Unnamed: 0
int64
0
0
repo_id
stringlengths
5
186
file_path
stringlengths
15
223
content
stringlengths
1
32.8M
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenSchedule.cpp
//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate the machine model as described in // the target description. // //===----------------------------------------------------------------------===// #include "CodeGenSchedule.h" #include "CodeGenTarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Regex.h" #include "llvm/TableGen/Error.h" using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" #ifndef NDEBUG static void dumpIdxVec(const IdxVec &V) { for (unsigned i = 0, e = V.size(); i < e; ++i) { dbgs() << V[i] << ", "; } } static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { for (unsigned i = 0, e = V.size(); i < e; ++i) { dbgs() << V[i] << ", "; } } #endif namespace { // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. struct InstrsOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); } }; // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. // // TODO: Since this is a prefix match, perform a binary search over the // instruction names using lower_bound. Note that the predefined instrs must be // scanned linearly first. However, this is only safe if the regex pattern has // no top-level bars. The DAG already has a list of patterns, so there's no // reason to use top-level bars, but we need a way to verify they don't exist // before implementing the optimization. struct InstRegexOp : public SetTheory::Operator { const CodeGenTarget &Target; InstRegexOp(const CodeGenTarget &t): Target(t) {} void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { SmallVector<Regex, 4> RegexList; for (DagInit::const_arg_iterator AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { StringInit *SI = dyn_cast<StringInit>(*AI); if (!SI) PrintFatalError(Loc, "instregex requires pattern string: " + Expr->getAsString()); std::string pat = SI->getValue(); // Implement a python-style prefix match. if (pat[0] != '^') { pat.insert(0, "^("); pat.insert(pat.end(), ')'); } RegexList.push_back(Regex(pat)); } for (const CodeGenInstruction *Inst : Target.instructions()) { for (auto &R : RegexList) { if (R.match(Inst->TheDef->getName())) Elts.insert(Inst->TheDef); } } } }; } // end anonymous namespace /// CodeGenModels ctor interprets machine model records and populates maps. CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, const CodeGenTarget &TGT): Records(RK), Target(TGT) { Sets.addFieldExpander("InstRW", "Instrs"); // Allow Set evaluation to recognize the dags used in InstRW records: // (instrs Op1, Op1...) Sets.addOperator("instrs", llvm::make_unique<InstrsOp>()); Sets.addOperator("instregex", llvm::make_unique<InstRegexOp>(Target)); // Instantiate a CodeGenProcModel for each SchedMachineModel with the values // that are explicitly referenced in tablegen records. Resources associated // with each processor will be derived later. Populate ProcModelMap with the // CodeGenProcModel instances. collectProcModels(); // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly // defined, and populate SchedReads and SchedWrites vectors. Implicit // SchedReadWrites that represent sequences derived from expanded variant will // be inferred later. collectSchedRW(); // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly // required by an instruction definition, and populate SchedClassIdxMap. Set // NumItineraryClasses to the number of explicit itinerary classes referenced // by instructions. Set NumInstrSchedClasses to the number of itinerary // classes plus any classes implied by instructions that derive from class // Sched and provide SchedRW list. This does not infer any new classes from // SchedVariant. collectSchedClasses(); // Find instruction itineraries for each processor. Sort and populate // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires // all itinerary classes to be discovered. collectProcItins(); // Find ItinRW records for each processor and itinerary class. // (For per-operand resources mapped to itinerary classes). collectProcItinRW(); // Infer new SchedClasses from SchedVariant. inferSchedClasses(); // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and // ProcResourceDefs. collectProcResources(); } /// Gather all processor models. void CodeGenSchedModels::collectProcModels() { RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); // Reserve space because we can. Reallocation would be ok. ProcModels.reserve(ProcRecords.size()+1); // Use idx=0 for NoModel/NoItineraries. Record *NoModelDef = Records.getDef("NoSchedModel"); Record *NoItinsDef = Records.getDef("NoItineraries"); ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef); ProcModelMap[NoModelDef] = 0; // For each processor, find a unique machine model. for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) addProcModel(ProcRecords[i]); } /// Get a unique processor model based on the defined MachineModel and /// ProcessorItineraries. void CodeGenSchedModels::addProcModel(Record *ProcDef) { Record *ModelKey = getModelOrItinDef(ProcDef); if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) return; std::string Name = ModelKey->getName(); if (ModelKey->isSubClassOf("SchedMachineModel")) { Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef); } else { // An itinerary is defined without a machine model. Infer a new model. if (!ModelKey->getValueAsListOfDefs("IID").empty()) Name = Name + "Model"; ProcModels.emplace_back(ProcModels.size(), Name, ProcDef->getValueAsDef("SchedModel"), ModelKey); } DEBUG(ProcModels.back().dump()); } // Recursively find all reachable SchedReadWrite records. static void scanSchedRW(Record *RWDef, RecVec &RWDefs, SmallPtrSet<Record*, 16> &RWSet) { if (!RWSet.insert(RWDef).second) return; RWDefs.push_back(RWDef); // Reads don't current have sequence records, but it can be added later. if (RWDef->isSubClassOf("WriteSequence")) { RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) scanSchedRW(*I, RWDefs, RWSet); } else if (RWDef->isSubClassOf("SchedVariant")) { // Visit each variant (guarded by a different predicate). RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { // Visit each RW in the sequence selected by the current variant. RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) scanSchedRW(*I, RWDefs, RWSet); } } } // Collect and sort all SchedReadWrites reachable via tablegen records. // More may be inferred later when inferring new SchedClasses from variants. void CodeGenSchedModels::collectSchedRW() { // Reserve idx=0 for invalid writes/reads. SchedWrites.resize(1); SchedReads.resize(1); SmallPtrSet<Record*, 16> RWSet; // Find all SchedReadWrites referenced by instruction defs. RecVec SWDefs, SRDefs; for (const CodeGenInstruction *Inst : Target.instructions()) { Record *SchedDef = Inst->TheDef; if (SchedDef->isValueUnset("SchedRW")) continue; RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by InstRW. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { // For all OperandReadWrites. RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by ItinRW. RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { // For all OperandReadWrites. RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted // for the loop below that initializes Alias vectors. RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); if (MatchDef->isSubClassOf("SchedWrite")) { if (!AliasDef->isSubClassOf("SchedWrite")) PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); scanSchedRW(AliasDef, SWDefs, RWSet); } else { assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); if (!AliasDef->isSubClassOf("SchedRead")) PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); scanSchedRW(AliasDef, SRDefs, RWSet); } } // Sort and add the SchedReadWrites directly referenced by instructions or // itinerary resources. Index reads and writes in separate domains. std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); SchedWrites.emplace_back(SchedWrites.size(), *SWI); } std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); SchedReads.emplace_back(SchedReads.size(), *SRI); } // Initialize WriteSequence vectors. for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), WE = SchedWrites.end(); WI != WE; ++WI) { if (!WI->IsSequence) continue; findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, /*IsRead=*/false); } // Initialize Aliases vectors. for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); getSchedRW(AliasDef).IsAlias = true; Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); CodeGenSchedRW &RW = getSchedRW(MatchDef); if (RW.IsAlias) PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); RW.Aliases.push_back(*AI); } DEBUG( for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { dbgs() << WIdx << ": "; SchedWrites[WIdx].dump(); dbgs() << '\n'; } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { dbgs() << RIdx << ": "; SchedReads[RIdx].dump(); dbgs() << '\n'; } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { const std::string &Name = (*RI)->getName(); if (Name != "NoWrite" && Name != "ReadDefault") dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; } }); } /// Compute a SchedWrite name from a sequence of writes. std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { std::string Name("("); for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { if (I != Seq.begin()) Name += '_'; Name += getSchedRW(*I, IsRead).Name; } Name += ')'; return Name; } unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, unsigned After) const { const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; assert(After < RWVec.size() && "start position out of bounds"); for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, E = RWVec.end(); I != E; ++I) { if (I->TheDef == Def) return I - RWVec.begin(); } return 0; } bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { Record *ReadDef = SchedReads[i].TheDef; if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) continue; RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) != ValidWrites.end()) { return true; } } return false; } namespace llvm { void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, RecVec &ReadDefs) { for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) WriteDefs.push_back(*RWI); else { assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); ReadDefs.push_back(*RWI); } } } } // namespace llvm // Split the SchedReadWrites defs and call findRWs for each list. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &Writes, IdxVec &Reads) const { RecVec WriteDefs; RecVec ReadDefs; splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); findRWs(WriteDefs, Writes, false); findRWs(ReadDefs, Reads, true); } // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, bool IsRead) const { for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { unsigned Idx = getSchedRWIdx(*RI, IsRead); assert(Idx && "failed to collect SchedReadWrite"); RWs.push_back(Idx); } } void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, bool IsRead) const { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (!SchedRW.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; for (int i = 0; i < Repeat; ++i) { for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); I != E; ++I) { expandRWSequence(*I, RWSeq, IsRead); } } } // Expand a SchedWrite as a sequence following any aliases that coincide with // the given processor model. void CodeGenSchedModels::expandRWSeqForProc( unsigned RWIdx, IdxVec &RWSeq, bool IsRead, const CodeGenProcModel &ProcModel) const { const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); Record *AliasDef = nullptr; for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); if ((*AI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); if (&getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef) { expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), RWSeq, IsRead,ProcModel); return; } if (!SchedWrite.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; for (int i = 0; i < Repeat; ++i) { for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); I != E; ++I) { expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); } } } // Find the existing SchedWrite that models this sequence of writes. unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, bool IsRead) { std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); I != E; ++I) { if (I->Sequence == Seq) return I - RWVec.begin(); } // Index zero reserved for invalid RW. return 0; } /// Add this ReadWrite if it doesn't already exist. unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, bool IsRead) { assert(!Seq.empty() && "cannot insert empty sequence"); if (Seq.size() == 1) return Seq.back(); unsigned Idx = findRWForSequence(Seq, IsRead); if (Idx) return Idx; unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); if (IsRead) SchedReads.push_back(SchedRW); else SchedWrites.push_back(SchedRW); return RWIdx; } /// Visit all the instruction definitions for this target to gather and /// enumerate the itinerary classes. These are the explicitly specified /// SchedClasses. More SchedClasses may be inferred. void CodeGenSchedModels::collectSchedClasses() { // NoItinerary is always the first class at Idx=0 SchedClasses.resize(1); SchedClasses.back().Index = 0; SchedClasses.back().Name = "NoInstrModel"; SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); SchedClasses.back().ProcIndices.push_back(0); // Create a SchedClass for each unique combination of itinerary class and // SchedRW list. for (const CodeGenInstruction *Inst : Target.instructions()) { Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); IdxVec Writes, Reads; if (!Inst->TheDef->isValueUnset("SchedRW")) findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); // ProcIdx == 0 indicates the class applies to all processors. IdxVec ProcIndices(1, 0); unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); InstrClassMap[Inst->TheDef] = SCIdx; } // Create classes for InstRW defs. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) createInstRWClass(*OI); NumInstrSchedClasses = SchedClasses.size(); bool EnableDump = false; DEBUG(EnableDump = true); if (!EnableDump) return; for (const CodeGenInstruction *Inst : Target.instructions()) { std::string InstName = Inst->TheDef->getName(); unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); if (!SCIdx) { dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; continue; } CodeGenSchedClass &SC = getSchedClass(SCIdx); if (SC.ProcIndices[0] != 0) PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " "must not be subtarget specific."); IdxVec ProcIndices; if (SC.ItinClassDef->getName() != "NoItinerary") { ProcIndices.push_back(0); dbgs() << "Itinerary for " << InstName << ": " << SC.ItinClassDef->getName() << '\n'; } if (!SC.Writes.empty()) { ProcIndices.push_back(0); dbgs() << "SchedRW machine model for " << InstName; for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) dbgs() << " " << SchedWrites[*WI].Name; for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) dbgs() << " " << SchedReads[*RI].Name; dbgs() << '\n'; } const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { const CodeGenProcModel &ProcModel = getProcModel((*RWI)->getValueAsDef("SchedModel")); ProcIndices.push_back(ProcModel.Index); dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; IdxVec Writes; IdxVec Reads; findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) dbgs() << " " << SchedWrites[*WI].Name; for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) dbgs() << " " << SchedReads[*RI].Name; dbgs() << '\n'; } for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), PE = ProcModels.end(); PI != PE; ++PI) { if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) dbgs() << "No machine model for " << Inst->TheDef->getName() << " on processor " << PI->ModelName << '\n'; } } } /// Find an SchedClass that has been inferred from a per-operand list of /// SchedWrites and SchedReads. unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, const IdxVec &Writes, const IdxVec &Reads) const { for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { if (I->ItinClassDef == ItinClassDef && I->Writes == Writes && I->Reads == Reads) { return I - schedClassBegin(); } } return 0; } // Get the SchedClass index for an instruction. unsigned CodeGenSchedModels::getSchedClassIdx( const CodeGenInstruction &Inst) const { return InstrClassMap.lookup(Inst.TheDef); } std::string CodeGenSchedModels::createSchedClassName( Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads) { std::string Name; if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") Name = ItinClassDef->getName(); for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { if (!Name.empty()) Name += '_'; Name += SchedWrites[*WI].Name; } for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { Name += '_'; Name += SchedReads[*RI].Name; } return Name; } std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { std::string Name; for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { if (I != InstDefs.begin()) Name += '_'; Name += (*I)->getName(); } return Name; } /// Add an inferred sched class from an itinerary class and per-operand list of /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of /// processors that may utilize this class. unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads, const IdxVec &ProcIndices) { assert(!ProcIndices.empty() && "expect at least one ProcIdx"); unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { IdxVec PI; std::set_union(SchedClasses[Idx].ProcIndices.begin(), SchedClasses[Idx].ProcIndices.end(), ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); SchedClasses[Idx].ProcIndices.swap(PI); return Idx; } Idx = SchedClasses.size(); SchedClasses.resize(Idx+1); CodeGenSchedClass &SC = SchedClasses.back(); SC.Index = Idx; SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); SC.ItinClassDef = ItinClassDef; SC.Writes = OperWrites; SC.Reads = OperReads; SC.ProcIndices = ProcIndices; return Idx; } // Create classes for each set of opcodes that are in the same InstReadWrite // definition across all processors. void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that // intersects with an existing class via a previous InstRWDef. Instrs that do // not intersect with an existing class refer back to their former class as // determined from ItinDef or SchedRW. SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; // Sort Instrs into sets. const RecVec *InstDefs = Sets.expand(InstRWDef); if (InstDefs->empty()) PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); if (Pos == InstrClassMap.end()) PrintFatalError((*I)->getLoc(), "No sched class for instruction."); unsigned SCIdx = Pos->second; unsigned CIdx = 0, CEnd = ClassInstrs.size(); for (; CIdx != CEnd; ++CIdx) { if (ClassInstrs[CIdx].first == SCIdx) break; } if (CIdx == CEnd) { ClassInstrs.resize(CEnd + 1); ClassInstrs[CIdx].first = SCIdx; } ClassInstrs[CIdx].second.push_back(*I); } // For each set of Instrs, create a new class if necessary, and map or remap // the Instrs to it. unsigned CIdx = 0, CEnd = ClassInstrs.size(); for (; CIdx != CEnd; ++CIdx) { unsigned OldSCIdx = ClassInstrs[CIdx].first; ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; // If the all instrs in the current class are accounted for, then leave // them mapped to their old class. if (OldSCIdx) { const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; if (!RWDefs.empty()) { const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); unsigned OrigNumInstrs = 0; for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); I != E; ++I) { if (InstrClassMap[*I] == OldSCIdx) ++OrigNumInstrs; } if (OrigNumInstrs == InstDefs.size()) { assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && "expected a generic SchedClass"); DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" << SchedClasses[OldSCIdx].Name << " on " << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); continue; } } } unsigned SCIdx = SchedClasses.size(); SchedClasses.resize(SCIdx+1); CodeGenSchedClass &SC = SchedClasses.back(); SC.Index = SCIdx; SC.Name = createSchedClassName(InstDefs); DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; SC.Writes = SchedClasses[OldSCIdx].Writes; SC.Reads = SchedClasses[OldSCIdx].Reads; SC.ProcIndices.push_back(0); // Map each Instr to this new class. // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); SmallSet<unsigned, 4> RemappedClassIDs; for (ArrayRef<Record*>::const_iterator II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { unsigned OldSCIdx = InstrClassMap[*II]; if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + (*II)->getName() + " also matches " + (*RI)->getValue("Instrs")->getValue()->getAsString()); } assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); SC.InstRWs.push_back(*RI); } } InstrClassMap[*II] = SCIdx; } SC.InstRWs.push_back(InstRWDef); } } // True if collectProcItins found anything. bool CodeGenSchedModels::hasItineraries() const { for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); PI != PE; ++PI) { if (PI->hasItineraries()) return true; } return false; } // Gather the processor itineraries. void CodeGenSchedModels::collectProcItins() { for (CodeGenProcModel &ProcModel : ProcModels) { if (!ProcModel.hasItineraries()) continue; RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); // Populate ItinDefList with Itinerary records. ProcModel.ItinDefList.resize(NumInstrSchedClasses); // Insert each itinerary data record in the correct position within // the processor model's ItinDefList. for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { Record *ItinData = ItinRecords[i]; Record *ItinDef = ItinData->getValueAsDef("TheClass"); bool FoundClass = false; for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); SCI != SCE; ++SCI) { // Multiple SchedClasses may share an itinerary. Update all of them. if (SCI->ItinClassDef == ItinDef) { ProcModel.ItinDefList[SCI->Index] = ItinData; FoundClass = true; } } if (!FoundClass) { DEBUG(dbgs() << ProcModel.ItinsDef->getName() << " missing class for itinerary " << ItinDef->getName() << '\n'); } } // Check for missing itinerary entries. assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); DEBUG( for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { if (!ProcModel.ItinDefList[i]) dbgs() << ProcModel.ItinsDef->getName() << " missing itinerary for class " << SchedClasses[i].Name << '\n'; }); } } // Gather the read/write types for each itinerary class. void CodeGenSchedModels::collectProcItinRW() { RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { if (!(*II)->getValueInit("SchedModel")->isComplete()) PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); Record *ModelDef = (*II)->getValueAsDef("SchedModel"); ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); if (I == ProcModelMap.end()) { PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " + ModelDef->getName()); } ProcModels[I->second].ItinRWDefs.push_back(*II); } } /// Infer new classes from existing classes. In the process, this may create new /// SchedWrites from sequences of existing SchedWrites. void CodeGenSchedModels::inferSchedClasses() { DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); // Visit all existing classes and newly created classes. for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); if (SchedClasses[Idx].ItinClassDef) inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); if (!SchedClasses[Idx].InstRWs.empty()) inferFromInstRWs(Idx); if (!SchedClasses[Idx].Writes.empty()) { inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, Idx, SchedClasses[Idx].ProcIndices); } assert(SchedClasses.size() < (NumInstrSchedClasses*6) && "too many SchedVariants"); } } /// Infer classes from per-processor itinerary resources. void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, unsigned FromClassIdx) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) continue; if (HasMatch) PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); IdxVec ProcIndices(1, PIdx); inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); } } } /// Infer classes from per-processor InstReadWrite definitions. void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); Record *Rec = SchedClasses[SCIdx].InstRWs[I]; const RecVec *InstDefs = Sets.expand(Rec); RecIter II = InstDefs->begin(), IE = InstDefs->end(); for (; II != IE; ++II) { if (InstrClassMap[*II] == SCIdx) break; } // If this class no longer has any instructions mapped to it, it has become // irrelevant. if (II == IE) continue; IdxVec Writes, Reads; findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; IdxVec ProcIndices(1, PIdx); inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. } } namespace { // Helper for substituteVariantOperand. struct TransVariant { Record *VarOrSeqDef; // Variant or sequence. unsigned RWIdx; // Index of this variant or sequence's matched type. unsigned ProcIdx; // Processor model index or zero for any. unsigned TransVecIdx; // Index into PredTransitions::TransVec. TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} }; // Associate a predicate with the SchedReadWrite that it guards. // RWIdx is the index of the read/write variant. struct PredCheck { bool IsRead; unsigned RWIdx; Record *Predicate; PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} }; // A Predicate transition is a list of RW sequences guarded by a PredTerm. struct PredTransition { // A predicate term is a conjunction of PredChecks. SmallVector<PredCheck, 4> PredTerm; SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; SmallVector<unsigned, 4> ProcIndices; }; // Encapsulate a set of partially constructed transitions. // The results are built by repeated calls to substituteVariants. class PredTransitions { CodeGenSchedModels &SchedModels; public: std::vector<PredTransition> TransVec; PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx); void substituteVariants(const PredTransition &Trans); #ifndef NDEBUG void dump() const; #endif private: bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); void getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector<TransVariant> &IntersectingVariants); void pushVariant(const TransVariant &VInfo, bool IsRead); }; } // anonymous // Return true if this predicate is mutually exclusive with a PredTerm. This // degenerates into checking if the predicate is mutually exclusive with any // predicate in the Term's conjunction. // // All predicates associated with a given SchedRW are considered mutually // exclusive. This should work even if the conditions expressed by the // predicates are not exclusive because the predicates for a given SchedWrite // are always checked in the order they are defined in the .td file. Later // conditions implicitly negate any prior condition. bool PredTransitions::mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term) { for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); I != E; ++I) { if (I->Predicate == PredDef) return false; const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { if ((*VI)->getValueAsDef("Predicate") == PredDef) return true; } } return false; } static bool hasAliasedVariants(const CodeGenSchedRW &RW, CodeGenSchedModels &SchedModels) { if (RW.HasVariants) return true; for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); if (AliasRW.HasVariants) return true; if (AliasRW.IsSequence) { IdxVec ExpandedRWs; SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); SI != SE; ++SI) { if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), SchedModels)) { return true; } } } } return false; } static bool hasVariant(ArrayRef<PredTransition> Transitions, CodeGenSchedModels &SchedModels) { for (ArrayRef<PredTransition>::iterator PTI = Transitions.begin(), PTE = Transitions.end(); PTI != PTE; ++PTI) { for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); WSI != WSE; ++WSI) { for (SmallVectorImpl<unsigned>::const_iterator WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) return true; } } for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); RSI != RSE; ++RSI) { for (SmallVectorImpl<unsigned>::const_iterator RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) return true; } } } return false; } // Populate IntersectingVariants with any variants or aliased sequences of the // given SchedRW whose processor indices and predicates are not mutually // exclusive with the given transition. void PredTransitions::getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector<TransVariant> &IntersectingVariants) { bool GenericRW = false; std::vector<TransVariant> Variants; if (SchedRW.HasVariants) { unsigned VarProcIdx = 0; if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); VarProcIdx = SchedModels.getProcModel(ModelDef).Index; } // Push each variant. Assign TransVecIdx later. const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); if (VarProcIdx == 0) GenericRW = true; } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { // If either the SchedAlias itself or the SchedReadWrite that it aliases // to is defined within a processor model, constrain all variants to // that processor. unsigned AliasProcIdx = 0; if ((*AI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; } const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.HasVariants) { const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); } if (AliasRW.IsSequence) { Variants.push_back( TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); } if (AliasProcIdx == 0) GenericRW = true; } for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { TransVariant &Variant = Variants[VIdx]; // Don't expand variants if the processor models don't intersect. // A zero processor index means any processor. SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; if (ProcIndices[0] && Variants[VIdx].ProcIdx) { unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), Variant.ProcIdx); if (!Cnt) continue; if (Cnt > 1) { const CodeGenProcModel &PM = *(SchedModels.procModelBegin() + Variant.ProcIdx); PrintFatalError(Variant.VarOrSeqDef->getLoc(), "Multiple variants defined for processor " + PM.ModelName + " Ensure only one SchedAlias exists per RW."); } } if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) continue; } if (IntersectingVariants.empty()) { // The first variant builds on the existing transition. Variant.TransVecIdx = TransIdx; IntersectingVariants.push_back(Variant); } else { // Push another copy of the current transition for more variants. Variant.TransVecIdx = TransVec.size(); IntersectingVariants.push_back(Variant); TransVec.push_back(TransVec[TransIdx]); } } if (GenericRW && IntersectingVariants.empty()) { PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " "a matching predicate on any processor"); } } // Push the Reads/Writes selected by this variant onto the PredTransition // specified by VInfo. void PredTransitions:: pushVariant(const TransVariant &VInfo, bool IsRead) { PredTransition &Trans = TransVec[VInfo.TransVecIdx]; // If this operand transition is reached through a processor-specific alias, // then the whole transition is specific to this processor. if (VInfo.ProcIdx != 0) Trans.ProcIndices.assign(1, VInfo.ProcIdx); IdxVec SelectedRWs; if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); } else { assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && "variant must be a SchedVariant or aliased WriteSequence"); SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); } const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead ? Trans.ReadSequences : Trans.WriteSequences; if (SchedRW.IsVariadic) { unsigned OperIdx = RWSequences.size()-1; // Make N-1 copies of this transition's last sequence. for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { // Create a temporary copy the vector could reallocate. RWSequences.reserve(RWSequences.size() + 1); RWSequences.push_back(RWSequences[OperIdx]); } // Push each of the N elements of the SelectedRWs onto a copy of the last // sequence (split the current operand into N operands). // Note that write sequences should be expanded within this loop--the entire // sequence belongs to a single operand. for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI, ++OperIdx) { IdxVec ExpandedRWs; if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), ExpandedRWs.begin(), ExpandedRWs.end()); } assert(OperIdx == RWSequences.size() && "missed a sequence"); } else { // Push this transition's expanded sequence onto this transition's last // sequence (add to the current operand's sequence). SmallVectorImpl<unsigned> &Seq = RWSequences.back(); IdxVec ExpandedRWs; for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI) { if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); } Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); } } // RWSeq is a sequence of all Reads or all Writes for the next read or write // operand. StartIdx is an index into TransVec where partial results // starts. RWSeq must be applied to all transitions between StartIdx and the end // of TransVec. void PredTransitions::substituteVariantOperand( const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { // Visit each original RW within the current sequence. for (SmallVectorImpl<unsigned>::const_iterator RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); // Push this RW on all partial PredTransitions or distribute variants. // New PredTransitions may be pushed within this loop which should not be // revisited (TransEnd must be loop invariant). for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); TransIdx != TransEnd; ++TransIdx) { // In the common case, push RW onto the current operand's sequence. if (!hasAliasedVariants(SchedRW, SchedModels)) { if (IsRead) TransVec[TransIdx].ReadSequences.back().push_back(*RWI); else TransVec[TransIdx].WriteSequences.back().push_back(*RWI); continue; } // Distribute this partial PredTransition across intersecting variants. // This will push a copies of TransVec[TransIdx] on the back of TransVec. std::vector<TransVariant> IntersectingVariants; getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); // Now expand each variant on top of its copy of the transition. for (std::vector<TransVariant>::const_iterator IVI = IntersectingVariants.begin(), IVE = IntersectingVariants.end(); IVI != IVE; ++IVI) { pushVariant(*IVI, IsRead); } } } } // For each variant of a Read/Write in Trans, substitute the sequence of // Read/Writes guarded by the variant. This is exponential in the number of // variant Read/Writes, but in practice detection of mutually exclusive // predicates should result in linear growth in the total number variants. // // This is one step in a breadth-first search of nested variants. void PredTransitions::substituteVariants(const PredTransition &Trans) { // Build up a set of partial results starting at the back of // PredTransitions. Remember the first new transition. unsigned StartIdx = TransVec.size(); TransVec.resize(TransVec.size() + 1); TransVec.back().PredTerm = Trans.PredTerm; TransVec.back().ProcIndices = Trans.ProcIndices; // Visit each original write sequence. for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); WSI != WSE; ++WSI) { // Push a new (empty) write sequence onto all partial Transitions. for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->WriteSequences.resize(I->WriteSequences.size() + 1); } substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); } // Visit each original read sequence. for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); RSI != RSE; ++RSI) { // Push a new (empty) read sequence onto all partial Transitions. for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->ReadSequences.resize(I->ReadSequences.size() + 1); } substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); } } // Create a new SchedClass for each variant found by inferFromRW. Pass static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, unsigned FromClassIdx, CodeGenSchedModels &SchedModels) { // For each PredTransition, create a new CodeGenSchedTransition, which usually // requires creating a new SchedClass. for (ArrayRef<PredTransition>::iterator I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { IdxVec OperWritesVariant; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); WSI != WSE; ++WSI) { // Create a new write representing the expanded sequence. OperWritesVariant.push_back( SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); } IdxVec OperReadsVariant; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); RSI != RSE; ++RSI) { // Create a new read representing the expanded sequence. OperReadsVariant.push_back( SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); } IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); CodeGenSchedTransition SCTrans; SCTrans.ToClassIdx = SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, OperReadsVariant, ProcIndices); SCTrans.ProcIndices = ProcIndices; // The final PredTerm is unique set of predicates guarding the transition. RecVec Preds; for (SmallVectorImpl<PredCheck>::const_iterator PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { Preds.push_back(PI->Predicate); } RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); Preds.resize(PredsEnd - Preds.begin()); SCTrans.PredTerm = Preds; SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); } } // Create new SchedClasses for the given ReadWrite list. If any of the // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant // of the ReadWrite list, following Aliases if necessary. void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, const IdxVec &OperReads, unsigned FromClassIdx, const IdxVec &ProcIndices) { DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); // Create a seed transition with an empty PredTerm and the expanded sequences // of SchedWrites for the current SchedClass. std::vector<PredTransition> LastTransitions; LastTransitions.resize(1); LastTransitions.back().ProcIndices.append(ProcIndices.begin(), ProcIndices.end()); for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { IdxVec WriteSeq; expandRWSequence(*I, WriteSeq, /*IsRead=*/false); unsigned Idx = LastTransitions[0].WriteSequences.size(); LastTransitions[0].WriteSequences.resize(Idx + 1); SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) Seq.push_back(*WI); DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } DEBUG(dbgs() << " Reads: "); for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { IdxVec ReadSeq; expandRWSequence(*I, ReadSeq, /*IsRead=*/true); unsigned Idx = LastTransitions[0].ReadSequences.size(); LastTransitions[0].ReadSequences.resize(Idx + 1); SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) Seq.push_back(*RI); DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } DEBUG(dbgs() << '\n'); // Collect all PredTransitions for individual operands. // Iterate until no variant writes remain. while (hasVariant(LastTransitions, *this)) { PredTransitions Transitions(*this); for (std::vector<PredTransition>::const_iterator I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { Transitions.substituteVariants(*I); } DEBUG(Transitions.dump()); LastTransitions.swap(Transitions.TransVec); } // If the first transition has no variants, nothing to do. if (LastTransitions[0].PredTerm.empty()) return; // WARNING: We are about to mutate the SchedClasses vector. Do not refer to // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. inferFromTransitions(LastTransitions, FromClassIdx, *this); } // Check if any processor resource group contains all resource records in // SubUnits. bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec SuperUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); RecIter RI = SubUnits.begin(), RE = SubUnits.end(); for ( ; RI != RE; ++RI) { if (std::find(SuperUnits.begin(), SuperUnits.end(), *RI) == SuperUnits.end()) { break; } } if (RI == RE) return true; } return false; } // Verify that overlapping groups have a common supergroup. void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec CheckUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); for (unsigned j = i+1; j < e; ++j) { if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) continue; RecVec OtherUnits = PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), OtherUnits.begin(), OtherUnits.end()) != CheckUnits.end()) { // CheckUnits and OtherUnits overlap OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), CheckUnits.end()); if (!hasSuperGroup(OtherUnits, PM)) { PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), "proc resource group overlaps with " + PM.ProcResourceDefs[j]->getName() + " but no supergroup contains both."); } } } } } // Collect and sort WriteRes, ReadAdvance, and ProcResources. void CodeGenSchedModels::collectProcResources() { // Add any subtarget-specific SchedReadWrites that are directly associated // with processor resources. Refer to the parent SchedClass's ProcIndices to // determine which processors they apply to. for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); SCI != SCE; ++SCI) { if (SCI->ItinClassDef) collectItinProcResources(SCI->ItinClassDef); else { // This class may have a default ReadWrite list which can be overriden by // InstRW definitions. if (!SCI->InstRWs.empty()) { for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); RWI != RWE; ++RWI) { Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); IdxVec Writes, Reads; findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); collectRWResources(Writes, Reads, ProcIndices); } } collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); } } // Add resources separately defined by each subtarget. RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); addWriteRes(*WRI, getProcModel(ModelDef).Index); } RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); addWriteRes(*WRI, getProcModel(ModelDef).Index); } RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); addReadAdvance(*RAI, getProcModel(ModelDef).Index); } RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { if ((*RAI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); addReadAdvance(*RAI, getProcModel(ModelDef).Index); } } // Add ProcResGroups that are defined within this processor model, which may // not be directly referenced but may directly specify a buffer size. RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); RI != RE; ++RI) { if (!(*RI)->getValueInit("SchedModel")->isComplete()) continue; CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); RecIter I = std::find(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), *RI); if (I == PM.ProcResourceDefs.end()) PM.ProcResourceDefs.push_back(*RI); } // Finalize each ProcModel by sorting the record arrays. for (CodeGenProcModel &PM : ProcModels) { std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), LessRecord()); std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), LessRecord()); std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), LessRecord()); DEBUG( PM.dump(); dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), RE = PM.WriteResDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("WriteRes")) dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nReadAdvanceDefs: "; for (RecIter RI = PM.ReadAdvanceDefs.begin(), RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("ReadAdvance")) dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nProcResourceDefs: "; for (RecIter RI = PM.ProcResourceDefs.begin(), RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() << '\n'); verifyProcResourceGroups(PM); } } // Collect itinerary class resources for each processor. void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) continue; if (HasMatch) PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); IdxVec ProcIndices(1, PIdx); collectRWResources(Writes, Reads, ProcIndices); } } } void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, const IdxVec &ProcIndices) { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (SchedRW.TheDef) { if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { addWriteRes(SchedRW.TheDef, *PI); } } else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { addReadAdvance(SchedRW.TheDef, *PI); } } } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { IdxVec AliasProcIndices; if ((*AI)->getValueInit("SchedModel")->isComplete()) { AliasProcIndices.push_back( getProcModel((*AI)->getValueAsDef("SchedModel")).Index); } else AliasProcIndices = ProcIndices; const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); IdxVec ExpandedRWs; expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); SI != SE; ++SI) { collectRWResources(*SI, IsRead, AliasProcIndices); } } } // Collect resources for a set of read/write types and processor indices. void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, const IdxVec &Reads, const IdxVec &ProcIndices) { for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) collectRWResources(*WI, /*IsRead=*/false, ProcIndices); for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) collectRWResources(*RI, /*IsRead=*/true, ProcIndices); } // Find the processor's resource units for this kind of resource. Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, const CodeGenProcModel &PM) const { if (ProcResKind->isSubClassOf("ProcResourceUnits")) return ProcResKind; Record *ProcUnitDef = nullptr; RecVec ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); RI != RE; ++RI) { if ((*RI)->getValueAsDef("Kind") == ProcResKind && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError((*RI)->getLoc(), "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = *RI; } } RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); RI != RE; ++RI) { if (*RI == ProcResKind && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError((*RI)->getLoc(), "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = *RI; } } if (!ProcUnitDef) { PrintFatalError(ProcResKind->getLoc(), "No ProcessorResources associated with " + ProcResKind->getName()); } return ProcUnitDef; } // Iteratively add a resource and its super resources. void CodeGenSchedModels::addProcResource(Record *ProcResKind, CodeGenProcModel &PM) { for (;;) { Record *ProcResUnits = findProcResUnits(ProcResKind, PM); // See if this ProcResource is already associated with this processor. RecIter I = std::find(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), ProcResUnits); if (I != PM.ProcResourceDefs.end()) return; PM.ProcResourceDefs.push_back(ProcResUnits); if (ProcResUnits->isSubClassOf("ProcResGroup")) return; if (!ProcResUnits->getValueInit("Super")->isComplete()) return; ProcResKind = ProcResUnits->getValueAsDef("Super"); } } // Add resources for a SchedWrite to this processor if they don't exist. void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { assert(PIdx && "don't add resources to an invalid Processor model"); RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); if (WRI != WRDefs.end()) return; WRDefs.push_back(ProcWriteResDef); // Visit ProcResourceKinds referenced by the newly discovered WriteRes. RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); WritePRI != WritePRE; ++WritePRI) { addProcResource(*WritePRI, ProcModels[PIdx]); } } // Add resources for a ReadAdvance to this processor if they don't exist. void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, unsigned PIdx) { RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); if (I != RADefs.end()) return; RADefs.push_back(ProcReadAdvanceDef); } unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), PRDef); if (PRPos == ProcResourceDefs.end()) PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " "the ProcResources list for " + ModelName); // Idx=0 is reserved for invalid. return 1 + (PRPos - ProcResourceDefs.begin()); } #ifndef NDEBUG void CodeGenProcModel::dump() const { dbgs() << Index << ": " << ModelName << " " << (ModelDef ? ModelDef->getName() : "inferred") << " " << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; } void CodeGenSchedRW::dump() const { dbgs() << Name << (IsVariadic ? " (V) " : " "); if (IsSequence) { dbgs() << "("; dumpIdxVec(Sequence); dbgs() << ")"; } } void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: "; for (unsigned i = 0, N = Writes.size(); i < N; ++i) { SchedModels->getSchedWrite(Writes[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n Reads: "; for (unsigned i = 0, N = Reads.size(); i < N; ++i) { SchedModels->getSchedRead(Reads[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; if (!Transitions.empty()) { dbgs() << "\n Transitions for Proc "; for (std::vector<CodeGenSchedTransition>::const_iterator TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { dumpIdxVec(TI->ProcIndices); } } } void PredTransitions::dump() const { dbgs() << "Expanded Variants:\n"; for (std::vector<PredTransition>::const_iterator TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { dbgs() << "{"; for (SmallVectorImpl<PredCheck>::const_iterator PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); PCI != PCE; ++PCI) { if (PCI != TI->PredTerm.begin()) dbgs() << ", "; dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name << ":" << PCI->Predicate->getName(); } dbgs() << "},\n => {"; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); WSI != WSE; ++WSI) { dbgs() << "("; for (SmallVectorImpl<unsigned>::const_iterator WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { if (WI != WSI->begin()) dbgs() << ", "; dbgs() << SchedModels.getSchedWrite(*WI).Name; } dbgs() << "),"; } dbgs() << "}\n"; } } #endif // NDEBUG
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/SequenceToOffsetTable.h
//===-- SequenceToOffsetTable.h - Compress similar sequences ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // SequenceToOffsetTable can be used to emit a number of null-terminated // sequences as one big array. Use the same memory when a sequence is a suffix // of another. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_SEQUENCETOOFFSETTABLE_H #define LLVM_UTILS_TABLEGEN_SEQUENCETOOFFSETTABLE_H #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cctype> #include <functional> #include <map> #include <vector> namespace llvm { /// SequenceToOffsetTable - Collect a number of terminated sequences of T. /// Compute the layout of a table that contains all the sequences, possibly by /// reusing entries. /// /// @tparam SeqT The sequence container. (vector or string). /// @tparam Less A stable comparator for SeqT elements. template<typename SeqT, typename Less = std::less<typename SeqT::value_type> > class SequenceToOffsetTable { typedef typename SeqT::value_type ElemT; // Define a comparator for SeqT that sorts a suffix immediately before a // sequence with that suffix. struct SeqLess { Less L; bool operator()(const SeqT &A, const SeqT &B) const { return std::lexicographical_compare(A.rbegin(), A.rend(), B.rbegin(), B.rend(), L); } }; // Keep sequences ordered according to SeqLess so suffixes are easy to find. // Map each sequence to its offset in the table. typedef std::map<SeqT, unsigned, SeqLess> SeqMap; // Sequences added so far, with suffixes removed. SeqMap Seqs; // Entries in the final table, or 0 before layout was called. unsigned Entries; // isSuffix - Returns true if A is a suffix of B. static bool isSuffix(const SeqT &A, const SeqT &B) { return A.size() <= B.size() && std::equal(A.rbegin(), A.rend(), B.rbegin()); } public: SequenceToOffsetTable() : Entries(0) {} /// add - Add a sequence to the table. /// This must be called before layout(). void add(const SeqT &Seq) { assert(Entries == 0 && "Cannot call add() after layout()"); typename SeqMap::iterator I = Seqs.lower_bound(Seq); // If SeqMap contains a sequence that has Seq as a suffix, I will be // pointing to it. if (I != Seqs.end() && isSuffix(Seq, I->first)) return; I = Seqs.insert(I, std::make_pair(Seq, 0u)); // The entry before I may be a suffix of Seq that can now be erased. if (I != Seqs.begin() && isSuffix((--I)->first, Seq)) Seqs.erase(I); } bool empty() const { return Seqs.empty(); } unsigned size() const { assert(Entries && "Call layout() before size()"); return Entries; } /// layout - Computes the final table layout. void layout() { assert(Entries == 0 && "Can only call layout() once"); // Lay out the table in Seqs iteration order. for (typename SeqMap::iterator I = Seqs.begin(), E = Seqs.end(); I != E; ++I) { I->second = Entries; // Include space for a terminator. Entries += I->first.size() + 1; } } /// get - Returns the offset of Seq in the final table. unsigned get(const SeqT &Seq) const { assert(Entries && "Call layout() before get()"); typename SeqMap::const_iterator I = Seqs.lower_bound(Seq); assert(I != Seqs.end() && isSuffix(Seq, I->first) && "get() called with sequence that wasn't added first"); return I->second + (I->first.size() - Seq.size()); } /// emit - Print out the table as the body of an array initializer. /// Use the Print function to print elements. void emit(raw_ostream &OS, void (*Print)(raw_ostream&, ElemT), const char *Term = "0") const { assert(Entries && "Call layout() before emit()"); for (typename SeqMap::const_iterator I = Seqs.begin(), E = Seqs.end(); I != E; ++I) { OS << " /* " << I->second << " */ "; for (typename SeqT::const_iterator SI = I->first.begin(), SE = I->first.end(); SI != SE; ++SI) { Print(OS, *SI); OS << ", "; } OS << Term << ",\n"; } } }; // Helper function for SequenceToOffsetTable<string>. static inline void printChar(raw_ostream &OS, char C) { unsigned char UC(C); if (isalnum(UC) || ispunct(UC)) { OS << '\''; if (C == '\\' || C == '\'') OS << '\\'; OS << C << '\''; } else { OS << unsigned(UC); } } } // end namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenMapTable.cpp
