOpts.ShowExpandedRegions = ShowExpansions;
ViewOpts.ShowFunctionInstantiations = ShowInstantiations;
auto Coverage = load();
if (!Coverage)
return 1;
if (!Filters.empty()) {
// Show functions
for (const auto &Function : Coverage->getCoveredFunctions()) {
if (!Filters.matches(Function))
continue;
auto mainView = createFunctionView(Function, *Coverage);
if (!mainView) {
ViewOpts.colored_ostream(outs(), raw_ostream::RED)
<< "warning: Could not read coverage for '" << Function.Name;
outs() << "\n";
continue;
}
ViewOpts.colored_ostream(outs(), raw_ostream::CYAN) << Function.Name
<< ":";
outs() << "\n";
mainView->render(outs(), /*WholeFile=*/false);
outs() << "\n";
}
return 0;
}
// Show files
bool ShowFilenames = SourceFiles.size() != 1;
if (SourceFiles.empty())
// Get the source files from the function coverage mapping
for (StringRef Filename : Coverage->getUniqueSourceFiles())
SourceFiles.push_back(Filename);
for (const auto &SourceFile : SourceFiles) {
auto mainView = createSourceFileView(SourceFile, *Coverage);
if (!mainView) {
ViewOpts.colored_ostream(outs(), raw_ostream::RED)
<< "warning: The file '" << SourceFile << "' isn't covered.";
outs() << "\n";
continue;
}
if (ShowFilenames) {
ViewOpts.colored_ostream(outs(), raw_ostream::CYAN) << SourceFile << ":";
outs() << "\n";
}
mainView->render(outs(), /*Wholefile=*/true);
if (SourceFiles.size() > 1)
outs() << "\n";
}
return 0;
}
int CodeCoverageTool::report(int argc, const char **argv,
CommandLineParserType commandLineParser) {
auto Err = commandLineParser(argc, argv);
if (Err)
return Err;
auto Coverage = load();
if (!Coverage)
return 1;
CoverageReport Report(ViewOpts, std::move(Coverage));
if (SourceFiles.empty())
Report.renderFileReports(llvm::outs());
else
Report.renderFunctionReports(SourceFiles, llvm::outs());
return 0;
}
int showMain(int argc, const char *argv[]) {
CodeCoverageTool Tool;
return Tool.run(CodeCoverageTool::Show, argc, argv);
}
int reportMain(int argc, const char *argv[]) {
CodeCoverageTool Tool;
return Tool.run(CodeCoverageTool::Report, argc, argv);
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageReport.cpp | //===- CoverageReport.cpp - Code coverage report -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements rendering of a code coverage report.
//
//===----------------------------------------------------------------------===//
#include "CoverageReport.h"
#include "RenderingSupport.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
using namespace llvm;
namespace {
/// \brief Helper struct which prints trimmed and aligned columns.
struct Column {
enum TrimKind { NoTrim, LeftTrim, RightTrim };
enum AlignmentKind { LeftAlignment, RightAlignment };
StringRef Str;
unsigned Width;
TrimKind Trim;
AlignmentKind Alignment;
Column(StringRef Str, unsigned Width)
: Str(Str), Width(Width), Trim(NoTrim), Alignment(LeftAlignment) {}
Column &set(TrimKind Value) {
Trim = Value;
return *this;
}
Column &set(AlignmentKind Value) {
Alignment = Value;
return *this;
}
void render(raw_ostream &OS) const;
};
raw_ostream &operator<<(raw_ostream &OS, const Column &Value) {
Value.render(OS);
return OS;
}
}
void Column::render(raw_ostream &OS) const {
if (Str.size() <= Width) {
if (Alignment == RightAlignment) {
OS.indent(Width - Str.size());
OS << Str;
return;
}
OS << Str;
OS.indent(Width - Str.size());
return;
}
switch (Trim) {
case NoTrim:
OS << Str.substr(0, Width);
break;
case LeftTrim:
OS << "..." << Str.substr(Str.size() - Width + 3);
break;
case RightTrim:
OS << Str.substr(0, Width - 3) << "...";
break;
}
}
static Column column(StringRef Str, unsigned Width) {
return Column(Str, Width);
}
template <typename T>
static Column column(StringRef Str, unsigned Width, const T &Value) {
return Column(Str, Width).set(Value);
}
static const unsigned FileReportColumns[] = {25, 10, 8, 8, 10, 10};
static const unsigned FunctionReportColumns[] = {25, 10, 8, 8, 10, 8, 8};
/// \brief Prints a horizontal divider which spans across the given columns.
template <typename T, size_t N>
static void renderDivider(T (&Columns)[N], raw_ostream &OS) {
unsigned Length = 0;
for (unsigned I = 0; I < N; ++I)
Length += Columns[I];
for (unsigned I = 0; I < Length; ++I)
OS << '-';
}
/// \brief Return the color which correponds to the coverage
/// percentage of a certain metric.
template <typename T>
static raw_ostream::Colors determineCoveragePercentageColor(const T &Info) {
if (Info.isFullyCovered())
return raw_ostream::GREEN;
return Info.getPercentCovered() >= 80.0 ? raw_ostream::YELLOW
: raw_ostream::RED;
}
void CoverageReport::render(const FileCoverageSummary &File, raw_ostream &OS) {
OS << column(File.Name, FileReportColumns[0], Column::LeftTrim)
<< format("%*u", FileReportColumns[1], (unsigned)File.RegionCoverage.NumRegions);
Options.colored_ostream(OS, File.RegionCoverage.isFullyCovered()
? raw_ostream::GREEN
: raw_ostream::RED)
<< format("%*u", FileReportColumns[2], (unsigned)File.RegionCoverage.NotCovered);
Options.colored_ostream(OS,
determineCoveragePercentageColor(File.RegionCoverage))
<< format("%*.2f", FileReportColumns[3] - 1,
File.RegionCoverage.getPercentCovered()) << '%';
OS << format("%*u", FileReportColumns[4],
(unsigned)File.FunctionCoverage.NumFunctions);
Options.colored_ostream(
OS, determineCoveragePercentageColor(File.FunctionCoverage))
<< format("%*.2f", FileReportColumns[5] - 1,
File.FunctionCoverage.getPercentCovered()) << '%';
OS << "\n";
}
void CoverageReport::render(const FunctionCoverageSummary &Function,
raw_ostream &OS) {
OS << column(Function.Name, FunctionReportColumns[0], Column::RightTrim)
<< format("%*u", FunctionReportColumns[1],
(unsigned)Function.RegionCoverage.NumRegions);
Options.colored_ostream(OS, Function.RegionCoverage.isFullyCovered()
? raw_ostream::GREEN
: raw_ostream::RED)
<< format("%*u", FunctionReportColumns[2],
(unsigned)Function.RegionCoverage.NotCovered);
Options.colored_ostream(
OS, determineCoveragePercentageColor(Function.RegionCoverage))
<< format("%*.2f", FunctionReportColumns[3] - 1,
Function.RegionCoverage.getPercentCovered()) << '%';
OS << format("%*u", FunctionReportColumns[4],
(unsigned)Function.LineCoverage.NumLines);
Options.colored_ostream(OS, Function.LineCoverage.isFullyCovered()
? raw_ostream::GREEN
: raw_ostream::RED)
<< format("%*u", FunctionReportColumns[5],
(unsigned)Function.LineCoverage.NotCovered);
Options.colored_ostream(
OS, determineCoveragePercentageColor(Function.LineCoverage))
<< format("%*.2f", FunctionReportColumns[6] - 1,
Function.LineCoverage.getPercentCovered()) << '%';
OS << "\n";
}
void CoverageReport::renderFunctionReports(ArrayRef<std::string> Files,
raw_ostream &OS) {
bool isFirst = true;
for (StringRef Filename : Files) {
if (isFirst)
isFirst = false;
else
OS << "\n";
OS << "File '" << Filename << "':\n";
OS << column("Name", FunctionReportColumns[0])
<< column("Regions", FunctionReportColumns[1], Column::RightAlignment)
<< column("Miss", FunctionReportColumns[2], Column::RightAlignment)
<< column("Cover", FunctionReportColumns[3], Column::RightAlignment)
<< column("Lines", FunctionReportColumns[4], Column::RightAlignment)
<< column("Miss", FunctionReportColumns[5], Column::RightAlignment)
<< column("Cover", FunctionReportColumns[6], Column::RightAlignment);
OS << "\n";
renderDivider(FunctionReportColumns, OS);
OS << "\n";
FunctionCoverageSummary Totals("TOTAL");
for (const auto &F : Coverage->getCoveredFunctions(Filename)) {
FunctionCoverageSummary Function = FunctionCoverageSummary::get(F);
++Totals.ExecutionCount;
Totals.RegionCoverage += Function.RegionCoverage;
Totals.LineCoverage += Function.LineCoverage;
render(Function, OS);
}
if (Totals.ExecutionCount) {
renderDivider(FunctionReportColumns, OS);
OS << "\n";
render(Totals, OS);
}
}
}
void CoverageReport::renderFileReports(raw_ostream &OS) {
OS << column("Filename", FileReportColumns[0])
<< column("Regions", FileReportColumns[1], Column::RightAlignment)
<< column("Miss", FileReportColumns[2], Column::RightAlignment)
<< column("Cover", FileReportColumns[3], Column::RightAlignment)
<< column("Functions", FileReportColumns[4], Column::RightAlignment)
<< column("Executed", FileReportColumns[5], Column::RightAlignment)
<< "\n";
renderDivider(FileReportColumns, OS);
OS << "\n";
FileCoverageSummary Totals("TOTAL");
for (StringRef Filename : Coverage->getUniqueSourceFiles()) {
FileCoverageSummary Summary(Filename);
for (const auto &F : Coverage->getCoveredFunctions(Filename)) {
FunctionCoverageSummary Function = FunctionCoverageSummary::get(F);
Summary.addFunction(Function);
Totals.addFunction(Function);
}
render(Summary, OS);
}
renderDivider(FileReportColumns, OS);
OS << "\n";
render(Totals, OS);
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageFilters.cpp | //===- CoverageFilters.cpp - Function coverage mapping filters ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes provide filtering for function coverage mapping records.
//
//===----------------------------------------------------------------------===//
#include "CoverageFilters.h"
#include "CoverageSummaryInfo.h"
#include "llvm/Support/Regex.h"
using namespace llvm;
bool NameCoverageFilter::matches(const coverage::FunctionRecord &Function) {
StringRef FuncName = Function.Name;
return FuncName.find(Name) != StringRef::npos;
}
bool
NameRegexCoverageFilter::matches(const coverage::FunctionRecord &Function) {
return llvm::Regex(Regex).match(Function.Name);
}
bool RegionCoverageFilter::matches(const coverage::FunctionRecord &Function) {
return PassesThreshold(FunctionCoverageSummary::get(Function)
.RegionCoverage.getPercentCovered());
}
bool LineCoverageFilter::matches(const coverage::FunctionRecord &Function) {
return PassesThreshold(
FunctionCoverageSummary::get(Function).LineCoverage.getPercentCovered());
}
void CoverageFilters::push_back(std::unique_ptr<CoverageFilter> Filter) {
Filters.push_back(std::move(Filter));
}
bool CoverageFilters::matches(const coverage::FunctionRecord &Function) {
for (const auto &Filter : Filters) {
if (Filter->matches(Function))
return true;
}
return false;
}
bool
CoverageFiltersMatchAll::matches(const coverage::FunctionRecord &Function) {
for (const auto &Filter : Filters) {
if (!Filter->matches(Function))
return false;
}
return true;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/llvm-cov.cpp | //===- llvm-cov.cpp - LLVM coverage tool ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// llvm-cov is a command line tools to analyze and report coverage information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
using namespace llvm;
/// \brief The main entry point for the 'show' subcommand.
int showMain(int argc, const char *argv[]);
/// \brief The main entry point for the 'report' subcommand.
int reportMain(int argc, const char *argv[]);
/// \brief The main entry point for the 'convert-for-testing' subcommand.
int convertForTestingMain(int argc, const char *argv[]);
/// \brief The main entry point for the gcov compatible coverage tool.
int gcovMain(int argc, const char *argv[]);
/// \brief Top level help.
static int helpMain(int argc, const char *argv[]) {
errs() << "Usage: llvm-cov {gcov|report|show} [OPTION]...\n\n"
<< "Shows code coverage information.\n\n"
<< "Subcommands:\n"
<< " gcov: Work with the gcov format.\n"
<< " show: Annotate source files using instrprof style coverage.\n"
<< " report: Summarize instrprof style coverage information.\n";
return 0;
}
/// \brief Top level version information.
static int versionMain(int argc, const char *argv[]) {
cl::PrintVersionMessage();
return 0;
}
int __cdecl main(int argc, const char **argv) { // HLSL Change - __cdecl
// If argv[0] is or ends with 'gcov', always be gcov compatible
if (sys::path::stem(argv[0]).endswith_lower("gcov"))
return gcovMain(argc, argv);
// Check if we are invoking a specific tool command.
if (argc > 1) {
typedef int (*MainFunction)(int, const char *[]);
MainFunction Func = StringSwitch<MainFunction>(argv[1])
.Case("convert-for-testing", convertForTestingMain)
.Case("gcov", gcovMain)
.Case("report", reportMain)
.Case("show", showMain)
.Cases("-h", "-help", "--help", helpMain)
.Cases("-version", "--version", versionMain)
.Default(nullptr);
if (Func) {
std::string Invocation = std::string(argv[0]) + " " + argv[1];
argv[1] = Invocation.c_str();
return Func(argc - 1, argv + 1);
}
}
if (argc > 1) {
if (sys::Process::StandardErrHasColors())
errs().changeColor(raw_ostream::RED);
errs() << "Unrecognized command: " << argv[1] << ".\n\n";
if (sys::Process::StandardErrHasColors())
errs().resetColor();
}
helpMain(argc, argv);
return 1;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cov/CoverageSummaryInfo.cpp | //===- CoverageSummaryInfo.cpp - Coverage summary for function/file -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These structures are used to represent code coverage metrics
// for functions/files.
//
//===----------------------------------------------------------------------===//
#include "CoverageSummaryInfo.h"
using namespace llvm;
using namespace coverage;
FunctionCoverageSummary
FunctionCoverageSummary::get(const coverage::FunctionRecord &Function) {
// Compute the region coverage
size_t NumCodeRegions = 0, CoveredRegions = 0;
for (auto &CR : Function.CountedRegions) {
if (CR.Kind != CounterMappingRegion::CodeRegion)
continue;
++NumCodeRegions;
if (CR.ExecutionCount != 0)
++CoveredRegions;
}
// Compute the line coverage
size_t NumLines = 0, CoveredLines = 0;
for (unsigned FileID = 0, E = Function.Filenames.size(); FileID < E;
++FileID) {
// Find the line start and end of the function's source code
// in that particular file
unsigned LineStart = std::numeric_limits<unsigned>::max();
unsigned LineEnd = 0;
for (auto &CR : Function.CountedRegions) {
if (CR.FileID != FileID)
continue;
LineStart = std::min(LineStart, CR.LineStart);
LineEnd = std::max(LineEnd, CR.LineEnd);
}
unsigned LineCount = LineEnd - LineStart + 1;
// Get counters
llvm::SmallVector<uint64_t, 16> ExecutionCounts;
ExecutionCounts.resize(LineCount, 0);
for (auto &CR : Function.CountedRegions) {
if (CR.FileID != FileID)
continue;
// Ignore the lines that were skipped by the preprocessor.
auto ExecutionCount = CR.ExecutionCount;
if (CR.Kind == CounterMappingRegion::SkippedRegion) {
LineCount -= CR.LineEnd - CR.LineStart + 1;
ExecutionCount = 1;
}
for (unsigned I = CR.LineStart; I <= CR.LineEnd; ++I)
ExecutionCounts[I - LineStart] = ExecutionCount;
}
CoveredLines += LineCount - std::count(ExecutionCounts.begin(),
ExecutionCounts.end(), 0);
NumLines += LineCount;
}
return FunctionCoverageSummary(
Function.Name, Function.ExecutionCount,
RegionCoverageInfo(CoveredRegions, NumCodeRegions),
LineCoverageInfo(CoveredLines, 0, NumLines));
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/Error.cpp | //===- Error.cxx - system_error extensions for llvm-cxxdump -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines a new error_category for the llvm-cxxdump tool.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
namespace {
class cxxdump_error_category : public std::error_category {
public:
const char *name() const LLVM_NOEXCEPT override { return "llvm.cxxdump"; }
std::string message(int ev) const override {
switch (static_cast<cxxdump_error>(ev)) {
case cxxdump_error::success:
return "Success";
case cxxdump_error::file_not_found:
return "No such file.";
case cxxdump_error::unrecognized_file_format:
return "Unrecognized file type.";
}
llvm_unreachable(
"An enumerator of cxxdump_error does not have a message defined.");
}
};
} // namespace
namespace llvm {
const std::error_category &cxxdump_category() {
static cxxdump_error_category o;
return o;
}
} // namespace llvm
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/llvm-cxxdump.cpp | //===- llvm-cxxdump.cpp - Dump C++ data in an Object File -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Dumps C++ data resident in object files and archives.
//
//===----------------------------------------------------------------------===//
#include "llvm-cxxdump.h"
#include "Error.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <string>
#include <system_error>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support;
namespace opts {
cl::list<std::string> InputFilenames(cl::Positional,
cl::desc("<input object files>"),
cl::ZeroOrMore);
} // namespace opts
static int ReturnValue = EXIT_SUCCESS;
namespace llvm {
static bool error(std::error_code EC) {
if (!EC)
return false;
ReturnValue = EXIT_FAILURE;
outs() << "\nError reading file: " << EC.message() << ".\n";
outs().flush();
return true;
}
} // namespace llvm
static void reportError(StringRef Input, StringRef Message) {
if (Input == "-")
Input = "<stdin>";
errs() << Input << ": " << Message << "\n";
errs().flush();
ReturnValue = EXIT_FAILURE;
}
static void reportError(StringRef Input, std::error_code EC) {
reportError(Input, EC.message());
}
static SmallVectorImpl<SectionRef> &getRelocSections(const ObjectFile *Obj,
const SectionRef &Sec) {
static bool MappingDone = false;
static std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
if (!MappingDone) {
for (const SectionRef &Section : Obj->sections()) {
section_iterator Sec2 = Section.getRelocatedSection();
if (Sec2 != Obj->section_end())
SectionRelocMap[*Sec2].push_back(Section);
}
MappingDone = true;
}
return SectionRelocMap[Sec];
}
static bool collectRelocatedSymbols(const ObjectFile *Obj,
const SectionRef &Sec, uint64_t SecAddress,
uint64_t SymAddress, uint64_t SymSize,
StringRef *I, StringRef *E) {
uint64_t SymOffset = SymAddress - SecAddress;
uint64_t SymEnd = SymOffset + SymSize;
for (const SectionRef &SR : getRelocSections(Obj, Sec)) {
for (const object::RelocationRef &Reloc : SR.relocations()) {
if (I == E)
break;
const object::symbol_iterator RelocSymI = Reloc.getSymbol();
if (RelocSymI == Obj->symbol_end())
continue;
ErrorOr<StringRef> RelocSymName = RelocSymI->getName();
if (error(RelocSymName.getError()))
return true;
uint64_t Offset = Reloc.getOffset();
if (Offset >= SymOffset && Offset < SymEnd) {
*I = *RelocSymName;
++I;
}
}
}
return false;
}
static bool collectRelocationOffsets(
const ObjectFile *Obj, const SectionRef &Sec, uint64_t SecAddress,
uint64_t SymAddress, uint64_t SymSize, StringRef SymName,
std::map<std::pair<StringRef, uint64_t>, StringRef> &Collection) {
uint64_t SymOffset = SymAddress - SecAddress;
uint64_t SymEnd = SymOffset + SymSize;
for (const SectionRef &SR : getRelocSections(Obj, Sec)) {
for (const object::RelocationRef &Reloc : SR.relocations()) {
const object::symbol_iterator RelocSymI = Reloc.getSymbol();
if (RelocSymI == Obj->symbol_end())
continue;
ErrorOr<StringRef> RelocSymName = RelocSymI->getName();
if (error(RelocSymName.getError()))
return true;
uint64_t Offset = Reloc.getOffset();
if (Offset >= SymOffset && Offset < SymEnd)
Collection[std::make_pair(SymName, Offset - SymOffset)] = *RelocSymName;
}
}
return false;
}
static void dumpCXXData(const ObjectFile *Obj) {
struct CompleteObjectLocator {
StringRef Symbols[2];
ArrayRef<little32_t> Data;
};
struct ClassHierarchyDescriptor {
StringRef Symbols[1];
ArrayRef<little32_t> Data;
};
struct BaseClassDescriptor {
StringRef Symbols[2];
ArrayRef<little32_t> Data;
};
struct TypeDescriptor {
StringRef Symbols[1];
uint64_t AlwaysZero;
StringRef MangledName;
};
struct ThrowInfo {
uint32_t Flags;
};
struct CatchableTypeArray {
uint32_t NumEntries;
};
struct CatchableType {
uint32_t Flags;
uint32_t NonVirtualBaseAdjustmentOffset;
int32_t VirtualBasePointerOffset;
uint32_t VirtualBaseAdjustmentOffset;
uint32_t Size;
StringRef Symbols[2];
};
std::map<std::pair<StringRef, uint64_t>, StringRef> VFTableEntries;
std::map<std::pair<StringRef, uint64_t>, StringRef> TIEntries;
std::map<std::pair<StringRef, uint64_t>, StringRef> CTAEntries;
std::map<StringRef, ArrayRef<little32_t>> VBTables;
std::map<StringRef, CompleteObjectLocator> COLs;
std::map<StringRef, ClassHierarchyDescriptor> CHDs;
std::map<std::pair<StringRef, uint64_t>, StringRef> BCAEntries;
std::map<StringRef, BaseClassDescriptor> BCDs;
std::map<StringRef, TypeDescriptor> TDs;
std::map<StringRef, ThrowInfo> TIs;
std::map<StringRef, CatchableTypeArray> CTAs;
std::map<StringRef, CatchableType> CTs;
std::map<std::pair<StringRef, uint64_t>, StringRef> VTableSymEntries;
std::map<std::pair<StringRef, uint64_t>, int64_t> VTableDataEntries;
std::map<std::pair<StringRef, uint64_t>, StringRef> VTTEntries;
std::map<StringRef, StringRef> TINames;
uint8_t BytesInAddress = Obj->getBytesInAddress();
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*Obj);
for (auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
uint64_t SymSize = P.second;
ErrorOr<StringRef> SymNameOrErr = Sym.getName();
if (error(SymNameOrErr.getError()))
return;
StringRef SymName = *SymNameOrErr;
object::section_iterator SecI(Obj->section_begin());
if (error(Sym.getSection(SecI)))
return;
// Skip external symbols.
if (SecI == Obj->section_end())
continue;
const SectionRef &Sec = *SecI;
// Skip virtual or BSS sections.
if (Sec.isBSS() || Sec.isVirtual())
continue;
StringRef SecContents;
if (error(Sec.getContents(SecContents)))
return;
ErrorOr<uint64_t> SymAddressOrErr = Sym.getAddress();
if (error(SymAddressOrErr.getError()))
return;
uint64_t SymAddress = *SymAddressOrErr;
uint64_t SecAddress = Sec.getAddress();
uint64_t SecSize = Sec.getSize();
uint64_t SymOffset = SymAddress - SecAddress;
StringRef SymContents = SecContents.substr(SymOffset, SymSize);
// VFTables in the MS-ABI start with '??_7' and are contained within their
// own COMDAT section. We then determine the contents of the VFTable by
// looking at each relocation in the section.
if (SymName.startswith("??_7")) {
// Each relocation either names a virtual method or a thunk. We note the
// offset into the section and the symbol used for the relocation.
collectRelocationOffsets(Obj, Sec, SecAddress, SecAddress, SecSize,
SymName, VFTableEntries);
}
// VBTables in the MS-ABI start with '??_8' and are filled with 32-bit
// offsets of virtual bases.
else if (SymName.startswith("??_8")) {
ArrayRef<little32_t> VBTableData(
reinterpret_cast<const little32_t *>(SymContents.data()),
SymContents.size() / sizeof(little32_t));
VBTables[SymName] = VBTableData;
}
// Complete object locators in the MS-ABI start with '??_R4'
else if (SymName.startswith("??_R4")) {
CompleteObjectLocator COL;
COL.Data = ArrayRef<little32_t>(
reinterpret_cast<const little32_t *>(SymContents.data()), 3);
StringRef *I = std::begin(COL.Symbols), *E = std::end(COL.Symbols);
if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
E))
return;
COLs[SymName] = COL;
}
// Class hierarchy descriptors in the MS-ABI start with '??_R3'
else if (SymName.startswith("??_R3")) {
ClassHierarchyDescriptor CHD;
CHD.Data = ArrayRef<little32_t>(
reinterpret_cast<const little32_t *>(SymContents.data()), 3);
StringRef *I = std::begin(CHD.Symbols), *E = std::end(CHD.Symbols);
if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
E))
return;
CHDs[SymName] = CHD;
}
// Class hierarchy descriptors in the MS-ABI start with '??_R2'
else if (SymName.startswith("??_R2")) {
// Each relocation names a base class descriptor. We note the offset into
// the section and the symbol used for the relocation.
collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
SymName, BCAEntries);
}
// Base class descriptors in the MS-ABI start with '??_R1'
else if (SymName.startswith("??_R1")) {
BaseClassDescriptor BCD;
BCD.Data = ArrayRef<little32_t>(
reinterpret_cast<const little32_t *>(SymContents.data()) + 1, 5);
StringRef *I = std::begin(BCD.Symbols), *E = std::end(BCD.Symbols);
if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
E))
return;
BCDs[SymName] = BCD;
}
// Type descriptors in the MS-ABI start with '??_R0'
else if (SymName.startswith("??_R0")) {
const char *DataPtr = SymContents.drop_front(BytesInAddress).data();
TypeDescriptor TD;
if (BytesInAddress == 8)
TD.AlwaysZero = *reinterpret_cast<const little64_t *>(DataPtr);
else
TD.AlwaysZero = *reinterpret_cast<const little32_t *>(DataPtr);
TD.MangledName = SymContents.drop_front(BytesInAddress * 2);
StringRef *I = std::begin(TD.Symbols), *E = std::end(TD.Symbols);
if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
E))
return;
TDs[SymName] = TD;
}
// Throw descriptors in the MS-ABI start with '_TI'
else if (SymName.startswith("_TI") || SymName.startswith("__TI")) {
ThrowInfo TI;
TI.Flags = *reinterpret_cast<const little32_t *>(SymContents.data());
collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
SymName, TIEntries);
TIs[SymName] = TI;
}
// Catchable type arrays in the MS-ABI start with _CTA or __CTA.
else if (SymName.startswith("_CTA") || SymName.startswith("__CTA")) {
CatchableTypeArray CTA;
CTA.NumEntries =
*reinterpret_cast<const little32_t *>(SymContents.data());
collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
SymName, CTAEntries);
CTAs[SymName] = CTA;
}
// Catchable types in the MS-ABI start with _CT or __CT.
else if (SymName.startswith("_CT") || SymName.startswith("__CT")) {
const little32_t *DataPtr =
reinterpret_cast<const little32_t *>(SymContents.data());
CatchableType CT;
CT.Flags = DataPtr[0];
CT.NonVirtualBaseAdjustmentOffset = DataPtr[2];
CT.VirtualBasePointerOffset = DataPtr[3];
CT.VirtualBaseAdjustmentOffset = DataPtr[4];
CT.Size = DataPtr[5];
StringRef *I = std::begin(CT.Symbols), *E = std::end(CT.Symbols);
if (collectRelocatedSymbols(Obj, Sec, SecAddress, SymAddress, SymSize, I,
E))
return;
CTs[SymName] = CT;
}
// Construction vtables in the Itanium ABI start with '_ZTT' or '__ZTT'.
else if (SymName.startswith("_ZTT") || SymName.startswith("__ZTT")) {
collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
SymName, VTTEntries);
}
// Typeinfo names in the Itanium ABI start with '_ZTS' or '__ZTS'.
else if (SymName.startswith("_ZTS") || SymName.startswith("__ZTS")) {
TINames[SymName] = SymContents.slice(0, SymContents.find('\0'));
}
// Vtables in the Itanium ABI start with '_ZTV' or '__ZTV'.
else if (SymName.startswith("_ZTV") || SymName.startswith("__ZTV")) {
collectRelocationOffsets(Obj, Sec, SecAddress, SymAddress, SymSize,
SymName, VTableSymEntries);
for (uint64_t SymOffI = 0; SymOffI < SymSize; SymOffI += BytesInAddress) {
auto Key = std::make_pair(SymName, SymOffI);
if (VTableSymEntries.count(Key))
continue;
const char *DataPtr =
SymContents.substr(SymOffI, BytesInAddress).data();
int64_t VData;
if (BytesInAddress == 8)
VData = *reinterpret_cast<const little64_t *>(DataPtr);
else
VData = *reinterpret_cast<const little32_t *>(DataPtr);
VTableDataEntries[Key] = VData;
}
}
// Typeinfo structures in the Itanium ABI start with '_ZTI' or '__ZTI'.
else if (SymName.startswith("_ZTI") || SymName.startswith("__ZTI")) {
// FIXME: Do something with these!
}
}
for (const auto &VFTableEntry : VFTableEntries) {
StringRef VFTableName = VFTableEntry.first.first;
uint64_t Offset = VFTableEntry.first.second;
StringRef SymName = VFTableEntry.second;
outs() << VFTableName << '[' << Offset << "]: " << SymName << '\n';
}
for (const auto &VBTable : VBTables) {
StringRef VBTableName = VBTable.first;
uint32_t Idx = 0;
for (little32_t Offset : VBTable.second) {
outs() << VBTableName << '[' << Idx << "]: " << Offset << '\n';
Idx += sizeof(Offset);
}
}
for (const auto &COLPair : COLs) {
StringRef COLName = COLPair.first;
const CompleteObjectLocator &COL = COLPair.second;
outs() << COLName << "[IsImageRelative]: " << COL.Data[0] << '\n';
outs() << COLName << "[OffsetToTop]: " << COL.Data[1] << '\n';
outs() << COLName << "[VFPtrOffset]: " << COL.Data[2] << '\n';
outs() << COLName << "[TypeDescriptor]: " << COL.Symbols[0] << '\n';
outs() << COLName << "[ClassHierarchyDescriptor]: " << COL.Symbols[1]
<< '\n';
}
for (const auto &CHDPair : CHDs) {
StringRef CHDName = CHDPair.first;
const ClassHierarchyDescriptor &CHD = CHDPair.second;
outs() << CHDName << "[AlwaysZero]: " << CHD.Data[0] << '\n';
outs() << CHDName << "[Flags]: " << CHD.Data[1] << '\n';
outs() << CHDName << "[NumClasses]: " << CHD.Data[2] << '\n';
outs() << CHDName << "[BaseClassArray]: " << CHD.Symbols[0] << '\n';
}
for (const auto &BCAEntry : BCAEntries) {
StringRef BCAName = BCAEntry.first.first;
uint64_t Offset = BCAEntry.first.second;
StringRef SymName = BCAEntry.second;
outs() << BCAName << '[' << Offset << "]: " << SymName << '\n';
}
for (const auto &BCDPair : BCDs) {
StringRef BCDName = BCDPair.first;
const BaseClassDescriptor &BCD = BCDPair.second;
outs() << BCDName << "[TypeDescriptor]: " << BCD.Symbols[0] << '\n';
outs() << BCDName << "[NumBases]: " << BCD.Data[0] << '\n';
outs() << BCDName << "[OffsetInVBase]: " << BCD.Data[1] << '\n';
outs() << BCDName << "[VBPtrOffset]: " << BCD.Data[2] << '\n';
outs() << BCDName << "[OffsetInVBTable]: " << BCD.Data[3] << '\n';
outs() << BCDName << "[Flags]: " << BCD.Data[4] << '\n';
outs() << BCDName << "[ClassHierarchyDescriptor]: " << BCD.Symbols[1]
<< '\n';
}
for (const auto &TDPair : TDs) {
StringRef TDName = TDPair.first;
const TypeDescriptor &TD = TDPair.second;
outs() << TDName << "[VFPtr]: " << TD.Symbols[0] << '\n';
outs() << TDName << "[AlwaysZero]: " << TD.AlwaysZero << '\n';
outs() << TDName << "[MangledName]: ";
outs().write_escaped(TD.MangledName.rtrim(StringRef("\0", 1)),
/*UseHexEscapes=*/true)
<< '\n';
}
for (const auto &TIPair : TIs) {
StringRef TIName = TIPair.first;
const ThrowInfo &TI = TIPair.second;
auto dumpThrowInfoFlag = [&](const char *Name, uint32_t Flag) {
outs() << TIName << "[Flags." << Name
<< "]: " << (TI.Flags & Flag ? "true" : "false") << '\n';
};
auto dumpThrowInfoSymbol = [&](const char *Name, int Offset) {
outs() << TIName << '[' << Name << "]: ";
auto Entry = TIEntries.find(std::make_pair(TIName, Offset));
outs() << (Entry == TIEntries.end() ? "null" : Entry->second) << '\n';
};
outs() << TIName << "[Flags]: " << TI.Flags << '\n';
dumpThrowInfoFlag("Const", 1);
dumpThrowInfoFlag("Volatile", 2);
dumpThrowInfoSymbol("CleanupFn", 4);
dumpThrowInfoSymbol("ForwardCompat", 8);
dumpThrowInfoSymbol("CatchableTypeArray", 12);
}
for (const auto &CTAPair : CTAs) {
StringRef CTAName = CTAPair.first;
const CatchableTypeArray &CTA = CTAPair.second;
outs() << CTAName << "[NumEntries]: " << CTA.NumEntries << '\n';
unsigned Idx = 0;
for (auto I = CTAEntries.lower_bound(std::make_pair(CTAName, 0)),
E = CTAEntries.upper_bound(std::make_pair(CTAName, UINT64_MAX));
I != E; ++I)
outs() << CTAName << '[' << Idx++ << "]: " << I->second << '\n';
}
for (const auto &CTPair : CTs) {
StringRef CTName = CTPair.first;
const CatchableType &CT = CTPair.second;
auto dumpCatchableTypeFlag = [&](const char *Name, uint32_t Flag) {
outs() << CTName << "[Flags." << Name
<< "]: " << (CT.Flags & Flag ? "true" : "false") << '\n';
};
outs() << CTName << "[Flags]: " << CT.Flags << '\n';
dumpCatchableTypeFlag("ScalarType", 1);
dumpCatchableTypeFlag("VirtualInheritance", 4);
outs() << CTName << "[TypeDescriptor]: " << CT.Symbols[0] << '\n';
outs() << CTName << "[NonVirtualBaseAdjustmentOffset]: "
<< CT.NonVirtualBaseAdjustmentOffset << '\n';
outs() << CTName
<< "[VirtualBasePointerOffset]: " << CT.VirtualBasePointerOffset
<< '\n';
outs() << CTName << "[VirtualBaseAdjustmentOffset]: "
<< CT.VirtualBaseAdjustmentOffset << '\n';
outs() << CTName << "[Size]: " << CT.Size << '\n';
outs() << CTName
<< "[CopyCtor]: " << (CT.Symbols[1].empty() ? "null" : CT.Symbols[1])
<< '\n';
}
for (const auto &VTTPair : VTTEntries) {
StringRef VTTName = VTTPair.first.first;
uint64_t VTTOffset = VTTPair.first.second;
StringRef VTTEntry = VTTPair.second;
outs() << VTTName << '[' << VTTOffset << "]: " << VTTEntry << '\n';
}
for (const auto &TIPair : TINames) {
StringRef TIName = TIPair.first;
outs() << TIName << ": " << TIPair.second << '\n';
}
auto VTableSymI = VTableSymEntries.begin();
auto VTableSymE = VTableSymEntries.end();
auto VTableDataI = VTableDataEntries.begin();
auto VTableDataE = VTableDataEntries.end();
for (;;) {
bool SymDone = VTableSymI == VTableSymE;
bool DataDone = VTableDataI == VTableDataE;
if (SymDone && DataDone)
break;
if (!SymDone && (DataDone || VTableSymI->first < VTableDataI->first)) {
StringRef VTableName = VTableSymI->first.first;
uint64_t Offset = VTableSymI->first.second;
StringRef VTableEntry = VTableSymI->second;
outs() << VTableName << '[' << Offset << "]: ";
outs() << VTableEntry;
outs() << '\n';
++VTableSymI;
continue;
}
if (!DataDone && (SymDone || VTableDataI->first < VTableSymI->first)) {
StringRef VTableName = VTableDataI->first.first;
uint64_t Offset = VTableDataI->first.second;
int64_t VTableEntry = VTableDataI->second;
outs() << VTableName << '[' << Offset << "]: ";
outs() << VTableEntry;
outs() << '\n';
++VTableDataI;
continue;
}
}
}
static void dumpArchive(const Archive *Arc) {
for (const Archive::Child &ArcC : Arc->children()) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = ArcC.getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
// Ignore non-object files.
if (EC != object_error::invalid_file_type)
reportError(Arc->getFileName(), EC.message());
continue;
}
if (ObjectFile *Obj = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
dumpCXXData(Obj);
else
reportError(Arc->getFileName(), cxxdump_error::unrecognized_file_format);
}
}
static void dumpInput(StringRef File) {
// If file isn't stdin, check that it exists.
if (File != "-" && !sys::fs::exists(File)) {
reportError(File, cxxdump_error::file_not_found);
return;
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(File);
if (std::error_code EC = BinaryOrErr.getError()) {
reportError(File, EC);
return;
}
Binary &Binary = *BinaryOrErr.get().getBinary();
if (Archive *Arc = dyn_cast<Archive>(&Binary))
dumpArchive(Arc);
else if (ObjectFile *Obj = dyn_cast<ObjectFile>(&Binary))
dumpCXXData(Obj);
else
reportError(File, cxxdump_error::unrecognized_file_format);
}
int main(int argc, const char *argv[]) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y;
// Initialize targets.
llvm::InitializeAllTargetInfos();
// Register the target printer for --version.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::ParseCommandLineOptions(argc, argv, "LLVM C++ ABI Data Dumper\n");
// Default to stdin if no filename is specified.
if (opts::InputFilenames.size() == 0)
opts::InputFilenames.push_back("-");
std::for_each(opts::InputFilenames.begin(), opts::InputFilenames.end(),
dumpInput);
return ReturnValue;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
Object
Support
)
add_llvm_tool(llvm-cxxdump
llvm-cxxdump.cpp
Error.cpp
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/LLVMBuild.txt | ;===- ./tools/llvm-cxxdump/LLVMBuild.txt -----------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llvm-cxxdump
parent = Tools
required_libraries = all-targets BitReader Object
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/llvm-cxxdump.h | //===-- llvm-cxxdump.h ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_CXXDUMP_LLVM_CXXDUMP_H
#define LLVM_TOOLS_LLVM_CXXDUMP_LLVM_CXXDUMP_H
#include "llvm/Support/CommandLine.h"
#include <string>
namespace opts {
extern llvm::cl::list<std::string> InputFilenames;
} // namespace opts
#define LLVM_CXXDUMP_ENUM_ENT(ns, enum) \
{ #enum, ns::enum }
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-cxxdump/Error.h | //===- Error.h - system_error extensions for llvm-cxxdump -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This declares a new error_category for the llvm-cxxdump tool.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_CXXDUMP_ERROR_H
#define LLVM_TOOLS_LLVM_CXXDUMP_ERROR_H
#include <system_error>
namespace llvm {
const std::error_category &cxxdump_category();
enum class cxxdump_error {
success = 0,
file_not_found,
unrecognized_file_format,
};
inline std::error_code make_error_code(cxxdump_error e) {
return std::error_code(static_cast<int>(e), cxxdump_category());
}
} // namespace llvm
namespace std {
template <>
struct is_error_code_enum<llvm::cxxdump_error> : std::true_type {};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-rtdyld/llvm-rtdyld.cpp | //===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <list>
#include <system_error>
using namespace llvm;
using namespace llvm::object;
static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
cl::desc("<input file>"));
enum ActionType {
AC_Execute,
AC_PrintObjectLineInfo,
AC_PrintLineInfo,
AC_PrintDebugLineInfo,
AC_Verify
};
static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
cl::init(AC_Execute),
cl::values(clEnumValN(AC_Execute, "execute",
"Load, link, and execute the inputs."),
clEnumValN(AC_PrintLineInfo, "printline",
"Load, link, and print line information for each function."),
clEnumValN(AC_PrintDebugLineInfo, "printdebugline",
"Load, link, and print line information for each function using the debug object"),
clEnumValN(AC_PrintObjectLineInfo, "printobjline",
"Like -printlineinfo but does not load the object first"),
clEnumValN(AC_Verify, "verify",
"Load, link and verify the resulting memory image."),
clEnumValEnd));
static cl::opt<std::string>
EntryPoint("entry",
cl::desc("Function to call as entry point."),
cl::init("_main"));
static cl::list<std::string>
Dylibs("dylib",
cl::desc("Add library."),
cl::ZeroOrMore);
static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));
static cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
static cl::list<std::string>
CheckFiles("check",
cl::desc("File containing RuntimeDyld verifier checks."),
cl::ZeroOrMore);
static cl::opt<uint64_t>
TargetAddrStart("target-addr-start",
cl::desc("For -verify only: start of phony target address "
"range."),
cl::init(4096), // Start at "page 1" - no allocating at "null".
cl::Hidden);
static cl::opt<uint64_t>
TargetAddrEnd("target-addr-end",
cl::desc("For -verify only: end of phony target address range."),
cl::init(~0ULL),
cl::Hidden);
static cl::opt<uint64_t>
TargetSectionSep("target-section-sep",
cl::desc("For -verify only: Separation between sections in "
"phony target address space."),
cl::init(0),
cl::Hidden);
static cl::list<std::string>
SpecificSectionMappings("map-section",
cl::desc("For -verify only: Map a section to a "
"specific address."),
cl::ZeroOrMore,
cl::Hidden);
static cl::list<std::string>
DummySymbolMappings("dummy-extern",
cl::desc("For -verify only: Inject a symbol into the extern "
"symbol table."),
cl::ZeroOrMore,
cl::Hidden);
/* *** */
// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> FunctionMemory;
SmallVector<sys::MemoryBlock, 16> DataMemory;
uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) override;
uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) override;
void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true) override {
return nullptr;
}
bool finalizeMemory(std::string *ErrMsg) override { return false; }
// Invalidate instruction cache for sections with execute permissions.
// Some platforms with separate data cache and instruction cache require
// explicit cache flush, otherwise JIT code manipulations (like resolved
// relocations) will get to the data cache but not to the instruction cache.
virtual void invalidateInstructionCache();
void addDummySymbol(const std::string &Name, uint64_t Addr) {
DummyExterns[Name] = Addr;
}
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
auto I = DummyExterns.find(Name);
if (I != DummyExterns.end())
return RuntimeDyld::SymbolInfo(I->second, JITSymbolFlags::Exported);
return RTDyldMemoryManager::findSymbol(Name);
}
void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) override {}
private:
std::map<std::string, uint64_t> DummyExterns;
};
uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr);
FunctionMemory.push_back(MB);
return (uint8_t*)MB.base();
}
uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) {
sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr);
DataMemory.push_back(MB);
return (uint8_t*)MB.base();
}
void TrivialMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = FunctionMemory.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(FunctionMemory[i].base(),
FunctionMemory[i].size());
for (int i = 0, e = DataMemory.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(DataMemory[i].base(),
DataMemory[i].size());
}
static const char *ProgramName;
static void Message(const char *Type, const Twine &Msg) {
errs() << ProgramName << ": " << Type << ": " << Msg << "\n";
}
static int Error(const Twine &Msg) {
Message("error", Msg);
return 1;
}
static void loadDylibs() {
for (const std::string &Dylib : Dylibs) {
if (sys::fs::is_regular_file(Dylib)) {
std::string ErrMsg;
if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
llvm::errs() << "Error loading '" << Dylib << "': "
<< ErrMsg << "\n";
} else
llvm::errs() << "Dylib not found: '" << Dylib << "'.\n";
}
}
/* *** */
static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
assert(LoadObjects || !UseDebugObj);
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
OwningBinary<ObjectFile> DebugObj;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
ObjectFile *SymbolObj = &Obj;
if (LoadObjects) {
// Load the object file
LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
return Error(Dyld.getErrorString());
// Resolve all the relocations we can.
Dyld.resolveRelocations();
if (UseDebugObj) {
DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
SymbolObj = DebugObj.getBinary();
}
}
std::unique_ptr<DIContext> Context(
new DWARFContextInMemory(*SymbolObj,LoadedObjInfo.get()));
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*SymbolObj);
// Use symbol info to iterate functions in the object.
for (const auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
if (Sym.getType() == object::SymbolRef::ST_Function) {
ErrorOr<StringRef> Name = Sym.getName();
if (!Name)
continue;
ErrorOr<uint64_t> AddrOrErr = Sym.getAddress();
if (!AddrOrErr)
continue;
uint64_t Addr = *AddrOrErr;
uint64_t Size = P.second;
// If we're not using the debug object, compute the address of the
// symbol in memory (rather than that in the unrelocated object file)
// and use that to query the DWARFContext.
if (!UseDebugObj && LoadObjects) {
object::section_iterator Sec(SymbolObj->section_end());
Sym.getSection(Sec);
StringRef SecName;
Sec->getName(SecName);
uint64_t SectionLoadAddress =
LoadedObjInfo->getSectionLoadAddress(SecName);
if (SectionLoadAddress != 0)
Addr += SectionLoadAddress - Sec->getAddress();
}
outs() << "Function: " << *Name << ", Size = " << Size
<< ", Addr = " << Addr << "\n";
DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
DILineInfoTable::iterator Begin = Lines.begin();
DILineInfoTable::iterator End = Lines.end();
for (DILineInfoTable::iterator It = Begin; It != End; ++It) {
outs() << " Line info @ " << It->first - Addr << ": "
<< It->second.FileName << ", line:" << It->second.Line << "\n";
}
}
}
}
return 0;
}
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// FIXME: Preserve buffers until resolveRelocations time to work around a bug
// in RuntimeDyldELF.
// This fixme should be fixed ASAP. This is a very brittle workaround.
std::vector<std::unique_ptr<MemoryBuffer>> InputBuffers;
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
InputBuffers.push_back(std::move(*InputBuffer));
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
return Error(Dyld.getErrorString());
}
}
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Clear instruction cache before code will be executed.
MemMgr.invalidateInstructionCache();
// FIXME: Error out if there are unresolved relocations.
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
return Error("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (unsigned i = 0, e = MemMgr.FunctionMemory.size(); i != e; ++i) {
sys::MemoryBlock &Data = MemMgr.FunctionMemory[i];
// Make sure the memory is executable.
std::string ErrorStr;
sys::Memory::InvalidateInstructionCache(Data.base(), Data.size());
if (!sys::Memory::setExecutable(Data, &ErrorStr))
return Error("unable to mark function executable: '" + ErrorStr + "'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
static int checkAllExpressions(RuntimeDyldChecker &Checker) {
for (const auto& CheckerFileName : CheckFiles) {
ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
MemoryBuffer::getFileOrSTDIN(CheckerFileName);
if (std::error_code EC = CheckerFileBuf.getError())
return Error("unable to read input '" + CheckerFileName + "': " +
EC.message());
if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
CheckerFileBuf.get().get()))
return Error("some checks in '" + CheckerFileName + "' failed");
}
return 0;
}
static std::map<void *, uint64_t>
applySpecificSectionMappings(RuntimeDyldChecker &Checker) {
std::map<void*, uint64_t> SpecificMappings;
for (StringRef Mapping : SpecificSectionMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
std::string SectionIDStr = Mapping.substr(0, EqualsIdx);
size_t ComaIdx = Mapping.find_first_of(",");
if (ComaIdx == StringRef::npos) {
errs() << "Invalid section specification '" << Mapping
<< "'. Should be '<file name>,<section name>=<addr>'\n";
exit(1);
}
std::string FileName = SectionIDStr.substr(0, ComaIdx);
std::string SectionName = SectionIDStr.substr(ComaIdx + 1);
uint64_t OldAddrInt;
std::string ErrorMsg;
std::tie(OldAddrInt, ErrorMsg) =
Checker.getSectionAddr(FileName, SectionName, true);
if (ErrorMsg != "") {
errs() << ErrorMsg;
exit(1);
}
void* OldAddr = reinterpret_cast<void*>(static_cast<uintptr_t>(OldAddrInt));
std::string NewAddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t NewAddr;
if (StringRef(NewAddrStr).getAsInteger(0, NewAddr)) {
errs() << "Invalid section address in mapping '" << Mapping << "'.\n";
exit(1);
}
Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr);
SpecificMappings[OldAddr] = NewAddr;
}
return SpecificMappings;
}
// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target addres range starts.
// -target-addr-end <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
// end of one section and the start of the next.
// Defaults to zero. Set to something big
// (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple,
TrivialMemoryManager &MemMgr,
RuntimeDyldChecker &Checker) {
// Set up a work list (section addr/size pairs).
typedef std::list<std::pair<void*, uint64_t>> WorklistT;
WorklistT Worklist;
for (const auto& CodeSection : MemMgr.FunctionMemory)
Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size()));
for (const auto& DataSection : MemMgr.DataMemory)
Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size()));
// Apply any section-specific mappings that were requested on the command
// line.
typedef std::map<void*, uint64_t> AppliedMappingsT;
AppliedMappingsT AppliedMappings = applySpecificSectionMappings(Checker);
// Keep an "already allocated" mapping of section target addresses to sizes.
// Sections whose address mappings aren't specified on the command line will
// allocated around the explicitly mapped sections while maintaining the
// minimum separation.
std::map<uint64_t, uint64_t> AlreadyAllocated;
// Move the previously applied mappings into the already-allocated map.
for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
I != E;) {
WorklistT::iterator Tmp = I;
++I;
AppliedMappingsT::iterator AI = AppliedMappings.find(Tmp->first);
if (AI != AppliedMappings.end()) {
AlreadyAllocated[AI->second] = Tmp->second;
Worklist.erase(Tmp);
}
}
// If the -target-addr-end option wasn't explicitly passed, then set it to a
// sensible default based on the target triple.
if (TargetAddrEnd.getNumOccurrences() == 0) {
if (TargetTriple.isArch16Bit())
TargetAddrEnd = (1ULL << 16) - 1;
else if (TargetTriple.isArch32Bit())
TargetAddrEnd = (1ULL << 32) - 1;
// TargetAddrEnd already has a sensible default for 64-bit systems, so
// there's nothing to do in the 64-bit case.