//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // CodeGenMapTable provides functionality for the TabelGen to create // relation mapping between instructions. Relation models are defined using // InstrMapping as a base class. This file implements the functionality which // parses these definitions and generates relation maps using the information // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc // file along with the functions to query them. // // A relationship model to relate non-predicate instructions with their // predicated true/false forms can be defined as follows: // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc // file that contains the instructions modeling this relationship. This table // is defined in the function // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)" // that can be used to retrieve the predicated form of the instruction by // passing its opcode value and the predicate sense (true/false) of the desired // instruction as arguments. // // Short description of the algorithm: // // 1) Iterate through all the records that derive from "InstrMapping" class. // 2) For each record, filter out instructions based on the FilterClass value. // 3) Iterate through this set of instructions and insert them into // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the // vector of RowFields values and contains vectors of Records (instructions) as // values. RowFields is a list of fields that are required to have the same // values for all the instructions appearing in the same row of the relation // table. All the instructions in a given row of the relation table have some // sort of relationship with the key instruction defined by the corresponding // relationship model. // // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ] // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for // RowFields. These groups of instructions are later matched against ValueCols // to determine the column they belong to, if any. // // While building the RowInstrMap map, collect all the key instructions in // KeyInstrVec. These are the instructions having the same values as KeyCol // for all the fields listed in ColFields. // // For Example: // // Relate non-predicate instructions with their predicated true/false forms. // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // Here, only instructions that have "none" as PredSense will be selected as key // instructions. // // 4) For each key instruction, get the group of instructions that share the // same key-value as the key instruction from RowInstrMap. Iterate over the list // of columns in ValueCols (it is defined as a list<list<string> >. Therefore, // it can specify multi-column relationships). For each column, find the // instruction from the group that matches all the values for the column. // Multiple matches are not allowed. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" using namespace llvm; typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy; typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy; namespace { //===----------------------------------------------------------------------===// // This class is used to represent InstrMapping class defined in Target.td file. class InstrMap { private: std::string Name; std::string FilterClass; ListInit *RowFields; ListInit *ColFields; ListInit *KeyCol; std::vector<ListInit*> ValueCols; public: InstrMap(Record* MapRec) { Name = MapRec->getName(); // FilterClass - It's used to reduce the search space only to the // instructions that define the kind of relationship modeled by // this InstrMapping object/record. const RecordVal *Filter = MapRec->getValue("FilterClass"); FilterClass = Filter->getValue()->getAsUnquotedString(); // List of fields/attributes that need to be same across all the // instructions in a row of the relation table. RowFields = MapRec->getValueAsListInit("RowFields"); // List of fields/attributes that are constant across all the instruction // in a column of the relation table. Ex: ColFields = 'predSense' ColFields = MapRec->getValueAsListInit("ColFields"); // Values for the fields/attributes listed in 'ColFields'. // Ex: KeyCol = 'noPred' -- key instruction is non-predicated KeyCol = MapRec->getValueAsListInit("KeyCol"); // List of values for the fields/attributes listed in 'ColFields', one for // each column in the relation table. // // Ex: ValueCols = [['true'],['false']] -- it results two columns in the // table. First column requires all the instructions to have predSense // set to 'true' and second column requires it to be 'false'. ListInit *ColValList = MapRec->getValueAsListInit("ValueCols"); // Each instruction map must specify at least one column for it to be valid. if (ColValList->empty()) PrintFatalError(MapRec->getLoc(), "InstrMapping record `" + MapRec->getName() + "' has empty " + "`ValueCols' field!"); for (Init *I : ColValList->getValues()) { ListInit *ColI = dyn_cast<ListInit>(I); // Make sure that all the sub-lists in 'ValueCols' have same number of // elements as the fields in 'ColFields'. if (ColI->size() != ColFields->size()) PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() + "', field `ValueCols' entries don't match with " + " the entries in 'ColFields'!"); ValueCols.push_back(ColI); } } std::string getName() const { return Name; } std::string getFilterClass() { return FilterClass; } ListInit *getRowFields() const { return RowFields; } ListInit *getColFields() const { return ColFields; } ListInit *getKeyCol() const { return KeyCol; } const std::vector<ListInit*> &getValueCols() const { return ValueCols; } }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // class MapTableEmitter : It builds the instruction relation maps using // the information provided in InstrMapping records. It outputs these // relationship maps as tables into XXXGenInstrInfo.inc file along with the // functions to query them. namespace { class MapTableEmitter { private: // std::string TargetName; const CodeGenTarget &Target; // InstrMapDesc - InstrMapping record to be processed. InstrMap InstrMapDesc; // InstrDefs - list of instructions filtered using FilterClass defined // in InstrMapDesc. std::vector<Record*> InstrDefs; // RowInstrMap - maps RowFields values to the instructions. It's keyed by the // values of the row fields and contains vector of records as values. RowInstrMapTy RowInstrMap; // KeyInstrVec - list of key instructions. std::vector<Record*> KeyInstrVec; DenseMap<Record*, std::vector<Record*> > MapTable; public: MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec): Target(Target), InstrMapDesc(IMRec) { const std::string FilterClass = InstrMapDesc.getFilterClass(); InstrDefs = Records.getAllDerivedDefinitions(FilterClass); } void buildRowInstrMap(); // Returns true if an instruction is a key instruction, i.e., its ColFields // have same values as KeyCol. bool isKeyColInstr(Record* CurInstr); // Find column instruction corresponding to a key instruction based on the // constraints for that column. Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol); // Find column instructions for each key instruction based // on ValueCols and store them into MapTable. void buildMapTable(); void emitBinSearch(raw_ostream &OS, unsigned TableSize); void emitTablesWithFunc(raw_ostream &OS); unsigned emitBinSearchTable(raw_ostream &OS); // Lookup functions to query binary search tables. void emitMapFuncBody(raw_ostream &OS, unsigned TableSize); }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // Process all the instructions that model this relation (alreday present in // InstrDefs) and insert them into RowInstrMap which is keyed by the values of // the fields listed as RowFields. It stores vectors of records as values. // All the related instructions have the same values for the RowFields thus are // part of the same key-value pair. //===----------------------------------------------------------------------===// void MapTableEmitter::buildRowInstrMap() { for (Record *CurInstr : InstrDefs) { std::vector<Init*> KeyValue; ListInit *RowFields = InstrMapDesc.getRowFields(); for (Init *RowField : RowFields->getValues()) { Init *CurInstrVal = CurInstr->getValue(RowField)->getValue(); KeyValue.push_back(CurInstrVal); } // Collect key instructions into KeyInstrVec. Later, these instructions are // processed to assign column position to the instructions sharing // their KeyValue in RowInstrMap. if (isKeyColInstr(CurInstr)) KeyInstrVec.push_back(CurInstr); RowInstrMap[KeyValue].push_back(CurInstr); } } //===----------------------------------------------------------------------===// // Return true if an instruction is a KeyCol instruction. //===----------------------------------------------------------------------===// bool MapTableEmitter::isKeyColInstr(Record* CurInstr) { ListInit *ColFields = InstrMapDesc.getColFields(); ListInit *KeyCol = InstrMapDesc.getKeyCol(); // Check if the instruction is a KeyCol instruction. bool MatchFound = true; for (unsigned j = 0, endCF = ColFields->size(); (j < endCF) && MatchFound; j++) { RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j)); std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString(); std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString(); MatchFound = (CurInstrVal == KeyColValue); } return MatchFound; } //===----------------------------------------------------------------------===// // Build a map to link key instructions with the column instructions arranged // according to their column positions. //===----------------------------------------------------------------------===// void MapTableEmitter::buildMapTable() { // Find column instructions for a given key based on the ColField // constraints. const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); unsigned NumOfCols = ValueCols.size(); for (Record *CurKeyInstr : KeyInstrVec) { std::vector<Record*> ColInstrVec(NumOfCols); // Find the column instruction based on the constraints for the column. for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) { ListInit *CurValueCol = ValueCols[ColIdx]; Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol); ColInstrVec[ColIdx] = ColInstr; } MapTable[CurKeyInstr] = ColInstrVec; } } //===----------------------------------------------------------------------===// // Find column instruction based on the constraints for that column. //===----------------------------------------------------------------------===// Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol) { ListInit *RowFields = InstrMapDesc.getRowFields(); std::vector<Init*> KeyValue; // Construct KeyValue using KeyInstr's values for RowFields. for (Init *RowField : RowFields->getValues()) { Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue(); KeyValue.push_back(KeyInstrVal); } // Get all the instructions that share the same KeyValue as the KeyInstr // in RowInstrMap. We search through these instructions to find a match // for the current column, i.e., the instruction which has the same values // as CurValueCol for all the fields in ColFields. const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue]; ListInit *ColFields = InstrMapDesc.getColFields(); Record *MatchInstr = nullptr; for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) { bool MatchFound = true; Record *CurInstr = RelatedInstrVec[i]; for (unsigned j = 0, endCF = ColFields->size(); (j < endCF) && MatchFound; j++) { Init *ColFieldJ = ColFields->getElement(j); Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue(); std::string CurInstrVal = CurInstrInit->getAsUnquotedString(); Init *ColFieldJVallue = CurValueCol->getElement(j); MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString()); } if (MatchFound) { if (MatchInstr) // Already had a match // Error if multiple matches are found for a column. PrintFatalError("Multiple matches found for `" + KeyInstr->getName() + "', for the relation `" + InstrMapDesc.getName()); MatchInstr = CurInstr; } } return MatchInstr; } //===----------------------------------------------------------------------===// // Emit one table per relation. Only instructions with a valid relation of a // given type are included in the table sorted by their enum values (opcodes). // Binary search is used for locating instructions in the table. //===----------------------------------------------------------------------===// unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) { const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); std::string TargetName = Target.getName(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); unsigned NumCol = ValueCols.size(); unsigned TotalNumInstr = NumberedInstructions.size(); unsigned TableSize = 0; OS << "static const uint16_t "<<InstrMapDesc.getName(); // Number of columns in the table are NumCol+1 because key instructions are // emitted as first column. OS << "Table[]["<< NumCol+1 << "] = {\n"; for (unsigned i = 0; i < TotalNumInstr; i++) { Record *CurInstr = NumberedInstructions[i]->TheDef; std::vector<Record*> ColInstrs = MapTable[CurInstr]; std::string OutStr(""); unsigned RelExists = 0; if (!ColInstrs.empty()) { for (unsigned j = 0; j < NumCol; j++) { if (ColInstrs[j] != nullptr) { RelExists = 1; OutStr += ", "; OutStr += TargetName; OutStr += "::"; OutStr += ColInstrs[j]->getName(); } else { OutStr += ", (uint16_t)-1U";} } if (RelExists) { OS << " { " << TargetName << "::" << CurInstr->getName(); OS << OutStr <<" },\n"; TableSize++; } } } if (!TableSize) { OS << " { " << TargetName << "::" << "INSTRUCTION_LIST_END, "; OS << TargetName << "::" << "INSTRUCTION_LIST_END }"; } OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n"; return TableSize; } //===----------------------------------------------------------------------===// // Emit binary search algorithm as part of the functions used to query // relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) { OS << " unsigned mid;\n"; OS << " unsigned start = 0;\n"; OS << " unsigned end = " << TableSize << ";\n"; OS << " while (start < end) {\n"; OS << " mid = start + (end - start)/2;\n"; OS << " if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n"; OS << " break;\n"; OS << " }\n"; OS << " if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n"; OS << " end = mid;\n"; OS << " else\n"; OS << " start = mid + 1;\n"; OS << " }\n"; OS << " if (start == end)\n"; OS << " return -1; // Instruction doesn't exist in this table.\n\n"; } //===----------------------------------------------------------------------===// // Emit functions to query relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitMapFuncBody(raw_ostream &OS, unsigned TableSize) { ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); // Emit binary search algorithm to locate instructions in the // relation table. If found, return opcode value from the appropriate column // of the table. emitBinSearch(OS, TableSize); if (ValueCols.size() > 1) { for (unsigned i = 0, e = ValueCols.size(); i < e; i++) { ListInit *ColumnI = ValueCols[i]; for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) { std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); OS << " if (in" << ColName; OS << " == "; OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString(); if (j < ColumnI->size() - 1) OS << " && "; else OS << ")\n"; } OS << " return " << InstrMapDesc.getName(); OS << "Table[mid]["<<i+1<<"];\n"; } OS << " return -1;"; } else OS << " return " << InstrMapDesc.getName() << "Table[mid][1];\n"; OS <<"}\n\n"; } //===----------------------------------------------------------------------===// // Emit relation tables and the functions to query them. //===----------------------------------------------------------------------===// void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) { // Emit function name and the input parameters : mostly opcode value of the // current instruction. However, if a table has multiple columns (more than 2 // since first column is used for the key instructions), then we also need // to pass another input to indicate the column to be selected. ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); OS << "// "<< InstrMapDesc.getName() << "\n"; OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode"; if (ValueCols.size() > 1) { for (Init *CF : ColFields->getValues()) { std::string ColName = CF->getAsUnquotedString(); OS << ", enum " << ColName << " in" << ColName << ") {\n"; } } else { OS << ") {\n"; } // Emit map table. unsigned TableSize = emitBinSearchTable(OS); // Emit rest of the function body. emitMapFuncBody(OS, TableSize); } //===----------------------------------------------------------------------===// // Emit enums for the column fields across all the instruction maps. //===----------------------------------------------------------------------===// static void emitEnums(raw_ostream &OS, RecordKeeper &Records) { std::vector<Record*> InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); std::map<std::string, std::vector<Init*> > ColFieldValueMap; // Iterate over all InstrMapping records and create a map between column // fields and their possible values across all records. for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) { Record *CurMap = InstrMapVec[i]; ListInit *ColFields; ColFields = CurMap->getValueAsListInit("ColFields"); ListInit *List = CurMap->getValueAsListInit("ValueCols"); std::vector<ListInit*> ValueCols; unsigned ListSize = List->size(); for (unsigned j = 0; j < ListSize; j++) { ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j)); if (ListJ->size() != ColFields->size()) PrintFatalError("Record `" + CurMap->getName() + "', field " "`ValueCols' entries don't match with the entries in 'ColFields' !"); ValueCols.push_back(ListJ); } for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) { for (unsigned k = 0; k < ListSize; k++){ std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j)); } } } for (std::map<std::string, std::vector<Init*> >::iterator II = ColFieldValueMap.begin(), IE = ColFieldValueMap.end(); II != IE; II++) { std::vector<Init*> FieldValues = (*II).second; // Delete duplicate entries from ColFieldValueMap for (unsigned i = 0; i < FieldValues.size() - 1; i++) { Init *CurVal = FieldValues[i]; for (unsigned j = i+1; j < FieldValues.size(); j++) { if (CurVal == FieldValues[j]) { FieldValues.erase(FieldValues.begin()+j); } } } // Emit enumerated values for the column fields. OS << "enum " << (*II).first << " {\n"; for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) { OS << "\t" << (*II).first << "_" << FieldValues[i]->getAsUnquotedString(); if (i != endFV - 1) OS << ",\n"; else OS << "\n};\n\n"; } } } namespace llvm { //===----------------------------------------------------------------------===// // Parse 'InstrMapping' records and use the information to form relationship // between instructions. These relations are emitted as a tables along with the // functions to query them. //===----------------------------------------------------------------------===// void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) { CodeGenTarget Target(Records); std::string TargetName = Target.getName(); std::vector<Record*> InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); if (InstrMapVec.empty()) return; OS << "#ifdef GET_INSTRMAP_INFO\n"; OS << "#undef GET_INSTRMAP_INFO\n"; OS << "namespace llvm {\n\n"; OS << "namespace " << TargetName << " {\n\n"; // Emit coulumn field names and their values as enums. emitEnums(OS, Records); // Iterate over all instruction mapping records and construct relationship // maps based on the information specified there. // for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) { MapTableEmitter IMap(Target, Records, InstrMapVec[i]); // Build RowInstrMap to group instructions based on their values for // RowFields. In the process, also collect key instructions into // KeyInstrVec. IMap.buildRowInstrMap(); // Build MapTable to map key instructions with the corresponding column // instructions. IMap.buildMapTable(); // Emit map tables and the functions to query them. IMap.emitTablesWithFunc(OS); } OS << "} // End " << TargetName << " namespace\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_INSTRMAP_INFO\n\n"; } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/AsmWriterInst.h
//===- AsmWriterInst.h - Classes encapsulating a printable inst -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes implement a parser for assembly strings. The parser splits // the string into operands, which can be literal strings (the constant bits of // the string), actual operands (i.e., operands from the MachineInstr), and // dynamically-generated text, specified by raw C++ code. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_ASMWRITERINST_H #define LLVM_UTILS_TABLEGEN_ASMWRITERINST_H #include <string> #include <vector> namespace llvm { class CodeGenInstruction; class Record; struct AsmWriterOperand { enum OpType { // Output this text surrounded by quotes to the asm. isLiteralTextOperand, // This is the name of a routine to call to print the operand. isMachineInstrOperand, // Output this text verbatim to the asm writer. It is code that // will output some text to the asm. isLiteralStatementOperand } OperandType; /// Str - For isLiteralTextOperand, this IS the literal text. For /// isMachineInstrOperand, this is the PrinterMethodName for the operand.. /// For isLiteralStatementOperand, this is the code to insert verbatim /// into the asm writer. std::string Str; /// CGIOpNo - For isMachineInstrOperand, this is the index of the operand in /// the CodeGenInstruction. unsigned CGIOpNo; /// MiOpNo - For isMachineInstrOperand, this is the operand number of the /// machine instruction. unsigned MIOpNo; /// MiModifier - For isMachineInstrOperand, this is the modifier string for /// an operand, specified with syntax like ${opname:modifier}. std::string MiModifier; // PassSubtarget - Pass MCSubtargetInfo to the print method if this is // equal to 1. // FIXME: Remove after all ports are updated. unsigned PassSubtarget; // To make VS STL happy AsmWriterOperand(OpType op = isLiteralTextOperand):OperandType(op) {} AsmWriterOperand(const std::string &LitStr, OpType op = isLiteralTextOperand) : OperandType(op), Str(LitStr) {} AsmWriterOperand(const std::string &Printer, unsigned _CGIOpNo, unsigned _MIOpNo, const std::string &Modifier, unsigned PassSubtarget, OpType op = isMachineInstrOperand) : OperandType(op), Str(Printer), CGIOpNo(_CGIOpNo), MIOpNo(_MIOpNo), MiModifier(Modifier), PassSubtarget(PassSubtarget) {} bool operator!=(const AsmWriterOperand &Other) const { if (OperandType != Other.OperandType || Str != Other.Str) return true; if (OperandType == isMachineInstrOperand) return MIOpNo != Other.MIOpNo || MiModifier != Other.MiModifier; return false; } bool operator==(const AsmWriterOperand &Other) const { return !operator!=(Other); } /// getCode - Return the code that prints this operand. std::string getCode() const; }; class AsmWriterInst { public: std::vector<AsmWriterOperand> Operands; const CodeGenInstruction *CGI; AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant, unsigned PassSubtarget); /// MatchesAllButOneOp - If this instruction is exactly identical to the /// specified instruction except for one differing operand, return the /// differing operand number. Otherwise return ~0. unsigned MatchesAllButOneOp(const AsmWriterInst &Other) const; private: void AddLiteralString(const std::string &Str) { // If the last operand was already a literal text string, append this to // it, otherwise add a new operand. if (!Operands.empty() && Operands.back().OperandType == AsmWriterOperand::isLiteralTextOperand) Operands.back().Str.append(Str); else Operands.push_back(AsmWriterOperand(Str)); } }; } #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenTarget.cpp
//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class wraps target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes abort on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenIntrinsics.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include <algorithm> using namespace llvm; static cl::opt<unsigned> AsmParserNum("asmparsernum", cl::init(0), cl::desc("Make -gen-asm-parser emit assembly parser #N")); static cl::opt<unsigned> AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N")); /// getValueType - Return the MVT::SimpleValueType that the specified TableGen /// record corresponds to. MVT::SimpleValueType llvm::getValueType(Record *Rec) { return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); } std::string llvm::getName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "UNKNOWN"; case MVT::iPTR: return "TLI.getPointerTy()"; case MVT::iPTRAny: return "TLI.getPointerTy()"; default: return getEnumName(T); } } std::string llvm::getEnumName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "MVT::Other"; case MVT::i1: return "MVT::i1"; case MVT::i8: return "MVT::i8"; case MVT::i16: return "MVT::i16"; case MVT::i32: return "MVT::i32"; case MVT::i64: return "MVT::i64"; case MVT::i128: return "MVT::i128"; case MVT::Any: return "MVT::Any"; case MVT::iAny: return "MVT::iAny"; case MVT::fAny: return "MVT::fAny"; case MVT::vAny: return "MVT::vAny"; case MVT::f16: return "MVT::f16"; case MVT::f32: return "MVT::f32"; case MVT::f64: return "MVT::f64"; case MVT::f80: return "MVT::f80"; case MVT::f128: return "MVT::f128"; case MVT::ppcf128: return "MVT::ppcf128"; case MVT::x86mmx: return "MVT::x86mmx"; case MVT::Glue: return "MVT::Glue"; case MVT::isVoid: return "MVT::isVoid"; case MVT::v2i1: return "MVT::v2i1"; case MVT::v4i1: return "MVT::v4i1"; case MVT::v8i1: return "MVT::v8i1"; case MVT::v16i1: return "MVT::v16i1"; case MVT::v32i1: return "MVT::v32i1"; case MVT::v64i1: return "MVT::v64i1"; case MVT::v1i8: return "MVT::v1i8"; case MVT::v2i8: return "MVT::v2i8"; case MVT::v4i8: return "MVT::v4i8"; case MVT::v8i8: return "MVT::v8i8"; case MVT::v16i8: return "MVT::v16i8"; case MVT::v32i8: return "MVT::v32i8"; case MVT::v64i8: return "MVT::v64i8"; case MVT::v1i16: return "MVT::v1i16"; case MVT::v2i16: return "MVT::v2i16"; case MVT::v4i16: return "MVT::v4i16"; case MVT::v8i16: return "MVT::v8i16"; case MVT::v16i16: return "MVT::v16i16"; case MVT::v32i16: return "MVT::v32i16"; case MVT::v1i32: return "MVT::v1i32"; case MVT::v2i32: return "MVT::v2i32"; case MVT::v4i32: return "MVT::v4i32"; case MVT::v8i32: return "MVT::v8i32"; case MVT::v16i32: return "MVT::v16i32"; case MVT::v1i64: return "MVT::v1i64"; case MVT::v2i64: return "MVT::v2i64"; case MVT::v4i64: return "MVT::v4i64"; case MVT::v8i64: return "MVT::v8i64"; case MVT::v16i64: return "MVT::v16i64"; case MVT::v1i128: return "MVT::v1i128"; case MVT::v2f16: return "MVT::v2f16"; case MVT::v4f16: return "MVT::v4f16"; case MVT::v8f16: return "MVT::v8f16"; case MVT::v1f32: return "MVT::v1f32"; case MVT::v2f32: return "MVT::v2f32"; case MVT::v4f32: return "MVT::v4f32"; case MVT::v8f32: return "MVT::v8f32"; case MVT::v16f32: return "MVT::v16f32"; case MVT::v1f64: return "MVT::v1f64"; case MVT::v2f64: return "MVT::v2f64"; case MVT::v4f64: return "MVT::v4f64"; case MVT::v8f64: return "MVT::v8f64"; case MVT::Metadata: return "MVT::Metadata"; case MVT::iPTR: return "MVT::iPTR"; case MVT::iPTRAny: return "MVT::iPTRAny"; case MVT::Untyped: return "MVT::Untyped"; default: llvm_unreachable("ILLEGAL VALUE TYPE!"); } } /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. /// std::string llvm::getQualifiedName(const Record *R) { std::string Namespace; if (R->getValue("Namespace")) Namespace = R->getValueAsString("Namespace"); if (Namespace.empty()) return R->getName(); return Namespace + "::" + R->getName(); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget(RecordKeeper &records) : Records(records) { std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) PrintFatalError("ERROR: No 'Target' subclasses defined!"); if (Targets.size() != 1) PrintFatalError("ERROR: Multiple subclasses of Target defined!"); TargetRec = Targets[0]; } CodeGenTarget::~CodeGenTarget() { } const std::string &CodeGenTarget::getName() const { return TargetRec->getName(); } std::string CodeGenTarget::getInstNamespace() const { for (const CodeGenInstruction *Inst : instructions()) { // Make sure not to pick up "TargetOpcode" by accidentally getting // the namespace off the PHI instruction or something. if (Inst->Namespace != "TargetOpcode") return Inst->Namespace; } return ""; } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *CodeGenTarget::getAsmParser() const { std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); if (AsmParserNum >= LI.size()) PrintFatalError("Target does not have an AsmParser #" + Twine(AsmParserNum) + "!"); return LI[AsmParserNum]; } /// getAsmParserVariant - Return the AssmblyParserVariant definition for /// this target. /// Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); if (i >= LI.size()) PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + "!"); return LI[i]; } /// getAsmParserVariantCount - Return the AssmblyParserVariant definition /// available for this target. /// unsigned CodeGenTarget::getAsmParserVariantCount() const { std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); return LI.size(); } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) PrintFatalError("Target does not have an AsmWriter #" + Twine(AsmWriterNum) + "!"); return LI[AsmWriterNum]; } CodeGenRegBank &CodeGenTarget::getRegBank() const { if (!RegBank) RegBank = llvm::make_unique<CodeGenRegBank>(Records); return *RegBank; } void CodeGenTarget::ReadRegAltNameIndices() const { RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); } /// getRegisterByName - If there is a register with the specific AsmName, /// return it. const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); if (I == Regs.end()) return nullptr; return I->second; } std::vector<MVT::SimpleValueType> CodeGenTarget:: getRegisterVTs(Record *R) const { const CodeGenRegister *Reg = getRegBank().getReg(R); std::vector<MVT::SimpleValueType> Result; for (const auto &RC : getRegBank().getRegClasses()) { if (RC.contains(Reg)) { ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); Result.insert(Result.end(), InVTs.begin(), InVTs.end()); } } // Remove duplicates. array_pod_sort(Result.begin(), Result.end()); Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); return Result; } void CodeGenTarget::ReadLegalValueTypes() const { for (const auto &RC : getRegBank().getRegClasses()) LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); // Remove duplicates. std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), LegalValueTypes.end()), LegalValueTypes.end()); } CodeGenSchedModels &CodeGenTarget::getSchedModels() const { if (!SchedModels) SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); return *SchedModels; } void CodeGenTarget::ReadInstructions() const { std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) PrintFatalError("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. for (unsigned i = 0, e = Insts.size(); i != e; ++i) Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); } static const CodeGenInstruction * GetInstByName(const char *Name, const DenseMap<const Record*, std::unique_ptr<CodeGenInstruction>> &Insts, RecordKeeper &Records) { const Record *Rec = Records.getDef(Name); const auto I = Insts.find(Rec); if (!Rec || I == Insts.end()) PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); return I->second.get(); } /// \brief Return all of the instructions defined by the target, ordered by /// their enum value. void CodeGenTarget::ComputeInstrsByEnum() const { // The ordering here must match the ordering in TargetOpcodes.h. static const char *const FixedInstrs[] = { "PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL", "GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG", "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE", "REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START", "LIFETIME_END", "STACKMAP", "PATCHPOINT", "LOAD_STACK_GUARD", "STATEPOINT", "LOCAL_ESCAPE", "FAULTING_LOAD_OP", nullptr}; const auto &Insts = getInstructions(); for (const char *const *p = FixedInstrs; *p; ++p) { const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); assert(Instr && "Missing target independent instruction"); assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); InstrsByEnum.push_back(Instr); } unsigned EndOfPredefines = InstrsByEnum.size(); for (const auto &I : Insts) { const CodeGenInstruction *CGI = I.second.get(); if (CGI->Namespace != "TargetOpcode") InstrsByEnum.push_back(CGI); } assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); // All of the instructions are now in random order based on the map iteration. // Sort them by name. std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { return Rec1->TheDef->getName() < Rec2->TheDef->getName(); }); } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit /// encodings, reverse the bit order of all instructions. void CodeGenTarget::reverseBitsForLittleEndianEncoding() { if (!isLittleEndianEncoding()) return; std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); for (Record *R : Insts) { if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); unsigned numBits = BI->getNumBits(); SmallVector<Init *, 16> NewBits(numBits); for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { unsigned bitSwapIdx = numBits - bit - 1; Init *OrigBit = BI->getBit(bit); Init *BitSwap = BI->getBit(bitSwapIdx); NewBits[bit] = BitSwap; NewBits[bitSwapIdx] = OrigBit; } if (numBits % 2) { unsigned middle = (numBits + 1) / 2; NewBits[middle] = BI->getBit(middle); } BitsInit *NewBI = BitsInit::get(NewBits); // Update the bits in reversed order so that emitInstrOpBits will get the // correct endianness. R->getValue("Inst")->setValue(NewBI); } } /// guessInstructionProperties - Return true if it's OK to guess instruction /// properties instead of raising an error. /// /// This is configurable as a temporary migration aid. It will eventually be /// permanently false. bool CodeGenTarget::guessInstructionProperties() const { return getInstructionSet()->getValueAsBit("guessInstructionProperties"); } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = ::getValueType(R->getValueAsDef("Ty")); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = R->getValueAsString("SelectFunc"); RootNodes = R->getValueAsListOfDefs("RootNodes"); // Parse the properties. Properties = 0; std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else if (PropList[i]->getName() == "SDNPWantRoot") { Properties |= 1 << SDNPWantRoot; } else if (PropList[i]->getName() == "SDNPWantParent") { Properties |= 1 << SDNPWantParent; } else { PrintFatalError("Unsupported SD Node property '" + PropList[i]->getName() + "' on ComplexPattern '" + R->getName() + "'!"); } } //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC, bool TargetOnly) { std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic"); std::vector<CodeGenIntrinsic> Result; for (unsigned i = 0, e = I.size(); i != e; ++i) { bool isTarget = I[i]->getValueAsBit("isTarget"); if (isTarget == TargetOnly) Result.push_back(CodeGenIntrinsic(I[i])); } return Result; } CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { TheDef = R; std::string DefName = R->getName(); ModRef = ReadWriteMem; isOverloaded = false; isCommutative = false; canThrow = false; isNoReturn = false; isNoDuplicate = false; isConvergent = false; if (DefName.size() <= 4 || std::string(DefName.begin(), DefName.begin() + 4) != "int_") PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); EnumName = std::string(DefName.begin()+4, DefName.end()); if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. MSBuiltinName = R->getValueAsString("MSBuiltinName"); TargetPrefix = R->getValueAsString("TargetPrefix"); Name = R->getValueAsString("LLVMName"); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm."; for (unsigned i = 0, e = EnumName.size(); i != e; ++i) Name += (EnumName[i] == '_') ? '.' : EnumName[i]; } else { // Verify it starts with "llvm.". if (Name.size() <= 5 || std::string(Name.begin(), Name.begin() + 5) != "llvm.") PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); } // If TargetPrefix is specified, make sure that Name starts with // "llvm.<targetprefix>.". if (!TargetPrefix.empty()) { if (Name.size() < 6+TargetPrefix.size() || std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) != (TargetPrefix + ".")) PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"); } // Parse the list of return types. std::vector<MVT::SimpleValueType> OverloadedVTs; ListInit *TypeList = R->getValueAsListInit("RetTypes"); for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else { VT = getValueType(TyEl->getValueAsDef("VT")); } if (MVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded = true; } // Reject invalid types. if (VT == MVT::isVoid) PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); IS.RetVTs.push_back(VT); IS.RetTypeDefs.push_back(TyEl); } // Parse the list of parameter types. TypeList = R->getValueAsListInit("ParamTypes"); for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType") && !TyEl->isSubClassOf("LLVMVectorSameWidth") && !TyEl->isSubClassOf("LLVMPointerToElt")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else VT = getValueType(TyEl->getValueAsDef("VT")); if (MVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded = true; } // Reject invalid types. if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); IS.ParamVTs.push_back(VT); IS.ParamTypeDefs.push_back(TyEl); } // Parse the intrinsic properties. ListInit *PropList = R->getValueAsListInit("Properties"); for (unsigned i = 0, e = PropList->size(); i != e; ++i) { Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); if (Property->getName() == "IntrNoMem") ModRef = NoMem; else if (Property->getName() == "IntrReadArgMem") ModRef = ReadArgMem; else if (Property->getName() == "IntrReadMem") ModRef = ReadMem; else if (Property->getName() == "IntrReadWriteArgMem") ModRef = ReadWriteArgMem; else if (Property->getName() == "Commutative") isCommutative = true; else if (Property->getName() == "Throws") canThrow = true; else if (Property->getName() == "IntrNoDuplicate") isNoDuplicate = true; else if (Property->getName() == "IntrConvergent") isConvergent = true; else if (Property->getName() == "IntrNoReturn") isNoReturn = true; else if (Property->isSubClassOf("NoCapture")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); } else if (Property->isSubClassOf("ReadOnly")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); } else if (Property->isSubClassOf("ReadNone")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); } else llvm_unreachable("Unknown property!"); } // Sort the argument attributes for later benefit. std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/TableGenBackends.h
//===- TableGenBackends.h - Declarations for LLVM TableGen Backends -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations for all of the LLVM TableGen // backends. A "TableGen backend" is just a function. See below for a // precise description. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_TABLEGENBACKENDS_H #define LLVM_UTILS_TABLEGEN_TABLEGENBACKENDS_H // A TableGen backend is a function that looks like // // EmitFoo(RecordKeeper &RK, raw_ostream &OS /*, anything else you need */ ) // // What you do inside of that function is up to you, but it will usually // involve generating C++ code to the provided raw_ostream. // // The RecordKeeper is just a top-level container for an in-memory // representation of the data encoded in the TableGen file. What a TableGen // backend does is walk around that in-memory representation and generate // stuff based on the information it contains. // // The in-memory representation is a node-graph (think of it like JSON but // with a richer ontology of types), where the nodes are subclasses of // Record. The methods `getClass`, `getDef` are the basic interface to // access the node-graph. RecordKeeper also provides a handy method // `getAllDerivedDefinitions`. Consult "include/llvm/TableGen/Record.h" for // the exact interfaces provided by Record's and RecordKeeper. // // A common pattern for TableGen backends is for the EmitFoo function to // instantiate a class which holds some context for the generation process, // and then have most of the work happen in that class's methods. This // pattern partly has historical roots in the previous TableGen backend API // that involved a class and an invocation like `FooEmitter(RK).run(OS)`. // // Remember to wrap private things in an anonymous namespace. For most // backends, this means that the EmitFoo function is the only thing not in // the anonymous namespace. // FIXME: Reorganize TableGen so that build dependencies can be more // accurately expressed. Currently, touching any of the emitters (or // anything that they transitively depend on) causes everything dependent // on TableGen to be rebuilt (this includes all the targets!). Perhaps have // a standalone TableGen binary and have the backends be loadable modules // of some sort; then the dependency could be expressed as being on the // module, and all the modules would have a common dependency on the // TableGen binary with as few dependencies as possible on the rest of // LLVM. namespace llvm { class raw_ostream; class RecordKeeper; void EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly = false); void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS); void EmitAsmWriter(RecordKeeper &RK, raw_ostream &OS); void EmitCallingConv(RecordKeeper &RK, raw_ostream &OS); void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS); void EmitDAGISel(RecordKeeper &RK, raw_ostream &OS); void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS); void EmitDisassembler(RecordKeeper &RK, raw_ostream &OS); void EmitFastISel(RecordKeeper &RK, raw_ostream &OS); void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS); void EmitPseudoLowering(RecordKeeper &RK, raw_ostream &OS); void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS); void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS); void EmitMapTable(RecordKeeper &RK, raw_ostream &OS); void EmitOptParser(RecordKeeper &RK, raw_ostream &OS); void EmitCTags(RecordKeeper &RK, raw_ostream &OS); } // End llvm namespace #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelEmitter.cpp
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "DAGISelMatcher.h" #include "llvm/Support/Debug.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; #define DEBUG_TYPE "dag-isel-emitter" namespace { /// DAGISelEmitter - The top-level class which coordinates construction /// and emission of the instruction selector. class DAGISelEmitter { CodeGenDAGPatterns CGP; public: explicit DAGISelEmitter(RecordKeeper &R) : CGP(R) {} void run(raw_ostream &OS); }; } // End anonymous namespace //===----------------------------------------------------------------------===// // DAGISelEmitter Helper methods // /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. static unsigned getResultPatternCost(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); if (II.usesCustomInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternCost(P->getChild(i), CGP); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. static unsigned getResultPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternSize(P->getChild(i), CGP); return Cost; } namespace { // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} CodeGenDAGPatterns &CGP; bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) { const TreePatternNode *LHSSrc = LHS->getSrcPattern(); const TreePatternNode *RHSSrc = RHS->getSrcPattern(); MVT LHSVT = (LHSSrc->getNumTypes() != 0 ? LHSSrc->getType(0) : MVT::Other); MVT RHSVT = (RHSSrc->getNumTypes() != 0 ? RHSSrc->getType(0) : MVT::Other); if (LHSVT.isVector() != RHSVT.isVector()) return RHSVT.isVector(); if (LHSVT.isFloatingPoint() != RHSVT.isFloatingPoint()) return RHSVT.isFloatingPoint(); // Otherwise, if the patterns might both match, sort based on complexity, // which means that we prefer to match patterns that cover more nodes in the // input over nodes that cover fewer. int LHSSize = LHS->getPatternComplexity(CGP); int RHSSize = RHS->getPatternComplexity(CGP); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP); unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP); if (LHSPatSize < RHSPatSize) return true; if (LHSPatSize > RHSPatSize) return false; // Sort based on the UID of the pattern, giving us a deterministic ordering // if all other sorting conditions fail. assert(LHS == RHS || LHS->ID != RHS->ID); return LHS->ID < RHS->ID; } }; } // End anonymous namespace void DAGISelEmitter::run(raw_ostream &OS) { emitSourceFileHeader("DAG Instruction Selector for the " + CGP.getTargetInfo().getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { errs() << "PATTERN: "; I->getSrcPattern()->dump(); errs() << "\nRESULT: "; I->getDstPattern()->dump(); errs() << "\n"; }); // Add all the patterns to a temporary list so we can sort them. std::vector<const PatternToMatch*> Patterns; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) Patterns.push_back(&*I); // We want to process the matches in order of minimal cost. Sort the patterns // so the least cost one is at the start. std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP)); // Convert each variant of each pattern into a Matcher. std::vector<Matcher*> PatternMatchers; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { for (unsigned Variant = 0; ; ++Variant) { if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP)) PatternMatchers.push_back(M); else break; } } std::unique_ptr<Matcher> TheMatcher = llvm::make_unique<ScopeMatcher>(PatternMatchers); OptimizeMatcher(TheMatcher, CGP); //Matcher->dump(); EmitMatcherTable(TheMatcher.get(), CGP, OS); } namespace llvm { void EmitDAGISel(RecordKeeper &RK, raw_ostream &OS) { DAGISelEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86ModRMFilters.h
//===- X86ModRMFilters.h - Disassembler ModR/M filterss ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains ModR/M filters that determine which values of the ModR/M byte // are valid for a partiuclar instruction. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_X86MODRMFILTERS_H #define LLVM_UTILS_TABLEGEN_X86MODRMFILTERS_H #include "llvm/Support/DataTypes.h" namespace llvm { namespace X86Disassembler { /// ModRMFilter - Abstract base class for clases that recognize patterns in /// ModR/M bytes. class ModRMFilter { virtual void anchor(); public: /// Destructor - Override as necessary. virtual ~ModRMFilter() { } /// isDumb - Indicates whether this filter returns the same value for /// any value of the ModR/M byte. /// /// @result - True if the filter returns the same value for any ModR/M /// byte; false if not. virtual bool isDumb() const { return false; } /// accepts - Indicates whether the filter accepts a particular ModR/M /// byte value. /// /// @result - True if the filter accepts the ModR/M byte; false if not. virtual bool accepts(uint8_t modRM) const = 0; }; /// DumbFilter - Accepts any ModR/M byte. Used for instructions that do not /// require a ModR/M byte or instructions where the entire ModR/M byte is used /// for operands. class DumbFilter : public ModRMFilter { void anchor() override; public: bool isDumb() const override { return true; } bool accepts(uint8_t modRM) const override { return true; } }; /// ModFilter - Filters based on the mod bits [bits 7-6] of the ModR/M byte. /// Some instructions are classified based on whether they are 11 or anything /// else. This filter performs that classification. class ModFilter : public ModRMFilter { void anchor() override; bool R; public: /// Constructor /// /// \param r True if the mod bits of the ModR/M byte must be 11; false /// otherwise. The name r derives from the fact that the mod /// bits indicate whether the R/M bits [bits 2-0] signify a /// register or a memory operand. ModFilter(bool r) : ModRMFilter(), R(r) { } bool accepts(uint8_t modRM) const override { return (R == ((modRM & 0xc0) == 0xc0)); } }; /// ExtendedFilter - Extended opcodes are classified based on the value of the /// mod field [bits 7-6] and the value of the nnn field [bits 5-3]. class ExtendedFilter : public ModRMFilter { void anchor() override; bool R; uint8_t NNN; public: /// Constructor /// /// \param r True if the mod field must be set to 11; false otherwise. /// The name is explained at ModFilter. /// \param nnn The required value of the nnn field. ExtendedFilter(bool r, uint8_t nnn) : ModRMFilter(), R(r), NNN(nnn) { } bool accepts(uint8_t modRM) const override { return (((R && ((modRM & 0xc0) == 0xc0)) || (!R && ((modRM & 0xc0) != 0xc0))) && (((modRM & 0x38) >> 3) == NNN)); } }; /// ExactFilter - The occasional extended opcode (such as VMCALL or MONITOR) /// requires the ModR/M byte to have a specific value. class ExactFilter : public ModRMFilter { void anchor() override; uint8_t ModRM; public: /// Constructor /// /// \param modRM The required value of the full ModR/M byte. ExactFilter(uint8_t modRM) : ModRMFilter(), ModRM(modRM) { } bool accepts(uint8_t modRM) const override { return (ModRM == modRM); } }; } // namespace X86Disassembler } // namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/PseudoLoweringEmitter.cpp
//===- PseudoLoweringEmitter.cpp - PseudoLowering Generator -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <vector> using namespace llvm; #define DEBUG_TYPE "pseudo-lowering" namespace { class PseudoLoweringEmitter { struct OpData { enum MapKind { Operand, Imm, Reg }; MapKind Kind; union { unsigned Operand; // Operand number mapped to. uint64_t Imm; // Integer immedate value. Record *Reg; // Physical register. } Data; }; struct PseudoExpansion { CodeGenInstruction Source; // The source pseudo instruction definition. CodeGenInstruction Dest; // The destination instruction to lower to. IndexedMap<OpData> OperandMap; PseudoExpansion(CodeGenInstruction &s, CodeGenInstruction &d, IndexedMap<OpData> &m) : Source(s), Dest(d), OperandMap(m) {} }; RecordKeeper &Records; // It's overkill to have an instance of the full CodeGenTarget object, // but it loads everything on demand, not in the constructor, so it's // lightweight in performance, so it works out OK. CodeGenTarget Target; SmallVector<PseudoExpansion, 64> Expansions; unsigned addDagOperandMapping(Record *Rec, DagInit *Dag, CodeGenInstruction &Insn, IndexedMap<OpData> &OperandMap, unsigned BaseIdx); void evaluateExpansion(Record *Pseudo); void emitLoweringEmitter(raw_ostream &o); public: PseudoLoweringEmitter(RecordKeeper &R) : Records(R), Target(R) {} /// run - Output the pseudo-lowerings. void run(raw_ostream &o); }; } // End anonymous namespace // FIXME: This pass currently can only expand a pseudo to a single instruction. // The pseudo expansion really should take a list of dags, not just // a single dag, so we can do fancier things. unsigned PseudoLoweringEmitter:: addDagOperandMapping(Record *Rec, DagInit *Dag, CodeGenInstruction &Insn, IndexedMap<OpData> &OperandMap, unsigned BaseIdx) { unsigned OpsAdded = 0; for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { if (DefInit *DI = dyn_cast<DefInit>(Dag->getArg(i))) { // Physical register reference. Explicit check for the special case // "zero_reg" definition. if (DI->getDef()->isSubClassOf("Register") || DI->getDef()->getName() == "zero_reg") { OperandMap[BaseIdx + i].Kind = OpData::Reg; OperandMap[BaseIdx + i].Data.Reg = DI->getDef(); ++OpsAdded; continue; } // Normal operands should always have the same type, or we have a // problem. // FIXME: We probably shouldn't ever get a non-zero BaseIdx here. assert(BaseIdx == 0 && "Named subargument in pseudo expansion?!"); if (DI->getDef() != Insn.Operands[BaseIdx + i].Rec) PrintFatalError(Rec->getLoc(), "Pseudo operand type '" + DI->getDef()->getName() + "' does not match expansion operand type '" + Insn.Operands[BaseIdx + i].Rec->getName() + "'"); // Source operand maps to destination operand. The Data element // will be filled in later, just set the Kind for now. Do it // for each corresponding MachineInstr operand, not just the first. for (unsigned I = 0, E = Insn.Operands[i].MINumOperands; I != E; ++I) OperandMap[BaseIdx + i + I].Kind = OpData::Operand; OpsAdded += Insn.Operands[i].MINumOperands; } else if (IntInit *II = dyn_cast<IntInit>(Dag->getArg(i))) { OperandMap[BaseIdx + i].Kind = OpData::Imm; OperandMap[BaseIdx + i].Data.Imm = II->getValue(); ++OpsAdded; } else if (DagInit *SubDag = dyn_cast<DagInit>(Dag->getArg(i))) { // Just add the operands recursively. This is almost certainly // a constant value for a complex operand (> 1 MI operand). unsigned NewOps = addDagOperandMapping(Rec, SubDag, Insn, OperandMap, BaseIdx + i); OpsAdded += NewOps; // Since we added more than one, we also need to adjust the base. BaseIdx += NewOps - 1; } else llvm_unreachable("Unhandled pseudo-expansion argument type!"); } return OpsAdded; } void PseudoLoweringEmitter::evaluateExpansion(Record *Rec) { DEBUG(dbgs() << "Pseudo definition: " << Rec->getName() << "\n"); // Validate that the result pattern has the corrent number and types // of arguments for the instruction it references. DagInit *Dag = Rec->getValueAsDag("ResultInst"); assert(Dag && "Missing result instruction in pseudo expansion!"); DEBUG(dbgs() << " Result: " << *Dag << "\n"); DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); if (!OpDef) PrintFatalError(Rec->getLoc(), Rec->getName() + " has unexpected operator type!"); Record *Operator = OpDef->getDef(); if (!Operator->isSubClassOf("Instruction")) PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() + "' is not an instruction!"); CodeGenInstruction Insn(Operator); if (Insn.isCodeGenOnly || Insn.isPseudo) PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() + "' cannot be another pseudo instruction!"); if (Insn.Operands.size() != Dag->getNumArgs()) PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() + "' operand count mismatch"); unsigned NumMIOperands = 0; for (unsigned i = 0, e = Insn.Operands.size(); i != e; ++i) NumMIOperands += Insn.Operands[i].MINumOperands; IndexedMap<OpData> OperandMap; OperandMap.grow(NumMIOperands); addDagOperandMapping(Rec, Dag, Insn, OperandMap, 0); // If there are more operands that weren't in the DAG, they have to // be operands that have default values, or we have an error. Currently, // Operands that are a subclass of OperandWithDefaultOp have default values. // Validate that each result pattern argument has a matching (by name) // argument in the source instruction, in either the (outs) or (ins) list. // Also check that the type of the arguments match. // // Record the mapping of the source to result arguments for use by // the lowering emitter. CodeGenInstruction SourceInsn(Rec); StringMap<unsigned> SourceOperands; for (unsigned i = 0, e = SourceInsn.Operands.size(); i != e; ++i) SourceOperands[SourceInsn.Operands[i].Name] = i; DEBUG(dbgs() << " Operand mapping:\n"); for (unsigned i = 0, e = Insn.Operands.size(); i != e; ++i) { // We've already handled constant values. Just map instruction operands // here. if (OperandMap[Insn.Operands[i].MIOperandNo].Kind != OpData::Operand) continue; StringMap<unsigned>::iterator SourceOp = SourceOperands.find(Dag->getArgName(i)); if (SourceOp == SourceOperands.end()) PrintFatalError(Rec->getLoc(), "Pseudo output operand '" + Dag->getArgName(i) + "' has no matching source operand."); // Map the source operand to the destination operand index for each // MachineInstr operand. for (unsigned I = 0, E = Insn.Operands[i].MINumOperands; I != E; ++I) OperandMap[Insn.Operands[i].MIOperandNo + I].Data.Operand = SourceOp->getValue(); DEBUG(dbgs() << " " << SourceOp->getValue() << " ==> " << i << "\n"); } Expansions.push_back(PseudoExpansion(SourceInsn, Insn, OperandMap)); } void PseudoLoweringEmitter::emitLoweringEmitter(raw_ostream &o) { // Emit file header. emitSourceFileHeader("Pseudo-instruction MC lowering Source Fragment", o); o << "bool " << Target.getName() + "AsmPrinter" << "::\n" << "emitPseudoExpansionLowering(MCStreamer &OutStreamer,\n" << " const MachineInstr *MI) {\n"; if (!Expansions.empty()) { o << " switch (MI->getOpcode()) {\n" << " default: return false;\n"; for (auto &Expansion : Expansions) { CodeGenInstruction &Source = Expansion.Source; CodeGenInstruction &Dest = Expansion.Dest; o << " case " << Source.Namespace << "::" << Source.TheDef->getName() << ": {\n" << " MCInst TmpInst;\n" << " MCOperand MCOp;\n" << " TmpInst.setOpcode(" << Dest.Namespace << "::" << Dest.TheDef->getName() << ");\n"; // Copy the operands from the source instruction. // FIXME: Instruction operands with defaults values (predicates and cc_out // in ARM, for example shouldn't need explicit values in the // expansion DAG. unsigned MIOpNo = 0; for (const auto &DestOperand : Dest.Operands) { o << " // Operand: " << DestOperand.Name << "\n"; for (unsigned i = 0, e = DestOperand.MINumOperands; i != e; ++i) { switch (Expansion.OperandMap[MIOpNo + i].Kind) { case OpData::Operand: o << " lowerOperand(MI->getOperand(" << Source.Operands[Expansion.OperandMap[MIOpNo].Data .Operand].MIOperandNo + i << "), MCOp);\n" << " TmpInst.addOperand(MCOp);\n"; break; case OpData::Imm: o << " TmpInst.addOperand(MCOperand::createImm(" << Expansion.OperandMap[MIOpNo + i].Data.Imm << "));\n"; break; case OpData::Reg: { Record *Reg = Expansion.OperandMap[MIOpNo + i].Data.Reg; o << " TmpInst.addOperand(MCOperand::createReg("; // "zero_reg" is special. if (Reg->getName() == "zero_reg") o << "0"; else o << Reg->getValueAsString("Namespace") << "::" << Reg->getName(); o << "));\n"; break; } } } MIOpNo += DestOperand.MINumOperands; } if (Dest.Operands.isVariadic) { MIOpNo = Source.Operands.size() + 1; o << " // variable_ops\n"; o << " for (unsigned i = " << MIOpNo << ", e = MI->getNumOperands(); i != e; ++i)\n" << " if (lowerOperand(MI->getOperand(i), MCOp))\n" << " TmpInst.addOperand(MCOp);\n"; } o << " EmitToStreamer(OutStreamer, TmpInst);\n" << " break;\n" << " }\n"; } o << " }\n return true;"; } else o << " return false;"; o << "\n}\n\n"; } void PseudoLoweringEmitter::run(raw_ostream &o) { Record *ExpansionClass = Records.getClass("PseudoInstExpansion"); Record *InstructionClass = Records.getClass("Instruction"); assert(ExpansionClass && "PseudoInstExpansion class definition missing!"); assert(InstructionClass && "Instruction class definition missing!"); std::vector<Record*> Insts; for (const auto &D : Records.getDefs()) { if (D.second->isSubClassOf(ExpansionClass) && D.second->isSubClassOf(InstructionClass)) Insts.push_back(D.second.get()); } // Process the pseudo expansion definitions, validating them as we do so. for (unsigned i = 0, e = Insts.size(); i != e; ++i) evaluateExpansion(Insts[i]); // Generate expansion code to lower the pseudo to an MCInst of the real // instruction. emitLoweringEmitter(o); } namespace llvm { void EmitPseudoLowering(RecordKeeper &RK, raw_ostream &OS) { PseudoLoweringEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelMatcher.h
//===- DAGISelMatcher.h - Representation of DAG pattern matcher -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_DAGISELMATCHER_H #define LLVM_UTILS_TABLEGEN_DAGISELMATCHER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/Support/Casting.h" namespace llvm { struct CodeGenRegister; class CodeGenDAGPatterns; class Matcher; class PatternToMatch; class raw_ostream; class ComplexPattern; class Record; class SDNodeInfo; class TreePredicateFn; class TreePattern; Matcher *ConvertPatternToMatcher(const PatternToMatch &Pattern,unsigned Variant, const CodeGenDAGPatterns &CGP); void OptimizeMatcher(std::unique_ptr<Matcher> &Matcher, const CodeGenDAGPatterns &CGP); void EmitMatcherTable(const Matcher *Matcher, const CodeGenDAGPatterns &CGP, raw_ostream &OS); /// Matcher - Base class for all the DAG ISel Matcher representation /// nodes. class Matcher { // The next matcher node that is executed after this one. Null if this is the // last stage of a match. std::unique_ptr<Matcher> Next; virtual void anchor(); public: enum KindTy { // Matcher state manipulation. Scope, // Push a checking scope. RecordNode, // Record the current node. RecordChild, // Record a child of the current node. RecordMemRef, // Record the memref in the current node. CaptureGlueInput, // If the current node has an input glue, save it. MoveChild, // Move current node to specified child. MoveParent, // Move current node to parent. // Predicate checking. CheckSame, // Fail if not same as prev match. CheckChildSame, // Fail if child not same as prev match. CheckPatternPredicate, CheckPredicate, // Fail if node predicate fails. CheckOpcode, // Fail if not opcode. SwitchOpcode, // Dispatch based on opcode. CheckType, // Fail if not correct type. SwitchType, // Dispatch based on type. CheckChildType, // Fail if child has wrong type. CheckInteger, // Fail if wrong val. CheckChildInteger, // Fail if child is wrong val. CheckCondCode, // Fail if not condcode. CheckValueType, CheckComplexPat, CheckAndImm, CheckOrImm, CheckFoldableChainNode, // Node creation/emisssion. EmitInteger, // Create a TargetConstant EmitStringInteger, // Create a TargetConstant from a string. EmitRegister, // Create a register. EmitConvertToTarget, // Convert a imm/fpimm to target imm/fpimm EmitMergeInputChains, // Merge together a chains for an input. EmitCopyToReg, // Emit a copytoreg into a physreg. EmitNode, // Create a DAG node EmitNodeXForm, // Run a SDNodeXForm MarkGlueResults, // Indicate which interior nodes have glue results. CompleteMatch, // Finish a match and update the results. MorphNodeTo // Build a node, finish a match and update results. }; const KindTy Kind; protected: Matcher(KindTy K) : Kind(K) {} public: virtual ~Matcher() {} KindTy getKind() const { return Kind; } Matcher *getNext() { return Next.get(); } const Matcher *getNext() const { return Next.get(); } void setNext(Matcher *C) { Next.reset(C); } Matcher *takeNext() { return Next.release(); } std::unique_ptr<Matcher> &getNextPtr() { return Next; } bool isEqual(const Matcher *M) const { if (getKind() != M->getKind()) return false; return isEqualImpl(M); } unsigned getHash() const { // Clear the high bit so we don't conflict with tombstones etc. return ((getHashImpl() << 4) ^ getKind()) & (~0U>>1); } /// isSafeToReorderWithPatternPredicate - Return true if it is safe to sink a /// PatternPredicate node past this one. virtual bool isSafeToReorderWithPatternPredicate() const { return false; } /// isSimplePredicateNode - Return true if this is a simple predicate that /// operates on the node or its children without potential side effects or a /// change of the current node. bool isSimplePredicateNode() const { switch (getKind()) { default: return false; case CheckSame: case CheckChildSame: case CheckPatternPredicate: case CheckPredicate: case CheckOpcode: case CheckType: case CheckChildType: case CheckInteger: case CheckChildInteger: case CheckCondCode: case CheckValueType: case CheckAndImm: case CheckOrImm: case CheckFoldableChainNode: return true; } } /// isSimplePredicateOrRecordNode - Return true if this is a record node or /// a simple predicate. bool isSimplePredicateOrRecordNode() const { return isSimplePredicateNode() || getKind() == RecordNode || getKind() == RecordChild; } /// unlinkNode - Unlink the specified node from this chain. If Other == this, /// we unlink the next pointer and return it. Otherwise we unlink Other from /// the list and return this. Matcher *unlinkNode(Matcher *Other); /// canMoveBefore - Return true if this matcher is the same as Other, or if /// we can move this matcher past all of the nodes in-between Other and this /// node. Other must be equal to or before this. bool canMoveBefore(const Matcher *Other) const; /// canMoveBeforeNode - Return true if it is safe to move the current matcher /// across the specified one. bool canMoveBeforeNode(const Matcher *Other) const; /// isContradictory - Return true of these two matchers could never match on /// the same node. bool isContradictory(const Matcher *Other) const { // Since this predicate is reflexive, we canonicalize the ordering so that // we always match a node against nodes with kinds that are greater or equal // to them. For example, we'll pass in a CheckType node as an argument to // the CheckOpcode method, not the other way around. if (getKind() < Other->getKind()) return isContradictoryImpl(Other); return Other->isContradictoryImpl(this); } void print(raw_ostream &OS, unsigned indent = 0) const; void printOne(raw_ostream &OS) const; void dump() const; protected: virtual void printImpl(raw_ostream &OS, unsigned indent) const = 0; virtual bool isEqualImpl(const Matcher *M) const = 0; virtual unsigned getHashImpl() const = 0; virtual bool isContradictoryImpl(const Matcher *M) const { return false; } }; /// ScopeMatcher - This attempts to match each of its children to find the first /// one that successfully matches. If one child fails, it tries the next child. /// If none of the children match then this check fails. It never has a 'next'. class ScopeMatcher : public Matcher { SmallVector<Matcher*, 4> Children; public: ScopeMatcher(ArrayRef<Matcher *> children) : Matcher(Scope), Children(children.begin(), children.end()) { } ~ScopeMatcher() override; unsigned getNumChildren() const { return Children.size(); } Matcher *getChild(unsigned i) { return Children[i]; } const Matcher *getChild(unsigned i) const { return Children[i]; } void resetChild(unsigned i, Matcher *N) { delete Children[i]; Children[i] = N; } Matcher *takeChild(unsigned i) { Matcher *Res = Children[i]; Children[i] = nullptr; return Res; } void setNumChildren(unsigned NC) { if (NC < Children.size()) { // delete any children we're about to lose pointers to. for (unsigned i = NC, e = Children.size(); i != e; ++i) delete Children[i]; } Children.resize(NC); } static inline bool classof(const Matcher *N) { return N->getKind() == Scope; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return false; } unsigned getHashImpl() const override { return 12312; } }; /// RecordMatcher - Save the current node in the operand list. class RecordMatcher : public Matcher { /// WhatFor - This is a string indicating why we're recording this. This /// should only be used for comment generation not anything semantic. std::string WhatFor; /// ResultNo - The slot number in the RecordedNodes vector that this will be, /// just printed as a comment. unsigned ResultNo; public: RecordMatcher(const std::string &whatfor, unsigned resultNo) : Matcher(RecordNode), WhatFor(whatfor), ResultNo(resultNo) {} const std::string &getWhatFor() const { return WhatFor; } unsigned getResultNo() const { return ResultNo; } static inline bool classof(const Matcher *N) { return N->getKind() == RecordNode; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return true; } unsigned getHashImpl() const override { return 0; } }; /// RecordChildMatcher - Save a numbered child of the current node, or fail /// the match if it doesn't exist. This is logically equivalent to: /// MoveChild N + RecordNode + MoveParent. class RecordChildMatcher : public Matcher { unsigned ChildNo; /// WhatFor - This is a string indicating why we're recording this. This /// should only be used for comment generation not anything semantic. std::string WhatFor; /// ResultNo - The slot number in the RecordedNodes vector that this will be, /// just printed as a comment. unsigned ResultNo; public: RecordChildMatcher(unsigned childno, const std::string &whatfor, unsigned resultNo) : Matcher(RecordChild), ChildNo(childno), WhatFor(whatfor), ResultNo(resultNo) {} unsigned getChildNo() const { return ChildNo; } const std::string &getWhatFor() const { return WhatFor; } unsigned getResultNo() const { return ResultNo; } static inline bool classof(const Matcher *N) { return N->getKind() == RecordChild; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<RecordChildMatcher>(M)->getChildNo() == getChildNo(); } unsigned getHashImpl() const override { return getChildNo(); } }; /// RecordMemRefMatcher - Save the current node's memref. class RecordMemRefMatcher : public Matcher { public: RecordMemRefMatcher() : Matcher(RecordMemRef) {} static inline bool classof(const Matcher *N) { return N->getKind() == RecordMemRef; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return true; } unsigned getHashImpl() const override { return 0; } }; /// CaptureGlueInputMatcher - If the current record has a glue input, record /// it so that it is used as an input to the generated code. class CaptureGlueInputMatcher : public Matcher { public: CaptureGlueInputMatcher() : Matcher(CaptureGlueInput) {} static inline bool classof(const Matcher *N) { return N->getKind() == CaptureGlueInput; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return true; } unsigned getHashImpl() const override { return 0; } }; /// MoveChildMatcher - This tells the interpreter to move into the /// specified child node. class MoveChildMatcher : public Matcher { unsigned ChildNo; public: MoveChildMatcher(unsigned childNo) : Matcher(MoveChild), ChildNo(childNo) {} unsigned getChildNo() const { return ChildNo; } static inline bool classof(const Matcher *N) { return N->getKind() == MoveChild; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<MoveChildMatcher>(M)->getChildNo() == getChildNo(); } unsigned getHashImpl() const override { return getChildNo(); } }; /// MoveParentMatcher - This tells the interpreter to move to the parent /// of the current node. class MoveParentMatcher : public Matcher { public: MoveParentMatcher() : Matcher(MoveParent) {} static inline bool classof(const Matcher *N) { return N->getKind() == MoveParent; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return true; } unsigned getHashImpl() const override { return 0; } }; /// CheckSameMatcher - This checks to see if this node is exactly the same /// node as the specified match that was recorded with 'Record'. This is used /// when patterns have the same name in them, like '(mul GPR:$in, GPR:$in)'. class CheckSameMatcher : public Matcher { unsigned MatchNumber; public: CheckSameMatcher(unsigned matchnumber) : Matcher(CheckSame), MatchNumber(matchnumber) {} unsigned getMatchNumber() const { return MatchNumber; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckSame; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckSameMatcher>(M)->getMatchNumber() == getMatchNumber(); } unsigned getHashImpl() const override { return getMatchNumber(); } }; /// CheckChildSameMatcher - This checks to see if child node is exactly the same /// node as the specified match that was recorded with 'Record'. This is used /// when patterns have the same name in them, like '(mul GPR:$in, GPR:$in)'. class CheckChildSameMatcher : public Matcher { unsigned ChildNo; unsigned MatchNumber; public: CheckChildSameMatcher(unsigned childno, unsigned matchnumber) : Matcher(CheckChildSame), ChildNo(childno), MatchNumber(matchnumber) {} unsigned getChildNo() const { return ChildNo; } unsigned getMatchNumber() const { return MatchNumber; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckChildSame; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckChildSameMatcher>(M)->ChildNo == ChildNo && cast<CheckChildSameMatcher>(M)->MatchNumber == MatchNumber; } unsigned getHashImpl() const override { return (MatchNumber << 2) | ChildNo; } }; /// CheckPatternPredicateMatcher - This checks the target-specific predicate /// to see if the entire pattern is capable of matching. This predicate does /// not take a node as input. This is used for subtarget feature checks etc. class CheckPatternPredicateMatcher : public Matcher { std::string Predicate; public: CheckPatternPredicateMatcher(StringRef predicate) : Matcher(CheckPatternPredicate), Predicate(predicate) {} StringRef getPredicate() const { return Predicate; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckPatternPredicate; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckPatternPredicateMatcher>(M)->getPredicate() == Predicate; } unsigned getHashImpl() const override; }; /// CheckPredicateMatcher - This checks the target-specific predicate to /// see if the node is acceptable. class CheckPredicateMatcher : public Matcher { TreePattern *Pred; public: CheckPredicateMatcher(const TreePredicateFn &pred); TreePredicateFn getPredicate() const; static inline bool classof(const Matcher *N) { return N->getKind() == CheckPredicate; } // TODO: Ok? //virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckPredicateMatcher>(M)->Pred == Pred; } unsigned getHashImpl() const override; }; /// CheckOpcodeMatcher - This checks to see if the current node has the /// specified opcode, if not it fails to match. class CheckOpcodeMatcher : public Matcher { const SDNodeInfo &Opcode; public: CheckOpcodeMatcher(const SDNodeInfo &opcode) : Matcher(CheckOpcode), Opcode(opcode) {} const SDNodeInfo &getOpcode() const { return Opcode; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckOpcode; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override; unsigned getHashImpl() const override; bool isContradictoryImpl(const Matcher *M) const override; }; /// SwitchOpcodeMatcher - Switch based on the current node's opcode, dispatching /// to one matcher per opcode. If the opcode doesn't match any of the cases, /// then the match fails. This is semantically equivalent to a Scope node where /// every child does a CheckOpcode, but is much faster. class SwitchOpcodeMatcher : public Matcher { SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; public: SwitchOpcodeMatcher(ArrayRef<std::pair<const SDNodeInfo*, Matcher*> > cases) : Matcher(SwitchOpcode), Cases(cases.begin(), cases.end()) {} ~SwitchOpcodeMatcher() override; static inline bool classof(const Matcher *N) { return N->getKind() == SwitchOpcode; } unsigned getNumCases() const { return Cases.size(); } const SDNodeInfo &getCaseOpcode(unsigned i) const { return *Cases[i].first; } Matcher *getCaseMatcher(unsigned i) { return Cases[i].second; } const Matcher *getCaseMatcher(unsigned i) const { return Cases[i].second; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return false; } unsigned getHashImpl() const override { return 4123; } }; /// CheckTypeMatcher - This checks to see if the current node has the /// specified type at the specified result, if not it fails to match. class CheckTypeMatcher : public Matcher { MVT::SimpleValueType Type; unsigned ResNo; public: CheckTypeMatcher(MVT::SimpleValueType type, unsigned resno) : Matcher(CheckType), Type(type), ResNo(resno) {} MVT::SimpleValueType getType() const { return Type; } unsigned getResNo() const { return ResNo; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckType; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckTypeMatcher>(M)->Type == Type; } unsigned getHashImpl() const override { return Type; } bool isContradictoryImpl(const Matcher *M) const override; }; /// SwitchTypeMatcher - Switch based on the current node's type, dispatching /// to one matcher per case. If the type doesn't match any of the cases, /// then the match fails. This is semantically equivalent to a Scope node where /// every child does a CheckType, but is much faster. class SwitchTypeMatcher : public Matcher { SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; public: SwitchTypeMatcher(ArrayRef<std::pair<MVT::SimpleValueType, Matcher*> > cases) : Matcher(SwitchType), Cases(cases.begin(), cases.end()) {} ~SwitchTypeMatcher() override; static inline bool classof(const Matcher *N) { return N->getKind() == SwitchType; } unsigned getNumCases() const { return Cases.size(); } MVT::SimpleValueType getCaseType(unsigned i) const { return Cases[i].first; } Matcher *getCaseMatcher(unsigned i) { return Cases[i].second; } const Matcher *getCaseMatcher(unsigned i) const { return Cases[i].second; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return false; } unsigned getHashImpl() const override { return 4123; } }; /// CheckChildTypeMatcher - This checks to see if a child node has the /// specified type, if not it fails to match. class CheckChildTypeMatcher : public Matcher { unsigned ChildNo; MVT::SimpleValueType Type; public: CheckChildTypeMatcher(unsigned childno, MVT::SimpleValueType type) : Matcher(CheckChildType), ChildNo(childno), Type(type) {} unsigned getChildNo() const { return ChildNo; } MVT::SimpleValueType getType() const { return Type; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckChildType; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckChildTypeMatcher>(M)->ChildNo == ChildNo && cast<CheckChildTypeMatcher>(M)->Type == Type; } unsigned getHashImpl() const override { return (Type << 3) | ChildNo; } bool isContradictoryImpl(const Matcher *M) const override; }; /// CheckIntegerMatcher - This checks to see if the current node is a /// ConstantSDNode with the specified integer value, if not it fails to match. class CheckIntegerMatcher : public Matcher { int64_t Value; public: CheckIntegerMatcher(int64_t value) : Matcher(CheckInteger), Value(value) {} int64_t getValue() const { return Value; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckInteger; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckIntegerMatcher>(M)->Value == Value; } unsigned getHashImpl() const override { return Value; } bool isContradictoryImpl(const Matcher *M) const override; }; /// CheckChildIntegerMatcher - This checks to see if the child node is a /// ConstantSDNode with a specified integer value, if not it fails to match. class CheckChildIntegerMatcher : public Matcher { unsigned ChildNo; int64_t Value; public: CheckChildIntegerMatcher(unsigned childno, int64_t value) : Matcher(CheckChildInteger), ChildNo(childno), Value(value) {} unsigned getChildNo() const { return ChildNo; } int64_t getValue() const { return Value; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckChildInteger; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckChildIntegerMatcher>(M)->ChildNo == ChildNo && cast<CheckChildIntegerMatcher>(M)->Value == Value; } unsigned getHashImpl() const override { return (Value << 3) | ChildNo; } bool isContradictoryImpl(const Matcher *M) const override; }; /// CheckCondCodeMatcher - This checks to see if the current node is a /// CondCodeSDNode with the specified condition, if not it fails to match. class CheckCondCodeMatcher : public Matcher { StringRef CondCodeName; public: CheckCondCodeMatcher(StringRef condcodename) : Matcher(CheckCondCode), CondCodeName(condcodename) {} StringRef getCondCodeName() const { return CondCodeName; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckCondCode; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckCondCodeMatcher>(M)->CondCodeName == CondCodeName; } unsigned getHashImpl() const override; }; /// CheckValueTypeMatcher - This checks to see if the current node is a /// VTSDNode with the specified type, if not it fails to match. class CheckValueTypeMatcher : public Matcher { StringRef TypeName; public: CheckValueTypeMatcher(StringRef type_name) : Matcher(CheckValueType), TypeName(type_name) {} StringRef getTypeName() const { return TypeName; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckValueType; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckValueTypeMatcher>(M)->TypeName == TypeName; } unsigned getHashImpl() const override; bool isContradictoryImpl(const Matcher *M) const override; }; /// CheckComplexPatMatcher - This node runs the specified ComplexPattern on /// the current node. class CheckComplexPatMatcher : public Matcher { const ComplexPattern &Pattern; /// MatchNumber - This is the recorded nodes slot that contains the node we /// want to match against. unsigned MatchNumber; /// Name - The name of the node we're matching, for comment emission. std::string Name; /// FirstResult - This is the first slot in the RecordedNodes list that the /// result of the match populates. unsigned FirstResult; public: CheckComplexPatMatcher(const ComplexPattern &pattern, unsigned matchnumber, const std::string &name, unsigned firstresult) : Matcher(CheckComplexPat), Pattern(pattern), MatchNumber(matchnumber), Name(name), FirstResult(firstresult) {} const ComplexPattern &getPattern() const { return Pattern; } unsigned getMatchNumber() const { return MatchNumber; } const std::string getName() const { return Name; } unsigned getFirstResult() const { return FirstResult; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckComplexPat; } // Not safe to move a pattern predicate past a complex pattern. bool isSafeToReorderWithPatternPredicate() const override { return false; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return &cast<CheckComplexPatMatcher>(M)->Pattern == &Pattern && cast<CheckComplexPatMatcher>(M)->MatchNumber == MatchNumber; } unsigned getHashImpl() const override { return (unsigned)(intptr_t)&Pattern ^ MatchNumber; } }; /// CheckAndImmMatcher - This checks to see if the current node is an 'and' /// with something equivalent to the specified immediate. class CheckAndImmMatcher : public Matcher { int64_t Value; public: CheckAndImmMatcher(int64_t value) : Matcher(CheckAndImm), Value(value) {} int64_t getValue() const { return Value; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckAndImm; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckAndImmMatcher>(M)->Value == Value; } unsigned getHashImpl() const override { return Value; } }; /// CheckOrImmMatcher - This checks to see if the current node is an 'and' /// with something equivalent to the specified immediate. class CheckOrImmMatcher : public Matcher { int64_t Value; public: CheckOrImmMatcher(int64_t value) : Matcher(CheckOrImm), Value(value) {} int64_t getValue() const { return Value; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckOrImm; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CheckOrImmMatcher>(M)->Value == Value; } unsigned getHashImpl() const override { return Value; } }; /// CheckFoldableChainNodeMatcher - This checks to see if the current node /// (which defines a chain operand) is safe to fold into a larger pattern. class CheckFoldableChainNodeMatcher : public Matcher { public: CheckFoldableChainNodeMatcher() : Matcher(CheckFoldableChainNode) {} static inline bool classof(const Matcher *N) { return N->getKind() == CheckFoldableChainNode; } bool isSafeToReorderWithPatternPredicate() const override { return true; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return true; } unsigned getHashImpl() const override { return 0; } }; /// EmitIntegerMatcher - This creates a new TargetConstant. class EmitIntegerMatcher : public Matcher { int64_t Val; MVT::SimpleValueType VT; public: EmitIntegerMatcher(int64_t val, MVT::SimpleValueType vt) : Matcher(EmitInteger), Val(val), VT(vt) {} int64_t getValue() const { return Val; } MVT::SimpleValueType getVT() const { return VT; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitInteger; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitIntegerMatcher>(M)->Val == Val && cast<EmitIntegerMatcher>(M)->VT == VT; } unsigned getHashImpl() const override { return (Val << 4) | VT; } }; /// EmitStringIntegerMatcher - A target constant whose value is represented /// by a string. class EmitStringIntegerMatcher : public Matcher { std::string Val; MVT::SimpleValueType VT; public: EmitStringIntegerMatcher(const std::string &val, MVT::SimpleValueType vt) : Matcher(EmitStringInteger), Val(val), VT(vt) {} const std::string &getValue() const { return Val; } MVT::SimpleValueType getVT() const { return VT; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitStringInteger; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitStringIntegerMatcher>(M)->Val == Val && cast<EmitStringIntegerMatcher>(M)->VT == VT; } unsigned getHashImpl() const override; }; /// EmitRegisterMatcher - This creates a new TargetConstant. class EmitRegisterMatcher : public Matcher { /// Reg - The def for the register that we're emitting. If this is null, then /// this is a reference to zero_reg. const CodeGenRegister *Reg; MVT::SimpleValueType VT; public: EmitRegisterMatcher(const CodeGenRegister *reg, MVT::SimpleValueType vt) : Matcher(EmitRegister), Reg(reg), VT(vt) {} const CodeGenRegister *getReg() const { return Reg; } MVT::SimpleValueType getVT() const { return VT; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitRegister; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitRegisterMatcher>(M)->Reg == Reg && cast<EmitRegisterMatcher>(M)->VT == VT; } unsigned getHashImpl() const override { return ((unsigned)(intptr_t)Reg) << 4 | VT; } }; /// EmitConvertToTargetMatcher - Emit an operation that reads a specified /// recorded node and converts it from being a ISD::Constant to /// ISD::TargetConstant, likewise for ConstantFP. class EmitConvertToTargetMatcher : public Matcher { unsigned Slot; public: EmitConvertToTargetMatcher(unsigned slot) : Matcher(EmitConvertToTarget), Slot(slot) {} unsigned getSlot() const { return Slot; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitConvertToTarget; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitConvertToTargetMatcher>(M)->Slot == Slot; } unsigned getHashImpl() const override { return Slot; } }; /// EmitMergeInputChainsMatcher - Emit a node that merges a list of input /// chains together with a token factor. The list of nodes are the nodes in the /// matched pattern that have chain input/outputs. This node adds all input /// chains of these nodes if they are not themselves a node in the pattern. class EmitMergeInputChainsMatcher : public Matcher { SmallVector<unsigned, 3> ChainNodes; public: EmitMergeInputChainsMatcher(ArrayRef<unsigned> nodes) : Matcher(EmitMergeInputChains), ChainNodes(nodes.begin(), nodes.end()) {} unsigned getNumNodes() const { return ChainNodes.size(); } unsigned getNode(unsigned i) const { assert(i < ChainNodes.size()); return ChainNodes[i]; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitMergeInputChains; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitMergeInputChainsMatcher>(M)->ChainNodes == ChainNodes; } unsigned getHashImpl() const override; }; /// EmitCopyToRegMatcher - Emit a CopyToReg node from a value to a physreg, /// pushing the chain and glue results. /// class EmitCopyToRegMatcher : public Matcher { unsigned SrcSlot; // Value to copy into the physreg. Record *DestPhysReg; public: EmitCopyToRegMatcher(unsigned srcSlot, Record *destPhysReg) : Matcher(EmitCopyToReg), SrcSlot(srcSlot), DestPhysReg(destPhysReg) {} unsigned getSrcSlot() const { return SrcSlot; } Record *getDestPhysReg() const { return DestPhysReg; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitCopyToReg; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitCopyToRegMatcher>(M)->SrcSlot == SrcSlot && cast<EmitCopyToRegMatcher>(M)->DestPhysReg == DestPhysReg; } unsigned getHashImpl() const override { return SrcSlot ^ ((unsigned)(intptr_t)DestPhysReg << 4); } }; /// EmitNodeXFormMatcher - Emit an operation that runs an SDNodeXForm on a /// recorded node and records the result. class EmitNodeXFormMatcher : public Matcher { unsigned Slot; Record *NodeXForm; public: EmitNodeXFormMatcher(unsigned slot, Record *nodeXForm) : Matcher(EmitNodeXForm), Slot(slot), NodeXForm(nodeXForm) {} unsigned getSlot() const { return Slot; } Record *getNodeXForm() const { return NodeXForm; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitNodeXForm; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<EmitNodeXFormMatcher>(M)->Slot == Slot && cast<EmitNodeXFormMatcher>(M)->NodeXForm == NodeXForm; } unsigned getHashImpl() const override { return Slot ^ ((unsigned)(intptr_t)NodeXForm << 4); } }; /// EmitNodeMatcherCommon - Common class shared between EmitNode and /// MorphNodeTo. class EmitNodeMatcherCommon : public Matcher { std::string OpcodeName; const SmallVector<MVT::SimpleValueType, 3> VTs; const SmallVector<unsigned, 6> Operands; bool HasChain, HasInGlue, HasOutGlue, HasMemRefs; /// NumFixedArityOperands - If this is a fixed arity node, this is set to -1. /// If this is a varidic node, this is set to the number of fixed arity /// operands in the root of the pattern. The rest are appended to this node. int NumFixedArityOperands; public: EmitNodeMatcherCommon(const std::string &opcodeName, ArrayRef<MVT::SimpleValueType> vts, ArrayRef<unsigned> operands, bool hasChain, bool hasInGlue, bool hasOutGlue, bool hasmemrefs, int numfixedarityoperands, bool isMorphNodeTo) : Matcher(isMorphNodeTo ? MorphNodeTo : EmitNode), OpcodeName(opcodeName), VTs(vts.begin(), vts.end()), Operands(operands.begin(), operands.end()), HasChain(hasChain), HasInGlue(hasInGlue), HasOutGlue(hasOutGlue), HasMemRefs(hasmemrefs), NumFixedArityOperands(numfixedarityoperands) {} const std::string &getOpcodeName() const { return OpcodeName; } unsigned getNumVTs() const { return VTs.size(); } MVT::SimpleValueType getVT(unsigned i) const { assert(i < VTs.size()); return VTs[i]; } unsigned getNumOperands() const { return Operands.size(); } unsigned getOperand(unsigned i) const { assert(i < Operands.size()); return Operands[i]; } const SmallVectorImpl<MVT::SimpleValueType> &getVTList() const { return VTs; } const SmallVectorImpl<unsigned> &getOperandList() const { return Operands; } bool hasChain() const { return HasChain; } bool hasInFlag() const { return HasInGlue; } bool hasOutFlag() const { return HasOutGlue; } bool hasMemRefs() const { return HasMemRefs; } int getNumFixedArityOperands() const { return NumFixedArityOperands; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitNode || N->getKind() == MorphNodeTo; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override; unsigned getHashImpl() const override; }; /// EmitNodeMatcher - This signals a successful match and generates a node. class EmitNodeMatcher : public EmitNodeMatcherCommon { void anchor() override; unsigned FirstResultSlot; public: EmitNodeMatcher(const std::string &opcodeName, ArrayRef<MVT::SimpleValueType> vts, ArrayRef<unsigned> operands, bool hasChain, bool hasInFlag, bool hasOutFlag, bool hasmemrefs, int numfixedarityoperands, unsigned firstresultslot) : EmitNodeMatcherCommon(opcodeName, vts, operands, hasChain, hasInFlag, hasOutFlag, hasmemrefs, numfixedarityoperands, false), FirstResultSlot(firstresultslot) {} unsigned getFirstResultSlot() const { return FirstResultSlot; } static inline bool classof(const Matcher *N) { return N->getKind() == EmitNode; } }; class MorphNodeToMatcher : public EmitNodeMatcherCommon { void anchor() override; const PatternToMatch &Pattern; public: MorphNodeToMatcher(const std::string &opcodeName, ArrayRef<MVT::SimpleValueType> vts, ArrayRef<unsigned> operands, bool hasChain, bool hasInFlag, bool hasOutFlag, bool hasmemrefs, int numfixedarityoperands, const PatternToMatch &pattern) : EmitNodeMatcherCommon(opcodeName, vts, operands, hasChain, hasInFlag, hasOutFlag, hasmemrefs, numfixedarityoperands, true), Pattern(pattern) { } const PatternToMatch &getPattern() const { return Pattern; } static inline bool classof(const Matcher *N) { return N->getKind() == MorphNodeTo; } }; /// MarkGlueResultsMatcher - This node indicates which non-root nodes in the /// pattern produce glue. This allows CompleteMatchMatcher to update them /// with the output glue of the resultant code. class MarkGlueResultsMatcher : public Matcher { SmallVector<unsigned, 3> GlueResultNodes; public: MarkGlueResultsMatcher(ArrayRef<unsigned> nodes) : Matcher(MarkGlueResults), GlueResultNodes(nodes.begin(), nodes.end()) {} unsigned getNumNodes() const { return GlueResultNodes.size(); } unsigned getNode(unsigned i) const { assert(i < GlueResultNodes.size()); return GlueResultNodes[i]; } static inline bool classof(const Matcher *N) { return N->getKind() == MarkGlueResults; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<MarkGlueResultsMatcher>(M)->GlueResultNodes == GlueResultNodes; } unsigned getHashImpl() const override; }; /// CompleteMatchMatcher - Complete a match by replacing the results of the /// pattern with the newly generated nodes. This also prints a comment /// indicating the source and dest patterns. class CompleteMatchMatcher : public Matcher { SmallVector<unsigned, 2> Results; const PatternToMatch &Pattern; public: CompleteMatchMatcher(ArrayRef<unsigned> results, const PatternToMatch &pattern) : Matcher(CompleteMatch), Results(results.begin(), results.end()), Pattern(pattern) {} unsigned getNumResults() const { return Results.size(); } unsigned getResult(unsigned R) const { return Results[R]; } const PatternToMatch &getPattern() const { return Pattern; } static inline bool classof(const Matcher *N) { return N->getKind() == CompleteMatch; } private: void printImpl(raw_ostream &OS, unsigned indent) const override; bool isEqualImpl(const Matcher *M) const override { return cast<CompleteMatchMatcher>(M)->Results == Results && &cast<CompleteMatchMatcher>(M)->Pattern == &Pattern; } unsigned getHashImpl() const override; }; } // end namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86RecognizableInstr.h
//===- X86RecognizableInstr.h - Disassembler instruction spec ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the interface of a single recognizable instruction. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_X86RECOGNIZABLEINSTR_H #define LLVM_UTILS_TABLEGEN_X86RECOGNIZABLEINSTR_H #include "CodeGenTarget.h" #include "X86DisassemblerTables.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/DataTypes.h" #include "llvm/TableGen/Record.h" namespace llvm { namespace X86Disassembler { /// RecognizableInstr - Encapsulates all information required to decode a single /// instruction, as extracted from the LLVM instruction tables. Has methods /// to interpret the information available in the LLVM tables, and to emit the /// instruction into DisassemblerTables. class RecognizableInstr { private: /// The opcode of the instruction, as used in an MCInst InstrUID UID; /// The record from the .td files corresponding to this instruction const Record* Rec; /// The OpPrefix field from the record uint8_t OpPrefix; /// The OpMap field from the record uint8_t OpMap; /// The opcode field from the record; this is the opcode used in the Intel /// encoding and therefore distinct from the UID uint8_t Opcode; /// The form field from the record uint8_t Form; // The encoding field from the record uint8_t Encoding; /// The OpSize field from the record uint8_t OpSize; /// The AdSize field from the record uint8_t AdSize; /// The hasREX_WPrefix field from the record bool HasREX_WPrefix; /// The hasVEX_4V field from the record bool HasVEX_4V; /// The hasVEX_4VOp3 field from the record bool HasVEX_4VOp3; /// The hasVEX_WPrefix field from the record bool HasVEX_WPrefix; /// Inferred from the operands; indicates whether the L bit in the VEX prefix is set bool HasVEX_LPrefix; /// The hasMemOp4Prefix field from the record bool HasMemOp4Prefix; /// The ignoreVEX_L field from the record bool IgnoresVEX_L; /// The hasEVEX_L2Prefix field from the record bool HasEVEX_L2Prefix; /// The hasEVEX_K field from the record bool HasEVEX_K; /// The hasEVEX_KZ field from the record bool HasEVEX_KZ; /// The hasEVEX_B field from the record bool HasEVEX_B; /// The isCodeGenOnly field from the record bool IsCodeGenOnly; /// The ForceDisassemble field from the record bool ForceDisassemble; // The CD8_Scale field from the record uint8_t CD8_Scale; // Whether the instruction has the predicate "In64BitMode" bool Is64Bit; // Whether the instruction has the predicate "In32BitMode" bool Is32Bit; /// The instruction name as listed in the tables std::string Name; /// The AT&T AsmString for the instruction std::string AsmString; /// Indicates whether the instruction should be emitted into the decode /// tables; regardless, it will be emitted into the instruction info table bool ShouldBeEmitted; /// The operands of the instruction, as listed in the CodeGenInstruction. /// They are not one-to-one with operands listed in the MCInst; for example, /// memory operands expand to 5 operands in the MCInst const std::vector<CGIOperandList::OperandInfo>* Operands; /// The description of the instruction that is emitted into the instruction /// info table InstructionSpecifier* Spec; /// insnContext - Returns the primary context in which the instruction is /// valid. /// /// @return - The context in which the instruction is valid. InstructionContext insnContext() const; /// typeFromString - Translates an operand type from the string provided in /// the LLVM tables to an OperandType for use in the operand specifier. /// /// @param s - The string, as extracted by calling Rec->getName() /// on a CodeGenInstruction::OperandInfo. /// @param hasREX_WPrefix - Indicates whether the instruction has a REX.W /// prefix. If it does, 32-bit register operands stay /// 32-bit regardless of the operand size. /// @param OpSize Indicates the operand size of the instruction. /// If register size does not match OpSize, then /// register sizes keep their size. /// @return - The operand's type. static OperandType typeFromString(const std::string& s, bool hasREX_WPrefix, uint8_t OpSize); /// immediateEncodingFromString - Translates an immediate encoding from the /// string provided in the LLVM tables to an OperandEncoding for use in /// the operand specifier. /// /// @param s - See typeFromString(). /// @param OpSize - Indicates whether this is an OpSize16 instruction. /// If it is not, then 16-bit immediate operands stay 16-bit. /// @return - The operand's encoding. static OperandEncoding immediateEncodingFromString(const std::string &s, uint8_t OpSize); /// rmRegisterEncodingFromString - Like immediateEncodingFromString, but /// handles operands that are in the REG field of the ModR/M byte. static OperandEncoding rmRegisterEncodingFromString(const std::string &s, uint8_t OpSize); /// rmRegisterEncodingFromString - Like immediateEncodingFromString, but /// handles operands that are in the REG field of the ModR/M byte. static OperandEncoding roRegisterEncodingFromString(const std::string &s, uint8_t OpSize); static OperandEncoding memoryEncodingFromString(const std::string &s, uint8_t OpSize); static OperandEncoding relocationEncodingFromString(const std::string &s, uint8_t OpSize); static OperandEncoding opcodeModifierEncodingFromString(const std::string &s, uint8_t OpSize); static OperandEncoding vvvvRegisterEncodingFromString(const std::string &s, uint8_t OpSize); static OperandEncoding writemaskRegisterEncodingFromString(const std::string &s, uint8_t OpSize); /// \brief Adjust the encoding type for an operand based on the instruction. void adjustOperandEncoding(OperandEncoding &encoding); /// handleOperand - Converts a single operand from the LLVM table format to /// the emitted table format, handling any duplicate operands it encounters /// and then one non-duplicate. /// /// @param optional - Determines whether to assert that the /// operand exists. /// @param operandIndex - The index into the generated operand table. /// Incremented by this function one or more /// times to reflect possible duplicate /// operands). /// @param physicalOperandIndex - The index of the current operand into the /// set of non-duplicate ('physical') operands. /// Incremented by this function once. /// @param numPhysicalOperands - The number of non-duplicate operands in the /// instructions. /// @param operandMapping - The operand mapping, which has an entry for /// each operand that indicates whether it is a /// duplicate, and of what. void handleOperand(bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex, unsigned &numPhysicalOperands, const unsigned *operandMapping, OperandEncoding (*encodingFromString) (const std::string&, uint8_t OpSize)); /// shouldBeEmitted - Returns the shouldBeEmitted field. Although filter() /// filters out many instructions, at various points in decoding we /// determine that the instruction should not actually be decodable. In /// particular, MMX MOV instructions aren't emitted, but they're only /// identified during operand parsing. /// /// @return - true if at this point we believe the instruction should be /// emitted; false if not. This will return false if filter() returns false /// once emitInstructionSpecifier() has been called. bool shouldBeEmitted() const { return ShouldBeEmitted; } /// emitInstructionSpecifier - Loads the instruction specifier for the current /// instruction into a DisassemblerTables. /// void emitInstructionSpecifier(); /// emitDecodePath - Populates the proper fields in the decode tables /// corresponding to the decode paths for this instruction. /// /// \param tables The DisassemblerTables to populate with the decode /// decode information for the current instruction. void emitDecodePath(DisassemblerTables &tables) const; /// Constructor - Initializes a RecognizableInstr with the appropriate fields /// from a CodeGenInstruction. /// /// \param tables The DisassemblerTables that the specifier will be added to. /// \param insn The CodeGenInstruction to extract information from. /// \param uid The unique ID of the current instruction. RecognizableInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid); public: /// processInstr - Accepts a CodeGenInstruction and loads decode information /// for it into a DisassemblerTables if appropriate. /// /// \param tables The DiassemblerTables to be populated with decode /// information. /// \param insn The CodeGenInstruction to be used as a source for this /// information. /// \param uid The unique ID of the instruction. static void processInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid); }; } // namespace X86Disassembler } // namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86DisassemblerTables.h
//===- X86DisassemblerTables.h - Disassembler tables ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the interface of the disassembler tables. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_X86DISASSEMBLERTABLES_H #define LLVM_UTILS_TABLEGEN_X86DISASSEMBLERTABLES_H #include "X86DisassemblerShared.h" #include "X86ModRMFilters.h" #include "llvm/Support/raw_ostream.h" #include <map> #include <vector> namespace llvm { namespace X86Disassembler { /// DisassemblerTables - Encapsulates all the decode tables being generated by /// the table emitter. Contains functions to populate the tables as well as /// to emit them as hierarchical C structures suitable for consumption by the /// runtime. class DisassemblerTables { private: /// The decoder tables. There is one for each opcode type: /// [0] one-byte opcodes /// [1] two-byte opcodes of the form 0f __ /// [2] three-byte opcodes of the form 0f 38 __ /// [3] three-byte opcodes of the form 0f 3a __ /// [4] XOP8 map opcode /// [5] XOP9 map opcode /// [6] XOPA map opcode ContextDecision* Tables[7]; // Table of ModRM encodings. typedef std::map<std::vector<unsigned>, unsigned> ModRMMapTy; mutable ModRMMapTy ModRMTable; /// The instruction information table std::vector<InstructionSpecifier> InstructionSpecifiers; /// True if there are primary decode conflicts in the instruction set bool HasConflicts; /// emitModRMDecision - Emits a table of entries corresponding to a single /// ModR/M decision. Compacts the ModR/M decision if possible. ModR/M /// decisions are printed as: /// /// { /* struct ModRMDecision */ /// TYPE, /// modRMTablennnn /// } /// /// where nnnn is a unique ID for the corresponding table of IDs. /// TYPE indicates whether the table has one entry that is the same /// regardless of ModR/M byte, two entries - one for bytes 0x00-0xbf and one /// for bytes 0xc0-0xff -, or 256 entries, one for each possible byte. /// nnnn is the number of a table for looking up these values. The tables /// are written separately so that tables consisting entirely of zeros will /// not be duplicated. (These all have the name modRMEmptyTable.) A table /// is printed as: /// /// InstrUID modRMTablennnn[k] = { /// nnnn, /* MNEMONIC */ /// ... /// nnnn /* MNEMONIC */ /// }; /// /// @param o1 - The output stream to print the ID table to. /// @param o2 - The output stream to print the decision structure to. /// @param i1 - The indentation level to use with stream o1. /// @param i2 - The indentation level to use with stream o2. /// @param ModRMTableNum - next table number for adding to ModRMTable. /// @param decision - The ModR/M decision to emit. This decision has 256 /// entries - emitModRMDecision decides how to compact it. void emitModRMDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, ModRMDecision &decision) const; /// emitOpcodeDecision - Emits an OpcodeDecision and all its subsidiary ModR/M /// decisions. An OpcodeDecision is printed as: /// /// { /* struct OpcodeDecision */ /// /* 0x00 */ /// { /* struct ModRMDecision */ /// ... /// } /// ... /// } /// /// where the ModRMDecision structure is printed as described in the /// documentation for emitModRMDecision(). emitOpcodeDecision() passes on a /// stream and indent level for the UID tables generated by /// emitModRMDecision(), but does not use them itself. /// /// @param o1 - The output stream to print the ID tables generated by /// emitModRMDecision() to. /// @param o2 - The output stream for the decision structure itself. /// @param i1 - The indent level to use with stream o1. /// @param i2 - The indent level to use with stream o2. /// @param ModRMTableNum - next table number for adding to ModRMTable. /// @param decision - The OpcodeDecision to emit along with its subsidiary /// structures. void emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, OpcodeDecision &decision) const; /// emitContextDecision - Emits a ContextDecision and all its subsidiary /// Opcode and ModRMDecisions. A ContextDecision is printed as: /// /// struct ContextDecision NAME = { /// { /* OpcodeDecisions */ /// /* IC */ /// { /* struct OpcodeDecision */ /// ... /// }, /// ... /// } /// } /// /// NAME is the name of the ContextDecision (typically one of the four names /// ONEBYTE_SYM, TWOBYTE_SYM, THREEBYTE38_SYM, THREEBYTE3A_SYM from /// X86DisassemblerDecoderCommon.h). /// IC is one of the contexts in InstructionContext. There is an opcode /// decision for each possible context. /// The OpcodeDecision structures are printed as described in the /// documentation for emitOpcodeDecision. /// /// @param o1 - The output stream to print the ID tables generated by /// emitModRMDecision() to. /// @param o2 - The output stream to print the decision structure to. /// @param i1 - The indent level to use with stream o1. /// @param i2 - The indent level to use with stream o2. /// @param ModRMTableNum - next table number for adding to ModRMTable. /// @param decision - The ContextDecision to emit along with its subsidiary /// structures. /// @param name - The name for the ContextDecision. void emitContextDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, ContextDecision &decision, const char* name) const; /// emitInstructionInfo - Prints the instruction specifier table, which has /// one entry for each instruction, and contains name and operand /// information. This table is printed as: /// /// struct InstructionSpecifier CONTEXTS_SYM[k] = { /// { /// /* nnnn */ /// "MNEMONIC", /// 0xnn, /// { /// { /// ENCODING, /// TYPE /// }, /// ... /// } /// }, /// }; /// /// k is the total number of instructions. /// nnnn is the ID of the current instruction (0-based). This table /// includes entries for non-instructions like PHINODE. /// 0xnn is the lowest possible opcode for the current instruction, used for /// AddRegFrm instructions to compute the operand's value. /// ENCODING and TYPE describe the encoding and type for a single operand. /// /// @param o - The output stream to which the instruction table should be /// written. /// @param i - The indent level for use with the stream. void emitInstructionInfo(raw_ostream &o, unsigned &i) const; /// emitContextTable - Prints the table that is used to translate from an /// instruction attribute mask to an instruction context. This table is /// printed as: /// /// InstructionContext CONTEXTS_STR[256] = { /// IC, /* 0x00 */ /// ... /// }; /// /// IC is the context corresponding to the mask 0x00, and there are 256 /// possible masks. /// /// @param o - The output stream to which the context table should be written. /// @param i - The indent level for use with the stream. void emitContextTable(raw_ostream &o, uint32_t &i) const; /// emitContextDecisions - Prints all four ContextDecision structures using /// emitContextDecision(). /// /// @param o1 - The output stream to print the ID tables generated by /// emitModRMDecision() to. /// @param o2 - The output stream to print the decision structures to. /// @param i1 - The indent level to use with stream o1. /// @param i2 - The indent level to use with stream o2. /// @param ModRMTableNum - next table number for adding to ModRMTable. void emitContextDecisions(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum) const; /// setTableFields - Uses a ModRMFilter to set the appropriate entries in a /// ModRMDecision to refer to a particular instruction ID. /// /// @param decision - The ModRMDecision to populate. /// @param filter - The filter to use in deciding which entries to populate. /// @param uid - The unique ID to set matching entries to. /// @param opcode - The opcode of the instruction, for error reporting. void setTableFields(ModRMDecision &decision, const ModRMFilter &filter, InstrUID uid, uint8_t opcode); public: /// Constructor - Allocates space for the class decisions and clears them. DisassemblerTables(); ~DisassemblerTables(); /// emit - Emits the instruction table, context table, and class decisions. /// /// @param o - The output stream to print the tables to. void emit(raw_ostream &o) const; /// setTableFields - Uses the opcode type, instruction context, opcode, and a /// ModRMFilter as criteria to set a particular set of entries in the /// decode tables to point to a specific uid. /// /// @param type - The opcode type (ONEBYTE, TWOBYTE, etc.) /// @param insnContext - The context to use (IC, IC_64BIT, etc.) /// @param opcode - The last byte of the opcode (not counting any escape /// or extended opcodes). /// @param filter - The ModRMFilter that decides which ModR/M byte values /// correspond to the desired instruction. /// @param uid - The unique ID of the instruction. /// @param is32bit - Instructon is only 32-bit /// @param ignoresVEX_L - Instruction ignores VEX.L /// @param AddrSize - Instructions address size 16/32/64. 0 is unspecified void setTableFields(OpcodeType type, InstructionContext insnContext, uint8_t opcode, const ModRMFilter &filter, InstrUID uid, bool is32bit, bool ignoresVEX_L, unsigned AddrSize); /// specForUID - Returns the instruction specifier for a given unique /// instruction ID. Used when resolving collisions. /// /// @param uid - The unique ID of the instruction. /// @return - A reference to the instruction specifier. InstructionSpecifier& specForUID(InstrUID uid) { if (uid >= InstructionSpecifiers.size()) InstructionSpecifiers.resize(uid + 1); return InstructionSpecifiers[uid]; } // hasConflicts - Reports whether there were primary decode conflicts // from any instructions added to the tables. // @return - true if there were; false otherwise. bool hasConflicts() { return HasConflicts; } }; } // namespace X86Disassembler } // namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/SubtargetEmitter.cpp
//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits subtarget enumerations. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <map> #include <string> #include <vector> using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" namespace { class SubtargetEmitter { // Each processor has a SchedClassDesc table with an entry for each SchedClass. // The SchedClassDesc table indexes into a global write resource table, write // latency table, and read advance table. struct SchedClassTables { std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses; std::vector<MCWriteProcResEntry> WriteProcResources; std::vector<MCWriteLatencyEntry> WriteLatencies; std::vector<std::string> WriterNames; std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; // Reserve an invalid entry at index 0 SchedClassTables() { ProcSchedClasses.resize(1); WriteProcResources.resize(1); WriteLatencies.resize(1); WriterNames.push_back("InvalidWrite"); ReadAdvanceEntries.resize(1); } }; struct LessWriteProcResources { bool operator()(const MCWriteProcResEntry &LHS, const MCWriteProcResEntry &RHS) { return LHS.ProcResourceIdx < RHS.ProcResourceIdx; } }; RecordKeeper &Records; CodeGenSchedModels &SchedModels; std::string Target; void Enumeration(raw_ostream &OS, const char *ClassName); unsigned FeatureKeyValues(raw_ostream &OS); unsigned CPUKeyValues(raw_ostream &OS); void FormItineraryStageString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned &NStages); void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, unsigned &NOperandCycles); void FormItineraryBypassString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned NOperandCycles); void EmitStageAndOperandCycleData(raw_ostream &OS, std::vector<std::vector<InstrItinerary> > &ProcItinLists); void EmitItineraries(raw_ostream &OS, std::vector<std::vector<InstrItinerary> > &ProcItinLists); void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, char Separator); void EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS); Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel); Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel); void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, const CodeGenProcModel &ProcModel); void GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables); void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); void EmitProcessorModels(raw_ostream &OS); void EmitProcessorLookup(raw_ostream &OS); void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS); void EmitSchedModel(raw_ostream &OS); void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, unsigned NumProcs); public: SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} void run(raw_ostream &o); }; } // End anonymous namespace // // Enumeration - Emit the specified class as an enumeration. // void SubtargetEmitter::Enumeration(raw_ostream &OS, const char *ClassName) { // Get all records of class and sort std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName); std::sort(DefList.begin(), DefList.end(), LessRecord()); unsigned N = DefList.size(); if (N == 0) return; if (N > MAX_SUBTARGET_FEATURES) PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); OS << "namespace " << Target << " {\n"; // Open enumeration. Use a 64-bit underlying type. OS << "enum : uint64_t {\n"; // For each record for (unsigned i = 0; i < N;) { // Next record Record *Def = DefList[i]; // Get and emit name OS << " " << Def->getName() << " = " << i; if (++i < N) OS << ","; OS << "\n"; } // Close enumeration and namespace OS << "};\n}\n"; } // // FeatureKeyValues - Emit data of all the subtarget features. Used by the // command line. // unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { // Gather and sort all the features std::vector<Record*> FeatureList = Records.getAllDerivedDefinitions("SubtargetFeature"); if (FeatureList.empty()) return 0; std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); // Begin feature table OS << "// Sorted (by key) array of values for CPU features.\n" << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[] = {\n"; // For each feature unsigned NumFeatures = 0; for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { // Next feature Record *Feature = FeatureList[i]; const std::string &Name = Feature->getName(); const std::string &CommandLineName = Feature->getValueAsString("Name"); const std::string &Desc = Feature->getValueAsString("Desc"); if (CommandLineName.empty()) continue; // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } OS << " { " << "\"" << CommandLineName << "\", " << "\"" << Desc << "\", " << "{ " << Target << "::" << Name << " }, "; const std::vector<Record*> &ImpliesList = Feature->getValueAsListOfDefs("Implies"); if (ImpliesList.empty()) { OS << "{ }"; } else { OS << "{ "; for (unsigned j = 0, M = ImpliesList.size(); j < M;) { OS << Target << "::" << ImpliesList[j]->getName(); if (++j < M) OS << ", "; } OS << " }"; } OS << " }"; ++NumFeatures; // Depending on 'if more in the list' emit comma if ((i + 1) < N) OS << ","; OS << "\n"; } // End feature table OS << "};\n"; return NumFeatures; } // // CPUKeyValues - Emit data of all the subtarget processors. Used by command // line. // unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { // Gather and sort processor information std::vector<Record*> ProcessorList = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); // Begin processor table OS << "// Sorted (by key) array of values for CPU subtype.\n" << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[] = {\n"; // For each processor for (unsigned i = 0, N = ProcessorList.size(); i < N;) { // Next processor Record *Processor = ProcessorList[i]; const std::string &Name = Processor->getValueAsString("Name"); const std::vector<Record*> &FeatureList = Processor->getValueAsListOfDefs("Features"); // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, OS << " { " << "\"" << Name << "\", " << "\"Select the " << Name << " processor\", "; if (FeatureList.empty()) { OS << "{ }"; } else { OS << "{ "; for (unsigned j = 0, M = FeatureList.size(); j < M;) { OS << Target << "::" << FeatureList[j]->getName(); if (++j < M) OS << ", "; } OS << " }"; } // The { } is for the "implies" section of this data structure. OS << ", { } }"; // Depending on 'if more in the list' emit comma if (++i < N) OS << ","; OS << "\n"; } // End processor table OS << "};\n"; return ProcessorList.size(); } // // FormItineraryStageString - Compose a string containing the stage // data initialization for the specified itinerary. N is the number // of stages. // void SubtargetEmitter::FormItineraryStageString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned &NStages) { // Get states list const std::vector<Record*> &StageList = ItinData->getValueAsListOfDefs("Stages"); // For each stage unsigned N = NStages = StageList.size(); for (unsigned i = 0; i < N;) { // Next stage const Record *Stage = StageList[i]; // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } int Cycles = Stage->getValueAsInt("Cycles"); ItinString += " { " + itostr(Cycles) + ", "; // Get unit list const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); // For each unit for (unsigned j = 0, M = UnitList.size(); j < M;) { // Add name and bitwise or ItinString += Name + "FU::" + UnitList[j]->getName(); if (++j < M) ItinString += " | "; } int TimeInc = Stage->getValueAsInt("TimeInc"); ItinString += ", " + itostr(TimeInc); int Kind = Stage->getValueAsInt("Kind"); ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); // Close off stage ItinString += " }"; if (++i < N) ItinString += ", "; } } // // FormItineraryOperandCycleString - Compose a string containing the // operand cycle initialization for the specified itinerary. N is the // number of operands that has cycles specified. // void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, unsigned &NOperandCycles) { // Get operand cycle list const std::vector<int64_t> &OperandCycleList = ItinData->getValueAsListOfInts("OperandCycles"); // For each operand cycle unsigned N = NOperandCycles = OperandCycleList.size(); for (unsigned i = 0; i < N;) { // Next operand cycle const int OCycle = OperandCycleList[i]; ItinString += " " + itostr(OCycle); if (++i < N) ItinString += ", "; } } void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned NOperandCycles) { const std::vector<Record*> &BypassList = ItinData->getValueAsListOfDefs("Bypasses"); unsigned N = BypassList.size(); unsigned i = 0; for (; i < N;) { ItinString += Name + "Bypass::" + BypassList[i]->getName(); if (++i < NOperandCycles) ItinString += ", "; } for (; i < NOperandCycles;) { ItinString += " 0"; if (++i < NOperandCycles) ItinString += ", "; } } // // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed // by CodeGenSchedClass::Index. // void SubtargetEmitter:: EmitStageAndOperandCycleData(raw_ostream &OS, std::vector<std::vector<InstrItinerary> > &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet<Record*, 8> ItinsDefSet; // Emit functional units for all the itineraries. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { if (!ItinsDefSet.insert(PI->ItinsDef).second) continue; std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU"); if (FUs.empty()) continue; const std::string &Name = PI->ItinsDef->getName(); OS << "\n// Functional units for \"" << Name << "\"\n" << "namespace " << Name << "FU {\n"; for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) OS << " const unsigned " << FUs[j]->getName() << " = 1 << " << j << ";\n"; OS << "}\n"; std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP"); if (!BPs.empty()) { OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name << "\"\n" << "namespace " << Name << "Bypass {\n"; OS << " const unsigned NoBypass = 0;\n"; for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) OS << " const unsigned " << BPs[j]->getName() << " = 1 << " << j << ";\n"; OS << "}\n"; } } // Begin stages table std::string StageTable = "\nextern const llvm::InstrStage " + Target + "Stages[] = {\n"; StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; // Begin operand cycle table std::string OperandCycleTable = "extern const unsigned " + Target + "OperandCycles[] = {\n"; OperandCycleTable += " 0, // No itinerary\n"; // Begin pipeline bypass table std::string BypassTable = "extern const unsigned " + Target + "ForwardingPaths[] = {\n"; BypassTable += " 0, // No itinerary\n"; // For each Itinerary across all processors, add a unique entry to the stages, // operand cycles, and pipepine bypess tables. Then add the new Itinerary // object with computed offsets to the ProcItinLists result. unsigned StageCount = 1, OperandCycleCount = 1; std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { const CodeGenProcModel &ProcModel = *PI; // Add process itinerary to the list. ProcItinLists.resize(ProcItinLists.size()+1); // If this processor defines no itineraries, then leave the itinerary list // empty. std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); if (!ProcModel.hasItineraries()) continue; const std::string &Name = ProcModel.ItinsDef->getName(); ItinList.resize(SchedModels.numInstrSchedClasses()); assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { // Next itinerary data Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; // Get string and stage count std::string ItinStageString; unsigned NStages = 0; if (ItinData) FormItineraryStageString(Name, ItinData, ItinStageString, NStages); // Get string and operand cycle count std::string ItinOperandCycleString; unsigned NOperandCycles = 0; std::string ItinBypassString; if (ItinData) { FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, NOperandCycles); FormItineraryBypassString(Name, ItinData, ItinBypassString, NOperandCycles); } // Check to see if stage already exists and create if it doesn't unsigned FindStage = 0; if (NStages > 0) { FindStage = ItinStageMap[ItinStageString]; if (FindStage == 0) { // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices StageTable += ItinStageString + ", // " + itostr(StageCount); if (NStages > 1) StageTable += "-" + itostr(StageCount + NStages - 1); StageTable += "\n"; // Record Itin class number. ItinStageMap[ItinStageString] = FindStage = StageCount; StageCount += NStages; } } // Check to see if operand cycle already exists and create if it doesn't unsigned FindOperandCycle = 0; if (NOperandCycles > 0) { std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; FindOperandCycle = ItinOperandMap[ItinOperandString]; if (FindOperandCycle == 0) { // Emit as cycle, // index OperandCycleTable += ItinOperandCycleString + ", // "; std::string OperandIdxComment = itostr(OperandCycleCount); if (NOperandCycles > 1) OperandIdxComment += "-" + itostr(OperandCycleCount + NOperandCycles - 1); OperandCycleTable += OperandIdxComment + "\n"; // Record Itin class number. ItinOperandMap[ItinOperandCycleString] = FindOperandCycle = OperandCycleCount; // Emit as bypass, // index BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; OperandCycleCount += NOperandCycles; } } // Set up itinerary as location and location + stage count int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, FindOperandCycle, FindOperandCycle + NOperandCycles}; // Inject - empty slots will be 0, 0 ItinList[SchedClassIdx] = Intinerary; } } // Closing stage StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; StageTable += "};\n"; // Closing operand cycles OperandCycleTable += " 0 // End operand cycles\n"; OperandCycleTable += "};\n"; BypassTable += " 0 // End bypass tables\n"; BypassTable += "};\n"; // Emit tables. OS << StageTable; OS << OperandCycleTable; OS << BypassTable; } // // EmitProcessorData - Generate data for processor itineraries that were // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all // Itineraries for each processor. The Itinerary lists are indexed on // CodeGenSchedClass::Index. // void SubtargetEmitter:: EmitItineraries(raw_ostream &OS, std::vector<std::vector<InstrItinerary> > &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet<Record*, 8> ItinsDefSet; // For each processor's machine model std::vector<std::vector<InstrItinerary> >::iterator ProcItinListsIter = ProcItinLists.begin(); for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { Record *ItinsDef = PI->ItinsDef; if (!ItinsDefSet.insert(ItinsDef).second) continue; // Get processor itinerary name const std::string &Name = ItinsDef->getName(); // Get the itinerary list for the processor. assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; // Empty itineraries aren't referenced anywhere in the tablegen output // so don't emit them. if (ItinList.empty()) continue; OS << "\n"; OS << "static const llvm::InstrItinerary "; // Begin processor itinerary table OS << Name << "[] = {\n"; // For each itinerary class in CodeGenSchedClass::Index order. for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { InstrItinerary &Intinerary = ItinList[j]; // Emit Itinerary in the form of // { firstStage, lastStage, firstCycle, lastCycle } // index OS << " { " << Intinerary.NumMicroOps << ", " << Intinerary.FirstStage << ", " << Intinerary.LastStage << ", " << Intinerary.FirstOperandCycle << ", " << Intinerary.LastOperandCycle << " }" << ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; } // End processor itinerary table OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; OS << "};\n"; } } // Emit either the value defined in the TableGen Record, or the default // value defined in the C++ header. The Record is null if the processor does not // define a model. void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, char Separator) { OS << " "; int V = R ? R->getValueAsInt(Name) : -1; if (V >= 0) OS << V << Separator << " // " << Name; else OS << "MCSchedModel::Default" << Name << Separator; OS << '\n'; } void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS) { char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName << "ProcResources" << "[] = {\n" << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { Record *PRDef = ProcModel.ProcResourceDefs[i]; Record *SuperDef = nullptr; unsigned SuperIdx = 0; unsigned NumUnits = 0; int BufferSize = PRDef->getValueAsInt("BufferSize"); if (PRDef->isSubClassOf("ProcResGroup")) { RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end(); RUI != RUE; ++RUI) { NumUnits += (*RUI)->getValueAsInt("NumUnits"); } } else { // Find the SuperIdx if (PRDef->getValueInit("Super")->isComplete()) { SuperDef = SchedModels.findProcResUnits( PRDef->getValueAsDef("Super"), ProcModel); SuperIdx = ProcModel.getProcResourceIdx(SuperDef); } NumUnits = PRDef->getValueAsInt("NumUnits"); } // Emit the ProcResourceDesc if (i+1 == e) Sep = ' '; OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; if (PRDef->getName().size() < 15) OS.indent(15 - PRDef->getName().size()); OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << "}" << Sep << " // #" << i+1; if (SuperDef) OS << ", Super=" << SuperDef->getName(); OS << "\n"; } OS << "};\n"; } // Find the WriteRes Record that defines processor resources for this // SchedWrite. Record *SubtargetEmitter::FindWriteResources( const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { // Check if the SchedWrite is already subtarget-specific and directly // specifies a set of processor resources. if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) return SchedWrite.TheDef; Record *AliasDef = nullptr; for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) return AliasDef; // Check this processor's list of write resources. Record *ResDef = nullptr; for (RecIter WRI = ProcModel.WriteResDefs.begin(), WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) { if (!(*WRI)->isSubClassOf("WriteRes")) continue; if (AliasDef == (*WRI)->getValueAsDef("WriteType") || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) { if (ResDef) { PrintFatalError((*WRI)->getLoc(), "Resources are defined for both " "SchedWrite and its alias on processor " + ProcModel.ModelName); } ResDef = *WRI; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindWriteResources recursively with that model here. if (!ResDef) { PrintFatalError(ProcModel.ModelDef->getLoc(), std::string("Processor does not define resources for ") + SchedWrite.TheDef->getName()); } return ResDef; } /// Find the ReadAdvance record for the given SchedRead on this processor or /// return NULL. Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel) { // Check for SchedReads that directly specify a ReadAdvance. if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) return SchedRead.TheDef; // Check this processor's list of aliases for SchedRead. Record *AliasDef = nullptr; for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) return AliasDef; // Check this processor's ReadAdvanceList. Record *ResDef = nullptr; for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(), RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) { if (!