}
// Process any elements remaining in the worklist.
while (!Worklist.empty()) {
std::pair<void*, uint64_t> CurEntry = Worklist.front();
Worklist.pop_front();
uint64_t NextSectionAddr = TargetAddrStart;
for (const auto &Alloc : AlreadyAllocated)
if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first)
break;
else
NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;
AlreadyAllocated[NextSectionAddr] = CurEntry.second;
Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr);
}
// Add dummy symbols to the memory manager.
for (const auto &Mapping : DummySymbolMappings) {
size_t EqualsIdx = Mapping.find_first_of("=");
if (EqualsIdx == StringRef::npos) {
errs() << "Invalid dummy symbol specification '" << Mapping
<< "'. Should be '<symbol name>=<addr>'\n";
exit(1);
}
std::string Symbol = Mapping.substr(0, EqualsIdx);
std::string AddrStr = Mapping.substr(EqualsIdx + 1);
uint64_t Addr;
if (StringRef(AddrStr).getAsInteger(0, Addr)) {
errs() << "Invalid symbol mapping '" << Mapping << "'.\n";
exit(1);
}
MemMgr.addDummySymbol(Symbol, Addr);
}
}
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "") {
llvm::errs() << "Error: -triple required when running in -verify mode.\n";
return 1;
}
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget) {
llvm::errs() << "Error accessing target '" << TripleName << "': "
<< ErrorStr << "\n";
return 1;
}
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
assert(STI && "Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
assert(MRI && "Unable to create target register info!");
std::unique_ptr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
assert(MAI && "Unable to create target asm info!");
MCContext Ctx(MAI.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
assert(Disassembler && "Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
Dyld.setProcessAllSections(true);
RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(),
llvm::dbgs());
// FIXME: Preserve buffers until resolveRelocations time to work around a bug
// in RuntimeDyldELF.
// This fixme should be fixed ASAP. This is a very brittle workaround.
std::vector<std::unique_ptr<MemoryBuffer>> InputBuffers;
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
InputBuffers.push_back(std::move(*InputBuffer));
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
return Error(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space and add
// dummy symbols.
remapSectionsAndSymbols(TheTriple, MemMgr, Checker);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(Checker);
if (Dyld.hasError()) {
errs() << "RTDyld reported an error applying relocations:\n "
<< Dyld.getErrorString() << "\n";
ErrorCode = 1;
}
return ErrorCode;
}
int __cdecl main(int argc, char **argv) { // HLSL Change - __cdecl
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
ProgramName = argv[0];
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllDisassemblers();
cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");
switch (Action) {
case AC_Execute:
return executeInput();
case AC_PrintDebugLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */ true);
case AC_PrintLineInfo:
return printLineInfoForInput(/* LoadObjects */ true,/* UseDebugObj */false);
case AC_PrintObjectLineInfo:
return printLineInfoForInput(/* LoadObjects */false,/* UseDebugObj */false);
case AC_Verify:
return linkAndVerify();
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-rtdyld/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
DebugInfoDWARF
ExecutionEngine
MC
Object
RuntimeDyld
Support
)
add_llvm_tool(llvm-rtdyld
llvm-rtdyld.cpp
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-rtdyld/LLVMBuild.txt | ;===- ./tools/llvm-rtdyld/LLVMBuild.txt ------------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llvm-rtdyld
parent = Tools
required_libraries = MC Object RuntimeDyld Support all-targets
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/main.c | /*===-- main.c - tool for testing libLLVM and llvm-c API ------------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* Main file for llvm-c-tests. "Parses" arguments and dispatches. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/BitReader.h"
#include "llvm-c/Core.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static void print_usage(void) {
fprintf(stderr, "llvm-c-test command\n\n");
fprintf(stderr, " Commands:\n");
fprintf(stderr, " * --module-dump\n");
fprintf(stderr, " Read bytecode from stdin - print disassembly\n\n");
fprintf(stderr, " * --module-list-functions\n");
fprintf(stderr,
" Read bytecode from stdin - list summary of functions\n\n");
fprintf(stderr, " * --module-list-globals\n");
fprintf(stderr, " Read bytecode from stdin - list summary of globals\n\n");
fprintf(stderr, " * --targets-list\n");
fprintf(stderr, " List available targets\n\n");
fprintf(stderr, " * --object-list-sections\n");
fprintf(stderr, " Read object file form stdin - list sections\n\n");
fprintf(stderr, " * --object-list-symbols\n");
fprintf(stderr,
" Read object file form stdin - list symbols (like nm)\n\n");
fprintf(stderr, " * --disassemble\n");
fprintf(stderr, " Read lines of triple, hex ascii machine code from stdin "
"- print disassembly\n\n");
fprintf(stderr, " * --calc\n");
fprintf(
stderr,
" Read lines of name, rpn from stdin - print generated module\n\n");
}
// HLSL Change: changed calling convention to __cdecl
int __cdecl main(int argc, char **argv) {
LLVMPassRegistryRef pr = LLVMGetGlobalPassRegistry();
LLVMInitializeCore(pr);
if (argc == 2 && !strcmp(argv[1], "--module-dump")) {
return module_dump();
} else if (argc == 2 && !strcmp(argv[1], "--module-list-functions")) {
return module_list_functions();
} else if (argc == 2 && !strcmp(argv[1], "--module-list-globals")) {
return module_list_globals();
} else if (argc == 2 && !strcmp(argv[1], "--targets-list")) {
return targets_list();
} else if (argc == 2 && !strcmp(argv[1], "--object-list-sections")) {
return object_list_sections();
} else if (argc == 2 && !strcmp(argv[1], "--object-list-symbols")) {
return object_list_symbols();
} else if (argc == 2 && !strcmp(argv[1], "--disassemble")) {
return disassemble();
} else if (argc == 2 && !strcmp(argv[1], "--calc")) {
return calc();
} else if (argc == 2 && !strcmp(argv[1], "--add-named-metadata-operand")) {
return add_named_metadata_operand();
} else if (argc == 2 && !strcmp(argv[1], "--set-metadata")) {
return set_metadata();
} else {
print_usage();
}
return 1;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/include-all.c | /*===-- include-all.c - tool for testing libLLVM and llvm-c API -----------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file doesn't have any actual code. It just make sure that all *|
|* the llvm-c include files are good and doesn't generate any warnings *|
|* *|
\*===----------------------------------------------------------------------===*/
// FIXME: Autogenerate this list
#include "llvm-c/Analysis.h"
#include "llvm-c/BitReader.h"
#include "llvm-c/BitWriter.h"
#include "llvm-c/Core.h"
#include "llvm-c/Disassembler.h"
#include "llvm-c/ExecutionEngine.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/LinkTimeOptimizer.h"
#include "llvm-c/Linker.h"
#include "llvm-c/Object.h"
#include "llvm-c/Target.h"
#include "llvm-c/TargetMachine.h"
#include "llvm-c/Transforms/IPO.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm-c/Transforms/Scalar.h"
#include "llvm-c/Transforms/Vectorize.h"
#include "llvm-c/lto.h"
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/object.c | /*===-- object.c - tool for testing libLLVM and llvm-c API ----------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --object-list-sections and --object-list-symbols *|
|* commands in llvm-c-test. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/Object.h"
#include <stdio.h>
#include <stdlib.h>
int object_list_sections(void) {
LLVMMemoryBufferRef MB;
LLVMObjectFileRef O;
LLVMSectionIteratorRef sect;
char *msg = NULL;
if (LLVMCreateMemoryBufferWithSTDIN(&MB, &msg)) {
fprintf(stderr, "Error reading file: %s\n", msg);
exit(1);
}
O = LLVMCreateObjectFile(MB);
if (!O) {
fprintf(stderr, "Error reading object\n");
exit(1);
}
sect = LLVMGetSections(O);
while (!LLVMIsSectionIteratorAtEnd(O, sect)) {
printf("'%s': @0x%08" PRIx64 " +%" PRIu64 "\n", LLVMGetSectionName(sect),
LLVMGetSectionAddress(sect), LLVMGetSectionSize(sect));
LLVMMoveToNextSection(sect);
}
LLVMDisposeSectionIterator(sect);
LLVMDisposeObjectFile(O);
return 0;
}
int object_list_symbols(void) {
LLVMMemoryBufferRef MB;
LLVMObjectFileRef O;
LLVMSectionIteratorRef sect;
LLVMSymbolIteratorRef sym;
char *msg = NULL;
if (LLVMCreateMemoryBufferWithSTDIN(&MB, &msg)) {
fprintf(stderr, "Error reading file: %s\n", msg);
exit(1);
}
O = LLVMCreateObjectFile(MB);
if (!O) {
fprintf(stderr, "Error reading object\n");
exit(1);
}
sect = LLVMGetSections(O);
sym = LLVMGetSymbols(O);
while (!LLVMIsSymbolIteratorAtEnd(O, sym)) {
LLVMMoveToContainingSection(sect, sym);
printf("%s @0x%08" PRIx64 " +%" PRIu64 " (%s)\n", LLVMGetSymbolName(sym),
LLVMGetSymbolAddress(sym), LLVMGetSymbolSize(sym),
LLVMGetSectionName(sect));
LLVMMoveToNextSymbol(sym);
}
LLVMDisposeSymbolIterator(sym);
LLVMDisposeObjectFile(O);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/calc.c | /*===-- calc.c - tool for testing libLLVM and llvm-c API ------------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --calc command in llvm-c-test. --calc reads lines *|
|* from stdin, parses them as a name and an expression in reverse polish *|
|* notation and prints a module with a function with the expression. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/Core.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
typedef LLVMValueRef (*binop_func_t)(LLVMBuilderRef, LLVMValueRef LHS,
LLVMValueRef RHS, const char *Name);
static LLVMOpcode op_to_opcode(char op) {
switch (op) {
case '+': return LLVMAdd;
case '-': return LLVMSub;
case '*': return LLVMMul;
case '/': return LLVMSDiv;
case '&': return LLVMAnd;
case '|': return LLVMOr;
case '^': return LLVMXor;
}
assert(0 && "unknown operation");
return 0;
}
#define MAX_DEPTH 32
static LLVMValueRef build_from_tokens(char **tokens, int ntokens,
LLVMBuilderRef builder,
LLVMValueRef param) {
LLVMValueRef stack[MAX_DEPTH];
int depth = 0;
int i;
for (i = 0; i < ntokens; i++) {
char tok = tokens[i][0];
switch (tok) {
case '+':
case '-':
case '*':
case '/':
case '&':
case '|':
case '^':
if (depth < 2) {
printf("stack underflow\n");
return NULL;
}
stack[depth - 2] = LLVMBuildBinOp(builder, op_to_opcode(tok),
stack[depth - 1], stack[depth - 2], "");
depth--;
break;
case '@': {
LLVMValueRef off;
if (depth < 1) {
printf("stack underflow\n");
return NULL;
}
off = LLVMBuildGEP(builder, param, &stack[depth - 1], 1, "");
stack[depth - 1] = LLVMBuildLoad(builder, off, "");
break;
}
default: {
char *end;
long val = strtol(tokens[i], &end, 0);
if (end[0] != '\0') {
printf("error parsing number\n");
return NULL;
}
if (depth >= MAX_DEPTH) {
printf("stack overflow\n");
return NULL;
}
stack[depth++] = LLVMConstInt(LLVMInt64Type(), val, 1);
break;
}
}
}
if (depth < 1) {
printf("stack underflow at return\n");
return NULL;
}
LLVMBuildRet(builder, stack[depth - 1]);
return stack[depth - 1];
}
static void handle_line(char **tokens, int ntokens) {
char *name = tokens[0];
LLVMValueRef param;
LLVMValueRef res;
LLVMModuleRef M = LLVMModuleCreateWithName(name);
LLVMTypeRef I64ty = LLVMInt64Type();
LLVMTypeRef I64Ptrty = LLVMPointerType(I64ty, 0);
LLVMTypeRef Fty = LLVMFunctionType(I64ty, &I64Ptrty, 1, 0);
LLVMValueRef F = LLVMAddFunction(M, name, Fty);
LLVMBuilderRef builder = LLVMCreateBuilder();
LLVMPositionBuilderAtEnd(builder, LLVMAppendBasicBlock(F, "entry"));
LLVMGetParams(F, ¶m);
LLVMSetValueName(param, "in");
res = build_from_tokens(tokens + 1, ntokens - 1, builder, param);
if (res) {
char *irstr = LLVMPrintModuleToString(M);
puts(irstr);
LLVMDisposeMessage(irstr);
}
LLVMDisposeBuilder(builder);
LLVMDisposeModule(M);
}
int calc(void) {
tokenize_stdin(handle_line);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
BitReader
Core
MCDisassembler
Object
Target
)
# We should only have llvm-c-test use libLLVM if libLLVM is built with the
# default list of components. Using libLLVM with custom components can result in
# build failures.
set (USE_LLVM_DYLIB FALSE)
if (TARGET LLVM)
set (USE_LLVM_DYLIB TRUE)
if (DEFINED LLVM_DYLIB_COMPONENTS)
foreach(c in ${LLVM_LINK_COMPONENTS})
list(FIND LLVM_DYLIB_COMPONENTS ${c} C_IDX)
if (C_IDX EQUAL -1)
set(USE_LLVM_DYLIB FALSE)
break()
endif()
endforeach()
endif()
endif()
if(USE_LLVM_DYLIB)
set(LLVM_LINK_COMPONENTS)
endif()
if (LLVM_COMPILER_IS_GCC_COMPATIBLE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=gnu99 -Wstrict-prototypes")
endif ()
add_llvm_tool(llvm-c-test
calc.c
disassemble.c
helpers.c
include-all.c
main.c
module.c
metadata.c
object.c
targets.c
)
if(USE_LLVM_DYLIB)
target_link_libraries(llvm-c-test LLVM)
endif()
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/llvm-c-test.h | /*===-- llvm-c-test.h - tool for testing libLLVM and llvm-c API -----------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* Header file for llvm-c-test *|
|* *|
\*===----------------------------------------------------------------------===*/
#define LLVM_C_TEST_H
// helpers.c
void tokenize_stdin(void (*cb)(char **tokens, int ntokens));
// module.c
int module_dump(void);
int module_list_functions(void);
int module_list_globals(void);
// calc.c
int calc(void);
// disassemble.c
int disassemble(void);
// metadata.c
int add_named_metadata_operand(void);
int set_metadata(void);
// object.c
int object_list_sections(void);
int object_list_symbols(void);
// targets.c
int targets_list(void);
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/targets.c | /*===-- targets.c - tool for testing libLLVM and llvm-c API ---------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --targets command in llvm-c-test. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c/TargetMachine.h"
#include <stdio.h>
int targets_list(void) {
LLVMTargetRef t;
LLVMInitializeAllTargetInfos();
LLVMInitializeAllTargets();
for (t = LLVMGetFirstTarget(); t; t = LLVMGetNextTarget(t)) {
printf("%s", LLVMGetTargetName(t));
if (LLVMTargetHasJIT(t))
printf(" (+jit)");
printf("\n - %s\n", LLVMGetTargetDescription(t));
}
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/disassemble.c | /*===-- disassemble.c - tool for testing libLLVM and llvm-c API -----------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --disassemble command in llvm-c-test. *|
|* --disassemble reads lines from stdin, parses them as a triple and hex *|
|* machine code, and prints disassembly of the machine code. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/Disassembler.h"
#include "llvm-c/Target.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static void pprint(int pos, unsigned char *buf, int len, const char *disasm) {
int i;
printf("%04x: ", pos);
for (i = 0; i < 8; i++) {
if (i < len) {
printf("%02x ", buf[i]);
} else {
printf(" ");
}
}
printf(" %s\n", disasm);
}
static void do_disassemble(const char *triple, const char *features,
unsigned char *buf, int siz) {
LLVMDisasmContextRef D = LLVMCreateDisasmCPUFeatures(triple, "", features,
NULL, 0, NULL, NULL);
char outline[1024];
int pos;
if (!D) {
printf("ERROR: Couldn't create disassembler for triple %s\n", triple);
return;
}
pos = 0;
while (pos < siz) {
size_t l = LLVMDisasmInstruction(D, buf + pos, siz - pos, 0, outline,
sizeof(outline));
if (!l) {
pprint(pos, buf + pos, 1, "\t???");
pos++;
} else {
pprint(pos, buf + pos, l, outline);
pos += l;
}
}
LLVMDisasmDispose(D);
}
static void handle_line(char **tokens, int ntokens) {
unsigned char disbuf[128];
size_t disbuflen = 0;
const char *triple = tokens[0];
const char *features = tokens[1];
int i;
printf("triple: %s, features: %s\n", triple, features);
if (!strcmp(features, "NULL"))
features = "";
for (i = 2; i < ntokens; i++) {
disbuf[disbuflen++] = strtol(tokens[i], NULL, 16);
if (disbuflen >= sizeof(disbuf)) {
fprintf(stderr, "Warning: Too long line, truncating\n");
break;
}
}
do_disassemble(triple, features, disbuf, disbuflen);
}
int disassemble(void) {
LLVMInitializeAllTargetInfos();
LLVMInitializeAllTargetMCs();
LLVMInitializeAllDisassemblers();
tokenize_stdin(handle_line);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/module.c | /*===-- module.c - tool for testing libLLVM and llvm-c API ----------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --module-dump, --module-list-functions and *|
|* --module-list-globals commands in llvm-c-test. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/BitReader.h"
#include "llvm-c/Core.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static LLVMModuleRef load_module(void) {
LLVMMemoryBufferRef MB;
LLVMModuleRef M;
char *msg = NULL;
if (LLVMCreateMemoryBufferWithSTDIN(&MB, &msg)) {
fprintf(stderr, "Error reading file: %s\n", msg);
exit(1);
}
if (LLVMParseBitcode(MB, &M, &msg)) {
fprintf(stderr, "Error parsing bitcode: %s\n", msg);
LLVMDisposeMemoryBuffer(MB);
exit(1);
}
LLVMDisposeMemoryBuffer(MB);
return M;
}
int module_dump(void) {
LLVMModuleRef M = load_module();
char *irstr = LLVMPrintModuleToString(M);
puts(irstr);
LLVMDisposeMessage(irstr);
LLVMDisposeModule(M);
return 0;
}
int module_list_functions(void) {
LLVMModuleRef M = load_module();
LLVMValueRef f;
f = LLVMGetFirstFunction(M);
while (f) {
if (LLVMIsDeclaration(f)) {
printf("FunctionDeclaration: %s\n", LLVMGetValueName(f));
} else {
LLVMBasicBlockRef bb;
LLVMValueRef isn;
unsigned nisn = 0;
unsigned nbb = 0;
printf("FunctionDefinition: %s [#bb=%u]\n", LLVMGetValueName(f),
LLVMCountBasicBlocks(f));
for (bb = LLVMGetFirstBasicBlock(f); bb;
bb = LLVMGetNextBasicBlock(bb)) {
nbb++;
for (isn = LLVMGetFirstInstruction(bb); isn;
isn = LLVMGetNextInstruction(isn)) {
nisn++;
if (LLVMIsACallInst(isn)) {
LLVMValueRef callee =
LLVMGetOperand(isn, LLVMGetNumOperands(isn) - 1);
printf(" calls: %s\n", LLVMGetValueName(callee));
}
}
}
printf(" #isn: %u\n", nisn);
printf(" #bb: %u\n\n", nbb);
}
f = LLVMGetNextFunction(f);
}
LLVMDisposeModule(M);
return 0;
}
int module_list_globals(void) {
LLVMModuleRef M = load_module();
LLVMValueRef g;
g = LLVMGetFirstGlobal(M);
while (g) {
LLVMTypeRef T = LLVMTypeOf(g);
char *s = LLVMPrintTypeToString(T);
printf("Global%s: %s %s\n",
LLVMIsDeclaration(g) ? "Declaration" : "Definition",
LLVMGetValueName(g), s);
LLVMDisposeMessage(s);
g = LLVMGetNextGlobal(g);
}
LLVMDisposeModule(M);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/metadata.c | /*===-- object.c - tool for testing libLLVM and llvm-c API ----------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* This file implements the --add-named-metadata-operand and --set-metadata *|
|* commands in llvm-c-test. *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include "llvm-c/Core.h"
int add_named_metadata_operand(void) {
LLVMModuleRef m = LLVMModuleCreateWithName("Mod");
LLVMValueRef values[] = { LLVMConstInt(LLVMInt32Type(), 0, 0) };
// This used to trigger an assertion
LLVMAddNamedMetadataOperand(m, "name", LLVMMDNode(values, 1));
LLVMDisposeModule(m);
return 0;
}
int set_metadata(void) {
LLVMBuilderRef b = LLVMCreateBuilder();
LLVMValueRef values[] = { LLVMConstInt(LLVMInt32Type(), 0, 0) };
// This used to trigger an assertion
LLVMSetMetadata(
LLVMBuildRetVoid(b),
LLVMGetMDKindID("kind", 4),
LLVMMDNode(values, 1));
LLVMDisposeBuilder(b);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-c-test/helpers.c | /*===-- helpers.c - tool for testing libLLVM and llvm-c API ---------------===*\
|* *|
|* The LLVM Compiler Infrastructure *|
|* *|
|* This file is distributed under the University of Illinois Open Source *|
|* License. See LICENSE.TXT for details. *|
|* *|
|*===----------------------------------------------------------------------===*|
|* *|
|* Helper functions *|
|* *|
\*===----------------------------------------------------------------------===*/
#include "llvm-c-test.h"
#include <stdio.h>
#include <string.h>
#define MAX_TOKENS 512
#define MAX_LINE_LEN 1024
void tokenize_stdin(void (*cb)(char **tokens, int ntokens)) {
char line[MAX_LINE_LEN];
char *tokbuf[MAX_TOKENS];
while (fgets(line, sizeof(line), stdin)) {
int c = 0;
if (line[0] == ';' || line[0] == '\n')
continue;
while (c < MAX_TOKENS) {
tokbuf[c] = strtok(c ? NULL : line, " \n");
if (!tokbuf[c])
break;
c++;
}
if (c)
cb(tokbuf, c);
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/MachODump.cpp | //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
#if HAVE_CXXABI_H
#include <cxxabi.h>
#endif
using namespace llvm;
using namespace object;
static cl::opt<bool>
UseDbg("g",
cl::desc("Print line information from debug info if available"));
static cl::opt<std::string> DSYMFile("dsym",
cl::desc("Use .dSYM file for debug info"));
static cl::opt<bool> FullLeadingAddr("full-leading-addr",
cl::desc("Print full leading address"));
static cl::opt<bool> NoLeadingAddr("no-leading-addr",
cl::desc("Print no leading address"));
cl::opt<bool> llvm::UniversalHeaders("universal-headers",
cl::desc("Print Mach-O universal headers "
"(requires -macho)"));
cl::opt<bool>
llvm::ArchiveHeaders("archive-headers",
cl::desc("Print archive headers for Mach-O archives "
"(requires -macho)"));
cl::opt<bool>
ArchiveMemberOffsets("archive-member-offsets",
cl::desc("Print the offset to each archive member for "
"Mach-O archives (requires -macho and "
"-archive-headers)"));
cl::opt<bool>
llvm::IndirectSymbols("indirect-symbols",
cl::desc("Print indirect symbol table for Mach-O "
"objects (requires -macho)"));
cl::opt<bool>
llvm::DataInCode("data-in-code",
cl::desc("Print the data in code table for Mach-O objects "
"(requires -macho)"));
cl::opt<bool>
llvm::LinkOptHints("link-opt-hints",
cl::desc("Print the linker optimization hints for "
"Mach-O objects (requires -macho)"));
cl::list<std::string>
llvm::DumpSections("section",
cl::desc("Prints the specified segment,section for "
"Mach-O objects (requires -macho)"));
cl::opt<bool>
llvm::InfoPlist("info-plist",
cl::desc("Print the info plist section as strings for "
"Mach-O objects (requires -macho)"));
cl::opt<bool>
llvm::DylibsUsed("dylibs-used",
cl::desc("Print the shared libraries used for linked "
"Mach-O files (requires -macho)"));
cl::opt<bool>
llvm::DylibId("dylib-id",
cl::desc("Print the shared library's id for the dylib Mach-O "
"file (requires -macho)"));
cl::opt<bool>
llvm::NonVerbose("non-verbose",
cl::desc("Print the info for Mach-O objects in "
"non-verbose or numeric form (requires -macho)"));
cl::opt<bool>
llvm::ObjcMetaData("objc-meta-data",
cl::desc("Print the Objective-C runtime meta data for "
"Mach-O files (requires -macho)"));
cl::opt<std::string> llvm::DisSymName(
"dis-symname",
cl::desc("disassemble just this symbol's instructions (requires -macho"));
static cl::opt<bool> NoSymbolicOperands(
"no-symbolic-operands",
cl::desc("do not symbolic operands when disassembling (requires -macho)"));
static cl::list<std::string>
ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
cl::ZeroOrMore);
bool ArchAll = false;
static std::string ThumbTripleName;
static const Target *GetTarget(const MachOObjectFile *MachOObj,
const char **McpuDefault,
const Target **ThumbTarget) {
// Figure out the target triple.
if (TripleName.empty()) {
llvm::Triple TT("unknown-unknown-unknown");
llvm::Triple ThumbTriple = Triple();
TT = MachOObj->getArch(McpuDefault, &ThumbTriple);
TripleName = TT.str();
ThumbTripleName = ThumbTriple.str();
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget && ThumbTripleName.empty())
return TheTarget;
*ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
if (*ThumbTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '";
if (!TheTarget)
errs() << TripleName;
else
errs() << ThumbTripleName;
errs() << "', see --version and --triple.\n";
return nullptr;
}
struct SymbolSorter {
bool operator()(const SymbolRef &A, const SymbolRef &B) {
uint64_t AAddr = (A.getType() != SymbolRef::ST_Function) ? 0 : A.getValue();
uint64_t BAddr = (B.getType() != SymbolRef::ST_Function) ? 0 : B.getValue();
return AAddr < BAddr;
}
};
// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;
// This is used to search for a data in code table entry for the PC being
// disassembled. The j parameter has the PC in j.first. A single data in code
// table entry can cover many bytes for each of its Kind's. So if the offset,
// aka the i.first value, of the data in code table entry plus its Length
// covers the PC being searched for this will return true. If not it will
// return false.
static bool compareDiceTableEntries(const DiceTableEntry &i,
const DiceTableEntry &j) {
uint16_t Length;
i.second.getLength(Length);
return j.first >= i.first && j.first < i.first + Length;
}
static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
unsigned short Kind) {
uint32_t Value, Size = 1;
switch (Kind) {
default:
case MachO::DICE_KIND_DATA:
if (Length >= 4) {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 4), outs());
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
Size = 4;
} else if (Length >= 2) {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << Value;
Size = 2;
} else {
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[0];
outs() << "\t.byte " << Value;
Size = 1;
}
if (Kind == MachO::DICE_KIND_DATA)
outs() << "\t@ KIND_DATA\n";
else
outs() << "\t@ data in code kind = " << Kind << "\n";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 1), outs());
Value = bytes[0];
outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
Size = 1;
break;
case MachO::DICE_KIND_JUMP_TABLE16:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 2), outs());
Value = bytes[1] << 8 | bytes[0];
outs() << "\t.short " << format("%5u", Value & 0xffff)
<< "\t@ KIND_JUMP_TABLE16\n";
Size = 2;
break;
case MachO::DICE_KIND_JUMP_TABLE32:
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
if (!NoShowRawInsn)
dumpBytes(ArrayRef<uint8_t>(bytes, 4), outs());
Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
outs() << "\t.long " << Value;
if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
outs() << "\t@ KIND_JUMP_TABLE32\n";
else
outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
Size = 4;
break;
}
return Size;
}
static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
std::vector<SectionRef> &Sections,
std::vector<SymbolRef> &Symbols,
SmallVectorImpl<uint64_t> &FoundFns,
uint64_t &BaseSegmentAddress) {
for (const SymbolRef &Symbol : MachOObj->symbols()) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
if (!SymName->startswith("ltmp"))
Symbols.push_back(Symbol);
}
for (const SectionRef &Section : MachOObj->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
bool BaseSegmentAddressSet = false;
for (const auto &Command : MachOObj->load_commands()) {
if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
// We found a function starts segment, parse the addresses for later
// consumption.
MachO::linkedit_data_command LLC =
MachOObj->getLinkeditDataLoadCommand(Command);
MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
} else if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
StringRef SegName = SLC.segname;
if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
BaseSegmentAddressSet = true;
BaseSegmentAddress = SLC.vmaddr;
}
}
}
}
static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
uint32_t n, uint32_t count,
uint32_t stride, uint64_t addr) {
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t nindirectsyms = Dysymtab.nindirectsyms;
if (n > nindirectsyms)
outs() << " (entries start past the end of the indirect symbol "
"table) (reserved1 field greater than the table size)";
else if (n + count > nindirectsyms)
outs() << " (entries extends past the end of the indirect symbol "
"table)";
outs() << "\n";
uint32_t cputype = O->getHeader().cputype;
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << "address index";
else
outs() << "address index";
if (verbose)
outs() << " name\n";
else
outs() << "\n";
for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
if (cputype & MachO::CPU_ARCH_ABI64)
outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
else
outs() << format("0x%08" PRIx32, addr + j * stride) << " ";
MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
outs() << "LOCAL\n";
continue;
}
if (indirect_symbol ==
(MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
outs() << "LOCAL ABSOLUTE\n";
continue;
}
if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
outs() << "ABSOLUTE\n";
continue;
}
outs() << format("%5u ", indirect_symbol);
if (verbose) {
MachO::symtab_command Symtab = O->getSymtabLoadCommand();
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
outs() << *SymName;
} else {
outs() << "?";
}
}
outs() << "\n";
}
}
static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
for (const auto &Load : O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0) {
outs() << "Can't print indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") "
<< "(size of stubs in reserved2 field is zero)\n";
continue;
}
uint32_t count = Sec.size / stride;
outs() << "Indirect symbols for (" << Sec.segname << ","
<< Sec.sectname << ") " << count << " entries";
uint32_t n = Sec.reserved1;
PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
}
}
}
}
}
static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
outs() << "Data in code table (" << nentries << " entries)\n";
outs() << "offset length kind\n";
for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
++DI) {
uint32_t Offset;
DI->getOffset(Offset);
outs() << format("0x%08" PRIx32, Offset) << " ";
uint16_t Length;
DI->getLength(Length);
outs() << format("%6u", Length) << " ";
uint16_t Kind;
DI->getKind(Kind);
if (verbose) {
switch (Kind) {
case MachO::DICE_KIND_DATA:
outs() << "DATA";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
outs() << "JUMP_TABLE8";
break;
case MachO::DICE_KIND_JUMP_TABLE16:
outs() << "JUMP_TABLE16";
break;
case MachO::DICE_KIND_JUMP_TABLE32:
outs() << "JUMP_TABLE32";
break;
case MachO::DICE_KIND_ABS_JUMP_TABLE32:
outs() << "ABS_JUMP_TABLE32";
break;
default:
outs() << format("0x%04" PRIx32, Kind);
break;
}
} else
outs() << format("0x%04" PRIx32, Kind);
outs() << "\n";
}
}
static void PrintLinkOptHints(MachOObjectFile *O) {
MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
uint32_t nloh = LohLC.datasize;
outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
for (uint32_t i = 0; i < nloh;) {
unsigned n;
uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " identifier " << identifier << " ";
if (i >= nloh)
return;
switch (identifier) {
case 1:
outs() << "AdrpAdrp\n";
break;
case 2:
outs() << "AdrpLdr\n";
break;
case 3:
outs() << "AdrpAddLdr\n";
break;
case 4:
outs() << "AdrpLdrGotLdr\n";
break;
case 5:
outs() << "AdrpAddStr\n";
break;
case 6:
outs() << "AdrpLdrGotStr\n";
break;
case 7:
outs() << "AdrpAdd\n";
break;
case 8:
outs() << "AdrpLdrGot\n";
break;
default:
outs() << "Unknown identifier value\n";
break;
}
uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << " narguments " << narguments << "\n";
if (i >= nloh)
return;
for (uint32_t j = 0; j < narguments; j++) {
uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
i += n;
outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
if (i >= nloh)
return;
}
}
}
static void PrintDylibs(MachOObjectFile *O, bool JustId) {
unsigned Index = 0;
for (const auto &Load : O->load_commands()) {
if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
(!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
if (dl.dylib.name < dl.cmdsize) {
const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
if (JustId)
outs() << p << "\n";
else {
outs() << "\t" << p;
outs() << " (compatibility version "
<< ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << ",";
outs() << " current version "
<< ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << ")\n";
}
} else {
outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
if (Load.C.cmd == MachO::LC_ID_DYLIB)
outs() << "LC_ID_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
outs() << "LC_LOAD_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << "LC_LOAD_WEAK_DYLIB ";
else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << "LC_LAZY_LOAD_DYLIB ";
else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << "LC_REEXPORT_DYLIB ";
else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << "LC_LOAD_UPWARD_DYLIB ";
else
outs() << "LC_??? ";
outs() << "command " << Index++ << "\n";
}
}
}
}
typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
static void CreateSymbolAddressMap(MachOObjectFile *O,
SymbolAddressMap *AddrMap) {
// Create a map of symbol addresses to symbol names.
for (const SymbolRef &Symbol : O->symbols()) {
SymbolRef::Type ST = Symbol.getType();
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address = Symbol.getValue();
ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
if (!SymName.startswith(".objc"))
(*AddrMap)[Address] = SymName;
}
}
}
// GuessSymbolName is passed the address of what might be a symbol and a
// pointer to the SymbolAddressMap. It returns the name of a symbol
// with that address or nullptr if no symbol is found with that address.
static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
const char *SymbolName = nullptr;
// A DenseMap can't lookup up some values.
if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
StringRef name = AddrMap->lookup(value);
if (!name.empty())
SymbolName = name.data();
}
return SymbolName;
}
static void DumpCstringChar(const char c) {
char p[2];
p[0] = c;
p[1] = '\0';
outs().write_escaped(p);
}
static void DumpCstringSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i++) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
for (; i < sect_size && sect[i] != '\0'; i++)
DumpCstringChar(sect[i]);
if (i < sect_size && sect[i] == '\0')
outs() << "\n";
}
}
static void DumpLiteral4(uint32_t l, float f) {
outs() << format("0x%08" PRIx32, l);
if ((l & 0x7f800000) != 0x7f800000)
outs() << format(" (%.16e)\n", f);
else {
if (l == 0x7f800000)
outs() << " (+Infinity)\n";
else if (l == 0xff800000)
outs() << " (-Infinity)\n";
else if ((l & 0x00400000) == 0x00400000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
float f;
memcpy(&f, sect + i, sizeof(float));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(f);
uint32_t l;
memcpy(&l, sect + i, sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(l);
DumpLiteral4(l, f);
}
}
static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
double d) {
outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
uint32_t Hi, Lo;
if (O->isLittleEndian()) {
Hi = l1;
Lo = l0;
} else {
Hi = l0;
Lo = l1;
}
// Hi is the high word, so this is equivalent to if(isfinite(d))
if ((Hi & 0x7ff00000) != 0x7ff00000)
outs() << format(" (%.16e)\n", d);
else {
if (Hi == 0x7ff00000 && Lo == 0)
outs() << " (+Infinity)\n";
else if (Hi == 0xfff00000 && Lo == 0)
outs() << " (-Infinity)\n";
else if ((Hi & 0x00080000) == 0x00080000)
outs() << " (non-signaling Not-a-Number)\n";
else
outs() << " (signaling Not-a-Number)\n";
}
}
static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
double d;
memcpy(&d, sect + i, sizeof(double));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(d);
uint32_t l0, l1;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
}
DumpLiteral8(O, l0, l1, d);
}
}
static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
outs() << format("0x%08" PRIx32, l0) << " ";
outs() << format("0x%08" PRIx32, l1) << " ";
outs() << format("0x%08" PRIx32, l2) << " ";
outs() << format("0x%08" PRIx32, l3) << "\n";
}
static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
bool print_addresses) {
for (uint32_t i = 0; i < sect_size; i += 16) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
uint32_t l0, l1, l2, l3;
memcpy(&l0, sect + i, sizeof(uint32_t));
memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
sys::swapByteOrder(l2);
sys::swapByteOrder(l3);
}
DumpLiteral16(l0, l1, l2, l3);
}
}
static void DumpLiteralPointerSection(MachOObjectFile *O,
const SectionRef &Section,
const char *sect, uint32_t sect_size,
uint64_t sect_addr,
bool print_addresses) {
// Collect the literal sections in this Mach-O file.
std::vector<SectionRef> LiteralSections;
for (const SectionRef &Section : O->sections()) {
DataRefImpl Ref = Section.getRawDataRefImpl();
uint32_t section_type;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
} else {
const MachO::section Sec = O->getSection(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
}
if (section_type == MachO::S_CSTRING_LITERALS ||
section_type == MachO::S_4BYTE_LITERALS ||
section_type == MachO::S_8BYTE_LITERALS ||
section_type == MachO::S_16BYTE_LITERALS)
LiteralSections.push_back(Section);
}
// Set the size of the literal pointer.
uint32_t lp_size = O->is64Bit() ? 8 : 4;
// Collect the external relocation symbols for the literal pointers.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Section.relocations()) {
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
Rel = Reloc.getRawDataRefImpl();
RE = O->getRelocation(Rel);
isExtern = O->getPlainRelocationExternal(RE);
if (isExtern) {
uint64_t RelocOffset = Reloc.getOffset();
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Dump each literal pointer.
for (uint32_t i = 0; i < sect_size; i += lp_size) {
if (print_addresses) {
if (O->is64Bit())
outs() << format("%016" PRIx64, sect_addr + i) << " ";
else
outs() << format("%08" PRIx64, sect_addr + i) << " ";
}
uint64_t lp;
if (O->is64Bit()) {
memcpy(&lp, sect + i, sizeof(uint64_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(lp);
} else {
uint32_t li;
memcpy(&li, sect + i, sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(li);
lp = li;
}
// First look for an external relocation entry for this literal pointer.
auto Reloc = std::find_if(
Relocs.begin(), Relocs.end(),
[&](const std::pair<uint64_t, SymbolRef> &P) { return P.first == i; });
if (Reloc != Relocs.end()) {
symbol_iterator RelocSym = Reloc->second;
ErrorOr<StringRef> SymName = RelocSym->getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
outs() << "external relocation entry for symbol:" << *SymName << "\n";
continue;
}
// For local references see what the section the literal pointer points to.
auto Sect = std::find_if(LiteralSections.begin(), LiteralSections.end(),
[&](const SectionRef &R) {
return lp >= R.getAddress() &&
lp < R.getAddress() + R.getSize();
});
if (Sect == LiteralSections.end()) {
outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
continue;
}
uint64_t SectAddress = Sect->getAddress();
uint64_t SectSize = Sect->getSize();
StringRef SectName;
Sect->getName(SectName);
DataRefImpl Ref = Sect->getRawDataRefImpl();
StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
outs() << SegmentName << ":" << SectName << ":";
uint32_t section_type;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
} else {
const MachO::section Sec = O->getSection(Ref);
section_type = Sec.flags & MachO::SECTION_TYPE;
}
StringRef BytesStr;
Sect->getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
switch (section_type) {
case MachO::S_CSTRING_LITERALS:
for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
i++) {
DumpCstringChar(Contents[i]);
}
outs() << "\n";
break;
case MachO::S_4BYTE_LITERALS:
float f;
memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
uint32_t l;
memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(f);
sys::swapByteOrder(l);
}
DumpLiteral4(l, f);
break;
case MachO::S_8BYTE_LITERALS: {
double d;
memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
uint32_t l0, l1;
memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(f);
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
}
DumpLiteral8(O, l0, l1, d);
break;
}
case MachO::S_16BYTE_LITERALS: {
uint32_t l0, l1, l2, l3;
memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
sizeof(uint32_t));
memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
sizeof(uint32_t));
memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost) {
sys::swapByteOrder(l0);
sys::swapByteOrder(l1);
sys::swapByteOrder(l2);
sys::swapByteOrder(l3);
}
DumpLiteral16(l0, l1, l2, l3);
break;
}
}
}
}
static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
uint32_t sect_size, uint64_t sect_addr,
SymbolAddressMap *AddrMap,
bool verbose) {
uint32_t stride;
if (O->is64Bit())
stride = sizeof(uint64_t);
else
stride = sizeof(uint32_t);
for (uint32_t i = 0; i < sect_size; i += stride) {
const char *SymbolName = nullptr;
if (O->is64Bit()) {
outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
uint64_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%016" PRIx64, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
} else {
outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
uint32_t pointer_value;
memcpy(&pointer_value, sect + i, stride);
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
outs() << format("0x%08" PRIx32, pointer_value);
if (verbose)
SymbolName = GuessSymbolName(pointer_value, AddrMap);
}
if (SymbolName)
outs() << " " << SymbolName;
outs() << "\n";
}
}
static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
uint32_t size, uint64_t addr) {
uint32_t cputype = O->getHeader().cputype;
if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, addr) << "\t";
for (j = 0; j < 16 && i + j < size; j++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
outs() << "\n";
}
} else {
uint32_t j;
for (uint32_t i = 0; i < size; i += j, addr += j) {
if (O->is64Bit())
outs() << format("%016" PRIx64, addr) << "\t";
else
outs() << format("%08" PRIx64, sect) << "\t";
for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
j += sizeof(int32_t)) {
if (i + j + sizeof(int32_t) < size) {
uint32_t long_word;
memcpy(&long_word, sect + i + j, sizeof(int32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(long_word);
outs() << format("%08" PRIx32, long_word) << " ";
} else {
for (uint32_t k = 0; i + j + k < size; k++) {
uint8_t byte_word = *(sect + i + j);
outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
}
}
}
outs() << "\n";
}
}
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName);
static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
uint32_t size, uint32_t addr);
static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
for (unsigned i = 0; i < DumpSections.size(); ++i) {
StringRef DumpSection = DumpSections[i];
std::pair<StringRef, StringRef> DumpSegSectName;
DumpSegSectName = DumpSection.split(',');
StringRef DumpSegName, DumpSectName;
if (DumpSegSectName.second.size()) {
DumpSegName = DumpSegSectName.first;
DumpSectName = DumpSegSectName.second;
} else {
DumpSegName = "";
DumpSectName = DumpSegSectName.first;
}
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if ((DumpSegName.empty() || SegName == DumpSegName) &&
(SectName == DumpSectName)) {
uint32_t section_flags;
if (O->is64Bit()) {
const MachO::section_64 Sec = O->getSection64(Ref);
section_flags = Sec.flags;
} else {
const MachO::section Sec = O->getSection(Ref);
section_flags = Sec.flags;
}
uint32_t section_type = section_flags & MachO::SECTION_TYPE;
StringRef BytesStr;
Section.getContents(BytesStr);
const char *sect = reinterpret_cast<const char *>(BytesStr.data());
uint32_t sect_size = BytesStr.size();
uint64_t sect_addr = Section.getAddress();
outs() << "Contents of (" << SegName << "," << SectName
<< ") section\n";
if (verbose) {
if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
(section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
DisassembleMachO(Filename, O, SegName, SectName);
continue;
}
if (SegName == "__TEXT" && SectName == "__info_plist") {
outs() << sect;
continue;
}
if (SegName == "__OBJC" && SectName == "__protocol") {
DumpProtocolSection(O, sect, sect_size, sect_addr);
continue;
}
switch (section_type) {
case MachO::S_REGULAR:
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
case MachO::S_ZEROFILL:
outs() << "zerofill section and has no contents in the file\n";
break;
case MachO::S_CSTRING_LITERALS:
DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_4BYTE_LITERALS:
DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_8BYTE_LITERALS:
DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_16BYTE_LITERALS:
DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
break;
case MachO::S_LITERAL_POINTERS:
DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
!NoLeadingAddr);
break;
case MachO::S_MOD_INIT_FUNC_POINTERS:
case MachO::S_MOD_TERM_FUNC_POINTERS:
DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
verbose);
break;
default:
outs() << "Unknown section type ("
<< format("0x%08" PRIx32, section_type) << ")\n";
DumpRawSectionContents(O, sect, sect_size, sect_addr);
break;
}
} else {
if (section_type == MachO::S_ZEROFILL)
outs() << "zerofill section and has no contents in the file\n";
else
DumpRawSectionContents(O, sect, sect_size, sect_addr);
}
}
}
}
}
static void DumpInfoPlistSectionContents(StringRef Filename,
MachOObjectFile *O) {
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if (SegName == "__TEXT" && SectName == "__info_plist") {
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
Section.getContents(BytesStr);
const char *sect = reinterpret_cast<const char *>(BytesStr.data());
outs() << sect;
return;
}
}
}
// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
// and if it is and there is a list of architecture flags is specified then
// check to make sure this Mach-O file is one of those architectures or all
// architectures were specified. If not then an error is generated and this
// routine returns false. Else it returns true.
static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
bool ArchFound = false;
MachO::mach_header H;
MachO::mach_header_64 H_64;
Triple T;
if (MachO->is64Bit()) {
H_64 = MachO->MachOObjectFile::getHeader64();
T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
} else {
H = MachO->MachOObjectFile::getHeader();
T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
}
unsigned i;
for (i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == T.getArchName())
ArchFound = true;
break;
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return false;
}
}
return true;
}
static void printObjcMetaData(MachOObjectFile *O, bool verbose);
// ProcessMachO() is passed a single opened Mach-O file, which may be an
// archive member and or in a slice of a universal file. It prints the
// the file name and header info and then processes it according to the
// command line options.
static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef ArchiveMemberName = StringRef(),
StringRef ArchitectureName = StringRef()) {
// If we are doing some processing here on the Mach-O file print the header
// info. And don't print it otherwise like in the case of printing the
// UniversalHeaders or ArchiveHeaders.
if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind ||
LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
DylibsUsed || DylibId || ObjcMetaData || (DumpSections.size() != 0)) {
outs() << Filename;
if (!ArchiveMemberName.empty())
outs() << '(' << ArchiveMemberName << ')';
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << ":\n";
}
if (Disassemble)
DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
if (IndirectSymbols)
PrintIndirectSymbols(MachOOF, !NonVerbose);
if (DataInCode)
PrintDataInCodeTable(MachOOF, !NonVerbose);
if (LinkOptHints)
PrintLinkOptHints(MachOOF);
if (Relocations)
PrintRelocations(MachOOF);
if (SectionHeaders)
PrintSectionHeaders(MachOOF);
if (SectionContents)
PrintSectionContents(MachOOF);
if (DumpSections.size() != 0)
DumpSectionContents(Filename, MachOOF, !NonVerbose);
if (InfoPlist)
DumpInfoPlistSectionContents(Filename, MachOOF);
if (DylibsUsed)
PrintDylibs(MachOOF, false);
if (DylibId)
PrintDylibs(MachOOF, true);
if (SymbolTable)
PrintSymbolTable(MachOOF);
if (UnwindInfo)
printMachOUnwindInfo(MachOOF);
if (PrivateHeaders)
printMachOFileHeader(MachOOF);
if (ObjcMetaData)
printObjcMetaData(MachOOF, !NonVerbose);
if (ExportsTrie)
printExportsTrie(MachOOF);
if (Rebase)
printRebaseTable(MachOOF);
if (Bind)
printBindTable(MachOOF);
if (LazyBind)
printLazyBindTable(MachOOF);
if (WeakBind)
printWeakBindTable(MachOOF);
}
// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
outs() << " cputype (" << cputype << ")\n";
outs() << " cpusubtype (" << cpusubtype << ")\n";
}
// printCPUType() helps print_fat_headers by printing the cputype and
// pusubtype (symbolically for the one's it knows about).
static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
switch (cputype) {
case MachO::CPU_TYPE_I386:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " cputype CPU_TYPE_I386\n";
outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " cputype CPU_TYPE_X86_64\n";
outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM:
switch (cpusubtype) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " cputype CPU_TYPE_ARM\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " cputype CPU_TYPE_ARM64\n";
outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
break;
default:
printUnknownCPUType(cputype, cpusubtype);
break;
}
}
static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
bool verbose) {
outs() << "Fat headers\n";
if (verbose)
outs() << "fat_magic FAT_MAGIC\n";
else
outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
uint32_t nfat_arch = UB->getNumberOfObjects();
StringRef Buf = UB->getData();
uint64_t size = Buf.size();
uint64_t big_size = sizeof(struct MachO::fat_header) +
nfat_arch * sizeof(struct MachO::fat_arch);
outs() << "nfat_arch " << UB->getNumberOfObjects();
if (nfat_arch == 0)
outs() << " (malformed, contains zero architecture types)\n";
else if (big_size > size)
outs() << " (malformed, architectures past end of file)\n";
else
outs() << "\n";
for (uint32_t i = 0; i < nfat_arch; ++i) {
MachOUniversalBinary::ObjectForArch OFA(UB, i);
uint32_t cputype = OFA.getCPUType();
uint32_t cpusubtype = OFA.getCPUSubType();
outs() << "architecture ";
for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
uint32_t other_cputype = other_OFA.getCPUType();
uint32_t other_cpusubtype = other_OFA.getCPUSubType();
if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
(cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
(other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
outs() << "(illegal duplicate architecture) ";
break;
}
}
if (verbose) {
outs() << OFA.getArchTypeName() << "\n";
printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
} else {
outs() << i << "\n";
outs() << " cputype " << cputype << "\n";
outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
<< "\n";
}
if (verbose &&
(cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
outs() << " capabilities CPU_SUBTYPE_LIB64\n";
else
outs() << " capabilities "
<< format("0x%" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
outs() << " offset " << OFA.getOffset();
if (OFA.getOffset() > size)
outs() << " (past end of file)";
if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
outs() << "\n";
outs() << " size " << OFA.getSize();
big_size = OFA.getOffset() + OFA.getSize();
if (big_size > size)
outs() << " (past end of file)";
outs() << "\n";
outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
<< ")\n";
}
}
static void printArchiveChild(Archive::Child &C, bool verbose,
bool print_offset) {
if (print_offset)
outs() << C.getChildOffset() << "\t";
sys::fs::perms Mode = C.getAccessMode();
if (verbose) {
// FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
// But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
outs() << "-";
if (Mode & sys::fs::owner_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::owner_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::owner_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::group_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::group_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::group_exe)
outs() << "x";
else
outs() << "-";
if (Mode & sys::fs::others_read)
outs() << "r";
else
outs() << "-";
if (Mode & sys::fs::others_write)
outs() << "w";
else
outs() << "-";
if (Mode & sys::fs::others_exe)
outs() << "x";
else
outs() << "-";
} else {
outs() << format("0%o ", Mode);
}
unsigned UID = C.getUID();
outs() << format("%3d/", UID);
unsigned GID = C.getGID();
outs() << format("%-3d ", GID);
uint64_t Size = C.getRawSize();
outs() << format("%5" PRId64, Size) << " ";
StringRef RawLastModified = C.getRawLastModified();
if (verbose) {
unsigned Seconds;
if (RawLastModified.getAsInteger(10, Seconds))
outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified;
else {
// Since cime(3) returns a 26 character string of the form:
// "Sun Sep 16 01:03:52 1973\n\0"
// just print 24 characters.
time_t t = Seconds;
outs() << format("%.24s ", ctime(&t));
}
} else {
outs() << RawLastModified << " ";
}
if (verbose) {
ErrorOr<StringRef> NameOrErr = C.getName();
if (NameOrErr.getError()) {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
} else {
StringRef Name = NameOrErr.get();
outs() << Name << "\n";
}
} else {
StringRef RawName = C.getRawName();
outs() << RawName << "\n";
}
}
static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) {
if (A->hasSymbolTable()) {
Archive::child_iterator S = A->getSymbolTableChild();
Archive::Child C = *S;
printArchiveChild(C, verbose, print_offset);
}
for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); I != E;
++I) {
Archive::Child C = *I;
printArchiveChild(C, verbose, print_offset);
}
}
// ParseInputMachO() parses the named Mach-O file in Filename and handles the
// -arch flags selecting just those slices as specified by them and also parses
// archive files. Then for each individual Mach-O file ProcessMachO() is
// called to process the file based on the command line options.
void llvm::ParseInputMachO(StringRef Filename) {
// Check for -arch all and verifiy the -arch flags are valid.