(*RAI)->isSubClassOf("ReadAdvance")) continue; if (AliasDef == (*RAI)->getValueAsDef("ReadType") || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) { if (ResDef) { PrintFatalError((*RAI)->getLoc(), "Resources are defined for both " "SchedRead and its alias on processor " + ProcModel.ModelName); } ResDef = *RAI; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindReadAdvance recursively with that model here. if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { PrintFatalError(ProcModel.ModelDef->getLoc(), std::string("Processor does not define resources for ") + SchedRead.TheDef->getName()); } return ResDef; } // Expand an explicit list of processor resources into a full list of implied // resource groups and super resources that cover them. void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, const CodeGenProcModel &PM) { // Default to 1 resource cycle. Cycles.resize(PRVec.size(), 1); for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { Record *PRDef = PRVec[i]; RecVec SubResources; if (PRDef->isSubClassOf("ProcResGroup")) SubResources = PRDef->getValueAsListOfDefs("Resources"); else { SubResources.push_back(PRDef); PRDef = SchedModels.findProcResUnits(PRVec[i], PM); for (Record *SubDef = PRDef; SubDef->getValueInit("Super")->isComplete();) { if (SubDef->isSubClassOf("ProcResGroup")) { // Disallow this for simplicitly. PrintFatalError(SubDef->getLoc(), "Processor resource group " " cannot be a super resources."); } Record *SuperDef = SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); PRVec.push_back(SuperDef); Cycles.push_back(Cycles[i]); SubDef = SuperDef; } } for (RecIter PRI = PM.ProcResourceDefs.begin(), PRE = PM.ProcResourceDefs.end(); PRI != PRE; ++PRI) { if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup")) continue; RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources"); RecIter SubI = SubResources.begin(), SubE = SubResources.end(); for( ; SubI != SubE; ++SubI) { if (std::find(SuperResources.begin(), SuperResources.end(), *SubI) == SuperResources.end()) { break; } } if (SubI == SubE) { PRVec.push_back(*PRI); Cycles.push_back(Cycles[i]); } } } } // Generate the SchedClass table for this processor and update global // tables. Must be called for each processor in order. void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables) { SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); if (!ProcModel.hasInstrSchedModel()) return; std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { DEBUG(SCI->dump(&SchedModels)); SCTab.resize(SCTab.size() + 1); MCSchedClassDesc &SCDesc = SCTab.back(); // SCDesc.Name is guarded by NDEBUG SCDesc.NumMicroOps = 0; SCDesc.BeginGroup = false; SCDesc.EndGroup = false; SCDesc.WriteProcResIdx = 0; SCDesc.WriteLatencyIdx = 0; SCDesc.ReadAdvanceIdx = 0; // A Variant SchedClass has no resources of its own. bool HasVariants = false; for (std::vector<CodeGenSchedTransition>::const_iterator TI = SCI->Transitions.begin(), TE = SCI->Transitions.end(); TI != TE; ++TI) { if (TI->ProcIndices[0] == 0) { HasVariants = true; break; } IdxIter PIPos = std::find(TI->ProcIndices.begin(), TI->ProcIndices.end(), ProcModel.Index); if (PIPos != TI->ProcIndices.end()) { HasVariants = true; break; } } if (HasVariants) { SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; continue; } // Determine if the SchedClass is actually reachable on this processor. If // not don't try to locate the processor resources, it will fail. // If ProcIndices contains 0, this class applies to all processors. assert(!SCI->ProcIndices.empty() && "expect at least one procidx"); if (SCI->ProcIndices[0] != 0) { IdxIter PIPos = std::find(SCI->ProcIndices.begin(), SCI->ProcIndices.end(), ProcModel.Index); if (PIPos == SCI->ProcIndices.end()) continue; } IdxVec Writes = SCI->Writes; IdxVec Reads = SCI->Reads; if (!SCI->InstRWs.empty()) { // This class has a default ReadWrite list which can be overriden by // InstRW definitions. Record *RWDef = nullptr; for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); RWI != RWE; ++RWI) { Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { RWDef = *RWI; break; } } if (RWDef) { Writes.clear(); Reads.clear(); SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); } } if (Writes.empty()) { // Check this processor's itinerary class resources. for (RecIter II = ProcModel.ItinRWDefs.begin(), IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef) != Matched.end()) { SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); break; } } if (Writes.empty()) { DEBUG(dbgs() << ProcModel.ModelName << " does not have resources for class " << SCI->Name << '\n'); } } // Sum resources across all operand writes. std::vector<MCWriteProcResEntry> WriteProcResources; std::vector<MCWriteLatencyEntry> WriteLatencies; std::vector<std::string> WriterNames; std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) { IdxVec WriteSeq; SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false, ProcModel); // For each operand, create a latency entry. MCWriteLatencyEntry WLEntry; WLEntry.Cycles = 0; unsigned WriteID = WriteSeq.back(); WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); // If this Write is not referenced by a ReadAdvance, don't distinguish it // from other WriteLatency entries. if (!SchedModels.hasReadOfWrite( SchedModels.getSchedWrite(WriteID).TheDef)) { WriteID = 0; } WLEntry.WriteResourceID = WriteID; for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end(); WSI != WSE; ++WSI) { Record *WriteRes = FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel); // Mark the parent class as invalid for unsupported write types. if (WriteRes->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); // Create an entry for each ProcResource listed in WriteRes. RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); std::vector<int64_t> Cycles = WriteRes->getValueAsListOfInts("ResourceCycles"); ExpandProcResources(PRVec, Cycles, ProcModel); for (unsigned PRIdx = 0, PREnd = PRVec.size(); PRIdx != PREnd; ++PRIdx) { MCWriteProcResEntry WPREntry; WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); WPREntry.Cycles = Cycles[PRIdx]; // If this resource is already used in this sequence, add the current // entry's cycles so that the same resource appears to be used // serially, rather than multiple parallel uses. This is important for // in-order machine where the resource consumption is a hazard. unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); for( ; WPRIdx != WPREnd; ++WPRIdx) { if (WriteProcResources[WPRIdx].ProcResourceIdx == WPREntry.ProcResourceIdx) { WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; break; } } if (WPRIdx == WPREnd) WriteProcResources.push_back(WPREntry); } } WriteLatencies.push_back(WLEntry); } // Create an entry for each operand Read in this SchedClass. // Entries must be sorted first by UseIdx then by WriteResourceID. for (unsigned UseIdx = 0, EndIdx = Reads.size(); UseIdx != EndIdx; ++UseIdx) { Record *ReadAdvance = FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); if (!ReadAdvance) continue; // Mark the parent class as invalid for unsupported write types. if (ReadAdvance->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); IdxVec WriteIDs; if (ValidWrites.empty()) WriteIDs.push_back(0); else { for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end(); VWI != VWE; ++VWI) { WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false)); } } std::sort(WriteIDs.begin(), WriteIDs.end()); for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) { MCReadAdvanceEntry RAEntry; RAEntry.UseIdx = UseIdx; RAEntry.WriteResourceID = *WI; RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); ReadAdvanceEntries.push_back(RAEntry); } } if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { WriteProcResources.clear(); WriteLatencies.clear(); ReadAdvanceEntries.clear(); } // Add the information for this SchedClass to the global tables using basic // compression. // // WritePrecRes entries are sorted by ProcResIdx. std::sort(WriteProcResources.begin(), WriteProcResources.end(), LessWriteProcResources()); SCDesc.NumWriteProcResEntries = WriteProcResources.size(); std::vector<MCWriteProcResEntry>::iterator WPRPos = std::search(SchedTables.WriteProcResources.begin(), SchedTables.WriteProcResources.end(), WriteProcResources.begin(), WriteProcResources.end()); if (WPRPos != SchedTables.WriteProcResources.end()) SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); else { SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), WriteProcResources.end()); } // Latency entries must remain in operand order. SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); std::vector<MCWriteLatencyEntry>::iterator WLPos = std::search(SchedTables.WriteLatencies.begin(), SchedTables.WriteLatencies.end(), WriteLatencies.begin(), WriteLatencies.end()); if (WLPos != SchedTables.WriteLatencies.end()) { unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); SCDesc.WriteLatencyIdx = idx; for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == std::string::npos) { SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; } } else { SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), WriteLatencies.begin(), WriteLatencies.end()); SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), WriterNames.begin(), WriterNames.end()); } // ReadAdvanceEntries must remain in operand order. SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); std::vector<MCReadAdvanceEntry>::iterator RAPos = std::search(SchedTables.ReadAdvanceEntries.begin(), SchedTables.ReadAdvanceEntries.end(), ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); if (RAPos != SchedTables.ReadAdvanceEntries.end()) SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); else { SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); } } } // Emit SchedClass tables for all processors and associated global tables. void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS) { // Emit global WriteProcResTable. OS << "\n// {ProcResourceIdx, Cycles}\n" << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[] = {\n" << " { 0, 0}, // Invalid\n"; for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); WPRIdx != WPREnd; ++WPRIdx) { MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " << format("%2d", WPREntry.Cycles) << "}"; if (WPRIdx + 1 < WPREnd) OS << ','; OS << " // #" << WPRIdx << '\n'; } OS << "}; // " << Target << "WriteProcResTable\n"; // Emit global WriteLatencyTable. OS << "\n// {Cycles, WriteResourceID}\n" << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[] = {\n" << " { 0, 0}, // Invalid\n"; for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); WLIdx != WLEnd; ++WLIdx) { MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; OS << " {" << format("%2d", WLEntry.Cycles) << ", " << format("%2d", WLEntry.WriteResourceID) << "}"; if (WLIdx + 1 < WLEnd) OS << ','; OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; } OS << "}; // " << Target << "WriteLatencyTable\n"; // Emit global ReadAdvanceTable. OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[] = {\n" << " {0, 0, 0}, // Invalid\n"; for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); RAIdx != RAEnd; ++RAIdx) { MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; OS << " {" << RAEntry.UseIdx << ", " << format("%2d", RAEntry.WriteResourceID) << ", " << format("%2d", RAEntry.Cycles) << "}"; if (RAIdx + 1 < RAEnd) OS << ','; OS << " // #" << RAIdx << '\n'; } OS << "}; // " << Target << "ReadAdvanceTable\n"; // Emit a SchedClass table for each processor. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { if (!PI->hasInstrSchedModel()) continue; std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; OS << "static const llvm::MCSchedClassDesc " << PI->ModelName << "SchedClasses[] = {\n"; // The first class is always invalid. We no way to distinguish it except by // name and position. assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" && "invalid class not first"); OS << " {DBGFIELD(\"InvalidSchedClass\") " << MCSchedClassDesc::InvalidNumMicroOps << ", 0, 0, 0, 0, 0, 0, 0, 0},\n"; for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { MCSchedClassDesc &MCDesc = SCTab[SCIdx]; const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; if (SchedClass.Name.size() < 18) OS.indent(18 - SchedClass.Name.size()); OS << MCDesc.NumMicroOps << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup << ", " << format("%2d", MCDesc.WriteProcResIdx) << ", " << MCDesc.NumWriteProcResEntries << ", " << format("%2d", MCDesc.WriteLatencyIdx) << ", " << MCDesc.NumWriteLatencyEntries << ", " << format("%2d", MCDesc.ReadAdvanceIdx) << ", " << MCDesc.NumReadAdvanceEntries << "}"; if (SCIdx + 1 < SCEnd) OS << ','; OS << " // #" << SCIdx << '\n'; } OS << "}; // " << PI->ModelName << "SchedClasses\n"; } } void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { // For each processor model. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { // Emit processor resource table. if (PI->hasInstrSchedModel()) EmitProcessorResources(*PI, OS); else if(!PI->ProcResourceDefs.empty()) PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines " "ProcResources without defining WriteRes SchedWriteRes"); // Begin processor itinerary properties OS << "\n"; OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n"; EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ','); EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ','); EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ','); EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ','); EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ','); EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ','); OS << " " << (bool)(PI->ModelDef ? PI->ModelDef->getValueAsBit("PostRAScheduler") : 0) << ", // " << "PostRAScheduler\n"; OS << " " << (bool)(PI->ModelDef ? PI->ModelDef->getValueAsBit("CompleteModel") : 0) << ", // " << "CompleteModel\n"; OS << " " << PI->Index << ", // Processor ID\n"; if (PI->hasInstrSchedModel()) OS << " " << PI->ModelName << "ProcResources" << ",\n" << " " << PI->ModelName << "SchedClasses" << ",\n" << " " << PI->ProcResourceDefs.size()+1 << ",\n" << " " << (SchedModels.schedClassEnd() - SchedModels.schedClassBegin()) << ",\n"; else OS << " 0, 0, 0, 0, // No instruction-level machine model.\n"; if (PI->hasItineraries()) OS << " " << PI->ItinsDef->getName() << "};\n"; else OS << " nullptr}; // No Itinerary\n"; } } // // EmitProcessorLookup - generate cpu name to itinerary lookup table. // void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { // Gather and sort processor information std::vector<Record*> ProcessorList = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); // Begin processor table OS << "\n"; OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[] = {\n"; // For each processor for (unsigned i = 0, N = ProcessorList.size(); i < N;) { // Next processor Record *Processor = ProcessorList[i]; const std::string &Name = Processor->getValueAsString("Name"); const std::string &ProcModelName = SchedModels.getModelForProc(Processor).ModelName; // Emit as { "cpu", procinit }, OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; // Depending on ''if more in the list'' emit comma if (++i < N) OS << ","; OS << "\n"; } // End processor table OS << "};\n"; } // // EmitSchedModel - Emits all scheduling model tables, folding common patterns. // void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { OS << "#ifdef DBGFIELD\n" << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" << "#endif\n" << "#ifndef NDEBUG\n" << "#define DBGFIELD(x) x,\n" << "#else\n" << "#define DBGFIELD(x)\n" << "#endif\n"; if (SchedModels.hasItineraries()) { std::vector<std::vector<InstrItinerary> > ProcItinLists; // Emit the stage data EmitStageAndOperandCycleData(OS, ProcItinLists); EmitItineraries(OS, ProcItinLists); } OS << "\n// ===============================================================\n" << "// Data tables for the new per-operand machine model.\n"; SchedClassTables SchedTables; for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { GenSchedClassTables(*PI, SchedTables); } EmitSchedClassTables(SchedTables, OS); // Emit the processor machine model EmitProcessorModels(OS); // Emit the processor lookup data EmitProcessorLookup(OS); OS << "#undef DBGFIELD"; } void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS) { OS << "unsigned " << ClassName << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," << " const TargetSchedModel *SchedModel) const {\n"; std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); std::sort(Prologs.begin(), Prologs.end(), LessRecord()); for (std::vector<Record*>::const_iterator PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) { OS << (*PI)->getValueAsString("Code") << '\n'; } IdxVec VariantClasses; for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { if (SCI->Transitions.empty()) continue; VariantClasses.push_back(SCI->Index); } if (!VariantClasses.empty()) { OS << " switch (SchedClass) {\n"; for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end(); VCI != VCE; ++VCI) { const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI); OS << " case " << *VCI << ": // " << SC.Name << '\n'; IdxVec ProcIndices; for (std::vector<CodeGenSchedTransition>::const_iterator TI = SC.Transitions.begin(), TE = SC.Transitions.end(); TI != TE; ++TI) { IdxVec PI; std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(), ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); ProcIndices.swap(PI); } for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { OS << " "; if (*PI != 0) OS << "if (SchedModel->getProcessorID() == " << *PI << ") "; OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName << '\n'; for (std::vector<CodeGenSchedTransition>::const_iterator TI = SC.Transitions.begin(), TE = SC.Transitions.end(); TI != TE; ++TI) { if (*PI != 0 && !std::count(TI->ProcIndices.begin(), TI->ProcIndices.end(), *PI)) { continue; } OS << " if ("; for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end(); RI != RE; ++RI) { if (RI != TI->PredTerm.begin()) OS << "\n && "; OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; } OS << ")\n" << " return " << TI->ToClassIdx << "; // " << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n'; } OS << " }\n"; if (*PI == 0) break; } if (SC.isInferred()) OS << " return " << SC.Index << ";\n"; OS << " break;\n"; } OS << " };\n"; } OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" << "} // " << ClassName << "::resolveSchedClass\n"; } // // ParseFeaturesFunction - Produces a subtarget specific function for parsing // the subtarget features string. // void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, unsigned NumProcs) { std::vector<Record*> Features = Records.getAllDerivedDefinitions("SubtargetFeature"); std::sort(Features.begin(), Features.end(), LessRecord()); OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" << "// subtarget options.\n" << "void llvm::"; OS << Target; OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; if (Features.empty()) { OS << "}\n"; return; } OS << " InitMCProcessorInfo(CPU, FS);\n" << " const FeatureBitset& Bits = getFeatureBits();\n"; for (unsigned i = 0; i < Features.size(); i++) { // Next record Record *R = Features[i]; const std::string &Instance = R->getName(); const std::string &Value = R->getValueAsString("Value"); const std::string &Attribute = R->getValueAsString("Attribute"); if (Value=="true" || Value=="false") OS << " if (Bits[" << Target << "::" << Instance << "]) " << Attribute << " = " << Value << ";\n"; else OS << " if (Bits[" << Target << "::" << Instance << "] && " << Attribute << " < " << Value << ") " << Attribute << " = " << Value << ";\n"; } OS << "}\n"; } // // SubtargetEmitter::run - Main subtarget enumeration emitter. // void SubtargetEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; OS << "#undef GET_SUBTARGETINFO_ENUM\n"; OS << "namespace llvm {\n"; Enumeration(OS, "SubtargetFeature"); OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; OS << "#undef GET_SUBTARGETINFO_MC_DESC\n"; OS << "namespace llvm {\n"; #if 0 OS << "namespace {\n"; #endif unsigned NumFeatures = FeatureKeyValues(OS); OS << "\n"; unsigned NumProcs = CPUKeyValues(OS); OS << "\n"; EmitSchedModel(OS); OS << "\n"; #if 0 OS << "}\n"; #endif // MCInstrInfo initialization routine. OS << "static inline MCSubtargetInfo *create" << Target << "MCSubtargetInfoImpl(" << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; OS << " return new MCSubtargetInfo(TT, CPU, FS, "; if (NumFeatures) OS << Target << "FeatureKV, "; else OS << "None, "; if (NumProcs) OS << Target << "SubTypeKV, "; else OS << "None, "; OS << '\n'; OS.indent(22); OS << Target << "ProcSchedKV, " << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; if (SchedModels.hasItineraries()) { OS << '\n'; OS.indent(22); OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "0, 0, 0"; OS << ");\n}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n"; OS << "#include \"llvm/Support/Debug.h\"\n"; OS << "#include \"llvm/Support/raw_ostream.h\"\n"; ParseFeaturesFunction(OS, NumFeatures, NumProcs); OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; OS << "#undef GET_SUBTARGETINFO_HEADER\n"; std::string ClassName = Target + "GenSubtargetInfo"; OS << "namespace llvm {\n"; OS << "class DFAPacketizer;\n"; OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " << "StringRef FS);\n" << "public:\n" << " unsigned resolveSchedClass(unsigned SchedClass, " << " const MachineInstr *DefMI," << " const TargetSchedModel *SchedModel) const override;\n" << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" << " const;\n" << "};\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; OS << "#undef GET_SUBTARGETINFO_CTOR\n"; OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n"; OS << "namespace llvm {\n"; OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; OS << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[];\n"; OS << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[];\n"; OS << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[];\n"; if (SchedModels.hasItineraries()) { OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; OS << "extern const unsigned " << Target << "OperandCycles[];\n"; OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; } OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " << "StringRef FS)\n" << " : TargetSubtargetInfo(TT, CPU, FS, "; if (NumFeatures) OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; else OS << "None, "; if (NumProcs) OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; else OS << "None, "; OS << '\n'; OS.indent(24); OS << Target << "ProcSchedKV, " << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; OS << '\n'; OS.indent(24); if (SchedModels.hasItineraries()) { OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "0, 0, 0"; OS << ") {}\n\n"; EmitSchedModelHelpers(ClassName, OS); OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; } namespace llvm { void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { CodeGenTarget CGTarget(RK); SubtargetEmitter(RK, CGTarget).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/AsmMatcherEmitter.cpp
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a target specifier matcher for converting parsed // assembly operands in the MCInst structures. It also emits a matcher for // custom operand parsing. // // Converting assembly operands into MCInst structures // --------------------------------------------------- // // The input to the target specific matcher is a list of literal tokens and // operands. The target specific parser should generally eliminate any syntax // which is not relevant for matching; for example, comma tokens should have // already been consumed and eliminated by the parser. Most instructions will // end up with a single literal token (the instruction name) and some number of // operands. // // Some example inputs, for X86: // 'addl' (immediate ...) (register ...) // 'add' (immediate ...) (memory ...) // 'call' '*' %epc // // The assembly matcher is responsible for converting this input into a precise // machine instruction (i.e., an instruction with a well defined encoding). This // mapping has several properties which complicate matching: // // - It may be ambiguous; many architectures can legally encode particular // variants of an instruction in different ways (for example, using a smaller // encoding for small immediates). Such ambiguities should never be // arbitrarily resolved by the assembler, the assembler is always responsible // for choosing the "best" available instruction. // // - It may depend on the subtarget or the assembler context. Instructions // which are invalid for the current mode, but otherwise unambiguous (e.g., // an SSE instruction in a file being assembled for i486) should be accepted // and rejected by the assembler front end. However, if the proper encoding // for an instruction is dependent on the assembler context then the matcher // is responsible for selecting the correct machine instruction for the // current mode. // // The core matching algorithm attempts to exploit the regularity in most // instruction sets to quickly determine the set of possibly matching // instructions, and the simplify the generated code. Additionally, this helps // to ensure that the ambiguities are intentionally resolved by the user. // // The matching is divided into two distinct phases: // // 1. Classification: Each operand is mapped to the unique set which (a) // contains it, and (b) is the largest such subset for which a single // instruction could match all members. // // For register classes, we can generate these subgroups automatically. For // arbitrary operands, we expect the user to define the classes and their // relations to one another (for example, 8-bit signed immediates as a // subset of 32-bit immediates). // // By partitioning the operands in this way, we guarantee that for any // tuple of classes, any single instruction must match either all or none // of the sets of operands which could classify to that tuple. // // In addition, the subset relation amongst classes induces a partial order // on such tuples, which we use to resolve ambiguities. // // 2. The input can now be treated as a tuple of classes (static tokens are // simple singleton sets). Each such tuple should generally map to a single // instruction (we currently ignore cases where this isn't true, whee!!!), // which we can emit a simple matcher for. // // Custom Operand Parsing // ---------------------- // // Some targets need a custom way to parse operands, some specific instructions // can contain arguments that can represent processor flags and other kinds of // identifiers that need to be mapped to specific values in the final encoded // instructions. The target specific custom operand parsing works in the // following way: // // 1. A operand match table is built, each entry contains a mnemonic, an // operand class, a mask for all operand positions for that same // class/mnemonic and target features to be checked while trying to match. // // 2. The operand matcher will try every possible entry with the same // mnemonic and will check if the target feature for this mnemonic also // matches. After that, if the operand to be matched has its index // present in the mask, a successful match occurs. Otherwise, fallback // to the regular operand parsing. // // 3. For a match success, each operand class that has a 'ParserMethod' // becomes part of a switch from where the custom method is called. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/StringToOffsetTable.h" #include "llvm/TableGen/TableGenBackend.h" #include <cassert> #include <cctype> #include <map> #include <set> #include <sstream> #include <forward_list> using namespace llvm; #define DEBUG_TYPE "asm-matcher-emitter" static cl::opt<std::string> MatchPrefix("match-prefix", cl::init(""), cl::desc("Only match instructions with the given prefix")); namespace { class AsmMatcherInfo; struct SubtargetFeatureInfo; // Register sets are used as keys in some second-order sets TableGen creates // when generating its data structures. This means that the order of two // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and // can even affect compiler output (at least seen in diagnostics produced when // all matches fail). So we use a type that sorts them consistently. typedef std::set<Record*, LessRecordByID> RegisterSet; class AsmMatcherEmitter { RecordKeeper &Records; public: AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); }; /// ClassInfo - Helper class for storing the information about a particular /// class of operands which can be matched. struct ClassInfo { enum ClassInfoKind { /// Invalid kind, for use as a sentinel value. Invalid = 0, /// The class for a particular token. Token, /// The (first) register class, subsequent register classes are /// RegisterClass0+1, and so on. RegisterClass0, /// The (first) user defined class, subsequent user defined classes are /// UserClass0+1, and so on. UserClass0 = 1<<16 }; /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + /// N) for the Nth user defined class. unsigned Kind; /// SuperClasses - The super classes of this class. Note that for simplicities /// sake user operands only record their immediate super class, while register /// operands include all superclasses. std::vector<ClassInfo*> SuperClasses; /// Name - The full class name, suitable for use in an enum. std::string Name; /// ClassName - The unadorned generic name for this class (e.g., Token). std::string ClassName; /// ValueName - The name of the value this class represents; for a token this /// is the literal token string, for an operand it is the TableGen class (or /// empty if this is a derived class). std::string ValueName; /// PredicateMethod - The name of the operand method to test whether the /// operand matches this class; this is not valid for Token or register kinds. std::string PredicateMethod; /// RenderMethod - The name of the operand method to add this operand to an /// MCInst; this is not valid for Token or register kinds. std::string RenderMethod; /// ParserMethod - The name of the operand method to do a target specific /// parsing on the operand. std::string ParserMethod; /// For register classes: the records for all the registers in this class. RegisterSet Registers; /// For custom match classes: the diagnostic kind for when the predicate fails. std::string DiagnosticType; public: /// isRegisterClass() - Check if this is a register class. bool isRegisterClass() const { return Kind >= RegisterClass0 && Kind < UserClass0; } /// isUserClass() - Check if this is a user defined class. bool isUserClass() const { return Kind >= UserClass0; } /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes /// are related if they are in the same class hierarchy. bool isRelatedTo(const ClassInfo &RHS) const { // Tokens are only related to tokens. if (Kind == Token || RHS.Kind == Token) return Kind == Token && RHS.Kind == Token; // Registers classes are only related to registers classes, and only if // their intersection is non-empty. if (isRegisterClass() || RHS.isRegisterClass()) { if (!isRegisterClass() || !RHS.isRegisterClass()) return false; RegisterSet Tmp; std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); std::set_intersection(Registers.begin(), Registers.end(), RHS.Registers.begin(), RHS.Registers.end(), II, LessRecordByID()); return !Tmp.empty(); } // Otherwise we have two users operands; they are related if they are in the // same class hierarchy. // // FIXME: This is an oversimplification, they should only be related if they // intersect, however we don't have that information. assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); const ClassInfo *Root = this; while (!Root->SuperClasses.empty()) Root = Root->SuperClasses.front(); const ClassInfo *RHSRoot = &RHS; while (!RHSRoot->SuperClasses.empty()) RHSRoot = RHSRoot->SuperClasses.front(); return Root == RHSRoot; } /// isSubsetOf - Test whether this class is a subset of \p RHS. bool isSubsetOf(const ClassInfo &RHS) const { // This is a subset of RHS if it is the same class... if (this == &RHS) return true; // ... or if any of its super classes are a subset of RHS. for (const ClassInfo *CI : SuperClasses) if (CI->isSubsetOf(RHS)) return true; return false; } /// operator< - Compare two classes. // FIXME: This ordering seems to be broken. For example: // u64 < i64, i64 < s8, s8 < u64, forming a cycle // u64 is a subset of i64 // i64 and s8 are not subsets of each other, so are ordered by name // s8 and u64 are not subsets of each other, so are ordered by name bool operator<(const ClassInfo &RHS) const { if (this == &RHS) return false; // Unrelated classes can be ordered by kind. if (!isRelatedTo(RHS)) return Kind < RHS.Kind; switch (Kind) { case Invalid: llvm_unreachable("Invalid kind!"); default: // This class precedes the RHS if it is a proper subset of the RHS. if (isSubsetOf(RHS)) return true; if (RHS.isSubsetOf(*this)) return false; // Otherwise, order by name to ensure we have a total ordering. return ValueName < RHS.ValueName; } } }; /// MatchableInfo - Helper class for storing the necessary information for an /// instruction or alias which is capable of being matched. struct MatchableInfo { struct AsmOperand { /// Token - This is the token that the operand came from. StringRef Token; /// The unique class instance this operand should match. ClassInfo *Class; /// The operand name this is, if anything. StringRef SrcOpName; /// The suboperand index within SrcOpName, or -1 for the entire operand. int SubOpIdx; /// Whether the token is "isolated", i.e., it is preceded and followed /// by separators. bool IsIsolatedToken; /// Register record if this token is singleton register. Record *SingletonReg; explicit AsmOperand(bool IsIsolatedToken, StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1), IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} }; /// ResOperand - This represents a single operand in the result instruction /// generated by the match. In cases (like addressing modes) where a single /// assembler operand expands to multiple MCOperands, this represents the /// single assembler operand, not the MCOperand. struct ResOperand { enum { /// RenderAsmOperand - This represents an operand result that is /// generated by calling the render method on the assembly operand. The /// corresponding AsmOperand is specified by AsmOperandNum. RenderAsmOperand, /// TiedOperand - This represents a result operand that is a duplicate of /// a previous result operand. TiedOperand, /// ImmOperand - This represents an immediate value that is dumped into /// the operand. ImmOperand, /// RegOperand - This represents a fixed register that is dumped in. RegOperand } Kind; union { /// This is the operand # in the AsmOperands list that this should be /// copied from. unsigned AsmOperandNum; /// TiedOperandNum - This is the (earlier) result operand that should be /// copied from. unsigned TiedOperandNum; /// ImmVal - This is the immediate value added to the instruction. int64_t ImmVal; /// Register - This is the register record. Record *Register; }; /// MINumOperands - The number of MCInst operands populated by this /// operand. unsigned MINumOperands; static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { ResOperand X; X.Kind = RenderAsmOperand; X.AsmOperandNum = AsmOpNum; X.MINumOperands = NumOperands; return X; } static ResOperand getTiedOp(unsigned TiedOperandNum) { ResOperand X; X.Kind = TiedOperand; X.TiedOperandNum = TiedOperandNum; X.MINumOperands = 1; return X; } static ResOperand getImmOp(int64_t Val) { ResOperand X; X.Kind = ImmOperand; X.ImmVal = Val; X.MINumOperands = 1; return X; } static ResOperand getRegOp(Record *Reg) { ResOperand X; X.Kind = RegOperand; X.Register = Reg; X.MINumOperands = 1; return X; } }; /// AsmVariantID - Target's assembly syntax variant no. int AsmVariantID; /// AsmString - The assembly string for this instruction (with variants /// removed), e.g. "movsx $src, $dst". std::string AsmString; /// TheDef - This is the definition of the instruction or InstAlias that this /// matchable came from. Record *const TheDef; /// DefRec - This is the definition that it came from. PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; const CodeGenInstruction *getResultInst() const { if (DefRec.is<const CodeGenInstruction*>()) return DefRec.get<const CodeGenInstruction*>(); return DefRec.get<const CodeGenInstAlias*>()->ResultInst; } /// ResOperands - This is the operand list that should be built for the result /// MCInst. SmallVector<ResOperand, 8> ResOperands; /// Mnemonic - This is the first token of the matched instruction, its /// mnemonic. StringRef Mnemonic; /// AsmOperands - The textual operands that this instruction matches, /// annotated with a class and where in the OperandList they were defined. /// This directly corresponds to the tokenized AsmString after the mnemonic is /// removed. SmallVector<AsmOperand, 8> AsmOperands; /// Predicates - The required subtarget features to match this instruction. SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; /// ConversionFnKind - The enum value which is passed to the generated /// convertToMCInst to convert parsed operands into an MCInst for this /// function. std::string ConversionFnKind; /// If this instruction is deprecated in some form. bool HasDeprecation; /// If this is an alias, this is use to determine whether or not to using /// the conversion function defined by the instruction's AsmMatchConverter /// or to use the function generated by the alias. bool UseInstAsmMatchConverter; MatchableInfo(const CodeGenInstruction &CGI) : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), UseInstAsmMatchConverter(true) { } MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()), UseInstAsmMatchConverter( TheDef->getValueAsBit("UseInstAsmMatchConverter")) { } ~MatchableInfo() { delete DefRec.dyn_cast<const CodeGenInstAlias*>(); } // Two-operand aliases clone from the main matchable, but mark the second // operand as a tied operand of the first for purposes of the assembler. void formTwoOperandAlias(StringRef Constraint); void initialize(const AsmMatcherInfo &Info, SmallPtrSetImpl<Record*> &SingletonRegisters, int AsmVariantNo, std::string &RegisterPrefix); /// validate - Return true if this matchable is a valid thing to match against /// and perform a bunch of validity checking. bool validate(StringRef CommentDelimiter, bool Hack) const; /// extractSingletonRegisterForAsmOperand - Extract singleton register, /// if present, from specified token. void extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info, std::string &RegisterPrefix); /// findAsmOperand - Find the AsmOperand with the specified name and /// suboperand index. int findAsmOperand(StringRef N, int SubOpIdx) const { for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (N == AsmOperands[i].SrcOpName && SubOpIdx == AsmOperands[i].SubOpIdx) return i; return -1; } /// findAsmOperandNamed - Find the first AsmOperand with the specified name. /// This does not check the suboperand index. int findAsmOperandNamed(StringRef N) const { for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (N == AsmOperands[i].SrcOpName) return i; return -1; } void buildInstructionResultOperands(); void buildAliasResultOperands(); /// operator< - Compare two matchables. bool operator<(const MatchableInfo &RHS) const { // The primary comparator is the instruction mnemonic. if (Mnemonic != RHS.Mnemonic) return Mnemonic < RHS.Mnemonic; if (AsmOperands.size() != RHS.AsmOperands.size()) return AsmOperands.size() < RHS.AsmOperands.size(); // Compare lexicographically by operand. The matcher validates that other // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) return true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; } // Give matches that require more features higher precedence. This is useful // because we cannot define AssemblerPredicates with the negation of // processor features. For example, ARM v6 "nop" may be either a HINT or // MOV. With v6, we want to match HINT. The assembler has no way to // predicate MOV under "NoV6", but HINT will always match first because it // requires V6 while MOV does not. if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) return RequiredFeatures.size() > RHS.RequiredFeatures.size(); return false; } /// couldMatchAmbiguouslyWith - Check whether this matchable could /// ambiguously match the same set of operands as \p RHS (without being a /// strictly superior match). bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { // The primary comparator is the instruction mnemonic. if (Mnemonic != RHS.Mnemonic) return false; // The number of operands is unambiguous. if (AsmOperands.size() != RHS.AsmOperands.size()) return false; // Otherwise, make sure the ordering of the two instructions is unambiguous // by checking that either (a) a token or operand kind discriminates them, // or (b) the ordering among equivalent kinds is consistent. // Tokens and operand kinds are unambiguous (assuming a correct target // specific parser). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || AsmOperands[i].Class->Kind == ClassInfo::Token) if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; // Otherwise, this operand could commute if all operands are equivalent, or // there is a pair of operands that compare less than and a pair that // compare greater than. bool HasLT = false, HasGT = false; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) HasLT = true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) HasGT = true; } return !(HasLT ^ HasGT); } void dump() const; private: void tokenizeAsmString(const AsmMatcherInfo &Info); void addAsmOperand(size_t Start, size_t End); }; /// SubtargetFeatureInfo - Helper class for storing information on a subtarget /// feature which participates in instruction matching. struct SubtargetFeatureInfo { /// \brief The predicate record for this feature. Record *TheDef; /// \brief An unique index assigned to represent this feature. uint64_t Index; SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {} /// \brief The name of the enumerated constant identifying this feature. std::string getEnumName() const { return "Feature_" + TheDef->getName(); } void dump() const { errs() << getEnumName() << " " << Index << "\n"; TheDef->dump(); } }; struct OperandMatchEntry { unsigned OperandMask; const MatchableInfo* MI; ClassInfo *CI; static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, unsigned opMask) { OperandMatchEntry X; X.OperandMask = opMask; X.CI = ci; X.MI = mi; return X; } }; class AsmMatcherInfo { public: /// Tracked Records RecordKeeper &Records; /// The tablegen AsmParser record. Record *AsmParser; /// Target - The target information. CodeGenTarget &Target; /// The classes which are needed for matching. std::forward_list<ClassInfo> Classes; /// The information on the matchables to match. std::vector<std::unique_ptr<MatchableInfo>> Matchables; /// Info for custom matching operands by user defined methods. std::vector<OperandMatchEntry> OperandMatchInfo; /// Map of Register records to their class information. typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; RegisterClassesTy RegisterClasses; /// Map of Predicate records to their subtarget information. std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; /// Map of AsmOperandClass records to their class information. std::map<Record*, ClassInfo*> AsmOperandClasses; private: /// Map of token to class information which has already been constructed. std::map<std::string, ClassInfo*> TokenClasses; /// Map of RegisterClass records to their class information. std::map<Record*, ClassInfo*> RegisterClassClasses; private: /// getTokenClass - Lookup or create the class for the given token. ClassInfo *getTokenClass(StringRef Token); /// getOperandClass - Lookup or create the class for the given operand. ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, int SubOpIdx); ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); /// buildRegisterClasses - Build the ClassInfo* instances for register /// classes. void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); /// buildOperandClasses - Build the ClassInfo* instances for user defined /// operand classes. void buildOperandClasses(); void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, unsigned AsmOpIdx); void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, MatchableInfo::AsmOperand &Op); public: AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target, RecordKeeper &Records); /// buildInfo - Construct the various tables used during matching. void buildInfo(); /// buildOperandMatchInfo - Build the necessary information to handle user /// defined operand parsing methods. void buildOperandMatchInfo(); /// getSubtargetFeature - Lookup or create the subtarget feature info for the /// given operand. const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); const auto &I = SubtargetFeatures.find(Def); return I == SubtargetFeatures.end() ? nullptr : &I->second; } RecordKeeper &getRecords() const { return Records; } }; } // End anonymous namespace void MatchableInfo::dump() const { errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { const AsmOperand &Op = AsmOperands[i]; errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; errs() << '\"' << Op.Token << "\"\n"; } } static std::pair<StringRef, StringRef> parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { // Split via the '='. std::pair<StringRef, StringRef> Ops = S.split('='); if (Ops.second == "") PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); // Trim whitespace and the leading '$' on the operand names. size_t start = Ops.first.find_first_of('$'); if (start == std::string::npos) PrintFatalError(Loc, "expected '$' prefix on asm operand name"); Ops.first = Ops.first.slice(start + 1, std::string::npos); size_t end = Ops.first.find_last_of(" \t"); Ops.first = Ops.first.slice(0, end); // Now the second operand. start = Ops.second.find_first_of('$'); if (start == std::string::npos) PrintFatalError(Loc, "expected '$' prefix on asm operand name"); Ops.second = Ops.second.slice(start + 1, std::string::npos); end = Ops.second.find_last_of(" \t"); Ops.first = Ops.first.slice(0, end); return Ops; } void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { // Figure out which operands are aliased and mark them as tied. std::pair<StringRef, StringRef> Ops = parseTwoOperandConstraint(Constraint, TheDef->getLoc()); // Find the AsmOperands that refer to the operands we're aliasing. int SrcAsmOperand = findAsmOperandNamed(Ops.first); int DstAsmOperand = findAsmOperandNamed(Ops.second); if (SrcAsmOperand == -1) PrintFatalError(TheDef->getLoc(), "unknown source two-operand alias operand '" + Ops.first + "'."); if (DstAsmOperand == -1) PrintFatalError(TheDef->getLoc(), "unknown destination two-operand alias operand '" + Ops.second + "'."); // Find the ResOperand that refers to the operand we're aliasing away // and update it to refer to the combined operand instead. for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { ResOperand &Op = ResOperands[i]; if (Op.Kind == ResOperand::RenderAsmOperand && Op.AsmOperandNum == (unsigned)SrcAsmOperand) { Op.AsmOperandNum = DstAsmOperand; break; } } // Remove the AsmOperand for the alias operand. AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); // Adjust the ResOperand references to any AsmOperands that followed // the one we just deleted. for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) { ResOperand &Op = ResOperands[i]; switch(Op.Kind) { default: // Nothing to do for operands that don't reference AsmOperands. break; case ResOperand::RenderAsmOperand: if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) --Op.AsmOperandNum; break; case ResOperand::TiedOperand: if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) --Op.TiedOperandNum; break; } } } void MatchableInfo::initialize(const AsmMatcherInfo &Info, SmallPtrSetImpl<Record*> &SingletonRegisters, int AsmVariantNo, std::string &RegisterPrefix) { AsmVariantID = AsmVariantNo; AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo); tokenizeAsmString(Info); // Compute the require features. std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) if (const SubtargetFeatureInfo *Feature = Info.getSubtargetFeature(Predicates[i])) RequiredFeatures.push_back(Feature); // Collect singleton registers, if used. for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix); if (Record *Reg = AsmOperands[i].SingletonReg) SingletonRegisters.insert(Reg); } const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); if (!DepMask) DepMask = TheDef->getValue("ComplexDeprecationPredicate"); HasDeprecation = DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; } /// Append an AsmOperand for the given substring of AsmString. void MatchableInfo::addAsmOperand(size_t Start, size_t End) { StringRef String = AsmString; StringRef Separators = "[]*! \t,"; // Look for separators before and after to figure out is this token is // isolated. Accept '$$' as that's how we escape '$'. bool IsIsolatedToken = (!Start || Separators.find(String[Start - 1]) != StringRef::npos || String.substr(Start - 1, 2) == "$$") && (End >= String.size() || Separators.find(String[End]) != StringRef::npos); AsmOperands.push_back(AsmOperand(IsIsolatedToken, String.slice(Start, End))); } /// tokenizeAsmString - Tokenize a simplified assembly string. void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) { StringRef String = AsmString; unsigned Prev = 0; bool InTok = true; for (unsigned i = 0, e = String.size(); i != e; ++i) { switch (String[i]) { case '[': case ']': case '*': case '!': case ' ': case '\t': case ',': if (InTok) { addAsmOperand(Prev, i); InTok = false; } if (!isspace(String[i]) && String[i] != ',') addAsmOperand(i, i + 1); Prev = i + 1; break; case '\\': if (InTok) { addAsmOperand(Prev, i); InTok = false; } ++i; assert(i != String.size() && "Invalid quoted character"); addAsmOperand(i, i + 1); Prev = i + 1; break; case '$': { if (InTok) { addAsmOperand(Prev, i); InTok = false; } // If this isn't "${", treat like a normal token. if (i + 1 == String.size() || String[i + 1] != '{') { Prev = i; break; } StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); assert(End != String.end() && "Missing brace in operand reference!"); size_t EndPos = End - String.begin(); addAsmOperand(i, EndPos+1); Prev = EndPos + 1; i = EndPos; break; } case '.': if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) { if (InTok) addAsmOperand(Prev, i); Prev = i; } InTok = true; break; default: InTok = true; } } if (InTok && Prev != String.size()) addAsmOperand(Prev, StringRef::npos); // The first token of the instruction is the mnemonic, which must be a // simple string, not a $foo variable or a singleton register. if (AsmOperands.empty()) PrintFatalError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has no tokens"); Mnemonic = AsmOperands[0].Token; if (Mnemonic.empty()) PrintFatalError(TheDef->getLoc(), "Missing instruction mnemonic"); // FIXME : Check and raise an error if it is a register. if (Mnemonic[0] == '$') PrintFatalError(TheDef->getLoc(), "Invalid instruction mnemonic '" + Mnemonic + "'!"); // Remove the first operand, it is tracked in the mnemonic field. AsmOperands.erase(AsmOperands.begin()); } bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { // Reject matchables with no .s string. if (AsmString.empty()) PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); // Reject any matchables with a newline in them, they should be marked // isCodeGenOnly if they are pseudo instructions. if (AsmString.find('\n') != std::string::npos) PrintFatalError(TheDef->getLoc(), "multiline instruction is not valid for the asmparser, " "mark it isCodeGenOnly"); // Remove comments from the asm string. We know that the asmstring only // has one line. if (!CommentDelimiter.empty() && StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) PrintFatalError(TheDef->getLoc(), "asmstring for instruction has comment character in it, " "mark it isCodeGenOnly"); // Reject matchables with operand modifiers, these aren't something we can // handle, the target should be refactored to use operands instead of // modifiers. // // Also, check for instructions which reference the operand multiple times; // this implies a constraint we would not honor. std::set<std::string> OperandNames; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { StringRef Tok = AsmOperands[i].Token; if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) PrintFatalError(TheDef->getLoc(), "matchable with operand modifier '" + Tok + "' not supported by asm matcher. Mark isCodeGenOnly!"); // Verify that any operand is only mentioned once. // We reject aliases and ignore instructions for now. if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { if (!Hack) PrintFatalError(TheDef->getLoc(), "ERROR: matchable with tied operand '" + Tok + "' can never be matched!"); // FIXME: Should reject these. The ARM backend hits this with $lane in a // bunch of instructions. It is unclear what the right answer is. DEBUG({ errs() << "warning: '" << TheDef->getName() << "': " << "ignoring instruction with tied operand '" << Tok << "'\n"; }); return false; } } return true; } /// extractSingletonRegisterForAsmOperand - Extract singleton register, /// if present, from specified token. void MatchableInfo:: extractSingletonRegisterForAsmOperand(unsigned OperandNo, const AsmMatcherInfo &Info, std::string &RegisterPrefix) { StringRef Tok = AsmOperands[OperandNo].Token; // If this token is not an isolated token, i.e., it isn't separated from // other tokens (e.g. with whitespace), don't interpret it as a register name. if (!AsmOperands[OperandNo].IsIsolatedToken) return; if (RegisterPrefix.empty()) { std::string LoweredTok = Tok.lower(); if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) AsmOperands[OperandNo].SingletonReg = Reg->TheDef; return; } if (!Tok.startswith(RegisterPrefix)) return; StringRef RegName = Tok.substr(RegisterPrefix.size()); if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) AsmOperands[OperandNo].SingletonReg = Reg->TheDef; // If there is no register prefix (i.e. "%" in "%eax"), then this may // be some random non-register token, just ignore it. return; } static std::string getEnumNameForToken(StringRef Str) { std::string Res; for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { switch (*it) { case '*': Res += "_STAR_"; break; case '%': Res += "_PCT_"; break; case ':': Res += "_COLON_"; break; case '!': Res += "_EXCLAIM_"; break; case '.': Res += "_DOT_"; break; case '<': Res += "_LT_"; break; case '>': Res += "_GT_"; break; case '-': Res += "_MINUS_"; break; default: if ((*it >= 'A' && *it <= 'Z') || (*it >= 'a' && *it <= 'z') || (*it >= '0' && *it <= '9')) Res += *it; else Res += "_" + utostr((unsigned) *it) + "_"; } } return Res; } ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { ClassInfo *&Entry = TokenClasses[Token]; if (!Entry) { Classes.emplace_front(); Entry = &Classes.front(); Entry->Kind = ClassInfo::Token; Entry->ClassName = "Token"; Entry->Name = "MCK_" + getEnumNameForToken(Token); Entry->ValueName = Token; Entry->PredicateMethod = "<invalid>"; Entry->RenderMethod = "<invalid>"; Entry->ParserMethod = ""; Entry->DiagnosticType = ""; } return Entry; } ClassInfo * AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, int SubOpIdx) { Record *Rec = OI.Rec; if (SubOpIdx != -1) Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); return getOperandClass(Rec, SubOpIdx); } ClassInfo * AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { if (Rec->isSubClassOf("RegisterOperand")) { // RegisterOperand may have an associated ParserMatchClass. If it does, // use it, else just fall back to the underlying register class. const RecordVal *R = Rec->getValue("ParserMatchClass"); if (!R || !R->getValue()) PrintFatalError("Record `" + Rec->getName() + "' does not have a ParserMatchClass!\n"); if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { Record *MatchClass = DI->getDef(); if (ClassInfo *CI = AsmOperandClasses[MatchClass]) return CI; } // No custom match class. Just use the register class. Record *ClassRec = Rec->getValueAsDef("RegClass"); if (!ClassRec) PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + "' has no associated register class!\n"); if (ClassInfo *CI = RegisterClassClasses[ClassRec]) return CI; PrintFatalError(Rec->getLoc(), "register class has no class info!"); } if (Rec->isSubClassOf("RegisterClass")) { if (ClassInfo *CI = RegisterClassClasses[Rec]) return CI; PrintFatalError(Rec->getLoc(), "register class has no class info!"); } if (!Rec->isSubClassOf("Operand")) PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + "' does not derive from class Operand!\n"); Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); if (ClassInfo *CI = AsmOperandClasses[MatchClass]) return CI; PrintFatalError(Rec->getLoc(), "operand has no match class!"); } struct LessRegisterSet { bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { // std::set<T> defines its own compariso "operator<", but it // performs a lexicographical comparison by T's innate comparison // for some reason. We don't want non-deterministic pointer // comparisons so use this instead. return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), LessRecordByID()); } }; void AsmMatcherInfo:: buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { const auto &Registers = Target.getRegBank().getRegisters(); auto &RegClassList = Target.getRegBank().getRegClasses(); typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; // The register sets used for matching. RegisterSetSet RegisterSets; // Gather the defined sets. for (const CodeGenRegisterClass &RC : RegClassList) RegisterSets.insert( RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); // Add any required singleton sets. for (Record *Rec : SingletonRegisters) { RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); } // Introduce derived sets where necessary (when a register does not determine // a unique register set class), and build the mapping of registers to the set // they should classify to. std::map<Record*, RegisterSet> RegisterMap; for (const CodeGenRegister &CGR : Registers) { // Compute the intersection of all sets containing this register. RegisterSet ContainingSet; for (const RegisterSet &RS : RegisterSets) { if (!RS.count(CGR.TheDef)) continue; if (ContainingSet.empty()) { ContainingSet = RS; continue; } RegisterSet Tmp; std::swap(Tmp, ContainingSet); std::insert_iterator<RegisterSet> II(ContainingSet, ContainingSet.begin()); std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, LessRecordByID()); } if (!ContainingSet.empty()) { RegisterSets.insert(ContainingSet); RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); } } // Construct the register classes. std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; unsigned Index = 0; for (const RegisterSet &RS : RegisterSets) { Classes.emplace_front(); ClassInfo *CI = &Classes.front(); CI->Kind = ClassInfo::RegisterClass0 + Index; CI->ClassName = "Reg" + utostr(Index); CI->Name = "MCK_Reg" + utostr(Index); CI->ValueName = ""; CI->PredicateMethod = ""; // unused CI->RenderMethod = "addRegOperands"; CI->Registers = RS; // FIXME: diagnostic type. CI->DiagnosticType = ""; RegisterSetClasses.insert(std::make_pair(RS, CI)); ++Index; } // Find the superclasses; we could compute only the subgroup lattice edges, // but there isn't really a point. for (const RegisterSet &RS : RegisterSets) { ClassInfo *CI = RegisterSetClasses[RS]; for (const RegisterSet &RS2 : RegisterSets) if (RS != RS2 && std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), LessRecordByID())) CI->SuperClasses.push_back(RegisterSetClasses[RS2]); } // Name the register classes which correspond to a user defined RegisterClass. for (const CodeGenRegisterClass &RC : RegClassList) { // Def will be NULL for non-user defined register classes. Record *Def = RC.getDef(); if (!Def) continue; ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), RC.getOrder().end())]; if (CI->ValueName.empty()) { CI->ClassName = RC.getName(); CI->Name = "MCK_" + RC.getName(); CI->ValueName = RC.getName(); } else CI->ValueName = CI->ValueName + "," + RC.getName(); RegisterClassClasses.insert(std::make_pair(Def, CI)); } // Populate the map for individual registers. for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), ie = RegisterMap.end(); it != ie; ++it) RegisterClasses[it->first] = RegisterSetClasses[it->second]; // Name the register classes which correspond to singleton registers. for (Record *Rec : SingletonRegisters) { ClassInfo *CI = RegisterClasses[Rec]; assert(CI && "Missing singleton register class info!"); if (CI->ValueName.empty()) { CI->ClassName = Rec->getName(); CI->Name = "MCK_" + Rec->getName(); CI->ValueName = Rec->getName(); } else CI->ValueName = CI->ValueName + "," + Rec->getName(); } } void AsmMatcherInfo::buildOperandClasses() { std::vector<Record*> AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass"); // Pre-populate AsmOperandClasses map. for (Record *Rec : AsmOperands) { Classes.emplace_front(); AsmOperandClasses[Rec] = &Classes.front(); } unsigned Index = 0; for (Record *Rec : AsmOperands) { ClassInfo *CI = AsmOperandClasses[Rec]; CI->Kind = ClassInfo::UserClass0 + Index; ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); for (Init *I : Supers->getValues()) { DefInit *DI = dyn_cast<DefInit>(I); if (!DI) { PrintError(Rec->getLoc(), "Invalid super class reference!"); continue; } ClassInfo *SC = AsmOperandClasses[DI->getDef()]; if (!SC) PrintError(Rec->getLoc(), "Invalid super class reference!"); else CI->SuperClasses.push_back(SC); } CI->ClassName = Rec->getValueAsString("Name"); CI->Name = "MCK_" + CI->ClassName; CI->ValueName = Rec->getName(); // Get or construct the predicate method name. Init *PMName = Rec->getValueInit("PredicateMethod"); if (StringInit *SI = dyn_cast<StringInit>(PMName)) { CI->PredicateMethod = SI->getValue(); } else { assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); CI->PredicateMethod = "is" + CI->ClassName; } // Get or construct the render method name. Init *RMName = Rec->getValueInit("RenderMethod"); if (StringInit *SI = dyn_cast<StringInit>(RMName)) { CI->RenderMethod = SI->getValue(); } else { assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); CI->RenderMethod = "add" + CI->ClassName + "Operands"; } // Get the parse method name or leave it as empty. Init *PRMName = Rec->getValueInit("ParserMethod"); if (StringInit *SI = dyn_cast<StringInit>(PRMName)) CI->ParserMethod = SI->getValue(); // Get the diagnostic type or leave it as empty. // Get the parse method name or leave it as empty. Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) CI->DiagnosticType = SI->getValue(); ++Index; } } AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target, RecordKeeper &records) : Records(records), AsmParser(asmParser), Target(target) { } /// buildOperandMatchInfo - Build the necessary information to handle user /// defined operand parsing methods. void AsmMatcherInfo::buildOperandMatchInfo() { /// Map containing a mask with all operands indices that can be found for /// that class inside a instruction. typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; OpClassMaskTy OpClassMask; for (const auto &MI : Matchables) { OpClassMask.clear(); // Keep track of all operands of this instructions which belong to the // same class. for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; if (Op.Class->ParserMethod.empty()) continue; unsigned &OperandMask = OpClassMask[Op.Class]; OperandMask |= (1 << i); } // Generate operand match info for each mnemonic/operand class pair. for (const auto &OCM : OpClassMask) { unsigned OpMask = OCM.second; ClassInfo *CI = OCM.first; OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, OpMask)); } } } void AsmMatcherInfo::buildInfo() { // Build information about all of the AssemblerPredicates. std::vector<Record*> AllPredicates = Records.getAllDerivedDefinitions("Predicate"); for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { Record *Pred = AllPredicates[i]; // Ignore predicates that are not intended for the assembler. if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) continue; if (Pred->getName().empty()) PrintFatalError(Pred->getLoc(), "Predicate has no name!"); SubtargetFeatures.insert(std::make_pair( Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size()))); DEBUG(SubtargetFeatures.find(Pred)->second.dump()); assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); } // Parse the instructions; we need to do this first so that we can gather the // singleton register classes. SmallPtrSet<Record*, 16> SingletonRegisters; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); std::string CommentDelimiter = AsmVariant->getValueAsString("CommentDelimiter"); std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); for (const CodeGenInstruction *CGI : Target.instructions()) { // If the tblgen -match-prefix option is specified (for tblgen hackers), // filter the set of instructions we consider. if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) continue; // Ignore "codegen only" instructions. if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) continue; std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI)); II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); // Ignore instructions which shouldn't be matched and diagnose invalid // instruction definitions with an error. if (!II->validate(CommentDelimiter, true)) continue; Matchables.push_back(std::move(II)); } // Parse all of the InstAlias definitions and stick them in the list of // matchables. std::vector<Record*> AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], AsmVariantNo, Target); // If the tblgen -match-prefix option is specified (for tblgen hackers), // filter the set of instruction aliases we consider, based on the target // instruction. if (!StringRef(Alias->ResultInst->TheDef->getName()) .startswith( MatchPrefix)) continue; std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias))); II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix); // Validate the alias definitions. II->validate(CommentDelimiter, false); Matchables.push_back(std::move(II)); } } // Build info for the register classes. buildRegisterClasses(SingletonRegisters); // Build info for the user defined assembly operand classes. buildOperandClasses(); // Build the information about matchables, now that we have fully formed // classes. std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; for (auto &II : Matchables) { // Parse the tokens after the mnemonic. // Note: buildInstructionOperandReference may insert new AsmOperands, so // don't precompute the loop bound. for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; StringRef Token = Op.Token; // Check for singleton registers. if (Record *RegRecord = II->AsmOperands[i].SingletonReg) { Op.Class = RegisterClasses[RegRecord]; assert(Op.Class && Op.Class->Registers.size() == 1 && "Unexpected class for singleton register"); continue; } // Check for simple tokens. if (Token[0] != '$') { Op.Class = getTokenClass(Token); continue; } if (Token.size() > 1 && isdigit(Token[1])) { Op.Class = getTokenClass(Token); continue; } // Otherwise this is an operand reference. StringRef OperandName; if (Token[1] == '{') OperandName = Token.substr(2, Token.size() - 3); else OperandName = Token.substr(1); if (II->DefRec.is<const CodeGenInstruction*>()) buildInstructionOperandReference(II.get(), OperandName, i); else buildAliasOperandReference(II.get(), OperandName, Op); } if (II->DefRec.is<const CodeGenInstruction*>()) { II->buildInstructionResultOperands(); // If the instruction has a two-operand alias, build up the // matchable here. We'll add them in bulk at the end to avoid // confusing this loop. std::string Constraint = II->TheDef->getValueAsString("TwoOperandAliasConstraint"); if (Constraint != "") { // Start by making a copy of the original matchable. std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II)); // Adjust it to be a two-operand alias. AliasII->formTwoOperandAlias(Constraint); // Add the alias to the matchables list. NewMatchables.push_back(std::move(AliasII)); } } else II->buildAliasResultOperands(); } if (!NewMatchables.empty()) Matchables.insert(Matchables.end(), std::make_move_iterator(NewMatchables.begin()), std::make_move_iterator(NewMatchables.end())); // Process token alias definitions and set up the associated superclass // information. std::vector<Record*> AllTokenAliases = Records.getAllDerivedDefinitions("TokenAlias"); for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) { Record *Rec = AllTokenAliases[i]; ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); if (FromClass == ToClass) PrintFatalError(Rec->getLoc(), "error: Destination value identical to source value."); FromClass->SuperClasses.push_back(ToClass); } // Reorder classes so that classes precede super classes. Classes.sort(); } /// buildInstructionOperandReference - The specified operand is a reference to a /// named operand such as $src. Resolve the Class and OperandInfo pointers. void AsmMatcherInfo:: buildInstructionOperandReference(MatchableInfo *II, StringRef OperandName, unsigned AsmOpIdx) { const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); const CGIOperandList &Operands = CGI.Operands; MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; // Map this token to an operand. unsigned Idx; if (!Operands.hasOperandNamed(OperandName, Idx)) PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName + "'"); // If the instruction operand has multiple suboperands, but the parser // match class for the asm operand is still the default "ImmAsmOperand", // then handle each suboperand separately. if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { Record *Rec = Operands[Idx].Rec; assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. StringRef Token = Op->Token; // save this in case Op gets moved for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); NewAsmOp.SubOpIdx = SI; II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); } // Replace Op with first suboperand. Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved Op->SubOpIdx = 0; } } // Set up the operand class. Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); // If the named operand is tied, canonicalize it to the untied operand. // For example, something like: // (outs GPR:$dst), (ins GPR:$src) // with an asmstring of // "inc $src" // we want to canonicalize to: // "inc $dst" // so that we know how to provide the $dst operand when filling in the result. int OITied = -1; if (Operands[Idx].MINumOperands == 1) OITied = Operands[Idx].getTiedRegister(); if (OITied != -1) { // The tied operand index is an MIOperand index, find the operand that // contains it. std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); OperandName = Operands[Idx.first].Name; Op->SubOpIdx = Idx.second; } Op->SrcOpName = OperandName; } /// buildAliasOperandReference - When parsing an operand reference out of the /// matching string (e.g. "movsx $src, $dst"), determine what the class of the /// operand reference is by looking it up in the result pattern definition. void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, StringRef OperandName, MatchableInfo::AsmOperand &Op) { const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); // Set up the operand class. for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) if (CGA.ResultOperands[i].isRecord() && CGA.ResultOperands[i].getName() == OperandName) { // It's safe to go with the first one we find, because CodeGenInstAlias // validates that all operands with the same name have the same record. Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; // Use the match class from the Alias definition, not the // destination instruction, as we may have an immediate that's // being munged by the match class. Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), Op.SubOpIdx); Op.SrcOpName = OperandName; return; } PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName + "'"); } void MatchableInfo::buildInstructionResultOperands() { const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; // If this is a tied operand, just copy from the previously handled operand. int TiedOp = -1; if (OpInfo.MINumOperands == 1) TiedOp = OpInfo.getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); continue; } // Find out what operand from the asmparser this MCInst operand comes from. int SrcOperand = findAsmOperandNamed(OpInfo.Name); if (OpInfo.Name.empty() || SrcOperand == -1) { // This may happen for operands that are tied to a suboperand of a // complex operand. Simply use a dummy value here; nobody should // use this operand slot. // FIXME: The long term goal is for the MCOperand list to not contain // tied operands at all. ResOperands.push_back(ResOperand::getImmOp(0)); continue; } // Check if the one AsmOperand populates the entire operand. unsigned NumOperands = OpInfo.MINumOperands; if (AsmOperands[SrcOperand].SubOpIdx == -1) { ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); continue; } // Add a separate ResOperand for each suboperand. for (unsigned AI = 0; AI < NumOperands; ++AI) { assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && "unexpected AsmOperands for suboperands"); ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); } } } void MatchableInfo::buildAliasResultOperands() { const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. unsigned AliasOpNo = 0; unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; // If this is a tied operand, just copy from the previously handled operand. int TiedOp = -1; if (OpInfo->MINumOperands == 1) TiedOp = OpInfo->getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); continue; } // Handle all the suboperands for this operand. const std::string &OpName = OpInfo->Name; for ( ; AliasOpNo < LastOpNo && CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; // Find out what operand from the asmparser that this MCInst operand // comes from. switch (CGA.ResultOperands[AliasOpNo].Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); int SrcOperand = findAsmOperand(Name, SubIdx); if (SrcOperand == -1) PrintFatalError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has operand '" + OpName + "' that doesn't appear in asm string!"); unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); break; } case CodeGenInstAlias::ResultOperand::K_Imm: { int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); ResOperands.push_back(ResOperand::getImmOp(ImmVal)); break; } case CodeGenInstAlias::ResultOperand::K_Reg: { Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); ResOperands.push_back(ResOperand::getRegOp(Reg)); break; } } } } } static unsigned getConverterOperandID(const std::string &Name, SetVector<std::string> &Table, bool &IsNew) { IsNew = Table.insert(Name); unsigned ID = IsNew ? Table.size() - 1 : std::find(Table.begin(), Table.end(), Name) - Table.begin(); assert(ID < Table.size()); return ID; } static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, std::vector<std::unique_ptr<MatchableInfo>> &Infos, raw_ostream &OS) { SetVector<std::string> OperandConversionKinds; SetVector<std::string> InstructionConversionKinds; std::vector<std::vector<uint8_t> > ConversionTable; size_t MaxRowLength = 2; // minimum is custom converter plus terminator. // TargetOperandClass - This is the target's operand class, like X86Operand. std::string TargetOperandClass = Target.getName() + "Operand"; // Write the convert function to a separate stream, so we can drop it after // the enum. We'll build up the conversion handlers for the individual // operand types opportunistically as we encounter them. std::string ConvertFnBody; raw_string_ostream CvtOS(ConvertFnBody); // Start the unified conversion function. CvtOS << "void " << Target.getName() << ClassName << "::\n" << "convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector" << " &Operands) {\n" << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" << " const uint8_t *Converter = ConversionTable[Kind];\n" << " Inst.setOpcode(Opcode);\n" << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" << " switch (*p) {\n" << " default: llvm_unreachable(\"invalid conversion entry!\");\n" << " case CVT_Reg:\n" << " static_cast<" << TargetOperandClass << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n" << " break;\n" << " case CVT_Tied:\n" << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n" << " break;\n"; std::string OperandFnBody; raw_string_ostream OpOS(OperandFnBody); // Start the operand number lookup function. OpOS << "void " << Target.getName() << ClassName << "::\n" << "convertToMapAndConstraints(unsigned Kind,\n"; OpOS.indent(27); OpOS << "const OperandVector &Operands) {\n" << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" << " unsigned NumMCOperands = 0;\n" << " const uint8_t *Converter = ConversionTable[Kind];\n" << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" << " switch (*p) {\n" << " default: llvm_unreachable(\"invalid conversion entry!\");\n" << " case CVT_Reg:\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"r\");\n" << " ++NumMCOperands;\n" << " break;\n" << " case CVT_Tied:\n" << " ++NumMCOperands;\n" << " break;\n"; // Pre-populate the operand conversion kinds with the standard always // available entries. OperandConversionKinds.insert("CVT_Done"); OperandConversionKinds.insert("CVT_Reg"); OperandConversionKinds.insert("CVT_Tied"); enum { CVT_Done, CVT_Reg, CVT_Tied }; for (auto &II : Infos) { // Check if we have a custom match function. std::string AsmMatchConverter = II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { std::string Signature = "ConvertCustom_" + AsmMatchConverter; II->ConversionFnKind = Signature; // Check if we have already generated this signature. if (!InstructionConversionKinds.insert(Signature)) continue; // Remember this converter for the kind enum. unsigned KindID = OperandConversionKinds.size(); OperandConversionKinds.insert("CVT_" + getEnumNameForToken(AsmMatchConverter)); // Add the converter row for this instruction. ConversionTable.emplace_back(); ConversionTable.back().push_back(KindID); ConversionTable.back().push_back(CVT_Done); // Add the handler to the conversion driver function. CvtOS << " case CVT_" << getEnumNameForToken(AsmMatchConverter) << ":\n" << " " << AsmMatchConverter << "(Inst, Operands);\n" << " break;\n"; // FIXME: Handle the operand number lookup for custom match functions. continue; } // Build the conversion function signature. std::string Signature = "Convert"; std::vector<uint8_t> ConversionRow; // Compute the convert enum and the case body. MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; // Generate code to populate each result operand. switch (OpInfo.Kind) { case MatchableInfo::ResOperand::RenderAsmOperand: { // This comes from something we parsed. const MatchableInfo::AsmOperand &Op = II->AsmOperands[OpInfo.AsmOperandNum]; // Registers are always converted the same, don't duplicate the // conversion function based on them. Signature += "__"; std::string Class; Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; Signature += Class; Signature += utostr(OpInfo.MINumOperands); Signature += "_" + itostr(OpInfo.AsmOperandNum); // Add the conversion kind, if necessary, and get the associated ID // the index of its entry in the vector). std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod); Name = getEnumNameForToken(Name); bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(OpInfo.AsmOperandNum + 1); if (!IsNewConverter) break; // This is a new operand kind. Add a handler for it to the // converter driver. CvtOS << " case " << Name << ":\n" << " static_cast<" << TargetOperandClass << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands << ");\n" << " break;\n"; // Add a handler for the operand number lookup. OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; if (Op.Class->isRegisterClass()) OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; else OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" << " break;\n"; break; } case MatchableInfo::ResOperand::TiedOperand: { // If this operand is tied to a previous one, just copy the MCInst // operand from the earlier one.We can only tie single MCOperand values. assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); unsigned TiedOp = OpInfo.TiedOperandNum; assert(i > TiedOp && "Tied operand precedes its target!"); Signature += "__Tie" + utostr(TiedOp); ConversionRow.push_back(CVT_Tied); ConversionRow.push_back(TiedOp); break; } case MatchableInfo::ResOperand::ImmOperand: { int64_t Val = OpInfo.ImmVal; std::string Ty = "imm_" + itostr(Val); Ty = getEnumNameForToken(Ty); Signature += "__" + Ty; std::string Name = "CVT_" + Ty; bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(0); if (!IsNewConverter) break; CvtOS << " case " << Name << ":\n" << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" << " break;\n"; OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"\");\n" << " ++NumMCOperands;\n" << " break;\n"; break; } case MatchableInfo::ResOperand::RegOperand: { std::string Reg, Name; if (!OpInfo.Register) { Name = "reg0"; Reg = "0"; } else { Reg = getQualifiedName(OpInfo.Register); Name = "reg" + OpInfo.Register->getName(); } Signature += "__" + Name; Name = "CVT_" + Name; bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(0); if (!IsNewConverter) break; CvtOS << " case " << Name << ":\n" << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" << " break;\n"; OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"m\");\n" << " ++NumMCOperands;\n" << " break;\n"; } } } // If there were no operands, add to the signature to that effect if (Signature == "Convert") Signature += "_NoOperands"; II->ConversionFnKind = Signature; // Save the signature. If we already have it, don't add a new row // to the table. if (!InstructionConversionKinds.insert(Signature)) continue; // Add the row to the table. ConversionTable.push_back(ConversionRow); } // Finish up the converter driver function. CvtOS << " }\n }\n}\n\n"; // Finish up the operand number lookup function. OpOS << " }\n }\n}\n\n"; OS << "namespace {\n"; // Output the operand conversion kind enum. OS << "enum OperatorConversionKind {\n"; for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i) OS << " " << OperandConversionKinds[i] << ",\n"; OS << " CVT_NUM_CONVERTERS\n"; OS << "};\n\n"; // Output the instruction conversion kind enum. OS << "enum InstructionConversionKind {\n"; for (SetVector<std::string>::const_iterator i = InstructionConversionKinds.begin(), e = InstructionConversionKinds.end(); i != e; ++i) OS << " " << *i << ",\n"; OS << " CVT_NUM_SIGNATURES\n"; OS << "};\n\n"; OS << "} // end anonymous namespace\n\n"; // Output the conversion table. OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" << MaxRowLength << "] = {\n"; for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); OS << " // " << InstructionConversionKinds[Row] << "\n"; OS << " { "; for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " << (unsigned)(ConversionTable[Row][i + 1]) << ", "; OS << "CVT_Done },\n"; } OS << "};\n\n"; // Spit out the conversion driver function. OS << CvtOS.str(); // Spit out the operand number lookup function. OS << OpOS.str(); } /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. static void emitMatchClassEnumeration(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { OS << "namespace {\n\n"; OS << "/// MatchClassKind - The kinds of classes which participate in\n" << "/// instruction matching.\n"; OS << "enum MatchClassKind {\n"; OS << " InvalidMatchClass = 0,\n"; for (const auto &CI : Infos) { OS << " " << CI.Name << ", // "; if (CI.Kind == ClassInfo::Token) { OS << "'" << CI.ValueName << "'\n"; } else if (CI.isRegisterClass()) { if (!CI.ValueName.empty()) OS << "register class '" << CI.ValueName << "'\n"; else OS << "derived register class\n"; } else { OS << "user defined class '" << CI.ValueName << "'\n"; } } OS << " NumMatchClassKinds\n"; OS << "};\n\n"; OS << "}\n\n"; } /// emitValidateOperandClass - Emit the function to validate an operand class. static void emitValidateOperandClass(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " << "MatchClassKind Kind) {\n"; OS << " " << Info.Target.getName() << "Operand &Operand = (" << Info.Target.getName() << "Operand&)GOp;\n"; // The InvalidMatchClass is not to match any operand. OS << " if (Kind == InvalidMatchClass)\n"; OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; // Check for Token operands first. // FIXME: Use a more specific diagnostic type. OS << " if (Operand.isToken())\n"; OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" << " MCTargetAsmParser::Match_Success :\n" << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; // Check the user classes. We don't care what order since we're only // actually matching against one of them. for (const auto &CI : Info.Classes) { if (!CI.isUserClass()) continue; OS << " // '" << CI.ClassName << "' class\n"; OS << " if (Kind == " << CI.Name << ") {\n"; OS << " if (Operand." << CI.PredicateMethod << "())\n"; OS << " return MCTargetAsmParser::Match_Success;\n"; if (!CI.DiagnosticType.empty()) OS << " return " << Info.Target.getName() << "AsmParser::Match_" << CI.DiagnosticType << ";\n"; OS << " }\n\n"; } // Check for register operands, including sub-classes. OS << " if (Operand.isReg()) {\n"; OS << " MatchClassKind OpKind;\n"; OS << " switch (Operand.getReg()) {\n"; OS << " default: OpKind = InvalidMatchClass; break;\n"; for (const auto &RC : Info.RegisterClasses) OS << " case " << Info.Target.getName() << "::" << RC.first->getName() << ": OpKind = " << RC.second->Name << "; break;\n"; OS << " }\n"; OS << " return isSubclass(OpKind, Kind) ? " << "MCTargetAsmParser::Match_Success :\n " << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; // Generic fallthrough match failure case for operands that don't have // specialized diagnostic types. OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; OS << "}\n\n"; } /// emitIsSubclass - Emit the subclass predicate function. static void emitIsSubclass(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; OS << " if (A == B)\n"; OS << " return true;\n\n"; std::string OStr; raw_string_ostream SS(OStr); unsigned Count = 0; SS << " switch (A) {\n"; SS << " default:\n"; SS << " return false;\n"; for (const auto &A : Infos) { std::vector<StringRef> SuperClasses; for (const auto &B : Infos) { if (&A != &B && A.isSubsetOf(B)) SuperClasses.push_back(B.Name); } if (SuperClasses.empty()) continue; ++Count; SS << "\n case " << A.Name << ":\n"; if (SuperClasses.size() == 1) { SS << " return B == " << SuperClasses.back().str() << ";\n"; continue; } if (!SuperClasses.empty()) { SS << " switch (B) {\n"; SS << " default: return false;\n"; for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) SS << " case " << SuperClasses[i].str() << ": return true;\n"; SS << " }\n"; } else { // No case statement to emit SS << " return false;\n"; } } SS << " }\n"; // If there were case statements emitted into the string stream, write them // to the output stream, otherwise write the default. if (Count) OS << SS.str(); else OS << " return false;\n"; OS << "}\n\n"; } /// emitMatchTokenString - Emit the function to match a token string to the /// appropriate match class value. static void emitMatchTokenString(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { // Construct the match list. std::vector<StringMatcher::StringPair> Matches; for (const auto &CI : Infos) { if (CI.Kind == ClassInfo::Token) Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); } OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } /// emitMatchRegisterName - Emit the function to match a string to the target /// specific register enum. static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { // Construct the match list. std::vector<StringMatcher::StringPair> Matches; const auto &Regs = Target.getRegBank().getRegisters(); for (const CodeGenRegister &Reg : Regs) { if (Reg.TheDef->getValueAsString("AsmName").empty()) continue; Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), "return " + utostr(Reg.EnumValue) + ";"); } OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return 0;\n"; OS << "}\n\n"; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFFFFFFULL) return "uint64_t"; if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) { uint64_t MaxIndex = Info.SubtargetFeatures.size(); if (MaxIndex > 0) MaxIndex--; return getMinimalTypeForRange(1ULL << MaxIndex); } /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag /// definitions. static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "// Flags for subtarget features that participate in " << "instruction matching.\n"; OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info) << " {\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n"; } OS << " Feature_None = 0\n"; OS << "};\n\n"; } /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { // Get the set of diagnostic types from all of the operand classes. std::set<StringRef> Types; for (std::map<Record*, ClassInfo*>::const_iterator I = Info.AsmOperandClasses.begin(), E = Info.AsmOperandClasses.end(); I != E; ++I) { if (!I->second->DiagnosticType.empty()) Types.insert(I->second->DiagnosticType); } if (Types.empty()) return; // Now emit the enum entries. for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end(); I != E; ++I) OS << " Match_" << *I << ",\n"; OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; } /// emitGetSubtargetFeatureName - Emit the helper function to get the /// user-level name for a subtarget feature. static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "// User-level names for subtarget features that participate in\n" << "// instruction matching.\n" << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; if (!Info.SubtargetFeatures.empty()) { OS << " switch(Val) {\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; // FIXME: Totally just a placeholder name to get the algorithm working. OS << " case " << SFI.getEnumName() << ": return \"" << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; } OS << " default: return \"(unknown)\";\n"; OS << " }\n"; } else { // Nothing to emit, so skip the switch OS << " return \"(unknown)\";\n"; } OS << "}\n\n"; } /// emitComputeAvailableFeatures - Emit the function to compute the list of /// available features given a subtarget. static void emitComputeAvailableFeatures(AsmMatcherInfo &Info, raw_ostream &OS) { std::string ClassName = Info.AsmParser->getValueAsString("AsmParserClassName"); OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n" << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n"; OS << " uint64_t Features = 0;\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; OS << " if ("; std::string CondStorage = SFI.TheDef->getValueAsString("AssemblerCondString"); StringRef Conds = CondStorage; std::pair<StringRef,StringRef> Comma = Conds.split(','); bool First = true; do { if (!First) OS << " && "; bool Neg = false; StringRef Cond = Comma.first; if (Cond[0] == '!') { Neg = true; Cond = Cond.substr(1); } OS << "("; if (Neg) OS << "!"; OS << "FB[" << Info.Target.getName() << "::" << Cond << "])"; if (Comma.second.empty()) break; First = false; Comma = Comma.second.split(','); } while (true); OS << ")\n"; OS << " Features |= " << SFI.getEnumName() << ";\n"; } OS << " return Features;\n"; OS << "}\n\n"; } static std::string GetAliasRequiredFeatures(Record *R, const AsmMatcherInfo &Info) { std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); std::string Result; unsigned NumFeatures = 0; for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); if (!F) PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + "' is not marked as an AssemblerPredicate!"); if (NumFeatures) Result += '|'; Result += F->getEnumName(); ++NumFeatures; } if (NumFeatures > 1) Result = '(' + Result + ')'; return Result; } static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, std::vector<Record*> &Aliases, unsigned Indent = 0, StringRef AsmParserVariantName = StringRef()){ // Keep track of all the aliases from a mnemonic. Use an std::map so that the // iteration order of the map is stable. std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { Record *R = Aliases[i]; // FIXME: Allow AssemblerVariantName to be a comma separated list. std::string AsmVariantName = R->getValueAsString("AsmVariantName"); if (AsmVariantName != AsmParserVariantName) continue; AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); } if (AliasesFromMnemonic.empty()) return; // Process each alias a "from" mnemonic at a time, building the code executed // by the string remapper. std::vector<StringMatcher::StringPair> Cases; for (std::map<std::string, std::vector<Record*> >::iterator I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); I != E; ++I) { const std::vector<Record*> &ToVec = I->second; // Loop through each alias and emit code that handles each case. If there // are two instructions without predicates, emit an error. If there is one, // emit it last. std::string MatchCode; int AliasWithNoPredicate = -1; for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { Record *R = ToVec[i]; std::string FeatureMask = GetAliasRequiredFeatures(R, Info); // If this unconditionally matches, remember it for later and diagnose // duplicates. if (FeatureMask.empty()) { if (AliasWithNoPredicate != -1) { // We can't have two aliases from the same mnemonic with no predicate. PrintError(ToVec[AliasWithNoPredicate]->getLoc(), "two MnemonicAliases with the same 'from' mnemonic!"); PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); } AliasWithNoPredicate = i; continue; } if (R->getValueAsString("ToMnemonic") == I->first) PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); if (!MatchCode.empty()) MatchCode += "else "; MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; } if (AliasWithNoPredicate != -1) { Record *R = ToVec[AliasWithNoPredicate]; if (!MatchCode.empty()) MatchCode += "else\n "; MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; } MatchCode += "return;"; Cases.push_back(std::make_pair(I->first, MatchCode)); } StringMatcher("Mnemonic", Cases, OS).Emit(Indent); } /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, /// emit a function for them and return true, otherwise return false. static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, CodeGenTarget &Target) { // Ignore aliases when match-prefix is set. if (!MatchPrefix.empty()) return false; std::vector<Record*> Aliases = Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); if (Aliases.empty()) return false; OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " "uint64_t Features, unsigned VariantID) {\n"; OS << " switch (VariantID) {\n"; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); std::string AsmParserVariantName = AsmVariant->getValueAsString("Name"); OS << " case " << AsmParserVariantNo << ":\n"; emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, AsmParserVariantName); OS << " break;\n"; } OS << " }\n"; // Emit aliases that apply to all variants. emitMnemonicAliasVariant(OS, Info, Aliases); OS << "}\n\n"; return true; } static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, const AsmMatcherInfo &Info, StringRef ClassName, StringToOffsetTable &StringTable, unsigned MaxMnemonicIndex) { unsigned MaxMask = 0; for (std::vector<OperandMatchEntry>::const_iterator it = Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); it != ie; ++it) { MaxMask |= it->OperandMask; } // Emit the static custom operand parsing table; OS << "namespace {\n"; OS << " struct OperandMatchEntry {\n"; OS << " " << getMinimalRequiredFeaturesType(Info) << " RequiredFeatures;\n"; OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; OS << " " << getMinimalTypeForRange(std::distance( Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; OS << " " << getMinimalTypeForRange(MaxMask) << " OperandMask;\n\n"; OS << " StringRef getMnemonic() const {\n"; OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; OS << " MnemonicTable[Mnemonic]);\n"; OS << " }\n"; OS << " };\n\n"; OS << " // Predicate for searching for an opcode.\n"; OS << " struct LessOpcodeOperand {\n"; OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; OS << " return LHS.getMnemonic() < RHS;\n"; OS << " }\n"; OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; OS << " return LHS < RHS.getMnemonic();\n"; OS << " }\n"; OS << " bool operator()(const OperandMatchEntry &LHS,"; OS << " const OperandMatchEntry &RHS) {\n"; OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; OS << " }\n"; OS << " };\n"; OS << "} // end anonymous namespace.\n\n"; OS << "static const OperandMatchEntry OperandMatchTable[" << Info.OperandMatchInfo.size() << "] = {\n"; OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; for (std::vector<OperandMatchEntry>::const_iterator it = Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end(); it != ie; ++it) { const OperandMatchEntry &OMI = *it; const MatchableInfo &II = *OMI.MI; OS << " { "; // Write the required features mask. if (!II.RequiredFeatures.empty()) { for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { if (i) OS << "|"; OS << II.RequiredFeatures[i]->getEnumName(); } } else OS << "0"; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* " << II.Mnemonic << " */, "; OS << OMI.CI->Name; OS << ", " << OMI.OperandMask; OS << " /* "; bool printComma = false; for (int i = 0, e = 31; i !=e; ++i) if (OMI.OperandMask & (1 << i)) { if (printComma) OS << ", "; OS << i; printComma = true; } OS << " */"; OS << " },\n"; } OS << "};\n\n"; // Emit the operand class switch to call the correct custom parser for // the found operand class. OS << Target.getName() << ClassName << "::OperandMatchResultTy " << Target.getName() << ClassName << "::\n" << "tryCustomParseOperand(OperandVector" << " &Operands,\n unsigned MCK) {\n\n" << " switch(MCK) {\n"; for (const auto &CI : Info.Classes) { if (CI.ParserMethod.empty()) continue; OS << " case " << CI.Name << ":\n" << " return " << CI.ParserMethod << "(Operands);\n"; } OS << " default:\n"; OS << " return MatchOperand_NoMatch;\n"; OS << " }\n"; OS << " return MatchOperand_NoMatch;\n"; OS << "}\n\n"; // Emit the static custom operand parser. This code is very similar with // the other matcher. Also use MatchResultTy here just in case we go for // a better error handling. OS << Target.getName() << ClassName << "::OperandMatchResultTy " << Target.getName() << ClassName << "::\n" << "MatchOperandParserImpl(OperandVector" << " &Operands,\n StringRef Mnemonic) {\n"; // Emit code to get the available features. OS << " // Get the current feature set.\n"; OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; OS << " // Get the next operand index.\n"; OS << " unsigned NextOpNum = Operands.size()-1;\n"; // Emit code to search the table. OS << " // Search the table.\n"; OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>"; OS << " MnemonicRange =\n"; OS << " std::equal_range(OperandMatchTable, OperandMatchTable+" << Info.OperandMatchInfo.size() << ", Mnemonic,\n" << " LessOpcodeOperand());\n\n"; OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; OS << " return MatchOperand_NoMatch;\n\n"; OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; OS << " // equal_range guarantees that instruction mnemonic matches.\n"; OS << " assert(Mnemonic == it->getMnemonic());\n\n"; // Emit check that the required features are available. OS << " // check if the available features match\n"; OS << " if ((AvailableFeatures & it->RequiredFeatures) " << "!= it->RequiredFeatures) {\n"; OS << " continue;\n"; OS << " }\n\n"; // Emit check to ensure the operand number matches. OS << " // check if the operand in question has a custom parser.\n"; OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; OS << " continue;\n\n"; // Emit call to the custom parser method OS << " // call custom parse method to handle the operand\n"; OS << " OperandMatchResultTy Result = "; OS << "tryCustomParseOperand(Operands, it->Class);\n"; OS << " if (Result != MatchOperand_NoMatch)\n"; OS << " return Result;\n"; OS << " }\n\n"; OS << " // Okay, we had no match.\n"; OS << " return MatchOperand_NoMatch;\n"; OS << "}\n\n"; } void AsmMatcherEmitter::run(raw_ostream &OS) { CodeGenTarget Target(Records); Record *AsmParser = Target.getAsmParser(); std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); // Compute the information on the instructions to match. AsmMatcherInfo Info(AsmParser, Target, Records); Info.buildInfo(); // Sort the instruction table using the partial order on classes. We use // stable_sort to ensure that ambiguous instructions are still // deterministically ordered. std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), [](const std::unique_ptr<MatchableInfo> &a, const std::unique_ptr<MatchableInfo> &b){ return *a < *b;}); DEBUG_WITH_TYPE("instruction_info", { for (const auto &MI : Info.Matchables) MI->dump(); }); // Check for ambiguous matchables. DEBUG_WITH_TYPE("ambiguous_instrs", { unsigned NumAmbiguous = 0; for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; ++I) { for (auto J = std::next(I); J != E; ++J) { const MatchableInfo &A = **I; const MatchableInfo &B = **J; if (A.couldMatchAmbiguouslyWith(B)) { errs() << "warning: ambiguous matchables:\n"; A.dump(); errs() << "\nis incomparable with:\n"; B.dump(); errs() << "\n\n"; ++NumAmbiguous; } } } if (NumAmbiguous) errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n"; }); // Compute the information on the custom operand parsing. Info.buildOperandMatchInfo(); // Write the output. // Information for the class declaration. OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; OS << "#undef GET_ASSEMBLER_HEADER\n"; OS << " // This should be included into the middle of the declaration of\n"; OS << " // your subclasses implementation of MCTargetAsmParser.\n"; OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector " << "&Operands);\n"; OS << " void convertToMapAndConstraints(unsigned Kind,\n "; OS << " const OperandVector &Operands) override;\n"; OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n"; OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" << " MCInst &Inst,\n" << " uint64_t &ErrorInfo," << " bool matchingInlineAsm,\n" << " unsigned VariantID = 0);\n"; if (!Info.OperandMatchInfo.empty()) { OS << "\n enum OperandMatchResultTy {\n"; OS << " MatchOperand_Success, // operand matched successfully\n"; OS << " MatchOperand_NoMatch, // operand did not match\n"; OS << " MatchOperand_ParseFail // operand matched but had errors\n"; OS << " };\n"; OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; OS << " OperandVector &Operands,\n"; OS << " StringRef Mnemonic);\n"; OS << " OperandMatchResultTy tryCustomParseOperand(\n"; OS << " OperandVector &Operands,\n"; OS << " unsigned MCK);\n\n"; } OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; // Emit the operand match diagnostic enum names. OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; emitOperandDiagnosticTypes(Info, OS); OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; OS << "\n#ifdef GET_REGISTER_MATCHER\n"; OS << "#undef GET_REGISTER_MATCHER\n\n"; // Emit the subtarget feature enumeration. emitSubtargetFeatureFlagEnumeration(Info, OS); // Emit the function to match a register name to number. // This should be omitted for Mips target if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) emitMatchRegisterName(Target, AsmParser, OS); OS << "#endif // GET_REGISTER_MATCHER\n\n"; OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; // Generate the helper function to get the names for subtarget features. emitGetSubtargetFeatureName(Info, OS); OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; // Generate the function that remaps for mnemonic aliases. bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); // Generate the convertToMCInst function to convert operands into an MCInst. // Also, generate the convertToMapAndConstraints function for MS-style inline // assembly. The latter doesn't actually generate a MCInst. emitConvertFuncs(Target, ClassName, Info.Matchables, OS); // Emit the enumeration for classes which participate in matching. emitMatchClassEnumeration(Target, Info.Classes, OS); // Emit the routine to match token strings to their match class. emitMatchTokenString(Target, Info.Classes, OS); // Emit the subclass predicate routine. emitIsSubclass(Target, Info.Classes, OS); // Emit the routine to validate an operand against a match class. emitValidateOperandClass(Info, OS); // Emit the available features compute function. emitComputeAvailableFeatures(Info, OS); StringToOffsetTable StringTable; size_t MaxNumOperands = 0; unsigned MaxMnemonicIndex = 0; bool HasDeprecation = false; for (const auto &MI : Info.Matchables) { MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); HasDeprecation |= MI->HasDeprecation; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); MaxMnemonicIndex = std::max(MaxMnemonicIndex, StringTable.GetOrAddStringOffset(LenMnemonic, false)); } OS << "static const char *const MnemonicTable =\n"; StringTable.EmitString(OS); OS << ";\n\n"; // Emit the static match table; unused classes get initalized to 0 which is // guaranteed to be InvalidMatchClass. // // FIXME: We can reduce the size of this table very easily. First, we change // it so that store the kinds in separate bit-fields for each index, which // only needs to be the max width used for classes at that index (we also need // to reject based on this during classification). If we then make sure to // order the match kinds appropriately (putting mnemonics last), then we // should only end up using a few bits for each class, especially the ones // following the mnemonic. OS << "namespace {\n"; OS << " struct MatchEntry {\n"; OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; OS << " uint16_t Opcode;\n"; OS << " " << getMinimalTypeForRange(Info.Matchables.size()) << " ConvertFn;\n"; OS << " " << getMinimalRequiredFeaturesType(Info) << " RequiredFeatures;\n"; OS << " " << getMinimalTypeForRange( std::distance(Info.Classes.begin(), Info.Classes.end())) << " Classes[" << MaxNumOperands << "];\n"; OS << " StringRef getMnemonic() const {\n"; OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; OS << " MnemonicTable[Mnemonic]);\n"; OS << " }\n"; OS << " };\n\n"; OS << " // Predicate for searching for an opcode.\n"; OS << " struct LessOpcode {\n"; OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; OS << " return LHS.getMnemonic() < RHS;\n"; OS << " }\n"; OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; OS << " return LHS < RHS.getMnemonic();\n"; OS << " }\n"; OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; OS << " }\n"; OS << " };\n"; OS << "} // end anonymous namespace.\n\n"; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; for (const auto &MI : Info.Matchables) { if (MI->AsmVariantID != AsmVariantNo) continue; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* " << MI->Mnemonic << " */, " << Target.getName() << "::" << MI->getResultInst()->TheDef->getName() << ", " << MI->ConversionFnKind << ", "; // Write the required features mask. if (!MI->RequiredFeatures.empty()) { for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { if (i) OS << "|"; OS << MI->RequiredFeatures[i]->getEnumName(); } } else OS << "0"; OS << ", { "; for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; if (i) OS << ", "; OS << Op.Class->Name; } OS << " }, },\n"; } OS << "};\n\n"; } // A method to determine if a mnemonic is in the list. OS << "bool " << Target.getName() << ClassName << "::\n" << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n"; OS << " // Find the appropriate table for this asm variant.\n"; OS << " const MatchEntry *Start, *End;\n"; OS << " switch (VariantID) {\n"; OS << " default: llvm_unreachable(\"invalid variant!\");\n"; for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC << "); End = std::end(MatchTable" << VC << "); break;\n"; } OS << " }\n"; OS << " // Search the table.\n"; OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n"; OS << " return MnemonicRange.first != MnemonicRange.second;\n"; OS << "}\n\n"; // Finally, build the match function. OS << "unsigned " << Target.getName() << ClassName << "::\n" << "MatchInstructionImpl(const OperandVector &Operands,\n"; OS << " MCInst &Inst, uint64_t &ErrorInfo,\n" << " bool matchingInlineAsm, unsigned VariantID) {\n"; OS << " // Eliminate obvious mismatches.\n"; OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; OS << " return Match_InvalidOperand;\n"; OS << " }\n\n"; // Emit code to get the available features. OS << " // Get the current feature set.\n"; OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; OS << " // Get the instruction mnemonic, which is the first token.\n"; OS << " StringRef Mnemonic = ((" << Target.getName() << "Operand&)*Operands[0]).getToken();\n\n"; if (HasMnemonicAliases) { OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; } // Emit code to compute the class list for this operand vector. OS << " // Some state to try to produce better error messages.\n"; OS << " bool HadMatchOtherThanFeatures = false;\n"; OS << " bool HadMatchOtherThanPredicate = false;\n"; OS << " unsigned RetCode = Match_InvalidOperand;\n"; OS << " uint64_t MissingFeatures = ~0ULL;\n"; OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; OS << " // wrong for all instances of the instruction.\n"; OS << " ErrorInfo = ~0ULL;\n"; // Emit code to search the table. OS << " // Find the appropriate table for this asm variant.\n"; OS << " const MatchEntry *Start, *End;\n"; OS << " switch (VariantID) {\n"; OS << " default: llvm_unreachable(\"invalid variant!\");\n"; for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC << "); End = std::end(MatchTable" << VC << "); break;\n"; } OS << " }\n"; OS << " // Search the table.\n"; OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; OS << " // Return a more specific error code if no mnemonics match.\n"; OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; OS << " return Match_MnemonicFail;\n\n"; OS << " for (const MatchEntry *it = MnemonicRange.first, " << "*ie = MnemonicRange.second;\n"; OS << " it != ie; ++it) {\n"; OS << " // equal_range guarantees that instruction mnemonic matches.\n"; OS << " assert(Mnemonic == it->getMnemonic());\n"; // Emit check that the subclasses match. OS << " bool OperandsValid = true;\n"; OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; OS << " if (i + 1 >= Operands.size()) {\n"; OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n"; OS << " if (!OperandsValid) ErrorInfo = i + 1;\n"; OS << " break;\n"; OS << " }\n"; OS << " unsigned Diag = validateOperandClass(*Operands[i+1],\n"; OS.indent(43); OS << "(MatchClassKind)it->Classes[i]);\n"; OS << " if (Diag == Match_Success)\n"; OS << " continue;\n"; OS << " // If the generic handler indicates an invalid operand\n"; OS << " // failure, check for a special case.\n"; OS << " if (Diag == Match_InvalidOperand) {\n"; OS << " Diag = validateTargetOperandClass(*Operands[i+1],\n"; OS.indent(43); OS << "(MatchClassKind)it->Classes[i]);\n"; OS << " if (Diag == Match_Success)\n"; OS << " continue;\n"; OS << " }\n"; OS << " // If this operand is broken for all of the instances of this\n"; OS << " // mnemonic, keep track of it so we can report loc info.\n"; OS << " // If we already had a match that only failed due to a\n"; OS << " // target predicate, that diagnostic is preferred.\n"; OS << " if (!HadMatchOtherThanPredicate &&\n"; OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n"; OS << " ErrorInfo = i+1;\n"; OS << " // InvalidOperand is the default. Prefer specificity.\n"; OS << " if (Diag != Match_InvalidOperand)\n"; OS << " RetCode = Diag;\n"; OS << " }\n"; OS << " // Otherwise, just reject this instance of the mnemonic.\n"; OS << " OperandsValid = false;\n"; OS << " break;\n"; OS << " }\n\n"; OS << " if (!OperandsValid) continue;\n"; // Emit check that the required features are available. OS << " if ((AvailableFeatures & it->RequiredFeatures) " << "!= it->RequiredFeatures) {\n"; OS << " HadMatchOtherThanFeatures = true;\n"; OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " "~AvailableFeatures;\n"; OS << " if (countPopulation(NewMissingFeatures) <=\n" " countPopulation(MissingFeatures))\n"; OS << " MissingFeatures = NewMissingFeatures;\n"; OS << " continue;\n"; OS << " }\n"; OS << "\n"; OS << " Inst.clear();\n\n"; OS << " if (matchingInlineAsm) {\n"; OS << " Inst.setOpcode(it->Opcode);\n"; OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; OS << " return Match_Success;\n"; OS << " }\n\n"; OS << " // We have selected a definite instruction, convert the parsed\n" << " // operands into the appropriate MCInst.\n"; OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; OS << "\n"; // Verify the instruction with the target-specific match predicate function. OS << " // We have a potential match. Check the target predicate to\n" << " // handle any context sensitive constraints.\n" << " unsigned MatchResult;\n" << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" << " Match_Success) {\n" << " Inst.clear();\n" << " RetCode = MatchResult;\n" << " HadMatchOtherThanPredicate = true;\n" << " continue;\n" << " }\n\n"; // Call the post-processing function, if used. std::string InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); if (!InsnCleanupFn.empty()) OS << " " << InsnCleanupFn << "(Inst);\n"; if (HasDeprecation) { OS << " std::string Info;\n"; OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n"; OS << " SMLoc Loc = ((" << Target.getName() << "Operand&)*Operands[0]).getStartLoc();\n"; OS << " getParser().Warning(Loc, Info, None);\n"; OS << " }\n"; } OS << " return Match_Success;\n"; OS << " }\n\n"; OS << " // Okay, we had no match. Try to return a useful error code.\n"; OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; OS << " return RetCode;\n\n"; OS << " // Missing feature matches return which features were missing\n"; OS << " ErrorInfo = MissingFeatures;\n"; OS << " return Match_MissingFeature;\n"; OS << "}\n\n"; if (!Info.OperandMatchInfo.empty()) emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, MaxMnemonicIndex); OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; } namespace llvm { void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Assembly Matcher Source Fragment", OS); AsmMatcherEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenRegisters.cpp
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/TableGen/Error.h" using namespace llvm; #define DEBUG_TYPE "regalloc-emitter" //===----------------------------------------------------------------------===// // CodeGenSubRegIndex //===----------------------------------------------------------------------===// CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { Name = R->getName(); if (R->getValue("Namespace")) Namespace = R->getValueAsString("Namespace"); Size = R->getValueAsInt("Size"); Offset = R->getValueAsInt("Offset"); } CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum) : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { } std::string CodeGenSubRegIndex::getQualifiedName() const { std::string N = getNamespace(); if (!N.empty()) N += "::"; N += getName(); return N; } void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { if (!TheDef) return; std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); if (!Comps.empty()) { if (Comps.size() != 2) PrintFatalError(TheDef->getLoc(), "ComposedOf must have exactly two entries"); CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); CodeGenSubRegIndex *X = A->addComposite(B, this); if (X) PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); } std::vector<Record*> Parts = TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); if (!Parts.empty()) { if (Parts.size() < 2) PrintFatalError(TheDef->getLoc(), "CoveredBySubRegs must have two or more entries"); SmallVector<CodeGenSubRegIndex*, 8> IdxParts; for (unsigned i = 0, e = Parts.size(); i != e; ++i) IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); RegBank.addConcatSubRegIndex(IdxParts, this); } } unsigned CodeGenSubRegIndex::computeLaneMask() const { // Already computed? if (LaneMask) return LaneMask; // Recursion guard, shouldn't be required. LaneMask = ~0u; // The lane mask is simply the union of all sub-indices. unsigned M = 0; for (const auto &C : Composed) M |= C.second->computeLaneMask(); assert(M && "Missing lane mask, sub-register cycle?"); LaneMask = M; return LaneMask; } //===----------------------------------------------------------------------===// // CodeGenRegister //===----------------------------------------------------------------------===// CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), CostPerUse(R->getValueAsInt("CostPerUse")), CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), HasDisjunctSubRegs(false), SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {} void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); if (SRIs.size() != SRs.size()) PrintFatalError(TheDef->getLoc(), "SubRegs and SubRegIndices must have the same size"); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); } // Also compute leading super-registers. Each register has a list of // covered-by-subregs super-registers where it appears as the first explicit // sub-register. // // This is used by computeSecondarySubRegs() to find candidates. if (CoveredBySubRegs && !ExplicitSubRegs.empty()) ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); // Add ad hoc alias links. This is a symmetric relationship between two // registers, so build a symmetric graph by adding links in both ends. std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); ExplicitAliases.push_back(Reg); Reg->ExplicitAliases.push_back(this); } } const std::string &CodeGenRegister::getName() const { assert(TheDef && "no def"); return TheDef->getName(); } namespace { // Iterate over all register units in a set of registers. class RegUnitIterator { CodeGenRegister::Vec::const_iterator RegI, RegE; CodeGenRegister::RegUnitList::iterator UnitI, UnitE; public: RegUnitIterator(const CodeGenRegister::Vec &Regs): RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { if (RegI != RegE) { UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); advance(); } } bool isValid() const { return UnitI != UnitE; } unsigned operator* () const { assert(isValid()); return *UnitI; } const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } /// Preincrement. Move to the next unit. void operator++() { assert(isValid() && "Cannot advance beyond the last operand"); ++UnitI; advance(); } protected: void advance() { while (UnitI == UnitE) { if (++RegI == RegE) break; UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); } } }; } // namespace // Return true of this unit appears in RegUnits. static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { return RegUnits.test(Unit); } // Inherit register units from subregisters. // Return true if the RegUnits changed. bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { bool changed = false; for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) { CodeGenRegister *SR = I->second; // Merge the subregister's units into this register's RegUnits. changed |= (RegUnits |= SR->RegUnits); } return changed; } const CodeGenRegister::SubRegMap & CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { // Only compute this map once. if (SubRegsComplete) return SubRegs; SubRegsComplete = true; HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; // First insert the explicit subregs and make sure they are fully indexed. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; if (!SubRegs.insert(std::make_pair(Idx, SR)).second) PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + " appears twice in Register " + getName()); // Map explicit sub-registers first, so the names take precedence. // The inherited sub-registers are mapped below. SubReg2Idx.insert(std::make_pair(SR, Idx)); } // Keep track of inherited subregs and how they can be reached. SmallPtrSet<CodeGenRegister*, 8> Orphans; // Clone inherited subregs and place duplicate entries in Orphans. // Here the order is important - earlier subregs take precedence. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; const SubRegMap &Map = SR->computeSubRegs(RegBank); HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; ++SI) { if (!SubRegs.insert(*SI).second) Orphans.insert(SI->second); } } // Expand any composed subreg indices. // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process // expanded subreg indices recursively. SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; for (unsigned i = 0; i != Indices.size(); ++i) { CodeGenSubRegIndex *Idx = Indices[i]; const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); // Look at the possible compositions of Idx. // They may not all be supported by SR. for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), E = Comps.end(); I != E; ++I) { SubRegMap::const_iterator SRI = Map.find(I->first); if (SRI == Map.end()) continue; // Idx + I->first doesn't exist in SR. // Add I->second as a name for the subreg SRI->second, assuming it is // orphaned, and the name isn't already used for something else. if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) continue; // We found a new name for the orphaned sub-register. SubRegs.insert(std::make_pair(I->second, SRI->second)); Indices.push_back(I->second); } } // Now Orphans contains the inherited subregisters without a direct index. // Create inferred indexes for all missing entries. // Work backwards in the Indices vector in order to compose subregs bottom-up. // Consider this subreg sequence: // // qsub_1 -> dsub_0 -> ssub_0 // // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register // can be reached in two different ways: // // qsub_1 -> ssub_0 // dsub_2 -> ssub_0 // // We pick the latter composition because another register may have [dsub_0, // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The // dsub_2 -> ssub_0 composition can be shared. while (!Indices.empty() && !Orphans.empty()) { CodeGenSubRegIndex *Idx = Indices.pop_back_val(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; ++SI) if (Orphans.erase(SI->second)) SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; } // Compute the inverse SubReg -> Idx map. for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); SI != SE; ++SI) { if (SI->second == this) { ArrayRef<SMLoc> Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Register " + getName() + " has itself as a sub-register"); } // Compute AllSuperRegsCovered. if (!CoveredBySubRegs) SI->first->AllSuperRegsCovered = false; // Ensure that every sub-register has a unique name. DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; if (Ins->second == SI->first) continue; // Trouble: Two different names for SI->second. ArrayRef<SMLoc> Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Sub-register can't have two names: " + SI->second->getName() + " available as " + SI->first->getName() + " and " + Ins->second->getName()); } // Derive possible names for sub-register concatenations from any explicit // sub-registers. By doing this before computeSecondarySubRegs(), we ensure // that getConcatSubRegIndex() won't invent any concatenated indices that the // user already specified. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) continue; // SR is composed of multiple sub-regs. Find their names in this register. SmallVector<CodeGenSubRegIndex*, 8> Parts; for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); // Offer this as an existing spelling for the concatenation of Parts. RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); } // Initialize RegUnitList. Because getSubRegs is called recursively, this // processes the register hierarchy in postorder. // // Inherit all sub-register units. It is good enough to look at the explicit // sub-registers, the other registers won't contribute any more units. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; RegUnits |= SR->RegUnits; } // Absent any ad hoc aliasing, we create one register unit per leaf register. // These units correspond to the maximal cliques in the register overlap // graph which is optimal. // // When there is ad hoc aliasing, we simply create one unit per edge in the // undirected ad hoc aliasing graph. Technically, we could do better by // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 // are extremely rare anyway (I've never seen one), so we don't bother with // the added complexity. for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { CodeGenRegister *AR = ExplicitAliases[i]; // Only visit each edge once. if (AR->SubRegsComplete) continue; // Create a RegUnit representing this alias edge, and add it to both // registers. unsigned Unit = RegBank.newRegUnit(this, AR); RegUnits.set(Unit); AR->RegUnits.set(Unit); } // Finally, create units for leaf registers without ad hoc aliases. Note that // a leaf register with ad hoc aliases doesn't get its own unit - it isn't // necessary. This means the aliasing leaf registers can share a single unit. if (RegUnits.empty()) RegUnits.set(RegBank.newRegUnit(this)); // We have now computed the native register units. More may be adopted later // for balancing purposes. NativeRegUnits = RegUnits; return SubRegs; } // In a register that is covered by its sub-registers, try to find redundant // sub-registers. For example: // // QQ0 = {Q0, Q1} // Q0 = {D0, D1} // Q1 = {D2, D3} // // We can infer that D1_D2 is also a sub-register, even if it wasn't named in // the register definition. // // The explicitly specified registers form a tree. This function discovers // sub-register relationships that would force a DAG. // void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { // Collect new sub-registers first, add them later. SmallVector<SubRegMap::value_type, 8> NewSubRegs; // Look at the leading super-registers of each sub-register. Those are the // candidates for new sub-registers, assuming they are fully contained in // this register. for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ const CodeGenRegister *SubReg = I->second; const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; for (unsigned i = 0, e = Leads.size(); i != e; ++i) { CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); // Already got this sub-register? if (Cand == this || getSubRegIndex(Cand)) continue; // Check if each component of Cand is already a sub-register. // We know that the first component is I->second, and is present with the // name I->first. SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); assert(!Cand->ExplicitSubRegs.empty() && "Super-register has no sub-registers"); for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) Parts.push_back(Idx); else { // Sub-register doesn't exist. Parts.clear(); break; } } // If some Cand sub-register is not part of this register, or if Cand only // has one sub-register, there is nothing to do. if (Parts.size() <= 1) continue; // Each part of Cand is a sub-register of this. Make the full Cand also // a sub-register with a concatenated sub-register index. CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); NewSubRegs.push_back(std::make_pair(Concat, Cand)); } } // Now add all the new sub-registers. for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { // Don't add Cand if another sub-register is already using the index. if (!SubRegs.insert(NewSubRegs[i]).second) continue; CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; CodeGenRegister *NewSubReg = NewSubRegs[i].second; SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); } // Create sub-register index composition maps for the synthesized indices. for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; CodeGenRegister *NewSubReg = NewSubRegs[i].second; for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); if (!SubIdx) PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + SI->second->getName() + " in " + getName()); NewIdx->addComposite(SI->first, SubIdx); } } } void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { // Only visit each register once. if (SuperRegsComplete) return; SuperRegsComplete = true; // Make sure all sub-registers have been visited first, so the super-reg // lists will be topologically ordered. for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) I->second->computeSuperRegs(RegBank); // Now add this as a super-register on all sub-registers. // Also compute the TopoSigId in post-order. TopoSigId Id; for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) { // Topological signature computed from SubIdx, TopoId(SubReg). // Loops and idempotent indices have TopoSig = ~0u. Id.push_back(I->first->EnumValue); Id.push_back(I->second->TopoSig); // Don't add duplicate entries. if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) continue; I->second->SuperRegs.push_back(this); } TopoSig = RegBank.getTopoSig(Id); } void CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, CodeGenRegBank &RegBank) const { assert(SubRegsComplete && "Must precompute sub-registers"); for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (OSet.insert(SR)) SR->addSubRegsPreOrder(OSet, RegBank); } // Add any secondary sub-registers that weren't part of the explicit tree. for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) OSet.insert(I->second); } // Get the sum of this register's unit weights. unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { unsigned Weight = 0; for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); I != E; ++I) { Weight += RegBank.getRegUnit(*I).Weight; } return Weight; } //===----------------------------------------------------------------------===// // RegisterTuples //===----------------------------------------------------------------------===// // A RegisterTuples def is used to generate pseudo-registers from lists of // sub-registers. We provide a SetTheory expander class that returns the new // registers. namespace { struct TupleExpander : SetTheory::Expander { void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); unsigned Dim = Indices.size(); ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); if (Dim != SubRegs->size()) PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); if (Dim < 2) PrintFatalError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); // Evaluate the sub-register lists to be zipped. unsigned Length = ~0u; SmallVector<SetTheory::RecSet, 4> Lists(Dim); for (unsigned i = 0; i != Dim; ++i) { ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); Length = std::min(Length, unsigned(Lists[i].size())); } if (Length == 0) return; // Precompute some types. Record *RegisterCl = Def->getRecords().getClass("Register"); RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); StringInit *BlankName = StringInit::get(""); // Zip them up. for (unsigned n = 0; n != Length; ++n) { std::string Name; Record *Proto = Lists[0][n]; std::vector<Init*> Tuple; unsigned CostPerUse = 0; for (unsigned i = 0; i != Dim; ++i) { Record *Reg = Lists[i][n]; if (i) Name += '_'; Name += Reg->getName(); Tuple.push_back(DefInit::get(Reg)); CostPerUse = std::max(CostPerUse, unsigned(Reg->getValueAsInt("CostPerUse"))); } // Create a new Record representing the synthesized register. This record // is only for consumption by CodeGenRegister, it is not added to the // RecordKeeper. Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); Elts.insert(NewReg); // Copy Proto super-classes. ArrayRef<Record *> Supers = Proto->getSuperClasses(); ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); for (unsigned i = 0, e = Supers.size(); i != e; ++i) NewReg->addSuperClass(Supers[i], Ranges[i]); // Copy Proto fields. for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { RecordVal RV = Proto->getValues()[i]; // Skip existing fields, like NAME. if (NewReg->getValue(RV.getNameInit())) continue; StringRef Field = RV.getName(); // Replace the sub-register list with Tuple. if (Field == "SubRegs") RV.setValue(ListInit::get(Tuple, RegisterRecTy)); // Provide a blank AsmName. MC hacks are required anyway. if (Field == "AsmName") RV.setValue(BlankName); // CostPerUse is aggregated from all Tuple members. if (Field == "CostPerUse") RV.setValue(IntInit::get(CostPerUse)); // Composite registers are always covered by sub-registers. if (Field == "CoveredBySubRegs") RV.setValue(BitInit::get(true)); // Copy fields from the RegisterTuples def. if (Field == "SubRegIndices" || Field == "CompositeIndices") { NewReg->addValue(*Def->getValue(Field)); continue; } // Some fields get their default uninitialized value. if (Field == "DwarfNumbers" || Field == "DwarfAlias" || Field == "Aliases") { if (const RecordVal *DefRV = RegisterCl->getValue(Field)) NewReg->addValue(*DefRV); continue; } // Everything else is copied from Proto. NewReg->addValue(RV); } } } }; } //===----------------------------------------------------------------------===// // CodeGenRegisterClass //===----------------------------------------------------------------------===// static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { std::sort(M.begin(), M.end(), deref<llvm::less>()); M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); } CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) : TheDef(R), Name(R->getName()), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), LaneMask(0) { // Rename anonymous register classes. if (R->getName().size() > 9 && R->getName()[9] == '.') { static unsigned AnonCounter = 0; R->setName("AnonRegClass_" + utostr(AnonCounter++)); } std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) PrintFatalError("RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"); VTs.push_back(getValueType(Type)); } assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); // Allocation order 0 is the full set. AltOrders provides others. const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); ListInit *AltOrders = R->getValueAsListInit("AltOrders"); Orders.resize(1 + AltOrders->size()); // Default allocation order always contains all registers. for (unsigned i = 0, e = Elements->size(); i != e; ++i) { Orders[0].push_back((*Elements)[i]); const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); Members.push_back(Reg); TopoSigs.set(Reg->getTopoSig()); } sortAndUniqueRegisters(Members); // Alternative allocation orders may be subsets. SetTheory::RecSet Order; for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); Orders[1 + i].append(Order.begin(), Order.end()); // Verify that all altorder members are regclass members. while (!Order.empty()) { CodeGenRegister *Reg = RegBank.getReg(Order.back()); Order.pop_back(); if (!contains(Reg)) PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + " is not a class member"); } } // Allow targets to override the size in bits of the RegisterClass. unsigned Size = R->getValueAsInt("Size"); Namespace = R->getValueAsString("Namespace"); SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); SpillAlignment = R->getValueAsInt("Alignment"); CopyCost = R->getValueAsInt("CopyCost"); Allocatable = R->getValueAsBit("isAllocatable"); AltOrderSelect = R->getValueAsString("AltOrderSelect"); int AllocationPriority = R->getValueAsInt("AllocationPriority"); if (AllocationPriority < 0 || AllocationPriority > 63) PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); this->AllocationPriority = AllocationPriority; } // Create an inferred register class that was missing from the .td files. // Most properties will be inherited from the closest super-class after the // class structure has been computed. CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, StringRef Name, Key Props) : Members(*Props.Members), TheDef(nullptr), Name(Name), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), SpillSize(Props.SpillSize), SpillAlignment(Props.SpillAlignment), CopyCost(0), Allocatable(true), AllocationPriority(0) { for (const auto R : Members) TopoSigs.set(R->getTopoSig()); } // Compute inherited propertied for a synthesized register class. void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { assert(!getDef() && "Only synthesized classes can inherit properties"); assert(!SuperClasses.empty() && "Synthesized class without super class"); // The last super-class is the smallest one. CodeGenRegisterClass &Super = *SuperClasses.back(); // Most properties are copied directly. // Exceptions are members, size, and alignment Namespace = Super.Namespace; VTs = Super.VTs; CopyCost = Super.CopyCost; Allocatable = Super.Allocatable; AltOrderSelect = Super.AltOrderSelect; AllocationPriority = Super.AllocationPriority; // Copy all allocation orders, filter out foreign registers from the larger // super-class. Orders.resize(Super.Orders.size()); for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) if (contains(RegBank.getReg(Super.Orders[i][j]))) Orders[i].push_back(Super.Orders[i][j]); } bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { return std::binary_search(Members.begin(), Members.end(), Reg, deref<llvm::less>()); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; for (const auto R : *K.Members) OS << ", " << R->getName(); return OS << " }"; } } // This is a simple lexicographical order that can be used to search for sets. // It is not the same as the topological order provided by TopoOrderRC. bool CodeGenRegisterClass::Key:: operator<(const CodeGenRegisterClass::Key &B) const { assert(Members && B.Members); return std::tie(*Members, SpillSize, SpillAlignment) < std::tie(*B.Members, B.SpillSize, B.SpillAlignment); } // Returns true if RC is a strict subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // static bool testSubClass(const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && A->SpillSize <= B->SpillSize && std::includes(A->getMembers().begin(), A->getMembers().end(), B->getMembers().begin(), B->getMembers().end(), deref<llvm::less>()); } /// Sorting predicate for register classes. This provides a topological /// ordering that arranges all register classes before their sub-classes. /// /// Register classes with the same registers, spill size, and alignment form a /// clique. They will be ordered alphabetically. /// static bool __cdecl TopoOrderRC(const CodeGenRegisterClass &PA, // HLSL Change - __cdecl const CodeGenRegisterClass &PB) { auto *A = &PA; auto *B = &PB; if (A == B) return 0; // Order by ascending spill size. if (A->SpillSize < B->SpillSize) return true; if (A->SpillSize > B->SpillSize) return false; // Order by ascending spill alignment. if (A->SpillAlignment < B->SpillAlignment) return true; if (A->SpillAlignment > B->SpillAlignment) return false; // Order by descending set size. Note that the classes' allocation order may // not have been computed yet. The Members set is always vaild. if (A->getMembers().size() > B->getMembers().size()) return true; if (A->getMembers().size() < B->getMembers().size()) return false; // Finally order by name as a tie breaker. return StringRef(A->getName()) < B->getName(); } std::string CodeGenRegisterClass::getQualifiedName() const { if (Namespace.empty()) return getName(); else return Namespace + "::" + getName(); } // Compute sub-classes of all register classes. // Assume the classes are ordered topologically. void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { auto &RegClasses = RegBank.getRegClasses(); // Visit backwards so sub-classes are seen first. for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { CodeGenRegisterClass &RC = *I; RC.SubClasses.resize(RegClasses.size()); RC.SubClasses.set(RC.EnumValue); // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { CodeGenRegisterClass &SubRC = *I2; if (RC.SubClasses.test(SubRC.EnumValue)) continue; if (!testSubClass(&RC, &SubRC)) continue; // SubRC is a sub-class. Grap all its sub-classes so we won't have to // check them again. RC.SubClasses |= SubRC.SubClasses; } // Sweep up missed clique members. They will be immediately preceding RC. for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) RC.SubClasses.set(I2->EnumValue); } // Compute the SuperClasses lists from the SubClasses vectors. for (auto &RC : RegClasses) { const BitVector &SC = RC.getSubClasses(); auto I = RegClasses.begin(); for (int s = 0, next_s = SC.find_first(); next_s != -1; next_s = SC.find_next(s)) { std::advance(I, next_s - s); s = next_s; if (&*I == &RC) continue; I->SuperClasses.push_back(&RC); } } // With the class hierarchy in place, let synthesized register classes inherit // properties from their closest super-class. The iteration order here can // propagate properties down multiple levels. for (auto &RC : RegClasses) if (!RC.getDef()) RC.inheritProperties(RegBank); } void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, BitVector &Out) const { auto FindI = SuperRegClasses.find(SubIdx); if (FindI == SuperRegClasses.end()) return; for (CodeGenRegisterClass *RC : FindI->second) Out.set(RC->EnumValue); } // Populate a unique sorted list of units from a register set. void CodeGenRegisterClass::buildRegUnitSet( std::vector<unsigned> &RegUnits) const { std::vector<unsigned> TmpUnits; for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) TmpUnits.push_back(*UnitI); std::sort(TmpUnits.begin(), TmpUnits.end()); std::unique_copy(TmpUnits.begin(), TmpUnits.end(), std::back_inserter(RegUnits)); } //===----------------------------------------------------------------------===// // CodeGenRegBank //===----------------------------------------------------------------------===// CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { // Configure register Sets to understand register classes and tuples. Sets.addFieldExpander("RegisterClass", "MemberList"); Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); // Read in the user-defined (named) sub-register indices. // More indices will be synthesized later. std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); std::sort(SRIs.begin(), SRIs.end(), LessRecord()); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) getSubRegIdx(SRIs[i]); // Build composite maps from ComposedOf fields. for (auto &Idx : SubRegIndices) Idx.updateComponents(*this); // Read in the register definitions. std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); // Assign the enumeration values. for (unsigned i = 0, e = Regs.size(); i != e; ++i) getReg(Regs[i]); // Expand tuples and number the new registers. std::vector<Record*> Tups = Records.getAllDerivedDefinitions("RegisterTuples"); for (Record *R : Tups) { std::vector<Record *> TupRegs = *Sets.expand(R); std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); for (Record *RC : TupRegs) getReg(RC); } // Now all the registers are known. Build the object graph of explicit // register-register references. for (auto &Reg : Registers) Reg.buildObjectGraph(*this); // Compute register name map. for (auto &Reg : Registers) // FIXME: This could just be RegistersByName[name] = register, except that // causes some failures in MIPS - perhaps they have duplicate register name // entries? (or maybe there's a reason for it - I don't know much about this // code, just drive-by refactoring) RegistersByName.insert( std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); // Precompute all sub-register maps. // This will create Composite entries for all inferred sub-register indices. for (auto &Reg : Registers) Reg.computeSubRegs(*this); // Infer even more sub-registers by combining leading super-registers. for (auto &Reg : Registers) if (Reg.CoveredBySubRegs) Reg.computeSecondarySubRegs(*this); // After the sub-register graph is complete, compute the topologically // ordered SuperRegs list. for (auto &Reg : Registers) Reg.computeSuperRegs(*this); // Native register units are associated with a leaf register. They've all been // discovered now. NumNativeRegUnits = RegUnits.size(); // Read in register class definitions. std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); if (RCs.empty()) PrintFatalError("No 'RegisterClass' subclasses defined!"); // Allocate user-defined register classes. for (auto *RC : RCs) { RegClasses.emplace_back(*this, RC); addToMaps(&RegClasses.back()); } // Infer missing classes to create a full algebra. computeInferredRegisterClasses(); // Order register classes topologically and assign enum values. RegClasses.sort(TopoOrderRC); unsigned i = 0; for (auto &RC : RegClasses) RC.EnumValue = i++; CodeGenRegisterClass::computeSubClasses(*this); } // Create a synthetic CodeGenSubRegIndex without a corresponding Record. CodeGenSubRegIndex* CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); return &SubRegIndices.back(); } CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; if (Idx) return Idx; SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); Idx = &SubRegIndices.back(); return Idx; } CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { CodeGenRegister *&Reg = Def2Reg[Def]; if (Reg) return Reg; Registers.emplace_back(Def, Registers.size() + 1); Reg = &Registers.back(); return Reg; } void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { if (Record *Def = RC->getDef()) Def2RC.insert(std::make_pair(Def, RC)); // Duplicate classes are rejected by insert(). // That's OK, we only care about the properties handled by CGRC::Key. CodeGenRegisterClass::Key K(*RC); Key2RC.insert(std::make_pair(K, RC)); } // Create a synthetic sub-class if it is missing. CodeGenRegisterClass* CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, const CodeGenRegister::Vec *Members, StringRef Name) { // Synthetic sub-class has the same size and alignment as RC. CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); RCKeyMap::const_iterator FoundI = Key2RC.find(K); if (FoundI != Key2RC.end()) return FoundI->second; // Sub-class doesn't exist, create a new one. RegClasses.emplace_back(*this, Name, K); addToMaps(&RegClasses.back()); return &RegClasses.back(); } CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { if (CodeGenRegisterClass *RC = Def2RC[Def]) return RC; PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); } CodeGenSubRegIndex* CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B) { // Look for an existing entry. CodeGenSubRegIndex *Comp = A->compose(B); if (Comp) return Comp; // None exists, synthesize one. std::string Name = A->getName() + "_then_" + B->getName(); Comp = createSubRegIndex(Name, A->getNamespace()); A->addComposite(B, Comp); return Comp; } CodeGenSubRegIndex *CodeGenRegBank:: getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { assert(Parts.size() > 1 && "Need two parts to concatenate"); // Look for an existing entry. CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; if (Idx) return Idx; // None exists, synthesize one. std::string Name = Parts.front()->getName(); // Determine whether all parts are contiguous. bool isContinuous = true; unsigned Size = Parts.front()->Size; unsigned LastOffset = Parts.front()->Offset; unsigned LastSize = Parts.front()->Size; for (unsigned i = 1, e = Parts.size(); i != e; ++i) { Name += '_'; Name += Parts[i]->getName(); Size += Parts[i]->Size; if (Parts[i]->Offset != (LastOffset + LastSize)) isContinuous = false; LastOffset = Parts[i]->Offset; LastSize = Parts[i]->Size; } Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); Idx->Size = Size; Idx->Offset = isContinuous ? Parts.front()->Offset : -1; return Idx; } void CodeGenRegBank::computeComposites() { // Keep track of TopoSigs visited. We only need to visit each TopoSig once, // and many registers will share TopoSigs on regular architectures. BitVector TopoSigs(getNumTopoSigs()); for (const auto &Reg1 : Registers) { // Skip identical subreg structures already processed. if (TopoSigs.test(Reg1.getTopoSig())) continue; TopoSigs.set(Reg1.getTopoSig()); const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), e1 = SRM1.end(); i1 != e1; ++i1) { CodeGenSubRegIndex *Idx1 = i1->first; CodeGenRegister *Reg2 = i1->second; // Ignore identity compositions. if (&Reg1 == Reg2) continue; const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); // Try composing Idx1 with another SubRegIndex. for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), e2 = SRM2.end(); i2 != e2; ++i2) { CodeGenSubRegIndex *Idx2 = i2->first; CodeGenRegister *Reg3 = i2->second; // Ignore identity compositions. if (Reg2 == Reg3) continue; // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); assert(Idx3 && "Sub-register doesn't have an index"); // Conflicting composition? Emit a warning but allow it. if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + " and " + Idx2->getQualifiedName() + " compose ambiguously as " + Prev->getQualifiedName() + " or " + Idx3->getQualifiedName()); } } } } // Compute lane masks. This is similar to register units, but at the // sub-register index level. Each bit in the lane mask is like a register unit // class, and two lane masks will have a bit in common if two sub-register // indices overlap in some register. // // Conservatively share a lane mask bit if two sub-register indices overlap in // some registers, but not in others. That shouldn't happen a lot. void CodeGenRegBank::computeSubRegLaneMasks() { // First assign individual bits to all the leaf indices. unsigned Bit = 0; // Determine mask of lanes that cover their registers. CoveringLanes = ~0u; for (auto &Idx : SubRegIndices) { if (Idx.getComposites().empty()) { Idx.LaneMask = 1u << Bit; // Share bit 31 in the unlikely case there are more than 32 leafs. // // Sharing bits is harmless; it allows graceful degradation in targets // with more than 32 vector lanes. They simply get a limited resolution // view of lanes beyond the 32nd. // // See also the comment for getSubRegIndexLaneMask(). if (Bit < 31) ++Bit; else // Once bit 31 is shared among multiple leafs, the 'lane' it represents // is no longer covering its registers. CoveringLanes &= ~(1u << Bit); } else { Idx.LaneMask = 0; } } // Compute transformation sequences for composeSubRegIndexLaneMask. The idea // here is that for each possible target subregister we look at the leafs // in the subregister graph that compose for this target and create // transformation sequences for the lanemasks. Each step in the sequence // consists of a bitmask and a bitrotate operation. As the rotation amounts // are usually the same for many subregisters we can easily combine the steps // by combining the masks. for (const auto &Idx : SubRegIndices) { const auto &Composites = Idx.getComposites(); auto &LaneTransforms = Idx.CompositionLaneMaskTransform; // Go through all leaf subregisters and find the ones that compose with Idx. // These make out all possible valid bits in the lane mask we want to // transform. Looking only at the leafs ensure that only a single bit in // the mask is set. unsigned NextBit = 0; for (auto &Idx2 : SubRegIndices) { // Skip non-leaf subregisters. if (!Idx2.getComposites().empty()) continue; // Replicate the behaviour from the lane mask generation loop above. unsigned SrcBit = NextBit; unsigned SrcMask = 1u << SrcBit; if (NextBit < 31) ++NextBit; assert(Idx2.LaneMask == SrcMask); // Get the composed subregister if there is any. auto C = Composites.find(&Idx2); if (C == Composites.end()) continue; const CodeGenSubRegIndex *Composite = C->second; // The Composed subreg should be a leaf subreg too assert(Composite->getComposites().empty()); // Create Mask+Rotate operation and merge with existing ops if possible. unsigned DstBit = Log2_32(Composite->LaneMask); int Shift = DstBit - SrcBit; uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; for (auto &I : LaneTransforms) { if (I.RotateLeft == RotateLeft) { I.Mask |= SrcMask; SrcMask = 0; } } if (SrcMask != 0) { MaskRolPair MaskRol = { SrcMask, RotateLeft }; LaneTransforms.push_back(MaskRol); } } // Optimize if the transformation consists of one step only: Set mask to // 0xffffffff (including some irrelevant invalid bits) so that it should // merge with more entries later while compressing the table. if (LaneTransforms.size() == 1) LaneTransforms[0].Mask = ~0u; // Further compression optimization: For invalid compositions resulting // in a sequence with 0 entries we can just pick any other. Choose // Mask 0xffffffff with Rotation 0. if (LaneTransforms.size() == 0) { MaskRolPair P = { ~0u, 0 }; LaneTransforms.push_back(P); } } // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented // by the sub-register graph? This doesn't occur in any known targets. // Inherit lanes from composites. for (const auto &Idx : SubRegIndices) { unsigned Mask = Idx.computeLaneMask(); // If some super-registers without CoveredBySubRegs use this index, we can // no longer assume that the lanes are covering their registers. if (!Idx.AllSuperRegsCovered) CoveringLanes &= ~Mask; } // Compute lane mask combinations for register classes. for (auto &RegClass : RegClasses) { unsigned LaneMask = 0; for (const auto &SubRegIndex : SubRegIndices) { if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) continue; LaneMask |= SubRegIndex.LaneMask; } RegClass.LaneMask = LaneMask; } } namespace { // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is // the transitive closure of the union of overlapping register // classes. Together, the UberRegSets form a partition of the registers. If we // consider overlapping register classes to be connected, then each UberRegSet // is a set of connected components. // // An UberRegSet will likely be a horizontal slice of register names of // the same width. Nontrivial subregisters should then be in a separate // UberRegSet. But this property isn't required for valid computation of // register unit weights. // // A Weight field caches the max per-register unit weight in each UberRegSet. // // A set of SingularDeterminants flags single units of some register in this set // for which the unit weight equals the set weight. These units should not have // their weight increased. struct UberRegSet { CodeGenRegister::Vec Regs; unsigned Weight; CodeGenRegister::RegUnitList SingularDeterminants; UberRegSet(): Weight(0) {} }; } // namespace // Partition registers into UberRegSets, where each set is the transitive // closure of the union of overlapping register classes. // // UberRegSets[0] is a special non-allocatable set. static void computeUberSets(std::vector<UberRegSet> &UberSets, std::vector<UberRegSet*> &RegSets, CodeGenRegBank &RegBank) { const auto &Registers = RegBank.getRegisters(); // The Register EnumValue is one greater than its index into Registers. assert(Registers.size() == Registers.back().EnumValue && "register enum value mismatch"); // For simplicitly make the SetID the same as EnumValue. IntEqClasses UberSetIDs(Registers.size()+1); std::set<unsigned> AllocatableRegs; for (auto &RegClass : RegBank.getRegClasses()) { if (!RegClass.Allocatable) continue; const CodeGenRegister::Vec &Regs = RegClass.getMembers(); if (Regs.empty()) continue; unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); assert(USetID && "register number 0 is invalid"); AllocatableRegs.insert((*Regs.begin())->EnumValue); for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { AllocatableRegs.insert((*I)->EnumValue); UberSetIDs.join(USetID, (*I)->EnumValue); } } // Combine non-allocatable regs. for (const auto &Reg : Registers) { unsigned RegNum = Reg.EnumValue; if (AllocatableRegs.count(RegNum)) continue; UberSetIDs.join(0, RegNum); } UberSetIDs.compress(); // Make the first UberSet a special unallocatable set. unsigned ZeroID = UberSetIDs[0]; // Insert Registers into the UberSets formed by union-find. // Do not resize after this. UberSets.resize(UberSetIDs.getNumClasses()); unsigned i = 0; for (const CodeGenRegister &Reg : Registers) { unsigned USetID = UberSetIDs[Reg.EnumValue]; if (!USetID) USetID = ZeroID; else if (USetID == ZeroID) USetID = 0; UberRegSet *USet = &UberSets[USetID]; USet->Regs.push_back(&Reg); sortAndUniqueRegisters(USet->Regs); RegSets[i++] = USet; } } // Recompute each UberSet weight after changing unit weights. static void computeUberWeights(std::vector<UberRegSet> &UberSets, CodeGenRegBank &RegBank) { // Skip the first unallocatable set. for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), E = UberSets.end(); I != E; ++I) { // Initialize all unit weights in this set, and remember the max units/reg. const CodeGenRegister *Reg = nullptr; unsigned MaxWeight = 0, Weight = 0; for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { if (Reg != UnitI.getReg()) { if (Weight > MaxWeight) MaxWeight = Weight; Reg = UnitI.getReg(); Weight = 0; } unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; if (!UWeight) { UWeight = 1; RegBank.increaseRegUnitWeight(*UnitI, UWeight); } Weight += UWeight; } if (Weight > MaxWeight) MaxWeight = Weight; if (I->Weight != MaxWeight) { DEBUG( dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; for (auto &Unit : I->Regs) dbgs() << " " << Unit->getName(); dbgs() << "\n"); // Update the set weight. I->Weight = MaxWeight; } // Find singular determinants. for (const auto R : I->Regs) { if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { I->SingularDeterminants |= R->getRegUnits(); } } } } // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of // a register and its subregisters so that they have the same weight as their // UberSet. Self-recursion processes the subregister tree in postorder so // subregisters are normalized first. // // Side effects: // - creates new adopted register units // - causes superregisters to inherit adopted units // - increases the weight of "singular" units // - induces recomputation of UberWeights. static bool normalizeWeight(CodeGenRegister *Reg, std::vector<UberRegSet> &UberSets, std::vector<UberRegSet*> &RegSets, SparseBitVector<> &NormalRegs, CodeGenRegister::RegUnitList &NormalUnits, CodeGenRegBank &RegBank) { if (NormalRegs.test(Reg->EnumValue)) return false; NormalRegs.set(Reg->EnumValue); bool Changed = false; const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), SRE = SRM.end(); SRI != SRE; ++SRI) { if (SRI->second == Reg) continue; // self-cycles happen Changed |= normalizeWeight(SRI->second, UberSets, RegSets, NormalRegs, NormalUnits, RegBank); } // Postorder register normalization. // Inherit register units newly adopted by subregisters. if (Reg->inheritRegUnits(RegBank)) computeUberWeights(UberSets, RegBank); // Check if this register is too skinny for its UberRegSet. UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; unsigned RegWeight = Reg->getWeight(RegBank); if (UberSet->Weight > RegWeight) { // A register unit's weight can be adjusted only if it is the singular unit // for this register, has not been used to normalize a subregister's set, // and has not already been used to singularly determine this UberRegSet. unsigned AdjustUnit = *Reg->getRegUnits().begin(); if (Reg->getRegUnits().count() != 1 || hasRegUnit(NormalUnits, AdjustUnit) || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { // We don't have an adjustable unit, so adopt a new one. AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); Reg->adoptRegUnit(AdjustUnit); // Adopting a unit does not immediately require recomputing set weights. } else { // Adjust the existing single unit. RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); // The unit may be shared among sets and registers within this set. computeUberWeights(UberSets, RegBank); } Changed = true; } // Mark these units normalized so superregisters can't change their weights. NormalUnits |= Reg->getRegUnits(); return Changed; } // Compute a weight for each register unit created during getSubRegs. // // The goal is that two registers in the same class will have the same weight, // where each register's weight is defined as sum of its units' weights. void CodeGenRegBank::computeRegUnitWeights() { std::vector<UberRegSet> UberSets; std::vector<UberRegSet*> RegSets(Registers.size()); computeUberSets(UberSets, RegSets, *this); // UberSets and RegSets are now immutable. computeUberWeights(UberSets, *this); // Iterate over each Register, normalizing the unit weights until reaching // a fix point. unsigned NumIters = 0; for (bool Changed = true; Changed; ++NumIters) { assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); Changed = false; for (auto &Reg : Registers) { CodeGenRegister::RegUnitList NormalUnits; SparseBitVector<> NormalRegs; Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, NormalUnits, *this); } } } // Find a set in UniqueSets with the same elements as Set. // Return an iterator into UniqueSets. static std::vector<RegUnitSet>::const_iterator findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, const RegUnitSet &Set) { std::vector<RegUnitSet>::const_iterator I = UniqueSets.begin(), E = UniqueSets.end(); for(;I != E; ++I) { if (I->Units == Set.Units) break; } return I; } // Return true if the RUSubSet is a subset of RUSuperSet. static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, const std::vector<unsigned> &RUSuperSet) { return std::includes(RUSuperSet.begin(), RUSuperSet.end(), RUSubSet.begin(), RUSubSet.end()); } /// Iteratively prune unit sets. Prune subsets that are close to the superset, /// but with one or two registers removed. We occasionally have registers like /// APSR and PC thrown in with the general registers. We also see many /// special-purpose register subsets, such as tail-call and Thumb /// encodings. Generating all possible overlapping sets is combinatorial and /// overkill for modeling pressure. Ideally we could fix this statically in /// tablegen by (1) having the target define register classes that only include /// the allocatable registers and marking other classes as non-allocatable and /// (2) having a way to mark special purpose classes as "don't-care" classes for /// the purpose of pressure. However, we make an attempt to handle targets that /// are not nicely defined by merging nearly identical register unit sets /// statically. This generates smaller tables. Then, dynamically, we adjust the /// set limit by filtering the reserved registers. /// /// Merge sets only if the units have the same weight. For example, on ARM, /// Q-tuples with ssub index 0 include all S regs but also include D16+. We /// should not expand the S set to include D regs. void CodeGenRegBank::pruneUnitSets() { assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); // Form an equivalence class of UnitSets with no significant difference. std::vector<unsigned> SuperSetIDs; for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); SubIdx != EndIdx; ++SubIdx) { const RegUnitSet &SubSet = RegUnitSets[SubIdx]; unsigned SuperIdx = 0; for (; SuperIdx != EndIdx; ++SuperIdx) { if (SuperIdx == SubIdx) continue; unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) && (SubSet.Units.size() + 3 > SuperSet.Units.size()) && UnitWeight == RegUnits[SuperSet.Units[0]].Weight && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx << "\n"); break; } } if (SuperIdx == EndIdx) SuperSetIDs.push_back(SubIdx); } // Populate PrunedUnitSets with each equivalence class's superset. std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { unsigned SuperIdx = SuperSetIDs[i]; PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); } RegUnitSets.swap(PrunedUnitSets); } // Create a RegUnitSet for each RegClass that contains all units in the class // including adopted units that are necessary to model register pressure. Then // iteratively compute RegUnitSets such that the union of any two overlapping // RegUnitSets is repreresented. // // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any // RegUnitSet that is a superset of that RegUnitClass. void CodeGenRegBank::computeRegUnitSets() { assert(RegUnitSets.empty() && "dirty RegUnitSets"); // Compute a unique RegUnitSet for each RegClass. auto &RegClasses = getRegClasses(); for (auto &RC : RegClasses) { if (!RC.Allocatable) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RC.getName(); // Compute a sorted list of units in this class. RC.buildRegUnitSet(RegUnitSets.back().Units); // Find an existing RegUnitSet. std::vector<RegUnitSet>::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != std::prev(RegUnitSets.end())) RegUnitSets.pop_back(); } DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) dbgs() << " " << RegUnits[U].Roots[0]->getName(); dbgs() << "\n"; }); // Iteratively prune unit sets. pruneUnitSets(); DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) dbgs() << " " << RegUnits[U].Roots[0]->getName(); dbgs() << "\n"; } dbgs() << "\nUnion sets:\n"); // Iterate over all unit sets, including new ones added by this loop. unsigned NumRegUnitSubSets = RegUnitSets.size(); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { // In theory, this is combinatorial. In practice, it needs to be bounded // by a small number of sets for regpressure to be efficient. // If the assert is hit, we need to implement pruning. assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); // Compare new sets with all original classes. for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; SearchIdx != EndIdx; ++SearchIdx) { std::set<unsigned> Intersection; std::set_intersection(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(Intersection, Intersection.begin())); if (Intersection.empty()) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; std::set_union(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(RegUnitSets.back().Units, RegUnitSets.back().Units.begin())); // Find an existing RegUnitSet, or add the union to the unique sets. std::vector<RegUnitSet>::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != std::prev(RegUnitSets.end())) RegUnitSets.pop_back(); else { DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 << " " << RegUnitSets.back().Name << ":"; for (auto &U : RegUnitSets.back().Units) dbgs() << " " << RegUnits[U].Roots[0]->getName(); dbgs() << "\n";); } } } // Iteratively prune unit sets after inferring supersets. pruneUnitSets(); DEBUG(dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx < USEnd; ++USIdx) { dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; for (auto &U : RegUnitSets[USIdx].Units) dbgs() << " " << RegUnits[U].Roots[0]->getName(); dbgs() << "\n"; }); // For each register class, list the UnitSets that are supersets. RegClassUnitSets.resize(RegClasses.size()); int RCIdx = -1; for (auto &RC : RegClasses) { ++RCIdx; if (!RC.Allocatable) continue; // Recompute the sorted list of units in this class. std::vector<unsigned> RCRegUnits; RC.buildRegUnitSet(RCRegUnits); // Don't increase pressure for unallocatable regclasses. if (RCRegUnits.empty()) continue; DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; for (auto &U : RCRegUnits) dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; dbgs() << "\n UnitSetIDs:"); // Find all supersets. for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx != USEnd; ++USIdx) { if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { DEBUG(dbgs() << " " << USIdx); RegClassUnitSets[RCIdx].push_back(USIdx); } } DEBUG(dbgs() << "\n"); assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); } // For each register unit, ensure that we have the list of UnitSets that // contain the unit. Normally, this matches an existing list of UnitSets for a // register class. If not, we create a new entry in RegClassUnitSets as a // "fake" register class. for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd; ++UnitIdx) { std::vector<unsigned> RUSets; for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { RegUnitSet &RUSet = RegUnitSets[i]; if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) == RUSet.Units.end()) continue; RUSets.push_back(i); } unsigned RCUnitSetsIdx = 0; for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e; ++RCUnitSetsIdx) { if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { break; } } RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; if (RCUnitSetsIdx == RegClassUnitSets.size()) { // Create a new list of UnitSets as a "fake" register class. RegClassUnitSets.resize(RCUnitSetsIdx + 1); RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); } } } void CodeGenRegBank::computeRegUnitLaneMasks() { for (auto &Register : Registers) { // Create an initial lane mask for all register units. const auto &RegUnits = Register.getRegUnits(); CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); // Iterate through SubRegisters. typedef CodeGenRegister::SubRegMap SubRegMap; const SubRegMap &SubRegs = Register.getSubRegs(); for (SubRegMap::const_iterator S = SubRegs.begin(), SE = SubRegs.end(); S != SE; ++S) { CodeGenRegister *SubReg = S->second; // Ignore non-leaf subregisters, their lane masks are fully covered by // the leaf subregisters anyway. if (SubReg->getSubRegs().size() != 0) continue; CodeGenSubRegIndex *SubRegIndex = S->first; const CodeGenRegister *SubRegister = S->second; unsigned LaneMask = SubRegIndex->LaneMask; // Distribute LaneMask to Register Units touched. for (unsigned SUI : SubRegister->getRegUnits()) { bool Found = false; unsigned u = 0; for (unsigned RU : RegUnits) { if (SUI == RU) { RegUnitLaneMasks[u] |= LaneMask; assert(!Found); Found = true; } ++u; } (void)Found; assert(Found); } } Register.setRegUnitLaneMasks(RegUnitLaneMasks); } } void CodeGenRegBank::computeDerivedInfo() { computeComposites(); computeSubRegLaneMasks(); // Compute a weight for each register unit created during getSubRegs. // This may create adopted register units (with unit # >= NumNativeRegUnits). computeRegUnitWeights(); // Compute a unique set of RegUnitSets. One for each RegClass and inferred // supersets for the union of overlapping sets. computeRegUnitSets(); computeRegUnitLaneMasks(); // Compute register class HasDisjunctSubRegs flag. for (CodeGenRegisterClass &RC : RegClasses) { RC.HasDisjunctSubRegs = false; for (const CodeGenRegister *Reg : RC.getMembers()) RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; } // Get the weight of each set. for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); // Find the order of each set. RegUnitSetOrder.reserve(RegUnitSets.size()); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) RegUnitSetOrder.push_back(Idx); std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), [this](unsigned ID1, unsigned ID2) { return getRegPressureSet(ID1).Units.size() < getRegPressureSet(ID2).Units.size(); }); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; } } // // Synthesize missing register class intersections. // // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) // returns a maximal register class for all X. // void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { assert(!RegClasses.empty()); // Stash the iterator to the last element so that this loop doesn't visit // elements added by the getOrCreateSubClass call within it. for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); I != std::next(E); ++I) { CodeGenRegisterClass *RC1 = RC; CodeGenRegisterClass *RC2 = &*I; if (RC1 == RC2) continue; // Compute the set intersection of RC1 and RC2. const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); CodeGenRegister::Vec Intersection; std::set_intersection( Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); // Skip disjoint class pairs. if (Intersection.empty()) continue; // If RC1 and RC2 have different spill sizes or alignments, use the // larger size for sub-classing. If they are equal, prefer RC1. if (RC2->SpillSize > RC1->SpillSize || (RC2->SpillSize == RC1->SpillSize && RC2->SpillAlignment > RC1->SpillAlignment)) std::swap(RC1, RC2); getOrCreateSubClass(RC1, &Intersection, RC1->getName() + "_and_" + RC2->getName()); } } // // Synthesize missing sub-classes for getSubClassWithSubReg(). // // Make sure that the set of registers in RC with a given SubIdx sub-register // form a register class. Update RC->SubClassWithSubReg. // void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, deref<llvm::less>> SubReg2SetMap; // Compute the set of registers supporting each SubRegIndex. SubReg2SetMap SRSets; for (const auto R : RC->getMembers()) { const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), E = SRM.end(); I != E; ++I) SRSets[I->first].push_back(R); } for (auto I : SRSets) sortAndUniqueRegisters(I.second); // Find matching classes for all SRSets entries. Iterate in SubRegIndex // numerical order to visit synthetic indices last. for (const auto &SubIdx : SubRegIndices) { SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); // Unsupported SubRegIndex. Skip it. if (I == SRSets.end()) continue; // In most cases, all RC registers support the SubRegIndex. if (I->second.size() == RC->getMembers().size()) { RC->setSubClassWithSubReg(&SubIdx, RC); continue; } // This is a real subset. See if we have a matching class. CodeGenRegisterClass *SubRC = getOrCreateSubClass(RC, &I->second, RC->getName() + "_with_" + I->first->getName()); RC->setSubClassWithSubReg(&SubIdx, SubRC); } } // // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). // // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) // has a maximal result for any SubIdx and any X >= FirstSubRegRC. // void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { SmallVector<std::pair<const CodeGenRegister*, const CodeGenRegister*>, 16> SSPairs; BitVector TopoSigs(getNumTopoSigs()); // Iterate in SubRegIndex numerical order to visit synthetic indices last. for (auto &SubIdx : SubRegIndices) { // Skip indexes that aren't fully supported by RC's registers. This was // computed by inferSubClassWithSubReg() above which should have been // called first. if (RC->getSubClassWithSubReg(&SubIdx) != RC) continue; // Build list of (Super, Sub) pairs for this SubIdx. SSPairs.clear(); TopoSigs.reset(); for (const auto Super : RC->getMembers()) { const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; assert(Sub && "Missing sub-register"); SSPairs.push_back(std::make_pair(Super, Sub)); TopoSigs.set(Sub->getTopoSig()); } // Iterate over sub-register class candidates. Ignore classes created by // this loop. They will never be useful. // Store an iterator to the last element (not end) so that this loop doesn't // visit newly inserted elements. assert(!RegClasses.empty()); for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); I != std::next(E); ++I) { CodeGenRegisterClass &SubRC = *I; // Topological shortcut: SubRC members have the wrong shape. if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) continue; // Compute the subset of RC that maps into SubRC. CodeGenRegister::Vec SubSetVec; for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) if (SubRC.contains(SSPairs[i].second)) SubSetVec.push_back(SSPairs[i].first); if (SubSetVec.empty()) continue; // RC injects completely into SubRC. sortAndUniqueRegisters(SubSetVec); if (SubSetVec.size() == SSPairs.size()) { SubRC.addSuperRegClass(&SubIdx, RC); continue; } // Only a subset of RC maps into SubRC. Make sure it is represented by a // class. getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + SubIdx.getName() + "_in_" + SubRC.getName()); } } } // // Infer missing register classes. // void CodeGenRegBank::computeInferredRegisterClasses() { assert(!RegClasses.empty()); // When this function is called, the register classes have not been sorted // and assigned EnumValues yet. That means getSubClasses(), // getSuperClasses(), and hasSubClass() functions are defunct. // Use one-before-the-end so it doesn't move forward when new elements are // added. auto FirstNewRC = std::prev(RegClasses.end()); // Visit all register classes, including the ones being added by the loop. // Watch out for iterator invalidation here. for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { CodeGenRegisterClass *RC = &*I; // Synthesize answers for getSubClassWithSubReg(). inferSubClassWithSubReg(RC); // Synthesize answers for getCommonSubClass(). inferCommonSubClass(RC); // Synthesize answers for getMatchingSuperRegClass(). inferMatchingSuperRegClass(RC); // New register classes are created while this loop is running, and we need // to visit all of them. I particular, inferMatchingSuperRegClass needs // to match old super-register classes with sub-register classes created // after inferMatchingSuperRegClass was called. At this point, // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. if (I == FirstNewRC) { auto NextNewRC = std::prev(RegClasses.end()); for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; ++I2) inferMatchingSuperRegClass(&*I2, E2); FirstNewRC = NextNewRC; } } } /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register class, /// return null. If the register is in multiple classes, and the classes have a /// superset-subset relationship and the same set of types, return the /// superclass. Otherwise return null. const CodeGenRegisterClass* CodeGenRegBank::getRegClassForRegister(Record *R) { const CodeGenRegister *Reg = getReg(R); const CodeGenRegisterClass *FoundRC = nullptr; for (const auto &RC : getRegClasses()) { if (!RC.contains(Reg)) continue; // If this is the first class that contains the register, // make a note of it and go on to the next class. if (!FoundRC) { FoundRC = &RC; continue; } // If a register's classes have different types, return null. if (RC.getValueTypes() != FoundRC->getValueTypes()) return nullptr; // Check to see if the previously found class that contains // the register is a subclass of the current class. If so, // prefer the superclass. if (RC.hasSubClass(FoundRC)) { FoundRC = &RC; continue; } // Check to see if the previously found class that contains // the register is a superclass of the current class. If so, // prefer the superclass. if (FoundRC->hasSubClass(&RC)) continue; // Multiple classes, and neither is a superclass of the other. // Return null. return nullptr; } return FoundRC; } BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { SetVector<const CodeGenRegister*> Set; // First add Regs with all sub-registers. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { CodeGenRegister *Reg = getReg(Regs[i]); if (Set.insert(Reg)) // Reg is new, add all sub-registers. // The pre-ordering is not important here. Reg->addSubRegsPreOrder(Set, *this); } // Second, find all super-registers that are completely covered by the set. for (unsigned i = 0; i != Set.size(); ++i) { const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); for (unsigned j = 0, e = SR.size(); j != e; ++j) { const CodeGenRegister *Super = SR[j]; if (!Super->CoveredBySubRegs || Set.count(Super)) continue; // This new super-register is covered by its sub-registers. bool AllSubsInSet = true; const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), E = SRM.end(); I != E; ++I) if (!Set.count(I->second)) { AllSubsInSet = false; break; } // All sub-registers in Set, add Super as well. // We will visit Super later to recheck its super-registers. if (AllSubsInSet) Set.insert(Super); } } // Convert to BitVector. BitVector BV(Registers.size() + 1); for (unsigned i = 0, e = Set.size(); i != e; ++i) BV.set(Set[i]->EnumValue); return BV; }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenInstruction.cpp
//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeGenInstruction class. // //===----------------------------------------------------------------------===// #include "CodeGenInstruction.h" #include "CodeGenTarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include <set> using namespace llvm; //===----------------------------------------------------------------------===// // CGIOperandList Implementation //===----------------------------------------------------------------------===// CGIOperandList::CGIOperandList(Record *R) : TheDef(R) { isPredicable = false; hasOptionalDef = false; isVariadic = false; DagInit *OutDI = R->getValueAsDag("OutOperandList"); if (DefInit *Init = dyn_cast<DefInit>(OutDI->getOperator())) { if (Init->getDef()->getName() != "outs") PrintFatalError(R->getName() + ": invalid def name for output list: use 'outs'"); } else PrintFatalError(R->getName() + ": invalid output list: use 'outs'"); NumDefs = OutDI->getNumArgs(); DagInit *InDI = R->getValueAsDag("InOperandList"); if (DefInit *Init = dyn_cast<DefInit>(InDI->getOperator())) { if (Init->getDef()->getName() != "ins") PrintFatalError(R->getName() + ": invalid def name for input list: use 'ins'"); } else PrintFatalError(R->getName() + ": invalid input list: use 'ins'"); unsigned MIOperandNo = 0; std::set<std::string> OperandNames; for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i){ Init *ArgInit; std::string ArgName; if (i < NumDefs) { ArgInit = OutDI->getArg(i); ArgName = OutDI->getArgName(i); } else { ArgInit = InDI->getArg(i-NumDefs); ArgName = InDI->getArgName(i-NumDefs); } DefInit *Arg = dyn_cast<DefInit>(ArgInit); if (!Arg) PrintFatalError("Illegal operand for the '" + R->getName() + "' instruction!"); Record *Rec = Arg->getDef(); std::string PrintMethod = "printOperand"; std::string EncoderMethod; std::string OperandType = "OPERAND_UNKNOWN"; std::string OperandNamespace = "MCOI"; unsigned NumOps = 1; DagInit *MIOpInfo = nullptr; if (Rec->isSubClassOf("RegisterOperand")) { PrintMethod = Rec->getValueAsString("PrintMethod"); OperandType = Rec->getValueAsString("OperandType"); OperandNamespace = Rec->getValueAsString("OperandNamespace"); } else if (Rec->isSubClassOf("Operand")) { PrintMethod = Rec->getValueAsString("PrintMethod"); OperandType = Rec->getValueAsString("OperandType"); // If there is an explicit encoder method, use it. EncoderMethod = Rec->getValueAsString("EncoderMethod"); MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); // Verify that MIOpInfo has an 'ops' root value. if (!isa<DefInit>(MIOpInfo->getOperator()) || cast<DefInit>(MIOpInfo->getOperator())->getDef()->getName() != "ops") PrintFatalError("Bad value for MIOperandInfo in operand '" + Rec->getName() + "'\n"); // If we have MIOpInfo, then we have #operands equal to number of entries // in MIOperandInfo. if (unsigned NumArgs = MIOpInfo->getNumArgs()) NumOps = NumArgs; if (Rec->isSubClassOf("PredicateOp")) isPredicable = true; else if (Rec->isSubClassOf("OptionalDefOperand")) hasOptionalDef = true; } else if (Rec->getName() == "variable_ops") { isVariadic = true; continue; } else if (Rec->isSubClassOf("RegisterClass")) { OperandType = "OPERAND_REGISTER"; } else if (!Rec->isSubClassOf("PointerLikeRegClass") && !Rec->isSubClassOf("unknown_class")) PrintFatalError("Unknown operand class '" + Rec->getName() + "' in '" + R->getName() + "' instruction!"); // Check that the operand has a name and that it's unique. if (ArgName.empty()) PrintFatalError("In instruction '" + R->getName() + "', operand #" + Twine(i) + " has no name!"); if (!OperandNames.insert(ArgName).second) PrintFatalError("In instruction '" + R->getName() + "', operand #" + Twine(i) + " has the same name as a previous operand!"); OperandList.emplace_back(Rec, ArgName, PrintMethod, EncoderMethod, OperandNamespace + "::" + OperandType, MIOperandNo, NumOps, MIOpInfo); MIOperandNo += NumOps; } // Make sure the constraints list for each operand is large enough to hold // constraint info, even if none is present. for (unsigned i = 0, e = OperandList.size(); i != e; ++i) OperandList[i].Constraints.resize(OperandList[i].MINumOperands); } /// getOperandNamed - Return the index of the operand with the specified /// non-empty name. If the instruction does not have an operand with the /// specified name, abort. /// unsigned CGIOperandList::getOperandNamed(StringRef Name) const { unsigned OpIdx; if (hasOperandNamed(Name, OpIdx)) return OpIdx; PrintFatalError("'" + TheDef->getName() + "' does not have an operand named '$" + Name + "'!"); } /// hasOperandNamed - Query whether the instruction has an operand of the /// given name. If so, return true and set OpIdx to the index of the /// operand. Otherwise, return false. bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const { assert(!Name.empty() && "Cannot search for operand with no name!"); for (unsigned i = 0, e = OperandList.size(); i != e; ++i) if (OperandList[i].Name == Name) { OpIdx = i; return true; } return false; } std::pair<unsigned,unsigned> CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) { if (Op.empty() || Op[0] != '$') PrintFatalError(TheDef->getName() + ": Illegal operand name: '" + Op + "'"); std::string OpName = Op.substr(1); std::string SubOpName; // Check to see if this is $foo.bar. std::string::size_type DotIdx = OpName.find_first_of("."); if (DotIdx != std::string::npos) { SubOpName = OpName.substr(DotIdx+1); if (SubOpName.empty()) PrintFatalError(TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'"); OpName = OpName.substr(0, DotIdx); } unsigned OpIdx = getOperandNamed(OpName); if (SubOpName.empty()) { // If no suboperand name was specified: // If one was needed, throw. if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp && SubOpName.empty()) PrintFatalError(TheDef->getName() + ": Illegal to refer to" " whole operand part of complex operand '" + Op + "'"); // Otherwise, return the operand. return std::make_pair(OpIdx, 0U); } // Find the suboperand number involved. DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo; if (!MIOpInfo) PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'"); // Find the operand with the right name. for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i) if (MIOpInfo->getArgName(i) == SubOpName) return std::make_pair(OpIdx, i); // Otherwise, didn't find it! PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'"); return std::make_pair(0U, 0U); } static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops) { // EARLY_CLOBBER: @early $reg std::string::size_type wpos = CStr.find_first_of(" \t"); std::string::size_type start = CStr.find_first_not_of(" \t"); std::string Tok = CStr.substr(start, wpos - start); if (Tok == "@earlyclobber") { std::string Name = CStr.substr(wpos+1); wpos = Name.find_first_not_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for @earlyclobber constraint: '" + CStr + "'"); Name = Name.substr(wpos); std::pair<unsigned,unsigned> Op = Ops.ParseOperandName(Name, false); // Build the string for the operand if (!Ops[Op.first].Constraints[Op.second].isNone()) PrintFatalError("Operand '" + Name + "' cannot have multiple constraints!"); Ops[Op.first].Constraints[Op.second] = CGIOperandList::ConstraintInfo::getEarlyClobber(); return; } // Only other constraint is "TIED_TO" for now. std::string::size_type pos = CStr.find_first_of('='); assert(pos != std::string::npos && "Unrecognized constraint"); start = CStr.find_first_not_of(" \t"); std::string Name = CStr.substr(start, pos - start); // TIED_TO: $src1 = $dst wpos = Name.find_first_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'"); std::string DestOpName = Name.substr(0, wpos); std::pair<unsigned,unsigned> DestOp = Ops.ParseOperandName(DestOpName, false); Name = CStr.substr(pos+1); wpos = Name.find_first_not_of(" \t"); if (wpos == std::string::npos) PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'"); std::string SrcOpName = Name.substr(wpos); std::pair<unsigned,unsigned> SrcOp = Ops.ParseOperandName(SrcOpName, false); if (SrcOp > DestOp) { std::swap(SrcOp, DestOp); std::swap(SrcOpName, DestOpName); } unsigned FlatOpNo = Ops.getFlattenedOperandNumber(SrcOp); if (!Ops[DestOp.first].Constraints[DestOp.second].isNone()) PrintFatalError("Operand '" + DestOpName + "' cannot have multiple constraints!"); Ops[DestOp.first].Constraints[DestOp.second] = CGIOperandList::ConstraintInfo::getTied(FlatOpNo); } static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops) { if (CStr.empty()) return; const std::string delims(","); std::string::size_type bidx, eidx; bidx = CStr.find_first_not_of(delims); while (bidx != std::string::npos) { eidx = CStr.find_first_of(delims, bidx); if (eidx == std::string::npos) eidx = CStr.length(); ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops); bidx = CStr.find_first_not_of(delims, eidx); } } void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) { while (1) { std::pair<StringRef, StringRef> P = getToken(DisableEncoding, " ,\t"); std::string OpName = P.first; DisableEncoding = P.second; if (OpName.empty()) break; // Figure out which operand this is. std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false); // Mark the operand as not-to-be encoded. if (Op.second >= OperandList[Op.first].DoNotEncode.size()) OperandList[Op.first].DoNotEncode.resize(Op.second+1); OperandList[Op.first].DoNotEncode[Op.second] = true; } } //===----------------------------------------------------------------------===// // CodeGenInstruction Implementation //===----------------------------------------------------------------------===// CodeGenInstruction::CodeGenInstruction(Record *R) : TheDef(R), Operands(R), InferredFrom(nullptr) { Namespace = R->getValueAsString("Namespace"); AsmString = R->getValueAsString("AsmString"); isReturn = R->getValueAsBit("isReturn"); isBranch = R->getValueAsBit("isBranch"); isIndirectBranch = R->getValueAsBit("isIndirectBranch"); isCompare = R->getValueAsBit("isCompare"); isMoveImm = R->getValueAsBit("isMoveImm"); isBitcast = R->getValueAsBit("isBitcast"); isSelect = R->getValueAsBit("isSelect"); isBarrier = R->getValueAsBit("isBarrier"); isCall = R->getValueAsBit("isCall"); canFoldAsLoad = R->getValueAsBit("canFoldAsLoad"); isPredicable = Operands.isPredicable || R->getValueAsBit("isPredicable"); isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress"); isCommutable = R->getValueAsBit("isCommutable"); isTerminator = R->getValueAsBit("isTerminator"); isReMaterializable = R->getValueAsBit("isReMaterializable"); hasDelaySlot = R->getValueAsBit("hasDelaySlot"); usesCustomInserter = R->getValueAsBit("usesCustomInserter"); hasPostISelHook = R->getValueAsBit("hasPostISelHook"); hasCtrlDep = R->getValueAsBit("hasCtrlDep"); isNotDuplicable = R->getValueAsBit("isNotDuplicable"); isRegSequence = R->getValueAsBit("isRegSequence"); isExtractSubreg = R->getValueAsBit("isExtractSubreg"); isInsertSubreg = R->getValueAsBit("isInsertSubreg"); isConvergent = R->getValueAsBit("isConvergent"); bool Unset; mayLoad = R->getValueAsBitOrUnset("mayLoad", Unset); mayLoad_Unset = Unset; mayStore = R->getValueAsBitOrUnset("mayStore", Unset); mayStore_Unset = Unset; hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects", Unset); hasSideEffects_Unset = Unset; isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove"); hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq"); hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq"); isCodeGenOnly = R->getValueAsBit("isCodeGenOnly"); isPseudo = R->getValueAsBit("isPseudo"); ImplicitDefs = R->getValueAsListOfDefs("Defs"); ImplicitUses = R->getValueAsListOfDefs("Uses"); // Parse Constraints. ParseConstraints(R->getValueAsString("Constraints"), Operands); // Parse the DisableEncoding field. Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding")); // First check for a ComplexDeprecationPredicate. if (R->getValue("ComplexDeprecationPredicate")) { HasComplexDeprecationPredicate = true; DeprecatedReason = R->getValueAsString("ComplexDeprecationPredicate"); } else if (RecordVal *Dep = R->getValue("DeprecatedFeatureMask")) { // Check if we have a Subtarget feature mask. HasComplexDeprecationPredicate = false; DeprecatedReason = Dep->getValue()->getAsString(); } else { // This instruction isn't deprecated. HasComplexDeprecationPredicate = false; DeprecatedReason = ""; } } /// HasOneImplicitDefWithKnownVT - If the instruction has at least one /// implicit def and it has a known VT, return the VT, otherwise return /// MVT::Other. MVT::SimpleValueType CodeGenInstruction:: HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const { if (ImplicitDefs.empty()) return MVT::Other; // Check to see if the first implicit def has a resolvable type. Record *FirstImplicitDef = ImplicitDefs[0]; assert(FirstImplicitDef->isSubClassOf("Register")); const std::vector<MVT::SimpleValueType> &RegVTs = TargetInfo.getRegisterVTs(FirstImplicitDef); if (RegVTs.size() == 1) return RegVTs[0]; return MVT::Other; } /// FlattenAsmStringVariants - Flatten the specified AsmString to only /// include text from the specified variant, returning the new string. std::string CodeGenInstruction:: FlattenAsmStringVariants(StringRef Cur, unsigned Variant) { std::string Res = ""; for (;;) { // Find the start of the next variant string. size_t VariantsStart = 0; for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart) if (Cur[VariantsStart] == '{' && (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' && Cur[VariantsStart-1] != '\\'))) break; // Add the prefix to the result. Res += Cur.slice(0, VariantsStart); if (VariantsStart == Cur.size()) break; ++VariantsStart; // Skip the '{'. // Scan to the end of the variants string. size_t VariantsEnd = VariantsStart; unsigned NestedBraces = 1; for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) { if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') { if (--NestedBraces == 0) break; } else if (Cur[VariantsEnd] == '{') ++NestedBraces; } // Select the Nth variant (or empty). StringRef Selection = Cur.slice(VariantsStart, VariantsEnd); for (unsigned i = 0; i != Variant; ++i) Selection = Selection.split('|').second; Res += Selection.split('|').first; assert(VariantsEnd != Cur.size() && "Unterminated variants in assembly string!"); Cur = Cur.substr(VariantsEnd + 1); } return Res; } //===----------------------------------------------------------------------===// /// CodeGenInstAlias Implementation //===----------------------------------------------------------------------===// /// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias /// constructor. It checks if an argument in an InstAlias pattern matches /// the corresponding operand of the instruction. It returns true on a /// successful match, with ResOp set to the result operand to be used. bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo, Record *InstOpRec, bool hasSubOps, ArrayRef<SMLoc> Loc, CodeGenTarget &T, ResultOperand &ResOp) { Init *Arg = Result->getArg(AliasOpNo); DefInit *ADI = dyn_cast<DefInit>(Arg); Record *ResultRecord = ADI ? ADI->getDef() : nullptr; if (ADI && ADI->getDef() == InstOpRec) { // If the operand is a record, it must have a name, and the record type // must match up with the instruction's argument type. if (Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must have a name!"); ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // For register operands, the source register class can be a subclass // of the instruction register class, not just an exact match. if (InstOpRec->isSubClassOf("RegisterOperand")) InstOpRec = InstOpRec->getValueAsDef("RegClass"); if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand")) ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit(); if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) { if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .hasSubClass(&T.getRegisterClass(ADI->getDef()))) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord); return true; } // Handle explicit registers. if (ADI && ADI->getDef()->isSubClassOf("Register")) { if (InstOpRec->isSubClassOf("OptionalDefOperand")) { DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo"); // The operand info should only have a single (register) entry. We // want the register class of it. InstOpRec = cast<DefInit>(DI->getArg(0))->getDef(); } if (!InstOpRec->isSubClassOf("RegisterClass")) return false; if (!T.getRegisterClass(InstOpRec) .contains(T.getRegBank().getReg(ADI->getDef()))) PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() + " is not a member of the " + InstOpRec->getName() + " register class!"); if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result fixed register argument must " "not have a name!"); ResOp = ResultOperand(ResultRecord); return true; } // Handle "zero_reg" for optional def operands. if (ADI && ADI->getDef()->getName() == "zero_reg") { // Check if this is an optional def. // Tied operands where the source is a sub-operand of a complex operand // need to represent both operands in the alias destination instruction. // Allow zero_reg for the tied portion. This can and should go away once // the MC representation of things doesn't use tied operands at all. //if (!InstOpRec->isSubClassOf("OptionalDefOperand")) // throw TGError(Loc, "reg0 used for result that is not an " // "OptionalDefOperand!"); ResOp = ResultOperand(static_cast<Record*>(nullptr)); return true; } // Literal integers. if (IntInit *II = dyn_cast<IntInit>(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; // Integer arguments can't have names. if (!Result->getArgName(AliasOpNo).empty()) PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) + " must not have a name!"); ResOp = ResultOperand(II->getValue()); return true; } // Bits<n> (also used for 0bxx literals) if (BitsInit *BI = dyn_cast<BitsInit>(Arg)) { if (hasSubOps || !InstOpRec->isSubClassOf("Operand")) return false; if (!BI->isComplete()) return false; // Convert the bits init to an integer and use that for the result. IntInit *II = dyn_cast_or_null<IntInit>(BI->convertInitializerTo(IntRecTy::get())); if (!II) return false; ResOp = ResultOperand(II->getValue()); return true; } // If both are Operands with the same MVT, allow the conversion. It's // up to the user to make sure the values are appropriate, just like // for isel Pat's. if (InstOpRec->isSubClassOf("Operand") && ADI && ADI->getDef()->isSubClassOf("Operand")) { // FIXME: What other attributes should we check here? Identical // MIOperandInfo perhaps? if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type")) return false; ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef()); return true; } return false; } unsigned CodeGenInstAlias::ResultOperand::getMINumOperands() const { if (!isRecord()) return 1; Record *Rec = getRecord(); if (!Rec->isSubClassOf("Operand")) return 1; DagInit *MIOpInfo = Rec->getValueAsDag("MIOperandInfo"); if (MIOpInfo->getNumArgs() == 0) { // Unspecified, so it defaults to 1 return 1; } return MIOpInfo->getNumArgs(); } CodeGenInstAlias::CodeGenInstAlias(Record *R, unsigned Variant, CodeGenTarget &T) : TheDef(R) { Result = R->getValueAsDag("ResultInst"); AsmString = R->getValueAsString("AsmString"); AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant); // Verify that the root of the result is an instruction. DefInit *DI = dyn_cast<DefInit>(Result->getOperator()); if (!DI || !DI->getDef()->isSubClassOf("Instruction")) PrintFatalError(R->getLoc(), "result of inst alias should be an instruction"); ResultInst = &T.getInstruction(DI->getDef()); // NameClass - If argument names are repeated, we need to verify they have // the same class. StringMap<Record*> NameClass; for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) { DefInit *ADI = dyn_cast<DefInit>(Result->getArg(i)); if (!ADI || Result->getArgName(i).empty()) continue; // Verify we don't have something like: (someinst GR16:$foo, GR32:$foo) // $foo can exist multiple times in the result list, but it must have the // same type. Record *&Entry = NameClass[Result->getArgName(i)]; if (Entry && Entry != ADI->getDef()) PrintFatalError(R->getLoc(), "result value $" + Result->getArgName(i) + " is both " + Entry->getName() + " and " + ADI->getDef()->getName() + "!"); Entry = ADI->getDef(); } // Decode and validate the arguments of the result. unsigned AliasOpNo = 0; for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { // Tied registers don't have an entry in the result dag unless they're part // of a complex operand, in which case we include them anyways, as we // don't have any other way to specify the whole operand. if (ResultInst->Operands[i].MINumOperands == 1 && ResultInst->Operands[i].getTiedRegister() != -1) continue; if (AliasOpNo >= Result->getNumArgs()) PrintFatalError(R->getLoc(), "not enough arguments for instruction!"); Record *InstOpRec = ResultInst->Operands[i].Rec; unsigned NumSubOps = ResultInst->Operands[i].MINumOperands; ResultOperand ResOp(static_cast<int64_t>(0)); if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1), R->getLoc(), T, ResOp)) { // If this is a simple operand, or a complex operand with a custom match // class, then we can match is verbatim. if (NumSubOps == 1 || (InstOpRec->getValue("ParserMatchClass") && InstOpRec->getValueAsDef("ParserMatchClass") ->getValueAsString("Name") != "Imm")) { ResultOperands.push_back(ResOp); ResultInstOperandIndex.push_back(std::make_pair(i, -1)); ++AliasOpNo; // Otherwise, we need to match each of the suboperands individually. } else { DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo; for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) { Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef(); // Take care to instantiate each of the suboperands with the correct // nomenclature: $foo.bar ResultOperands.emplace_back(Result->getArgName(AliasOpNo) + "." + MIOI->getArgName(SubOp), SubRec); ResultInstOperandIndex.push_back(std::make_pair(i, SubOp)); } ++AliasOpNo; } continue; } // If the argument did not match the instruction operand, and the operand // is composed of multiple suboperands, try matching the suboperands. if (NumSubOps > 1) { DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo; for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) { if (AliasOpNo >= Result->getNumArgs()) PrintFatalError(R->getLoc(), "not enough arguments for instruction!"); Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef(); if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false, R->getLoc(), T, ResOp)) { ResultOperands.push_back(ResOp); ResultInstOperandIndex.push_back(std::make_pair(i, SubOp)); ++AliasOpNo; } else { PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) + " does not match instruction operand class " + (SubOp == 0 ? InstOpRec->getName() :SubRec->getName())); } } continue; } PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) + " does not match instruction operand class " + InstOpRec->getName()); } if (AliasOpNo != Result->getNumArgs()) PrintFatalError(R->getLoc(), "too many operands for instruction!"); }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/RegisterInfoEmitter.cpp
//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of a target // register file for a code generator. It uses instances of the Register, // RegisterAliases, and RegisterClass classes to gather this information. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <set> #include <vector> using namespace llvm; namespace { class RegisterInfoEmitter { RecordKeeper &Records; public: RegisterInfoEmitter(RecordKeeper &R) : Records(R) {} // runEnums - Print out enum values for all of the registers. void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runMCDesc - Print out MC register descriptions. void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetHeader - Emit a header fragment for the register info emitter. void runTargetHeader(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetDesc - Output the target register and register file descriptions. void runTargetDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // run - Output the register file description. void run(raw_ostream &o); private: void EmitRegMapping(raw_ostream &o, const std::deque<CodeGenRegister> &Regs, bool isCtor); void EmitRegMappingTables(raw_ostream &o, const std::deque<CodeGenRegister> &Regs, bool isCtor); void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); }; } // End anonymous namespace // runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &Bank) { const auto &Registers = Bank.getRegisters(); // Register enums are stored as uint16_t in the tables. Make sure we'll fit. assert(Registers.size() <= 0xffff && "Too many regs to fit in tables"); std::string Namespace = Registers.front().TheDef->getValueAsString("Namespace"); emitSourceFileHeader("Target Register Enum Values", OS); OS << "\n#ifdef GET_REGINFO_ENUM\n"; OS << "#undef GET_REGINFO_ENUM\n"; OS << "namespace llvm {\n\n"; OS << "class MCRegisterClass;\n" << "extern const MCRegisterClass " << Namespace << "MCRegisterClasses[];\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (const auto &Reg : Registers) OS << " " << Reg.getName() << " = " << Reg.EnumValue << ",\n"; assert(Registers.size() == Registers.back().EnumValue && "Register enum value mismatch!"); OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; const auto &RegisterClasses = Bank.getRegClasses(); if (!RegisterClasses.empty()) { // RegisterClass enums are stored as uint16_t in the tables. assert(RegisterClasses.size() <= 0xffff && "Too many register classes to fit in tables"); OS << "\n// Register classes\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (const auto &RC : RegisterClasses) OS << " " << RC.getName() << "RegClassID" << " = " << RC.EnumValue << ",\n"; OS << "\n };\n"; if (!Namespace.empty()) OS << "}\n"; } const std::vector<Record*> &RegAltNameIndices = Target.getRegAltNameIndices(); // If the only definition is the default NoRegAltName, we don't need to // emit anything. if (RegAltNameIndices.size() > 1) { OS << "\n// Register alternate name indices\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i) OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n"; OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; } auto &SubRegIndices = Bank.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n"; std::string Namespace = SubRegIndices.front().getNamespace(); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoSubRegister,\n"; unsigned i = 0; for (const auto &Idx : SubRegIndices) OS << " " << Idx.getName() << ",\t// " << ++i << "\n"; OS << " NUM_TARGET_SUBREGS\n};\n"; if (!Namespace.empty()) OS << "}\n"; } OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_ENUM\n\n"; } static void printInt(raw_ostream &OS, int Val) { OS << Val; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range < 0xFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } void RegisterInfoEmitter:: EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName) { unsigned NumRCs = RegBank.getRegClasses().size(); unsigned NumSets = RegBank.getNumRegPressureSets(); OS << "/// Get the weight in units of pressure for this register class.\n" << "const RegClassWeight &" << ClassName << "::\n" << "getRegClassWeight(const TargetRegisterClass *RC) const {\n" << " static const RegClassWeight RCWeightTable[] = {\n"; for (const auto &RC : RegBank.getRegClasses()) { const CodeGenRegister::Vec &Regs = RC.getMembers(); if (Regs.empty()) OS << " {0, 0"; else { std::vector<unsigned> RegUnits; RC.buildRegUnitSet(RegUnits); OS << " {" << (*Regs.begin())->getWeight(RegBank) << ", " << RegBank.getRegUnitSetWeight(RegUnits); } OS << "}, \t// " << RC.getName() << "\n"; } OS << " };\n" << " return RCWeightTable[RC->getID()];\n" << "}\n\n"; // Reasonable targets (not ARMv7) have unit weight for all units, so don't // bother generating a table. bool RegUnitsHaveUnitWeight = true; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { if (RegBank.getRegUnit(UnitIdx).Weight > 1) RegUnitsHaveUnitWeight = false; } OS << "/// Get the weight in units of pressure for this register unit.\n" << "unsigned " << ClassName << "::\n" << "getRegUnitWeight(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; if (!RegUnitsHaveUnitWeight) { OS << " static const uint8_t RUWeightTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { const RegUnit &RU = RegBank.getRegUnit(UnitIdx); assert(RU.Weight < 256 && "RegUnit too heavy"); OS << RU.Weight << ", "; } OS << "};\n" << " return RUWeightTable[RegUnit];\n"; } else { OS << " // All register units have unit weight.\n" << " return 1;\n"; } OS << "}\n\n"; OS << "\n" << "// Get the number of dimensions of register pressure.\n" << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n" << " return " << NumSets << ";\n}\n\n"; OS << "// Get the name of this register unit pressure set.\n" << "const char *" << ClassName << "::\n" << "getRegPressureSetName(unsigned Idx) const {\n" << " static const char *const PressureNameTable[] = {\n"; unsigned MaxRegUnitWeight = 0; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); MaxRegUnitWeight = std::max(MaxRegUnitWeight, RegUnits.Weight); OS << " \"" << RegUnits.Name << "\",\n"; } OS << " nullptr };\n" << " return PressureNameTable[Idx];\n" << "}\n\n"; OS << "// Get the register unit pressure limit for this dimension.\n" << "// This limit must be adjusted dynamically for reserved registers.\n" << "unsigned " << ClassName << "::\n" << "getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const {\n" << " static const " << getMinimalTypeForRange(MaxRegUnitWeight) << " PressureLimitTable[] = {\n"; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegSetAt(i); OS << " " << RegUnits.Weight << ", \t// " << i << ": " << RegUnits.Name << "\n"; } OS << " };\n" << " return PressureLimitTable[Idx];\n" << "}\n\n"; SequenceToOffsetTable<std::vector<int>> PSetsSeqs; // This table may be larger than NumRCs if some register units needed a list // of unit sets that did not correspond to a register class. unsigned NumRCUnitSets = RegBank.getNumRegClassPressureSetLists(); std::vector<std::vector<int>> PSets(NumRCUnitSets); for (unsigned i = 0, e = NumRCUnitSets; i != e; ++i) { ArrayRef<unsigned> PSetIDs = RegBank.getRCPressureSetIDs(i); PSets[i].reserve(PSetIDs.size()); for (ArrayRef<unsigned>::iterator PSetI = PSetIDs.begin(), PSetE = PSetIDs.end(); PSetI != PSetE; ++PSetI) { PSets[i].push_back(RegBank.getRegPressureSet(*PSetI).Order); } std::sort(PSets[i].begin(), PSets[i].end()); PSetsSeqs.add(PSets[i]); } PSetsSeqs.layout(); OS << "/// Table of pressure sets per register class or unit.\n" << "static const int RCSetsTable[] = {\n"; PSetsSeqs.emit(OS, printInt, "-1"); OS << "};\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register class.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int* " << ClassName << "::\n" << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1) << " RCSetStartTable[] = {\n "; for (unsigned i = 0, e = NumRCs; i != e; ++i) { OS << PSetsSeqs.get(PSets[i]) << ","; } OS << "};\n" << " return &RCSetsTable[RCSetStartTable[RC->getID()]];\n" << "}\n\n"; OS << "/// Get the dimensions of register pressure impacted by this " << "register unit.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int* " << ClassName << "::\n" << "getRegUnitPressureSets(unsigned RegUnit) const {\n" << " assert(RegUnit < " << RegBank.getNumNativeRegUnits() << " && \"invalid register unit\");\n"; OS << " static const " << getMinimalTypeForRange(PSetsSeqs.size()-1) << " RUSetStartTable[] = {\n "; for (unsigned UnitIdx = 0, UnitEnd = RegBank.getNumNativeRegUnits(); UnitIdx < UnitEnd; ++UnitIdx) { OS << PSetsSeqs.get(PSets[RegBank.getRegUnit(UnitIdx).RegClassUnitSetsIdx]) << ","; } OS << "};\n" << " return &RCSetsTable[RUSetStartTable[RegUnit]];\n" << "}\n\n"; } void RegisterInfoEmitter::EmitRegMappingTables( raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { // Collect all information about dwarf register numbers typedef std::map<Record*, std::vector<int64_t>, LessRecordRegister> DwarfRegNumsMapTy; DwarfRegNumsMapTy DwarfRegNums; // First, just pull all provided information to the map unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); if (DwarfRegNums.count(Reg)) PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") + getQualifiedName(Reg) + "specified multiple times"); DwarfRegNums[Reg] = RegNums; } if (!maxLength) return; // Now we know maximal length of number list. Append -1's, where needed for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) I->second.push_back(-1); std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n"; // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "Dwarf2L[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the LLVM reg num so lookup can be done // with a binary search. std::map<uint64_t, Record*> Dwarf2LMap; for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int DwarfRegNo = I->second[i]; if (DwarfRegNo < 0) continue; Dwarf2LMap[DwarfRegNo] = I->first; } for (std::map<uint64_t, Record*>::iterator I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I) OS << " { " << I->first << "U, " << getQualifiedName(I->second) << " },\n"; OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize"; if (!isCtor) OS << " = array_lengthof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L);\n\n"; else OS << ";\n\n"; } } for (auto &RE : Regs) { Record *Reg = RE.TheDef; const RecordVal *V = Reg->getValue("DwarfAlias"); if (!V || !V->getValue()) continue; DefInit *DI = cast<DefInit>(V->getValue()); Record *Alias = DI->getDef(); DwarfRegNums[Reg] = DwarfRegNums[Alias]; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "L2Dwarf[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the Dwarf reg num so lookup can be done // with a binary search. for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int RegNo = I->second[i]; if (RegNo == -1) // -1 is the default value, don't emit a mapping. continue; OS << " { " << getQualifiedName(I->first) << ", " << RegNo << "U },\n"; } OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize"; if (!isCtor) OS << " = array_lengthof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf);\n\n"; else OS << ";\n\n"; } } } void RegisterInfoEmitter::EmitRegMapping( raw_ostream &OS, const std::deque<CodeGenRegister> &Regs, bool isCtor) { // Emit the initializer so the tables from EmitRegMappingTables get wired up // to the MCRegisterInfo object. unsigned maxLength = 0; for (auto &RE : Regs) { Record *Reg = RE.TheDef; maxLength = std::max((size_t)maxLength, Reg->getValueAsListOfInts("DwarfNumbers").size()); } if (!maxLength) return; std::string Namespace = Regs.front().TheDef->getValueAsString("Namespace"); // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L"; OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf"; OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } } // Print a BitVector as a sequence of hex numbers using a little-endian mapping. // Width is the number of bits per hex number. static void printBitVectorAsHex(raw_ostream &OS, const BitVector &Bits, unsigned Width) { assert(Width <= 32 && "Width too large"); unsigned Digits = (Width + 3) / 4; for (unsigned i = 0, e = Bits.size(); i < e; i += Width) { unsigned Value = 0; for (unsigned j = 0; j != Width && i + j != e; ++j) Value |= Bits.test(i + j) << j; OS << format("0x%0*x, ", Digits, Value); } } // Helper to emit a set of bits into a constant byte array. class BitVectorEmitter { BitVector Values; public: void add(unsigned v) { if (v >= Values.size()) Values.resize(((v/8)+1)*8); // Round up to the next byte. Values[v] = true; } void print(raw_ostream &OS) { printBitVectorAsHex(OS, Values, 8); } }; static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) { OS << getEnumName(VT); } static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) { OS << Idx->EnumValue; } // Differentially encoded register and regunit lists allow for better // compression on regular register banks. The sequence is computed from the // differential list as: // // out[0] = InitVal; // out[n+1] = out[n] + diff[n]; // n = 0, 1, ... // // The initial value depends on the specific list. The list is terminated by a // 0 differential which means we can't encode repeated elements. typedef SmallVector<uint16_t, 4> DiffVec; typedef SmallVector<unsigned, 4> MaskVec; // Differentially encode a sequence of numbers into V. The starting value and // terminating 0 are not added to V, so it will have the same size as List. static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, SparseBitVector<> List) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (uint16_t Cur : List) { V.push_back(Cur - Val); Val = Cur; } return V; } template<typename Iter> static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (Iter I = Begin; I != End; ++I) { uint16_t Cur = (*I)->EnumValue; V.push_back(Cur - Val); Val = Cur; } return V; } static void printDiff16(raw_ostream &OS, uint16_t Val) { OS << Val; } static void printMask(raw_ostream &OS, unsigned Val) { OS << format("0x%08X", Val); } // Try to combine Idx's compose map into Vec if it is compatible. // Return false if it's not possible. static bool combine(const CodeGenSubRegIndex *Idx, SmallVectorImpl<CodeGenSubRegIndex*> &Vec) { const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites(); for (const auto &I : Map) { CodeGenSubRegIndex *&Entry = Vec[I.first->EnumValue - 1]; if (Entry && Entry != I.second) return false; } // All entries are compatible. Make it so. for (const auto &I : Map) { auto *&Entry = Vec[I.first->EnumValue - 1]; assert((!Entry || Entry == I.second) && "Expected EnumValue to be unique"); Entry = I.second; } return true; } void RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { const auto &SubRegIndices = RegBank.getSubRegIndices(); OS << "unsigned " << ClName << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n"; // Many sub-register indexes are composition-compatible, meaning that // // compose(IdxA, IdxB) == compose(IdxA', IdxB) // // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed. // The illegal entries can be use as wildcards to compress the table further. // Map each Sub-register index to a compatible table row. SmallVector<unsigned, 4> RowMap; SmallVector<SmallVector<CodeGenSubRegIndex*, 4>, 4> Rows; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); for (const auto &Idx : SubRegIndices) { unsigned Found = ~0u; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { if (combine(&Idx, Rows[r])) { Found = r; break; } } if (Found == ~0u) { Found = Rows.size(); Rows.resize(Found + 1); Rows.back().resize(SubRegIndicesSize); combine(&Idx, Rows.back()); } RowMap.push_back(Found); } // Output the row map if there is multiple rows. if (Rows.size() > 1) { OS << " static const " << getMinimalTypeForRange(Rows.size()) << " RowMap[" << SubRegIndicesSize << "] = {\n "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) OS << RowMap[i] << ", "; OS << "\n };\n"; } // Output the rows. OS << " static const " << getMinimalTypeForRange(SubRegIndicesSize + 1) << " Rows[" << Rows.size() << "][" << SubRegIndicesSize << "] = {\n"; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { OS << " { "; for (unsigned i = 0, e = SubRegIndicesSize; i != e; ++i) if (Rows[r][i]) OS << Rows[r][i]->EnumValue << ", "; else OS << "0, "; OS << "},\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndicesSize << ");\n" << " --IdxB; assert(IdxB < " << SubRegIndicesSize << ");\n"; if (Rows.size() > 1) OS << " return Rows[RowMap[IdxA]][IdxB];\n"; else OS << " return Rows[0][IdxB];\n"; OS << "}\n\n"; } void RegisterInfoEmitter::emitComposeSubRegIndexLaneMask(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { // See the comments in computeSubRegLaneMasks() for our goal here. const auto &SubRegIndices = RegBank.getSubRegIndices(); // Create a list of Mask+Rotate operations, with equivalent entries merged. SmallVector<unsigned, 4> SubReg2SequenceIndexMap; SmallVector<SmallVector<MaskRolPair, 1>, 4> Sequences; for (const auto &Idx : SubRegIndices) { const SmallVector<MaskRolPair, 1> &IdxSequence = Idx.CompositionLaneMaskTransform; unsigned Found = ~0u; unsigned SIdx = 0; unsigned NextSIdx; for (size_t s = 0, se = Sequences.size(); s != se; ++s, SIdx = NextSIdx) { SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; NextSIdx = SIdx + Sequence.size() + 1; if (Sequence == IdxSequence) { Found = SIdx; break; } } if (Found == ~0u) { Sequences.push_back(IdxSequence); Found = SIdx; } SubReg2SequenceIndexMap.push_back(Found); } OS << "unsigned " << ClName << "::composeSubRegIndexLaneMaskImpl(unsigned IdxA, unsigned LaneMask)" " const {\n"; OS << " struct MaskRolOp {\n" " unsigned Mask;\n" " uint8_t RotateLeft;\n" " };\n" " static const MaskRolOp Seqs[] = {\n"; unsigned Idx = 0; for (size_t s = 0, se = Sequences.size(); s != se; ++s) { OS << " "; const SmallVectorImpl<MaskRolPair> &Sequence = Sequences[s]; for (size_t p = 0, pe = Sequence.size(); p != pe; ++p) { const MaskRolPair &P = Sequence[p]; OS << format("{ 0x%08X, %2u }, ", P.Mask, P.RotateLeft); } OS << "{ 0, 0 }"; if (s+1 != se) OS << ", "; OS << " // Sequence " << Idx << "\n"; Idx += Sequence.size() + 1; } OS << " };\n" " static const MaskRolOp *const CompositeSequences[] = {\n"; for (size_t i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << " "; unsigned Idx = SubReg2SequenceIndexMap[i]; OS << format("&Seqs[%u]", Idx); if (i+1 != e) OS << ","; OS << " // to " << SubRegIndices[i].getName() << "\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndices.size() << " && \"Subregister index out of bounds\");\n" " unsigned Result = 0;\n" " for (const MaskRolOp *Ops = CompositeSequences[IdxA]; Ops->Mask != 0; ++Ops)" " {\n" " unsigned Masked = LaneMask & Ops->Mask;\n" " Result |= (Masked << Ops->RotateLeft) & 0xFFFFFFFF;\n" " Result |= (Masked >> ((32 - Ops->RotateLeft) & 0x1F));\n" " }\n" " return Result;\n" "}\n"; } // // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; const auto &Regs = RegBank.getRegisters(); auto &SubRegIndices = RegBank.getSubRegIndices(); // The lists of sub-registers and super-registers go in the same array. That // allows us to share suffixes. typedef std::vector<const CodeGenRegister*> RegVec; // Differentially encoded lists. SequenceToOffsetTable<DiffVec> DiffSeqs; SmallVector<DiffVec, 4> SubRegLists(Regs.size()); SmallVector<DiffVec, 4> SuperRegLists(Regs.size()); SmallVector<DiffVec, 4> RegUnitLists(Regs.size()); SmallVector<unsigned, 4> RegUnitInitScale(Regs.size()); // List of lane masks accompanying register unit sequences. SequenceToOffsetTable<MaskVec> LaneMaskSeqs; SmallVector<MaskVec, 4> RegUnitLaneMasks(Regs.size()); // Keep track of sub-register names as well. These are not differentially // encoded. typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec; SequenceToOffsetTable<SubRegIdxVec, deref<llvm::less>> SubRegIdxSeqs; SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size()); SequenceToOffsetTable<std::string> RegStrings; // Precompute register lists for the SequenceToOffsetTable. unsigned i = 0; for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I, ++i) { const auto &Reg = *I; RegStrings.add(Reg.getName()); // Compute the ordered sub-register list. SetVector<const CodeGenRegister*> SR; Reg.addSubRegsPreOrder(SR, RegBank); diffEncode(SubRegLists[i], Reg.EnumValue, SR.begin(), SR.end()); DiffSeqs.add(SubRegLists[i]); // Compute the corresponding sub-register indexes. SubRegIdxVec &SRIs = SubRegIdxLists[i]; for (unsigned j = 0, je = SR.size(); j != je; ++j) SRIs.push_back(Reg.getSubRegIndex(SR[j])); SubRegIdxSeqs.add(SRIs); // Super-registers are already computed. const RegVec &SuperRegList = Reg.getSuperRegs(); diffEncode(SuperRegLists[i], Reg.EnumValue, SuperRegList.begin(), SuperRegList.end()); DiffSeqs.add(SuperRegLists[i]); // Differentially encode the register unit list, seeded by register number. // First compute a scale factor that allows more diff-lists to be reused: // // D0 -> (S0, S1) // D1 -> (S2, S3) // // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial // value for the differential decoder is the register number multiplied by // the scale. // // Check the neighboring registers for arithmetic progressions. unsigned ScaleA = ~0u, ScaleB = ~0u; SparseBitVector<> RUs = Reg.getNativeRegUnits(); if (I != Regs.begin() && std::prev(I)->getNativeRegUnits().count() == RUs.count()) ScaleB = *RUs.begin() - *std::prev(I)->getNativeRegUnits().begin(); if (std::next(I) != Regs.end() && std::next(I)->getNativeRegUnits().count() == RUs.count()) ScaleA = *std::next(I)->getNativeRegUnits().begin() - *RUs.begin(); unsigned Scale = std::min(ScaleB, ScaleA); // Default the scale to 0 if it can't be encoded in 4 bits. if (Scale >= 16) Scale = 0; RegUnitInitScale[i] = Scale; DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg.EnumValue, RUs)); const auto &RUMasks = Reg.getRegUnitLaneMasks(); MaskVec &LaneMaskVec = RegUnitLaneMasks[i]; assert(LaneMaskVec.empty()); LaneMaskVec.insert(LaneMaskVec.begin(), RUMasks.begin(), RUMasks.end()); // Terminator mask should not be used inside of the list. #ifndef NDEBUG for (unsigned M : LaneMaskVec) { assert(M != ~0u && "terminator mask should not be part of the list"); } #endif LaneMaskSeqs.add(LaneMaskVec); } // Compute the final layout of the sequence table. DiffSeqs.layout(); LaneMaskSeqs.layout(); SubRegIdxSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); // Emit the shared table of differential lists. OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n"; DiffSeqs.emit(OS, printDiff16); OS << "};\n\n"; // Emit the shared table of regunit lane mask sequences. OS << "extern const unsigned " << TargetName << "LaneMaskLists[] = {\n"; LaneMaskSeqs.emit(OS, printMask, "~0u"); OS << "};\n\n"; // Emit the table of sub-register indexes. OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; SubRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit the table of sub-register index sizes. OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[] = {\n"; OS << " { " << (uint16_t)-1 << ", " << (uint16_t)-1 << " },\n"; for (const auto &Idx : SubRegIndices) { OS << " { " << Idx.Offset << ", " << Idx.Size << " },\t// " << Idx.getName() << "\n"; } OS << "};\n\n"; // Emit the string table. RegStrings.layout(); OS << "extern const char " << TargetName << "RegStrings[] = {\n"; RegStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; // Emit the register descriptors now. i = 0; for (const auto &Reg : Regs) { OS << " { " << RegStrings.get(Reg.getName()) << ", " << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " << (DiffSeqs.get(RegUnitLists[i]) * 16 + RegUnitInitScale[i]) << ", " << LaneMaskSeqs.get(RegUnitLaneMasks[i]) << " },\n"; ++i; } OS << "};\n\n"; // End of register descriptors... // Emit the table of register unit roots. Each regunit has one or two root // registers. OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2] = {\n"; for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots(); assert(!Roots.empty() && "All regunits must have a root register."); assert(Roots.size() <= 2 && "More than two roots not supported yet."); OS << " { " << getQualifiedName(Roots.front()->TheDef); for (unsigned r = 1; r != Roots.size(); ++r) OS << ", " << getQualifiedName(Roots[r]->TheDef); OS << " },\n"; } OS << "};\n\n"; const auto &RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; SequenceToOffsetTable<std::string> RegClassStrings; // Emit the register enum value arrays for each RegisterClass for (const auto &RC : RegisterClasses) { ArrayRef<Record*> Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); RegClassStrings.add(Name); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const MCPhysReg " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; RegClassStrings.layout(); OS << "extern const char " << TargetName << "RegClassStrings[] = {\n"; RegClassStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) { // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << RC.getName() << ", " << RC.getName() << "Bits, " << RegClassStrings.get(RC.getName()) << ", " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (const auto &RE : Regs) { Record *Reg = RE.TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dyn_cast<BitInit>(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0, unsigned PC = 0) " "{\n" << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " << TargetName << "LaneMaskLists, " << TargetName << "RegStrings, " << TargetName << "RegClassStrings, " << TargetName << "SubRegIdxLists, " << (std::distance(SubRegIndices.begin(), SubRegIndices.end()) + 1) << ",\n" << TargetName << "SubRegIdxRanges, " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; } void RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("Register Information Header Fragment", OS); OS << "\n#ifdef GET_REGINFO_HEADER\n"; OS << "#undef GET_REGINFO_HEADER\n"; const std::string &TargetName = Target.getName(); std::string ClassName = TargetName + "GenRegisterInfo"; OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n\n"; OS << "namespace llvm {\n\n"; OS << "class " << TargetName << "FrameLowering;\n\n"; OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" << " explicit " << ClassName << "(unsigned RA, unsigned D = 0, unsigned E = 0, unsigned PC = 0);\n" << " bool needsStackRealignment(const MachineFunction &) const override\n" << " { return false; }\n"; if (!RegBank.getSubRegIndices().empty()) { OS << " unsigned composeSubRegIndicesImpl" << "(unsigned, unsigned) const override;\n" << " unsigned composeSubRegIndexLaneMaskImpl" << "(unsigned, unsigned) const override;\n" << " const TargetRegisterClass *getSubClassWithSubReg" << "(const TargetRegisterClass*, unsigned) const override;\n"; } OS << " const RegClassWeight &getRegClassWeight(" << "const TargetRegisterClass *RC) const override;\n" << " unsigned getRegUnitWeight(unsigned RegUnit) const override;\n" << " unsigned getNumRegPressureSets() const override;\n" << " const char *getRegPressureSetName(unsigned Idx) const override;\n" << " unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned " "Idx) const override;\n" << " const int *getRegClassPressureSets(" << "const TargetRegisterClass *RC) const override;\n" << " const int *getRegUnitPressureSets(" << "unsigned RegUnit) const override;\n" << " ArrayRef<const char *> getRegMaskNames() const override;\n" << " ArrayRef<const uint32_t *> getRegMasks() const override;\n" << " /// Devirtualized TargetFrameLowering.\n" << " static const " << TargetName << "FrameLowering *getFrameLowering(\n" << " const MachineFunction &MF);\n" << "};\n\n"; const auto &RegisterClasses = RegBank.getRegClasses(); if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses.front().Namespace << " { // Register classes\n"; for (const auto &RC : RegisterClasses) { const std::string &Name = RC.getName(); // Output the extern for the instance. OS << " extern const TargetRegisterClass " << Name << "RegClass;\n"; } OS << "} // end of namespace " << TargetName << "\n\n"; } OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_HEADER\n\n"; } // // runTargetDesc - Output the target register and register file descriptions. // void RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank){ emitSourceFileHeader("Target Register and Register Classes Information", OS); OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n"; OS << "#undef GET_REGINFO_TARGET_DESC\n"; OS << "namespace llvm {\n\n"; // Get access to MCRegisterClass data. OS << "extern const MCRegisterClass " << Target.getName() << "MCRegisterClasses[];\n"; // Start out by emitting each of the register classes. const auto &RegisterClasses = RegBank.getRegClasses(); const auto &SubRegIndices = RegBank.getSubRegIndices(); // Collect all registers belonging to any allocatable class. std::set<Record*> AllocatableRegs; // Collect allocatable registers. for (const auto &RC : RegisterClasses) { ArrayRef<Record*> Order = RC.getOrder(); if (RC.Allocatable) AllocatableRegs.insert(Order.begin(), Order.end()); } // Build a shared array of value types. SequenceToOffsetTable<SmallVector<MVT::SimpleValueType, 4> > VTSeqs; for (const auto &RC : RegisterClasses) VTSeqs.add(RC.VTs); VTSeqs.layout(); OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n"; VTSeqs.emit(OS, printSimpleValueType, "MVT::Other"); OS << "};\n"; // Emit SubRegIndex names, skipping 0. OS << "\nstatic const char *const SubRegIndexNameTable[] = { \""; for (const auto &Idx : SubRegIndices) { OS << Idx.getName(); OS << "\", \""; } OS << "\" };\n\n"; // Emit SubRegIndex lane masks, including 0. OS << "\nstatic const unsigned SubRegIndexLaneMaskTable[] = {\n ~0u,\n"; for (const auto &Idx : SubRegIndices) { OS << format(" 0x%08x, // ", Idx.LaneMask) << Idx.getName() << '\n'; } OS << " };\n\n"; OS << "\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "\nstatic const TargetRegisterClass *const " << "NullRegClasses[] = { nullptr };\n\n"; // Emit register class bit mask tables. The first bit mask emitted for a // register class, RC, is the set of sub-classes, including RC itself. // // If RC has super-registers, also create a list of subreg indices and bit // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass, // SuperRC, that satisfies: // // For all SuperReg in SuperRC: SuperReg:Idx in RC // // The 0-terminated list of subreg indices starts at: // // RC->getSuperRegIndices() = SuperRegIdxSeqs + ... // // The corresponding bitmasks follow the sub-class mask in memory. Each // mask has RCMaskWords uint32_t entries. // // Every bit mask present in the list has at least one bit set. // Compress the sub-reg index lists. typedef std::vector<const CodeGenSubRegIndex*> IdxList; SmallVector<IdxList, 8> SuperRegIdxLists(RegisterClasses.size()); SequenceToOffsetTable<IdxList, deref<llvm::less>> SuperRegIdxSeqs; BitVector MaskBV(RegisterClasses.size()); for (const auto &RC : RegisterClasses) { OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n "; printBitVectorAsHex(OS, RC.getSubClasses(), 32); // Emit super-reg class masks for any relevant SubRegIndices that can // project into RC. IdxList &SRIList = SuperRegIdxLists[RC.EnumValue]; for (auto &Idx : SubRegIndices) { MaskBV.reset(); RC.getSuperRegClasses(&Idx, MaskBV); if (MaskBV.none()) continue; SRIList.push_back(&Idx); OS << "\n "; printBitVectorAsHex(OS, MaskBV, 32); OS << "// " << Idx.getName(); } SuperRegIdxSeqs.add(SRIList); OS << "\n};\n\n"; } OS << "static const uint16_t SuperRegIdxSeqs[] = {\n"; SuperRegIdxSeqs.layout(); SuperRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit NULL terminated super-class lists. for (const auto &RC : RegisterClasses) { ArrayRef<CodeGenRegisterClass*> Supers = RC.getSuperClasses(); // Skip classes without supers. We can reuse NullRegClasses. if (Supers.empty()) continue; OS << "static const TargetRegisterClass *const " << RC.getName() << "Superclasses[] = {\n"; for (const auto *Super : Supers) OS << " &" << Super->getQualifiedName() << "RegClass,\n"; OS << " nullptr\n};\n\n"; } // Emit methods. for (const auto &RC : RegisterClasses) { if (!RC.AltOrderSelect.empty()) { OS << "\nstatic inline unsigned " << RC.getName() << "AltOrderSelect(const MachineFunction &MF) {" << RC.AltOrderSelect << "}\n\n" << "static ArrayRef<MCPhysReg> " << RC.getName() << "GetRawAllocationOrder(const MachineFunction &MF) {\n"; for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) { ArrayRef<Record*> Elems = RC.getOrder(oi); if (!Elems.empty()) { OS << " static const MCPhysReg AltOrder" << oi << "[] = {"; for (unsigned elem = 0; elem != Elems.size(); ++elem) OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]); OS << " };\n"; } } OS << " const MCRegisterClass &MCR = " << Target.getName() << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n" << " const ArrayRef<MCPhysReg> Order[] = {\n" << " makeArrayRef(MCR.begin(), MCR.getNumRegs()"; for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi) if (RC.getOrder(oi).empty()) OS << "),\n ArrayRef<MCPhysReg>("; else OS << "),\n makeArrayRef(AltOrder" << oi; OS << ")\n };\n const unsigned Select = " << RC.getName() << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders() << ");\n return Order[Select];\n}\n"; } } // Now emit the actual value-initialized register class instances. OS << "\nnamespace " << RegisterClasses.front().Namespace << " { // Register class instances\n"; for (const auto &RC : RegisterClasses) { OS << " extern const TargetRegisterClass " << RC.getName() << "RegClass = {\n " << '&' << Target.getName() << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n " << "VTLists + " << VTSeqs.get(RC.VTs) << ",\n " << RC.getName() << "SubClassMask,\n SuperRegIdxSeqs + " << SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n " << format("0x%08x,\n ", RC.LaneMask) << (unsigned)RC.AllocationPriority << ",\n " << (RC.HasDisjunctSubRegs?"true":"false") << ", /* HasDisjunctSubRegs */\n "; if (RC.getSuperClasses().empty()) OS << "NullRegClasses,\n "; else OS << RC.getName() << "Superclasses,\n "; if (RC.AltOrderSelect.empty()) OS << "nullptr\n"; else OS << RC.getName() << "GetRawAllocationOrder\n"; OS << " };\n\n"; } OS << "}\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; for (const auto &RC : RegisterClasses) OS << " &" << RC.getQualifiedName() << "RegClass,\n"; OS << " };\n"; OS << "}\n"; // End of anonymous namespace... // Emit extra information about registers. const std::string &TargetName = Target.getName(); OS << "\nstatic const TargetRegisterInfoDesc " << TargetName << "RegInfoDesc[] = { // Extra Descriptors\n"; OS << " { 0, 0 },\n"; const auto &Regs = RegBank.getRegisters(); for (const auto &Reg : Regs) { OS << " { "; OS << Reg.CostPerUse << ", " << int(AllocatableRegs.count(Reg.TheDef)) << " },\n"; } OS << "};\n"; // End of register descriptors... std::string ClassName = Target.getName() + "GenRegisterInfo"; auto SubRegIndicesSize = std::distance(SubRegIndices.begin(), SubRegIndices.end()); if (!SubRegIndices.empty()) { emitComposeSubRegIndices(OS, RegBank, ClassName); emitComposeSubRegIndexLaneMask(OS, RegBank, ClassName); } // Emit getSubClassWithSubReg. if (!SubRegIndices.empty()) { OS << "const TargetRegisterClass *" << ClassName << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)" << " const {\n"; // Use the smallest type that can hold a regclass ID with room for a // sentinel. if (RegisterClasses.size() < UINT8_MAX) OS << " static const uint8_t Table["; else if (RegisterClasses.size() < UINT16_MAX) OS << " static const uint16_t Table["; else PrintFatalError("Too many register classes."); OS << RegisterClasses.size() << "][" << SubRegIndicesSize << "] = {\n"; for (const auto &RC : RegisterClasses) { OS << " {\t// " << RC.getName() << "\n"; for (auto &Idx : SubRegIndices) { if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(&Idx)) OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx.getName() << " -> " << SRC->getName() << "\n"; else OS << " 0,\t// " << Idx.getName() << "\n"; } OS << " },\n"; } OS << " };\n assert(RC && \"Missing regclass\");\n" << " if (!Idx) return RC;\n --Idx;\n" << " assert(Idx < " << SubRegIndicesSize << " && \"Bad subreg\");\n" << " unsigned TV = Table[RC->getID()][Idx];\n" << " return TV ? getRegClass(TV - 1) : nullptr;\n}\n\n"; } EmitRegUnitPressure(OS, RegBank, ClassName); // Emit the constructor of the class... OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n"; OS << "extern const unsigned " << TargetName << "LaneMaskLists[];\n"; OS << "extern const char " << TargetName << "RegStrings[];\n"; OS << "extern const char " << TargetName << "RegClassStrings[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegUnitRoots[][2];\n"; OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n"; OS << "extern const MCRegisterInfo::SubRegCoveredBits " << TargetName << "SubRegIdxRanges[];\n"; OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n"; EmitRegMappingTables(OS, Regs, true); OS << ClassName << "::\n" << ClassName << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour, unsigned PC)\n" << " : TargetRegisterInfo(" << TargetName << "RegInfoDesc" << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" << " SubRegIndexNameTable, SubRegIndexLaneMaskTable, 0x"; OS.write_hex(RegBank.CoveringLanes); OS << ") {\n" << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size() + 1 << ", RA, PC,\n " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ",\n" << " " << TargetName << "RegUnitRoots,\n" << " " << RegBank.getNumNativeRegUnits() << ",\n" << " " << TargetName << "RegDiffLists,\n" << " " << TargetName << "LaneMaskLists,\n" << " " << TargetName << "RegStrings,\n" << " " << TargetName << "RegClassStrings,\n" << " " << TargetName << "SubRegIdxLists,\n" << " " << SubRegIndicesSize + 1 << ",\n" << " " << TargetName << "SubRegIdxRanges,\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, true); OS << "}\n\n"; // Emit CalleeSavedRegs information. std::vector<Record*> CSRSets = Records.getAllDerivedDefinitions("CalleeSavedRegs"); for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) { Record *CSRSet = CSRSets[i]; const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet); assert(Regs && "Cannot expand CalleeSavedRegs instance"); // Emit the *_SaveList list of callee-saved registers. OS << "static const MCPhysReg " << CSRSet->getName() << "_SaveList[] = { "; for (unsigned r = 0, re = Regs->size(); r != re; ++r) OS << getQualifiedName((*Regs)[r]) << ", "; OS << "0 };\n"; // Emit the *_RegMask bit mask of call-preserved registers. BitVector Covered = RegBank.computeCoveredRegisters(*Regs); // Check for an optional OtherPreserved set. // Add those registers to RegMask, but not to SaveList. if (DagInit *OPDag = dyn_cast<DagInit>(CSRSet->getValueInit("OtherPreserved"))) { SetTheory::RecSet OPSet; RegBank.getSets().evaluate(OPDag, OPSet, CSRSet->getLoc()); Covered |= RegBank.computeCoveredRegisters( ArrayRef<Record*>(OPSet.begin(), OPSet.end())); } OS << "static const uint32_t " << CSRSet->getName() << "_RegMask[] = { "; printBitVectorAsHex(OS, Covered, 32); OS << "};\n"; } OS << "\n\n"; OS << "ArrayRef<const uint32_t *> " << ClassName << "::getRegMasks() const {\n"; OS << " static const uint32_t *Masks[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << CSRSet->getName() << "_RegMask, \n"; OS << " nullptr\n };\n"; OS << " return ArrayRef<const uint32_t *>(Masks, (size_t)" << CSRSets.size() << ");\n"; OS << "}\n\n"; OS << "ArrayRef<const char *> " << ClassName << "::getRegMaskNames() const {\n"; OS << " static const char *Names[] = {\n"; for (Record *CSRSet : CSRSets) OS << " " << '"' << CSRSet->getName() << '"' << ",\n"; OS << " nullptr\n };\n"; OS << " return ArrayRef<const char *>(Names, (size_t)" << CSRSets.size() << ");\n"; OS << "}\n\n"; OS << "const " << TargetName << "FrameLowering *" << TargetName << "GenRegisterInfo::\n" << " getFrameLowering(const MachineFunction &MF) {\n" << " return static_cast<const " << TargetName << "FrameLowering *>(\n" << " MF.getSubtarget().getFrameLowering());\n" << "}\n\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_REGINFO_TARGET_DESC\n\n"; } void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenTarget Target(Records); CodeGenRegBank &RegBank = Target.getRegBank(); RegBank.computeDerivedInfo(); runEnums(OS, Target, RegBank); runMCDesc(OS, Target, RegBank); runTargetHeader(OS, Target, RegBank); runTargetDesc(OS, Target, RegBank); } namespace llvm { void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) { RegisterInfoEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/AsmWriterEmitter.cpp
//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is emits an assembly printer for the current target. // Note that this is currently fairly skeletal, but will grow over time. // //===----------------------------------------------------------------------===// #include "AsmWriterInst.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <cassert> #include <map> #include <vector> using namespace llvm; #define DEBUG_TYPE "asm-writer-emitter" namespace { class AsmWriterEmitter { RecordKeeper &Records; CodeGenTarget Target; std::map<const CodeGenInstruction*, AsmWriterInst*> CGIAWIMap; const std::vector<const CodeGenInstruction*> *NumberedInstructions; std::vector<AsmWriterInst> Instructions; std::vector<std::string> PrintMethods; public: AsmWriterEmitter(RecordKeeper &R); void run(raw_ostream &o); private: void EmitPrintInstruction(raw_ostream &o); void EmitGetRegisterName(raw_ostream &o); void EmitPrintAliasInstruction(raw_ostream &O); AsmWriterInst *getAsmWriterInstByID(unsigned ID) const { assert(ID < NumberedInstructions->size()); std::map<const CodeGenInstruction*, AsmWriterInst*>::const_iterator I = CGIAWIMap.find(NumberedInstructions->at(ID)); assert(I != CGIAWIMap.end() && "Didn't find inst!"); return I->second; } void FindUniqueOperandCommands(std::vector<std::string> &UOC, std::vector<unsigned> &InstIdxs, std::vector<unsigned> &InstOpsUsed) const; }; } // end anonymous namespace static void PrintCases(std::vector<std::pair<std::string, AsmWriterOperand> > &OpsToPrint, raw_ostream &O) { O << " case " << OpsToPrint.back().first << ": "; AsmWriterOperand TheOp = OpsToPrint.back().second; OpsToPrint.pop_back(); // Check to see if any other operands are identical in this list, and if so, // emit a case label for them. for (unsigned i = OpsToPrint.size(); i != 0; --i) if (OpsToPrint[i-1].second == TheOp) { O << "\n case " << OpsToPrint[i-1].first << ": "; OpsToPrint.erase(OpsToPrint.begin()+i-1); } // Finally, emit the code. O << TheOp.getCode(); O << "break;\n"; } /// EmitInstructions - Emit the last instruction in the vector and any other /// instructions that are suitably similar to it. static void EmitInstructions(std::vector<AsmWriterInst> &Insts, raw_ostream &O) { AsmWriterInst FirstInst = Insts.back(); Insts.pop_back(); std::vector<AsmWriterInst> SimilarInsts; unsigned DifferingOperand = ~0; for (unsigned i = Insts.size(); i != 0; --i) { unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst); if (DiffOp != ~1U) { if (DifferingOperand == ~0U) // First match! DifferingOperand = DiffOp; // If this differs in the same operand as the rest of the instructions in // this class, move it to the SimilarInsts list. if (DifferingOperand == DiffOp || DiffOp == ~0U) { SimilarInsts.push_back(Insts[i-1]); Insts.erase(Insts.begin()+i-1); } } } O << " case " << FirstInst.CGI->Namespace << "::" << FirstInst.CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i) O << " case " << SimilarInsts[i].CGI->Namespace << "::" << SimilarInsts[i].CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) { if (i != DifferingOperand) { // If the operand is the same for all instructions, just print it. O << " " << FirstInst.Operands[i].getCode(); } else { // If this is the operand that varies between all of the instructions, // emit a switch for just this operand now. O << " switch (MI->getOpcode()) {\n"; std::vector<std::pair<std::string, AsmWriterOperand> > OpsToPrint; OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" + FirstInst.CGI->TheDef->getName(), FirstInst.Operands[i])); for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) { AsmWriterInst &AWI = SimilarInsts[si]; OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+ AWI.CGI->TheDef->getName(), AWI.Operands[i])); } std::reverse(OpsToPrint.begin(), OpsToPrint.end()); while (!OpsToPrint.empty()) PrintCases(OpsToPrint, O); O << " }"; } O << "\n"; } O << " break;\n"; } void AsmWriterEmitter:: FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands, std::vector<unsigned> &InstIdxs, std::vector<unsigned> &InstOpsUsed) const { InstIdxs.assign(NumberedInstructions->size(), ~0U); // This vector parallels UniqueOperandCommands, keeping track of which // instructions each case are used for. It is a comma separated string of // enums. std::vector<std::string> InstrsForCase; InstrsForCase.resize(UniqueOperandCommands.size()); InstOpsUsed.assign(UniqueOperandCommands.size(), 0); for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { const AsmWriterInst *Inst = getAsmWriterInstByID(i); if (!Inst) continue; // PHI, INLINEASM, CFI_INSTRUCTION, etc. std::string Command; if (Inst->Operands.empty()) continue; // Instruction already done. Command = " " + Inst->Operands[0].getCode() + "\n"; // Check to see if we already have 'Command' in UniqueOperandCommands. // If not, add it. bool FoundIt = false; for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx) if (UniqueOperandCommands[idx] == Command) { InstIdxs[i] = idx; InstrsForCase[idx] += ", "; InstrsForCase[idx] += Inst->CGI->TheDef->getName(); FoundIt = true; break; } if (!FoundIt) { InstIdxs[i] = UniqueOperandCommands.size(); UniqueOperandCommands.push_back(Command); InstrsForCase.push_back(Inst->CGI->TheDef->getName()); // This command matches one operand so far. InstOpsUsed.push_back(1); } } // For each entry of UniqueOperandCommands, there is a set of instructions // that uses it. If the next command of all instructions in the set are // identical, fold it into the command. for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size(); CommandIdx != e; ++CommandIdx) { for (unsigned Op = 1; ; ++Op) { // Scan for the first instruction in the set. std::vector<unsigned>::iterator NIT = std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx); if (NIT == InstIdxs.end()) break; // No commonality. // If this instruction has no more operands, we isn't anything to merge // into this command. const AsmWriterInst *FirstInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!FirstInst || FirstInst->Operands.size() == Op) break; // Otherwise, scan to see if all of the other instructions in this command // set share the operand. bool AllSame = true; for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx); NIT != InstIdxs.end(); NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) { // Okay, found another instruction in this command set. If the operand // matches, we're ok, otherwise bail out. const AsmWriterInst *OtherInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!OtherInst || OtherInst->Operands.size() == Op || OtherInst->Operands[Op] != FirstInst->Operands[Op]) { AllSame = false; break; } } if (!AllSame) break; // Okay, everything in this command set has the same next operand. Add it // to UniqueOperandCommands and remember that it was consumed. std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n"; UniqueOperandCommands[CommandIdx] += Command; InstOpsUsed[CommandIdx]++; } } // Prepend some of the instructions each case is used for onto the case val. for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) { std::string Instrs = InstrsForCase[i]; if (Instrs.size() > 70) { Instrs.erase(Instrs.begin()+70, Instrs.end()); Instrs += "..."; } if (!Instrs.empty()) UniqueOperandCommands[i] = " // " + Instrs + "\n" + UniqueOperandCommands[i]; } } static void UnescapeString(std::string &Str) { for (unsigned i = 0; i != Str.size(); ++i) { if (Str[i] == '\\' && i != Str.size()-1) { switch (Str[i+1]) { default: continue; // Don't execute the code after the switch. case 'a': Str[i] = '\a'; break; case 'b': Str[i] = '\b'; break; case 'e': Str[i] = 27; break; case 'f': Str[i] = '\f'; break; case 'n': Str[i] = '\n'; break; case 'r': Str[i] = '\r'; break; case 't': Str[i] = '\t'; break; case 'v': Str[i] = '\v'; break; case '"': Str[i] = '\"'; break; case '\'': Str[i] = '\''; break; case '\\': Str[i] = '\\'; break; } // Nuke the second character. Str.erase(Str.begin()+i+1); } } } /// EmitPrintInstruction - Generate the code for the "printInstruction" method /// implementation. Destroys all instances of AsmWriterInst information, by /// clearing the Instructions vector. void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); unsigned PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget"); O << "/// printInstruction - This method is automatically generated by tablegen\n" "/// from the instruction set description.\n" "void " << Target.getName() << ClassName << "::printInstruction(const MCInst *MI, " << (PassSubtarget ? "const MCSubtargetInfo &STI, " : "") << "raw_ostream &O) {\n"; // Build an aggregate string, and build a table of offsets into it. SequenceToOffsetTable<std::string> StringTable; /// OpcodeInfo - This encodes the index of the string to use for the first /// chunk of the output as well as indices used for operand printing. /// To reduce the number of unhandled cases, we expand the size from 32-bit /// to 32+16 = 48-bit. std::vector<uint64_t> OpcodeInfo; // Add all strings to the string table upfront so it can generate an optimized // representation. for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions->at(i)]; if (AWI && AWI->Operands[0].OperandType == AsmWriterOperand::isLiteralTextOperand && !AWI->Operands[0].Str.empty()) { std::string Str = AWI->Operands[0].Str; UnescapeString(Str); StringTable.add(Str); } } StringTable.layout(); unsigned MaxStringIdx = 0; for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions->at(i)]; unsigned Idx; if (!AWI) { // Something not handled by the asmwriter printer. Idx = ~0U; } else if (AWI->Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand || AWI->Operands[0].Str.empty()) { // Something handled by the asmwriter printer, but with no leading string. Idx = StringTable.get(""); } else { std::string Str = AWI->Operands[0].Str; UnescapeString(Str); Idx = StringTable.get(Str); MaxStringIdx = std::max(MaxStringIdx, Idx); // Nuke the string from the operand list. It is now handled! AWI->Operands.erase(AWI->Operands.begin()); } // Bias offset by one since we want 0 as a sentinel. OpcodeInfo.push_back(Idx+1); } // Figure out how many bits we used for the string index. unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2); // To reduce code size, we compactify common instructions into a few bits // in the opcode-indexed table. unsigned BitsLeft = 64-AsmStrBits; std::vector<std::vector<std::string>> TableDrivenOperandPrinters; while (1) { std::vector<std::string> UniqueOperandCommands; std::vector<unsigned> InstIdxs; std::vector<unsigned> NumInstOpsHandled; FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, NumInstOpsHandled); // If we ran out of operands to print, we're done. if (UniqueOperandCommands.empty()) break; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size()); // If we don't have enough bits for this operand, don't include it. if (NumBits > BitsLeft) { DEBUG(errs() << "Not enough bits to densely encode " << NumBits << " more bits\n"); break; } // Otherwise, we can include this in the initial lookup table. Add it in. for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i) if (InstIdxs[i] != ~0U) { OpcodeInfo[i] |= (uint64_t)InstIdxs[i] << (64-BitsLeft); } BitsLeft -= NumBits; // Remove the info about this operand. for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { if (AsmWriterInst *Inst = getAsmWriterInstByID(i)) if (!Inst->Operands.empty()) { unsigned NumOps = NumInstOpsHandled[InstIdxs[i]]; assert(NumOps <= Inst->Operands.size() && "Can't remove this many ops!"); Inst->Operands.erase(Inst->Operands.begin(), Inst->Operands.begin()+NumOps); } } // Remember the handlers for this set of operands. TableDrivenOperandPrinters.push_back(std::move(UniqueOperandCommands)); } // We always emit at least one 32-bit table. A second table is emitted if // more bits are needed. O<<" static const uint32_t OpInfo[] = {\n"; for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { O << " " << (OpcodeInfo[i] & 0xffffffff) << "U,\t// " << NumberedInstructions->at(i)->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; if (BitsLeft < 32) { // Add a second OpInfo table only when it is necessary. // Adjust the type of the second table based on the number of bits needed. O << " static const uint" << ((BitsLeft < 16) ? "32" : (BitsLeft < 24) ? "16" : "8") << "_t OpInfo2[] = {\n"; for (unsigned i = 0, e = NumberedInstructions->size(); i != e; ++i) { O << " " << (OpcodeInfo[i] >> 32) << "U,\t// " << NumberedInstructions->at(i)->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; } // Emit the string itself. O << " static const char AsmStrs[] = {\n"; StringTable.emit(O, printChar); O << " };\n\n"; O << " O << \"\\t\";\n\n"; O << " // Emit the opcode for the instruction.