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == "all") {
ArchAll = true;
} else {
if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
"'for the -arch option\n";
return;
}
}
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
if (std::error_code EC = BinaryOrErr.getError()) {
errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n";
return;
}
Binary &Bin = *BinaryOrErr.get().getBinary();
if (Archive *A = dyn_cast<Archive>(&Bin)) {
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A, !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator I = A->child_begin(), E = A->child_end();
I != E; ++I) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = I->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (!checkMachOAndArchFlags(O, Filename))
return;
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
if (UniversalHeaders) {
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
printMachOUniversalHeaders(UB, !NonVerbose);
}
if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
// If we have a list of architecture flags specified dump only those.
if (!ArchAll && ArchFlags.size() != 0) {
// Look for a slice in the universal binary that matches each ArchFlag.
bool ArchFound;
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
ArchFound = false;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (ArchFlags[i] == I->getArchTypeName()) {
ArchFound = true;
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr =
I->getAsObjectFile();
std::string ArchitectureName = "";
if (ArchFlags.size() > 1)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
}
}
}
}
if (!ArchFound) {
errs() << "llvm-objdump: file: " + Filename + " does not contain "
<< "architecture: " + ArchFlags[i] + "\n";
return;
}
}
return;
}
// No architecture flags were specified so if this contains a slice that
// matches the host architecture dump only that.
if (!ArchAll) {
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (MachOObjectFile::getHostArch().getArchName() ==
I->getArchTypeName()) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchiveName;
ArchiveName.clear();
if (ObjOrErr) {
ObjectFile &O = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
ProcessMachO(Filename, MachOOF);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(),
AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
ProcessMachO(Filename, O, O->getFileName());
}
}
return;
}
}
}
// Either all architectures have been specified or none have been specified
// and this does not contain the host architecture so dump all the slices.
bool moreThanOneArch = UB->getNumberOfObjects() > 1;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
ErrorOr<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
std::string ArchitectureName = "";
if (moreThanOneArch)
ArchitectureName = I->getArchTypeName();
if (ObjOrErr) {
ObjectFile &Obj = *ObjOrErr.get();
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
ProcessMachO(Filename, MachOOF, "", ArchitectureName);
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr = I->getAsArchive()) {
std::unique_ptr<Archive> &A = *AOrErr;
outs() << "Archive : " << Filename;
if (!ArchitectureName.empty())
outs() << " (architecture " << ArchitectureName << ")";
outs() << "\n";
if (ArchiveHeaders)
printArchiveHeaders(A.get(), !NonVerbose, ArchiveMemberOffsets);
for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end();
AI != AE; ++AI) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = AI->getAsBinary();
if (ChildOrErr.getError())
continue;
if (MachOObjectFile *O =
dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
ArchitectureName);
}
}
}
}
return;
}
if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
if (!checkMachOAndArchFlags(O, Filename))
return;
if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
ProcessMachO(Filename, MachOOF);
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Object is not a Mach-O file type.\n";
} else
errs() << "llvm-objdump: '" << Filename << "': "
<< "Unrecognized file type.\n";
}
typedef std::pair<uint64_t, const char *> BindInfoEntry;
typedef std::vector<BindInfoEntry> BindTable;
typedef BindTable::iterator bind_table_iterator;
// The block of info used by the Symbolizer call backs.
struct DisassembleInfo {
bool verbose;
MachOObjectFile *O;
SectionRef S;
SymbolAddressMap *AddrMap;
std::vector<SectionRef> *Sections;
const char *class_name;
const char *selector_name;
char *method;
char *demangled_name;
uint64_t adrp_addr;
uint32_t adrp_inst;
BindTable *bindtable;
};
// SymbolizerGetOpInfo() is the operand information call back function.
// This is called to get the symbolic information for operand(s) of an
// instruction when it is being done. This routine does this from
// the relocation information, symbol table, etc. That block of information
// is a pointer to the struct DisassembleInfo that was passed when the
// disassembler context was created and passed to back to here when
// called back by the disassembler for instruction operands that could have
// relocation information. The address of the instruction containing operand is
// at the Pc parameter. The immediate value the operand has is passed in
// op_info->Value and is at Offset past the start of the instruction and has a
// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
// names and addends of the symbolic expression to add for the operand. The
// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
// information is returned then this function returns 1 else it returns 0.
static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
uint64_t Size, int TagType, void *TagBuf) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
uint64_t value = op_info->Value;
// Make sure all fields returned are zero if we don't set them.
memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
op_info->Value = value;
// If the TagType is not the value 1 which it code knows about or if no
// verbose symbolic information is wanted then just return 0, indicating no
// information is being returned.
if (TagType != 1 || !info->verbose)
return 0;
unsigned int Arch = info->O->getArch();
if (Arch == Triple::x86) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_type = info->O->getAnyRelocationType(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
else
return 0;
}
} else {
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
// For i386 extern relocation entries the value in the instruction is
// the offset from the symbol, and value is already set in op_info->Value.
return 1;
}
if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
uint32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint32_t seg_offset = (Pc + Offset);
return 0;
}
if (Arch == Triple::x86_64) {
if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
// NOTE: Scattered relocations don't exist on x86_64.
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
if (reloc_found && isExtern) {
// The Value passed in will be adjusted by the Pc if the instruction
// adds the Pc. But for x86_64 external relocation entries the Value
// is the offset from the external symbol.
if (info->O->getAnyRelocationPCRel(RE))
op_info->Value -= Pc + Offset + Size;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
unsigned TypeNext = info->O->getAnyRelocationType(RENext);
bool isExternNext = info->O->getPlainRelocationExternal(RENext);
unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
op_info->SubtractSymbol.Present = 1;
op_info->SubtractSymbol.Name = name;
symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
Symbol = *RelocSymNext;
ErrorOr<StringRef> SymNameNext = Symbol.getName();
if (std::error_code EC = SymNameNext.getError())
report_fatal_error(EC.message());
name = SymNameNext->data();
}
}
// TODO: add the VariantKinds to op_info->VariantKind for relocation types
// like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
return 1;
}
// TODO:
// Second search the external relocation entries of a fully linked image
// (if any) for an entry that matches this segment offset.
// uint64_t seg_offset = (Pc + Offset);
return 0;
}
if (Arch == Triple::arm) {
if (Offset != 0 || (Size != 4 && Size != 2))
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint32_t sect_addr = info->S.getAddress();
uint32_t sect_offset = (Pc + Offset) - sect_addr;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
bool r_scattered = false;
uint32_t r_value, pair_r_value, r_type, r_length, other_half;
auto Reloc =
std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
[&](const RelocationRef &Reloc) {
uint64_t RelocOffset = Reloc.getOffset();
return RelocOffset == sect_offset;
});
if (Reloc == info->S.relocations().end())
return 0;
Rel = Reloc->getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
r_length = info->O->getAnyRelocationLength(RE);
r_scattered = info->O->isRelocationScattered(RE);
if (r_scattered) {
r_value = info->O->getScatteredRelocationValue(RE);
r_type = info->O->getScatteredRelocationType(RE);
} else {
r_type = info->O->getAnyRelocationType(RE);
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc->getSymbol();
Symbol = *RelocSym;
}
}
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_SECTDIFF ||
r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext;
RENext = info->O->getRelocation(RelNext);
other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
if (info->O->isRelocationScattered(RENext))
pair_r_value = info->O->getScatteredRelocationValue(RENext);
}
if (isExtern) {
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM_RELOC_HALF:
if ((r_length & 0x1) == 1) {
op_info->Value = value << 16 | other_half;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
} else {
op_info->Value = other_half << 16 | value;
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
break;
default:
break;
}
return 1;
}
// If we have a branch that is not an external relocation entry then
// return 0 so the code in tryAddingSymbolicOperand() can use the
// SymbolLookUp call back with the branch target address to look up the
// symbol and possiblity add an annotation for a symbol stub.
if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
r_type == MachO::ARM_THUMB_RELOC_BR22))
return 0;
uint32_t offset = 0;
if (r_type == MachO::ARM_RELOC_HALF ||
r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
value = value << 16 | other_half;
else
value = other_half << 16 | value;
}
if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
offset = value - r_value;
value = r_value;
}
if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
const char *add = GuessSymbolName(r_value, info->AddrMap);
const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
int32_t offset = value - (r_value - pair_r_value);
op_info->AddSymbol.Present = 1;
if (add != nullptr)
op_info->AddSymbol.Name = add;
else
op_info->AddSymbol.Value = r_value;
op_info->SubtractSymbol.Present = 1;
if (sub != nullptr)
op_info->SubtractSymbol.Name = sub;
else
op_info->SubtractSymbol.Value = pair_r_value;
op_info->Value = offset;
return 1;
}
op_info->AddSymbol.Present = 1;
op_info->Value = offset;
if (r_type == MachO::ARM_RELOC_HALF) {
if ((r_length & 0x1) == 1)
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
else
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
}
const char *add = GuessSymbolName(value, info->AddrMap);
if (add != nullptr) {
op_info->AddSymbol.Name = add;
return 1;
}
op_info->AddSymbol.Value = value;
return 1;
}
if (Arch == Triple::aarch64) {
if (Offset != 0 || Size != 4)
return 0;
// First search the section's relocation entries (if any) for an entry
// for this section offset.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = (Pc + Offset) - sect_addr;
auto Reloc =
std::find_if(info->S.relocations().begin(), info->S.relocations().end(),
[&](const RelocationRef &Reloc) {
uint64_t RelocOffset = Reloc.getOffset();
return RelocOffset == sect_offset;
});
if (Reloc == info->S.relocations().end())
return 0;
DataRefImpl Rel = Reloc->getRawDataRefImpl();
MachO::any_relocation_info RE = info->O->getRelocation(Rel);
uint32_t r_type = info->O->getAnyRelocationType(RE);
if (r_type == MachO::ARM64_RELOC_ADDEND) {
DataRefImpl RelNext = Rel;
info->O->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
if (value == 0) {
value = info->O->getPlainRelocationSymbolNum(RENext);
op_info->Value = value;
}
}
// NOTE: Scattered relocations don't exist on arm64.
if (!info->O->getPlainRelocationExternal(RE))
return 0;
ErrorOr<StringRef> SymName = Reloc->getSymbol()->getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
op_info->AddSymbol.Present = 1;
op_info->AddSymbol.Name = name;
switch (r_type) {
case MachO::ARM64_RELOC_PAGE21:
/* @page */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
break;
case MachO::ARM64_RELOC_PAGEOFF12:
/* @pageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
/* @gotpage */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
break;
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
/* @gotpageoff */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
/* @tvlppage is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
break;
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
/* @tvlppageoff is not implemented in llvm-mc */
op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
break;
default:
case MachO::ARM64_RELOC_BRANCH26:
op_info->VariantKind = LLVMDisassembler_VariantKind_None;
break;
}
return 1;
}
return 0;
}
// GuessCstringPointer is passed the address of what might be a pointer to a
// literal string in a cstring section. If that address is in a cstring section
// it returns a pointer to that string. Else it returns nullptr.
static const char *GuessCstringPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if (section_type == MachO::S_CSTRING_LITERALS &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
const char *name = object_addr + object_offset;
return name;
} else {
return nullptr;
}
}
}
}
}
return nullptr;
}
// GuessIndirectSymbol returns the name of the indirect symbol for the
// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
// an address of a symbol stub or a lazy or non-lazy pointer to associate the
// symbol name being referenced by the stub or pointer.
static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 8;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
return name;
}
}
}
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = info->O->getSection(Load, J);
uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
section_type == MachO::S_SYMBOL_STUBS) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint32_t stride;
if (section_type == MachO::S_SYMBOL_STUBS)
stride = Sec.reserved2;
else
stride = 4;
if (stride == 0)
return nullptr;
uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
if (index < Dysymtab.nindirectsyms) {
uint32_t indirect_symbol =
info->O->getIndirectSymbolTableEntry(Dysymtab, index);
if (indirect_symbol < Symtab.nsyms) {
symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
SymbolRef Symbol = *Sym;
ErrorOr<StringRef> SymName = Symbol.getName();
if (std::error_code EC = SymName.getError())
report_fatal_error(EC.message());
const char *name = SymName->data();
return name;
}
}
}
}
}
}
return nullptr;
}
// method_reference() is called passing it the ReferenceName that might be
// a reference it to an Objective-C method call. If so then it allocates and
// assembles a method call string with the values last seen and saved in
// the DisassembleInfo's class_name and selector_name fields. This is saved
// into the method field of the info and any previous string is free'ed.
// Then the class_name field in the info is set to nullptr. The method call
// string is set into ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
// then both ReferenceType and ReferenceName are left unchanged.
static void method_reference(struct DisassembleInfo *info,
uint64_t *ReferenceType,
const char **ReferenceName) {
unsigned int Arch = info->O->getArch();
if (*ReferenceName != nullptr) {
if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
if (info->class_name != nullptr) {
info->method = (char *)malloc(5 + strlen(info->class_name) +
strlen(info->selector_name));
if (info->method != nullptr) {
strcpy(info->method, "+[");
strcat(info->method, info->class_name);
strcat(info->method, " ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
} else {
info->method = (char *)malloc(9 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[%rdi ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[x0 ");
else
strcpy(info->method, "-[r? ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
}
info->class_name = nullptr;
}
} else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
if (info->selector_name != nullptr) {
if (info->method != nullptr)
free(info->method);
info->method = (char *)malloc(17 + strlen(info->selector_name));
if (info->method != nullptr) {
if (Arch == Triple::x86_64)
strcpy(info->method, "-[[%rdi super] ");
else if (Arch == Triple::aarch64)
strcpy(info->method, "-[[x0 super] ");
else
strcpy(info->method, "-[[r? super] ");
strcat(info->method, info->selector_name);
strcat(info->method, "]");
*ReferenceName = info->method;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
}
info->class_name = nullptr;
}
}
}
}
// GuessPointerPointer() is passed the address of what might be a pointer to
// a reference to an Objective-C class, selector, message ref or cfstring.
// If so the value of the pointer is returned and one of the booleans are set
// to true. If not zero is returned and all the booleans are set to false.
static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
struct DisassembleInfo *info,
bool &classref, bool &selref, bool &msgref,
bool &cfstring) {
classref = false;
selref = false;
msgref = false;
cfstring = false;
for (const auto &Load : info->O->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = info->O->getSection64(Load, J);
if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
ReferenceValue >= Sec.addr &&
ReferenceValue < Sec.addr + Sec.size) {
uint64_t sect_offset = ReferenceValue - Sec.addr;
uint64_t object_offset = Sec.offset + sect_offset;
StringRef MachOContents = info->O->getData();
uint64_t object_size = MachOContents.size();
const char *object_addr = (const char *)MachOContents.data();
if (object_offset < object_size) {
uint64_t pointer_value;
memcpy(&pointer_value, object_addr + object_offset,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
selref = true;
else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
classref = true;
else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
ReferenceValue + 8 < Sec.addr + Sec.size) {
msgref = true;
memcpy(&pointer_value, object_addr + object_offset + 8,
sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(pointer_value);
} else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
cfstring = true;
return pointer_value;
} else {
return 0;
}
}
}
}
// TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
}
return 0;
}
// get_pointer_64 returns a pointer to the bytes in the object file at the
// Address from a section in the Mach-O file. And indirectly returns the
// offset into the section, number of bytes left in the section past the offset
// and which section is was being referenced. If the Address is not in a
// section nullptr is returned.
static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
uint32_t &left, SectionRef &S,
DisassembleInfo *info,
bool objc_only = false) {
offset = 0;
left = 0;
S = SectionRef();
for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
if (objc_only) {
StringRef SectName;
((*(info->Sections))[SectIdx]).getName(SectName);
DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
if (SegName != "__OBJC" && SectName != "__cstring")
continue;
}
if (Address >= SectAddress && Address < SectAddress + SectSize) {
S = (*(info->Sections))[SectIdx];
offset = Address - SectAddress;
left = SectSize - offset;
StringRef SectContents;
((*(info->Sections))[SectIdx]).getContents(SectContents);
return SectContents.data() + offset;
}
}
return nullptr;
}
static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
uint32_t &left, SectionRef &S,
DisassembleInfo *info,
bool objc_only = false) {
return get_pointer_64(Address, offset, left, S, info, objc_only);
}
// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
// the symbol indirectly through n_value. Based on the relocation information
// for the specified section offset in the specified section reference.
// If no relocation information is found and a non-zero ReferenceValue for the
// symbol is passed, look up that address in the info's AddrMap.
static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
DisassembleInfo *info, uint64_t &n_value,
uint64_t ReferenceValue = 0) {
n_value = 0;
if (!info->verbose)
return nullptr;
// See if there is an external relocation entry at the sect_offset.
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in this section
// at this section_offset then use that symbol's value for the n_value
// and return its name.
const char *SymbolName = nullptr;
if (reloc_found && isExtern) {
n_value = Symbol.getValue();
ErrorOr<StringRef> NameOrError = Symbol.getName();
if (std::error_code EC = NameOrError.getError())
report_fatal_error(EC.message());
StringRef Name = *NameOrError;
if (!Name.empty()) {
SymbolName = Name.data();
return SymbolName;
}
}
// TODO: For fully linked images, look through the external relocation
// entries off the dynamic symtab command. For these the r_offset is from the
// start of the first writeable segment in the Mach-O file. So the offset
// to this section from that segment is passed to this routine by the caller,
// as the database_offset. Which is the difference of the section's starting
// address and the first writable segment.
//
// NOTE: need add passing the database_offset to this routine.
// We did not find an external relocation entry so look up the ReferenceValue
// as an address of a symbol and if found return that symbol's name.
SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
return SymbolName;
}
static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
DisassembleInfo *info,
uint32_t ReferenceValue) {
uint64_t n_value64;
return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
}
// These are structs in the Objective-C meta data and read to produce the
// comments for disassembly. While these are part of the ABI they are no
// public defintions. So the are here not in include/llvm/Support/MachO.h .
// The cfstring object in a 64-bit Mach-O file.
struct cfstring64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t flags; // flag bits
uint64_t characters; // char * (64-bit pointer)
uint64_t length; // number of non-NULL characters in above
};
// The class object in a 64-bit Mach-O file.
struct class64_t {
uint64_t isa; // class64_t * (64-bit pointer)
uint64_t superclass; // class64_t * (64-bit pointer)
uint64_t cache; // Cache (64-bit pointer)
uint64_t vtable; // IMP * (64-bit pointer)
uint64_t data; // class_ro64_t * (64-bit pointer)
};
struct class32_t {
uint32_t isa; /* class32_t * (32-bit pointer) */
uint32_t superclass; /* class32_t * (32-bit pointer) */
uint32_t cache; /* Cache (32-bit pointer) */
uint32_t vtable; /* IMP * (32-bit pointer) */
uint32_t data; /* class_ro32_t * (32-bit pointer) */
};
struct class_ro64_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
uint32_t reserved;
uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
uint64_t name; // const char * (64-bit pointer)
uint64_t baseMethods; // const method_list_t * (64-bit pointer)
uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
uint64_t ivars; // const ivar_list_t * (64-bit pointer)
uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
};
struct class_ro32_t {
uint32_t flags;
uint32_t instanceStart;
uint32_t instanceSize;
uint32_t ivarLayout; /* const uint8_t * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t baseMethods; /* const method_list_t * (32-bit pointer) */
uint32_t baseProtocols; /* const protocol_list_t * (32-bit pointer) */
uint32_t ivars; /* const ivar_list_t * (32-bit pointer) */
uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
uint32_t baseProperties; /* const struct objc_property_list *
(32-bit pointer) */
};
/* Values for class_ro{64,32}_t->flags */
#define RO_META (1 << 0)
#define RO_ROOT (1 << 1)
#define RO_HAS_CXX_STRUCTORS (1 << 2)
struct method_list64_t {
uint32_t entsize;
uint32_t count;
/* struct method64_t first; These structures follow inline */
};
struct method_list32_t {
uint32_t entsize;
uint32_t count;
/* struct method32_t first; These structures follow inline */
};
struct method64_t {
uint64_t name; /* SEL (64-bit pointer) */
uint64_t types; /* const char * (64-bit pointer) */
uint64_t imp; /* IMP (64-bit pointer) */
};
struct method32_t {
uint32_t name; /* SEL (32-bit pointer) */
uint32_t types; /* const char * (32-bit pointer) */
uint32_t imp; /* IMP (32-bit pointer) */
};
struct protocol_list64_t {
uint64_t count; /* uintptr_t (a 64-bit value) */
/* struct protocol64_t * list[0]; These pointers follow inline */
};
struct protocol_list32_t {
uint32_t count; /* uintptr_t (a 32-bit value) */
/* struct protocol32_t * list[0]; These pointers follow inline */
};
struct protocol64_t {
uint64_t isa; /* id * (64-bit pointer) */
uint64_t name; /* const char * (64-bit pointer) */
uint64_t protocols; /* struct protocol_list64_t *
(64-bit pointer) */
uint64_t instanceMethods; /* method_list_t * (64-bit pointer) */
uint64_t classMethods; /* method_list_t * (64-bit pointer) */
uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
uint64_t optionalClassMethods; /* method_list_t * (64-bit pointer) */
uint64_t instanceProperties; /* struct objc_property_list *
(64-bit pointer) */
};
struct protocol32_t {
uint32_t isa; /* id * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t protocols; /* struct protocol_list_t *
(32-bit pointer) */
uint32_t instanceMethods; /* method_list_t * (32-bit pointer) */
uint32_t classMethods; /* method_list_t * (32-bit pointer) */
uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
uint32_t optionalClassMethods; /* method_list_t * (32-bit pointer) */
uint32_t instanceProperties; /* struct objc_property_list *
(32-bit pointer) */
};
struct ivar_list64_t {
uint32_t entsize;
uint32_t count;
/* struct ivar64_t first; These structures follow inline */
};
struct ivar_list32_t {
uint32_t entsize;
uint32_t count;
/* struct ivar32_t first; These structures follow inline */
};
struct ivar64_t {
uint64_t offset; /* uintptr_t * (64-bit pointer) */
uint64_t name; /* const char * (64-bit pointer) */
uint64_t type; /* const char * (64-bit pointer) */
uint32_t alignment;
uint32_t size;
};
struct ivar32_t {
uint32_t offset; /* uintptr_t * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
uint32_t type; /* const char * (32-bit pointer) */
uint32_t alignment;
uint32_t size;
};
struct objc_property_list64 {
uint32_t entsize;
uint32_t count;
/* struct objc_property64 first; These structures follow inline */
};
struct objc_property_list32 {
uint32_t entsize;
uint32_t count;
/* struct objc_property32 first; These structures follow inline */
};
struct objc_property64 {
uint64_t name; /* const char * (64-bit pointer) */
uint64_t attributes; /* const char * (64-bit pointer) */
};
struct objc_property32 {
uint32_t name; /* const char * (32-bit pointer) */
uint32_t attributes; /* const char * (32-bit pointer) */
};
struct category64_t {
uint64_t name; /* const char * (64-bit pointer) */
uint64_t cls; /* struct class_t * (64-bit pointer) */
uint64_t instanceMethods; /* struct method_list_t * (64-bit pointer) */
uint64_t classMethods; /* struct method_list_t * (64-bit pointer) */
uint64_t protocols; /* struct protocol_list_t * (64-bit pointer) */
uint64_t instanceProperties; /* struct objc_property_list *
(64-bit pointer) */
};
struct category32_t {
uint32_t name; /* const char * (32-bit pointer) */
uint32_t cls; /* struct class_t * (32-bit pointer) */
uint32_t instanceMethods; /* struct method_list_t * (32-bit pointer) */
uint32_t classMethods; /* struct method_list_t * (32-bit pointer) */
uint32_t protocols; /* struct protocol_list_t * (32-bit pointer) */
uint32_t instanceProperties; /* struct objc_property_list *
(32-bit pointer) */
};
struct objc_image_info64 {
uint32_t version;
uint32_t flags;
};
struct objc_image_info32 {
uint32_t version;
uint32_t flags;
};
struct imageInfo_t {
uint32_t version;
uint32_t flags;
};
/* masks for objc_image_info.flags */
#define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
#define OBJC_IMAGE_SUPPORTS_GC (1 << 1)
struct message_ref64 {
uint64_t imp; /* IMP (64-bit pointer) */
uint64_t sel; /* SEL (64-bit pointer) */
};
struct message_ref32 {
uint32_t imp; /* IMP (32-bit pointer) */
uint32_t sel; /* SEL (32-bit pointer) */
};
// Objective-C 1 (32-bit only) meta data structs.
struct objc_module_t {
uint32_t version;
uint32_t size;
uint32_t name; /* char * (32-bit pointer) */
uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
};
struct objc_symtab_t {
uint32_t sel_ref_cnt;
uint32_t refs; /* SEL * (32-bit pointer) */
uint16_t cls_def_cnt;
uint16_t cat_def_cnt;
// uint32_t defs[1]; /* void * (32-bit pointer) variable size */
};
struct objc_class_t {
uint32_t isa; /* struct objc_class * (32-bit pointer) */
uint32_t super_class; /* struct objc_class * (32-bit pointer) */
uint32_t name; /* const char * (32-bit pointer) */
int32_t version;
int32_t info;
int32_t instance_size;
uint32_t ivars; /* struct objc_ivar_list * (32-bit pointer) */
uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
uint32_t cache; /* struct objc_cache * (32-bit pointer) */
uint32_t protocols; /* struct objc_protocol_list * (32-bit pointer) */
};
#define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
// class is not a metaclass
#define CLS_CLASS 0x1
// class is a metaclass
#define CLS_META 0x2
struct objc_category_t {
uint32_t category_name; /* char * (32-bit pointer) */
uint32_t class_name; /* char * (32-bit pointer) */
uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
uint32_t class_methods; /* struct objc_method_list * (32-bit pointer) */
uint32_t protocols; /* struct objc_protocol_list * (32-bit ptr) */
};
struct objc_ivar_t {
uint32_t ivar_name; /* char * (32-bit pointer) */
uint32_t ivar_type; /* char * (32-bit pointer) */
int32_t ivar_offset;
};
struct objc_ivar_list_t {
int32_t ivar_count;
// struct objc_ivar_t ivar_list[1]; /* variable length structure */
};
struct objc_method_list_t {
uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
int32_t method_count;
// struct objc_method_t method_list[1]; /* variable length structure */
};
struct objc_method_t {
uint32_t method_name; /* SEL, aka struct objc_selector * (32-bit pointer) */
uint32_t method_types; /* char * (32-bit pointer) */
uint32_t method_imp; /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
(32-bit pointer) */
};
struct objc_protocol_list_t {
uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
int32_t count;
// uint32_t list[1]; /* Protocol *, aka struct objc_protocol_t *
// (32-bit pointer) */
};
struct objc_protocol_t {
uint32_t isa; /* struct objc_class * (32-bit pointer) */
uint32_t protocol_name; /* char * (32-bit pointer) */
uint32_t protocol_list; /* struct objc_protocol_list * (32-bit pointer) */
uint32_t instance_methods; /* struct objc_method_description_list *
(32-bit pointer) */
uint32_t class_methods; /* struct objc_method_description_list *
(32-bit pointer) */
};
struct objc_method_description_list_t {
int32_t count;
// struct objc_method_description_t list[1];
};
struct objc_method_description_t {
uint32_t name; /* SEL, aka struct objc_selector * (32-bit pointer) */
uint32_t types; /* char * (32-bit pointer) */
};
inline void swapStruct(struct cfstring64_t &cfs) {
sys::swapByteOrder(cfs.isa);
sys::swapByteOrder(cfs.flags);
sys::swapByteOrder(cfs.characters);
sys::swapByteOrder(cfs.length);
}
inline void swapStruct(struct class64_t &c) {
sys::swapByteOrder(c.isa);
sys::swapByteOrder(c.superclass);
sys::swapByteOrder(c.cache);
sys::swapByteOrder(c.vtable);
sys::swapByteOrder(c.data);
}
inline void swapStruct(struct class32_t &c) {
sys::swapByteOrder(c.isa);
sys::swapByteOrder(c.superclass);
sys::swapByteOrder(c.cache);
sys::swapByteOrder(c.vtable);
sys::swapByteOrder(c.data);
}
inline void swapStruct(struct class_ro64_t &cro) {
sys::swapByteOrder(cro.flags);
sys::swapByteOrder(cro.instanceStart);
sys::swapByteOrder(cro.instanceSize);
sys::swapByteOrder(cro.reserved);
sys::swapByteOrder(cro.ivarLayout);
sys::swapByteOrder(cro.name);
sys::swapByteOrder(cro.baseMethods);
sys::swapByteOrder(cro.baseProtocols);
sys::swapByteOrder(cro.ivars);
sys::swapByteOrder(cro.weakIvarLayout);
sys::swapByteOrder(cro.baseProperties);
}
inline void swapStruct(struct class_ro32_t &cro) {
sys::swapByteOrder(cro.flags);
sys::swapByteOrder(cro.instanceStart);
sys::swapByteOrder(cro.instanceSize);
sys::swapByteOrder(cro.ivarLayout);
sys::swapByteOrder(cro.name);
sys::swapByteOrder(cro.baseMethods);
sys::swapByteOrder(cro.baseProtocols);
sys::swapByteOrder(cro.ivars);
sys::swapByteOrder(cro.weakIvarLayout);
sys::swapByteOrder(cro.baseProperties);
}
inline void swapStruct(struct method_list64_t &ml) {
sys::swapByteOrder(ml.entsize);
sys::swapByteOrder(ml.count);
}
inline void swapStruct(struct method_list32_t &ml) {
sys::swapByteOrder(ml.entsize);
sys::swapByteOrder(ml.count);
}
inline void swapStruct(struct method64_t &m) {
sys::swapByteOrder(m.name);
sys::swapByteOrder(m.types);
sys::swapByteOrder(m.imp);
}
inline void swapStruct(struct method32_t &m) {
sys::swapByteOrder(m.name);
sys::swapByteOrder(m.types);
sys::swapByteOrder(m.imp);
}
inline void swapStruct(struct protocol_list64_t &pl) {
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct protocol_list32_t &pl) {
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct protocol64_t &p) {
sys::swapByteOrder(p.isa);
sys::swapByteOrder(p.name);
sys::swapByteOrder(p.protocols);
sys::swapByteOrder(p.instanceMethods);
sys::swapByteOrder(p.classMethods);
sys::swapByteOrder(p.optionalInstanceMethods);
sys::swapByteOrder(p.optionalClassMethods);
sys::swapByteOrder(p.instanceProperties);
}
inline void swapStruct(struct protocol32_t &p) {
sys::swapByteOrder(p.isa);
sys::swapByteOrder(p.name);
sys::swapByteOrder(p.protocols);
sys::swapByteOrder(p.instanceMethods);
sys::swapByteOrder(p.classMethods);
sys::swapByteOrder(p.optionalInstanceMethods);
sys::swapByteOrder(p.optionalClassMethods);
sys::swapByteOrder(p.instanceProperties);
}
inline void swapStruct(struct ivar_list64_t &il) {
sys::swapByteOrder(il.entsize);
sys::swapByteOrder(il.count);
}
inline void swapStruct(struct ivar_list32_t &il) {
sys::swapByteOrder(il.entsize);
sys::swapByteOrder(il.count);
}
inline void swapStruct(struct ivar64_t &i) {
sys::swapByteOrder(i.offset);
sys::swapByteOrder(i.name);
sys::swapByteOrder(i.type);
sys::swapByteOrder(i.alignment);
sys::swapByteOrder(i.size);
}
inline void swapStruct(struct ivar32_t &i) {
sys::swapByteOrder(i.offset);
sys::swapByteOrder(i.name);
sys::swapByteOrder(i.type);
sys::swapByteOrder(i.alignment);
sys::swapByteOrder(i.size);
}
inline void swapStruct(struct objc_property_list64 &pl) {
sys::swapByteOrder(pl.entsize);
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct objc_property_list32 &pl) {
sys::swapByteOrder(pl.entsize);
sys::swapByteOrder(pl.count);
}
inline void swapStruct(struct objc_property64 &op) {
sys::swapByteOrder(op.name);
sys::swapByteOrder(op.attributes);
}
inline void swapStruct(struct objc_property32 &op) {
sys::swapByteOrder(op.name);
sys::swapByteOrder(op.attributes);
}
inline void swapStruct(struct category64_t &c) {
sys::swapByteOrder(c.name);
sys::swapByteOrder(c.cls);
sys::swapByteOrder(c.instanceMethods);
sys::swapByteOrder(c.classMethods);
sys::swapByteOrder(c.protocols);
sys::swapByteOrder(c.instanceProperties);
}
inline void swapStruct(struct category32_t &c) {
sys::swapByteOrder(c.name);
sys::swapByteOrder(c.cls);
sys::swapByteOrder(c.instanceMethods);
sys::swapByteOrder(c.classMethods);
sys::swapByteOrder(c.protocols);
sys::swapByteOrder(c.instanceProperties);
}
inline void swapStruct(struct objc_image_info64 &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct objc_image_info32 &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct imageInfo_t &o) {
sys::swapByteOrder(o.version);
sys::swapByteOrder(o.flags);
}
inline void swapStruct(struct message_ref64 &mr) {
sys::swapByteOrder(mr.imp);
sys::swapByteOrder(mr.sel);
}
inline void swapStruct(struct message_ref32 &mr) {
sys::swapByteOrder(mr.imp);
sys::swapByteOrder(mr.sel);
}
inline void swapStruct(struct objc_module_t &mod) {
sys::swapByteOrder(mod.version);
sys::swapByteOrder(mod.size);
sys::swapByteOrder(mod.name);
sys::swapByteOrder(mod.symtab);
}
inline void swapStruct(struct objc_symtab_t &symtab) {
sys::swapByteOrder(symtab.sel_ref_cnt);
sys::swapByteOrder(symtab.refs);
sys::swapByteOrder(symtab.cls_def_cnt);
sys::swapByteOrder(symtab.cat_def_cnt);
}
inline void swapStruct(struct objc_class_t &objc_class) {
sys::swapByteOrder(objc_class.isa);
sys::swapByteOrder(objc_class.super_class);
sys::swapByteOrder(objc_class.name);
sys::swapByteOrder(objc_class.version);
sys::swapByteOrder(objc_class.info);
sys::swapByteOrder(objc_class.instance_size);
sys::swapByteOrder(objc_class.ivars);
sys::swapByteOrder(objc_class.methodLists);
sys::swapByteOrder(objc_class.cache);
sys::swapByteOrder(objc_class.protocols);
}
inline void swapStruct(struct objc_category_t &objc_category) {
sys::swapByteOrder(objc_category.category_name);
sys::swapByteOrder(objc_category.class_name);
sys::swapByteOrder(objc_category.instance_methods);
sys::swapByteOrder(objc_category.class_methods);
sys::swapByteOrder(objc_category.protocols);
}
inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
sys::swapByteOrder(objc_ivar_list.ivar_count);
}
inline void swapStruct(struct objc_ivar_t &objc_ivar) {
sys::swapByteOrder(objc_ivar.ivar_name);
sys::swapByteOrder(objc_ivar.ivar_type);
sys::swapByteOrder(objc_ivar.ivar_offset);
}
inline void swapStruct(struct objc_method_list_t &method_list) {
sys::swapByteOrder(method_list.obsolete);
sys::swapByteOrder(method_list.method_count);
}
inline void swapStruct(struct objc_method_t &method) {
sys::swapByteOrder(method.method_name);
sys::swapByteOrder(method.method_types);
sys::swapByteOrder(method.method_imp);
}
inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
sys::swapByteOrder(protocol_list.next);
sys::swapByteOrder(protocol_list.count);
}
inline void swapStruct(struct objc_protocol_t &protocol) {
sys::swapByteOrder(protocol.isa);
sys::swapByteOrder(protocol.protocol_name);
sys::swapByteOrder(protocol.protocol_list);
sys::swapByteOrder(protocol.instance_methods);
sys::swapByteOrder(protocol.class_methods);
}
inline void swapStruct(struct objc_method_description_list_t &mdl) {
sys::swapByteOrder(mdl.count);
}
inline void swapStruct(struct objc_method_description_t &md) {
sys::swapByteOrder(md.name);
sys::swapByteOrder(md.types);
}
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info);
// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
// to an Objective-C class and returns the class name. It is also passed the
// address of the pointer, so when the pointer is zero as it can be in an .o
// file, that is used to look for an external relocation entry with a symbol
// name.
static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r;
uint32_t offset, left;
SectionRef S;
// The pointer_value can be 0 in an object file and have a relocation
// entry for the class symbol at the ReferenceValue (the address of the
// pointer).
if (pointer_value == 0) {
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return nullptr;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
const char *class_name = strrchr(symbol_name, '$');
if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
return class_name + 2;
else
return nullptr;
}
// The case were the pointer_value is non-zero and points to a class defined
// in this Mach-O file.
r = get_pointer_64(pointer_value, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class64_t))
return nullptr;
struct class64_t c;
memcpy(&c, r, sizeof(struct class64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
if (c.data == 0)
return nullptr;
r = get_pointer_64(c.data, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class_ro64_t))
return nullptr;
struct class_ro64_t cro;
memcpy(&cro, r, sizeof(struct class_ro64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
if (cro.name == 0)
return nullptr;
const char *name = get_pointer_64(cro.name, offset, left, S, info);
return name;
}
// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
// pointer to a cfstring and returns its name or nullptr.
static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
const char *r, *name;
uint32_t offset, left;
SectionRef S;
struct cfstring64_t cfs;
uint64_t cfs_characters;
r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(struct cfstring64_t))
return nullptr;
memcpy(&cfs, r, sizeof(struct cfstring64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cfs);
if (cfs.characters == 0) {
uint64_t n_value;
const char *symbol_name = get_symbol_64(
offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
if (symbol_name == nullptr)
return nullptr;
cfs_characters = n_value;
} else
cfs_characters = cfs.characters;
name = get_pointer_64(cfs_characters, offset, left, S, info);
return name;
}
// get_objc2_64bit_selref() is used for disassembly and is passed a the address
// of a pointer to an Objective-C selector reference when the pointer value is
// zero as in a .o file and is likely to have a external relocation entry with
// who's symbol's n_value is the real pointer to the selector name. If that is
// the case the real pointer to the selector name is returned else 0 is
// returned
static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
if (r == nullptr || left < sizeof(uint64_t))
return 0;
uint64_t n_value;
const char *symbol_name = get_symbol_64(offset, S, info, n_value);
if (symbol_name == nullptr)
return 0;
return n_value;
}
static const SectionRef get_section(MachOObjectFile *O, const char *segname,
const char *sectname) {
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
DataRefImpl Ref = Section.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
if (SegName == segname && SectName == sectname)
return Section;
}
return SectionRef();
}
static void
walk_pointer_list_64(const char *listname, const SectionRef S,
MachOObjectFile *O, struct DisassembleInfo *info,
void (*func)(uint64_t, struct DisassembleInfo *info)) {
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
S.getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
uint32_t left = S.getSize() - i;
uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
uint64_t p = 0;
memcpy(&p, Contents + i, size);
if (i + sizeof(uint64_t) > S.getSize())
outs() << listname << " list pointer extends past end of (" << SegName
<< "," << SectName << ") section\n";
outs() << format("%016" PRIx64, S.getAddress() + i) << " ";
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(p);
uint64_t n_value = 0;
const char *name = get_symbol_64(i, S, info, n_value, p);
if (name == nullptr)
name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value);
if (p != 0)
outs() << " + " << format("0x%" PRIx64, p);
} else
outs() << format("0x%" PRIx64, p);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
p += n_value;
if (func)
func(p, info);
}
}
static void
walk_pointer_list_32(const char *listname, const SectionRef S,
MachOObjectFile *O, struct DisassembleInfo *info,
void (*func)(uint32_t, struct DisassembleInfo *info)) {
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
StringRef BytesStr;
S.getContents(BytesStr);
const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
uint32_t left = S.getSize() - i;
uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
uint32_t p = 0;
memcpy(&p, Contents + i, size);
if (i + sizeof(uint32_t) > S.getSize())
outs() << listname << " list pointer extends past end of (" << SegName
<< "," << SectName << ") section\n";
uint32_t Address = S.getAddress() + i;
outs() << format("%08" PRIx32, Address) << " ";
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(p);
outs() << format("0x%" PRIx32, p);
const char *name = get_symbol_32(i, S, info, p);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
if (func)
func(p, info);
}
}
static void print_layout_map(const char *layout_map, uint32_t left) {
outs() << " layout map: ";
do {
outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
left--;
layout_map++;
} while (*layout_map != '\0' && left != 0);
outs() << "\n";
}
static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *layout_map;
if (p == 0)
return;
layout_map = get_pointer_64(p, offset, left, S, info);
print_layout_map(layout_map, left);
}
static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
const char *layout_map;
if (p == 0)
return;
layout_map = get_pointer_32(p, offset, left, S, info);
print_layout_map(layout_map, left);
}
static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
const char *indent) {
struct method_list64_t ml;
struct method64_t m;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&ml, '\0', sizeof(struct method_list64_t));
if (left < sizeof(struct method_list64_t)) {
memcpy(&ml, r, left);
outs() << " (method_list_t entends past the end of the section)\n";
} else
memcpy(&ml, r, sizeof(struct method_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ml);
outs() << indent << "\t\t entsize " << ml.entsize << "\n";
outs() << indent << "\t\t count " << ml.count << "\n";
p += sizeof(struct method_list64_t);
offset += sizeof(struct method_list64_t);
for (i = 0; i < ml.count; i++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&m, '\0', sizeof(struct method64_t));
if (left < sizeof(struct method64_t)) {
memcpy(&ml, r, left);
outs() << indent << " (method_t entends past the end of the section)\n";
} else
memcpy(&m, r, sizeof(struct method64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(m);
outs() << indent << "\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
info, n_value, m.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (m.name != 0)
outs() << " + " << format("0x%" PRIx64, m.name);
} else
outs() << format("0x%" PRIx64, m.name);
name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t types ";
sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
info, n_value, m.types);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (m.types != 0)
outs() << " + " << format("0x%" PRIx64, m.types);
} else
outs() << format("0x%" PRIx64, m.types);
name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t imp ";
name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
n_value, m.imp);
if (info->verbose && name == nullptr) {
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value) << " ";
if (m.imp != 0)
outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
} else
outs() << format("0x%" PRIx64, m.imp) << " ";
}
if (name != nullptr)
outs() << name;
outs() << "\n";
p += sizeof(struct method64_t);
offset += sizeof(struct method64_t);
}
}
static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
const char *indent) {
struct method_list32_t ml;
struct method32_t m;
const char *r, *name;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&ml, '\0', sizeof(struct method_list32_t));
if (left < sizeof(struct method_list32_t)) {
memcpy(&ml, r, left);
outs() << " (method_list_t entends past the end of the section)\n";
} else
memcpy(&ml, r, sizeof(struct method_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ml);
outs() << indent << "\t\t entsize " << ml.entsize << "\n";
outs() << indent << "\t\t count " << ml.count << "\n";
p += sizeof(struct method_list32_t);
offset += sizeof(struct method_list32_t);
for (i = 0; i < ml.count; i++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&m, '\0', sizeof(struct method32_t));
if (left < sizeof(struct method32_t)) {
memcpy(&ml, r, left);
outs() << indent << " (method_t entends past the end of the section)\n";
} else
memcpy(&m, r, sizeof(struct method32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(m);
outs() << indent << "\t\t name " << format("0x%" PRIx32, m.name);
name = get_pointer_32(m.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t types " << format("0x%" PRIx32, m.types);
name = get_pointer_32(m.types, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << indent << "\t\t imp " << format("0x%" PRIx32, m.imp);
name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
m.imp);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
p += sizeof(struct method32_t);
offset += sizeof(struct method32_t);
}
}
static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
SectionRef S;
struct objc_method_list_t method_list;
struct objc_method_t method;
const char *r, *methods, *name, *SymbolName;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_method_list_t)) {
memcpy(&method_list, r, sizeof(struct objc_method_list_t));
} else {
outs() << "\t\t objc_method_list extends past end of the section\n";
memset(&method_list, '\0', sizeof(struct objc_method_list_t));
memcpy(&method_list, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(method_list);
outs() << "\t\t obsolete "
<< format("0x%08" PRIx32, method_list.obsolete) << "\n";
outs() << "\t\t method_count " << method_list.method_count << "\n";
methods = r + sizeof(struct objc_method_list_t);
for (i = 0; i < method_list.method_count; i++) {
if ((i + 1) * sizeof(struct objc_method_t) > left) {
outs() << "\t\t remaining method's extend past the of the section\n";
break;
}
memcpy(&method, methods + i * sizeof(struct objc_method_t),
sizeof(struct objc_method_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(method);
outs() << "\t\t method_name "
<< format("0x%08" PRIx32, method.method_name);
if (info->verbose) {
name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t method_types "
<< format("0x%08" PRIx32, method.method_types);
if (info->verbose) {
name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t method_imp "
<< format("0x%08" PRIx32, method.method_imp) << " ";
if (info->verbose) {
SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
if (SymbolName != nullptr)
outs() << SymbolName;
}
outs() << "\n";
}
return false;
}
static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
struct protocol_list64_t pl;
uint64_t q, n_value;
struct protocol64_t pc;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name, *sym_name;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&pl, '\0', sizeof(struct protocol_list64_t));
if (left < sizeof(struct protocol_list64_t)) {
memcpy(&pl, r, left);
outs() << " (protocol_list_t entends past the end of the section)\n";
} else
memcpy(&pl, r, sizeof(struct protocol_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pl);
outs() << " count " << pl.count << "\n";
p += sizeof(struct protocol_list64_t);
offset += sizeof(struct protocol_list64_t);
for (i = 0; i < pl.count; i++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
q = 0;
if (left < sizeof(uint64_t)) {
memcpy(&q, r, left);
outs() << " (protocol_t * entends past the end of the section)\n";
} else
memcpy(&q, r, sizeof(uint64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(q);
outs() << "\t\t list[" << i << "] ";
sym_name = get_symbol_64(offset, S, info, n_value, q);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (q != 0)
outs() << " + " << format("0x%" PRIx64, q);
} else
outs() << format("0x%" PRIx64, q);
outs() << " (struct protocol_t *)\n";
r = get_pointer_64(q + n_value, offset, left, S, info);
if (r == nullptr)
return;
memset(&pc, '\0', sizeof(struct protocol64_t));
if (left < sizeof(struct protocol64_t)) {
memcpy(&pc, r, left);
outs() << " (protocol_t entends past the end of the section)\n";
} else
memcpy(&pc, r, sizeof(struct protocol64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pc);
outs() << "\t\t\t isa " << format("0x%" PRIx64, pc.isa) << "\n";
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
info, n_value, pc.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.name != 0)
outs() << " + " << format("0x%" PRIx64, pc.name);
} else
outs() << format("0x%" PRIx64, pc.name);
name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";
outs() << "\t\t instanceMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
S, info, n_value, pc.instanceMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.instanceMethods != 0)
outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
} else
outs() << format("0x%" PRIx64, pc.instanceMethods);
outs() << " (struct method_list_t *)\n";
if (pc.instanceMethods + n_value != 0)
print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
outs() << "\t\t classMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
info, n_value, pc.classMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (pc.classMethods != 0)
outs() << " + " << format("0x%" PRIx64, pc.classMethods);
} else
outs() << format("0x%" PRIx64, pc.classMethods);
outs() << " (struct method_list_t *)\n";
if (pc.classMethods + n_value != 0)
print_method_list64_t(pc.classMethods + n_value, info, "\t");
outs() << "\t optionalInstanceMethods "
<< format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
outs() << "\t optionalClassMethods "
<< format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
outs() << "\t instanceProperties "
<< format("0x%" PRIx64, pc.instanceProperties) << "\n";
p += sizeof(uint64_t);
offset += sizeof(uint64_t);
}
}
static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
struct protocol_list32_t pl;
uint32_t q;
struct protocol32_t pc;
const char *r;
uint32_t offset, xoffset, left, i;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&pl, '\0', sizeof(struct protocol_list32_t));
if (left < sizeof(struct protocol_list32_t)) {
memcpy(&pl, r, left);
outs() << " (protocol_list_t entends past the end of the section)\n";
} else
memcpy(&pl, r, sizeof(struct protocol_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pl);
outs() << " count " << pl.count << "\n";
p += sizeof(struct protocol_list32_t);
offset += sizeof(struct protocol_list32_t);
for (i = 0; i < pl.count; i++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
q = 0;
if (left < sizeof(uint32_t)) {
memcpy(&q, r, left);
outs() << " (protocol_t * entends past the end of the section)\n";
} else
memcpy(&q, r, sizeof(uint32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(q);
outs() << "\t\t list[" << i << "] " << format("0x%" PRIx32, q)
<< " (struct protocol_t *)\n";
r = get_pointer_32(q, offset, left, S, info);
if (r == nullptr)
return;
memset(&pc, '\0', sizeof(struct protocol32_t));
if (left < sizeof(struct protocol32_t)) {
memcpy(&pc, r, left);
outs() << " (protocol_t entends past the end of the section)\n";
} else
memcpy(&pc, r, sizeof(struct protocol32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(pc);
outs() << "\t\t\t isa " << format("0x%" PRIx32, pc.isa) << "\n";
outs() << "\t\t\t name " << format("0x%" PRIx32, pc.name);
name = get_pointer_32(pc.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
outs() << "\t\t instanceMethods "
<< format("0x%" PRIx32, pc.instanceMethods)
<< " (struct method_list_t *)\n";
if (pc.instanceMethods != 0)
print_method_list32_t(pc.instanceMethods, info, "\t");
outs() << "\t\t classMethods " << format("0x%" PRIx32, pc.classMethods)
<< " (struct method_list_t *)\n";
if (pc.classMethods != 0)
print_method_list32_t(pc.classMethods, info, "\t");
outs() << "\t optionalInstanceMethods "
<< format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
outs() << "\t optionalClassMethods "
<< format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
outs() << "\t instanceProperties "
<< format("0x%" PRIx32, pc.instanceProperties) << "\n";
p += sizeof(uint32_t);
offset += sizeof(uint32_t);
}
}
static void print_indent(uint32_t indent) {
for (uint32_t i = 0; i < indent;) {
if (indent - i >= 8) {
outs() << "\t";
i += 8;
} else {
for (uint32_t j = i; j < indent; j++)
outs() << " ";
return;
}
}
}
static bool print_method_description_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
SectionRef S;
struct objc_method_description_list_t mdl;
struct objc_method_description_t md;
const char *r, *list, *name;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_method_description_list_t)) {
memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
} else {
print_indent(indent);
outs() << " objc_method_description_list extends past end of the section\n";
memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
memcpy(&mdl, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mdl);
print_indent(indent);
outs() << " count " << mdl.count << "\n";
list = r + sizeof(struct objc_method_description_list_t);
for (i = 0; i < mdl.count; i++) {
if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
print_indent(indent);
outs() << " remaining list entries extend past the of the section\n";
break;
}
print_indent(indent);
outs() << " list[" << i << "]\n";
memcpy(&md, list + i * sizeof(struct objc_method_description_t),
sizeof(struct objc_method_description_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(md);
print_indent(indent);
outs() << " name " << format("0x%08" PRIx32, md.name);
if (info->verbose) {
name = get_pointer_32(md.name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
print_indent(indent);
outs() << " types " << format("0x%08" PRIx32, md.types);
if (info->verbose) {
name = get_pointer_32(md.types, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
}
return false;
}
static bool print_protocol_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info);
static bool print_protocol(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left;
SectionRef S;
struct objc_protocol_t protocol;
const char *r, *name;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left >= sizeof(struct objc_protocol_t)) {
memcpy(&protocol, r, sizeof(struct objc_protocol_t));
} else {
print_indent(indent);
outs() << " Protocol extends past end of the section\n";
memset(&protocol, '\0', sizeof(struct objc_protocol_t));
memcpy(&protocol, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol);
print_indent(indent);
outs() << " isa " << format("0x%08" PRIx32, protocol.isa)
<< "\n";
print_indent(indent);
outs() << " protocol_name "
<< format("0x%08" PRIx32, protocol.protocol_name);
if (info->verbose) {
name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
print_indent(indent);
outs() << " protocol_list "
<< format("0x%08" PRIx32, protocol.protocol_list);
if (print_protocol_list(protocol.protocol_list, indent + 4, info))
outs() << " (not in an __OBJC section)\n";
print_indent(indent);
outs() << " instance_methods "
<< format("0x%08" PRIx32, protocol.instance_methods);
if (print_method_description_list(protocol.instance_methods, indent, info))
outs() << " (not in an __OBJC section)\n";
print_indent(indent);
outs() << " class_methods "
<< format("0x%08" PRIx32, protocol.class_methods);
if (print_method_description_list(protocol.class_methods, indent, info))
outs() << " (not in an __OBJC section)\n";
return false;
}
static bool print_protocol_list(uint32_t p, uint32_t indent,
struct DisassembleInfo *info) {
uint32_t offset, left, l;
SectionRef S;
struct objc_protocol_list_t protocol_list;
const char *r, *list;
int32_t i;
r = get_pointer_32(p, offset, left, S, info, true);
if (r == nullptr)
return true;
outs() << "\n";
if (left > sizeof(struct objc_protocol_list_t)) {
memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
} else {
outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
memcpy(&protocol_list, r, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol_list);
print_indent(indent);
outs() << " next " << format("0x%08" PRIx32, protocol_list.next)
<< "\n";
print_indent(indent);
outs() << " count " << protocol_list.count << "\n";
list = r + sizeof(struct objc_protocol_list_t);
for (i = 0; i < protocol_list.count; i++) {
if ((i + 1) * sizeof(uint32_t) > left) {
outs() << "\t\t remaining list entries extend past the of the section\n";
break;
}
memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(l);
print_indent(indent);
outs() << " list[" << i << "] " << format("0x%08" PRIx32, l);
if (print_protocol(l, indent, info))
outs() << "(not in an __OBJC section)\n";
}
return false;
}
static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
struct ivar_list64_t il;
struct ivar64_t i;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *sym_name, *ivar_offset_p;
uint64_t ivar_offset, n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&il, '\0', sizeof(struct ivar_list64_t));
if (left < sizeof(struct ivar_list64_t)) {
memcpy(&il, r, left);
outs() << " (ivar_list_t entends past the end of the section)\n";
} else
memcpy(&il, r, sizeof(struct ivar_list64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(il);
outs() << " entsize " << il.entsize << "\n";
outs() << " count " << il.count << "\n";
p += sizeof(struct ivar_list64_t);
offset += sizeof(struct ivar_list64_t);
for (j = 0; j < il.count; j++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&i, '\0', sizeof(struct ivar64_t));
if (left < sizeof(struct ivar64_t)) {
memcpy(&i, r, left);
outs() << " (ivar_t entends past the end of the section)\n";
} else
memcpy(&i, r, sizeof(struct ivar64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(i);
outs() << "\t\t\t offset ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
info, n_value, i.offset);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.offset != 0)
outs() << " + " << format("0x%" PRIx64, i.offset);
} else
outs() << format("0x%" PRIx64, i.offset);
ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(ivar_offset);
outs() << " " << ivar_offset << "\n";
} else
outs() << "\n";
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
n_value, i.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.name != 0)
outs() << " + " << format("0x%" PRIx64, i.name);
} else
outs() << format("0x%" PRIx64, i.name);
name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\t type ";
sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
n_value, i.name);
name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (i.type != 0)
outs() << " + " << format("0x%" PRIx64, i.type);
} else
outs() << format("0x%" PRIx64, i.type);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\talignment " << i.alignment << "\n";
outs() << "\t\t\t size " << i.size << "\n";
p += sizeof(struct ivar64_t);
offset += sizeof(struct ivar64_t);
}
}
static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
struct ivar_list32_t il;
struct ivar32_t i;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *ivar_offset_p;
uint32_t ivar_offset;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&il, '\0', sizeof(struct ivar_list32_t));
if (left < sizeof(struct ivar_list32_t)) {
memcpy(&il, r, left);
outs() << " (ivar_list_t entends past the end of the section)\n";
} else
memcpy(&il, r, sizeof(struct ivar_list32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(il);
outs() << " entsize " << il.entsize << "\n";
outs() << " count " << il.count << "\n";
p += sizeof(struct ivar_list32_t);
offset += sizeof(struct ivar_list32_t);
for (j = 0; j < il.count; j++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&i, '\0', sizeof(struct ivar32_t));
if (left < sizeof(struct ivar32_t)) {
memcpy(&i, r, left);
outs() << " (ivar_t entends past the end of the section)\n";
} else
memcpy(&i, r, sizeof(struct ivar32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(i);
outs() << "\t\t\t offset " << format("0x%" PRIx32, i.offset);
ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(ivar_offset);
outs() << " " << ivar_offset << "\n";
} else
outs() << "\n";
outs() << "\t\t\t name " << format("0x%" PRIx32, i.name);
name = get_pointer_32(i.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\t type " << format("0x%" PRIx32, i.type);
name = get_pointer_32(i.type, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\talignment " << i.alignment << "\n";
outs() << "\t\t\t size " << i.size << "\n";
p += sizeof(struct ivar32_t);
offset += sizeof(struct ivar32_t);
}
}
static void print_objc_property_list64(uint64_t p,
struct DisassembleInfo *info) {
struct objc_property_list64 opl;
struct objc_property64 op;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&opl, '\0', sizeof(struct objc_property_list64));
if (left < sizeof(struct objc_property_list64)) {
memcpy(&opl, r, left);
outs() << " (objc_property_list entends past the end of the section)\n";
} else
memcpy(&opl, r, sizeof(struct objc_property_list64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(opl);
outs() << " entsize " << opl.entsize << "\n";
outs() << " count " << opl.count << "\n";
p += sizeof(struct objc_property_list64);
offset += sizeof(struct objc_property_list64);
for (j = 0; j < opl.count; j++) {
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&op, '\0', sizeof(struct objc_property64));
if (left < sizeof(struct objc_property64)) {
memcpy(&op, r, left);
outs() << " (objc_property entends past the end of the section)\n";
} else
memcpy(&op, r, sizeof(struct objc_property64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(op);
outs() << "\t\t\t name ";
sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
info, n_value, op.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (op.name != 0)
outs() << " + " << format("0x%" PRIx64, op.name);
} else
outs() << format("0x%" PRIx64, op.name);
name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tattributes ";
sym_name =
get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
info, n_value, op.attributes);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (op.attributes != 0)
outs() << " + " << format("0x%" PRIx64, op.attributes);
} else
outs() << format("0x%" PRIx64, op.attributes);
name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
p += sizeof(struct objc_property64);
offset += sizeof(struct objc_property64);
}
}
static void print_objc_property_list32(uint32_t p,
struct DisassembleInfo *info) {
struct objc_property_list32 opl;
struct objc_property32 op;
const char *r;
uint32_t offset, xoffset, left, j;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&opl, '\0', sizeof(struct objc_property_list32));
if (left < sizeof(struct objc_property_list32)) {
memcpy(&opl, r, left);
outs() << " (objc_property_list entends past the end of the section)\n";
} else
memcpy(&opl, r, sizeof(struct objc_property_list32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(opl);
outs() << " entsize " << opl.entsize << "\n";
outs() << " count " << opl.count << "\n";
p += sizeof(struct objc_property_list32);
offset += sizeof(struct objc_property_list32);
for (j = 0; j < opl.count; j++) {
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&op, '\0', sizeof(struct objc_property32));
if (left < sizeof(struct objc_property32)) {
memcpy(&op, r, left);
outs() << " (objc_property entends past the end of the section)\n";
} else
memcpy(&op, r, sizeof(struct objc_property32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(op);
outs() << "\t\t\t name " << format("0x%" PRIx32, op.name);
name = get_pointer_32(op.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
name = get_pointer_32(op.attributes, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
p += sizeof(struct objc_property32);
offset += sizeof(struct objc_property32);
}
}
static void print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
bool &is_meta_class) {
struct class_ro64_t cro;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class_ro64_t))
return;
memset(&cro, '\0', sizeof(struct class_ro64_t));
if (left < sizeof(struct class_ro64_t)) {
memcpy(&cro, r, left);
outs() << " (class_ro_t entends past the end of the section)\n";
} else
memcpy(&cro, r, sizeof(struct class_ro64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
outs() << " flags " << format("0x%" PRIx32, cro.flags);
if (cro.flags & RO_META)
outs() << " RO_META";
if (cro.flags & RO_ROOT)
outs() << " RO_ROOT";
if (cro.flags & RO_HAS_CXX_STRUCTORS)
outs() << " RO_HAS_CXX_STRUCTORS";
outs() << "\n";
outs() << " instanceStart " << cro.instanceStart << "\n";
outs() << " instanceSize " << cro.instanceSize << "\n";
outs() << " reserved " << format("0x%" PRIx32, cro.reserved)
<< "\n";
outs() << " ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
<< "\n";
print_layout_map64(cro.ivarLayout, info);
outs() << " name ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
info, n_value, cro.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.name != 0)
outs() << " + " << format("0x%" PRIx64, cro.name);
} else
outs() << format("0x%" PRIx64, cro.name);
name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " baseMethods ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
S, info, n_value, cro.baseMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseMethods != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
} else
outs() << format("0x%" PRIx64, cro.baseMethods);
outs() << " (struct method_list_t *)\n";
if (cro.baseMethods + n_value != 0)
print_method_list64_t(cro.baseMethods + n_value, info, "");
outs() << " baseProtocols ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
info, n_value, cro.baseProtocols);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseProtocols != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
} else
outs() << format("0x%" PRIx64, cro.baseProtocols);
outs() << "\n";
if (cro.baseProtocols + n_value != 0)
print_protocol_list64_t(cro.baseProtocols + n_value, info);
outs() << " ivars ";
sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
info, n_value, cro.ivars);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.ivars != 0)
outs() << " + " << format("0x%" PRIx64, cro.ivars);
} else
outs() << format("0x%" PRIx64, cro.ivars);
outs() << "\n";
if (cro.ivars + n_value != 0)
print_ivar_list64_t(cro.ivars + n_value, info);
outs() << " weakIvarLayout ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
info, n_value, cro.weakIvarLayout);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.weakIvarLayout != 0)
outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
} else
outs() << format("0x%" PRIx64, cro.weakIvarLayout);
outs() << "\n";
print_layout_map64(cro.weakIvarLayout + n_value, info);
outs() << " baseProperties ";
sym_name =
get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
info, n_value, cro.baseProperties);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (cro.baseProperties != 0)
outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
} else
outs() << format("0x%" PRIx64, cro.baseProperties);
outs() << "\n";
if (cro.baseProperties + n_value != 0)
print_objc_property_list64(cro.baseProperties + n_value, info);
is_meta_class = (cro.flags & RO_META) ? true : false;
}
static void print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
bool &is_meta_class) {
struct class_ro32_t cro;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&cro, '\0', sizeof(struct class_ro32_t));
if (left < sizeof(struct class_ro32_t)) {
memcpy(&cro, r, left);
outs() << " (class_ro_t entends past the end of the section)\n";
} else
memcpy(&cro, r, sizeof(struct class_ro32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(cro);
outs() << " flags " << format("0x%" PRIx32, cro.flags);
if (cro.flags & RO_META)
outs() << " RO_META";
if (cro.flags & RO_ROOT)
outs() << " RO_ROOT";
if (cro.flags & RO_HAS_CXX_STRUCTORS)
outs() << " RO_HAS_CXX_STRUCTORS";
outs() << "\n";
outs() << " instanceStart " << cro.instanceStart << "\n";
outs() << " instanceSize " << cro.instanceSize << "\n";
outs() << " ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
<< "\n";
print_layout_map32(cro.ivarLayout, info);
outs() << " name " << format("0x%" PRIx32, cro.name);
name = get_pointer_32(cro.name, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " baseMethods "
<< format("0x%" PRIx32, cro.baseMethods)
<< " (struct method_list_t *)\n";
if (cro.baseMethods != 0)
print_method_list32_t(cro.baseMethods, info, "");
outs() << " baseProtocols "
<< format("0x%" PRIx32, cro.baseProtocols) << "\n";
if (cro.baseProtocols != 0)
print_protocol_list32_t(cro.baseProtocols, info);
outs() << " ivars " << format("0x%" PRIx32, cro.ivars)
<< "\n";
if (cro.ivars != 0)
print_ivar_list32_t(cro.ivars, info);
outs() << " weakIvarLayout "
<< format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
print_layout_map32(cro.weakIvarLayout, info);
outs() << " baseProperties "
<< format("0x%" PRIx32, cro.baseProperties) << "\n";
if (cro.baseProperties != 0)
print_objc_property_list32(cro.baseProperties, info);
is_meta_class = (cro.flags & RO_META) ? true : false;
}
static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
struct class64_t c;
const char *r;
uint32_t offset, left;
SectionRef S;
const char *name;
uint64_t isa_n_value, n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr || left < sizeof(struct class64_t))
return;
memset(&c, '\0', sizeof(struct class64_t));
if (left < sizeof(struct class64_t)) {
memcpy(&c, r, left);
outs() << " (class_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct class64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " isa " << format("0x%" PRIx64, c.isa);
name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
isa_n_value, c.isa);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " superclass " << format("0x%" PRIx64, c.superclass);
name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
n_value, c.superclass);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " cache " << format("0x%" PRIx64, c.cache);
name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
n_value, c.cache);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " vtable " << format("0x%" PRIx64, c.vtable);
name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
n_value, c.vtable);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
n_value, c.data);
outs() << " data ";
if (n_value != 0) {
if (info->verbose && name != nullptr)
outs() << name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.data != 0)
outs() << " + " << format("0x%" PRIx64, c.data);
} else
outs() << format("0x%" PRIx64, c.data);
outs() << " (struct class_ro_t *)";
// This is a Swift class if some of the low bits of the pointer are set.
if ((c.data + n_value) & 0x7)
outs() << " Swift class";
outs() << "\n";
bool is_meta_class;
print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class);
if (is_meta_class == false) {
outs() << "Meta Class\n";
print_class64_t(c.isa + isa_n_value, info);
}
}
static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
struct class32_t c;
const char *r;
uint32_t offset, left;
SectionRef S;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct class32_t));
if (left < sizeof(struct class32_t)) {
memcpy(&c, r, left);
outs() << " (class_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct class32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " isa " << format("0x%" PRIx32, c.isa);
name =
get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " superclass " << format("0x%" PRIx32, c.superclass);
name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
c.superclass);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " cache " << format("0x%" PRIx32, c.cache);
name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
c.cache);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " vtable " << format("0x%" PRIx32, c.vtable);
name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
c.vtable);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
name =
get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
outs() << " data " << format("0x%" PRIx32, c.data)
<< " (struct class_ro_t *)";
// This is a Swift class if some of the low bits of the pointer are set.
if (c.data & 0x3)
outs() << " Swift class";
outs() << "\n";
bool is_meta_class;
print_class_ro32_t(c.data & ~0x3, info, is_meta_class);
if (is_meta_class == false) {
outs() << "Meta Class\n";
print_class32_t(c.isa, info);
}
}
static void print_objc_class_t(struct objc_class_t *objc_class,
struct DisassembleInfo *info) {
uint32_t offset, left, xleft;
const char *name, *p, *ivar_list;
SectionRef S;
int32_t i;
struct objc_ivar_list_t objc_ivar_list;
struct objc_ivar_t ivar;
outs() << "\t\t isa " << format("0x%08" PRIx32, objc_class->isa);
if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t super_class "
<< format("0x%08" PRIx32, objc_class->super_class);
if (info->verbose) {
name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t name " << format("0x%08" PRIx32, objc_class->name);
if (info->verbose) {
name = get_pointer_32(objc_class->name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t version " << format("0x%08" PRIx32, objc_class->version)
<< "\n";
outs() << "\t\t info " << format("0x%08" PRIx32, objc_class->info);
if (info->verbose) {
if (CLS_GETINFO(objc_class, CLS_CLASS))
outs() << " CLS_CLASS";
else if (CLS_GETINFO(objc_class, CLS_META))
outs() << " CLS_META";
}
outs() << "\n";
outs() << "\t instance_size "
<< format("0x%08" PRIx32, objc_class->instance_size) << "\n";
p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
outs() << "\t\t ivars " << format("0x%08" PRIx32, objc_class->ivars);
if (p != nullptr) {
if (left > sizeof(struct objc_ivar_list_t)) {
outs() << "\n";
memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
memcpy(&objc_ivar_list, p, left);
}
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_ivar_list);
outs() << "\t\t ivar_count " << objc_ivar_list.ivar_count << "\n";
ivar_list = p + sizeof(struct objc_ivar_list_t);
for (i = 0; i < objc_ivar_list.ivar_count; i++) {
if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
outs() << "\t\t remaining ivar's extend past the of the section\n";
break;
}
memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
sizeof(struct objc_ivar_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(ivar);
outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
if (info->verbose) {
name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
if (info->verbose) {
name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", xleft, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t ivar_offset "
<< format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
}
} else {
outs() << " (not in an __OBJC section)\n";
}
outs() << "\t\t methods " << format("0x%08" PRIx32, objc_class->methodLists);
if (print_method_list(objc_class->methodLists, info))
outs() << " (not in an __OBJC section)\n";
outs() << "\t\t cache " << format("0x%08" PRIx32, objc_class->cache)
<< "\n";
outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
if (print_protocol_list(objc_class->protocols, 16, info))
outs() << " (not in an __OBJC section)\n";
}
static void print_objc_objc_category_t(struct objc_category_t *objc_category,
struct DisassembleInfo *info) {
uint32_t offset, left;
const char *name;
SectionRef S;
outs() << "\t category name "
<< format("0x%08" PRIx32, objc_category->category_name);
if (info->verbose) {
name = get_pointer_32(objc_category->category_name, offset, left, S, info,
true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t\t class name "
<< format("0x%08" PRIx32, objc_category->class_name);
if (info->verbose) {
name =
get_pointer_32(objc_category->class_name, offset, left, S, info, true);
if (name != nullptr)
outs() << format(" %.*s", left, name);
else
outs() << " (not in an __OBJC section)";
}
outs() << "\n";
outs() << "\t instance methods "
<< format("0x%08" PRIx32, objc_category->instance_methods);
if (print_method_list(objc_category->instance_methods, info))
outs() << " (not in an __OBJC section)\n";
outs() << "\t class methods "
<< format("0x%08" PRIx32, objc_category->class_methods);
if (print_method_list(objc_category->class_methods, info))
outs() << " (not in an __OBJC section)\n";
}
static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
struct category64_t c;
const char *r;
uint32_t offset, xoffset, left;
SectionRef S, xS;
const char *name, *sym_name;
uint64_t n_value;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct category64_t));
if (left < sizeof(struct category64_t)) {
memcpy(&c, r, left);
outs() << " (category_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct category64_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " name ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
info, n_value, c.name);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.name != 0)
outs() << " + " << format("0x%" PRIx64, c.name);
} else
outs() << format("0x%" PRIx64, c.name);
name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
outs() << " cls ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
n_value, c.cls);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.cls != 0)
outs() << " + " << format("0x%" PRIx64, c.cls);
} else
outs() << format("0x%" PRIx64, c.cls);
outs() << "\n";
if (c.cls + n_value != 0)
print_class64_t(c.cls + n_value, info);
outs() << " instanceMethods ";
sym_name =
get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
info, n_value, c.instanceMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.instanceMethods != 0)
outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
} else
outs() << format("0x%" PRIx64, c.instanceMethods);
outs() << "\n";
if (c.instanceMethods + n_value != 0)
print_method_list64_t(c.instanceMethods + n_value, info, "");
outs() << " classMethods ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
S, info, n_value, c.classMethods);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.classMethods != 0)
outs() << " + " << format("0x%" PRIx64, c.classMethods);
} else
outs() << format("0x%" PRIx64, c.classMethods);
outs() << "\n";
if (c.classMethods + n_value != 0)
print_method_list64_t(c.classMethods + n_value, info, "");
outs() << " protocols ";
sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
info, n_value, c.protocols);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.protocols != 0)
outs() << " + " << format("0x%" PRIx64, c.protocols);
} else
outs() << format("0x%" PRIx64, c.protocols);
outs() << "\n";
if (c.protocols + n_value != 0)
print_protocol_list64_t(c.protocols + n_value, info);
outs() << "instanceProperties ";
sym_name =
get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
S, info, n_value, c.instanceProperties);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (c.instanceProperties != 0)
outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
} else
outs() << format("0x%" PRIx64, c.instanceProperties);
outs() << "\n";
if (c.instanceProperties + n_value != 0)
print_objc_property_list64(c.instanceProperties + n_value, info);
}
static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
struct category32_t c;
const char *r;
uint32_t offset, left;
SectionRef S, xS;
const char *name;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&c, '\0', sizeof(struct category32_t));
if (left < sizeof(struct category32_t)) {
memcpy(&c, r, left);
outs() << " (category_t entends past the end of the section)\n";
} else
memcpy(&c, r, sizeof(struct category32_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(c);
outs() << " name " << format("0x%" PRIx32, c.name);
name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
c.name);
if (name != NULL)
outs() << " " << name;
outs() << "\n";
outs() << " cls " << format("0x%" PRIx32, c.cls) << "\n";
if (c.cls != 0)
print_class32_t(c.cls, info);
outs() << " instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
<< "\n";
if (c.instanceMethods != 0)
print_method_list32_t(c.instanceMethods, info, "");
outs() << " classMethods " << format("0x%" PRIx32, c.classMethods)
<< "\n";
if (c.classMethods != 0)
print_method_list32_t(c.classMethods, info, "");
outs() << " protocols " << format("0x%" PRIx32, c.protocols) << "\n";
if (c.protocols != 0)
print_protocol_list32_t(c.protocols, info);
outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
<< "\n";
if (c.instanceProperties != 0)
print_objc_property_list32(c.instanceProperties, info);
}
static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
uint32_t i, left, offset, xoffset;
uint64_t p, n_value;
struct message_ref64 mr;
const char *name, *sym_name;
const char *r;
SectionRef xS;
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
offset = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
p = S.getAddress() + i;
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&mr, '\0', sizeof(struct message_ref64));
if (left < sizeof(struct message_ref64)) {
memcpy(&mr, r, left);
outs() << " (message_ref entends past the end of the section)\n";
} else
memcpy(&mr, r, sizeof(struct message_ref64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mr);
outs() << " imp ";
name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
n_value, mr.imp);
if (n_value != 0) {
outs() << format("0x%" PRIx64, n_value) << " ";
if (mr.imp != 0)
outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
} else
outs() << format("0x%" PRIx64, mr.imp) << " ";
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " sel ";
sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
info, n_value, mr.sel);
if (n_value != 0) {
if (info->verbose && sym_name != nullptr)
outs() << sym_name;
else
outs() << format("0x%" PRIx64, n_value);
if (mr.sel != 0)
outs() << " + " << format("0x%" PRIx64, mr.sel);
} else
outs() << format("0x%" PRIx64, mr.sel);
name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
if (name != nullptr)
outs() << format(" %.*s", left, name);
outs() << "\n";
offset += sizeof(struct message_ref64);
}
}
static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
uint32_t i, left, offset, xoffset, p;
struct message_ref32 mr;
const char *name, *r;
SectionRef xS;
if (S == SectionRef())
return;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
offset = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
p = S.getAddress() + i;
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&mr, '\0', sizeof(struct message_ref32));
if (left < sizeof(struct message_ref32)) {
memcpy(&mr, r, left);
outs() << " (message_ref entends past the end of the section)\n";
} else
memcpy(&mr, r, sizeof(struct message_ref32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mr);
outs() << " imp " << format("0x%" PRIx32, mr.imp);
name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
mr.imp);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
outs() << " sel " << format("0x%" PRIx32, mr.sel);
name = get_pointer_32(mr.sel, xoffset, left, xS, info);
if (name != nullptr)
outs() << " " << name;
outs() << "\n";
offset += sizeof(struct message_ref32);
}
}
static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, swift_version;
uint64_t p;
struct objc_image_info64 o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_64(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct objc_image_info64));
if (left < sizeof(struct objc_image_info64)) {
memcpy(&o, r, left);
outs() << " (objc_image_info entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct objc_image_info64));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
outs() << " OBJC_IMAGE_IS_REPLACEMENT";
if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
outs() << " OBJC_IMAGE_SUPPORTS_GC";
swift_version = (o.flags >> 8) & 0xff;
if (swift_version != 0) {
if (swift_version == 1)
outs() << " Swift 1.0";
else if (swift_version == 2)
outs() << " Swift 1.1";
else
outs() << " unknown future Swift version (" << swift_version << ")";
}
outs() << "\n";
}
static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, swift_version, p;
struct objc_image_info32 o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct objc_image_info32));
if (left < sizeof(struct objc_image_info32)) {
memcpy(&o, r, left);
outs() << " (objc_image_info entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct objc_image_info32));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
outs() << " OBJC_IMAGE_IS_REPLACEMENT";
if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
outs() << " OBJC_IMAGE_SUPPORTS_GC";
swift_version = (o.flags >> 8) & 0xff;
if (swift_version != 0) {
if (swift_version == 1)
outs() << " Swift 1.0";
else if (swift_version == 2)
outs() << " Swift 1.1";
else
outs() << " unknown future Swift version (" << swift_version << ")";
}
outs() << "\n";
}
static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
uint32_t left, offset, p;
struct imageInfo_t o;
const char *r;
StringRef SectName;
S.getName(SectName);
DataRefImpl Ref = S.getRawDataRefImpl();
StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
p = S.getAddress();
r = get_pointer_32(p, offset, left, S, info);
if (r == nullptr)
return;
memset(&o, '\0', sizeof(struct imageInfo_t));
if (left < sizeof(struct imageInfo_t)) {
memcpy(&o, r, left);
outs() << " (imageInfo entends past the end of the section)\n";
} else
memcpy(&o, r, sizeof(struct imageInfo_t));
if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(o);
outs() << " version " << o.version << "\n";
outs() << " flags " << format("0x%" PRIx32, o.flags);
if (o.flags & 0x1)
outs() << " F&C";
if (o.flags & 0x2)
outs() << " GC";
if (o.flags & 0x4)
outs() << " GC-only";
else
outs() << " RR";
outs() << "\n";
}
static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
if (CL != SectionRef()) {
info.S = CL;
walk_pointer_list_64("class", CL, O, &info, print_class64_t);
} else {
const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
info.S = CL;
walk_pointer_list_64("class", CL, O, &info, print_class64_t);
}
const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
if (CR != SectionRef()) {
info.S = CR;
walk_pointer_list_64("class refs", CR, O, &info, nullptr);
} else {
const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
info.S = CR;
walk_pointer_list_64("class refs", CR, O, &info, nullptr);
}
const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
if (SR != SectionRef()) {
info.S = SR;
walk_pointer_list_64("super refs", SR, O, &info, nullptr);
} else {
const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
info.S = SR;
walk_pointer_list_64("super refs", SR, O, &info, nullptr);
}
const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
if (CA != SectionRef()) {
info.S = CA;
walk_pointer_list_64("category", CA, O, &info, print_category64_t);
} else {
const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
info.S = CA;
walk_pointer_list_64("category", CA, O, &info, print_category64_t);
}
const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
if (PL != SectionRef()) {
info.S = PL;
walk_pointer_list_64("protocol", PL, O, &info, nullptr);
} else {
const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
info.S = PL;
walk_pointer_list_64("protocol", PL, O, &info, nullptr);
}
const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
if (MR != SectionRef()) {
info.S = MR;
print_message_refs64(MR, &info);
} else {
const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
info.S = MR;
print_message_refs64(MR, &info);
}
const SectionRef II = get_section(O, "__OBJC2", "__image_info");
if (II != SectionRef()) {
info.S = II;
print_image_info64(II, &info);
} else {
const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
info.S = II;
print_image_info64(II, &info);
}
if (info.bindtable != nullptr)
delete info.bindtable;
}
static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
if (CL != SectionRef()) {
info.S = CL;
walk_pointer_list_32("class", CL, O, &info, print_class32_t);
} else {
const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
info.S = CL;
walk_pointer_list_32("class", CL, O, &info, print_class32_t);
}
const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
if (CR != SectionRef()) {
info.S = CR;
walk_pointer_list_32("class refs", CR, O, &info, nullptr);
} else {
const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
info.S = CR;
walk_pointer_list_32("class refs", CR, O, &info, nullptr);
}
const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
if (SR != SectionRef()) {
info.S = SR;
walk_pointer_list_32("super refs", SR, O, &info, nullptr);
} else {
const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
info.S = SR;
walk_pointer_list_32("super refs", SR, O, &info, nullptr);
}
const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
if (CA != SectionRef()) {
info.S = CA;
walk_pointer_list_32("category", CA, O, &info, print_category32_t);
} else {
const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
info.S = CA;
walk_pointer_list_32("category", CA, O, &info, print_category32_t);
}
const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
if (PL != SectionRef()) {
info.S = PL;
walk_pointer_list_32("protocol", PL, O, &info, nullptr);
} else {
const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
info.S = PL;
walk_pointer_list_32("protocol", PL, O, &info, nullptr);
}
const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
if (MR != SectionRef()) {
info.S = MR;
print_message_refs32(MR, &info);
} else {
const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
info.S = MR;
print_message_refs32(MR, &info);
}
const SectionRef II = get_section(O, "__OBJC2", "__image_info");
if (II != SectionRef()) {
info.S = II;
print_image_info32(II, &info);
} else {
const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
info.S = II;
print_image_info32(II, &info);
}
}
static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
uint32_t i, j, p, offset, xoffset, left, defs_left, def;
const char *r, *name, *defs;
struct objc_module_t mod;
SectionRef S, xS;
struct objc_symtab_t symtab;
struct objc_class_t objc_class;
struct objc_category_t objc_category;
outs() << "Objective-C segment\n";
S = get_section(O, "__OBJC", "__module_info");
if (S == SectionRef())
return false;
SymbolAddressMap AddrMap;
if (verbose)
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = verbose;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
p = S.getAddress() + i;
r = get_pointer_32(p, offset, left, S, &info, true);
if (r == nullptr)
return true;
memset(&mod, '\0', sizeof(struct objc_module_t));
if (left < sizeof(struct objc_module_t)) {
memcpy(&mod, r, left);
outs() << " (module extends past end of __module_info section)\n";
} else
memcpy(&mod, r, sizeof(struct objc_module_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(mod);
outs() << "Module " << format("0x%" PRIx32, p) << "\n";
outs() << " version " << mod.version << "\n";
outs() << " size " << mod.size << "\n";
outs() << " name ";
name = get_pointer_32(mod.name, xoffset, left, xS, &info, true);
if (name != nullptr)
outs() << format("%.*s", left, name);
else
outs() << format("0x%08" PRIx32, mod.name)
<< "(not in an __OBJC section)";
outs() << "\n";
r = get_pointer_32(mod.symtab, xoffset, left, xS, &info, true);
if (mod.symtab == 0 || r == nullptr) {
outs() << " symtab " << format("0x%08" PRIx32, mod.symtab)
<< " (not in an __OBJC section)\n";
continue;
}
outs() << " symtab " << format("0x%08" PRIx32, mod.symtab) << "\n";
memset(&symtab, '\0', sizeof(struct objc_symtab_t));
defs_left = 0;
defs = nullptr;
if (left < sizeof(struct objc_symtab_t)) {
memcpy(&symtab, r, left);
outs() << "\tsymtab extends past end of an __OBJC section)\n";
} else {
memcpy(&symtab, r, sizeof(struct objc_symtab_t));
if (left > sizeof(struct objc_symtab_t)) {
defs_left = left - sizeof(struct objc_symtab_t);
defs = r + sizeof(struct objc_symtab_t);
}
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(symtab);
outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
if (r == nullptr)
outs() << " (not in an __OBJC section)";
outs() << "\n";
outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
if (symtab.cls_def_cnt > 0)
outs() << "\tClass Definitions\n";
for (j = 0; j < symtab.cls_def_cnt; j++) {
if ((j + 1) * sizeof(uint32_t) > defs_left) {
outs() << "\t(remaining class defs entries entends past the end of the "
<< "section)\n";
break;
}
memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(def);
r = get_pointer_32(def, xoffset, left, xS, &info, true);
outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
if (r != nullptr) {
if (left > sizeof(struct objc_class_t)) {
outs() << "\n";
memcpy(&objc_class, r, sizeof(struct objc_class_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_class, '\0', sizeof(struct objc_class_t));
memcpy(&objc_class, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_class);
print_objc_class_t(&objc_class, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
outs() << "\tMeta Class";
r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
if (r != nullptr) {
if (left > sizeof(struct objc_class_t)) {
outs() << "\n";
memcpy(&objc_class, r, sizeof(struct objc_class_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_class, '\0', sizeof(struct objc_class_t));
memcpy(&objc_class, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_class);
print_objc_class_t(&objc_class, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
}
}
if (symtab.cat_def_cnt > 0)
outs() << "\tCategory Definitions\n";
for (j = 0; j < symtab.cat_def_cnt; j++) {
if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
outs() << "\t(remaining category defs entries entends past the end of "
<< "the section)\n";
break;
}
memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
sizeof(uint32_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
sys::swapByteOrder(def);
r = get_pointer_32(def, xoffset, left, xS, &info, true);
outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
<< format("0x%08" PRIx32, def);
if (r != nullptr) {
if (left > sizeof(struct objc_category_t)) {
outs() << "\n";
memcpy(&objc_category, r, sizeof(struct objc_category_t));
} else {
outs() << " (entends past the end of the section)\n";
memset(&objc_category, '\0', sizeof(struct objc_category_t));
memcpy(&objc_category, r, left);
}
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(objc_category);
print_objc_objc_category_t(&objc_category, &info);
} else {
outs() << "(not in an __OBJC section)\n";
}
}
}
const SectionRef II = get_section(O, "__OBJC", "__image_info");
if (II != SectionRef())
print_image_info(II, &info);
return true;
}
static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
uint32_t size, uint32_t addr) {
SymbolAddressMap AddrMap;
CreateSymbolAddressMap(O, &AddrMap);
std::vector<SectionRef> Sections;
for (const SectionRef &Section : O->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
struct DisassembleInfo info;
// Set up the block of info used by the Symbolizer call backs.
info.verbose = true;
info.O = O;
info.AddrMap = &AddrMap;
info.Sections = &Sections;
info.class_name = nullptr;
info.selector_name = nullptr;
info.method = nullptr;
info.demangled_name = nullptr;
info.bindtable = nullptr;
info.adrp_addr = 0;
info.adrp_inst = 0;
const char *p;
struct objc_protocol_t protocol;
uint32_t left, paddr;
for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
memset(&protocol, '\0', sizeof(struct objc_protocol_t));
left = size - (p - sect);
if (left < sizeof(struct objc_protocol_t)) {
outs() << "Protocol extends past end of __protocol section\n";
memcpy(&protocol, p, left);
} else
memcpy(&protocol, p, sizeof(struct objc_protocol_t));
if (O->isLittleEndian() != sys::IsLittleEndianHost)
swapStruct(protocol);
paddr = addr + (p - sect);
outs() << "Protocol " << format("0x%" PRIx32, paddr);
if (print_protocol(paddr, 0, &info))
outs() << "(not in an __OBJC section)\n";
}
}
static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
if (O->is64Bit())
printObjc2_64bit_MetaData(O, verbose);
else {
MachO::mach_header H;
H = O->getHeader();
if (H.cputype == MachO::CPU_TYPE_ARM)
printObjc2_32bit_MetaData(O, verbose);
else {
// This is the 32-bit non-arm cputype case. Which is normally
// the first Objective-C ABI. But it may be the case of a
// binary for the iOS simulator which is the second Objective-C
// ABI. In that case printObjc1_32bit_MetaData() will determine that
// and return false.
if (printObjc1_32bit_MetaData(O, verbose) == false)
printObjc2_32bit_MetaData(O, verbose);
}
}
}
// GuessLiteralPointer returns a string which for the item in the Mach-O file
// for the address passed in as ReferenceValue for printing as a comment with
// the instruction and also returns the corresponding type of that item
// indirectly through ReferenceType.
//
// If ReferenceValue is an address of literal cstring then a pointer to the
// cstring is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
//
// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
// Class ref that name is returned and the ReferenceType is set accordingly.
//
// Lastly, literals which are Symbol address in a literal pool are looked for
// and if found the symbol name is returned and ReferenceType is set to
// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
//
// If there is no item in the Mach-O file for the address passed in as
// ReferenceValue nullptr is returned and ReferenceType is unchanged.
static const char *GuessLiteralPointer(uint64_t ReferenceValue,
uint64_t ReferencePC,
uint64_t *ReferenceType,
struct DisassembleInfo *info) {
// First see if there is an external relocation entry at the ReferencePC.
uint64_t sect_addr = info->S.getAddress();
uint64_t sect_offset = ReferencePC - sect_addr;
bool reloc_found = false;
DataRefImpl Rel;
MachO::any_relocation_info RE;
bool isExtern = false;
SymbolRef Symbol;
for (const RelocationRef &Reloc : info->S.relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
if (RelocOffset == sect_offset) {
Rel = Reloc.getRawDataRefImpl();
RE = info->O->getRelocation(Rel);
if (info->O->isRelocationScattered(RE))
continue;
isExtern = info->O->getPlainRelocationExternal(RE);
if (isExtern) {
symbol_iterator RelocSym = Reloc.getSymbol();
Symbol = *RelocSym;
}
reloc_found = true;
break;
}
}
// If there is an external relocation entry for a symbol in a section
// then used that symbol's value for the value of the reference.
if (reloc_found && isExtern) {
if (info->O->getAnyRelocationPCRel(RE)) {
unsigned Type = info->O->getAnyRelocationType(RE);
if (Type == MachO::X86_64_RELOC_SIGNED) {
ReferenceValue = Symbol.getValue();
}
}
}
// Look for literals such as Objective-C CFStrings refs, Selector refs,
// Message refs and Class refs.
bool classref, selref, msgref, cfstring;
uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
selref, msgref, cfstring);
if (classref && pointer_value == 0) {
// Note the ReferenceValue is a pointer into the __objc_classrefs section.
// And the pointer_value in that section is typically zero as it will be
// set by dyld as part of the "bind information".
const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
if (name != nullptr) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *class_name = strrchr(name, '$');
if (class_name != nullptr && class_name[1] == '_' &&
class_name[2] != '\0') {
info->class_name = class_name + 2;
return name;
}
}
}
if (classref) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
const char *name =
get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
if (name != nullptr)
info->class_name = name;
else
name = "bad class ref";
return name;
}
if (cfstring) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
return name;
}
if (selref && pointer_value == 0)
pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
if (pointer_value != 0)
ReferenceValue = pointer_value;
const char *name = GuessCstringPointer(ReferenceValue, info);
if (name) {
if (pointer_value != 0 && selref) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
info->selector_name = name;
} else if (pointer_value != 0 && msgref) {
info->class_name = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
info->selector_name = name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
return name;
}
// Lastly look for an indirect symbol with this ReferenceValue which is in
// a literal pool. If found return that symbol name.
name = GuessIndirectSymbol(ReferenceValue, info);
if (name) {
*ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
return name;
}
return nullptr;
}
// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
// the Symbolizer. It looks up the ReferenceValue using the info passed via the
// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
// is created and returns the symbol name that matches the ReferenceValue or
// nullptr if none. The ReferenceType is passed in for the IN type of
// reference the instruction is making from the values in defined in the header
// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
// Out type and the ReferenceName will also be set which is added as a comment
// to the disassembled instruction.
//
#if HAVE_CXXABI_H
// If the symbol name is a C++ mangled name then the demangled name is
// returned through ReferenceName and ReferenceType is set to
// LLVMDisassembler_ReferenceType_DeMangled_Name .
#endif
//
// When this is called to get a symbol name for a branch target then the
// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
// SymbolValue will be looked for in the indirect symbol table to determine if
// it is an address for a symbol stub. If so then the symbol name for that
// stub is returned indirectly through ReferenceName and then ReferenceType is
// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
//
// When this is called with an value loaded via a PC relative load then
// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
// SymbolValue is checked to be an address of literal pointer, symbol pointer,
// or an Objective-C meta data reference. If so the output ReferenceType is
// set to correspond to that as well as setting the ReferenceName.
static const char *SymbolizerSymbolLookUp(void *DisInfo,
uint64_t ReferenceValue,
uint64_t *ReferenceType,
uint64_t ReferencePC,
const char **ReferenceName) {
struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
// If no verbose symbolic information is wanted then just return nullptr.
if (!info->verbose) {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
return nullptr;
}
const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
*ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
if (*ReferenceName != nullptr) {
method_reference(info, ReferenceType, ReferenceName);
if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
*ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
} else
#if HAVE_CXXABI_H
if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
} else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else
#endif
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
} else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName)
method_reference(info, ReferenceType, ReferenceName);
else
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is an adrp instruction save the
// instruction, passed in ReferenceValue and the address of the instruction
// for use later if we see and add immediate instruction.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
info->adrp_inst = ReferenceValue;
info->adrp_addr = ReferencePC;
SymbolName = nullptr;
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and reference is an add immediate instruction and we
// have
// seen an adrp instruction just before it and the adrp's Xd register
// matches
// this add's Xn register reconstruct the value being referenced and look to
// see if it is a literal pointer. Note the add immediate instruction is
// passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t addxri_inst;
uint64_t adrp_imm, addxri_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
addxri_inst = ReferenceValue;
addxri_imm = (addxri_inst >> 10) & 0xfff;
if (((addxri_inst >> 22) & 0x3) == 1)
addxri_imm <<= 12;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + addxri_imm;
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
// If this is arm64 and the reference is a load register instruction and we
// have seen an adrp instruction just before it and the adrp's Xd register
// matches this add's Xn register reconstruct the value being referenced and
// look to see if it is a literal pointer. Note the load register
// instruction is passed in ReferenceValue.
} else if (info->O->getArch() == Triple::aarch64 &&
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
ReferencePC - 4 == info->adrp_addr &&
(info->adrp_inst & 0x9f000000) == 0x90000000 &&
(info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
uint32_t ldrxui_inst;
uint64_t adrp_imm, ldrxui_imm;
adrp_imm =
((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
if (info->adrp_inst & 0x0200000)
adrp_imm |= 0xfffffffffc000000LL;
ldrxui_inst = ReferenceValue;
ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
(adrp_imm << 12) + (ldrxui_imm << 3);
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
// If this arm64 and is an load register (PC-relative) instruction the
// ReferenceValue is the PC plus the immediate value.
else if (info->O->getArch() == Triple::aarch64 &&
(*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
*ReferenceName =
GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
if (*ReferenceName == nullptr)
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
#if HAVE_CXXABI_H
else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
if (info->demangled_name != nullptr)
free(info->demangled_name);
int status;
info->demangled_name =
abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status);
if (info->demangled_name != nullptr) {
*ReferenceName = info->demangled_name;
*ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
}
}
#endif
else {
*ReferenceName = nullptr;
*ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
}
return SymbolName;
}
/// \brief Emits the comments that are stored in the CommentStream.
/// Each comment in the CommentStream must end with a newline.
static void emitComments(raw_svector_ostream &CommentStream,
SmallString<128> &CommentsToEmit,
formatted_raw_ostream &FormattedOS,
const MCAsmInfo &MAI) {
// Flush the stream before taking its content.
CommentStream.flush();
StringRef Comments = CommentsToEmit.str();
// Get the default information for printing a comment.
const char *CommentBegin = MAI.getCommentString();
unsigned CommentColumn = MAI.getCommentColumn();
bool IsFirst = true;
while (!Comments.empty()) {
if (!IsFirst)
FormattedOS << '\n';
// Emit a line of comments.
FormattedOS.PadToColumn(CommentColumn);
size_t Position = Comments.find('\n');
FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
// Move after the newline character.
Comments = Comments.substr(Position + 1);
IsFirst = false;
}
FormattedOS.flush();
// Tell the comment stream that the vector changed underneath it.
CommentsToEmit.clear();
CommentStream.resync();
}
static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
StringRef DisSegName, StringRef DisSectName) {
const char *McpuDefault = nullptr;
const Target *ThumbTarget = nullptr;
const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
if (MCPU.empty() && McpuDefault)
MCPU = McpuDefault;
std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
if (ThumbTarget)
ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
// Set up disassembler.
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
std::unique_ptr<MCSymbolizer> Symbolizer;
struct DisassembleInfo SymbolizerInfo;
std::unique_ptr<MCRelocationInfo> RelInfo(
TheTarget->createMCRelocationInfo(TripleName, Ctx));
if (RelInfo) {
Symbolizer.reset(TheTarget->createMCSymbolizer(
TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&SymbolizerInfo, &Ctx, std::move(RelInfo)));
DisAsm->setSymbolizer(std::move(Symbolizer));
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
// Comment stream and backing vector.
SmallString<128> CommentsToEmit;
raw_svector_ostream CommentStream(CommentsToEmit);
// FIXME: Setting the CommentStream in the InstPrinter is problematic in that
// if it is done then arm64 comments for string literals don't get printed
// and some constant get printed instead and not setting it causes intel
// (32-bit and 64-bit) comments printed with different spacing before the
// comment causing different diffs with the 'C' disassembler library API.
// IP->setCommentStream(CommentStream);
if (!AsmInfo || !STI || !DisAsm || !IP) {
errs() << "error: couldn't initialize disassembler for target "
<< TripleName << '\n';
return;
}
// Set up thumb disassembler.
std::unique_ptr<const MCRegisterInfo> ThumbMRI;
std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
std::unique_ptr<MCDisassembler> ThumbDisAsm;
std::unique_ptr<MCInstPrinter> ThumbIP;
std::unique_ptr<MCContext> ThumbCtx;
std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
struct DisassembleInfo ThumbSymbolizerInfo;
std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
if (ThumbTarget) {
ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
ThumbAsmInfo.reset(
ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
ThumbSTI.reset(
ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
MCContext *PtrThumbCtx = ThumbCtx.get();
ThumbRelInfo.reset(
ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
if (ThumbRelInfo) {
ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
&ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
}
int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
ThumbIP.reset(ThumbTarget->createMCInstPrinter(
Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
*ThumbInstrInfo, *ThumbMRI));
// Set the display preference for hex vs. decimal immediates.
ThumbIP->setPrintImmHex(PrintImmHex);
}
if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
errs() << "error: couldn't initialize disassembler for target "
<< ThumbTripleName << '\n';
return;
}
MachO::mach_header Header = MachOOF->getHeader();
// FIXME: Using the -cfg command line option, this code used to be able to
// annotate relocations with the referenced symbol's name, and if this was
// inside a __[cf]string section, the data it points to. This is now replaced
// by the upcoming MCSymbolizer, which needs the appropriate setup done above.
std::vector<SectionRef> Sections;
std::vector<SymbolRef> Symbols;
SmallVector<uint64_t, 8> FoundFns;
uint64_t BaseSegmentAddress;
getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
BaseSegmentAddress);
// Sort the symbols by address, just in case they didn't come in that way.
std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
// Build a data in code table that is sorted on by the address of each entry.
uint64_t BaseAddress = 0;
if (Header.filetype == MachO::MH_OBJECT)
BaseAddress = Sections[0].getAddress();
else
BaseAddress = BaseSegmentAddress;
DiceTable Dices;
for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
DI != DE; ++DI) {
uint32_t Offset;
DI->getOffset(Offset);
Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
}
array_pod_sort(Dices.begin(), Dices.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
std::unique_ptr<DIContext> diContext;
ObjectFile *DbgObj = MachOOF;
// Try to find debug info and set up the DIContext for it.
if (UseDbg) {
// A separate DSym file path was specified, parse it as a macho file,
// get the sections and supply it to the section name parsing machinery.
if (!DSYMFile.empty()) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
MemoryBuffer::getFileOrSTDIN(DSYMFile);
if (std::error_code EC = BufOrErr.getError()) {
errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
return;
}
DbgObj =
ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
.get()
.release();
}
// Setup the DIContext
diContext.reset(new DWARFContextInMemory(*DbgObj));
}
if (DumpSections.size() == 0)
outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
StringRef SectName;
if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
continue;
DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
if (SegmentName != DisSegName)
continue;
StringRef BytesStr;
Sections[SectIdx].getContents(BytesStr);
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
uint64_t SectAddress = Sections[SectIdx].getAddress();
bool symbolTableWorked = false;
// Parse relocations.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) {
uint64_t RelocOffset = Reloc.getOffset();
uint64_t SectionAddress = Sections[SectIdx].getAddress();
RelocOffset -= SectionAddress;
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Create a map of symbol addresses to symbol names for use by
// the SymbolizerSymbolLookUp() routine.
SymbolAddressMap AddrMap;
bool DisSymNameFound = false;
for (const SymbolRef &Symbol : MachOOF->symbols()) {
SymbolRef::Type ST = Symbol.getType();
if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
ST == SymbolRef::ST_Other) {
uint64_t Address = Symbol.getValue();
ErrorOr<StringRef> SymNameOrErr = Symbol.getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
AddrMap[Address] = SymName;
if (!DisSymName.empty() && DisSymName == SymName)
DisSymNameFound = true;
}
}
if (!DisSymName.empty() && !DisSymNameFound) {
outs() << "Can't find -dis-symname: " << DisSymName << "\n";
return;
}
// Set up the block of info used by the Symbolizer call backs.
SymbolizerInfo.verbose = !NoSymbolicOperands;
SymbolizerInfo.O = MachOOF;
SymbolizerInfo.S = Sections[SectIdx];
SymbolizerInfo.AddrMap = &AddrMap;
SymbolizerInfo.Sections = &Sections;
SymbolizerInfo.class_name = nullptr;
SymbolizerInfo.selector_name = nullptr;
SymbolizerInfo.method = nullptr;
SymbolizerInfo.demangled_name = nullptr;
SymbolizerInfo.bindtable = nullptr;
SymbolizerInfo.adrp_addr = 0;
SymbolizerInfo.adrp_inst = 0;
// Same for the ThumbSymbolizer
ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
ThumbSymbolizerInfo.O = MachOOF;
ThumbSymbolizerInfo.S = Sections[SectIdx];
ThumbSymbolizerInfo.AddrMap = &AddrMap;
ThumbSymbolizerInfo.Sections = &Sections;
ThumbSymbolizerInfo.class_name = nullptr;
ThumbSymbolizerInfo.selector_name = nullptr;
ThumbSymbolizerInfo.method = nullptr;
ThumbSymbolizerInfo.demangled_name = nullptr;
ThumbSymbolizerInfo.bindtable = nullptr;
ThumbSymbolizerInfo.adrp_addr = 0;
ThumbSymbolizerInfo.adrp_inst = 0;
// Disassemble symbol by symbol.
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
ErrorOr<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
if (std::error_code EC = SymNameOrErr.getError())
report_fatal_error(EC.message());
StringRef SymName = *SymNameOrErr;
SymbolRef::Type ST = Symbols[SymIdx].getType();
if (ST != SymbolRef::ST_Function)
continue;
// Make sure the symbol is defined in this section.
bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
if (!containsSym)
continue;
// If we are only disassembling one symbol see if this is that symbol.
if (!DisSymName.empty() && DisSymName != SymName)
continue;
// Start at the address of the symbol relative to the section's address.
uint64_t Start = Symbols[SymIdx].getValue();
uint64_t SectionAddress = Sections[SectIdx].getAddress();
Start -= SectionAddress;
// Stop disassembling either at the beginning of the next symbol or at
// the end of the section.
bool containsNextSym = false;
uint64_t NextSym = 0;
uint64_t NextSymIdx = SymIdx + 1;
while (Symbols.size() > NextSymIdx) {
SymbolRef::Type NextSymType = Symbols[NextSymIdx].getType();
if (NextSymType == SymbolRef::ST_Function) {
containsNextSym =
Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
NextSym = Symbols[NextSymIdx].getValue();
NextSym -= SectionAddress;
break;
}
++NextSymIdx;
}
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t End = containsNextSym ? NextSym : SectSize;
uint64_t Size;
symbolTableWorked = true;
DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
bool isThumb =
(MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget;
outs() << SymName << ":\n";
DILineInfo lastLine;
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (!NoLeadingAddr) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
}
if (!NoShowRawInsn)
outs() << "\t";
// Check the data in code table here to see if this is data not an
// instruction to be disassembled.
DiceTable Dice;
Dice.push_back(std::make_pair(PC, DiceRef()));
dice_table_iterator DTI =
std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
compareDiceTableEntries);
if (DTI != Dices.end()) {
uint16_t Length;
DTI->second.getLength(Length);
uint16_t Kind;
DTI->second.getKind(Kind);
Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
(PC == (DTI->first + Length - 1)) && (Length & 1))
Size++;
continue;
}
SmallVector<char, 64> AnnotationsBytes;
raw_svector_ostream Annotations(AnnotationsBytes);
bool gotInst;
if (isThumb)
gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
PC, DebugOut, Annotations);
else
gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
DebugOut, Annotations);
if (gotInst) {
if (!NoShowRawInsn) {
dumpBytes(ArrayRef<uint8_t>(Bytes.data() + Index, Size), outs());
}
formatted_raw_ostream FormattedOS(outs());
Annotations.flush();
StringRef AnnotationsStr = Annotations.str();
if (isThumb)
ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
else
IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
// Print debug info.
if (diContext) {
DILineInfo dli = diContext->getLineInfoForAddress(PC);
// Print valid line info if it changed.
if (dli != lastLine && dli.Line != 0)
outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
<< dli.Column;
lastLine = dli;
}
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
Size = 1; // skip exactly one illegible byte and move on.
} else if (Arch == Triple::aarch64) {
uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
(*(Bytes.data() + Index + 1) & 0xff) << 8 |
(*(Bytes.data() + Index + 2) & 0xff) << 16 |
(*(Bytes.data() + Index + 3) & 0xff) << 24;
outs() << format("\t.long\t0x%08x\n", opcode);
Size = 4;
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
}
if (!symbolTableWorked) {
// Reading the symbol table didn't work, disassemble the whole section.
uint64_t SectAddress = Sections[SectIdx].getAddress();
uint64_t SectSize = Sections[SectIdx].getSize();
uint64_t InstSize;
for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
MCInst Inst;
uint64_t PC = SectAddress + Index;
if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
DebugOut, nulls())) {
if (!NoLeadingAddr) {
if (FullLeadingAddr) {
if (MachOOF->is64Bit())
outs() << format("%016" PRIx64, PC);
else
outs() << format("%08" PRIx64, PC);
} else {
outs() << format("%8" PRIx64 ":", PC);
}
}
if (!NoShowRawInsn) {
outs() << "\t";
dumpBytes(ArrayRef<uint8_t>(Bytes.data() + Index, InstSize), outs());
}
IP->printInst(&Inst, outs(), "", *STI);
outs() << "\n";
} else {
unsigned int Arch = MachOOF->getArch();
if (Arch == Triple::x86_64 || Arch == Triple::x86) {
outs() << format("\t.byte 0x%02x #bad opcode\n",
*(Bytes.data() + Index) & 0xff);
InstSize = 1; // skip exactly one illegible byte and move on.
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (InstSize == 0)
InstSize = 1; // skip illegible bytes
}
}
}
}
// The TripleName's need to be reset if we are called again for a different
// archtecture.
TripleName = "";
ThumbTripleName = "";
if (SymbolizerInfo.method != nullptr)
free(SymbolizerInfo.method);
if (SymbolizerInfo.demangled_name != nullptr)
free(SymbolizerInfo.demangled_name);
if (SymbolizerInfo.bindtable != nullptr)
delete SymbolizerInfo.bindtable;
if (ThumbSymbolizerInfo.method != nullptr)
free(ThumbSymbolizerInfo.method);
if (ThumbSymbolizerInfo.demangled_name != nullptr)
free(ThumbSymbolizerInfo.demangled_name);
if (ThumbSymbolizerInfo.bindtable != nullptr)
delete ThumbSymbolizerInfo.bindtable;
}
}
//===----------------------------------------------------------------------===//
// __compact_unwind section dumping
//===----------------------------------------------------------------------===//
namespace {
template <typename T> static uint64_t readNext(const char *&Buf) {
using llvm::support::little;
using llvm::support::unaligned;
uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
Buf += sizeof(T);
return Val;
}
struct CompactUnwindEntry {
uint32_t OffsetInSection;
uint64_t FunctionAddr;
uint32_t Length;
uint32_t CompactEncoding;
uint64_t PersonalityAddr;
uint64_t LSDAAddr;
RelocationRef FunctionReloc;
RelocationRef PersonalityReloc;
RelocationRef LSDAReloc;
CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
: OffsetInSection(Offset) {
if (Is64)
read<uint64_t>(Contents.data() + Offset);
else
read<uint32_t>(Contents.data() + Offset);
}
private:
template <typename UIntPtr> void read(const char *Buf) {
FunctionAddr = readNext<UIntPtr>(Buf);
Length = readNext<uint32_t>(Buf);
CompactEncoding = readNext<uint32_t>(Buf);
PersonalityAddr = readNext<UIntPtr>(Buf);
LSDAAddr = readNext<UIntPtr>(Buf);
}
};
}
/// Given a relocation from __compact_unwind, consisting of the RelocationRef
/// and data being relocated, determine the best base Name and Addend to use for
/// display purposes.
///
/// 1. An Extern relocation will directly reference a symbol (and the data is
/// then already an addend), so use that.
/// 2. Otherwise the data is an offset in the object file's layout; try to find
// a symbol before it in the same section, and use the offset from there.
/// 3. Finally, if all that fails, fall back to an offset from the start of the
/// referenced section.
static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr,
StringRef &Name, uint64_t &Addend) {
if (Reloc.getSymbol() != Obj->symbol_end()) {
ErrorOr<StringRef> NameOrErr = Reloc.getSymbol()->getName();
if (std::error_code EC = NameOrErr.getError())
report_fatal_error(EC.message());
Name = *NameOrErr;
Addend = Addr;
return;
}
auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
uint64_t SectionAddr = RelocSection.getAddress();
auto Sym = Symbols.upper_bound(Addr);
if (Sym == Symbols.begin()) {
// The first symbol in the object is after this reference, the best we can
// do is section-relative notation.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
return;
}
// Go back one so that SymbolAddress <= Addr.
--Sym;
section_iterator SymSection = Obj->section_end();
Sym->second.getSection(SymSection);
if (RelocSection == *SymSection) {
// There's a valid symbol in the same section before this reference.
ErrorOr<StringRef> NameOrErr = Sym->second.getName();
if (std::error_code EC = NameOrErr.getError())
report_fatal_error(EC.message());
Name = *NameOrErr;
Addend = Addr - Sym->first;
return;
}
// There is a symbol before this reference, but it's in a different
// section. Probably not helpful to mention it, so use the section name.
RelocSection.getName(Name);
Addend = Addr - SectionAddr;
}
static void printUnwindRelocDest(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const RelocationRef &Reloc, uint64_t Addr) {
StringRef Name;
uint64_t Addend;
if (!Reloc.getObject())
return;
findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
outs() << Name;
if (Addend)
outs() << " + " << format("0x%" PRIx64, Addend);
}
static void
printMachOCompactUnwindSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &CompactUnwind) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __compact_unwind");
bool Is64 = Obj->is64Bit();
uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
StringRef Contents;
CompactUnwind.getContents(Contents);
SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
// First populate the initial raw offsets, encodings and so on from the entry.
for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
CompactUnwinds.push_back(Entry);
}
// Next we need to look at the relocations to find out what objects are
// actually being referred to.
for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
uint64_t RelocAddress = Reloc.getOffset();
uint32_t EntryIdx = RelocAddress / EntrySize;
uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
if (OffsetInEntry == 0)
Entry.FunctionReloc = Reloc;
else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
Entry.PersonalityReloc = Reloc;
else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
Entry.LSDAReloc = Reloc;
else
llvm_unreachable("Unexpected relocation in __compact_unwind section");
}
// Finally, we're ready to print the data we've gathered.
outs() << "Contents of __compact_unwind section:\n";
for (auto &Entry : CompactUnwinds) {
outs() << " Entry at offset "
<< format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
// 1. Start of the region this entry applies to.
outs() << " start: " << format("0x%" PRIx64,
Entry.FunctionAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
outs() << '\n';
// 2. Length of the region this entry applies to.
outs() << " length: " << format("0x%" PRIx32, Entry.Length)
<< '\n';
// 3. The 32-bit compact encoding.
outs() << " compact encoding: "
<< format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
// 4. The personality function, if present.
if (Entry.PersonalityReloc.getObject()) {
outs() << " personality function: "
<< format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
Entry.PersonalityAddr);
outs() << '\n';
}
// 5. This entry's language-specific data area.
if (Entry.LSDAReloc.getObject()) {
outs() << " LSDA: " << format("0x%" PRIx64,
Entry.LSDAAddr) << ' ';
printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
outs() << '\n';
}
}
}
//===----------------------------------------------------------------------===//
// __unwind_info section dumping
//===----------------------------------------------------------------------===//
static void printRegularSecondLevelUnwindPage(const char *PageStart) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t Encoding = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printCompressedSecondLevelUnwindPage(
const char *PageStart, uint32_t FunctionBase,
const SmallVectorImpl<uint32_t> &CommonEncodings) {
const char *Pos = PageStart;
uint32_t Kind = readNext<uint32_t>(Pos);
(void)Kind;
assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
uint16_t EntriesStart = readNext<uint16_t>(Pos);
uint16_t NumEntries = readNext<uint16_t>(Pos);
uint16_t EncodingsStart = readNext<uint16_t>(Pos);
readNext<uint16_t>(Pos);
const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
PageStart + EncodingsStart);
Pos = PageStart + EntriesStart;
for (unsigned i = 0; i < NumEntries; ++i) {
uint32_t Entry = readNext<uint32_t>(Pos);
uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
uint32_t EncodingIdx = Entry >> 24;
uint32_t Encoding;
if (EncodingIdx < CommonEncodings.size())
Encoding = CommonEncodings[EncodingIdx];
else
Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "encoding[" << EncodingIdx
<< "]=" << format("0x%08" PRIx32, Encoding) << '\n';
}
}
static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
std::map<uint64_t, SymbolRef> &Symbols,
const SectionRef &UnwindInfo) {
assert(Obj->isLittleEndian() &&
"There should not be a big-endian .o with __unwind_info");
outs() << "Contents of __unwind_info section:\n";
StringRef Contents;
UnwindInfo.getContents(Contents);
const char *Pos = Contents.data();
//===----------------------------------
// Section header
//===----------------------------------
uint32_t Version = readNext<uint32_t>(Pos);
outs() << " Version: "
<< format("0x%" PRIx32, Version) << '\n';
assert(Version == 1 && "only understand version 1");
uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
outs() << " Common encodings array section offset: "
<< format("0x%" PRIx32, CommonEncodingsStart) << '\n';
uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
outs() << " Number of common encodings in array: "
<< format("0x%" PRIx32, NumCommonEncodings) << '\n';
uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
outs() << " Personality function array section offset: "
<< format("0x%" PRIx32, PersonalitiesStart) << '\n';
uint32_t NumPersonalities = readNext<uint32_t>(Pos);
outs() << " Number of personality functions in array: "
<< format("0x%" PRIx32, NumPersonalities) << '\n';
uint32_t IndicesStart = readNext<uint32_t>(Pos);
outs() << " Index array section offset: "
<< format("0x%" PRIx32, IndicesStart) << '\n';
uint32_t NumIndices = readNext<uint32_t>(Pos);
outs() << " Number of indices in array: "
<< format("0x%" PRIx32, NumIndices) << '\n';
//===----------------------------------
// A shared list of common encodings
//===----------------------------------
// These occupy indices in the range [0, N] whenever an encoding is referenced
// from a compressed 2nd level index table. In practice the linker only
// creates ~128 of these, so that indices are available to embed encodings in
// the 2nd level index.
SmallVector<uint32_t, 64> CommonEncodings;
outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
Pos = Contents.data() + CommonEncodingsStart;
for (unsigned i = 0; i < NumCommonEncodings; ++i) {
uint32_t Encoding = readNext<uint32_t>(Pos);
CommonEncodings.push_back(Encoding);
outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
<< '\n';
}
//===----------------------------------
// Personality functions used in this executable
//===----------------------------------
// There should be only a handful of these (one per source language,
// roughly). Particularly since they only get 2 bits in the compact encoding.
outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
Pos = Contents.data() + PersonalitiesStart;
for (unsigned i = 0; i < NumPersonalities; ++i) {
uint32_t PersonalityFn = readNext<uint32_t>(Pos);
outs() << " personality[" << i + 1
<< "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
}
//===----------------------------------
// The level 1 index entries
//===----------------------------------
// These specify an approximate place to start searching for the more detailed
// information, sorted by PC.
struct IndexEntry {
uint32_t FunctionOffset;
uint32_t SecondLevelPageStart;
uint32_t LSDAStart;
};
SmallVector<IndexEntry, 4> IndexEntries;
outs() << " Top level indices: (count = " << NumIndices << ")\n";
Pos = Contents.data() + IndicesStart;
for (unsigned i = 0; i < NumIndices; ++i) {
IndexEntry Entry;
Entry.FunctionOffset = readNext<uint32_t>(Pos);
Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
Entry.LSDAStart = readNext<uint32_t>(Pos);
IndexEntries.push_back(Entry);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
<< ", "
<< "2nd level page offset="
<< format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
<< "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
}
//===----------------------------------
// Next come the LSDA tables
//===----------------------------------
// The LSDA layout is rather implicit: it's a contiguous array of entries from
// the first top-level index's LSDAOffset to the last (sentinel).
outs() << " LSDA descriptors:\n";
Pos = Contents.data() + IndexEntries[0].LSDAStart;
int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
(2 * sizeof(uint32_t));
for (int i = 0; i < NumLSDAs; ++i) {
uint32_t FunctionOffset = readNext<uint32_t>(Pos);
uint32_t LSDAOffset = readNext<uint32_t>(Pos);
outs() << " [" << i << "]: "
<< "function offset=" << format("0x%08" PRIx32, FunctionOffset)
<< ", "
<< "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
}
//===----------------------------------
// Finally, the 2nd level indices
//===----------------------------------
// Generally these are 4K in size, and have 2 possible forms:
// + Regular stores up to 511 entries with disparate encodings
// + Compressed stores up to 1021 entries if few enough compact encoding
// values are used.
outs() << " Second level indices:\n";
for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
// The final sentinel top-level index has no associated 2nd level page
if (IndexEntries[i].SecondLevelPageStart == 0)
break;
outs() << " Second level index[" << i << "]: "
<< "offset in section="
<< format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
<< ", "
<< "base function offset="
<< format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
if (Kind == 2)
printRegularSecondLevelUnwindPage(Pos);
else if (Kind == 3)
printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
CommonEncodings);
else
llvm_unreachable("Do not know how to print this kind of 2nd level page");
}
}
void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
std::map<uint64_t, SymbolRef> Symbols;
for (const SymbolRef &SymRef : Obj->symbols()) {
// Discard any undefined or absolute symbols. They're not going to take part
// in the convenience lookup for unwind info and just take up resources.
section_iterator Section = Obj->section_end();
SymRef.getSection(Section);
if (Section == Obj->section_end())
continue;
uint64_t Addr = SymRef.getValue();
Symbols.insert(std::make_pair(Addr, SymRef));
}
for (const SectionRef &Section : Obj->sections()) {
StringRef SectName;
Section.getName(SectName);
if (SectName == "__compact_unwind")
printMachOCompactUnwindSection(Obj, Symbols, Section);
else if (SectName == "__unwind_info")
printMachOUnwindInfoSection(Obj, Symbols, Section);
else if (SectName == "__eh_frame")
outs() << "llvm-objdump: warning: unhandled __eh_frame section\n";
}
}
static void PrintMachHeader(uint32_t magic, uint32_t cputype,
uint32_t cpusubtype, uint32_t filetype,
uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
bool verbose) {
outs() << "Mach header\n";
outs() << " magic cputype cpusubtype caps filetype ncmds "
"sizeofcmds flags\n";
if (verbose) {
if (magic == MachO::MH_MAGIC)
outs() << " MH_MAGIC";
else if (magic == MachO::MH_MAGIC_64)
outs() << "MH_MAGIC_64";
else
outs() << format(" 0x%08" PRIx32, magic);
switch (cputype) {
case MachO::CPU_TYPE_I386:
outs() << " I386";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_I386_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_X86_64:
outs() << " X86_64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_X86_64_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_X86_64_H:
outs() << " Haswell";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM:
outs() << " ARM";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM_ALL:
outs() << " ALL";
break;
case MachO::CPU_SUBTYPE_ARM_V4T:
outs() << " V4T";
break;
case MachO::CPU_SUBTYPE_ARM_V5TEJ:
outs() << " V5TEJ";
break;
case MachO::CPU_SUBTYPE_ARM_XSCALE:
outs() << " XSCALE";
break;
case MachO::CPU_SUBTYPE_ARM_V6:
outs() << " V6";
break;
case MachO::CPU_SUBTYPE_ARM_V6M:
outs() << " V6M";
break;
case MachO::CPU_SUBTYPE_ARM_V7:
outs() << " V7";
break;
case MachO::CPU_SUBTYPE_ARM_V7EM:
outs() << " V7EM";
break;
case MachO::CPU_SUBTYPE_ARM_V7K:
outs() << " V7K";
break;
case MachO::CPU_SUBTYPE_ARM_V7M:
outs() << " V7M";
break;
case MachO::CPU_SUBTYPE_ARM_V7S:
outs() << " V7S";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_ARM64:
outs() << " ARM64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_ARM64_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC:
outs() << " PPC";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
case MachO::CPU_TYPE_POWERPC64:
outs() << " PPC64";
switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
case MachO::CPU_SUBTYPE_POWERPC_ALL:
outs() << " ALL";
break;
default:
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
break;
}
break;
}
if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
outs() << " LIB64";
} else {
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
}
switch (filetype) {
case MachO::MH_OBJECT:
outs() << " OBJECT";
break;
case MachO::MH_EXECUTE:
outs() << " EXECUTE";
break;
case MachO::MH_FVMLIB:
outs() << " FVMLIB";
break;
case MachO::MH_CORE:
outs() << " CORE";
break;
case MachO::MH_PRELOAD:
outs() << " PRELOAD";
break;
case MachO::MH_DYLIB:
outs() << " DYLIB";
break;
case MachO::MH_DYLIB_STUB:
outs() << " DYLIB_STUB";
break;
case MachO::MH_DYLINKER:
outs() << " DYLINKER";
break;
case MachO::MH_BUNDLE:
outs() << " BUNDLE";
break;
case MachO::MH_DSYM:
outs() << " DSYM";
break;
case MachO::MH_KEXT_BUNDLE:
outs() << " KEXTBUNDLE";
break;
default:
outs() << format(" %10u", filetype);
break;
}
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
uint32_t f = flags;
if (f & MachO::MH_NOUNDEFS) {
outs() << " NOUNDEFS";
f &= ~MachO::MH_NOUNDEFS;
}
if (f & MachO::MH_INCRLINK) {
outs() << " INCRLINK";
f &= ~MachO::MH_INCRLINK;
}
if (f & MachO::MH_DYLDLINK) {
outs() << " DYLDLINK";
f &= ~MachO::MH_DYLDLINK;
}
if (f & MachO::MH_BINDATLOAD) {
outs() << " BINDATLOAD";
f &= ~MachO::MH_BINDATLOAD;
}
if (f & MachO::MH_PREBOUND) {
outs() << " PREBOUND";
f &= ~MachO::MH_PREBOUND;
}
if (f & MachO::MH_SPLIT_SEGS) {
outs() << " SPLIT_SEGS";
f &= ~MachO::MH_SPLIT_SEGS;
}
if (f & MachO::MH_LAZY_INIT) {
outs() << " LAZY_INIT";
f &= ~MachO::MH_LAZY_INIT;
}
if (f & MachO::MH_TWOLEVEL) {
outs() << " TWOLEVEL";
f &= ~MachO::MH_TWOLEVEL;
}
if (f & MachO::MH_FORCE_FLAT) {
outs() << " FORCE_FLAT";
f &= ~MachO::MH_FORCE_FLAT;
}
if (f & MachO::MH_NOMULTIDEFS) {
outs() << " NOMULTIDEFS";
f &= ~MachO::MH_NOMULTIDEFS;
}
if (f & MachO::MH_NOFIXPREBINDING) {
outs() << " NOFIXPREBINDING";
f &= ~MachO::MH_NOFIXPREBINDING;
}
if (f & MachO::MH_PREBINDABLE) {
outs() << " PREBINDABLE";
f &= ~MachO::MH_PREBINDABLE;
}
if (f & MachO::MH_ALLMODSBOUND) {
outs() << " ALLMODSBOUND";
f &= ~MachO::MH_ALLMODSBOUND;
}
if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
outs() << " SUBSECTIONS_VIA_SYMBOLS";
f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
}
if (f & MachO::MH_CANONICAL) {
outs() << " CANONICAL";
f &= ~MachO::MH_CANONICAL;
}
if (f & MachO::MH_WEAK_DEFINES) {
outs() << " WEAK_DEFINES";
f &= ~MachO::MH_WEAK_DEFINES;
}
if (f & MachO::MH_BINDS_TO_WEAK) {
outs() << " BINDS_TO_WEAK";
f &= ~MachO::MH_BINDS_TO_WEAK;
}
if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
outs() << " ALLOW_STACK_EXECUTION";
f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
}
if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
outs() << " DEAD_STRIPPABLE_DYLIB";
f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
}
if (f & MachO::MH_PIE) {
outs() << " PIE";
f &= ~MachO::MH_PIE;
}
if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
outs() << " NO_REEXPORTED_DYLIBS";
f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
}
if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
outs() << " MH_HAS_TLV_DESCRIPTORS";
f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
}
if (f & MachO::MH_NO_HEAP_EXECUTION) {
outs() << " MH_NO_HEAP_EXECUTION";
f &= ~MachO::MH_NO_HEAP_EXECUTION;
}
if (f & MachO::MH_APP_EXTENSION_SAFE) {
outs() << " APP_EXTENSION_SAFE";
f &= ~MachO::MH_APP_EXTENSION_SAFE;
}
if (f != 0 || flags == 0)
outs() << format(" 0x%08" PRIx32, f);
} else {
outs() << format(" 0x%08" PRIx32, magic);
outs() << format(" %7d", cputype);
outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
outs() << format(" 0x%02" PRIx32,
(cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
outs() << format(" %10u", filetype);
outs() << format(" %5u", ncmds);
outs() << format(" %10u", sizeofcmds);
outs() << format(" 0x%08" PRIx32, flags);
}
outs() << "\n";
}
static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
StringRef SegName, uint64_t vmaddr,
uint64_t vmsize, uint64_t fileoff,
uint64_t filesize, uint32_t maxprot,
uint32_t initprot, uint32_t nsects,
uint32_t flags, uint32_t object_size,
bool verbose) {
uint64_t expected_cmdsize;
if (cmd == MachO::LC_SEGMENT) {
outs() << " cmd LC_SEGMENT\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section);
expected_cmdsize += sizeof(struct MachO::segment_command);
} else {
outs() << " cmd LC_SEGMENT_64\n";
expected_cmdsize = nsects;
expected_cmdsize *= sizeof(struct MachO::section_64);
expected_cmdsize += sizeof(struct MachO::segment_command_64);
}
outs() << " cmdsize " << cmdsize;
if (cmdsize != expected_cmdsize)
outs() << " Inconsistent size\n";
else
outs() << "\n";
outs() << " segname " << SegName << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
} else {
outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
}
outs() << " fileoff " << fileoff;
if (fileoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " filesize " << filesize;
if (fileoff + filesize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
if (verbose) {
if ((maxprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
else {
if (maxprot & MachO::VM_PROT_READ)
outs() << " maxprot r";
else
outs() << " maxprot -";
if (maxprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (maxprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
if ((initprot &
~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
MachO::VM_PROT_EXECUTE)) != 0)
outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
else {
if (initprot & MachO::VM_PROT_READ)
outs() << " initprot r";
else
outs() << " initprot -";
if (initprot & MachO::VM_PROT_WRITE)
outs() << "w";
else
outs() << "-";
if (initprot & MachO::VM_PROT_EXECUTE)
outs() << "x\n";
else
outs() << "-\n";
}
} else {
outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
}
outs() << " nsects " << nsects << "\n";
if (verbose) {
outs() << " flags";
if (flags == 0)
outs() << " (none)\n";
else {
if (flags & MachO::SG_HIGHVM) {
outs() << " HIGHVM";
flags &= ~MachO::SG_HIGHVM;
}
if (flags & MachO::SG_FVMLIB) {
outs() << " FVMLIB";
flags &= ~MachO::SG_FVMLIB;
}
if (flags & MachO::SG_NORELOC) {
outs() << " NORELOC";
flags &= ~MachO::SG_NORELOC;
}
if (flags & MachO::SG_PROTECTED_VERSION_1) {
outs() << " PROTECTED_VERSION_1";
flags &= ~MachO::SG_PROTECTED_VERSION_1;
}
if (flags)
outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
else
outs() << "\n";
}
} else {
outs() << " flags " << format("0x%" PRIx32, flags) << "\n";
}
}
static void PrintSection(const char *sectname, const char *segname,
uint64_t addr, uint64_t size, uint32_t offset,
uint32_t align, uint32_t reloff, uint32_t nreloc,
uint32_t flags, uint32_t reserved1, uint32_t reserved2,
uint32_t cmd, const char *sg_segname,
uint32_t filetype, uint32_t object_size,
bool verbose) {
outs() << "Section\n";
outs() << " sectname " << format("%.16s\n", sectname);
outs() << " segname " << format("%.16s", segname);
if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
outs() << " (does not match segment)\n";
else
outs() << "\n";
if (cmd == MachO::LC_SEGMENT_64) {
outs() << " addr " << format("0x%016" PRIx64, addr) << "\n";
outs() << " size " << format("0x%016" PRIx64, size);
} else {
outs() << " addr " << format("0x%08" PRIx64, addr) << "\n";
outs() << " size " << format("0x%08" PRIx64, size);
}
if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " offset " << offset;
if (offset > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t align_shifted = 1 << align;
outs() << " align 2^" << align << " (" << align_shifted << ")\n";
outs() << " reloff " << reloff;
if (reloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nreloc " << nreloc;
if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
uint32_t section_type = flags & MachO::SECTION_TYPE;
if (verbose) {
outs() << " type";
if (section_type == MachO::S_REGULAR)
outs() << " S_REGULAR\n";
else if (section_type == MachO::S_ZEROFILL)
outs() << " S_ZEROFILL\n";
else if (section_type == MachO::S_CSTRING_LITERALS)
outs() << " S_CSTRING_LITERALS\n";
else if (section_type == MachO::S_4BYTE_LITERALS)
outs() << " S_4BYTE_LITERALS\n";
else if (section_type == MachO::S_8BYTE_LITERALS)
outs() << " S_8BYTE_LITERALS\n";
else if (section_type == MachO::S_16BYTE_LITERALS)
outs() << " S_16BYTE_LITERALS\n";
else if (section_type == MachO::S_LITERAL_POINTERS)
outs() << " S_LITERAL_POINTERS\n";
else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
outs() << " S_LAZY_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " S_SYMBOL_STUBS\n";
else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
outs() << " S_MOD_INIT_FUNC_POINTERS\n";
else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
outs() << " S_MOD_TERM_FUNC_POINTERS\n";
else if (section_type == MachO::S_COALESCED)
outs() << " S_COALESCED\n";
else if (section_type == MachO::S_INTERPOSING)
outs() << " S_INTERPOSING\n";
else if (section_type == MachO::S_DTRACE_DOF)
outs() << " S_DTRACE_DOF\n";
else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
outs() << " S_THREAD_LOCAL_REGULAR\n";
else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
outs() << " S_THREAD_LOCAL_ZEROFILL\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
outs() << " S_THREAD_LOCAL_VARIABLES\n";
else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
else
outs() << format("0x%08" PRIx32, section_type) << "\n";
outs() << "attributes";
uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
outs() << " PURE_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_NO_TOC)
outs() << " NO_TOC";
if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
outs() << " STRIP_STATIC_SYMS";
if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
outs() << " NO_DEAD_STRIP";
if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
outs() << " LIVE_SUPPORT";
if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
outs() << " SELF_MODIFYING_CODE";
if (section_attributes & MachO::S_ATTR_DEBUG)
outs() << " DEBUG";
if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
outs() << " SOME_INSTRUCTIONS";
if (section_attributes & MachO::S_ATTR_EXT_RELOC)
outs() << " EXT_RELOC";
if (section_attributes & MachO::S_ATTR_LOC_RELOC)
outs() << " LOC_RELOC";
if (section_attributes == 0)
outs() << " (none)";
outs() << "\n";
} else
outs() << " flags " << format("0x%08" PRIx32, flags) << "\n";
outs() << " reserved1 " << reserved1;
if (section_type == MachO::S_SYMBOL_STUBS ||
section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
outs() << " (index into indirect symbol table)\n";
else
outs() << "\n";
outs() << " reserved2 " << reserved2;
if (section_type == MachO::S_SYMBOL_STUBS)
outs() << " (size of stubs)\n";
else
outs() << "\n";
}
static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
uint32_t object_size) {
outs() << " cmd LC_SYMTAB\n";
outs() << " cmdsize " << st.cmdsize;
if (st.cmdsize != sizeof(struct MachO::symtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " symoff " << st.symoff;
if (st.symoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nsyms " << st.nsyms;
uint64_t big_size;
if (Is64Bit) {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist_64);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
} else {
big_size = st.nsyms;
big_size *= sizeof(struct MachO::nlist);
big_size += st.symoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
outs() << " stroff " << st.stroff;
if (st.stroff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " strsize " << st.strsize;
big_size = st.stroff;
big_size += st.strsize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
uint32_t nsyms, uint32_t object_size,
bool Is64Bit) {
outs() << " cmd LC_DYSYMTAB\n";
outs() << " cmdsize " << dyst.cmdsize;
if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " ilocalsym " << dyst.ilocalsym;
if (dyst.ilocalsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nlocalsym " << dyst.nlocalsym;
uint64_t big_size;
big_size = dyst.ilocalsym;
big_size += dyst.nlocalsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iextdefsym " << dyst.iextdefsym;
if (dyst.iextdefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nextdefsym " << dyst.nextdefsym;
big_size = dyst.iextdefsym;
big_size += dyst.nextdefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " iundefsym " << dyst.iundefsym;
if (dyst.iundefsym > nsyms)
outs() << " (greater than the number of symbols)\n";
else
outs() << "\n";
outs() << " nundefsym " << dyst.nundefsym;
big_size = dyst.iundefsym;
big_size += dyst.nundefsym;
if (big_size > nsyms)
outs() << " (past the end of the symbol table)\n";
else
outs() << "\n";
outs() << " tocoff " << dyst.tocoff;
if (dyst.tocoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " ntoc " << dyst.ntoc;
big_size = dyst.ntoc;
big_size *= sizeof(struct MachO::dylib_table_of_contents);
big_size += dyst.tocoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " modtaboff " << dyst.modtaboff;
if (dyst.modtaboff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nmodtab " << dyst.nmodtab;
uint64_t modtabend;
if (Is64Bit) {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module_64);
modtabend += dyst.modtaboff;
} else {
modtabend = dyst.nmodtab;
modtabend *= sizeof(struct MachO::dylib_module);
modtabend += dyst.modtaboff;
}
if (modtabend > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extrefsymoff " << dyst.extrefsymoff;
if (dyst.extrefsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrefsyms " << dyst.nextrefsyms;
big_size = dyst.nextrefsyms;
big_size *= sizeof(struct MachO::dylib_reference);
big_size += dyst.extrefsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " indirectsymoff " << dyst.indirectsymoff;
if (dyst.indirectsymoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nindirectsyms " << dyst.nindirectsyms;
big_size = dyst.nindirectsyms;
big_size *= sizeof(uint32_t);
big_size += dyst.indirectsymoff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " extreloff " << dyst.extreloff;
if (dyst.extreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nextrel " << dyst.nextrel;
big_size = dyst.nextrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.extreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " locreloff " << dyst.locreloff;
if (dyst.locreloff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " nlocrel " << dyst.nlocrel;
big_size = dyst.nlocrel;
big_size *= sizeof(struct MachO::relocation_info);
big_size += dyst.locreloff;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
uint32_t object_size) {
if (dc.cmd == MachO::LC_DYLD_INFO)
outs() << " cmd LC_DYLD_INFO\n";
else
outs() << " cmd LC_DYLD_INFO_ONLY\n";
outs() << " cmdsize " << dc.cmdsize;
if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " rebase_off " << dc.rebase_off;
if (dc.rebase_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " rebase_size " << dc.rebase_size;
uint64_t big_size;
big_size = dc.rebase_off;
big_size += dc.rebase_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_off " << dc.bind_off;
if (dc.bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " bind_size " << dc.bind_size;
big_size = dc.bind_off;
big_size += dc.bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_off " << dc.weak_bind_off;
if (dc.weak_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " weak_bind_size " << dc.weak_bind_size;
big_size = dc.weak_bind_off;
big_size += dc.weak_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_off " << dc.lazy_bind_off;
if (dc.lazy_bind_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " lazy_bind_size " << dc.lazy_bind_size;
big_size = dc.lazy_bind_off;
big_size += dc.lazy_bind_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_off " << dc.export_off;
if (dc.export_off > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " export_size " << dc.export_size;
big_size = dc.export_off;
big_size += dc.export_size;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
const char *Ptr) {
if (dyld.cmd == MachO::LC_ID_DYLINKER)
outs() << " cmd LC_ID_DYLINKER\n";
else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
outs() << " cmd LC_LOAD_DYLINKER\n";
else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
outs() << " cmd LC_DYLD_ENVIRONMENT\n";
else
outs() << " cmd ?(" << dyld.cmd << ")\n";
outs() << " cmdsize " << dyld.cmdsize;
if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dyld.name >= dyld.cmdsize)
outs() << " name ?(bad offset " << dyld.name << ")\n";
else {
const char *P = (const char *)(Ptr) + dyld.name;
outs() << " name " << P << " (offset " << dyld.name << ")\n";
}
}
static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
outs() << " cmd LC_UUID\n";
outs() << " cmdsize " << uuid.cmdsize;
if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " uuid ";
outs() << format("%02" PRIX32, uuid.uuid[0]);
outs() << format("%02" PRIX32, uuid.uuid[1]);
outs() << format("%02" PRIX32, uuid.uuid[2]);
outs() << format("%02" PRIX32, uuid.uuid[3]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[4]);
outs() << format("%02" PRIX32, uuid.uuid[5]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[6]);
outs() << format("%02" PRIX32, uuid.uuid[7]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[8]);
outs() << format("%02" PRIX32, uuid.uuid[9]);
outs() << "-";
outs() << format("%02" PRIX32, uuid.uuid[10]);
outs() << format("%02" PRIX32, uuid.uuid[11]);
outs() << format("%02" PRIX32, uuid.uuid[12]);
outs() << format("%02" PRIX32, uuid.uuid[13]);
outs() << format("%02" PRIX32, uuid.uuid[14]);
outs() << format("%02" PRIX32, uuid.uuid[15]);
outs() << "\n";
}
static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
outs() << " cmd LC_RPATH\n";
outs() << " cmdsize " << rpath.cmdsize;
if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (rpath.path >= rpath.cmdsize)
outs() << " path ?(bad offset " << rpath.path << ")\n";
else {
const char *P = (const char *)(Ptr) + rpath.path;
outs() << " path " << P << " (offset " << rpath.path << ")\n";
}
}
static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX)
outs() << " cmd LC_VERSION_MIN_MACOSX\n";
else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS)
outs() << " cmd LC_VERSION_MIN_IPHONEOS\n";
else
outs() << " cmd " << vd.cmd << " (?)\n";
outs() << " cmdsize " << vd.cmdsize;
if (vd.cmdsize != sizeof(struct MachO::version_min_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " version " << ((vd.version >> 16) & 0xffff) << "."
<< ((vd.version >> 8) & 0xff);
if ((vd.version & 0xff) != 0)
outs() << "." << (vd.version & 0xff);
outs() << "\n";
if (vd.sdk == 0)
outs() << " sdk n/a";
else {
outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "."
<< ((vd.sdk >> 8) & 0xff);
}
if ((vd.sdk & 0xff) != 0)
outs() << "." << (vd.sdk & 0xff);
outs() << "\n";
}
static void PrintSourceVersionCommand(MachO::source_version_command sd) {
outs() << " cmd LC_SOURCE_VERSION\n";
outs() << " cmdsize " << sd.cmdsize;
if (sd.cmdsize != sizeof(struct MachO::source_version_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
uint64_t a = (sd.version >> 40) & 0xffffff;
uint64_t b = (sd.version >> 30) & 0x3ff;
uint64_t c = (sd.version >> 20) & 0x3ff;
uint64_t d = (sd.version >> 10) & 0x3ff;
uint64_t e = sd.version & 0x3ff;
outs() << " version " << a << "." << b;
if (e != 0)
outs() << "." << c << "." << d << "." << e;
else if (d != 0)
outs() << "." << c << "." << d;
else if (c != 0)
outs() << "." << c;
outs() << "\n";
}
static void PrintEntryPointCommand(MachO::entry_point_command ep) {
outs() << " cmd LC_MAIN\n";
outs() << " cmdsize " << ep.cmdsize;
if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " entryoff " << ep.entryoff << "\n";
outs() << " stacksize " << ep.stacksize << "\n";
}
static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
}
static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
uint32_t object_size) {
outs() << " cmd LC_ENCRYPTION_INFO_64\n";
outs() << " cmdsize " << ec.cmdsize;
if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " cryptoff " << ec.cryptoff;
if (ec.cryptoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptsize " << ec.cryptsize;
if (ec.cryptsize > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " cryptid " << ec.cryptid << "\n";
outs() << " pad " << ec.pad << "\n";
}
static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
const char *Ptr) {
outs() << " cmd LC_LINKER_OPTION\n";
outs() << " cmdsize " << lo.cmdsize;
if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " count " << lo.count << "\n";
const char *string = Ptr + sizeof(struct MachO::linker_option_command);
uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
uint32_t i = 0;
while (left > 0) {
while (*string == '\0' && left > 0) {
string++;
left--;
}
if (left > 0) {
i++;
outs() << " string #" << i << " " << format("%.*s\n", left, string);
uint32_t NullPos = StringRef(string, left).find('\0');
uint32_t len = std::min(NullPos, left) + 1;
string += len;
left -= len;
}
}
if (lo.count != i)
outs() << " count " << lo.count << " does not match number of strings "
<< i << "\n";
}
static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_FRAMEWORK\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.umbrella < sub.cmdsize) {
const char *P = Ptr + sub.umbrella;
outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n";
} else {
outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n";
}
}
static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_UMBRELLA\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_umbrella < sub.cmdsize) {
const char *P = Ptr + sub.sub_umbrella;
outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
} else {
outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
}
}
static void PrintSubLibraryCommand(MachO::sub_library_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_LIBRARY\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.sub_library < sub.cmdsize) {
const char *P = Ptr + sub.sub_library;
outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n";
} else {
outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n";
}
}
static void PrintSubClientCommand(MachO::sub_client_command sub,
const char *Ptr) {
outs() << " cmd LC_SUB_CLIENT\n";
outs() << " cmdsize " << sub.cmdsize;
if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (sub.client < sub.cmdsize) {
const char *P = Ptr + sub.client;
outs() << " client " << P << " (offset " << sub.client << ")\n";
} else {
outs() << " client ?(bad offset " << sub.client << ")\n";
}
}
static void PrintRoutinesCommand(MachO::routines_command r) {
outs() << " cmd LC_ROUTINES\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
outs() << " cmd LC_ROUTINES_64\n";
outs() << " cmdsize " << r.cmdsize;
if (r.cmdsize != sizeof(struct MachO::routines_command_64))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
outs() << " init_module " << r.init_module << "\n";
outs() << " reserved1 " << r.reserved1 << "\n";
outs() << " reserved2 " << r.reserved2 << "\n";
outs() << " reserved3 " << r.reserved3 << "\n";
outs() << " reserved4 " << r.reserved4 << "\n";
outs() << " reserved5 " << r.reserved5 << "\n";
outs() << " reserved6 " << r.reserved6 << "\n";
}
static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
outs() << " rax " << format("0x%016" PRIx64, cpu64.rax);
outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx);
outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp);
outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n";
outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9);
outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n";
outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12);
outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n";
outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15);
outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags);
outs() << " cs " << format("0x%016" PRIx64, cpu64.cs);
outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n";
outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n";
}
static void Print_mmst_reg(MachO::mmst_reg_t &r) {
uint32_t f;
outs() << "\t mmst_reg ";
for (f = 0; f < 10; f++)
outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
outs() << "\n";
outs() << "\t mmst_rsrv ";
for (f = 0; f < 6; f++)
outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_xmm_reg(MachO::xmm_reg_t &r) {
uint32_t f;
outs() << "\t xmm_reg ";
for (f = 0; f < 16; f++)
outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
outs() << "\n";
}
static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0];
outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
outs() << "\t control: invalid " << fpu.fpu_fcw.invalid;
outs() << " denorm " << fpu.fpu_fcw.denorm;
outs() << " zdiv " << fpu.fpu_fcw.zdiv;
outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
outs() << " undfl " << fpu.fpu_fcw.undfl;
outs() << " precis " << fpu.fpu_fcw.precis << "\n";
outs() << "\t\t pc ";
if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
outs() << "FP_PREC_24B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
outs() << "FP_PREC_53B ";
else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
outs() << "FP_PREC_64B ";
else
outs() << fpu.fpu_fcw.pc << " ";
outs() << "rc ";
if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
outs() << "FP_RND_NEAR ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
outs() << "FP_RND_DOWN ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
outs() << "FP_RND_UP ";
else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
outs() << "FP_CHOP ";
outs() << "\n";
outs() << "\t status: invalid " << fpu.fpu_fsw.invalid;
outs() << " denorm " << fpu.fpu_fsw.denorm;
outs() << " zdiv " << fpu.fpu_fsw.zdiv;
outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
outs() << " undfl " << fpu.fpu_fsw.undfl;
outs() << " precis " << fpu.fpu_fsw.precis;
outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
outs() << "\t errsumm " << fpu.fpu_fsw.errsumm;
outs() << " c0 " << fpu.fpu_fsw.c0;
outs() << " c1 " << fpu.fpu_fsw.c1;
outs() << " c2 " << fpu.fpu_fsw.c2;
outs() << " tos " << fpu.fpu_fsw.tos;
outs() << " c3 " << fpu.fpu_fsw.c3;
outs() << " busy " << fpu.fpu_fsw.busy << "\n";
outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
outs() << "\n";
outs() << "\t fpu_stmm0:\n";
Print_mmst_reg(fpu.fpu_stmm0);
outs() << "\t fpu_stmm1:\n";
Print_mmst_reg(fpu.fpu_stmm1);
outs() << "\t fpu_stmm2:\n";
Print_mmst_reg(fpu.fpu_stmm2);
outs() << "\t fpu_stmm3:\n";
Print_mmst_reg(fpu.fpu_stmm3);
outs() << "\t fpu_stmm4:\n";
Print_mmst_reg(fpu.fpu_stmm4);
outs() << "\t fpu_stmm5:\n";
Print_mmst_reg(fpu.fpu_stmm5);
outs() << "\t fpu_stmm6:\n";
Print_mmst_reg(fpu.fpu_stmm6);
outs() << "\t fpu_stmm7:\n";
Print_mmst_reg(fpu.fpu_stmm7);
outs() << "\t fpu_xmm0:\n";
Print_xmm_reg(fpu.fpu_xmm0);
outs() << "\t fpu_xmm1:\n";
Print_xmm_reg(fpu.fpu_xmm1);
outs() << "\t fpu_xmm2:\n";
Print_xmm_reg(fpu.fpu_xmm2);
outs() << "\t fpu_xmm3:\n";
Print_xmm_reg(fpu.fpu_xmm3);
outs() << "\t fpu_xmm4:\n";
Print_xmm_reg(fpu.fpu_xmm4);
outs() << "\t fpu_xmm5:\n";
Print_xmm_reg(fpu.fpu_xmm5);
outs() << "\t fpu_xmm6:\n";
Print_xmm_reg(fpu.fpu_xmm6);
outs() << "\t fpu_xmm7:\n";
Print_xmm_reg(fpu.fpu_xmm7);
outs() << "\t fpu_xmm8:\n";
Print_xmm_reg(fpu.fpu_xmm8);
outs() << "\t fpu_xmm9:\n";
Print_xmm_reg(fpu.fpu_xmm9);
outs() << "\t fpu_xmm10:\n";
Print_xmm_reg(fpu.fpu_xmm10);
outs() << "\t fpu_xmm11:\n";
Print_xmm_reg(fpu.fpu_xmm11);
outs() << "\t fpu_xmm12:\n";
Print_xmm_reg(fpu.fpu_xmm12);
outs() << "\t fpu_xmm13:\n";
Print_xmm_reg(fpu.fpu_xmm13);
outs() << "\t fpu_xmm14:\n";
Print_xmm_reg(fpu.fpu_xmm14);
outs() << "\t fpu_xmm15:\n";
Print_xmm_reg(fpu.fpu_xmm15);
outs() << "\t fpu_rsrv4:\n";
for (uint32_t f = 0; f < 6; f++) {
outs() << "\t ";
for (uint32_t g = 0; g < 16; g++)
outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
outs() << "\n";
}
outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
outs() << "\n";
}
static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno);
outs() << " err " << format("0x%08" PRIx32, exc64.err);
outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
}
static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
bool isLittleEndian, uint32_t cputype) {
if (t.cmd == MachO::LC_THREAD)
outs() << " cmd LC_THREAD\n";
else if (t.cmd == MachO::LC_UNIXTHREAD)
outs() << " cmd LC_UNIXTHREAD\n";
else
outs() << " cmd " << t.cmd << " (unknown)\n";
outs() << " cmdsize " << t.cmdsize;
if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
outs() << " Incorrect size\n";
else
outs() << "\n";
const char *begin = Ptr + sizeof(struct MachO::thread_command);
const char *end = Ptr + t.cmdsize;
uint32_t flavor, count, left;
if (cputype == MachO::CPU_TYPE_X86_64) {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
if (flavor == MachO::x86_THREAD_STATE64) {
outs() << " flavor x86_THREAD_STATE64\n";
if (count == MachO::x86_THREAD_STATE64_COUNT)
outs() << " count x86_THREAD_STATE64_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE64_COUNT)\n";
MachO::x86_thread_state64_t cpu64;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state64_t)) {
memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
begin += sizeof(MachO::x86_thread_state64_t);
} else {
memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
memcpy(&cpu64, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(cpu64);
Print_x86_thread_state64_t(cpu64);
} else if (flavor == MachO::x86_THREAD_STATE) {
outs() << " flavor x86_THREAD_STATE\n";
if (count == MachO::x86_THREAD_STATE_COUNT)
outs() << " count x86_THREAD_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_THREAD_STATE_COUNT)\n";
struct MachO::x86_thread_state_t ts;
left = end - begin;
if (left >= sizeof(MachO::x86_thread_state_t)) {
memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
begin += sizeof(MachO::x86_thread_state_t);
} else {
memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
memcpy(&ts, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(ts);
if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
outs() << "\t tsh.flavor x86_THREAD_STATE64 ";
if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
else
outs() << "tsh.count " << ts.tsh.count
<< " (not x86_THREAD_STATE64_COUNT\n";
Print_x86_thread_state64_t(ts.uts.ts64);
} else {
outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count "
<< ts.tsh.count << "\n";
}
} else if (flavor == MachO::x86_FLOAT_STATE) {
outs() << " flavor x86_FLOAT_STATE\n";
if (count == MachO::x86_FLOAT_STATE_COUNT)
outs() << " count x86_FLOAT_STATE_COUNT\n";
else
outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
struct MachO::x86_float_state_t fs;
left = end - begin;
if (left >= sizeof(MachO::x86_float_state_t)) {
memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
begin += sizeof(MachO::x86_float_state_t);
} else {
memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
memcpy(&fs, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(fs);
if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
outs() << "\t fsh.flavor x86_FLOAT_STATE64 ";
if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
else
outs() << "fsh.count " << fs.fsh.count
<< " (not x86_FLOAT_STATE64_COUNT\n";
Print_x86_float_state_t(fs.ufs.fs64);
} else {
outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count "
<< fs.fsh.count << "\n";
}
} else if (flavor == MachO::x86_EXCEPTION_STATE) {
outs() << " flavor x86_EXCEPTION_STATE\n";
if (count == MachO::x86_EXCEPTION_STATE_COUNT)
outs() << " count x86_EXCEPTION_STATE_COUNT\n";
else
outs() << " count " << count
<< " (not x86_EXCEPTION_STATE_COUNT)\n";
struct MachO::x86_exception_state_t es;
left = end - begin;
if (left >= sizeof(MachO::x86_exception_state_t)) {
memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
begin += sizeof(MachO::x86_exception_state_t);
} else {
memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
memcpy(&es, begin, left);
begin += left;
}
if (isLittleEndian != sys::IsLittleEndianHost)
swapStruct(es);
if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n";
if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n";
else
outs() << "\t esh.count " << es.esh.count
<< " (not x86_EXCEPTION_STATE64_COUNT\n";
Print_x86_exception_state_t(es.ues.es64);
} else {
outs() << "\t esh.flavor " << es.esh.flavor << " esh.count "
<< es.esh.count << "\n";
}
} else {
outs() << " flavor " << flavor << " (unknown)\n";
outs() << " count " << count << "\n";
outs() << " state (unknown)\n";
begin += count * sizeof(uint32_t);
}
}
} else {
while (begin < end) {
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&flavor, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
flavor = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(flavor);
if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
memcpy((char *)&count, begin, sizeof(uint32_t));
begin += sizeof(uint32_t);
} else {
count = 0;
begin = end;
}
if (isLittleEndian != sys::IsLittleEndianHost)
sys::swapByteOrder(count);
outs() << " flavor " << flavor << "\n";
outs() << " count " << count << "\n";
outs() << " state (Unknown cputype/cpusubtype)\n";
begin += count * sizeof(uint32_t);
}
}
}
static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
if (dl.cmd == MachO::LC_ID_DYLIB)
outs() << " cmd LC_ID_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_DYLIB)
outs() << " cmd LC_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
outs() << " cmd LC_LOAD_WEAK_DYLIB\n";
else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
outs() << " cmd LC_REEXPORT_DYLIB\n";
else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
outs() << " cmd LC_LAZY_LOAD_DYLIB\n";
else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
outs() << " cmd LC_LOAD_UPWARD_DYLIB\n";
else
outs() << " cmd " << dl.cmd << " (unknown)\n";
outs() << " cmdsize " << dl.cmdsize;
if (dl.cmdsize < sizeof(struct MachO::dylib_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
if (dl.dylib.name < dl.cmdsize) {
const char *P = (const char *)(Ptr) + dl.dylib.name;
outs() << " name " << P << " (offset " << dl.dylib.name << ")\n";
} else {
outs() << " name ?(bad offset " << dl.dylib.name << ")\n";
}
outs() << " time stamp " << dl.dylib.timestamp << " ";
time_t t = dl.dylib.timestamp;
outs() << ctime(&t);
outs() << " current version ";
if (dl.dylib.current_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
<< ((dl.dylib.current_version >> 8) & 0xff) << "."
<< (dl.dylib.current_version & 0xff) << "\n";
outs() << "compatibility version ";
if (dl.dylib.compatibility_version == 0xffffffff)
outs() << "n/a\n";
else
outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
<< ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
<< (dl.dylib.compatibility_version & 0xff) << "\n";
}
static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
uint32_t object_size) {
if (ld.cmd == MachO::LC_CODE_SIGNATURE)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
outs() << " cmd LC_SEGMENT_SPLIT_INFO\n";
else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
outs() << " cmd LC_FUNCTION_STARTS\n";
else if (ld.cmd == MachO::LC_DATA_IN_CODE)
outs() << " cmd LC_DATA_IN_CODE\n";
else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n";
else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n";
else
outs() << " cmd " << ld.cmd << " (?)\n";
outs() << " cmdsize " << ld.cmdsize;
if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
outs() << " Incorrect size\n";
else
outs() << "\n";
outs() << " dataoff " << ld.dataoff;
if (ld.dataoff > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
outs() << " datasize " << ld.datasize;
uint64_t big_size = ld.dataoff;
big_size += ld.datasize;
if (big_size > object_size)
outs() << " (past end of file)\n";
else
outs() << "\n";
}
static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
uint32_t cputype, bool verbose) {
StringRef Buf = Obj->getData();
unsigned Index = 0;
for (const auto &Command : Obj->load_commands()) {
outs() << "Load command " << Index++ << "\n";
if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
const char *sg_segname = SLC.segname;
PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
verbose);
for (unsigned j = 0; j < SLC.nsects; j++) {
MachO::section S = Obj->getSection(Command, j);
PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
const char *sg_segname = SLC_64.segname;
PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
for (unsigned j = 0; j < SLC_64.nsects; j++) {
MachO::section_64 S_64 = Obj->getSection64(Command, j);
PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
sg_segname, filetype, Buf.size(), verbose);
}
} else if (Command.C.cmd == MachO::LC_SYMTAB) {
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
} else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
Obj->is64Bit());
} else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
} else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
Command.C.cmd == MachO::LC_ID_DYLINKER ||
Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
PrintDyldLoadCommand(Dyld, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_UUID) {
MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
PrintUuidLoadCommand(Uuid);
} else if (Command.C.cmd == MachO::LC_RPATH) {
MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
PrintRpathLoadCommand(Rpath, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS) {
MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
PrintVersionMinLoadCommand(Vd);
} else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
PrintSourceVersionCommand(Sd);
} else if (Command.C.cmd == MachO::LC_MAIN) {
MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
PrintEntryPointCommand(Ep);
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
MachO::encryption_info_command Ei =
Obj->getEncryptionInfoCommand(Command);
PrintEncryptionInfoCommand(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
MachO::encryption_info_command_64 Ei =
Obj->getEncryptionInfoCommand64(Command);
PrintEncryptionInfoCommand64(Ei, Buf.size());
} else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
MachO::linker_option_command Lo =
Obj->getLinkerOptionLoadCommand(Command);
PrintLinkerOptionCommand(Lo, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
PrintSubFrameworkCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
PrintSubUmbrellaCommand(Sf, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
PrintSubLibraryCommand(Sl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
PrintSubClientCommand(Sc, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_ROUTINES) {
MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
PrintRoutinesCommand(Rc);
} else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
PrintRoutinesCommand64(Rc);
} else if (Command.C.cmd == MachO::LC_THREAD ||
Command.C.cmd == MachO::LC_UNIXTHREAD) {
MachO::thread_command Tc = Obj->getThreadCommand(Command);
PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
} else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_ID_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
PrintDylibCommand(Dl, Command.Ptr);
} else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
Command.C.cmd == MachO::LC_DATA_IN_CODE ||
Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
MachO::linkedit_data_command Ld =
Obj->getLinkeditDataLoadCommand(Command);
PrintLinkEditDataCommand(Ld, Buf.size());
} else {
outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
<< ")\n";
outs() << " cmdsize " << Command.C.cmdsize << "\n";
// TODO: get and print the raw bytes of the load command.
}
// TODO: print all the other kinds of load commands.
}
}
static void getAndPrintMachHeader(const MachOObjectFile *Obj,
uint32_t &filetype, uint32_t &cputype,
bool verbose) {
if (Obj->is64Bit()) {
MachO::mach_header_64 H_64;
H_64 = Obj->getHeader64();
PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
filetype = H_64.filetype;
cputype = H_64.cputype;
} else {
MachO::mach_header H;
H = Obj->getHeader();
PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
H.sizeofcmds, H.flags, verbose);
filetype = H.filetype;
cputype = H.cputype;
}
}
void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
uint32_t filetype = 0;
uint32_t cputype = 0;
getAndPrintMachHeader(file, filetype, cputype, !NonVerbose);
PrintLoadCommands(file, filetype, cputype, !NonVerbose);
}
//===----------------------------------------------------------------------===//
// export trie dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
uint64_t Flags = Entry.flags();
bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
if (ReExport)
outs() << "[re-export] ";
else
outs() << format("0x%08llX ",
Entry.address()); // FIXME:add in base address
outs() << Entry.name();
if (WeakDef || ThreadLocal || Resolver || Abs) {
bool NeedsComma = false;
outs() << " [";
if (WeakDef) {
outs() << "weak_def";
NeedsComma = true;
}
if (ThreadLocal) {
if (NeedsComma)
outs() << ", ";
outs() << "per-thread";
NeedsComma = true;
}
if (Abs) {
if (NeedsComma)
outs() << ", ";
outs() << "absolute";
NeedsComma = true;
}
if (Resolver) {
if (NeedsComma)
outs() << ", ";
outs() << format("resolver=0x%08llX", Entry.other());
NeedsComma = true;
}
outs() << "]";
}
if (ReExport) {
StringRef DylibName = "unknown";
int Ordinal = Entry.other() - 1;
Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
if (Entry.otherName().empty())
outs() << " (from " << DylibName << ")";
else
outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
}
outs() << "\n";
}
}
//===----------------------------------------------------------------------===//
// rebase table dumping
//===----------------------------------------------------------------------===//
namespace {
class SegInfo {
public:
SegInfo(const object::MachOObjectFile *Obj);
StringRef segmentName(uint32_t SegIndex);
StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
private:
struct SectionInfo {
uint64_t Address;
uint64_t Size;
StringRef SectionName;
StringRef SegmentName;
uint64_t OffsetInSegment;
uint64_t SegmentStartAddress;
uint32_t SegmentIndex;
};
const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
SmallVector<SectionInfo, 32> Sections;
};
}
SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
// Build table of sections so segIndex/offset pairs can be translated.
uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
StringRef CurSegName;
uint64_t CurSegAddress;
for (const SectionRef &Section : Obj->sections()) {
SectionInfo Info;
if (error(Section.getName(Info.SectionName)))
return;
Info.Address = Section.getAddress();
Info.Size = Section.getSize();
Info.SegmentName =
Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
if (!Info.SegmentName.equals(CurSegName)) {
++CurSegIndex;
CurSegName = Info.SegmentName;
CurSegAddress = Info.Address;
}
Info.SegmentIndex = CurSegIndex - 1;
Info.OffsetInSegment = Info.Address - CurSegAddress;
Info.SegmentStartAddress = CurSegAddress;
Sections.push_back(Info);
}
}
StringRef SegInfo::segmentName(uint32_t SegIndex) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex == SegIndex)
return SI.SegmentName;
}
llvm_unreachable("invalid segIndex");
}
const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
uint64_t OffsetInSeg) {
for (const SectionInfo &SI : Sections) {
if (SI.SegmentIndex != SegIndex)
continue;
if (SI.OffsetInSegment > OffsetInSeg)
continue;
if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
continue;
return SI;
}
llvm_unreachable("segIndex and offset not in any section");
}
StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
return findSection(SegIndex, OffsetInSeg).SectionName;
}
uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
return SI.SegmentStartAddress + OffsetInSeg;
}
void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type\n";
for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer
outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n",
SegmentName.str().c_str(), SectionName.str().c_str(),
Address, Entry.typeName().str().c_str());
}
}
static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
StringRef DylibName;
switch (Ordinal) {
case MachO::BIND_SPECIAL_DYLIB_SELF:
return "this-image";
case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
return "main-executable";
case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
return "flat-namespace";
default:
if (Ordinal > 0) {
std::error_code EC =
Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
if (EC)
return "<<bad library ordinal>>";
return DylibName;
}
}
return "<<unknown special ordinal>>";
}
//===----------------------------------------------------------------------===//
// bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address type "
"addend dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard
StringRef Attr;
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
Attr = " (weak_import)";
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << Attr << "\n";
}
}
//===----------------------------------------------------------------------===//
// lazy bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"dylib symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __got 0x00012010 libSystem ___stack_chk_guard
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
<< Entry.symbolName() << "\n";
}
}
//===----------------------------------------------------------------------===//
// weak bind table dumping
//===----------------------------------------------------------------------===//
void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
// Build table of sections so names can used in final output.
SegInfo sectionTable(Obj);
outs() << "segment section address "
"type addend symbol\n";
for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
// Strong symbols don't have a location to update.
if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
outs() << " strong "
<< Entry.symbolName() << "\n";
continue;
}
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
StringRef SegmentName = sectionTable.segmentName(SegIndex);
StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
// Table lines look like:
// __DATA __data 0x00001000 pointer 0 _foo
outs() << left_justify(SegmentName, 8) << " "
<< left_justify(SectionName, 18) << " "
<< format_hex(Address, 10, true) << " "
<< left_justify(Entry.typeName(), 8) << " "
<< format_decimal(Entry.addend(), 8) << " " << Entry.symbolName()
<< "\n";
}
}
// get_dyld_bind_info_symbolname() is used for disassembly and passed an
// address, ReferenceValue, in the Mach-O file and looks in the dyld bind
// information for that address. If the address is found its binding symbol
// name is returned. If not nullptr is returned.
static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
struct DisassembleInfo *info) {
if (info->bindtable == nullptr) {
info->bindtable = new (BindTable);
SegInfo sectionTable(info->O);
for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
uint32_t SegIndex = Entry.segmentIndex();
uint64_t OffsetInSeg = Entry.segmentOffset();
uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
const char *SymbolName = nullptr;
StringRef name = Entry.symbolName();
if (!name.empty())
SymbolName = name.data();
info->bindtable->push_back(std::make_pair(Address, SymbolName));
}
}
for (bind_table_iterator BI = info->bindtable->begin(),
BE = info->bindtable->end();
BI != BE; ++BI) {
uint64_t Address = BI->first;
if (ReferenceValue == Address) {
const char *SymbolName = BI->second;
return SymbolName;
}
}
return nullptr;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/llvm-objdump.h | //
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_OBJDUMP_LLVM_OBJDUMP_H
#define LLVM_TOOLS_LLVM_OBJDUMP_LLVM_OBJDUMP_H
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
namespace object {
class COFFObjectFile;
class MachOObjectFile;
class ObjectFile;
class RelocationRef;
}
extern cl::opt<std::string> TripleName;
extern cl::opt<std::string> ArchName;
extern cl::opt<std::string> MCPU;
extern cl::list<std::string> MAttrs;
extern cl::list<std::string> DumpSections;
extern cl::opt<bool> Disassemble;
extern cl::opt<bool> NoShowRawInsn;
extern cl::opt<bool> PrivateHeaders;
extern cl::opt<bool> ExportsTrie;
extern cl::opt<bool> Rebase;
extern cl::opt<bool> Bind;
extern cl::opt<bool> LazyBind;
extern cl::opt<bool> WeakBind;
extern cl::opt<bool> RawClangAST;
extern cl::opt<bool> UniversalHeaders;
extern cl::opt<bool> ArchiveHeaders;
extern cl::opt<bool> IndirectSymbols;
extern cl::opt<bool> DataInCode;
extern cl::opt<bool> LinkOptHints;
extern cl::opt<bool> InfoPlist;
extern cl::opt<bool> DylibsUsed;
extern cl::opt<bool> DylibId;
extern cl::opt<bool> ObjcMetaData;
extern cl::opt<std::string> DisSymName;
extern cl::opt<bool> NonVerbose;
extern cl::opt<bool> Relocations;
extern cl::opt<bool> SectionHeaders;
extern cl::opt<bool> SectionContents;
extern cl::opt<bool> SymbolTable;
extern cl::opt<bool> UnwindInfo;
extern cl::opt<bool> PrintImmHex;
// Various helper functions.
bool error(std::error_code ec);
bool RelocAddressLess(object::RelocationRef a, object::RelocationRef b);
void ParseInputMachO(StringRef Filename);
void printCOFFUnwindInfo(const object::COFFObjectFile* o);
void printMachOUnwindInfo(const object::MachOObjectFile* o);
void printMachOExportsTrie(const object::MachOObjectFile* o);
void printMachORebaseTable(const object::MachOObjectFile* o);
void printMachOBindTable(const object::MachOObjectFile* o);
void printMachOLazyBindTable(const object::MachOObjectFile* o);
void printMachOWeakBindTable(const object::MachOObjectFile* o);
void printELFFileHeader(const object::ObjectFile *o);
void printCOFFFileHeader(const object::ObjectFile *o);
void printMachOFileHeader(const object::ObjectFile *o);
void printExportsTrie(const object::ObjectFile *o);
void printRebaseTable(const object::ObjectFile *o);
void printBindTable(const object::ObjectFile *o);
void printLazyBindTable(const object::ObjectFile *o);
void printWeakBindTable(const object::ObjectFile *o);
void printRawClangAST(const object::ObjectFile *o);
void PrintRelocations(const object::ObjectFile *o);
void PrintSectionHeaders(const object::ObjectFile *o);
void PrintSectionContents(const object::ObjectFile *o);
void PrintSymbolTable(const object::ObjectFile *o);
} // end namespace llvm
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/ELFDump.cpp | //===-- ELFDump.cpp - ELF-specific dumper -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the ELF-specific dumper for llvm-objdump.
///
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
template <class ELFT> void printProgramHeaders(const ELFFile<ELFT> *o) {
typedef ELFFile<ELFT> ELFO;
outs() << "Program Header:\n";
for (typename ELFO::Elf_Phdr_Iter pi = o->program_header_begin(),
pe = o->program_header_end();
pi != pe; ++pi) {
switch (pi->p_type) {
case ELF::PT_LOAD:
outs() << " LOAD ";
break;
case ELF::PT_GNU_STACK:
outs() << " STACK ";
break;
case ELF::PT_GNU_EH_FRAME:
outs() << "EH_FRAME ";
break;
case ELF::PT_INTERP:
outs() << " INTERP ";
break;
case ELF::PT_DYNAMIC:
outs() << " DYNAMIC ";
break;
case ELF::PT_PHDR:
outs() << " PHDR ";
break;
case ELF::PT_TLS:
outs() << " TLS ";
break;
default:
outs() << " UNKNOWN ";
}
const char *Fmt = ELFT::Is64Bits ? "0x%016" PRIx64 " " : "0x%08" PRIx64 " ";
outs() << "off "
<< format(Fmt, (uint64_t)pi->p_offset)
<< "vaddr "
<< format(Fmt, (uint64_t)pi->p_vaddr)
<< "paddr "
<< format(Fmt, (uint64_t)pi->p_paddr)
<< format("align 2**%u\n", countTrailingZeros<uint64_t>(pi->p_align))
<< " filesz "
<< format(Fmt, (uint64_t)pi->p_filesz)
<< "memsz "
<< format(Fmt, (uint64_t)pi->p_memsz)
<< "flags "
<< ((pi->p_flags & ELF::PF_R) ? "r" : "-")
<< ((pi->p_flags & ELF::PF_W) ? "w" : "-")
<< ((pi->p_flags & ELF::PF_X) ? "x" : "-")
<< "\n";
}
outs() << "\n";
}
void llvm::printELFFileHeader(const object::ObjectFile *Obj) {
// Little-endian 32-bit
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
printProgramHeaders(ELFObj->getELFFile());
// Big-endian 32-bit
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
printProgramHeaders(ELFObj->getELFFile());
// Little-endian 64-bit
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
printProgramHeaders(ELFObj->getELFFile());
// Big-endian 64-bit
if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
printProgramHeaders(ELFObj->getELFFile());
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
CodeGen
DebugInfoDWARF
MC
MCDisassembler
Object
Support
)
add_llvm_tool(llvm-objdump
llvm-objdump.cpp
COFFDump.cpp
ELFDump.cpp
MachODump.cpp
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/llvm-objdump.cpp | //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like binutils "objdump", that is, it
// dumps out a plethora of information about an object file depending on the
// flags.
//
// The flags and output of this program should be near identical to those of
// binutils objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCRelocationInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
#include <cstring>
#include <system_error>
using namespace llvm;
using namespace object;
static cl::list<std::string>
InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
cl::opt<bool>
llvm::Disassemble("disassemble",
cl::desc("Display assembler mnemonics for the machine instructions"));
static cl::alias
Disassembled("d", cl::desc("Alias for --disassemble"),
cl::aliasopt(Disassemble));
cl::opt<bool>
llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
cl::opt<bool>
llvm::SectionContents("s", cl::desc("Display the content of each section"));
cl::opt<bool>
llvm::SymbolTable("t", cl::desc("Display the symbol table"));
cl::opt<bool>
llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
cl::opt<bool>
llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
cl::opt<bool>
llvm::Bind("bind", cl::desc("Display mach-o binding info"));
cl::opt<bool>
llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
cl::opt<bool>
llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
cl::opt<bool>
llvm::RawClangAST("raw-clang-ast",
cl::desc("Dump the raw binary contents of the clang AST section"));
static cl::opt<bool>
MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
static cl::alias
MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
cl::opt<std::string>
llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
"see -version for available targets"));
cl::opt<std::string>
llvm::MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
cl::opt<std::string>
llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
"see -version for available targets"));
cl::opt<bool>
llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
"headers for each section."));
static cl::alias
SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
cl::aliasopt(SectionHeaders));
static cl::alias
SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
cl::aliasopt(SectionHeaders));
cl::list<std::string>
llvm::MAttrs("mattr",
cl::CommaSeparated,
cl::desc("Target specific attributes"),
cl::value_desc("a1,+a2,-a3,..."));
cl::opt<bool>
llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
"instructions, do not print "
"the instruction bytes."));
cl::opt<bool>
llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
static cl::alias
UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
cl::aliasopt(UnwindInfo));
cl::opt<bool>
llvm::PrivateHeaders("private-headers",
cl::desc("Display format specific file headers"));
static cl::alias
PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
cl::aliasopt(PrivateHeaders));
cl::opt<bool>
llvm::PrintImmHex("print-imm-hex",
cl::desc("Use hex format for immediate values"));
cl::opt<bool> PrintFaultMaps("fault-map-section",
cl::desc("Display contents of faultmap section"));
static StringRef ToolName;
static int ReturnValue = EXIT_SUCCESS;
bool llvm::error(std::error_code EC) {
if (!EC)
return false;
outs() << ToolName << ": error reading file: " << EC.message() << ".\n";
outs().flush();
ReturnValue = EXIT_FAILURE;
return true;
}
static void report_error(StringRef File, std::error_code EC) {
assert(EC);
errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
ReturnValue = EXIT_FAILURE;
}
static const Target *getTarget(const ObjectFile *Obj = nullptr) {
// Figure out the target triple.
llvm::Triple TheTriple("unknown-unknown-unknown");
if (TripleName.empty()) {
if (Obj) {
TheTriple.setArch(Triple::ArchType(Obj->getArch()));
// TheTriple defaults to ELF, and COFF doesn't have an environment:
// the best we can do here is indicate that it is mach-o.
if (Obj->isMachO())
TheTriple.setObjectFormat(Triple::MachO);
if (Obj->isCOFF()) {
const auto COFFObj = dyn_cast<COFFObjectFile>(Obj);
if (COFFObj->getArch() == Triple::thumb)
TheTriple.setTriple("thumbv7-windows");
}
}
} else
TheTriple.setTriple(Triple::normalize(TripleName));
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
Error);
if (!TheTarget) {
errs() << ToolName << ": " << Error;
return nullptr;
}
// Update the triple name and return the found target.
TripleName = TheTriple.getTriple();
return TheTarget;
}
bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
return a.getOffset() < b.getOffset();
}
namespace {
class PrettyPrinter {
public:
virtual ~PrettyPrinter(){}
virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI) {
outs() << format("%8" PRIx64 ":", Address);
if (!NoShowRawInsn) {
outs() << "\t";
dumpBytes(Bytes, outs());
}
IP.printInst(MI, outs(), "", STI);
}
};
PrettyPrinter PrettyPrinterInst;
class HexagonPrettyPrinter : public PrettyPrinter {
public:
void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &OS) {
uint32_t opcode =
(Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
OS << format("%8" PRIx64 ":", Address);
if (!NoShowRawInsn) {
OS << "\t";
dumpBytes(Bytes.slice(0, 4), OS);
OS << format("%08" PRIx32, opcode);
}
}
void printInst(MCInstPrinter &IP, const MCInst *MI,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &OS, StringRef Annot,
MCSubtargetInfo const &STI) override {
std::string Buffer;
{
raw_string_ostream TempStream(Buffer);
IP.printInst(MI, TempStream, "", STI);
}
StringRef Contents(Buffer);
// Split off bundle attributes
auto PacketBundle = Contents.rsplit('\n');
// Split off first instruction from the rest
auto HeadTail = PacketBundle.first.split('\n');
auto Preamble = " { ";
auto Separator = "";
while(!HeadTail.first.empty()) {
OS << Separator;
Separator = "\n";
printLead(Bytes, Address, OS);
OS << Preamble;
Preamble = " ";
StringRef Inst;
auto Duplex = HeadTail.first.split('\v');
if(!Duplex.second.empty()){
OS << Duplex.first;
OS << "; ";
Inst = Duplex.second;
}
else
Inst = HeadTail.first;
OS << Inst;
Bytes = Bytes.slice(4);
Address += 4;
HeadTail = HeadTail.second.split('\n');
}
OS << " } " << PacketBundle.second;
}
};
HexagonPrettyPrinter HexagonPrettyPrinterInst;
PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
switch(Triple.getArch()) {
default:
return PrettyPrinterInst;
case Triple::hexagon:
return HexagonPrettyPrinterInst;
}
}
}
template <class ELFT>
static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
DataRefImpl Rel,
SmallVectorImpl<char> &Result) {
typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
typedef typename ELFObjectFile<ELFT>::Elf_Rel Elf_Rel;
typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
const ELFFile<ELFT> &EF = *Obj->getELFFile();
ErrorOr<const Elf_Shdr *> SecOrErr = EF.getSection(Rel.d.a);
if (std::error_code EC = SecOrErr.getError())
return EC;
const Elf_Shdr *Sec = *SecOrErr;
ErrorOr<const Elf_Shdr *> SymTabOrErr = EF.getSection(Sec->sh_link);
if (std::error_code EC = SymTabOrErr.getError())
return EC;
const Elf_Shdr *SymTab = *SymTabOrErr;
assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
SymTab->sh_type == ELF::SHT_DYNSYM);
ErrorOr<const Elf_Shdr *> StrTabSec = EF.getSection(SymTab->sh_link);
if (std::error_code EC = StrTabSec.getError())
return EC;
ErrorOr<StringRef> StrTabOrErr = EF.getStringTable(*StrTabSec);
if (std::error_code EC = StrTabOrErr.getError())
return EC;
StringRef StrTab = *StrTabOrErr;
uint8_t type;
StringRef res;
int64_t addend = 0;
uint16_t symbol_index = 0;
switch (Sec->sh_type) {
default:
return object_error::parse_failed;
case ELF::SHT_REL: {
const Elf_Rel *ERel = Obj->getRel(Rel);
type = ERel->getType(EF.isMips64EL());
symbol_index = ERel->getSymbol(EF.isMips64EL());
// TODO: Read implicit addend from section data.
break;
}
case ELF::SHT_RELA: {
const Elf_Rela *ERela = Obj->getRela(Rel);
type = ERela->getType(EF.isMips64EL());
symbol_index = ERela->getSymbol(EF.isMips64EL());
addend = ERela->r_addend;
break;
}
}
const Elf_Sym *symb =
EF.template getEntry<Elf_Sym>(Sec->sh_link, symbol_index);
StringRef Target;
ErrorOr<const Elf_Shdr *> SymSec = EF.getSection(symb);
if (std::error_code EC = SymSec.getError())
return EC;
if (symb->getType() == ELF::STT_SECTION) {
ErrorOr<StringRef> SecName = EF.getSectionName(*SymSec);
if (std::error_code EC = SecName.getError())
return EC;
Target = *SecName;
} else {
ErrorOr<StringRef> SymName = symb->getName(StrTab);
if (!SymName)
return SymName.getError();
Target = *SymName;
}
switch (EF.getHeader()->e_machine) {
case ELF::EM_X86_64:
switch (type) {
case ELF::R_X86_64_PC8:
case ELF::R_X86_64_PC16:
case ELF::R_X86_64_PC32: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
} break;
case ELF::R_X86_64_8:
case ELF::R_X86_64_16:
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
case ELF::R_X86_64_64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
} break;
default:
res = "Unknown";
}
break;
case ELF::EM_AARCH64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << Target;
if (addend != 0)
fmt << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
break;
}
case ELF::EM_386:
case ELF::EM_ARM:
case ELF::EM_HEXAGON:
case ELF::EM_MIPS:
res = Target;
break;
default:
res = "Unknown";
}
if (Result.empty())
Result.append(res.begin(), res.end());
return std::error_code();
}
static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
const RelocationRef &RelRef,
SmallVectorImpl<char> &Result) {
DataRefImpl Rel = RelRef.getRawDataRefImpl();
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationValueString(ELF32LE, Rel, Result);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationValueString(ELF64LE, Rel, Result);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationValueString(ELF32BE, Rel, Result);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationValueString(ELF64BE, Rel, Result);
}
static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
symbol_iterator SymI = Rel.getSymbol();
ErrorOr<StringRef> SymNameOrErr = SymI->getName();
if (std::error_code EC = SymNameOrErr.getError())
return EC;
StringRef SymName = *SymNameOrErr;
Result.append(SymName.begin(), SymName.end());
return std::error_code();
}
static void printRelocationTargetName(const MachOObjectFile *O,
const MachO::any_relocation_info &RE,
raw_string_ostream &fmt) {
bool IsScattered = O->isRelocationScattered(RE);
// Target of a scattered relocation is an address. In the interest of
// generating pretty output, scan through the symbol table looking for a
// symbol that aligns with that address. If we find one, print it.
// Otherwise, we just print the hex address of the target.
if (IsScattered) {
uint32_t Val = O->getPlainRelocationSymbolNum(RE);
for (const SymbolRef &Symbol : O->symbols()) {
std::error_code ec;
ErrorOr<uint64_t> Addr = Symbol.getAddress();
if ((ec = Addr.getError()))
report_fatal_error(ec.message());
if (*Addr != Val)
continue;
ErrorOr<StringRef> Name = Symbol.getName();
if (std::error_code EC = Name.getError())
report_fatal_error(EC.message());
fmt << *Name;
return;
}
// If we couldn't find a symbol that this relocation refers to, try
// to find a section beginning instead.
for (const SectionRef &Section : O->sections()) {
std::error_code ec;
StringRef Name;
uint64_t Addr = Section.getAddress();
if (Addr != Val)
continue;
if ((ec = Section.getName(Name)))
report_fatal_error(ec.message());
fmt << Name;
return;
}
fmt << format("0x%x", Val);
return;
}
StringRef S;
bool isExtern = O->getPlainRelocationExternal(RE);
uint64_t Val = O->getPlainRelocationSymbolNum(RE);
if (isExtern) {
symbol_iterator SI = O->symbol_begin();
advance(SI, Val);
ErrorOr<StringRef> SOrErr = SI->getName();
if (!error(SOrErr.getError()))
S = *SOrErr;
} else {
section_iterator SI = O->section_begin();
// Adjust for the fact that sections are 1-indexed.
advance(SI, Val - 1);
SI->getName(S);
}
fmt << S;
}
static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
const RelocationRef &RelRef,
SmallVectorImpl<char> &Result) {
DataRefImpl Rel = RelRef.getRawDataRefImpl();
MachO::any_relocation_info RE = Obj->getRelocation(Rel);
unsigned Arch = Obj->getArch();
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
unsigned Type = Obj->getAnyRelocationType(RE);
bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
// Determine any addends that should be displayed with the relocation.
// These require decoding the relocation type, which is triple-specific.
// X86_64 has entirely custom relocation types.
if (Arch == Triple::x86_64) {
bool isPCRel = Obj->getAnyRelocationPCRel(RE);
switch (Type) {
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT: {
printRelocationTargetName(Obj, RE, fmt);
fmt << "@GOT";
if (isPCRel)
fmt << "PCREL";
break;
}
case MachO::X86_64_RELOC_SUBTRACTOR: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
// X86_64_RELOC_UNSIGNED.
// NOTE: Scattered relocations don't exist on x86_64.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::X86_64_RELOC_UNSIGNED)
report_fatal_error("Expected X86_64_RELOC_UNSIGNED after "
"X86_64_RELOC_SUBTRACTOR.");
// The X86_64_RELOC_UNSIGNED contains the minuend symbol;
// X86_64_RELOC_SUBTRACTOR contains the subtrahend.
printRelocationTargetName(Obj, RENext, fmt);
fmt << "-";
printRelocationTargetName(Obj, RE, fmt);
break;
}
case MachO::X86_64_RELOC_TLV:
printRelocationTargetName(Obj, RE, fmt);
fmt << "@TLV";
if (isPCRel)
fmt << "P";
break;
case MachO::X86_64_RELOC_SIGNED_1:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-1";
break;
case MachO::X86_64_RELOC_SIGNED_2:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-2";
break;
case MachO::X86_64_RELOC_SIGNED_4:
printRelocationTargetName(Obj, RE, fmt);
fmt << "-4";
break;
default:
printRelocationTargetName(Obj, RE, fmt);
break;
}
// X86 and ARM share some relocation types in common.
} else if (Arch == Triple::x86 || Arch == Triple::arm ||
Arch == Triple::ppc) {
// Generic relocation types...
switch (Type) {
case MachO::GENERIC_RELOC_PAIR: // prints no info
return std::error_code();
case MachO::GENERIC_RELOC_SECTDIFF: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86 sect diff's must be followed by a relocation of type
// GENERIC_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::GENERIC_RELOC_PAIR)
report_fatal_error("Expected GENERIC_RELOC_PAIR after "
"GENERIC_RELOC_SECTDIFF.");
printRelocationTargetName(Obj, RE, fmt);
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
break;
}
}
if (Arch == Triple::x86 || Arch == Triple::ppc) {
switch (Type) {
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// X86 sect diff's must be followed by a relocation of type
// GENERIC_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::GENERIC_RELOC_PAIR)
report_fatal_error("Expected GENERIC_RELOC_PAIR after "
"GENERIC_RELOC_LOCAL_SECTDIFF.");
printRelocationTargetName(Obj, RE, fmt);
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
break;
}
case MachO::GENERIC_RELOC_TLV: {
printRelocationTargetName(Obj, RE, fmt);
fmt << "@TLV";
if (IsPCRel)
fmt << "P";
break;
}
default:
printRelocationTargetName(Obj, RE, fmt);
}
} else { // ARM-specific relocations
switch (Type) {
case MachO::ARM_RELOC_HALF:
case MachO::ARM_RELOC_HALF_SECTDIFF: {
// Half relocations steal a bit from the length field to encode
// whether this is an upper16 or a lower16 relocation.
bool isUpper = Obj->getAnyRelocationLength(RE) >> 1;
if (isUpper)
fmt << ":upper16:(";
else
fmt << ":lower16:(";
printRelocationTargetName(Obj, RE, fmt);
DataRefImpl RelNext = Rel;
Obj->moveRelocationNext(RelNext);
MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
// ARM half relocs must be followed by a relocation of type
// ARM_RELOC_PAIR.
unsigned RType = Obj->getAnyRelocationType(RENext);
if (RType != MachO::ARM_RELOC_PAIR)
report_fatal_error("Expected ARM_RELOC_PAIR after "
"ARM_RELOC_HALF");
// NOTE: The half of the target virtual address is stashed in the
// address field of the secondary relocation, but we can't reverse
// engineer the constant offset from it without decoding the movw/movt
// instruction to find the other half in its immediate field.
// ARM_RELOC_HALF_SECTDIFF encodes the second section in the
// symbol/section pointer of the follow-on relocation.
if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
fmt << "-";
printRelocationTargetName(Obj, RENext, fmt);
}
fmt << ")";
break;
}
default: { printRelocationTargetName(Obj, RE, fmt); }
}
}
} else
printRelocationTargetName(Obj, RE, fmt);
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
return std::error_code();
}
static std::error_code getRelocationValueString(const RelocationRef &Rel,
SmallVectorImpl<char> &Result) {
const ObjectFile *Obj = Rel.getObject();
if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
return getRelocationValueString(ELF, Rel, Result);
if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
return getRelocationValueString(COFF, Rel, Result);
auto *MachO = cast<MachOObjectFile>(Obj);
return getRelocationValueString(MachO, Rel, Result);
}
/// @brief Indicates whether this relocation should hidden when listing
/// relocations, usually because it is the trailing part of a multipart
/// relocation that will be printed as part of the leading relocation.
static bool getHidden(RelocationRef RelRef) {
const ObjectFile *Obj = RelRef.getObject();
auto *MachO = dyn_cast<MachOObjectFile>(Obj);
if (!MachO)
return false;
unsigned Arch = MachO->getArch();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
uint64_t Type = MachO->getRelocationType(Rel);
// On arches that use the generic relocations, GENERIC_RELOC_PAIR
// is always hidden.
if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
if (Type == MachO::GENERIC_RELOC_PAIR)
return true;
} else if (Arch == Triple::x86_64) {
// On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
// an X86_64_RELOC_SUBTRACTOR.
if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
DataRefImpl RelPrev = Rel;
RelPrev.d.a--;
uint64_t PrevType = MachO->getRelocationType(RelPrev);
if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
return true;
}
}
return false;
}
static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
const Target *TheTarget = getTarget(Obj);
// getTarget() will have already issued a diagnostic if necessary, so
// just bail here if it failed.
if (!TheTarget)
return;
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
if (!MRI) {
errs() << "error: no register info for target " << TripleName << "\n";
return;
}
// Set up disassembler.
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!AsmInfo) {
errs() << "error: no assembly info for target " << TripleName << "\n";
return;
}
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
if (!STI) {
errs() << "error: no subtarget info for target " << TripleName << "\n";
return;
}
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII) {
errs() << "error: no instruction info for target " << TripleName << "\n";
return;
}
std::unique_ptr<const MCObjectFileInfo> MOFI(new MCObjectFileInfo);
MCContext Ctx(AsmInfo.get(), MRI.get(), MOFI.get());
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm) {
errs() << "error: no disassembler for target " << TripleName << "\n";
return;
}
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
if (!IP) {
errs() << "error: no instruction printer for target " << TripleName
<< '\n';
return;
}
IP->setPrintImmHex(PrintImmHex);
PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " :
"\t\t\t%08" PRIx64 ": ";
// Create a mapping, RelocSecs = SectionRelocMap[S], where sections
// in RelocSecs contain the relocations for section S.
std::error_code EC;
std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
for (const SectionRef &Section : Obj->sections()) {
section_iterator Sec2 = Section.getRelocatedSection();
if (Sec2 != Obj->section_end())
SectionRelocMap[*Sec2].push_back(Section);
}
// Create a mapping from virtual address to symbol name. This is used to
// pretty print the target of a call.
std::vector<std::pair<uint64_t, StringRef>> AllSymbols;
if (MIA) {
for (const SymbolRef &Symbol : Obj->symbols()) {
if (Symbol.getType() != SymbolRef::ST_Function)
continue;
ErrorOr<uint64_t> AddressOrErr = Symbol.getAddress();
if (error(AddressOrErr.getError()))
break;
uint64_t Address = *AddressOrErr;
ErrorOr<StringRef> Name = Symbol.getName();
if (error(Name.getError()))
break;
if (Name->empty())
continue;
AllSymbols.push_back(std::make_pair(Address, *Name));
}
array_pod_sort(AllSymbols.begin(), AllSymbols.end());
}
for (const SectionRef &Section : Obj->sections()) {
if (!Section.isText() || Section.isVirtual())
continue;
uint64_t SectionAddr = Section.getAddress();
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Make a list of all the symbols in this section.
std::vector<std::pair<uint64_t, StringRef>> Symbols;
for (const SymbolRef &Symbol : Obj->symbols()) {
if (Section.containsSymbol(Symbol)) {
ErrorOr<uint64_t> AddressOrErr = Symbol.getAddress();
if (error(AddressOrErr.getError()))
break;
uint64_t Address = *AddressOrErr;
Address -= SectionAddr;
if (Address >= SectSize)
continue;
ErrorOr<StringRef> Name = Symbol.getName();
if (error(Name.getError()))
break;
Symbols.push_back(std::make_pair(Address, *Name));
}
}
// Sort the symbols by address, just in case they didn't come in that way.
array_pod_sort(Symbols.begin(), Symbols.end());
// Make a list of all the relocations for this section.
std::vector<RelocationRef> Rels;
if (InlineRelocs) {
for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
for (const RelocationRef &Reloc : RelocSec.relocations()) {
Rels.push_back(Reloc);
}
}
}
// Sort relocations by address.
std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
StringRef SegmentName = "";
if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
DataRefImpl DR = Section.getRawDataRefImpl();
SegmentName = MachO->getSectionFinalSegmentName(DR);
}
StringRef name;
if (error(Section.getName(name)))
break;
outs() << "Disassembly of section ";
if (!SegmentName.empty())
outs() << SegmentName << ",";
outs() << name << ':';
// If the section has no symbol at the start, just insert a dummy one.
if (Symbols.empty() || Symbols[0].first != 0)
Symbols.insert(Symbols.begin(), std::make_pair(0, name));
SmallString<40> Comments;
raw_svector_ostream CommentStream(Comments);
StringRef BytesStr;
if (error(Section.getContents(BytesStr)))
break;
ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
BytesStr.size());
uint64_t Size;
uint64_t Index;
std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
// Disassemble symbol by symbol.
for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
uint64_t Start = Symbols[si].first;
// The end is either the section end or the beginning of the next symbol.
uint64_t End = (si == se - 1) ? SectSize : Symbols[si + 1].first;
// If this symbol has the same address as the next symbol, then skip it.
if (Start == End)
continue;
outs() << '\n' << Symbols[si].second << ":\n";
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
for (Index = Start; Index < End; Index += Size) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
SectionAddr + Index, DebugOut,
CommentStream)) {
PIP.printInst(*IP, &Inst,
Bytes.slice(Index, Size),
SectionAddr + Index, outs(), "", *STI);
outs() << CommentStream.str();
Comments.clear();
if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
MIA->isConditionalBranch(Inst))) {
uint64_t Target;
if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
auto TargetSym = std::upper_bound(
AllSymbols.begin(), AllSymbols.end(), Target,
[](uint64_t LHS, const std::pair<uint64_t, StringRef> &RHS) {
return LHS < RHS.first;
});
if (TargetSym != AllSymbols.begin())
--TargetSym;
else
TargetSym = AllSymbols.end();
if (TargetSym != AllSymbols.end()) {
outs() << " <" << TargetSym->second;
uint64_t Disp = Target - TargetSym->first;
if (Disp)
outs() << '+' << utohexstr(Disp);
outs() << '>';
}
}
}
outs() << "\n";
} else {
errs() << ToolName << ": warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
// Print relocation for instruction.
while (rel_cur != rel_end) {
bool hidden = getHidden(*rel_cur);
uint64_t addr = rel_cur->getOffset();
SmallString<16> name;
SmallString<32> val;
// If this relocation is hidden, skip it.
if (hidden) goto skip_print_rel;
// Stop when rel_cur's address is past the current instruction.
if (addr >= Index + Size) break;
rel_cur->getTypeName(name);
if (error(getRelocationValueString(*rel_cur, val)))
goto skip_print_rel;
outs() << format(Fmt.data(), SectionAddr + addr) << name
<< "\t" << val << "\n";
skip_print_rel:
++rel_cur;
}
}
}
}
}
void llvm::PrintRelocations(const ObjectFile *Obj) {
StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
"%08" PRIx64;
// Regular objdump doesn't print relocations in non-relocatable object
// files.
if (!Obj->isRelocatableObject())
return;
for (const SectionRef &Section : Obj->sections()) {
if (Section.relocation_begin() == Section.relocation_end())
continue;
StringRef secname;
if (error(Section.getName(secname)))
continue;
outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
for (const RelocationRef &Reloc : Section.relocations()) {
bool hidden = getHidden(Reloc);
uint64_t address = Reloc.getOffset();
SmallString<32> relocname;
SmallString<32> valuestr;
if (hidden)
continue;
Reloc.getTypeName(relocname);
if (error(getRelocationValueString(Reloc, valuestr)))
continue;
outs() << format(Fmt.data(), address) << " " << relocname << " "
<< valuestr << "\n";
}
outs() << "\n";
}
}
void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
outs() << "Sections:\n"
"Idx Name Size Address Type\n";
unsigned i = 0;
for (const SectionRef &Section : Obj->sections()) {
StringRef Name;
if (error(Section.getName(Name)))
return;
uint64_t Address = Section.getAddress();
uint64_t Size = Section.getSize();
bool Text = Section.isText();
bool Data = Section.isData();
bool BSS = Section.isBSS();
std::string Type = (std::string(Text ? "TEXT " : "") +
(Data ? "DATA " : "") + (BSS ? "BSS" : ""));
outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
Name.str().c_str(), Size, Address, Type.c_str());
++i;
}
}
void llvm::PrintSectionContents(const ObjectFile *Obj) {
std::error_code EC;
for (const SectionRef &Section : Obj->sections()) {
StringRef Name;
StringRef Contents;
if (error(Section.getName(Name)))
continue;
uint64_t BaseAddr = Section.getAddress();
uint64_t Size = Section.getSize();
if (!Size)
continue;
outs() << "Contents of section " << Name << ":\n";
if (Section.isBSS()) {
outs() << format("<skipping contents of bss section at [%04" PRIx64
", %04" PRIx64 ")>\n",
BaseAddr, BaseAddr + Size);
continue;
}
if (error(Section.getContents(Contents)))
continue;
// Dump out the content as hex and printable ascii characters.
for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
// Dump line of hex.
for (std::size_t i = 0; i < 16; ++i) {
if (i != 0 && i % 4 == 0)
outs() << ' ';
if (addr + i < end)
outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
<< hexdigit(Contents[addr + i] & 0xF, true);
else
outs() << " ";
}
// Print ascii.
outs() << " ";
for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
outs() << Contents[addr + i];
else
outs() << ".";
}
outs() << "\n";
}
}
}
static void PrintCOFFSymbolTable(const COFFObjectFile *coff) {
for (unsigned SI = 0, SE = coff->getNumberOfSymbols(); SI != SE; ++SI) {
ErrorOr<COFFSymbolRef> Symbol = coff->getSymbol(SI);
StringRef Name;
if (error(Symbol.getError()))
return;
if (error(coff->getSymbolName(*Symbol, Name)))
return;
outs() << "[" << format("%2d", SI) << "]"
<< "(sec " << format("%2d", int(Symbol->getSectionNumber())) << ")"
<< "(fl 0x00)" // Flag bits, which COFF doesn't have.
<< "(ty " << format("%3x", unsigned(Symbol->getType())) << ")"
<< "(scl " << format("%3x", unsigned(Symbol->getStorageClass())) << ") "
<< "(nx " << unsigned(Symbol->getNumberOfAuxSymbols()) << ") "
<< "0x" << format("%08x", unsigned(Symbol->getValue())) << " "
<< Name << "\n";
for (unsigned AI = 0, AE = Symbol->getNumberOfAuxSymbols(); AI < AE; ++AI, ++SI) {
if (Symbol->isSectionDefinition()) {
const coff_aux_section_definition *asd;
if (error(coff->getAuxSymbol<coff_aux_section_definition>(SI + 1, asd)))
return;
int32_t AuxNumber = asd->getNumber(Symbol->isBigObj());
outs() << "AUX "
<< format("scnlen 0x%x nreloc %d nlnno %d checksum 0x%x "
, unsigned(asd->Length)
, unsigned(asd->NumberOfRelocations)
, unsigned(asd->NumberOfLinenumbers)
, unsigned(asd->CheckSum))
<< format("assoc %d comdat %d\n"
, unsigned(AuxNumber)
, unsigned(asd->Selection));
} else if (Symbol->isFileRecord()) {
const char *FileName;
if (error(coff->getAuxSymbol<char>(SI + 1, FileName)))
return;
StringRef Name(FileName, Symbol->getNumberOfAuxSymbols() *
coff->getSymbolTableEntrySize());
outs() << "AUX " << Name.rtrim(StringRef("\0", 1)) << '\n';
SI = SI + Symbol->getNumberOfAuxSymbols();
break;
} else {
outs() << "AUX Unknown\n";
}
}
}
}
void llvm::PrintSymbolTable(const ObjectFile *o) {
outs() << "SYMBOL TABLE:\n";
if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
PrintCOFFSymbolTable(coff);
return;
}
for (const SymbolRef &Symbol : o->symbols()) {
ErrorOr<uint64_t> AddressOrError = Symbol.getAddress();
if (error(AddressOrError.getError()))
continue;
uint64_t Address = *AddressOrError;
SymbolRef::Type Type = Symbol.getType();
uint32_t Flags = Symbol.getFlags();
section_iterator Section = o->section_end();
if (error(Symbol.getSection(Section)))
continue;
StringRef Name;
if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
Section->getName(Name);
} else {
ErrorOr<StringRef> NameOrErr = Symbol.getName();
if (error(NameOrErr.getError()))
continue;
Name = *NameOrErr;
}
bool Global = Flags & SymbolRef::SF_Global;
bool Weak = Flags & SymbolRef::SF_Weak;
bool Absolute = Flags & SymbolRef::SF_Absolute;
bool Common = Flags & SymbolRef::SF_Common;
bool Hidden = Flags & SymbolRef::SF_Hidden;
char GlobLoc = ' ';
if (Type != SymbolRef::ST_Unknown)
GlobLoc = Global ? 'g' : 'l';
char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
? 'd' : ' ';
char FileFunc = ' ';
if (Type == SymbolRef::ST_File)
FileFunc = 'f';
else if (Type == SymbolRef::ST_Function)
FileFunc = 'F';
const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
"%08" PRIx64;
outs() << format(Fmt, Address) << " "
<< GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
<< (Weak ? 'w' : ' ') // Weak?
<< ' ' // Constructor. Not supported yet.
<< ' ' // Warning. Not supported yet.
<< ' ' // Indirect reference to another symbol.
<< Debug // Debugging (d) or dynamic (D) symbol.
<< FileFunc // Name of function (F), file (f) or object (O).
<< ' ';
if (Absolute) {
outs() << "*ABS*";
} else if (Common) {
outs() << "*COM*";
} else if (Section == o->section_end()) {
outs() << "*UND*";
} else {
if (const MachOObjectFile *MachO =
dyn_cast<const MachOObjectFile>(o)) {
DataRefImpl DR = Section->getRawDataRefImpl();
StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
outs() << SegmentName << ",";
}
StringRef SectionName;
if (error(Section->getName(SectionName)))
SectionName = "";
outs() << SectionName;
}
outs() << '\t';
if (Common || isa<ELFObjectFileBase>(o)) {
uint64_t Val =
Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
outs() << format("\t %08" PRIx64 " ", Val);
}
if (Hidden) {
outs() << ".hidden ";
}
outs() << Name
<< '\n';
}
}
static void PrintUnwindInfo(const ObjectFile *o) {
outs() << "Unwind info:\n\n";
if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
printCOFFUnwindInfo(coff);
} else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOUnwindInfo(MachO);
else {
// TODO: Extract DWARF dump tool to objdump.
errs() << "This operation is only currently supported "
"for COFF and MachO object files.\n";
return;
}
}
void llvm::printExportsTrie(const ObjectFile *o) {
outs() << "Exports trie:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOExportsTrie(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printRebaseTable(const ObjectFile *o) {
outs() << "Rebase table:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachORebaseTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printBindTable(const ObjectFile *o) {
outs() << "Bind table:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printLazyBindTable(const ObjectFile *o) {
outs() << "Lazy bind table:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOLazyBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
void llvm::printWeakBindTable(const ObjectFile *o) {
outs() << "Weak bind table:\n";
if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
printMachOWeakBindTable(MachO);
else {
errs() << "This operation is only currently supported "
"for Mach-O executable files.\n";
return;
}
}
/// Dump the raw contents of the __clangast section so the output can be piped
/// into llvm-bcanalyzer.
void llvm::printRawClangAST(const ObjectFile *Obj) {
if (outs().is_displayed()) {
errs() << "The -raw-clang-ast option will dump the raw binary contents of "
"the clang ast section.\n"
"Please redirect the output to a file or another program such as "
"llvm-bcanalyzer.\n";
return;
}
StringRef ClangASTSectionName("__clangast");
if (isa<COFFObjectFile>(Obj)) {
ClangASTSectionName = "clangast";
}
Optional<object::SectionRef> ClangASTSection;
for (auto Sec : Obj->sections()) {
StringRef Name;
Sec.getName(Name);
if (Name == ClangASTSectionName) {
ClangASTSection = Sec;
break;
}
}
if (!ClangASTSection)
return;
StringRef ClangASTContents;
if (error(ClangASTSection.getValue().getContents(ClangASTContents))) {
errs() << "Could not read the " << ClangASTSectionName << " section!\n";
return;
}
outs().write(ClangASTContents.data(), ClangASTContents.size());
}
static void printFaultMaps(const ObjectFile *Obj) {
const char *FaultMapSectionName = nullptr;
if (isa<ELFObjectFileBase>(Obj)) {
FaultMapSectionName = ".llvm_faultmaps";
} else if (isa<MachOObjectFile>(Obj)) {
FaultMapSectionName = "__llvm_faultmaps";
} else {
errs() << "This operation is only currently supported "
"for ELF and Mach-O executable files.\n";
return;
}
Optional<object::SectionRef> FaultMapSection;
for (auto Sec : Obj->sections()) {
StringRef Name;
Sec.getName(Name);
if (Name == FaultMapSectionName) {
FaultMapSection = Sec;
break;
}
}
outs() << "FaultMap table:\n";
if (!FaultMapSection.hasValue()) {
outs() << "<not found>\n";
return;
}
StringRef FaultMapContents;
if (error(FaultMapSection.getValue().getContents(FaultMapContents))) {
errs() << "Could not read the " << FaultMapContents << " section!\n";
return;
}
FaultMapParser FMP(FaultMapContents.bytes_begin(),
FaultMapContents.bytes_end());
outs() << FMP;
}
static void printPrivateFileHeader(const ObjectFile *o) {
if (o->isELF()) {
printELFFileHeader(o);
} else if (o->isCOFF()) {
printCOFFFileHeader(o);
} else if (o->isMachO()) {
printMachOFileHeader(o);
}
}
static void DumpObject(const ObjectFile *o) {
// Avoid other output when using a raw option.
if (!RawClangAST) {
outs() << '\n';
outs() << o->getFileName()
<< ":\tfile format " << o->getFileFormatName() << "\n\n";
}
if (Disassemble)
DisassembleObject(o, Relocations);
if (Relocations && !Disassemble)
PrintRelocations(o);
if (SectionHeaders)
PrintSectionHeaders(o);
if (SectionContents)
PrintSectionContents(o);
if (SymbolTable)
PrintSymbolTable(o);
if (UnwindInfo)
PrintUnwindInfo(o);
if (PrivateHeaders)
printPrivateFileHeader(o);
if (ExportsTrie)
printExportsTrie(o);
if (Rebase)
printRebaseTable(o);
if (Bind)
printBindTable(o);
if (LazyBind)
printLazyBindTable(o);
if (WeakBind)
printWeakBindTable(o);
if (RawClangAST)
printRawClangAST(o);
if (PrintFaultMaps)
printFaultMaps(o);
}
/// @brief Dump each object file in \a a;
static void DumpArchive(const Archive *a) {
for (Archive::child_iterator i = a->child_begin(), e = a->child_end(); i != e;
++i) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
// Ignore non-object files.
if (EC != object_error::invalid_file_type)
report_error(a->getFileName(), EC);
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
DumpObject(o);
else
report_error(a->getFileName(), object_error::invalid_file_type);
}
}
/// @brief Open file and figure out how to dump it.
static void DumpInput(StringRef file) {
// If file isn't stdin, check that it exists.
if (file != "-" && !sys::fs::exists(file)) {
report_error(file, errc::no_such_file_or_directory);
return;
}
// If we are using the Mach-O specific object file parser, then let it parse
// the file and process the command line options. So the -arch flags can
// be used to select specific slices, etc.
if (MachOOpt) {
ParseInputMachO(file);
return;
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
if (std::error_code EC = BinaryOrErr.getError()) {
report_error(file, EC);
return;
}
Binary &Binary = *BinaryOrErr.get().getBinary();
if (Archive *a = dyn_cast<Archive>(&Binary))
DumpArchive(a);
else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
DumpObject(o);
else
report_error(file, object_error::invalid_file_type);
}
// HLSL Change: changed calling convention to __cdecl
int __cdecl main(int argc, char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
// Initialize targets and assembly printers/parsers.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
// Register the target printer for --version.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
TripleName = Triple::normalize(TripleName);
ToolName = argv[0];
// Defaults to a.out if no filenames specified.
if (InputFilenames.size() == 0)
InputFilenames.push_back("a.out");
if (!Disassemble
&& !Relocations
&& !SectionHeaders
&& !SectionContents
&& !SymbolTable
&& !UnwindInfo
&& !PrivateHeaders
&& !ExportsTrie
&& !Rebase
&& !Bind
&& !LazyBind
&& !WeakBind
&& !RawClangAST
&& !(UniversalHeaders && MachOOpt)
&& !(ArchiveHeaders && MachOOpt)
&& !(IndirectSymbols && MachOOpt)
&& !(DataInCode && MachOOpt)
&& !(LinkOptHints && MachOOpt)
&& !(InfoPlist && MachOOpt)
&& !(DylibsUsed && MachOOpt)
&& !(DylibId && MachOOpt)
&& !(ObjcMetaData && MachOOpt)
&& !(DumpSections.size() != 0 && MachOOpt)
&& !PrintFaultMaps) {
cl::PrintHelpMessage();
return 2;
}
std::for_each(InputFilenames.begin(), InputFilenames.end(),
DumpInput);
return ReturnValue;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/LLVMBuild.txt | ;===- ./tools/llvm-objdump/LLVMBuild.txt -----------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llvm-objdump
parent = Tools
required_libraries = DebugInfoDWARF MC MCDisassembler MCParser Object all-targets
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-objdump/COFFDump.cpp | //===-- COFFDump.cpp - COFF-specific dumper ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the COFF-specific dumper for llvm-objdump.
/// It outputs the Win64 EH data structures as plain text.
/// The encoding of the unwind codes is described in MSDN:
/// http://msdn.microsoft.com/en-us/library/ck9asaa9.aspx
///
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/Win64EH.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
using namespace llvm;
using namespace object;
using namespace llvm::Win64EH;
// Returns the name of the unwind code.
static StringRef getUnwindCodeTypeName(uint8_t Code) {
switch(Code) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol: return "UOP_PushNonVol";
case UOP_AllocLarge: return "UOP_AllocLarge";
case UOP_AllocSmall: return "UOP_AllocSmall";
case UOP_SetFPReg: return "UOP_SetFPReg";
case UOP_SaveNonVol: return "UOP_SaveNonVol";
case UOP_SaveNonVolBig: return "UOP_SaveNonVolBig";
case UOP_SaveXMM128: return "UOP_SaveXMM128";
case UOP_SaveXMM128Big: return "UOP_SaveXMM128Big";
case UOP_PushMachFrame: return "UOP_PushMachFrame";
}
}
// Returns the name of a referenced register.
static StringRef getUnwindRegisterName(uint8_t Reg) {
switch(Reg) {
default: llvm_unreachable("Invalid register");
case 0: return "RAX";
case 1: return "RCX";
case 2: return "RDX";
case 3: return "RBX";
case 4: return "RSP";
case 5: return "RBP";
case 6: return "RSI";
case 7: return "RDI";
case 8: return "R8";
case 9: return "R9";
case 10: return "R10";
case 11: return "R11";
case 12: return "R12";
case 13: return "R13";
case 14: return "R14";
case 15: return "R15";
}
}
// Calculates the number of array slots required for the unwind code.
static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) {
switch (UnwindCode.getUnwindOp()) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol:
case UOP_AllocSmall:
case UOP_SetFPReg:
case UOP_PushMachFrame:
return 1;
case UOP_SaveNonVol:
case UOP_SaveXMM128:
return 2;
case UOP_SaveNonVolBig:
case UOP_SaveXMM128Big:
return 3;
case UOP_AllocLarge:
return (UnwindCode.getOpInfo() == 0) ? 2 : 3;
}
}
// Prints one unwind code. Because an unwind code can occupy up to 3 slots in
// the unwind codes array, this function requires that the correct number of
// slots is provided.
static void printUnwindCode(ArrayRef<UnwindCode> UCs) {
assert(UCs.size() >= getNumUsedSlots(UCs[0]));
outs() << format(" 0x%02x: ", unsigned(UCs[0].u.CodeOffset))
<< getUnwindCodeTypeName(UCs[0].getUnwindOp());
switch (UCs[0].getUnwindOp()) {
case UOP_PushNonVol:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo());
break;
case UOP_AllocLarge:
if (UCs[0].getOpInfo() == 0) {
outs() << " " << UCs[1].FrameOffset;
} else {
outs() << " " << UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16);
}
break;
case UOP_AllocSmall:
outs() << " " << ((UCs[0].getOpInfo() + 1) * 8);
break;
case UOP_SetFPReg:
outs() << " ";
break;
case UOP_SaveNonVol:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(" [0x%04x]", 8 * UCs[1].FrameOffset);
break;
case UOP_SaveNonVolBig:
outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(" [0x%08x]", UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
break;
case UOP_SaveXMM128:
outs() << " XMM" << static_cast<uint32_t>(UCs[0].getOpInfo())
<< format(" [0x%04x]", 16 * UCs[1].FrameOffset);
break;
case UOP_SaveXMM128Big:
outs() << " XMM" << UCs[0].getOpInfo()
<< format(" [0x%08x]", UCs[1].FrameOffset
+ (static_cast<uint32_t>(UCs[2].FrameOffset) << 16));
break;
case UOP_PushMachFrame:
outs() << " " << (UCs[0].getOpInfo() ? "w/o" : "w")
<< " error code";
break;
}
outs() << "\n";
}
static void printAllUnwindCodes(ArrayRef<UnwindCode> UCs) {
for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ) {
unsigned UsedSlots = getNumUsedSlots(*I);
if (UsedSlots > UCs.size()) {
outs() << "Unwind data corrupted: Encountered unwind op "
<< getUnwindCodeTypeName((*I).getUnwindOp())
<< " which requires " << UsedSlots
<< " slots, but only " << UCs.size()
<< " remaining in buffer";
return ;
}
printUnwindCode(ArrayRef<UnwindCode>(I, E));
I += UsedSlots;
}
}
// Given a symbol sym this functions returns the address and section of it.
static std::error_code
resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym,
const coff_section *&ResolvedSection,
uint64_t &ResolvedAddr) {
ErrorOr<uint64_t> ResolvedAddrOrErr = Sym.getAddress();
if (std::error_code EC = ResolvedAddrOrErr.getError())
return EC;
ResolvedAddr = *ResolvedAddrOrErr;
section_iterator iter(Obj->section_begin());
if (std::error_code EC = Sym.getSection(iter))
return EC;
ResolvedSection = Obj->getCOFFSection(*iter);
return std::error_code();
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the symbol used for the relocation at the offset.
static std::error_code resolveSymbol(const std::vector<RelocationRef> &Rels,
uint64_t Offset, SymbolRef &Sym) {
for (std::vector<RelocationRef>::const_iterator I = Rels.begin(),
E = Rels.end();
I != E; ++I) {
uint64_t Ofs = I->getOffset();
if (Ofs == Offset) {
Sym = *I->getSymbol();
return std::error_code();
}
}
return object_error::parse_failed;
}
// Given a vector of relocations for a section and an offset into this section
// the function resolves the symbol used for the relocation at the offset and
// returns the section content and the address inside the content pointed to
// by the symbol.
static std::error_code
getSectionContents(const COFFObjectFile *Obj,
const std::vector<RelocationRef> &Rels, uint64_t Offset,
ArrayRef<uint8_t> &Contents, uint64_t &Addr) {
SymbolRef Sym;
if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
const coff_section *Section;
if (std::error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr))
return EC;
if (std::error_code EC = Obj->getSectionContents(Section, Contents))
return EC;
return std::error_code();
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the name of the symbol used for the relocation at the
// offset.
static std::error_code resolveSymbolName(const std::vector<RelocationRef> &Rels,
uint64_t Offset, StringRef &Name) {
SymbolRef Sym;
if (std::error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
ErrorOr<StringRef> NameOrErr = Sym.getName();
if (std::error_code EC = NameOrErr.getError())
return EC;
Name = *NameOrErr;
return std::error_code();
}
static void printCOFFSymbolAddress(llvm::raw_ostream &Out,
const std::vector<RelocationRef> &Rels,
uint64_t Offset, uint32_t Disp) {
StringRef Sym;
if (!resolveSymbolName(Rels, Offset, Sym)) {
Out << Sym;
if (Disp > 0)
Out << format(" + 0x%04x", Disp);
} else {
Out << format("0x%04x", Disp);
}
}
static void
printSEHTable(const COFFObjectFile *Obj, uint32_t TableVA, int Count) {
if (Count == 0)
return;
const pe32_header *PE32Header;
if (error(Obj->getPE32Header(PE32Header)))
return;
uint32_t ImageBase = PE32Header->ImageBase;
uintptr_t IntPtr = 0;
if (error(Obj->getVaPtr(TableVA, IntPtr)))
return;
const support::ulittle32_t *P = (const support::ulittle32_t *)IntPtr;
outs() << "SEH Table:";
for (int I = 0; I < Count; ++I)
outs() << format(" 0x%x", P[I] + ImageBase);
outs() << "\n\n";
}
static void printLoadConfiguration(const COFFObjectFile *Obj) {
// Skip if it's not executable.
const pe32_header *PE32Header;
if (error(Obj->getPE32Header(PE32Header)))
return;
if (!PE32Header)
return;
// Currently only x86 is supported
if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_I386)
return;
const data_directory *DataDir;
if (error(Obj->getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataDir)))
return;
uintptr_t IntPtr = 0;
if (DataDir->RelativeVirtualAddress == 0)
return;
if (error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr)))
return;
auto *LoadConf = reinterpret_cast<const coff_load_configuration32 *>(IntPtr);
outs() << "Load configuration:"
<< "\n Timestamp: " << LoadConf->TimeDateStamp
<< "\n Major Version: " << LoadConf->MajorVersion
<< "\n Minor Version: " << LoadConf->MinorVersion
<< "\n GlobalFlags Clear: " << LoadConf->GlobalFlagsClear
<< "\n GlobalFlags Set: " << LoadConf->GlobalFlagsSet
<< "\n Critical Section Default Timeout: " << LoadConf->CriticalSectionDefaultTimeout
<< "\n Decommit Free Block Threshold: " << LoadConf->DeCommitFreeBlockThreshold
<< "\n Decommit Total Free Threshold: " << LoadConf->DeCommitTotalFreeThreshold
<< "\n Lock Prefix Table: " << LoadConf->LockPrefixTable
<< "\n Maximum Allocation Size: " << LoadConf->MaximumAllocationSize
<< "\n Virtual Memory Threshold: " << LoadConf->VirtualMemoryThreshold
<< "\n Process Affinity Mask: " << LoadConf->ProcessAffinityMask
<< "\n Process Heap Flags: " << LoadConf->ProcessHeapFlags
<< "\n CSD Version: " << LoadConf->CSDVersion
<< "\n Security Cookie: " << LoadConf->SecurityCookie
<< "\n SEH Table: " << LoadConf->SEHandlerTable
<< "\n SEH Count: " << LoadConf->SEHandlerCount
<< "\n\n";
printSEHTable(Obj, LoadConf->SEHandlerTable, LoadConf->SEHandlerCount);
outs() << "\n";
}
// Prints import tables. The import table is a table containing the list of
// DLL name and symbol names which will be linked by the loader.
static void printImportTables(const COFFObjectFile *Obj) {
import_directory_iterator I = Obj->import_directory_begin();
import_directory_iterator E = Obj->import_directory_end();
if (I == E)
return;
outs() << "The Import Tables:\n";
for (; I != E; I = ++I) {
const import_directory_table_entry *Dir;
StringRef Name;
if (I->getImportTableEntry(Dir)) return;
if (I->getName(Name)) return;
outs() << format(" lookup %08x time %08x fwd %08x name %08x addr %08x\n\n",
static_cast<uint32_t>(Dir->ImportLookupTableRVA),
static_cast<uint32_t>(Dir->TimeDateStamp),
static_cast<uint32_t>(Dir->ForwarderChain),
static_cast<uint32_t>(Dir->NameRVA),
static_cast<uint32_t>(Dir->ImportAddressTableRVA));
outs() << " DLL Name: " << Name << "\n";
outs() << " Hint/Ord Name\n";
const import_lookup_table_entry32 *entry;
if (I->getImportLookupEntry(entry))
return;
for (; entry->Data; ++entry) {
if (entry->isOrdinal()) {
outs() << format(" % 6d\n", entry->getOrdinal());
continue;
}
uint16_t Hint;
StringRef Name;
if (Obj->getHintName(entry->getHintNameRVA(), Hint, Name))
return;
outs() << format(" % 6d ", Hint) << Name << "\n";
}
outs() << "\n";
}
}
// Prints export tables. The export table is a table containing the list of
// exported symbol from the DLL.
static void printExportTable(const COFFObjectFile *Obj) {
outs() << "Export Table:\n";
export_directory_iterator I = Obj->export_directory_begin();
export_directory_iterator E = Obj->export_directory_end();
if (I == E)
return;
StringRef DllName;
uint32_t OrdinalBase;
if (I->getDllName(DllName))
return;
if (I->getOrdinalBase(OrdinalBase))
return;
outs() << " DLL name: " << DllName << "\n";
outs() << " Ordinal base: " << OrdinalBase << "\n";
outs() << " Ordinal RVA Name\n";
for (; I != E; I = ++I) {
uint32_t Ordinal;
if (I->getOrdinal(Ordinal))
return;
uint32_t RVA;
if (I->getExportRVA(RVA))
return;
outs() << format(" % 4d %# 8x", Ordinal, RVA);
StringRef Name;
if (I->getSymbolName(Name))
continue;
if (!Name.empty())
outs() << " " << Name;
outs() << "\n";
}
}
// Given the COFF object file, this function returns the relocations for .pdata
// and the pointer to "runtime function" structs.
static bool getPDataSection(const COFFObjectFile *Obj,
std::vector<RelocationRef> &Rels,
const RuntimeFunction *&RFStart, int &NumRFs) {
for (const SectionRef &Section : Obj->sections()) {
StringRef Name;
if (error(Section.getName(Name)))
continue;
if (Name != ".pdata")
continue;
const coff_section *Pdata = Obj->getCOFFSection(Section);
for (const RelocationRef &Reloc : Section.relocations())
Rels.push_back(Reloc);
// Sort relocations by address.
std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
ArrayRef<uint8_t> Contents;
if (error(Obj->getSectionContents(Pdata, Contents)))
continue;
if (Contents.empty())
continue;
RFStart = reinterpret_cast<const RuntimeFunction *>(Contents.data());
NumRFs = Contents.size() / sizeof(RuntimeFunction);
return true;
}
return false;
}
static void printWin64EHUnwindInfo(const Win64EH::UnwindInfo *UI) {
// The casts to int are required in order to output the value as number.
// Without the casts the value would be interpreted as char data (which
// results in garbage output).
outs() << " Version: " << static_cast<int>(UI->getVersion()) << "\n";
outs() << " Flags: " << static_cast<int>(UI->getFlags());
if (UI->getFlags()) {
if (UI->getFlags() & UNW_ExceptionHandler)
outs() << " UNW_ExceptionHandler";
if (UI->getFlags() & UNW_TerminateHandler)
outs() << " UNW_TerminateHandler";
if (UI->getFlags() & UNW_ChainInfo)
outs() << " UNW_ChainInfo";
}
outs() << "\n";
outs() << " Size of prolog: " << static_cast<int>(UI->PrologSize) << "\n";
outs() << " Number of Codes: " << static_cast<int>(UI->NumCodes) << "\n";
// Maybe this should move to output of UOP_SetFPReg?
if (UI->getFrameRegister()) {
outs() << " Frame register: "
<< getUnwindRegisterName(UI->getFrameRegister()) << "\n";
outs() << " Frame offset: " << 16 * UI->getFrameOffset() << "\n";
} else {
outs() << " No frame pointer used\n";
}
if (UI->getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) {
// FIXME: Output exception handler data
} else if (UI->getFlags() & UNW_ChainInfo) {
// FIXME: Output chained unwind info
}
if (UI->NumCodes)
outs() << " Unwind Codes:\n";
printAllUnwindCodes(ArrayRef<UnwindCode>(&UI->UnwindCodes[0], UI->NumCodes));
outs() << "\n";
outs().flush();
}
/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
/// pointing to an executable file.
static void printRuntimeFunction(const COFFObjectFile *Obj,
const RuntimeFunction &RF) {
if (!RF.StartAddress)
return;
outs() << "Function Table:\n"
<< format(" Start Address: 0x%04x\n",
static_cast<uint32_t>(RF.StartAddress))
<< format(" End Address: 0x%04x\n",
static_cast<uint32_t>(RF.EndAddress))
<< format(" Unwind Info Address: 0x%04x\n",
static_cast<uint32_t>(RF.UnwindInfoOffset));
uintptr_t addr;
if (Obj->getRvaPtr(RF.UnwindInfoOffset, addr))
return;
printWin64EHUnwindInfo(reinterpret_cast<const Win64EH::UnwindInfo *>(addr));
}
/// Prints out the given RuntimeFunction struct for x64, assuming that Obj is
/// pointing to an object file. Unlike executable, fields in RuntimeFunction
/// struct are filled with zeros, but instead there are relocations pointing to
/// them so that the linker will fill targets' RVAs to the fields at link
/// time. This function interprets the relocations to find the data to be used
/// in the resulting executable.
static void printRuntimeFunctionRels(const COFFObjectFile *Obj,
const RuntimeFunction &RF,
uint64_t SectionOffset,
const std::vector<RelocationRef> &Rels) {
outs() << "Function Table:\n";
outs() << " Start Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, StartAddress)*/ 0,
RF.StartAddress);
outs() << "\n";
outs() << " End Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, EndAddress)*/ 4,
RF.EndAddress);
outs() << "\n";
outs() << " Unwind Info Address: ";
printCOFFSymbolAddress(outs(), Rels,
SectionOffset +
/*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
RF.UnwindInfoOffset);
outs() << "\n";
ArrayRef<uint8_t> XContents;
uint64_t UnwindInfoOffset = 0;
if (error(getSectionContents(
Obj, Rels, SectionOffset +
/*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8,
XContents, UnwindInfoOffset)))
return;
if (XContents.empty())
return;
UnwindInfoOffset += RF.UnwindInfoOffset;
if (UnwindInfoOffset > XContents.size())
return;
auto *UI = reinterpret_cast<const Win64EH::UnwindInfo *>(XContents.data() +
UnwindInfoOffset);
printWin64EHUnwindInfo(UI);
}
void llvm::printCOFFUnwindInfo(const COFFObjectFile *Obj) {
if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_AMD64) {
errs() << "Unsupported image machine type "
"(currently only AMD64 is supported).\n";
return;
}
std::vector<RelocationRef> Rels;
const RuntimeFunction *RFStart;
int NumRFs;
if (!getPDataSection(Obj, Rels, RFStart, NumRFs))
return;
ArrayRef<RuntimeFunction> RFs(RFStart, NumRFs);
bool IsExecutable = Rels.empty();
if (IsExecutable) {
for (const RuntimeFunction &RF : RFs)
printRuntimeFunction(Obj, RF);
return;
}
for (const RuntimeFunction &RF : RFs) {
uint64_t SectionOffset =
std::distance(RFs.begin(), &RF) * sizeof(RuntimeFunction);
printRuntimeFunctionRels(Obj, RF, SectionOffset, Rels);
}
}
void llvm::printCOFFFileHeader(const object::ObjectFile *Obj) {
const COFFObjectFile *file = dyn_cast<const COFFObjectFile>(Obj);
printLoadConfiguration(file);
printImportTables(file);
printExportTable(file);
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llc/llc.cpp | //===-- llc.cpp - Implement the LLVM Native Code Generator ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the llc code generator driver. It provides a convenient
// command-line interface for generating native assembly-language code
// or C code, given LLVM bitcode.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/CodeGen/LinkAllAsmWriterComponents.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
#include "llvm/CodeGen/MIRParser/MIRParser.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <memory>
using namespace llvm;
// General options for llc. Other pass-specific options are specified
// within the corresponding llc passes, and target-specific options
// and back-end code generation options are specified with the target machine.
//
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode>"), cl::init("-"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Output filename"), cl::value_desc("filename"));
static cl::opt<unsigned>
TimeCompilations("time-compilations", cl::Hidden, cl::init(1u),
cl::value_desc("N"),
cl::desc("Repeat compilation N times for timing"));
static cl::opt<bool>
NoIntegratedAssembler("no-integrated-as", cl::Hidden,
cl::desc("Disable integrated assembler"));
// Determine optimization level.
static cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init(' '));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static cl::opt<bool> NoVerify("disable-verify", cl::Hidden,
cl::desc("Do not verify input module"));
static cl::opt<bool> DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::opt<bool> ShowMCEncoding("show-mc-encoding", cl::Hidden,
cl::desc("Show encoding in .s output"));
static cl::opt<bool> EnableDwarfDirectory(
"enable-dwarf-directory", cl::Hidden,
cl::desc("Use .file directives with an explicit directory."));
static cl::opt<bool> AsmVerbose("asm-verbose",
cl::desc("Add comments to directives."),
cl::init(true));
static cl::opt<bool>
CompileTwice("compile-twice", cl::Hidden,
cl::desc("Run everything twice, re-using the same pass "
"manager and verify the the result is the same."),
cl::init(false));
static int compileModule(char **, LLVMContext &);
static std::unique_ptr<tool_output_file>
GetOutputStream(const char *TargetName, Triple::OSType OS,
const char *ProgName) {
// If we don't yet have an output filename, make one.
if (OutputFilename.empty()) {
if (InputFilename == "-")
OutputFilename = "-";
else {
// If InputFilename ends in .bc or .ll, remove it.
StringRef IFN = InputFilename;
if (IFN.endswith(".bc") || IFN.endswith(".ll"))
OutputFilename = IFN.drop_back(3);
else if (IFN.endswith(".mir"))
OutputFilename = IFN.drop_back(4);
else
OutputFilename = IFN;
switch (FileType) {
case TargetMachine::CGFT_AssemblyFile:
if (TargetName[0] == 'c') {
if (TargetName[1] == 0)
OutputFilename += ".cbe.c";
else if (TargetName[1] == 'p' && TargetName[2] == 'p')
OutputFilename += ".cpp";
else
OutputFilename += ".s";
} else
OutputFilename += ".s";
break;
case TargetMachine::CGFT_ObjectFile:
if (OS == Triple::Win32)
OutputFilename += ".obj";
else
OutputFilename += ".o";
break;
case TargetMachine::CGFT_Null:
OutputFilename += ".null";
break;
}
}
}
// Decide if we need "binary" output.
bool Binary = false;
switch (FileType) {
case TargetMachine::CGFT_AssemblyFile:
break;
case TargetMachine::CGFT_ObjectFile:
case TargetMachine::CGFT_Null:
Binary = true;
break;
}
// Open the file.
std::error_code EC;
sys::fs::OpenFlags OpenFlags = sys::fs::F_None;
if (!Binary)
OpenFlags |= sys::fs::F_Text;
auto FDOut = llvm::make_unique<tool_output_file>(OutputFilename, EC,
OpenFlags);
if (EC) {
errs() << EC.message() << '\n';
return nullptr;
}
return FDOut;
}
// main - Entry point for the llc compiler.
//
// HLSL Change: changed calling convention to __cdecl
int __cdecl main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
LLVMContext &Context = getGlobalContext();
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
// Initialize targets first, so that --version shows registered targets.
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
// Initialize codegen and IR passes used by llc so that the -print-after,
// -print-before, and -stop-after options work.
PassRegistry *Registry = PassRegistry::getPassRegistry();
initializeCore(*Registry);
initializeCodeGen(*Registry);
initializeLoopStrengthReducePass(*Registry);
initializeLowerIntrinsicsPass(*Registry);
initializeUnreachableBlockElimPass(*Registry);
// Register the target printer for --version.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n");
// Compile the module TimeCompilations times to give better compile time
// metrics.
for (unsigned I = TimeCompilations; I; --I)
if (int RetVal = compileModule(argv, Context))
return RetVal;
return 0;
}
static int compileModule(char **argv, LLVMContext &Context) {
// Load the module to be compiled...
SMDiagnostic Err;
std::unique_ptr<Module> M;
std::unique_ptr<MIRParser> MIR;
Triple TheTriple;
bool SkipModule = MCPU == "help" ||
(!MAttrs.empty() && MAttrs.front() == "help");
// If user just wants to list available options, skip module loading
if (!SkipModule) {
if (StringRef(InputFilename).endswith_lower(".mir")) {
MIR = createMIRParserFromFile(InputFilename, Err, Context);
if (MIR) {
M = MIR->parseLLVMModule();
assert(M && "parseLLVMModule should exit on failure");
}
} else
M = parseIRFile(InputFilename, Err, Context);
if (!M) {
Err.print(argv[0], errs());
return 1;
}
// Verify module immediately to catch problems before doInitialization() is
// called on any passes.
if (!NoVerify && verifyModule(*M, &errs())) {
errs() << argv[0] << ": " << InputFilename
<< ": error: input module is broken!\n";
return 1;
}
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple::normalize(TargetTriple));
TheTriple = Triple(M->getTargetTriple());
} else {
TheTriple = Triple(Triple::normalize(TargetTriple));
}
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple,
Error);
if (!TheTarget) {
errs() << argv[0] << ": " << Error;
return 1;
}
std::string CPUStr = getCPUStr(), FeaturesStr = getFeaturesStr();
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
Options.DisableIntegratedAS = NoIntegratedAssembler;
Options.MCOptions.ShowMCEncoding = ShowMCEncoding;
Options.MCOptions.MCUseDwarfDirectory = EnableDwarfDirectory;
Options.MCOptions.AsmVerbose = AsmVerbose;
std::unique_ptr<TargetMachine> Target(
TheTarget->createTargetMachine(TheTriple.getTriple(), CPUStr, FeaturesStr,
Options, RelocModel, CMModel, OLvl));
assert(Target && "Could not allocate target machine!");
// If we don't have a module then just exit now. We do this down
// here since the CPU/Feature help is underneath the target machine
// creation.
if (SkipModule)
return 0;
assert(M && "Should have exited if we didn't have a module!");
if (FloatABIForCalls != FloatABI::Default)
Options.FloatABIType = FloatABIForCalls;
// Figure out where we are going to send the output.
std::unique_ptr<tool_output_file> Out =
GetOutputStream(TheTarget->getName(), TheTriple.getOS(), argv[0]);
if (!Out) return 1;
// Build up all of the passes that we want to do to the module.
legacy::PassManager PM;
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfoImpl TLII(Triple(M->getTargetTriple()));
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
PM.add(new TargetLibraryInfoWrapperPass(TLII));
// Add the target data from the target machine, if it exists, or the module.
if (const DataLayout *DL = Target->getDataLayout())
M->setDataLayout(*DL);
// Override function attributes based on CPUStr, FeaturesStr, and command line
// flags.
setFunctionAttributes(CPUStr, FeaturesStr, *M);
if (RelaxAll.getNumOccurrences() > 0 &&
FileType != TargetMachine::CGFT_ObjectFile)
errs() << argv[0]
<< ": warning: ignoring -mc-relax-all because filetype != obj";
{
raw_pwrite_stream *OS = &Out->os();
// Manually do the buffering rather than using buffer_ostream,
// so we can memcmp the contents in CompileTwice mode
SmallVector<char, 0> Buffer;
std::unique_ptr<raw_svector_ostream> BOS;
if ((FileType != TargetMachine::CGFT_AssemblyFile &&
!Out->os().supportsSeeking()) ||
CompileTwice) {
BOS = make_unique<raw_svector_ostream>(Buffer);
OS = BOS.get();
}
AnalysisID StartBeforeID = nullptr;
AnalysisID StartAfterID = nullptr;
AnalysisID StopAfterID = nullptr;
const PassRegistry *PR = PassRegistry::getPassRegistry();
if (!RunPass.empty()) {
if (!StartAfter.empty() || !StopAfter.empty()) {
errs() << argv[0] << ": start-after and/or stop-after passes are "
"redundant when run-pass is specified.\n";
return 1;
}
const PassInfo *PI = PR->getPassInfo(RunPass);
if (!PI) {
errs() << argv[0] << ": run-pass pass is not registered.\n";
return 1;
}
StopAfterID = StartBeforeID = PI->getTypeInfo();
} else {
if (!StartAfter.empty()) {
const PassInfo *PI = PR->getPassInfo(StartAfter);
if (!PI) {
errs() << argv[0] << ": start-after pass is not registered.\n";
return 1;
}
StartAfterID = PI->getTypeInfo();
}
if (!StopAfter.empty()) {
const PassInfo *PI = PR->getPassInfo(StopAfter);
if (!PI) {
errs() << argv[0] << ": stop-after pass is not registered.\n";
return 1;
}
StopAfterID = PI->getTypeInfo();
}
}
// Ask the target to add backend passes as necessary.
if (Target->addPassesToEmitFile(PM, *OS, FileType, NoVerify, StartBeforeID,
StartAfterID, StopAfterID, MIR.get())) {
errs() << argv[0] << ": target does not support generation of this"
<< " file type!\n";
return 1;
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// If requested, run the pass manager over the same module again,
// to catch any bugs due to persistent state in the passes. Note that
// opt has the same functionality, so it may be worth abstracting this out
// in the future.
SmallVector<char, 0> CompileTwiceBuffer;
if (CompileTwice) {
std::unique_ptr<Module> M2(llvm::CloneModule(M.get()));
PM.run(*M2);
CompileTwiceBuffer = Buffer;
Buffer.clear();
}
PM.run(*M);
// Compare the two outputs and make sure they're the same
if (CompileTwice) {
if (Buffer.size() != CompileTwiceBuffer.size() ||
(memcmp(Buffer.data(), CompileTwiceBuffer.data(), Buffer.size()) !=
0)) {
errs()
<< "Running the pass manager twice changed the output.\n"
"Writing the result of the second run to the specified output\n"
"To generate the one-run comparison binary, just run without\n"
"the compile-twice option\n";
Out->os() << Buffer;
Out->keep();
return 1;
}
}
if (BOS) {
Out->os() << Buffer;
}
}
// Declare success.
Out->keep();
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llc/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
Analysis
AsmPrinter
CodeGen
Core
IRReader
MC
MIRParser
ScalarOpts
SelectionDAG
Support
Target
)
# Support plugins.
set(LLVM_NO_DEAD_STRIP 1)
add_llvm_tool(llc
llc.cpp
)
export_executable_symbols(llc)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llc/LLVMBuild.txt | ;===- ./tools/llc/LLVMBuild.txt --------------------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llc
parent = Tools
required_libraries = AsmParser BitReader IRReader MIRParser all-targets
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-size/llvm-size.cpp | //===-- llvm-size.cpp - Print the size of each object section -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like traditional Unix "size",
// that is, it prints out the size of each section, and the total size of all
// sections.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#include <system_error>
using namespace llvm;
using namespace object;
enum OutputFormatTy { berkeley, sysv, darwin };
static cl::opt<OutputFormatTy>
OutputFormat("format", cl::desc("Specify output format"),
cl::values(clEnumVal(sysv, "System V format"),
clEnumVal(berkeley, "Berkeley format"),
clEnumVal(darwin, "Darwin -m format"), clEnumValEnd),
cl::init(berkeley));
static cl::opt<OutputFormatTy> OutputFormatShort(
cl::desc("Specify output format"),
cl::values(clEnumValN(sysv, "A", "System V format"),
clEnumValN(berkeley, "B", "Berkeley format"),
clEnumValN(darwin, "m", "Darwin -m format"), clEnumValEnd),
cl::init(berkeley));
static bool berkeleyHeaderPrinted = false;
static bool moreThanOneFile = false;
cl::opt<bool>
DarwinLongFormat("l", cl::desc("When format is darwin, use long format "
"to include addresses and offsets."));
static cl::list<std::string>
ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
cl::ZeroOrMore);
bool ArchAll = false;
enum RadixTy { octal = 8, decimal = 10, hexadecimal = 16 };
static cl::opt<unsigned int>
Radix("-radix", cl::desc("Print size in radix. Only 8, 10, and 16 are valid"),
cl::init(decimal));
static cl::opt<RadixTy>
RadixShort(cl::desc("Print size in radix:"),
cl::values(clEnumValN(octal, "o", "Print size in octal"),
clEnumValN(decimal, "d", "Print size in decimal"),
clEnumValN(hexadecimal, "x", "Print size in hexadecimal"),
clEnumValEnd),
cl::init(decimal));
static cl::list<std::string>
InputFilenames(cl::Positional, cl::desc("<input files>"), cl::ZeroOrMore);
static std::string ToolName;
/// @brief If ec is not success, print the error and return true.
static bool error(std::error_code ec) {
if (!ec)
return false;
outs() << ToolName << ": error reading file: " << ec.message() << ".\n";
outs().flush();
return true;
}
/// @brief Get the length of the string that represents @p num in Radix
/// including the leading 0x or 0 for hexadecimal and octal respectively.
static size_t getNumLengthAsString(uint64_t num) {
APInt conv(64, num);
SmallString<32> result;
conv.toString(result, Radix, false, true);
return result.size();
}
/// @brief Return the printing format for the Radix.
static const char *getRadixFmt(void) {
switch (Radix) {
case octal:
return PRIo64;
case decimal:
return PRIu64;
case hexadecimal:
return PRIx64;
}
return nullptr;
}
/// @brief Print the size of each Mach-O segment and section in @p MachO.
///
/// This is when used when @c OutputFormat is darwin and produces the same
/// output as darwin's size(1) -m output.
static void PrintDarwinSectionSizes(MachOObjectFile *MachO) {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
const char *radix_fmt = getRadixFmt();
if (Radix == hexadecimal)
fmt << "0x";
fmt << "%" << radix_fmt;
uint32_t Filetype = MachO->getHeader().filetype;
uint64_t total = 0;
for (const auto &Load : MachO->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = MachO->getSegment64LoadCommand(Load);
outs() << "Segment " << Seg.segname << ": "
<< format(fmt.str().c_str(), Seg.vmsize);
if (DarwinLongFormat)
outs() << " (vmaddr 0x" << format("%" PRIx64, Seg.vmaddr) << " fileoff "
<< Seg.fileoff << ")";
outs() << "\n";
total += Seg.vmsize;
uint64_t sec_total = 0;
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = MachO->getSection64(Load, J);
if (Filetype == MachO::MH_OBJECT)
outs() << "\tSection (" << format("%.16s", &Sec.segname) << ", "
<< format("%.16s", &Sec.sectname) << "): ";
else
outs() << "\tSection " << format("%.16s", &Sec.sectname) << ": ";
outs() << format(fmt.str().c_str(), Sec.size);
if (DarwinLongFormat)
outs() << " (addr 0x" << format("%" PRIx64, Sec.addr) << " offset "
<< Sec.offset << ")";
outs() << "\n";
sec_total += Sec.size;
}
if (Seg.nsects != 0)
outs() << "\ttotal " << format(fmt.str().c_str(), sec_total) << "\n";
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = MachO->getSegmentLoadCommand(Load);
outs() << "Segment " << Seg.segname << ": "
<< format(fmt.str().c_str(), Seg.vmsize);
if (DarwinLongFormat)
outs() << " (vmaddr 0x" << format("%" PRIx64, Seg.vmaddr) << " fileoff "
<< Seg.fileoff << ")";
outs() << "\n";
total += Seg.vmsize;
uint64_t sec_total = 0;
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = MachO->getSection(Load, J);
if (Filetype == MachO::MH_OBJECT)
outs() << "\tSection (" << format("%.16s", &Sec.segname) << ", "
<< format("%.16s", &Sec.sectname) << "): ";
else
outs() << "\tSection " << format("%.16s", &Sec.sectname) << ": ";
outs() << format(fmt.str().c_str(), Sec.size);
if (DarwinLongFormat)
outs() << " (addr 0x" << format("%" PRIx64, Sec.addr) << " offset "
<< Sec.offset << ")";
outs() << "\n";
sec_total += Sec.size;
}
if (Seg.nsects != 0)
outs() << "\ttotal " << format(fmt.str().c_str(), sec_total) << "\n";
}
}
outs() << "total " << format(fmt.str().c_str(), total) << "\n";
}
/// @brief Print the summary sizes of the standard Mach-O segments in @p MachO.
///
/// This is when used when @c OutputFormat is berkeley with a Mach-O file and
/// produces the same output as darwin's size(1) default output.
static void PrintDarwinSegmentSizes(MachOObjectFile *MachO) {
uint64_t total_text = 0;
uint64_t total_data = 0;
uint64_t total_objc = 0;
uint64_t total_others = 0;
for (const auto &Load : MachO->load_commands()) {
if (Load.C.cmd == MachO::LC_SEGMENT_64) {
MachO::segment_command_64 Seg = MachO->getSegment64LoadCommand(Load);
if (MachO->getHeader().filetype == MachO::MH_OBJECT) {
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section_64 Sec = MachO->getSection64(Load, J);
StringRef SegmentName = StringRef(Sec.segname);
if (SegmentName == "__TEXT")
total_text += Sec.size;
else if (SegmentName == "__DATA")
total_data += Sec.size;
else if (SegmentName == "__OBJC")
total_objc += Sec.size;
else
total_others += Sec.size;
}
} else {
StringRef SegmentName = StringRef(Seg.segname);
if (SegmentName == "__TEXT")
total_text += Seg.vmsize;
else if (SegmentName == "__DATA")
total_data += Seg.vmsize;
else if (SegmentName == "__OBJC")
total_objc += Seg.vmsize;
else
total_others += Seg.vmsize;
}
} else if (Load.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command Seg = MachO->getSegmentLoadCommand(Load);
if (MachO->getHeader().filetype == MachO::MH_OBJECT) {
for (unsigned J = 0; J < Seg.nsects; ++J) {
MachO::section Sec = MachO->getSection(Load, J);
StringRef SegmentName = StringRef(Sec.segname);
if (SegmentName == "__TEXT")
total_text += Sec.size;
else if (SegmentName == "__DATA")
total_data += Sec.size;
else if (SegmentName == "__OBJC")
total_objc += Sec.size;
else
total_others += Sec.size;
}
} else {
StringRef SegmentName = StringRef(Seg.segname);
if (SegmentName == "__TEXT")
total_text += Seg.vmsize;
else if (SegmentName == "__DATA")
total_data += Seg.vmsize;
else if (SegmentName == "__OBJC")
total_objc += Seg.vmsize;
else
total_others += Seg.vmsize;
}
}
}
uint64_t total = total_text + total_data + total_objc + total_others;
if (!berkeleyHeaderPrinted) {
outs() << "__TEXT\t__DATA\t__OBJC\tothers\tdec\thex\n";
berkeleyHeaderPrinted = true;
}
outs() << total_text << "\t" << total_data << "\t" << total_objc << "\t"
<< total_others << "\t" << total << "\t" << format("%" PRIx64, total)
<< "\t";
}
/// @brief Print the size of each section in @p Obj.
///
/// The format used is determined by @c OutputFormat and @c Radix.
static void PrintObjectSectionSizes(ObjectFile *Obj) {
uint64_t total = 0;
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
const char *radix_fmt = getRadixFmt();
// If OutputFormat is darwin and we have a MachOObjectFile print as darwin's
// size(1) -m output, else if OutputFormat is darwin and not a Mach-O object
// let it fall through to OutputFormat berkeley.
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(Obj);
if (OutputFormat == darwin && MachO)
PrintDarwinSectionSizes(MachO);
// If we have a MachOObjectFile and the OutputFormat is berkeley print as
// darwin's default berkeley format for Mach-O files.
else if (MachO && OutputFormat == berkeley)
PrintDarwinSegmentSizes(MachO);
else if (OutputFormat == sysv) {
// Run two passes over all sections. The first gets the lengths needed for
// formatting the output. The second actually does the output.
std::size_t max_name_len = strlen("section");
std::size_t max_size_len = strlen("size");
std::size_t max_addr_len = strlen("addr");
for (const SectionRef &Section : Obj->sections()) {
uint64_t size = Section.getSize();
total += size;
StringRef name;
if (error(Section.getName(name)))
return;
uint64_t addr = Section.getAddress();
max_name_len = std::max(max_name_len, name.size());
max_size_len = std::max(max_size_len, getNumLengthAsString(size));
max_addr_len = std::max(max_addr_len, getNumLengthAsString(addr));
}
// Add extra padding.
max_name_len += 2;
max_size_len += 2;
max_addr_len += 2;
// Setup header format.
fmt << "%-" << max_name_len << "s "
<< "%" << max_size_len << "s "
<< "%" << max_addr_len << "s\n";
// Print header
outs() << format(fmt.str().c_str(), static_cast<const char *>("section"),
static_cast<const char *>("size"),
static_cast<const char *>("addr"));
fmtbuf.clear();
// Setup per section format.
fmt << "%-" << max_name_len << "s "
<< "%#" << max_size_len << radix_fmt << " "
<< "%#" << max_addr_len << radix_fmt << "\n";
// Print each section.
for (const SectionRef &Section : Obj->sections()) {
StringRef name;
if (error(Section.getName(name)))
return;
uint64_t size = Section.getSize();
uint64_t addr = Section.getAddress();
std::string namestr = name;
outs() << format(fmt.str().c_str(), namestr.c_str(), size, addr);
}
// Print total.
fmtbuf.clear();
fmt << "%-" << max_name_len << "s "
<< "%#" << max_size_len << radix_fmt << "\n";
outs() << format(fmt.str().c_str(), static_cast<const char *>("Total"),
total);
} else {
// The Berkeley format does not display individual section sizes. It
// displays the cumulative size for each section type.
uint64_t total_text = 0;
uint64_t total_data = 0;
uint64_t total_bss = 0;
// Make one pass over the section table to calculate sizes.
for (const SectionRef &Section : Obj->sections()) {
uint64_t size = Section.getSize();
bool isText = Section.isText();
bool isData = Section.isData();
bool isBSS = Section.isBSS();
if (isText)
total_text += size;
else if (isData)
total_data += size;
else if (isBSS)
total_bss += size;
}
total = total_text + total_data + total_bss;
if (!berkeleyHeaderPrinted) {
outs() << " text data bss "
<< (Radix == octal ? "oct" : "dec") << " hex filename\n";
berkeleyHeaderPrinted = true;
}
// Print result.
fmt << "%#7" << radix_fmt << " "
<< "%#7" << radix_fmt << " "
<< "%#7" << radix_fmt << " ";
outs() << format(fmt.str().c_str(), total_text, total_data, total_bss);
fmtbuf.clear();
fmt << "%7" << (Radix == octal ? PRIo64 : PRIu64) << " "
<< "%7" PRIx64 " ";
outs() << format(fmt.str().c_str(), total, total);
}
}
/// @brief Checks to see if the @p o ObjectFile is a Mach-O file and if it is
/// and there is a list of architecture flags specified then check to
/// make sure this Mach-O file is one of those architectures or all
/// architectures was specificed. If not then an error is generated and
/// this routine returns false. Else it returns true.
static bool checkMachOAndArchFlags(ObjectFile *o, StringRef file) {
if (isa<MachOObjectFile>(o) && !ArchAll && ArchFlags.size() != 0) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
bool ArchFound = false;
MachO::mach_header H;
MachO::mach_header_64 H_64;
Triple T;
if (MachO->is64Bit()) {
H_64 = MachO->MachOObjectFile::getHeader64();
T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype);
} else {
H = MachO->MachOObjectFile::getHeader();
T = MachOObjectFile::getArch(H.cputype, H.cpusubtype);
}
unsigned i;
for (i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == T.getArchName())
ArchFound = true;
break;
}
if (!ArchFound) {
errs() << ToolName << ": file: " << file
<< " does not contain architecture: " << ArchFlags[i] << ".\n";
return false;
}
}
return true;
}
/// @brief Print the section sizes for @p file. If @p file is an archive, print
/// the section sizes for each archive member.
static void PrintFileSectionSizes(StringRef file) {
// If file is not stdin, check that it exists.
if (file != "-") {
if (!sys::fs::exists(file)) {
errs() << ToolName << ": '" << file << "': "
<< "No such file\n";
return;
}
}
// Attempt to open the binary.
ErrorOr<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
if (std::error_code EC = BinaryOrErr.getError()) {
errs() << ToolName << ": " << file << ": " << EC.message() << ".\n";
return;
}
Binary &Bin = *BinaryOrErr.get().getBinary();
if (Archive *a = dyn_cast<Archive>(&Bin)) {
// This is an archive. Iterate over each member and display its sizes.
for (object::Archive::child_iterator i = a->child_begin(),
e = a->child_end();
i != e; ++i) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
errs() << ToolName << ": " << file << ": " << EC.message() << ".\n";
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (!checkMachOAndArchFlags(o, file))
return;
if (OutputFormat == sysv)
outs() << o->getFileName() << " (ex " << a->getFileName() << "):\n";
else if (MachO && OutputFormat == darwin)
outs() << a->getFileName() << "(" << o->getFileName() << "):\n";
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (MachO)
outs() << a->getFileName() << "(" << o->getFileName() << ")\n";
else
outs() << o->getFileName() << " (ex " << a->getFileName() << ")\n";
}
}
}
} else if (MachOUniversalBinary *UB =
dyn_cast<MachOUniversalBinary>(&Bin)) {
// If we have a list of architecture flags specified dump only those.
if (!ArchAll && ArchFlags.size() != 0) {
// Look for a slice in the universal binary that matches each ArchFlag.
bool ArchFound;
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
ArchFound = false;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (ArchFlags[i] == I->getArchTypeName()) {
ArchFound = true;
ErrorOr<std::unique_ptr<ObjectFile>> UO = I->getAsObjectFile();
if (UO) {
if (ObjectFile *o = dyn_cast<ObjectFile>(&*UO.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " :\n";
else if (MachO && OutputFormat == darwin) {
if (moreThanOneFile || ArchFlags.size() > 1)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << "): \n";
}
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (!MachO || moreThanOneFile || ArchFlags.size() > 1)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << ")";
outs() << "\n";
}
}
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &UA = *AOrErr;
// This is an archive. Iterate over each member and display its
// sizes.
for (object::Archive::child_iterator i = UA->child_begin(),
e = UA->child_end();
i != e; ++i) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
errs() << ToolName << ": " << file << ": " << EC.message()
<< ".\n";
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< "):\n";
else if (MachO && OutputFormat == darwin)
outs() << UA->getFileName() << "(" << o->getFileName()
<< ")"
<< " (for architecture " << I->getArchTypeName()
<< "):\n";
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (MachO) {
outs() << UA->getFileName() << "(" << o->getFileName()
<< ")";
if (ArchFlags.size() > 1)
outs() << " (for architecture " << I->getArchTypeName()
<< ")";
outs() << "\n";
} else
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< ")\n";
}
}
}
}
}
}
if (!ArchFound) {
errs() << ToolName << ": file: " << file
<< " does not contain architecture" << ArchFlags[i] << ".\n";
return;
}
}
return;
}
// No architecture flags were specified so if this contains a slice that
// matches the host architecture dump only that.
if (!ArchAll) {
StringRef HostArchName = MachOObjectFile::getHostArch().getArchName();
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
if (HostArchName == I->getArchTypeName()) {
ErrorOr<std::unique_ptr<ObjectFile>> UO = I->getAsObjectFile();
if (UO) {
if (ObjectFile *o = dyn_cast<ObjectFile>(&*UO.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " :\n";
else if (MachO && OutputFormat == darwin) {
if (moreThanOneFile)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << "):\n";
}
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (!MachO || moreThanOneFile)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << ")";
outs() << "\n";
}
}
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &UA = *AOrErr;
// This is an archive. Iterate over each member and display its
// sizes.
for (object::Archive::child_iterator i = UA->child_begin(),
e = UA->child_end();
i != e; ++i) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
errs() << ToolName << ": " << file << ": " << EC.message()
<< ".\n";
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< "):\n";
else if (MachO && OutputFormat == darwin)
outs() << UA->getFileName() << "(" << o->getFileName() << ")"
<< " (for architecture " << I->getArchTypeName()
<< "):\n";
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (MachO)
outs() << UA->getFileName() << "(" << o->getFileName()
<< ")\n";
else
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< ")\n";
}
}
}
}
return;
}
}
}
// Either all architectures have been specified or none have been specified
// and this does not contain the host architecture so dump all the slices.
bool moreThanOneArch = UB->getNumberOfObjects() > 1;
for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
E = UB->end_objects();
I != E; ++I) {
ErrorOr<std::unique_ptr<ObjectFile>> UO = I->getAsObjectFile();
if (UO) {
if (ObjectFile *o = dyn_cast<ObjectFile>(&*UO.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " :\n";
else if (MachO && OutputFormat == darwin) {
if (moreThanOneFile || moreThanOneArch)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << "):";
outs() << "\n";
}
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (!MachO || moreThanOneFile || moreThanOneArch)
outs() << o->getFileName() << " (for architecture "
<< I->getArchTypeName() << ")";
outs() << "\n";
}
}
} else if (ErrorOr<std::unique_ptr<Archive>> AOrErr =
I->getAsArchive()) {
std::unique_ptr<Archive> &UA = *AOrErr;
// This is an archive. Iterate over each member and display its sizes.
for (object::Archive::child_iterator i = UA->child_begin(),
e = UA->child_end();
i != e; ++i) {
ErrorOr<std::unique_ptr<Binary>> ChildOrErr = i->getAsBinary();
if (std::error_code EC = ChildOrErr.getError()) {
errs() << ToolName << ": " << file << ": " << EC.message() << ".\n";
continue;
}
if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (OutputFormat == sysv)
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< "):\n";
else if (MachO && OutputFormat == darwin)
outs() << UA->getFileName() << "(" << o->getFileName() << ")"
<< " (for architecture " << I->getArchTypeName() << "):\n";
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
if (MachO)
outs() << UA->getFileName() << "(" << o->getFileName() << ")"
<< " (for architecture " << I->getArchTypeName()
<< ")\n";
else
outs() << o->getFileName() << " (ex " << UA->getFileName()
<< ")\n";
}
}
}
}
}
} else if (ObjectFile *o = dyn_cast<ObjectFile>(&Bin)) {
if (!checkMachOAndArchFlags(o, file))
return;
if (OutputFormat == sysv)
outs() << o->getFileName() << " :\n";
PrintObjectSectionSizes(o);
if (OutputFormat == berkeley) {
MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o);
if (!MachO || moreThanOneFile)
outs() << o->getFileName();
outs() << "\n";
}
} else {
errs() << ToolName << ": " << file << ": "
<< "Unrecognized file type.\n";
}
// System V adds an extra newline at the end of each file.
if (OutputFormat == sysv)
outs() << "\n";
}
// HLSL Change: changed calling convention to __cdecl
int __cdecl main(int argc, char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
cl::ParseCommandLineOptions(argc, argv, "llvm object size dumper\n");
ToolName = argv[0];
if (OutputFormatShort.getNumOccurrences())
OutputFormat = static_cast<OutputFormatTy>(OutputFormatShort);
if (RadixShort.getNumOccurrences())
Radix = RadixShort;
for (unsigned i = 0; i < ArchFlags.size(); ++i) {
if (ArchFlags[i] == "all") {
ArchAll = true;
} else {
if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
outs() << ToolName << ": for the -arch option: Unknown architecture "
<< "named '" << ArchFlags[i] << "'";
return 1;
}
}
}
if (InputFilenames.size() == 0)
InputFilenames.push_back("a.out");
moreThanOneFile = InputFilenames.size() > 1;
std::for_each(InputFilenames.begin(), InputFilenames.end(),
PrintFileSectionSizes);
return 0;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-size/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
Object
Support
)
add_llvm_tool(llvm-size
llvm-size.cpp
)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-size/LLVMBuild.txt | ;===- ./tools/llvm-size/LLVMBuild.txt --------------------------*- Conf -*--===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Tool
name = llvm-size
parent = Tools
required_libraries = Object
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/lto/lto.cpp | //===-lto.cpp - LLVM Link Time Optimizer ----------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//
#include "llvm-c/lto.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/LTO/LTOCodeGenerator.h"
#include "llvm/LTO/LTOModule.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetSelect.h"
// extra command-line flags needed for LTOCodeGenerator
static cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init('2'));
static cl::opt<bool>
DisableInline("disable-inlining", cl::init(false),
cl::desc("Do not run the inliner pass"));
static cl::opt<bool>
DisableGVNLoadPRE("disable-gvn-loadpre", cl::init(false),
cl::desc("Do not run the GVN load PRE pass"));
static cl::opt<bool>
DisableLTOVectorization("disable-lto-vectorization", cl::init(false),
cl::desc("Do not run loop or slp vectorization during LTO"));
// Holds most recent error string.
// *** Not thread safe ***
static std::string sLastErrorString;
// Holds the initialization state of the LTO module.
// *** Not thread safe ***
static bool initialized = false;
// Holds the command-line option parsing state of the LTO module.
static bool parsedOptions = false;
// Initialize the configured targets if they have not been initialized.
static void lto_initialize() {
if (!initialized) {
#ifdef LLVM_ON_WIN32
// Dialog box on crash disabling doesn't work across DLL boundaries, so do
// it here.
llvm::sys::DisableSystemDialogsOnCrash();
#endif
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();
InitializeAllDisassemblers();
initialized = true;
}
}
namespace {
// This derived class owns the native object file. This helps implement the
// libLTO API semantics, which require that the code generator owns the object
// file.
struct LibLTOCodeGenerator : LTOCodeGenerator {
LibLTOCodeGenerator() {}
LibLTOCodeGenerator(std::unique_ptr<LLVMContext> Context)
: LTOCodeGenerator(std::move(Context)) {}
std::unique_ptr<MemoryBuffer> NativeObjectFile;
};
}
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(LibLTOCodeGenerator, lto_code_gen_t)
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(LTOModule, lto_module_t)
// Convert the subtarget features into a string to pass to LTOCodeGenerator.
static void lto_add_attrs(lto_code_gen_t cg) {
LTOCodeGenerator *CG = unwrap(cg);
if (MAttrs.size()) {
std::string attrs;
for (unsigned i = 0; i < MAttrs.size(); ++i) {
if (i > 0)
attrs.append(",");
attrs.append(MAttrs[i]);
}
CG->setAttr(attrs.c_str());
}
if (OptLevel < '0' || OptLevel > '3')
report_fatal_error("Optimization level must be between 0 and 3");
CG->setOptLevel(OptLevel - '0');
}
extern const char* lto_get_version() {
return LTOCodeGenerator::getVersionString();
}
const char* lto_get_error_message() {
return sLastErrorString.c_str();
}
bool lto_module_is_object_file(const char* path) {
return LTOModule::isBitcodeFile(path);
}
bool lto_module_is_object_file_for_target(const char* path,
const char* target_triplet_prefix) {
ErrorOr<std::unique_ptr<MemoryBuffer>> Buffer = MemoryBuffer::getFile(path);
if (!Buffer)
return false;
return LTOModule::isBitcodeForTarget(Buffer->get(), target_triplet_prefix);
}
bool lto_module_is_object_file_in_memory(const void* mem, size_t length) {
return LTOModule::isBitcodeFile(mem, length);
}
bool
lto_module_is_object_file_in_memory_for_target(const void* mem,
size_t length,
const char* target_triplet_prefix) {
std::unique_ptr<MemoryBuffer> buffer(LTOModule::makeBuffer(mem, length));
if (!buffer)
return false;
return LTOModule::isBitcodeForTarget(buffer.get(), target_triplet_prefix);
}
lto_module_t lto_module_create(const char* path) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(LTOModule::createFromFile(path, Options, sLastErrorString));
}
lto_module_t lto_module_create_from_fd(int fd, const char *path, size_t size) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(
LTOModule::createFromOpenFile(fd, path, size, Options, sLastErrorString));
}
lto_module_t lto_module_create_from_fd_at_offset(int fd, const char *path,
size_t file_size,
size_t map_size,
off_t offset) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(LTOModule::createFromOpenFileSlice(fd, path, map_size, offset,
Options, sLastErrorString));
}
lto_module_t lto_module_create_from_memory(const void* mem, size_t length) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(LTOModule::createFromBuffer(mem, length, Options, sLastErrorString));
}
lto_module_t lto_module_create_from_memory_with_path(const void* mem,
size_t length,
const char *path) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(
LTOModule::createFromBuffer(mem, length, Options, sLastErrorString, path));
}
lto_module_t lto_module_create_in_local_context(const void *mem, size_t length,
const char *path) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(LTOModule::createInLocalContext(mem, length, Options,
sLastErrorString, path));
}
lto_module_t lto_module_create_in_codegen_context(const void *mem,
size_t length,
const char *path,
lto_code_gen_t cg) {
lto_initialize();
llvm::TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
return wrap(LTOModule::createInContext(mem, length, Options, sLastErrorString,
path, &unwrap(cg)->getContext()));
}
void lto_module_dispose(lto_module_t mod) { delete unwrap(mod); }
const char* lto_module_get_target_triple(lto_module_t mod) {
return unwrap(mod)->getTargetTriple().c_str();
}
void lto_module_set_target_triple(lto_module_t mod, const char *triple) {
return unwrap(mod)->setTargetTriple(triple);
}
unsigned int lto_module_get_num_symbols(lto_module_t mod) {
return unwrap(mod)->getSymbolCount();
}
const char* lto_module_get_symbol_name(lto_module_t mod, unsigned int index) {
return unwrap(mod)->getSymbolName(index);
}
lto_symbol_attributes lto_module_get_symbol_attribute(lto_module_t mod,
unsigned int index) {
return unwrap(mod)->getSymbolAttributes(index);
}
const char* lto_module_get_linkeropts(lto_module_t mod) {
return unwrap(mod)->getLinkerOpts();
}
void lto_codegen_set_diagnostic_handler(lto_code_gen_t cg,
lto_diagnostic_handler_t diag_handler,
void *ctxt) {
unwrap(cg)->setDiagnosticHandler(diag_handler, ctxt);
}
static lto_code_gen_t createCodeGen(bool InLocalContext) {
lto_initialize();
TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
LibLTOCodeGenerator *CodeGen =
InLocalContext ? new LibLTOCodeGenerator(make_unique<LLVMContext>())
: new LibLTOCodeGenerator();
CodeGen->setTargetOptions(Options);
return wrap(CodeGen);
}
lto_code_gen_t lto_codegen_create(void) {
return createCodeGen(/* InLocalContext */ false);
}
lto_code_gen_t lto_codegen_create_in_local_context(void) {
return createCodeGen(/* InLocalContext */ true);
}
void lto_codegen_dispose(lto_code_gen_t cg) { delete unwrap(cg); }
bool lto_codegen_add_module(lto_code_gen_t cg, lto_module_t mod) {
return !unwrap(cg)->addModule(unwrap(mod));
}
void lto_codegen_set_module(lto_code_gen_t cg, lto_module_t mod) {
unwrap(cg)->setModule(unwrap(mod));
}
bool lto_codegen_set_debug_model(lto_code_gen_t cg, lto_debug_model debug) {
unwrap(cg)->setDebugInfo(debug);
return false;
}
bool lto_codegen_set_pic_model(lto_code_gen_t cg, lto_codegen_model model) {
unwrap(cg)->setCodePICModel(model);
return false;
}
void lto_codegen_set_cpu(lto_code_gen_t cg, const char *cpu) {
return unwrap(cg)->setCpu(cpu);
}
void lto_codegen_set_assembler_path(lto_code_gen_t cg, const char *path) {
// In here only for backwards compatibility. We use MC now.
}
void lto_codegen_set_assembler_args(lto_code_gen_t cg, const char **args,
int nargs) {
// In here only for backwards compatibility. We use MC now.
}
void lto_codegen_add_must_preserve_symbol(lto_code_gen_t cg,
const char *symbol) {
unwrap(cg)->addMustPreserveSymbol(symbol);
}
static void maybeParseOptions(lto_code_gen_t cg) {
if (!parsedOptions) {
unwrap(cg)->parseCodeGenDebugOptions();
lto_add_attrs(cg);
parsedOptions = true;
}
}
bool lto_codegen_write_merged_modules(lto_code_gen_t cg, const char *path) {
maybeParseOptions(cg);
return !unwrap(cg)->writeMergedModules(path, sLastErrorString);
}
const void *lto_codegen_compile(lto_code_gen_t cg, size_t *length) {
maybeParseOptions(cg);
LibLTOCodeGenerator *CG = unwrap(cg);
CG->NativeObjectFile = CG->compile(DisableInline, DisableGVNLoadPRE,
DisableLTOVectorization, sLastErrorString);
if (!CG->NativeObjectFile)
return nullptr;
*length = CG->NativeObjectFile->getBufferSize();
return CG->NativeObjectFile->getBufferStart();
}
bool lto_codegen_optimize(lto_code_gen_t cg) {
maybeParseOptions(cg);
return !unwrap(cg)->optimize(DisableInline,
DisableGVNLoadPRE, DisableLTOVectorization,
sLastErrorString);
}
const void *lto_codegen_compile_optimized(lto_code_gen_t cg, size_t *length) {
maybeParseOptions(cg);
LibLTOCodeGenerator *CG = unwrap(cg);
CG->NativeObjectFile = CG->compileOptimized(sLastErrorString);
if (!CG->NativeObjectFile)
return nullptr;
*length = CG->NativeObjectFile->getBufferSize();
return CG->NativeObjectFile->getBufferStart();
}
bool lto_codegen_compile_to_file(lto_code_gen_t cg, const char **name) {
maybeParseOptions(cg);
return !unwrap(cg)->compile_to_file(
name, DisableInline, DisableGVNLoadPRE,
DisableLTOVectorization, sLastErrorString);
}
void lto_codegen_debug_options(lto_code_gen_t cg, const char *opt) {
unwrap(cg)->setCodeGenDebugOptions(opt);
}
unsigned int lto_api_version() { return LTO_API_VERSION; }
void lto_codegen_set_should_internalize(lto_code_gen_t cg,
bool ShouldInternalize) {
unwrap(cg)->setShouldInternalize(ShouldInternalize);
}
void lto_codegen_set_should_embed_uselists(lto_code_gen_t cg,
lto_bool_t ShouldEmbedUselists) {
unwrap(cg)->setShouldEmbedUselists(ShouldEmbedUselists);
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/lto/CMakeLists.txt | set(LLVM_LINK_COMPONENTS
${LLVM_TARGETS_TO_BUILD}
Core
LTO
MC
MCDisassembler
Support
Target
)
set(SOURCES
LTODisassembler.cpp
lto.cpp
)
set(LLVM_EXPORTED_SYMBOL_FILE ${CMAKE_CURRENT_SOURCE_DIR}/lto.exports)
add_llvm_library(LTO SHARED ${SOURCES})
install(FILES ${LLVM_MAIN_INCLUDE_DIR}/llvm-c/lto.h
DESTINATION include/llvm-c)
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/lto/LTODisassembler.cpp | //===-- LTODisassembler.cpp - LTO Disassembler interface ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This function provides utility methods used by clients of libLTO that want
// to use the disassembler.
//
//===----------------------------------------------------------------------===//
#include "llvm-c/lto.h"
#include "llvm/Support/TargetSelect.h"
using namespace llvm;
void lto_initialize_disassembler() {
// Initialize targets and assembly printers/parsers.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/TypeDumper.cpp | //===- TypeDumper.cpp - PDBSymDumper implementation for types *----- C++ *-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "TypeDumper.h"
#include "BuiltinDumper.h"
#include "ClassDefinitionDumper.h"
#include "EnumDumper.h"
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "TypedefDumper.h"
#include "llvm/DebugInfo/PDB/IPDBSession.h"
#include "llvm/DebugInfo/PDB/PDBSymbolExe.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeBuiltin.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeEnum.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeTypedef.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeUDT.h"
using namespace llvm;
TypeDumper::TypeDumper(LinePrinter &P) : PDBSymDumper(true), Printer(P) {}
void TypeDumper::start(const PDBSymbolExe &Exe) {
auto Enums = Exe.findAllChildren<PDBSymbolTypeEnum>();
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Identifier).get() << "Enums";
Printer << ": (" << Enums->getChildCount() << " items)";
Printer.Indent();
while (auto Enum = Enums->getNext())
Enum->dump(*this);
Printer.Unindent();
auto Typedefs = Exe.findAllChildren<PDBSymbolTypeTypedef>();
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Identifier).get() << "Typedefs";
Printer << ": (" << Typedefs->getChildCount() << " items)";
Printer.Indent();
while (auto Typedef = Typedefs->getNext())
Typedef->dump(*this);
Printer.Unindent();
auto Classes = Exe.findAllChildren<PDBSymbolTypeUDT>();
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Identifier).get() << "Classes";
Printer << ": (" << Classes->getChildCount() << " items)";
Printer.Indent();
while (auto Class = Classes->getNext())
Class->dump(*this);
Printer.Unindent();
}
void TypeDumper::dump(const PDBSymbolTypeEnum &Symbol) {
if (Symbol.getUnmodifiedTypeId() != 0)
return;
if (Printer.IsTypeExcluded(Symbol.getName()))
return;
// Dump member enums when dumping their class definition.
if (Symbol.isNested())
return;
Printer.NewLine();
EnumDumper Dumper(Printer);
Dumper.start(Symbol);
}
void TypeDumper::dump(const PDBSymbolTypeTypedef &Symbol) {
if (Printer.IsTypeExcluded(Symbol.getName()))
return;
Printer.NewLine();
TypedefDumper Dumper(Printer);
Dumper.start(Symbol);
}
void TypeDumper::dump(const PDBSymbolTypeUDT &Symbol) {
if (Symbol.getUnmodifiedTypeId() != 0)
return;
if (Printer.IsTypeExcluded(Symbol.getName()))
return;
Printer.NewLine();
if (opts::NoClassDefs) {
WithColor(Printer, PDB_ColorItem::Keyword).get() << "class ";
WithColor(Printer, PDB_ColorItem::Identifier).get() << Symbol.getName();
} else {
ClassDefinitionDumper Dumper(Printer);
Dumper.start(Symbol);
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/TypedefDumper.h | //===- TypedefDumper.h - llvm-pdbdump typedef dumper ---------*- C++ ----*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVMPDBDUMP_TYPEDEFDUMPER_H
#define LLVM_TOOLS_LLVMPDBDUMP_TYPEDEFDUMPER_H
#include "llvm/DebugInfo/PDB/PDBSymDumper.h"
namespace llvm {
class LinePrinter;
class TypedefDumper : public PDBSymDumper {
public:
TypedefDumper(LinePrinter &P);
void start(const PDBSymbolTypeTypedef &Symbol);
void dump(const PDBSymbolTypeArray &Symbol) override;
void dump(const PDBSymbolTypeBuiltin &Symbol) override;
void dump(const PDBSymbolTypeEnum &Symbol) override;
void dump(const PDBSymbolTypeFunctionSig &Symbol) override;
void dump(const PDBSymbolTypePointer &Symbol) override;
void dump(const PDBSymbolTypeUDT &Symbol) override;
private:
LinePrinter &Printer;
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/ClassDefinitionDumper.cpp | //===- ClassDefinitionDumper.cpp --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ClassDefinitionDumper.h"
#include "EnumDumper.h"
#include "FunctionDumper.h"
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "TypedefDumper.h"
#include "VariableDumper.h"
#include "llvm/DebugInfo/PDB/IPDBSession.h"
#include "llvm/DebugInfo/PDB/PDBExtras.h"
#include "llvm/DebugInfo/PDB/PDBSymbolData.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFunc.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeBaseClass.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeEnum.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypePointer.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeTypedef.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeUDT.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeVTable.h"
#include "llvm/Support/Format.h"
using namespace llvm;
ClassDefinitionDumper::ClassDefinitionDumper(LinePrinter &P)
: PDBSymDumper(true), Printer(P) {}
void ClassDefinitionDumper::start(const PDBSymbolTypeUDT &Class) {
std::string Name = Class.getName();
WithColor(Printer, PDB_ColorItem::Keyword).get() << Class.getUdtKind() << " ";
WithColor(Printer, PDB_ColorItem::Type).get() << Class.getName();
auto Bases = Class.findAllChildren<PDBSymbolTypeBaseClass>();
if (Bases->getChildCount() > 0) {
Printer.Indent();
Printer.NewLine();
Printer << ":";
uint32_t BaseIndex = 0;
while (auto Base = Bases->getNext()) {
Printer << " ";
WithColor(Printer, PDB_ColorItem::Keyword).get() << Base->getAccess();
if (Base->isVirtualBaseClass())
WithColor(Printer, PDB_ColorItem::Keyword).get() << " virtual";
WithColor(Printer, PDB_ColorItem::Type).get() << " " << Base->getName();
if (++BaseIndex < Bases->getChildCount()) {
Printer.NewLine();
Printer << ",";
}
}
Printer.Unindent();
}
Printer << " {";
auto Children = Class.findAllChildren();
if (Children->getChildCount() == 0) {
Printer << "}";
return;
}
// Try to dump symbols organized by member access level. Public members
// first, then protected, then private. This might be slow, so it's worth
// reconsidering the value of this if performance of large PDBs is a problem.
// NOTE: Access level of nested types is not recorded in the PDB, so we have
// a special case for them.
SymbolGroupByAccess Groups;
Groups.insert(std::make_pair(0, SymbolGroup()));
Groups.insert(std::make_pair((int)PDB_MemberAccess::Private, SymbolGroup()));
Groups.insert(
std::make_pair((int)PDB_MemberAccess::Protected, SymbolGroup()));
Groups.insert(std::make_pair((int)PDB_MemberAccess::Public, SymbolGroup()));
while (auto Child = Children->getNext()) {
PDB_MemberAccess Access = Child->getRawSymbol().getAccess();
if (isa<PDBSymbolTypeBaseClass>(*Child))
continue;
auto &AccessGroup = Groups.find((int)Access)->second;
if (auto Func = dyn_cast<PDBSymbolFunc>(Child.get())) {
if (Func->isCompilerGenerated() && opts::ExcludeCompilerGenerated)
continue;
if (Func->getLength() == 0 && !Func->isPureVirtual() &&
!Func->isIntroVirtualFunction())
continue;
Child.release();
AccessGroup.Functions.push_back(std::unique_ptr<PDBSymbolFunc>(Func));
} else if (auto Data = dyn_cast<PDBSymbolData>(Child.get())) {
Child.release();
AccessGroup.Data.push_back(std::unique_ptr<PDBSymbolData>(Data));
} else {
AccessGroup.Unknown.push_back(std::move(Child));
}
}
int Count = 0;
Count += dumpAccessGroup((PDB_MemberAccess)0, Groups[0]);
Count += dumpAccessGroup(PDB_MemberAccess::Public,
Groups[(int)PDB_MemberAccess::Public]);
Count += dumpAccessGroup(PDB_MemberAccess::Protected,
Groups[(int)PDB_MemberAccess::Protected]);
Count += dumpAccessGroup(PDB_MemberAccess::Private,
Groups[(int)PDB_MemberAccess::Private]);
if (Count > 0)
Printer.NewLine();
Printer << "}";
}
int ClassDefinitionDumper::dumpAccessGroup(PDB_MemberAccess Access,
const SymbolGroup &Group) {
if (Group.Functions.empty() && Group.Data.empty() && Group.Unknown.empty())
return 0;
int Count = 0;
if (Access == PDB_MemberAccess::Private) {
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Keyword).get() << "private";
Printer << ":";
} else if (Access == PDB_MemberAccess::Protected) {
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Keyword).get() << "protected";
Printer << ":";
} else if (Access == PDB_MemberAccess::Public) {
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Keyword).get() << "public";
Printer << ":";
}
Printer.Indent();
for (auto iter = Group.Functions.begin(), end = Group.Functions.end();
iter != end; ++iter) {
++Count;
(*iter)->dump(*this);
}
for (auto iter = Group.Data.begin(), end = Group.Data.end(); iter != end;
++iter) {
++Count;
(*iter)->dump(*this);
}
for (auto iter = Group.Unknown.begin(), end = Group.Unknown.end();
iter != end; ++iter) {
++Count;
(*iter)->dump(*this);
}
Printer.Unindent();
return Count;
}
void ClassDefinitionDumper::dump(const PDBSymbolTypeBaseClass &Symbol) {}
void ClassDefinitionDumper::dump(const PDBSymbolData &Symbol) {
VariableDumper Dumper(Printer);
Dumper.start(Symbol);
}
void ClassDefinitionDumper::dump(const PDBSymbolFunc &Symbol) {
if (Printer.IsSymbolExcluded(Symbol.getName()))
return;
Printer.NewLine();
FunctionDumper Dumper(Printer);
Dumper.start(Symbol, FunctionDumper::PointerType::None);
}
void ClassDefinitionDumper::dump(const PDBSymbolTypeVTable &Symbol) {}
void ClassDefinitionDumper::dump(const PDBSymbolTypeEnum &Symbol) {
if (Printer.IsTypeExcluded(Symbol.getName()))
return;
Printer.NewLine();
EnumDumper Dumper(Printer);
Dumper.start(Symbol);
}
void ClassDefinitionDumper::dump(const PDBSymbolTypeTypedef &Symbol) {
if (Printer.IsTypeExcluded(Symbol.getName()))
return;
Printer.NewLine();
TypedefDumper Dumper(Printer);
Dumper.start(Symbol);
}
void ClassDefinitionDumper::dump(const PDBSymbolTypeUDT &Symbol) {}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/CompilandDumper.cpp | //===- CompilandDumper.cpp - llvm-pdbdump compiland symbol dumper *- C++ *-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "CompilandDumper.h"
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "llvm/DebugInfo/PDB/IPDBEnumChildren.h"
#include "llvm/DebugInfo/PDB/IPDBSession.h"
#include "llvm/DebugInfo/PDB/PDBExtras.h"
#include "llvm/DebugInfo/PDB/PDBSymbol.h"
#include "llvm/DebugInfo/PDB/PDBSymbolCompiland.h"
#include "llvm/DebugInfo/PDB/PDBSymbolData.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFunc.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFuncDebugEnd.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFuncDebugStart.h"
#include "llvm/DebugInfo/PDB/PDBSymbolLabel.h"
#include "llvm/DebugInfo/PDB/PDBSymbolThunk.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeFunctionSig.h"
#include "llvm/DebugInfo/PDB/PDBSymbolUnknown.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "FunctionDumper.h"
#include <utility>
#include <vector>
using namespace llvm;
CompilandDumper::CompilandDumper(LinePrinter &P)
: PDBSymDumper(true), Printer(P) {}
void CompilandDumper::dump(const PDBSymbolCompilandDetails &Symbol) {}
void CompilandDumper::dump(const PDBSymbolCompilandEnv &Symbol) {}
void CompilandDumper::start(const PDBSymbolCompiland &Symbol, bool Children) {
std::string FullName = Symbol.getName();
if (Printer.IsCompilandExcluded(FullName))
return;
Printer.NewLine();
WithColor(Printer, PDB_ColorItem::Path).get() << FullName;
if (!Children)
return;
auto ChildrenEnum = Symbol.findAllChildren();
Printer.Indent();
while (auto Child = ChildrenEnum->getNext())
Child->dump(*this);
Printer.Unindent();
}
void CompilandDumper::dump(const PDBSymbolData &Symbol) {
if (Printer.IsSymbolExcluded(Symbol.getName()))
return;
Printer.NewLine();
switch (auto LocType = Symbol.getLocationType()) {
case PDB_LocType::Static:
Printer << "data: ";
WithColor(Printer, PDB_ColorItem::Address).get()
<< "[" << format_hex(Symbol.getVirtualAddress(), 10) << "]";
break;
case PDB_LocType::Constant:
Printer << "constant: ";
WithColor(Printer, PDB_ColorItem::LiteralValue).get()
<< "[" << Symbol.getValue() << "]";
break;
default:
Printer << "data(unexpected type=" << LocType << ")";
}
Printer << " ";
WithColor(Printer, PDB_ColorItem::Identifier).get() << Symbol.getName();
}
void CompilandDumper::dump(const PDBSymbolFunc &Symbol) {
if (Symbol.getLength() == 0)
return;
if (Printer.IsSymbolExcluded(Symbol.getName()))
return;
Printer.NewLine();
FunctionDumper Dumper(Printer);
Dumper.start(Symbol, FunctionDumper::PointerType::None);
}
void CompilandDumper::dump(const PDBSymbolLabel &Symbol) {
if (Printer.IsSymbolExcluded(Symbol.getName()))
return;
Printer.NewLine();
Printer << "label ";
WithColor(Printer, PDB_ColorItem::Address).get()
<< "[" << format_hex(Symbol.getVirtualAddress(), 10) << "] ";
WithColor(Printer, PDB_ColorItem::Identifier).get() << Symbol.getName();
}
void CompilandDumper::dump(const PDBSymbolThunk &Symbol) {
if (Printer.IsSymbolExcluded(Symbol.getName()))
return;
Printer.NewLine();
Printer << "thunk ";
PDB_ThunkOrdinal Ordinal = Symbol.getThunkOrdinal();
uint64_t VA = Symbol.getVirtualAddress();
if (Ordinal == PDB_ThunkOrdinal::TrampIncremental) {
uint64_t Target = Symbol.getTargetVirtualAddress();
WithColor(Printer, PDB_ColorItem::Address).get() << format_hex(VA, 10);
Printer << " -> ";
WithColor(Printer, PDB_ColorItem::Address).get() << format_hex(Target, 10);
} else {
WithColor(Printer, PDB_ColorItem::Address).get()
<< "[" << format_hex(VA, 10) << " - "
<< format_hex(VA + Symbol.getLength(), 10) << "]";
}
Printer << " (";
WithColor(Printer, PDB_ColorItem::Register).get() << Ordinal;
Printer << ") ";
std::string Name = Symbol.getName();
if (!Name.empty())
WithColor(Printer, PDB_ColorItem::Identifier).get() << Name;
}
void CompilandDumper::dump(const PDBSymbolTypeTypedef &Symbol) {}
void CompilandDumper::dump(const PDBSymbolUnknown &Symbol) {
Printer.NewLine();
Printer << "unknown (" << Symbol.getSymTag() << ")";
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/FunctionDumper.cpp | //===- FunctionDumper.cpp ------------------------------------ *- C++ *-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "FunctionDumper.h"
#include "BuiltinDumper.h"
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "llvm/DebugInfo/PDB/IPDBSession.h"
#include "llvm/DebugInfo/PDB/PDBSymbolData.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFunc.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFuncDebugEnd.h"
#include "llvm/DebugInfo/PDB/PDBSymbolFuncDebugStart.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeArray.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeEnum.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeFunctionArg.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeFunctionSig.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypePointer.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeTypedef.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeUDT.h"
#include "llvm/Support/Format.h"
using namespace llvm;
namespace {
template <class T>
void dumpClassParentWithScopeOperator(const T &Symbol, LinePrinter &Printer,
llvm::FunctionDumper &Dumper) {
uint32_t ClassParentId = Symbol.getClassParentId();
auto ClassParent =
Symbol.getSession().template getConcreteSymbolById<PDBSymbolTypeUDT>(
ClassParentId);
if (!ClassParent)
return;
WithColor(Printer, PDB_ColorItem::Type).get() << ClassParent->getName();
Printer << "::";
}
}
FunctionDumper::FunctionDumper(LinePrinter &P)
: PDBSymDumper(true), Printer(P) {}
void FunctionDumper::start(const PDBSymbolTypeFunctionSig &Symbol,
const char *Name, PointerType Pointer) {
auto ReturnType = Symbol.getReturnType();
ReturnType->dump(*this);
Printer << " ";
uint32_t ClassParentId = Symbol.getClassParentId();
auto ClassParent =
Symbol.getSession().getConcreteSymbolById<PDBSymbolTypeUDT>(
ClassParentId);
PDB_CallingConv CC = Symbol.getCallingConvention();
bool ShouldDumpCallingConvention = true;
if ((ClassParent && CC == PDB_CallingConv::Thiscall) ||
(!ClassParent && CC == PDB_CallingConv::NearStdcall)) {
ShouldDumpCallingConvention = false;
}
if (Pointer == PointerType::None) {
if (ShouldDumpCallingConvention)
WithColor(Printer, PDB_ColorItem::Keyword).get() << CC << " ";
if (ClassParent) {
Printer << "(";
WithColor(Printer, PDB_ColorItem::Identifier).get()
<< ClassParent->getName();
Printer << "::)";
}
} else {
Printer << "(";
if (ShouldDumpCallingConvention)
WithColor(Printer, PDB_ColorItem::Keyword).get() << CC << " ";
if (ClassParent) {
WithColor(Printer, PDB_ColorItem::Identifier).get()
<< ClassParent->getName();
Printer << "::";
}
if (Pointer == PointerType::Reference)
Printer << "&";
else
Printer << "*";
if (Name)
WithColor(Printer, PDB_ColorItem::Identifier).get() << Name;
Printer << ")";
}
Printer << "(";
if (auto ChildEnum = Symbol.getArguments()) {
uint32_t Index = 0;
while (auto Arg = ChildEnum->getNext()) {
Arg->dump(*this);
if (++Index < ChildEnum->getChildCount())
Printer << ", ";
}
}
Printer << ")";
if (Symbol.isConstType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << " const";
if (Symbol.isVolatileType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << " volatile";
}
void FunctionDumper::start(const PDBSymbolFunc &Symbol, PointerType Pointer) {
uint64_t FuncStart = Symbol.getVirtualAddress();
uint64_t FuncEnd = FuncStart + Symbol.getLength();
Printer << "func [";
WithColor(Printer, PDB_ColorItem::Address).get() << format_hex(FuncStart, 10);
if (auto DebugStart = Symbol.findOneChild<PDBSymbolFuncDebugStart>()) {
uint64_t Prologue = DebugStart->getVirtualAddress() - FuncStart;
WithColor(Printer, PDB_ColorItem::Offset).get() << "+" << Prologue;
}
Printer << " - ";
WithColor(Printer, PDB_ColorItem::Address).get() << format_hex(FuncEnd, 10);
if (auto DebugEnd = Symbol.findOneChild<PDBSymbolFuncDebugEnd>()) {
uint64_t Epilogue = FuncEnd - DebugEnd->getVirtualAddress();
WithColor(Printer, PDB_ColorItem::Offset).get() << "-" << Epilogue;
}
Printer << "] (";
if (Symbol.hasFramePointer()) {
WithColor(Printer, PDB_ColorItem::Register).get()
<< Symbol.getLocalBasePointerRegisterId();
} else {
WithColor(Printer, PDB_ColorItem::Register).get() << "FPO";
}
Printer << ") ";
if (Symbol.isVirtual() || Symbol.isPureVirtual())
WithColor(Printer, PDB_ColorItem::Keyword).get() << "virtual ";
auto Signature = Symbol.getSignature();
if (!Signature) {
WithColor(Printer, PDB_ColorItem::Identifier).get() << Symbol.getName();
if (Pointer == PointerType::Pointer)
Printer << "*";
else if (Pointer == FunctionDumper::PointerType::Reference)
Printer << "&";
return;
}
auto ReturnType = Signature->getReturnType();
ReturnType->dump(*this);
Printer << " ";
auto ClassParent = Symbol.getClassParent();
PDB_CallingConv CC = Signature->getCallingConvention();
if (Pointer != FunctionDumper::PointerType::None)
Printer << "(";
if ((ClassParent && CC != PDB_CallingConv::Thiscall) ||
(!ClassParent && CC != PDB_CallingConv::NearStdcall)) {
WithColor(Printer, PDB_ColorItem::Keyword).get()
<< Signature->getCallingConvention() << " ";
}
WithColor(Printer, PDB_ColorItem::Identifier).get() << Symbol.getName();
if (Pointer != FunctionDumper::PointerType::None) {
if (Pointer == PointerType::Pointer)
Printer << "*";
else if (Pointer == FunctionDumper::PointerType::Reference)
Printer << "&";
Printer << ")";
}
Printer << "(";
if (auto Arguments = Symbol.getArguments()) {
uint32_t Index = 0;
while (auto Arg = Arguments->getNext()) {
auto ArgType = Arg->getType();
ArgType->dump(*this);
WithColor(Printer, PDB_ColorItem::Identifier).get() << " "
<< Arg->getName();
if (++Index < Arguments->getChildCount())
Printer << ", ";
}
}
Printer << ")";
if (Symbol.isConstType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << " const";
if (Symbol.isVolatileType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << " volatile";
if (Symbol.isPureVirtual())
Printer << " = 0";
}
void FunctionDumper::dump(const PDBSymbolTypeArray &Symbol) {
uint32_t ElementTypeId = Symbol.getTypeId();
auto ElementType = Symbol.getSession().getSymbolById(ElementTypeId);
if (!ElementType)
return;
ElementType->dump(*this);
Printer << "[";
WithColor(Printer, PDB_ColorItem::LiteralValue).get() << Symbol.getLength();
Printer << "]";
}
void FunctionDumper::dump(const PDBSymbolTypeBuiltin &Symbol) {
BuiltinDumper Dumper(Printer);
Dumper.start(Symbol);
}
void FunctionDumper::dump(const PDBSymbolTypeEnum &Symbol) {
dumpClassParentWithScopeOperator(Symbol, Printer, *this);
WithColor(Printer, PDB_ColorItem::Type).get() << Symbol.getName();
}
void FunctionDumper::dump(const PDBSymbolTypeFunctionArg &Symbol) {
// PDBSymbolTypeFunctionArg is just a shim over the real argument. Just drill
// through to the real thing and dump it.
uint32_t TypeId = Symbol.getTypeId();
auto Type = Symbol.getSession().getSymbolById(TypeId);
if (!Type)
return;
Type->dump(*this);
}
void FunctionDumper::dump(const PDBSymbolTypeTypedef &Symbol) {
dumpClassParentWithScopeOperator(Symbol, Printer, *this);
WithColor(Printer, PDB_ColorItem::Type).get() << Symbol.getName();
}
void FunctionDumper::dump(const PDBSymbolTypePointer &Symbol) {
uint32_t PointeeId = Symbol.getTypeId();
auto PointeeType = Symbol.getSession().getSymbolById(PointeeId);
if (!PointeeType)
return;
if (auto FuncSig = dyn_cast<PDBSymbolTypeFunctionSig>(PointeeType.get())) {
FunctionDumper NestedDumper(Printer);
PointerType Pointer =
Symbol.isReference() ? PointerType::Reference : PointerType::Pointer;
NestedDumper.start(*FuncSig, nullptr, Pointer);
} else {
if (Symbol.isConstType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << "const ";
if (Symbol.isVolatileType())
WithColor(Printer, PDB_ColorItem::Keyword).get() << "volatile ";
PointeeType->dump(*this);
Printer << (Symbol.isReference() ? "&" : "*");
}
}
void FunctionDumper::dump(const PDBSymbolTypeUDT &Symbol) {
WithColor(Printer, PDB_ColorItem::Type).get() << Symbol.getName();
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/ExternalSymbolDumper.cpp | //===- ExternalSymbolDumper.cpp -------------------------------- *- C++ *-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ExternalSymbolDumper.h"
#include "LinePrinter.h"
#include "llvm/DebugInfo/PDB/PDBSymbolExe.h"
#include "llvm/DebugInfo/PDB/PDBSymbolPublicSymbol.h"
#include "llvm/Support/Format.h"
using namespace llvm;
ExternalSymbolDumper::ExternalSymbolDumper(LinePrinter &P)
: PDBSymDumper(true), Printer(P) {}
void ExternalSymbolDumper::start(const PDBSymbolExe &Symbol) {
auto Vars = Symbol.findAllChildren<PDBSymbolPublicSymbol>();
while (auto Var = Vars->getNext())
Var->dump(*this);
}
void ExternalSymbolDumper::dump(const PDBSymbolPublicSymbol &Symbol) {
std::string LinkageName = Symbol.getName();
if (Printer.IsSymbolExcluded(LinkageName))
return;
Printer.NewLine();
uint64_t Addr = Symbol.getVirtualAddress();
Printer << "[";
WithColor(Printer, PDB_ColorItem::Address).get() << format_hex(Addr, 10);
Printer << "] ";
WithColor(Printer, PDB_ColorItem::Identifier).get() << LinkageName;
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/FunctionDumper.h | //===- FunctionDumper.h --------------------------------------- *- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVMPDBDUMP_FUNCTIONDUMPER_H
#define LLVM_TOOLS_LLVMPDBDUMP_FUNCTIONDUMPER_H
#include "llvm/DebugInfo/PDB/PDBSymDumper.h"
namespace llvm {
class LinePrinter;
class FunctionDumper : public PDBSymDumper {
public:
FunctionDumper(LinePrinter &P);
enum class PointerType { None, Pointer, Reference };
void start(const PDBSymbolTypeFunctionSig &Symbol, const char *Name,
PointerType Pointer);
void start(const PDBSymbolFunc &Symbol, PointerType Pointer);
void dump(const PDBSymbolTypeArray &Symbol) override;
void dump(const PDBSymbolTypeBuiltin &Symbol) override;
void dump(const PDBSymbolTypeEnum &Symbol) override;
void dump(const PDBSymbolTypeFunctionArg &Symbol) override;
void dump(const PDBSymbolTypePointer &Symbol) override;
void dump(const PDBSymbolTypeTypedef &Symbol) override;
void dump(const PDBSymbolTypeUDT &Symbol) override;
private:
LinePrinter &Printer;
};
}
#endif
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/llvm-pdbdump.h | //===- llvm-pdbdump.h ----------------------------------------- *- C++ --*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVMPDBDUMP_LLVMPDBDUMP_H
#define LLVM_TOOLS_LLVMPDBDUMP_LLVMPDBDUMP_H
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
namespace opts {
extern llvm::cl::opt<bool> Compilands;
extern llvm::cl::opt<bool> Symbols;
extern llvm::cl::opt<bool> Globals;
extern llvm::cl::opt<bool> Types;
extern llvm::cl::opt<bool> All;
extern llvm::cl::opt<bool> ExcludeCompilerGenerated;
extern llvm::cl::opt<bool> NoClassDefs;
extern llvm::cl::opt<bool> NoEnumDefs;
extern llvm::cl::list<std::string> ExcludeTypes;
extern llvm::cl::list<std::string> ExcludeSymbols;
extern llvm::cl::list<std::string> ExcludeCompilands;
}
#endif |
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/LinePrinter.cpp | //===- LinePrinter.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "llvm/Support/Regex.h"
#include <algorithm>
using namespace llvm;
LinePrinter::LinePrinter(int Indent, llvm::raw_ostream &Stream)
: OS(Stream), IndentSpaces(Indent), CurrentIndent(0) {
SetFilters(TypeFilters, opts::ExcludeTypes.begin(), opts::ExcludeTypes.end());
SetFilters(SymbolFilters, opts::ExcludeSymbols.begin(),
opts::ExcludeSymbols.end());
SetFilters(CompilandFilters, opts::ExcludeCompilands.begin(),
opts::ExcludeCompilands.end());
}
void LinePrinter::Indent() { CurrentIndent += IndentSpaces; }
void LinePrinter::Unindent() {
CurrentIndent = std::max(0, CurrentIndent - IndentSpaces);
}
void LinePrinter::NewLine() {
OS << "\n";
OS.indent(CurrentIndent);
}
bool LinePrinter::IsTypeExcluded(llvm::StringRef TypeName) {
if (TypeName.empty())
return false;
for (auto &Expr : TypeFilters) {
if (Expr.match(TypeName))
return true;
}
return false;
}
bool LinePrinter::IsSymbolExcluded(llvm::StringRef SymbolName) {
if (SymbolName.empty())
return false;
for (auto &Expr : SymbolFilters) {
if (Expr.match(SymbolName))
return true;
}
return false;
}
bool LinePrinter::IsCompilandExcluded(llvm::StringRef CompilandName) {
if (CompilandName.empty())
return false;
for (auto &Expr : CompilandFilters) {
if (Expr.match(CompilandName))
return true;
}
return false;
}
WithColor::WithColor(LinePrinter &P, PDB_ColorItem C) : OS(P.OS) {
if (C == PDB_ColorItem::None)
OS.resetColor();
else {
raw_ostream::Colors Color;
bool Bold;
translateColor(C, Color, Bold);
OS.changeColor(Color, Bold);
}
}
WithColor::~WithColor() { OS.resetColor(); }
void WithColor::translateColor(PDB_ColorItem C, raw_ostream::Colors &Color,
bool &Bold) const {
switch (C) {
case PDB_ColorItem::Address:
Color = raw_ostream::YELLOW;
Bold = true;
return;
case PDB_ColorItem::Keyword:
Color = raw_ostream::MAGENTA;
Bold = true;
return;
case PDB_ColorItem::Register:
case PDB_ColorItem::Offset:
Color = raw_ostream::YELLOW;
Bold = false;
return;
case PDB_ColorItem::Type:
Color = raw_ostream::CYAN;
Bold = true;
return;
case PDB_ColorItem::Identifier:
Color = raw_ostream::CYAN;
Bold = false;
return;
case PDB_ColorItem::Path:
Color = raw_ostream::CYAN;
Bold = false;
return;
case PDB_ColorItem::SectionHeader:
Color = raw_ostream::RED;
Bold = true;
return;
case PDB_ColorItem::LiteralValue:
Color = raw_ostream::GREEN;
Bold = true;
default:
return;
}
}
|
0 | repos/DirectXShaderCompiler/tools | repos/DirectXShaderCompiler/tools/llvm-pdbdump/BuiltinDumper.cpp | //===- BuiltinDumper.cpp ---------------------------------------- *- C++ *-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "BuiltinDumper.h"
#include "LinePrinter.h"
#include "llvm-pdbdump.h"
#include "llvm/DebugInfo/PDB/PDBSymbolTypeBuiltin.h"
using namespace llvm;
BuiltinDumper::BuiltinDumper(LinePrinter &P)
: PDBSymDumper(false), Printer(P) {}
void BuiltinDumper::start(const PDBSymbolTypeBuiltin &Symbol) {
PDB_BuiltinType Type = Symbol.getBuiltinType();
switch (Type) {
case PDB_BuiltinType::Float:
if (Symbol.getLength() == 4)
WithColor(Printer, PDB_ColorItem::Type).get() << "float";
else
WithColor(Printer, PDB_ColorItem::Type).get() << "double";
break;
case PDB_BuiltinType::UInt:
WithColor(Printer, PDB_ColorItem::Type).get() << "unsigned";
if (Symbol.getLength() == 8)
WithColor(Printer, PDB_ColorItem::Type).get() << " __int64";
break;
case PDB_BuiltinType::Int:
if (Symbol.getLength() == 4)
WithColor(Printer, PDB_ColorItem::Type).get() << "int";
else
WithColor(Printer, PDB_ColorItem::Type).get() << "__int64";
break;
case PDB_BuiltinType::Char:
WithColor(Printer, PDB_ColorItem::Type).get() << "char";
break;
case PDB_BuiltinType::WCharT:
WithColor(Printer, PDB_ColorItem::Type).get() << "wchar_t";
break;
case PDB_BuiltinType::Void:
WithColor(Printer, PDB_ColorItem::Type).get() << "void";
break;
case PDB_BuiltinType::Long:
WithColor(Printer, PDB_ColorItem::Type).get() << "long";
break;
case PDB_BuiltinType::ULong:
WithColor(Printer, PDB_ColorItem::Type).get() << "unsigned long";
break;
case PDB_BuiltinType::Bool:
WithColor(Printer, PDB_ColorItem::Type).get() << "bool";
break;
case PDB_BuiltinType::Currency:
WithColor(Printer, PDB_ColorItem::Type).get() << "CURRENCY";
break;
case PDB_BuiltinType::Date:
WithColor(Printer, PDB_ColorItem::Type).get() << "DATE";
break;
case PDB_BuiltinType::Variant:
WithColor(Printer, PDB_ColorItem::Type).get() << "VARIANT";
break;
case PDB_BuiltinType::Complex:
WithColor(Printer, PDB_ColorItem::Type).get() << "complex";
break;
case PDB_BuiltinType::Bitfield:
WithColor(Printer, PDB_ColorItem::Type).get() << "bitfield";
break;
case PDB_BuiltinType::BSTR:
WithColor(Printer, PDB_ColorItem::Type).get() << "BSTR";
break;
case PDB_BuiltinType::HResult:
WithColor(Printer, PDB_ColorItem::Type).get() << "HRESULT";
break;
case PDB_BuiltinType::BCD:
WithColor(Printer, PDB_ColorItem::Type).get() << "HRESULT";
break;
default:
WithColor(Printer, PDB_ColorItem::Type).get() << "void";
break;
}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.