\n"; if (BitsLeft < 32) { // If we have two tables then we need to perform two lookups and combine // the results into a single 64-bit value. O << " uint64_t Bits1 = OpInfo[MI->getOpcode()];\n" << " uint64_t Bits2 = OpInfo2[MI->getOpcode()];\n" << " uint64_t Bits = (Bits2 << 32) | Bits1;\n"; } else { // If only one table is used we just need to perform a single lookup. O << " uint32_t Bits = OpInfo[MI->getOpcode()];\n"; } O << " assert(Bits != 0 && \"Cannot print this instruction.\");\n" << " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n"; // Output the table driven operand information. BitsLeft = 64-AsmStrBits; for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) { std::vector<std::string> &Commands = TableDrivenOperandPrinters[i]; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(Commands.size()); assert(NumBits <= BitsLeft && "consistency error"); // Emit code to extract this field from Bits. O << "\n // Fragment " << i << " encoded into " << NumBits << " bits for " << Commands.size() << " unique commands.\n"; if (Commands.size() == 2) { // Emit two possibilitys with if/else. O << " if ((Bits >> " << (64-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << Commands[1] << " } else {\n" << Commands[0] << " }\n\n"; } else if (Commands.size() == 1) { // Emit a single possibility. O << Commands[0] << "\n\n"; } else { O << " switch ((Bits >> " << (64-BitsLeft) << ") & " << ((1 << NumBits)-1) << ") {\n" << " default: llvm_unreachable(\"Invalid command number.\");\n"; // Print out all the cases. for (unsigned i = 0, e = Commands.size(); i != e; ++i) { O << " case " << i << ":\n"; O << Commands[i]; O << " break;\n"; } O << " }\n\n"; } BitsLeft -= NumBits; } // Okay, delete instructions with no operand info left. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { // Entire instruction has been emitted? AsmWriterInst &Inst = Instructions[i]; if (Inst.Operands.empty()) { Instructions.erase(Instructions.begin()+i); --i; --e; } } // Because this is a vector, we want to emit from the end. Reverse all of the // elements in the vector. std::reverse(Instructions.begin(), Instructions.end()); // Now that we've emitted all of the operand info that fit into 32 bits, emit // information for those instructions that are left. This is a less dense // encoding, but we expect the main 32-bit table to handle the majority of // instructions. if (!Instructions.empty()) { // Find the opcode # of inline asm. O << " switch (MI->getOpcode()) {\n"; while (!Instructions.empty()) EmitInstructions(Instructions, O); O << " }\n"; O << " return;\n"; } O << "}\n"; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range < 0xFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } static void emitRegisterNameString(raw_ostream &O, StringRef AltName, const std::deque<CodeGenRegister> &Registers) { SequenceToOffsetTable<std::string> StringTable; SmallVector<std::string, 4> AsmNames(Registers.size()); unsigned i = 0; for (const auto &Reg : Registers) { std::string &AsmName = AsmNames[i++]; // "NoRegAltName" is special. We don't need to do a lookup for that, // as it's just a reference to the default register name. if (AltName == "" || AltName == "NoRegAltName") { AsmName = Reg.TheDef->getValueAsString("AsmName"); if (AsmName.empty()) AsmName = Reg.getName(); } else { // Make sure the register has an alternate name for this index. std::vector<Record*> AltNameList = Reg.TheDef->getValueAsListOfDefs("RegAltNameIndices"); unsigned Idx = 0, e; for (e = AltNameList.size(); Idx < e && (AltNameList[Idx]->getName() != AltName); ++Idx) ; // If the register has an alternate name for this index, use it. // Otherwise, leave it empty as an error flag. if (Idx < e) { std::vector<std::string> AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); if (AltNames.size() <= Idx) PrintFatalError(Reg.TheDef->getLoc(), "Register definition missing alt name for '" + AltName + "'."); AsmName = AltNames[Idx]; } } StringTable.add(AsmName); } StringTable.layout(); O << " static const char AsmStrs" << AltName << "[] = {\n"; StringTable.emit(O, printChar); O << " };\n\n"; O << " static const " << getMinimalTypeForRange(StringTable.size()-1) << " RegAsmOffset" << AltName << "[] = {"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) { if ((i % 14) == 0) O << "\n "; O << StringTable.get(AsmNames[i]) << ", "; } O << "\n };\n" << "\n"; } void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); const auto &Registers = Target.getRegBank().getRegisters(); std::vector<Record*> AltNameIndices = Target.getRegAltNameIndices(); bool hasAltNames = AltNameIndices.size() > 1; O << "\n\n/// getRegisterName - This method is automatically generated by tblgen\n" "/// from the register set description. This returns the assembler name\n" "/// for the specified register.\n" "const char *" << Target.getName() << ClassName << "::"; if (hasAltNames) O << "\ngetRegisterName(unsigned RegNo, unsigned AltIdx) {\n"; else O << "getRegisterName(unsigned RegNo) {\n"; O << " assert(RegNo && RegNo < " << (Registers.size()+1) << " && \"Invalid register number!\");\n" << "\n"; if (hasAltNames) { for (unsigned i = 0, e = AltNameIndices.size(); i < e; ++i) emitRegisterNameString(O, AltNameIndices[i]->getName(), Registers); } else emitRegisterNameString(O, "", Registers); if (hasAltNames) { O << " switch(AltIdx) {\n" << " default: llvm_unreachable(\"Invalid register alt name index!\");\n"; for (unsigned i = 0, e = AltNameIndices.size(); i < e; ++i) { std::string Namespace = AltNameIndices[1]->getValueAsString("Namespace"); std::string AltName(AltNameIndices[i]->getName()); O << " case " << Namespace << "::" << AltName << ":\n" << " assert(*(AsmStrs" << AltName << "+RegAsmOffset" << AltName << "[RegNo-1]) &&\n" << " \"Invalid alt name index for register!\");\n" << " return AsmStrs" << AltName << "+RegAsmOffset" << AltName << "[RegNo-1];\n"; } O << " }\n"; } else { O << " assert (*(AsmStrs+RegAsmOffset[RegNo-1]) &&\n" << " \"Invalid alt name index for register!\");\n" << " return AsmStrs+RegAsmOffset[RegNo-1];\n"; } O << "}\n"; } namespace { // IAPrinter - Holds information about an InstAlias. Two InstAliases match if // they both have the same conditionals. In which case, we cannot print out the // alias for that pattern. class IAPrinter { std::vector<std::string> Conds; std::map<StringRef, std::pair<int, int>> OpMap; SmallVector<Record*, 4> ReqFeatures; std::string Result; std::string AsmString; public: IAPrinter(std::string R, std::string AS) : Result(R), AsmString(AS) {} void addCond(const std::string &C) { Conds.push_back(C); } void addOperand(StringRef Op, int OpIdx, int PrintMethodIdx = -1) { assert(OpIdx >= 0 && OpIdx < 0xFE && "Idx out of range"); assert(PrintMethodIdx >= -1 && PrintMethodIdx < 0xFF && "Idx out of range"); OpMap[Op] = std::make_pair(OpIdx, PrintMethodIdx); } bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); } int getOpIndex(StringRef Op) { return OpMap[Op].first; } std::pair<int, int> &getOpData(StringRef Op) { return OpMap[Op]; } std::pair<StringRef, StringRef::iterator> parseName(StringRef::iterator Start, StringRef::iterator End) { StringRef::iterator I = Start; StringRef::iterator Next; if (*I == '{') { // ${some_name} Start = ++I; while (I != End && *I != '}') ++I; Next = I; // eat the final '}' if (Next != End) ++Next; } else { // $name, just eat the usual suspects. while (I != End && ((*I >= 'a' && *I <= 'z') || (*I >= 'A' && *I <= 'Z') || (*I >= '0' && *I <= '9') || *I == '_')) ++I; Next = I; } return std::make_pair(StringRef(Start, I - Start), Next); } void print(raw_ostream &O) { if (Conds.empty() && ReqFeatures.empty()) { O.indent(6) << "return true;\n"; return; } O << "if ("; for (std::vector<std::string>::iterator I = Conds.begin(), E = Conds.end(); I != E; ++I) { if (I != Conds.begin()) { O << " &&\n"; O.indent(8); } O << *I; } O << ") {\n"; O.indent(6) << "// " << Result << "\n"; // Directly mangle mapped operands into the string. Each operand is // identified by a '$' sign followed by a byte identifying the number of the // operand. We add one to the index to avoid zero bytes. StringRef ASM(AsmString); SmallString<128> OutString; raw_svector_ostream OS(OutString); for (StringRef::iterator I = ASM.begin(), E = ASM.end(); I != E;) { OS << *I; if (*I == '$') { StringRef Name; std::tie(Name, I) = parseName(++I, E); assert(isOpMapped(Name) && "Unmapped operand!"); int OpIndex, PrintIndex; std::tie(OpIndex, PrintIndex) = getOpData(Name); if (PrintIndex == -1) { // Can use the default printOperand route. OS << format("\\x%02X", (unsigned char)OpIndex + 1); } else // 3 bytes if a PrintMethod is needed: 0xFF, the MCInst operand // number, and which of our pre-detected Methods to call. OS << format("\\xFF\\x%02X\\x%02X", OpIndex + 1, PrintIndex + 1); } else { ++I; } } OS.flush(); // Emit the string. O.indent(6) << "AsmString = \"" << OutString << "\";\n"; O.indent(6) << "break;\n"; O.indent(4) << '}'; } bool operator==(const IAPrinter &RHS) const { if (Conds.size() != RHS.Conds.size()) return false; unsigned Idx = 0; for (const auto &str : Conds) if (str != RHS.Conds[Idx++]) return false; return true; } }; } // end anonymous namespace static unsigned CountNumOperands(StringRef AsmString, unsigned Variant) { std::string FlatAsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant); AsmString = FlatAsmString; return AsmString.count(' ') + AsmString.count('\t'); } namespace { struct AliasPriorityComparator { typedef std::pair<CodeGenInstAlias *, int> ValueType; bool operator()(const ValueType &LHS, const ValueType &RHS) const { if (LHS.second == RHS.second) { // We don't actually care about the order, but for consistency it // shouldn't depend on pointer comparisons. return LHS.first->TheDef->getName() < RHS.first->TheDef->getName(); } // Aliases with larger priorities should be considered first. return LHS.second > RHS.second; } }; } void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) { Record *AsmWriter = Target.getAsmWriter(); O << "\n#ifdef PRINT_ALIAS_INSTR\n"; O << "#undef PRINT_ALIAS_INSTR\n\n"; ////////////////////////////// // Gather information about aliases we need to print ////////////////////////////// // Emit the method that prints the alias instruction. std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); unsigned Variant = AsmWriter->getValueAsInt("Variant"); unsigned PassSubtarget = AsmWriter->getValueAsInt("PassSubtarget"); std::vector<Record*> AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); // Create a map from the qualified name to a list of potential matches. typedef std::set<std::pair<CodeGenInstAlias*, int>, AliasPriorityComparator> AliasWithPriority; std::map<std::string, AliasWithPriority> AliasMap; for (std::vector<Record*>::iterator I = AllInstAliases.begin(), E = AllInstAliases.end(); I != E; ++I) { CodeGenInstAlias *Alias = new CodeGenInstAlias(*I, Variant, Target); const Record *R = *I; int Priority = R->getValueAsInt("EmitPriority"); if (Priority < 1) continue; // Aliases with priority 0 are never emitted. const DagInit *DI = R->getValueAsDag("ResultInst"); const DefInit *Op = cast<DefInit>(DI->getOperator()); AliasMap[getQualifiedName(Op->getDef())].insert(std::make_pair(Alias, Priority)); } // A map of which conditions need to be met for each instruction operand // before it can be matched to the mnemonic. std::map<std::string, std::vector<IAPrinter*> > IAPrinterMap; // A list of MCOperandPredicates for all operands in use, and the reverse map std::vector<const Record*> MCOpPredicates; DenseMap<const Record*, unsigned> MCOpPredicateMap; for (auto &Aliases : AliasMap) { for (auto &Alias : Aliases.second) { const CodeGenInstAlias *CGA = Alias.first; unsigned LastOpNo = CGA->ResultInstOperandIndex.size(); unsigned NumResultOps = CountNumOperands(CGA->ResultInst->AsmString, Variant); // Don't emit the alias if it has more operands than what it's aliasing. if (NumResultOps < CountNumOperands(CGA->AsmString, Variant)) continue; IAPrinter *IAP = new IAPrinter(CGA->Result->getAsString(), CGA->AsmString); unsigned NumMIOps = 0; for (auto &Operand : CGA->ResultOperands) NumMIOps += Operand.getMINumOperands(); std::string Cond; Cond = std::string("MI->getNumOperands() == ") + llvm::utostr(NumMIOps); IAP->addCond(Cond); bool CantHandle = false; unsigned MIOpNum = 0; for (unsigned i = 0, e = LastOpNo; i != e; ++i) { std::string Op = "MI->getOperand(" + llvm::utostr(MIOpNum) + ")"; const CodeGenInstAlias::ResultOperand &RO = CGA->ResultOperands[i]; switch (RO.Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { const Record *Rec = RO.getRecord(); StringRef ROName = RO.getName(); int PrintMethodIdx = -1; // These two may have a PrintMethod, which we want to record (if it's // the first time we've seen it) and provide an index for the aliasing // code to use. if (Rec->isSubClassOf("RegisterOperand") || Rec->isSubClassOf("Operand")) { std::string PrintMethod = Rec->getValueAsString("PrintMethod"); if (PrintMethod != "" && PrintMethod != "printOperand") { PrintMethodIdx = std::find(PrintMethods.begin(), PrintMethods.end(), PrintMethod) - PrintMethods.begin(); if (static_cast<unsigned>(PrintMethodIdx) == PrintMethods.size()) PrintMethods.push_back(PrintMethod); } } if (Rec->isSubClassOf("RegisterOperand")) Rec = Rec->getValueAsDef("RegClass"); if (Rec->isSubClassOf("RegisterClass")) { IAP->addCond(Op + ".isReg()"); if (!IAP->isOpMapped(ROName)) { IAP->addOperand(ROName, MIOpNum, PrintMethodIdx); Record *R = CGA->ResultOperands[i].getRecord(); if (R->isSubClassOf("RegisterOperand")) R = R->getValueAsDef("RegClass"); Cond = std::string("MRI.getRegClass(") + Target.getName() + "::" + R->getName() + "RegClassID)" ".contains(" + Op + ".getReg())"; } else { Cond = Op + ".getReg() == MI->getOperand(" + llvm::utostr(IAP->getOpIndex(ROName)) + ").getReg()"; } } else { // Assume all printable operands are desired for now. This can be // overridden in the InstAlias instantiation if necessary. IAP->addOperand(ROName, MIOpNum, PrintMethodIdx); // There might be an additional predicate on the MCOperand unsigned Entry = MCOpPredicateMap[Rec]; if (!Entry) { if (!Rec->isValueUnset("MCOperandPredicate")) { MCOpPredicates.push_back(Rec); Entry = MCOpPredicates.size(); MCOpPredicateMap[Rec] = Entry; } else break; // No conditions on this operand at all } Cond = Target.getName() + ClassName + "ValidateMCOperand(" + Op + ", " + llvm::utostr(Entry) + ")"; } // for all subcases of ResultOperand::K_Record: IAP->addCond(Cond); break; } case CodeGenInstAlias::ResultOperand::K_Imm: { // Just because the alias has an immediate result, doesn't mean the // MCInst will. An MCExpr could be present, for example. IAP->addCond(Op + ".isImm()"); Cond = Op + ".getImm() == " + llvm::utostr(CGA->ResultOperands[i].getImm()); IAP->addCond(Cond); break; } case CodeGenInstAlias::ResultOperand::K_Reg: // If this is zero_reg, something's playing tricks we're not // equipped to handle. if (!CGA->ResultOperands[i].getRegister()) { CantHandle = true; break; } Cond = Op + ".getReg() == " + Target.getName() + "::" + CGA->ResultOperands[i].getRegister()->getName(); IAP->addCond(Cond); break; } if (!IAP) break; MIOpNum += RO.getMINumOperands(); } if (CantHandle) continue; IAPrinterMap[Aliases.first].push_back(IAP); } } ////////////////////////////// // Write out the printAliasInstr function ////////////////////////////// std::string Header; raw_string_ostream HeaderO(Header); HeaderO << "bool " << Target.getName() << ClassName << "::printAliasInstr(const MCInst" << " *MI, " << (PassSubtarget ? "const MCSubtargetInfo &STI, " : "") << "raw_ostream &OS) {\n"; std::string Cases; raw_string_ostream CasesO(Cases); for (std::map<std::string, std::vector<IAPrinter*> >::iterator I = IAPrinterMap.begin(), E = IAPrinterMap.end(); I != E; ++I) { std::vector<IAPrinter*> &IAPs = I->second; std::vector<IAPrinter*> UniqueIAPs; for (std::vector<IAPrinter*>::iterator II = IAPs.begin(), IE = IAPs.end(); II != IE; ++II) { IAPrinter *LHS = *II; bool IsDup = false; for (std::vector<IAPrinter*>::iterator III = IAPs.begin(), IIE = IAPs.end(); III != IIE; ++III) { IAPrinter *RHS = *III; if (LHS != RHS && *LHS == *RHS) { IsDup = true; break; } } if (!IsDup) UniqueIAPs.push_back(LHS); } if (UniqueIAPs.empty()) continue; CasesO.indent(2) << "case " << I->first << ":\n"; for (std::vector<IAPrinter*>::iterator II = UniqueIAPs.begin(), IE = UniqueIAPs.end(); II != IE; ++II) { IAPrinter *IAP = *II; CasesO.indent(4); IAP->print(CasesO); CasesO << '\n'; } CasesO.indent(4) << "return false;\n"; } if (CasesO.str().empty()) { O << HeaderO.str(); O << " return false;\n"; O << "}\n\n"; O << "#endif // PRINT_ALIAS_INSTR\n"; return; } if (!MCOpPredicates.empty()) O << "static bool " << Target.getName() << ClassName << "ValidateMCOperand(\n" << " const MCOperand &MCOp, unsigned PredicateIndex);\n"; O << HeaderO.str(); O.indent(2) << "const char *AsmString;\n"; O.indent(2) << "switch (MI->getOpcode()) {\n"; O.indent(2) << "default: return false;\n"; O << CasesO.str(); O.indent(2) << "}\n\n"; // Code that prints the alias, replacing the operands with the ones from the // MCInst. O << " unsigned I = 0;\n"; O << " while (AsmString[I] != ' ' && AsmString[I] != '\t' &&\n"; O << " AsmString[I] != '\\0')\n"; O << " ++I;\n"; O << " OS << '\\t' << StringRef(AsmString, I);\n"; O << " if (AsmString[I] != '\\0') {\n"; O << " OS << '\\t';\n"; O << " do {\n"; O << " if (AsmString[I] == '$') {\n"; O << " ++I;\n"; O << " if (AsmString[I] == (char)0xff) {\n"; O << " ++I;\n"; O << " int OpIdx = AsmString[I++] - 1;\n"; O << " int PrintMethodIdx = AsmString[I++] - 1;\n"; O << " printCustomAliasOperand(MI, OpIdx, PrintMethodIdx, "; O << (PassSubtarget ? "STI, " : ""); O << "OS);\n"; O << " } else\n"; O << " printOperand(MI, unsigned(AsmString[I++]) - 1, "; O << (PassSubtarget ? "STI, " : ""); O << "OS);\n"; O << " } else {\n"; O << " OS << AsmString[I++];\n"; O << " }\n"; O << " } while (AsmString[I] != '\\0');\n"; O << " }\n\n"; O << " return true;\n"; O << "}\n\n"; ////////////////////////////// // Write out the printCustomAliasOperand function ////////////////////////////// O << "void " << Target.getName() << ClassName << "::" << "printCustomAliasOperand(\n" << " const MCInst *MI, unsigned OpIdx,\n" << " unsigned PrintMethodIdx,\n" << (PassSubtarget ? " const MCSubtargetInfo &STI,\n" : "") << " raw_ostream &OS) {\n"; if (PrintMethods.empty()) O << " llvm_unreachable(\"Unknown PrintMethod kind\");\n"; else { O << " switch (PrintMethodIdx) {\n" << " default:\n" << " llvm_unreachable(\"Unknown PrintMethod kind\");\n" << " break;\n"; for (unsigned i = 0; i < PrintMethods.size(); ++i) { O << " case " << i << ":\n" << " " << PrintMethods[i] << "(MI, OpIdx, " << (PassSubtarget ? "STI, " : "") << "OS);\n" << " break;\n"; } O << " }\n"; } O << "}\n\n"; if (!MCOpPredicates.empty()) { O << "static bool " << Target.getName() << ClassName << "ValidateMCOperand(\n" << " const MCOperand &MCOp, unsigned PredicateIndex) {\n" << " switch (PredicateIndex) {\n" << " default:\n" << " llvm_unreachable(\"Unknown MCOperandPredicate kind\");\n" << " break;\n"; for (unsigned i = 0; i < MCOpPredicates.size(); ++i) { Init *MCOpPred = MCOpPredicates[i]->getValueInit("MCOperandPredicate"); if (StringInit *SI = dyn_cast<StringInit>(MCOpPred)) { O << " case " << i + 1 << ": {\n" << SI->getValue() << "\n" << " }\n"; } else llvm_unreachable("Unexpected MCOperandPredicate field!"); } O << " }\n" << "}\n\n"; } O << "#endif // PRINT_ALIAS_INSTR\n"; } AsmWriterEmitter::AsmWriterEmitter(RecordKeeper &R) : Records(R), Target(R) { Record *AsmWriter = Target.getAsmWriter(); for (const CodeGenInstruction *I : Target.instructions()) if (!I->AsmString.empty() && I->TheDef->getName() != "PHI") Instructions.emplace_back(*I, AsmWriter->getValueAsInt("Variant"), AsmWriter->getValueAsInt("PassSubtarget")); // Get the instruction numbering. NumberedInstructions = &Target.getInstructionsByEnumValue(); // Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not // all machine instructions are necessarily being printed, so there may be // target instructions not in this map. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i])); } void AsmWriterEmitter::run(raw_ostream &O) { EmitPrintInstruction(O); EmitGetRegisterName(O); EmitPrintAliasInstruction(O); } namespace llvm { void EmitAsmWriter(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Assembly Writer Source Fragment", OS); AsmWriterEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/OptParserEmitter.cpp
//===- OptParserEmitter.cpp - Table Driven Command Line Parsing -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/TableGen/Error.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Twine.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <cctype> #include <cstring> #include <map> using namespace llvm; // Ordering on Info. The logic should match with the consumer-side function in // llvm/Option/OptTable.h. static int StrCmpOptionName(const char *A, const char *B) { const char *X = A, *Y = B; char a = tolower(*A), b = tolower(*B); while (a == b) { if (a == '\0') return strcmp(A, B); a = tolower(*++X); b = tolower(*++Y); } if (a == '\0') // A is a prefix of B. return 1; if (b == '\0') // B is a prefix of A. return -1; // Otherwise lexicographic. return (a < b) ? -1 : 1; } // HLSL Change: changed calling convention to __cdecl static int __cdecl CompareOptionRecords(Record *const *Av, Record *const *Bv) { const Record *A = *Av; const Record *B = *Bv; // Sentinel options precede all others and are only ordered by precedence. bool ASent = A->getValueAsDef("Kind")->getValueAsBit("Sentinel"); bool BSent = B->getValueAsDef("Kind")->getValueAsBit("Sentinel"); if (ASent != BSent) return ASent ? -1 : 1; // Compare options by name, unless they are sentinels. if (!ASent) if (int Cmp = StrCmpOptionName(A->getValueAsString("Name").c_str(), B->getValueAsString("Name").c_str())) return Cmp; if (!ASent) { std::vector<std::string> APrefixes = A->getValueAsListOfStrings("Prefixes"); std::vector<std::string> BPrefixes = B->getValueAsListOfStrings("Prefixes"); for (std::vector<std::string>::const_iterator APre = APrefixes.begin(), AEPre = APrefixes.end(), BPre = BPrefixes.begin(), BEPre = BPrefixes.end(); APre != AEPre && BPre != BEPre; ++APre, ++BPre) { if (int Cmp = StrCmpOptionName(APre->c_str(), BPre->c_str())) return Cmp; } } // Then by the kind precedence; int APrec = A->getValueAsDef("Kind")->getValueAsInt("Precedence"); int BPrec = B->getValueAsDef("Kind")->getValueAsInt("Precedence"); if (APrec == BPrec && A->getValueAsListOfStrings("Prefixes") == B->getValueAsListOfStrings("Prefixes")) { PrintError(A->getLoc(), Twine("Option is equivalent to")); PrintError(B->getLoc(), Twine("Other defined here")); PrintFatalError("Equivalent Options found."); } return APrec < BPrec ? -1 : 1; } static const std::string getOptionName(const Record &R) { // Use the record name unless EnumName is defined. if (isa<UnsetInit>(R.getValueInit("EnumName"))) return R.getName(); return R.getValueAsString("EnumName"); } static raw_ostream &write_cstring(raw_ostream &OS, llvm::StringRef Str) { OS << '"'; OS.write_escaped(Str); OS << '"'; return OS; } /// OptParserEmitter - This tablegen backend takes an input .td file /// describing a list of options and emits a data structure for parsing and /// working with those options when given an input command line. namespace llvm { void EmitOptParser(RecordKeeper &Records, raw_ostream &OS) { // Get the option groups and options. const std::vector<Record*> &Groups = Records.getAllDerivedDefinitions("OptionGroup"); std::vector<Record*> Opts = Records.getAllDerivedDefinitions("Option"); emitSourceFileHeader("Option Parsing Definitions", OS); array_pod_sort(Opts.begin(), Opts.end(), CompareOptionRecords); // Generate prefix groups. typedef SmallVector<SmallString<2>, 2> PrefixKeyT; typedef std::map<PrefixKeyT, std::string> PrefixesT; PrefixesT Prefixes; Prefixes.insert(std::make_pair(PrefixKeyT(), "prefix_0")); unsigned CurPrefix = 0; for (unsigned i = 0, e = Opts.size(); i != e; ++i) { const Record &R = *Opts[i]; std::vector<std::string> prf = R.getValueAsListOfStrings("Prefixes"); PrefixKeyT prfkey(prf.begin(), prf.end()); unsigned NewPrefix = CurPrefix + 1; if (Prefixes.insert(std::make_pair(prfkey, (Twine("prefix_") + Twine(NewPrefix)).str())).second) CurPrefix = NewPrefix; } // Dump prefixes. OS << "/////////\n"; OS << "// Prefixes\n\n"; OS << "#ifdef PREFIX\n"; OS << "#define COMMA ,\n"; for (PrefixesT::const_iterator I = Prefixes.begin(), E = Prefixes.end(); I != E; ++I) { OS << "PREFIX("; // Prefix name. OS << I->second; // Prefix values. OS << ", {"; for (PrefixKeyT::const_iterator PI = I->first.begin(), PE = I->first.end(); PI != PE; ++PI) { OS << "\"" << *PI << "\" COMMA "; } OS << "0})\n"; } OS << "#undef COMMA\n"; OS << "#endif\n\n"; OS << "/////////\n"; OS << "// Groups\n\n"; OS << "#ifdef OPTION\n"; for (unsigned i = 0, e = Groups.size(); i != e; ++i) { const Record &R = *Groups[i]; // Start a single option entry. OS << "OPTION("; // The option prefix; OS << "0"; // The option string. OS << ", \"" << R.getValueAsString("Name") << '"'; // The option identifier name. OS << ", "<< getOptionName(R); // The option kind. OS << ", Group"; // The containing option group (if any). OS << ", "; if (const DefInit *DI = dyn_cast<DefInit>(R.getValueInit("Group"))) OS << getOptionName(*DI->getDef()); else OS << "INVALID"; // The other option arguments (unused for groups). OS << ", INVALID, 0, 0, 0"; // The option help text. if (!isa<UnsetInit>(R.getValueInit("HelpText"))) { OS << ",\n"; OS << " "; write_cstring(OS, R.getValueAsString("HelpText")); } else OS << ", 0"; // The option meta-variable name (unused). OS << ", 0)\n"; } OS << "\n"; OS << "//////////\n"; OS << "// Options\n\n"; for (unsigned i = 0, e = Opts.size(); i != e; ++i) { const Record &R = *Opts[i]; // Start a single option entry. OS << "OPTION("; // The option prefix; std::vector<std::string> prf = R.getValueAsListOfStrings("Prefixes"); OS << Prefixes[PrefixKeyT(prf.begin(), prf.end())] << ", "; // The option string. write_cstring(OS, R.getValueAsString("Name")); // The option identifier name. OS << ", "<< getOptionName(R); // The option kind. OS << ", " << R.getValueAsDef("Kind")->getValueAsString("Name"); // The containing option group (if any). OS << ", "; const ListInit *GroupFlags = nullptr; if (const DefInit *DI = dyn_cast<DefInit>(R.getValueInit("Group"))) { GroupFlags = DI->getDef()->getValueAsListInit("Flags"); OS << getOptionName(*DI->getDef()); } else OS << "INVALID"; // The option alias (if any). OS << ", "; if (const DefInit *DI = dyn_cast<DefInit>(R.getValueInit("Alias"))) OS << getOptionName(*DI->getDef()); else OS << "INVALID"; // The option alias arguments (if any). // Emitted as a \0 separated list in a string, e.g. ["foo", "bar"] // would become "foo\0bar\0". Note that the compiler adds an implicit // terminating \0 at the end. OS << ", "; std::vector<std::string> AliasArgs = R.getValueAsListOfStrings("AliasArgs"); if (AliasArgs.size() == 0) { OS << "0"; } else { OS << "\""; for (size_t i = 0, e = AliasArgs.size(); i != e; ++i) OS << AliasArgs[i] << "\\0"; OS << "\""; } // The option flags. OS << ", "; int NumFlags = 0; const ListInit *LI = R.getValueAsListInit("Flags"); for (Init *I : *LI) OS << (NumFlags++ ? " | " : "") << cast<DefInit>(I)->getDef()->getName(); if (GroupFlags) { for (Init *I : *GroupFlags) OS << (NumFlags++ ? " | " : "") << cast<DefInit>(I)->getDef()->getName(); } if (NumFlags == 0) OS << '0'; // The option parameter field. OS << ", " << R.getValueAsInt("NumArgs"); // The option help text. if (!isa<UnsetInit>(R.getValueInit("HelpText"))) { OS << ",\n"; OS << " "; write_cstring(OS, R.getValueAsString("HelpText")); } else OS << ", 0"; // The option meta-variable name. OS << ", "; if (!isa<UnsetInit>(R.getValueInit("MetaVarName"))) write_cstring(OS, R.getValueAsString("MetaVarName")); else OS << "0"; OS << ")\n"; } OS << "#endif\n"; } } // end namespace llvm
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CMakeLists.txt
set(LLVM_LINK_COMPONENTS Support MSSupport) set (HLSL_IGNORE_SOURCES X86DisassemblerTables.cpp X86ModRMFilters.cpp X86RecognizableInstr.cpp ) add_tablegen(llvm-tblgen LLVM AsmMatcherEmitter.cpp AsmWriterEmitter.cpp AsmWriterInst.cpp CallingConvEmitter.cpp CodeEmitterGen.cpp CodeGenDAGPatterns.cpp CodeGenInstruction.cpp CodeGenMapTable.cpp CodeGenRegisters.cpp CodeGenSchedule.cpp CodeGenTarget.cpp DAGISelEmitter.cpp DAGISelMatcherEmitter.cpp DAGISelMatcherGen.cpp DAGISelMatcherOpt.cpp DAGISelMatcher.cpp DFAPacketizerEmitter.cpp DisassemblerEmitter.cpp FastISelEmitter.cpp FixedLenDecoderEmitter.cpp InstrInfoEmitter.cpp IntrinsicEmitter.cpp OptParserEmitter.cpp PseudoLoweringEmitter.cpp RegisterInfoEmitter.cpp SubtargetEmitter.cpp TableGen.cpp CTagsEmitter.cpp )
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/FixedLenDecoderEmitter.cpp
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed length instruction set. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCFixedLenDisassembler.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include <map> #include <string> #include <vector> using namespace llvm; #define DEBUG_TYPE "decoder-emitter" namespace { struct EncodingField { unsigned Base, Width, Offset; EncodingField(unsigned B, unsigned W, unsigned O) : Base(B), Width(W), Offset(O) { } }; struct OperandInfo { std::vector<EncodingField> Fields; std::string Decoder; OperandInfo(std::string D) : Decoder(D) { } void addField(unsigned Base, unsigned Width, unsigned Offset) { Fields.push_back(EncodingField(Base, Width, Offset)); } unsigned numFields() const { return Fields.size(); } typedef std::vector<EncodingField>::const_iterator const_iterator; const_iterator begin() const { return Fields.begin(); } const_iterator end() const { return Fields.end(); } }; typedef std::vector<uint8_t> DecoderTable; typedef uint32_t DecoderFixup; typedef std::vector<DecoderFixup> FixupList; typedef std::vector<FixupList> FixupScopeList; typedef SetVector<std::string> PredicateSet; typedef SetVector<std::string> DecoderSet; struct DecoderTableInfo { DecoderTable Table; FixupScopeList FixupStack; PredicateSet Predicates; DecoderSet Decoders; }; } // End anonymous namespace namespace { class FixedLenDecoderEmitter { const std::vector<const CodeGenInstruction*> *NumberedInstructions; public: // Defaults preserved here for documentation, even though they aren't // strictly necessary given the way that this is currently being called. FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, std::string GPrefix = "if (", std::string GPostfix = " == MCDisassembler::Fail)" " return MCDisassembler::Fail;", std::string ROK = "MCDisassembler::Success", std::string RFail = "MCDisassembler::Fail", std::string L = "") : Target(R), PredicateNamespace(PredicateNamespace), GuardPrefix(GPrefix), GuardPostfix(GPostfix), ReturnOK(ROK), ReturnFail(RFail), Locals(L) {} // Emit the decoder state machine table. void emitTable(formatted_raw_ostream &o, DecoderTable &Table, unsigned Indentation, unsigned BitWidth, StringRef Namespace) const; void emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, unsigned Indentation) const; void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, unsigned Indentation) const; // run - Output the code emitter void run(raw_ostream &o); private: CodeGenTarget Target; public: std::string PredicateNamespace; std::string GuardPrefix, GuardPostfix; std::string ReturnOK, ReturnFail; std::string Locals; }; } // End anonymous namespace // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. typedef enum { BIT_TRUE, // '1' BIT_FALSE, // '0' BIT_UNSET, // '?' BIT_UNFILTERED // unfiltered } bit_value_t; static bool ValueSet(bit_value_t V) { return (V == BIT_TRUE || V == BIT_FALSE); } static bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } static int Value(bit_value_t V) { return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); } static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) return bit->getValue() ? BIT_TRUE : BIT_FALSE; // The bit is uninitialized. return BIT_UNSET; } // Prints the bit value for each position. static void dumpBits(raw_ostream &o, const BitsInit &bits) { for (unsigned index = bits.getNumBits(); index > 0; --index) { switch (bitFromBits(bits, index - 1)) { case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; case BIT_UNSET: o << "_"; break; default: llvm_unreachable("unexpected return value from bitFromBits"); } } } static BitsInit &getBitsField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return *bits; } // Forward declaration. namespace { class FilterChooser; } // End anonymous namespace // Representation of the instruction to work on. typedef std::vector<bit_value_t> insn_t; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Conflict: /// 111101000.00........00010000.... /// 111101000.00........0001........ /// 1111010...00........0001........ /// 1111010...00.................... /// 1111010......................... /// 1111............................ /// ................................ /// VST4q8a 111101000_00________00010000____ /// VST4q8b 111101000_00________00010000____ /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. namespace { class Filter { protected: const FilterChooser *Owner;// points to the FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; // Set of uid's with non-constant segment values. std::vector<unsigned> VariableInstructions; // Map of well-known segment value to its delegate. std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. unsigned LastOpcFiltered; public: unsigned getNumFiltered() const { return NumFiltered; } unsigned getSingletonOpc() const { assert(NumFiltered == 1); return LastOpcFiltered; } // Return the filter chooser for the group of instructions without constant // segment values. const FilterChooser &getVariableFC() const { assert(NumFiltered == 1); assert(FilterChooserMap.size() == 1); return *(FilterChooserMap.find((unsigned)-1)->second); } Filter(Filter &&f); Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); ~Filter(); // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit table entries to decode instructions given a segment or segments of // bits. void emitTableEntry(DecoderTableInfo &TableInfo) const; // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // End of class Filter } // End anonymous namespace // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. typedef enum { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED } bitAttr_t; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. namespace { class FilterChooser { protected: friend class Filter; // Vector of codegen instructions to choose our filter. const std::vector<const CodeGenInstruction*> &AllInstructions; // Vector of uid's for this filter chooser to work on. const std::vector<unsigned> &Opcodes; // Lookup table for the operand decoding of instructions. const std::map<unsigned, std::vector<OperandInfo> > &Operands; // Vector of candidate filters. std::vector<Filter> Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. std::vector<bit_value_t> FilterBitValues; // Links to the FilterChooser above us in the decoding tree. const FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; // Width of instructions unsigned BitWidth; // Parent emitter const FixedLenDecoderEmitter *Emitter; FilterChooser(const FilterChooser &) = delete; void operator=(const FilterChooser &) = delete; public: FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, const std::vector<unsigned> &IDs, const std::map<unsigned, std::vector<OperandInfo> > &Ops, unsigned BW, const FixedLenDecoderEmitter *E) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), BitWidth(BW), Emitter(E) { doFilter(); } FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, const std::vector<unsigned> &IDs, const std::map<unsigned, std::vector<OperandInfo> > &Ops, const std::vector<bit_value_t> &ParentFilterBitValues, const FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth), Emitter(parent.Emitter) { doFilter(); } unsigned getBitWidth() const { return BitWidth; } protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); // We may have a SoftFail bitmask, which specifies a mask where an encoding // may differ from the value in "Inst" and yet still be valid, but the // disassembler should return SoftFail instead of Success. // // This is used for marking UNPREDICTABLE instructions in the ARM world. BitsInit *SFBits = AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail"); for (unsigned i = 0; i < BitWidth; ++i) { if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) Insn.push_back(BIT_UNSET); else Insn.push_back(bitFromBits(Bits, i)); } } // Returns the record name. const std::string &nameWithID(unsigned Opcode) const { return AllInstructions[Opcode]->TheDef->getName(); } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if there exists any uninitialized bit value in the range. // Returns true, otherwise. bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const; /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void dumpFilterArray(raw_ostream &o, const std::vector<bit_value_t> & filter) const; /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &o, const char *prefix) const; Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } // Called from Filter::recurse() when singleton exists. For debug purpose. //void SingletonExists(unsigned Opc) const; // HLSL Change - Unused bool PositionFiltered(unsigned i) const { return ValueSet(FilterBitValues[i]); } // Calculates the island(s) needed to decode the instruction. // This returns a lit of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned getIslands(std::vector<unsigned> &StartBits, std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, const insn_t &Insn) const; // Emits code to check the Predicates member of an instruction are true. // Returns true if predicate matches were emitted, false otherwise. bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, unsigned Opc) const; bool doesOpcodeNeedPredicate(unsigned Opc) const; unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; // Emits table entries to decode the singleton. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; // Emits code to decode the singleton, and then to decode the rest. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const; void emitBinaryParser(raw_ostream &o, unsigned &Indentation, const OperandInfo &OpInfo) const; void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const; unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const; // Assign a single filter and run with it. void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); public: // emitTableEntries - Emit state machine entries to decode our share of // instructions. void emitTableEntries(DecoderTableInfo &TableInfo) const; }; } // End anonymous namespace /////////////////////////// // // // Filter Implementation // // // /////////////////////////// Filter::Filter(Filter &&f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(std::move(f.FilteredInstructions)), VariableInstructions(std::move(f.VariableInstructions)), FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered) { } Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < Owner->BitWidth); NumFiltered = 0; LastOpcFiltered = 0; for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { insn_t Insn; // Populates the insn given the uid. Owner->insnWithID(Insn, Owner->Opcodes[i]); uint64_t Field; // Scans the segment for possibly well-specified encoding bits. bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); if (ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = Owner->Opcodes[i]; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecified. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(Owner->Opcodes[i]); } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } Filter::~Filter() { } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { // Starts by inheriting our parent filter chooser's filter bit values. std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); if (!VariableInstructions.empty()) { // Conservatively marks each segment position as BIT_UNSET. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) BitValueArray[StartBit + bitIndex] = BIT_UNSET; // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. FilterChooserMap.insert( std::make_pair(-1U, llvm::make_unique<FilterChooser>( Owner->AllInstructions, VariableInstructions, Owner->Operands, BitValueArray, *Owner))); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit*(). if (getNumFiltered() == 1) { //Owner->SingletonExists(LastOpcFiltered); assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (const auto &Inst : FilteredInstructions) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { if (Inst.first & (1ULL << bitIndex)) BitValueArray[StartBit + bitIndex] = BIT_TRUE; else BitValueArray[StartBit + bitIndex] = BIT_FALSE; } // Delegates to an inferior filter chooser for further processing on this // category of instructions. FilterChooserMap.insert(std::make_pair( Inst.first, llvm::make_unique<FilterChooser>( Owner->AllInstructions, Inst.second, Owner->Operands, BitValueArray, *Owner))); } } static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, uint32_t DestIdx) { // Any NumToSkip fixups in the current scope can resolve to the // current location. for (FixupList::const_reverse_iterator I = Fixups.rbegin(), E = Fixups.rend(); I != E; ++I) { // Calculate the distance from the byte following the fixup entry byte // to the destination. The Target is calculated from after the 16-bit // NumToSkip entry itself, so subtract two from the displacement here // to account for that. uint32_t FixupIdx = *I; uint32_t Delta = DestIdx - FixupIdx - 2; // Our NumToSkip entries are 16-bits. Make sure our table isn't too // big. assert(Delta < 65536U && "disassembler decoding table too large!"); Table[FixupIdx] = (uint8_t)Delta; Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); } } // Emit table entries to decode instructions given a segment or segments // of bits. void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { TableInfo.Table.push_back(MCD::OPC_ExtractField); TableInfo.Table.push_back(StartBit); TableInfo.Table.push_back(NumBits); // A new filter entry begins a new scope for fixup resolution. TableInfo.FixupStack.emplace_back(); DecoderTable &Table = TableInfo.Table; size_t PrevFilter = 0; bool HasFallthrough = false; for (auto &Filter : FilterChooserMap) { // Field value -1 implies a non-empty set of variable instructions. // See also recurse(). if (Filter.first == (unsigned)-1) { HasFallthrough = true; // Each scope should always have at least one filter value to check // for. assert(PrevFilter != 0 && "empty filter set!"); FixupList &CurScope = TableInfo.FixupStack.back(); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(Table, CurScope, Table.size()); CurScope.clear(); PrevFilter = 0; // Don't re-process the filter's fallthrough. } else { Table.push_back(MCD::OPC_FilterValue); // Encode and emit the value to filter against. uint8_t Buffer[8]; unsigned Len = encodeULEB128(Filter.first, Buffer); Table.insert(Table.end(), Buffer, Buffer + Len); // Reserve space for the NumToSkip entry. We'll backpatch the value // later. PrevFilter = Table.size(); Table.push_back(0); Table.push_back(0); } // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. Filter.second->emitTableEntries(TableInfo); // Now that we've emitted the body of the handler, update the NumToSkip // of the filter itself to be able to skip forward when false. Subtract // two as to account for the width of the NumToSkip field itself. if (PrevFilter) { uint32_t NumToSkip = Table.size() - PrevFilter - 2; assert(NumToSkip < 65536U && "disassembler decoding table too large!"); Table[PrevFilter] = (uint8_t)NumToSkip; Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); } } // Any remaining unresolved fixups bubble up to the parent fixup scope. assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; FixupScopeList::iterator Dest = Source - 1; Dest->insert(Dest->end(), Source->begin(), Source->end()); TableInfo.FixupStack.pop_back(); // If there is no fallthrough, then the final filter should get fixed // up according to the enclosing scope rather than the current position. if (!HasFallthrough) TableInfo.FixupStack.back().push_back(PrevFilter); } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { if (!VariableInstructions.empty()) return FilteredInstructions.size(); else return FilteredInstructions.size() + 1; } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Emit the decoder state machine table. void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, unsigned Indentation, unsigned BitWidth, StringRef Namespace) const { OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace << BitWidth << "[] = {\n"; Indentation += 2; // FIXME: We may be able to use the NumToSkip values to recover // appropriate indentation levels. DecoderTable::const_iterator I = Table.begin(); DecoderTable::const_iterator E = Table.end(); while (I != E) { assert (I < E && "incomplete decode table entry!"); uint64_t Pos = I - Table.begin(); OS << "/* " << Pos << " */"; OS.PadToColumn(12); switch (*I) { default: PrintFatalError("invalid decode table opcode"); case MCD::OPC_ExtractField: { ++I; unsigned Start = *I++; unsigned Len = *I++; OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " << Len << ", // Inst{"; if (Len > 1) OS << (Start + Len - 1) << "-"; OS << Start << "} ...\n"; break; } case MCD::OPC_FilterValue: { ++I; OS.indent(Indentation) << "MCD::OPC_FilterValue, "; // The filter value is ULEB128 encoded. while (*I >= 128) OS << utostr(*I++) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_CheckField: { ++I; unsigned Start = *I++; unsigned Len = *I++; OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; // ULEB128 encoded field value. for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_CheckPredicate: { ++I; OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_Decode: { ++I; // Extract the ULEB128 encoded Opcode to a buffer. uint8_t Buffer[8], *p = Buffer; while ((*p++ = *I++) >= 128) assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) && "ULEB128 value too large!"); // Decode the Opcode value. unsigned Opc = decodeULEB128(Buffer); OS.indent(Indentation) << "MCD::OPC_Decode, "; for (p = Buffer; *p >= 128; ++p) OS << utostr(*p) << ", "; OS << utostr(*p) << ", "; // Decoder index. for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; OS << "// Opcode: " << NumberedInstructions->at(Opc)->TheDef->getName() << "\n"; break; } case MCD::OPC_SoftFail: { ++I; OS.indent(Indentation) << "MCD::OPC_SoftFail"; // Positive mask uint64_t Value = 0; unsigned Shift = 0; do { OS << ", " << utostr(*I); Value += (*I & 0x7f) << Shift; Shift += 7; } while (*I++ >= 128); if (Value > 127) OS << " /* 0x" << utohexstr(Value) << " */"; // Negative mask Value = 0; Shift = 0; do { OS << ", " << utostr(*I); Value += (*I & 0x7f) << Shift; Shift += 7; } while (*I++ >= 128); if (Value > 127) OS << " /* 0x" << utohexstr(Value) << " */"; OS << ",\n"; break; } case MCD::OPC_Fail: { ++I; OS.indent(Indentation) << "MCD::OPC_Fail,\n"; break; } } } OS.indent(Indentation) << "0\n"; Indentation -= 2; OS.indent(Indentation) << "};\n\n"; } void FixedLenDecoderEmitter:: emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, unsigned Indentation) const { // The predicate function is just a big switch statement based on the // input predicate index. OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " << "const FeatureBitset& Bits) {\n"; Indentation += 2; if (!Predicates.empty()) { OS.indent(Indentation) << "switch (Idx) {\n"; OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; unsigned Index = 0; for (const auto &Predicate : Predicates) { OS.indent(Indentation) << "case " << Index++ << ":\n"; OS.indent(Indentation+2) << "return (" << Predicate << ");\n"; } OS.indent(Indentation) << "}\n"; } else { // No case statement to emit OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n"; } Indentation -= 2; OS.indent(Indentation) << "}\n\n"; } void FixedLenDecoderEmitter:: emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, unsigned Indentation) const { // The decoder function is just a big switch statement based on the // input decoder index. OS.indent(Indentation) << "template<typename InsnType>\n"; OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," << " unsigned Idx, InsnType insn, MCInst &MI,\n"; OS.indent(Indentation) << " uint64_t " << "Address, const void *Decoder) {\n"; Indentation += 2; OS.indent(Indentation) << "InsnType tmp;\n"; OS.indent(Indentation) << "switch (Idx) {\n"; OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; unsigned Index = 0; for (const auto &Decoder : Decoders) { OS.indent(Indentation) << "case " << Index++ << ":\n"; OS << Decoder; OS.indent(Indentation+2) << "return S;\n"; } OS.indent(Indentation) << "}\n"; Indentation -= 2; OS.indent(Indentation) << "}\n\n"; } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if and on the first uninitialized bit value encountered. // Returns true, otherwise. bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const { Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BIT_UNSET) return false; if (Insn[StartBit + i] == BIT_TRUE) Field = Field | (1ULL << i); } return true; } /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void FilterChooser::dumpFilterArray(raw_ostream &o, const std::vector<bit_value_t> &filter) const { for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { switch (filter[bitIndex - 1]) { case BIT_UNFILTERED: o << "."; break; case BIT_UNSET: o << "_"; break; case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; } } } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { const FilterChooser *current = this; while (current) { o << prefix; dumpFilterArray(o, current->FilterBitValues); o << '\n'; current = current->Parent; } } #if 0 // HLSL Change Unused // Called from Filter::recurse() when singleton exists. For debug purpose. void FilterChooser::SingletonExists(unsigned Opc) const { insn_t Insn0; insnWithID(Insn0, Opc); errs() << "Singleton exists: " << nameWithID(Opc) << " with its decoding dominating "; for (unsigned i = 0; i < Opcodes.size(); ++i) { if (Opcodes[i] == Opc) continue; errs() << nameWithID(Opcodes[i]) << ' '; } errs() << '\n'; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); ++i) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } #endif // HLSL Change Ends - Unused // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, const insn_t &Insn) const { unsigned Num, BitNo; Num = BitNo = 0; uint64_t FieldVal = 0; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) int State = 0; int Val = -1; for (unsigned i = 0; i < BitWidth; ++i) { Val = Value(Insn[i]); bool Filtered = PositionFiltered(i); switch (State) { default: llvm_unreachable("Unreachable code!"); case 0: case 1: if (Filtered || Val == -1) State = 1; // Still in Water else { State = 2; // Into the Island BitNo = 0; StartBits.push_back(i); FieldVal = Val; } break; case 2: if (Filtered || Val == -1) { State = 1; // Into the Water EndBits.push_back(i - 1); FieldVals.push_back(FieldVal); ++Num; } else { State = 2; // Still in Island ++BitNo; FieldVal = FieldVal | Val << BitNo; } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) { EndBits.push_back(BitWidth - 1); FieldVals.push_back(FieldVal); ++Num; } assert(StartBits.size() == Num && EndBits.size() == Num && FieldVals.size() == Num); return Num; } void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, const OperandInfo &OpInfo) const { const std::string &Decoder = OpInfo.Decoder; if (OpInfo.numFields() != 1) o.indent(Indentation) << "tmp = 0;\n"; for (const EncodingField &EF : OpInfo) { o.indent(Indentation) << "tmp "; if (OpInfo.numFields() != 1) o << '|'; o << "= fieldFromInstruction" << "(insn, " << EF.Base << ", " << EF.Width << ')'; if (OpInfo.numFields() != 1 || EF.Offset != 0) o << " << " << EF.Offset; o << ";\n"; } if (Decoder != "") o.indent(Indentation) << Emitter->GuardPrefix << Decoder << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n"; else o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n"; } void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const { for (const auto &Op : Operands.find(Opc)->second) { // If a custom instruction decoder was specified, use that. if (Op.numFields() == 0 && Op.Decoder.size()) { OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; break; } emitBinaryParser(OS, Indentation, Op); } } unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const { // Build up the predicate string. SmallString<256> Decoder; // FIXME: emitDecoder() function can take a buffer directly rather than // a stream. raw_svector_ostream S(Decoder); unsigned I = 4; emitDecoder(S, I, Opc); S.flush(); // Using the full decoder string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easilly enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. Decoders.insert(StringRef(Decoder)); // Now figure out the index for when we write out the table. DecoderSet::const_iterator P = std::find(Decoders.begin(), Decoders.end(), Decoder.str()); return (unsigned)(P - Decoders.begin()); } static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, const std::string &PredicateNamespace) { if (str[0] == '!') o << "!Bits[" << PredicateNamespace << "::" << str.slice(1,str.size()) << "]"; else o << "Bits[" << PredicateNamespace << "::" << str << "]"; } bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, unsigned Opc) const { ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); bool IsFirstEmission = true; for (unsigned i = 0; i < Predicates->size(); ++i) { Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; std::string P = Pred->getValueAsString("AssemblerCondString"); if (!P.length()) continue; if (!IsFirstEmission) o << " && "; StringRef SR(P); std::pair<StringRef, StringRef> pairs = SR.split(','); while (pairs.second.size()) { emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); o << " && "; pairs = pairs.second.split(','); } emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); IsFirstEmission = false; } return !Predicates->empty(); } bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); for (unsigned i = 0; i < Predicates->size(); ++i) { Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; std::string P = Pred->getValueAsString("AssemblerCondString"); if (!P.length()) continue; return true; } return false; } unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, StringRef Predicate) const { // Using the full predicate string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easilly enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. TableInfo.Predicates.insert(Predicate.str()); // Now figure out the index for when we write out the table. PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(), TableInfo.Predicates.end(), Predicate.str()); return (unsigned)(P - TableInfo.Predicates.begin()); } void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { if (!doesOpcodeNeedPredicate(Opc)) return; // Build up the predicate string. SmallString<256> Predicate; // FIXME: emitPredicateMatch() functions can take a buffer directly rather // than a stream. raw_svector_ostream PS(Predicate); unsigned I = 0; emitPredicateMatch(PS, I, Opc); // Figure out the index into the predicate table for the predicate just // computed. unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); SmallString<16> PBytes; raw_svector_ostream S(PBytes); encodeULEB128(PIdx, S); S.flush(); TableInfo.Table.push_back(MCD::OPC_CheckPredicate); // Predicate index for (unsigned i = 0, e = PBytes.size(); i != e; ++i) TableInfo.Table.push_back(PBytes[i]); // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); TableInfo.Table.push_back(0); TableInfo.Table.push_back(0); } void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { BitsInit *SFBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail"); if (!SFBits) return; BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst"); APInt PositiveMask(BitWidth, 0ULL); APInt NegativeMask(BitWidth, 0ULL); for (unsigned i = 0; i < BitWidth; ++i) { bit_value_t B = bitFromBits(*SFBits, i); bit_value_t IB = bitFromBits(*InstBits, i); if (B != BIT_TRUE) continue; switch (IB) { case BIT_FALSE: // The bit is meant to be false, so emit a check to see if it is true. PositiveMask.setBit(i); break; case BIT_TRUE: // The bit is meant to be true, so emit a check to see if it is false. NegativeMask.setBit(i); break; default: // The bit is not set; this must be an error! StringRef Name = AllInstructions[Opc]->TheDef->getName(); errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name << " is set but Inst{" << i << "} is unset!\n" << " - You can only mark a bit as SoftFail if it is fully defined" << " (1/0 - not '?') in Inst\n"; return; } } bool NeedPositiveMask = PositiveMask.getBoolValue(); bool NeedNegativeMask = NegativeMask.getBoolValue(); if (!NeedPositiveMask && !NeedNegativeMask) return; TableInfo.Table.push_back(MCD::OPC_SoftFail); SmallString<16> MaskBytes; raw_svector_ostream S(MaskBytes); if (NeedPositiveMask) { encodeULEB128(PositiveMask.getZExtValue(), S); S.flush(); for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) TableInfo.Table.push_back(MaskBytes[i]); } else TableInfo.Table.push_back(0); if (NeedNegativeMask) { MaskBytes.clear(); S.resync(); encodeULEB128(NegativeMask.getZExtValue(), S); S.flush(); for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) TableInfo.Table.push_back(MaskBytes[i]); } else TableInfo.Table.push_back(0); } // Emits table entries to decode the singleton. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { std::vector<unsigned> StartBits; std::vector<unsigned> EndBits; std::vector<uint64_t> FieldVals; insn_t Insn; insnWithID(Insn, Opc); // Look for islands of undecoded bits of the singleton. getIslands(StartBits, EndBits, FieldVals, Insn); unsigned Size = StartBits.size(); // Emit the predicate table entry if one is needed. emitPredicateTableEntry(TableInfo, Opc); // Check any additional encoding fields needed. for (unsigned I = Size; I != 0; --I) { unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; TableInfo.Table.push_back(MCD::OPC_CheckField); TableInfo.Table.push_back(StartBits[I-1]); TableInfo.Table.push_back(NumBits); uint8_t Buffer[8], *p; encodeULEB128(FieldVals[I-1], Buffer); for (p = Buffer; *p >= 128 ; ++p) TableInfo.Table.push_back(*p); TableInfo.Table.push_back(*p); // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); // The fixup is always 16-bits, so go ahead and allocate the space // in the table so all our relative position calculations work OK even // before we fully resolve the real value here. TableInfo.Table.push_back(0); TableInfo.Table.push_back(0); } // Check for soft failure of the match. emitSoftFailTableEntry(TableInfo, Opc); TableInfo.Table.push_back(MCD::OPC_Decode); uint8_t Buffer[8], *p; encodeULEB128(Opc, Buffer); for (p = Buffer; *p >= 128 ; ++p) TableInfo.Table.push_back(*p); TableInfo.Table.push_back(*p); unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc); SmallString<16> Bytes; raw_svector_ostream S(Bytes); encodeULEB128(DIdx, S); S.flush(); // Decoder index for (unsigned i = 0, e = Bytes.size(); i != e; ++i) TableInfo.Table.push_back(Bytes[i]); } // Emits table entries to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const { unsigned Opc = Best.getSingletonOpc(); // complex singletons need predicate checks from the first singleton // to refer forward to the variable filterchooser that follows. TableInfo.FixupStack.emplace_back(); emitSingletonTableEntry(TableInfo, Opc); resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.pop_back(); Best.getVariableFC().emitTableEntries(TableInfo); } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filters.emplace_back(*this, startBit, numBit, true); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (RA == ATTR_MIXED && AllowMixed) Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); else if (RA == ATTR_ALL_SET && !AllowMixed) Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (unsigned i = 0; i < Opcodes.size(); ++i) { std::vector<unsigned> StartBits; std::vector<unsigned> EndBits; std::vector<uint64_t> FieldVals; insn_t Insn; insnWithID(Insn, Opcodes[i]); // Look for islands of undecoded bits of any instruction. if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); return true; } } } unsigned BitIndex; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) std::vector<bitAttr_t> bitAttrs; // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) if (FilterBitValues[BitIndex] == BIT_TRUE || FilterBitValues[BitIndex] == BIT_FALSE) bitAttrs.push_back(ATTR_FILTERED); else bitAttrs.push_back(ATTR_NONE); for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { insn_t insn; insnWithID(insn, Opcodes[InsnIndex]); for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { switch (bitAttrs[BitIndex]) { case ATTR_NONE: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_ALL_UNSET; else bitAttrs[BitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[BitIndex] != BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { bitAttr_t bitAttr = bitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (unsigned i = 0, e = Filters.size(); i != e; ++i) { unsigned Usefulness = Filters[i].usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = i; BestScore = Usefulness; } } if (!AllUseless) bestFilter().recurse(); return !AllUseless; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Try regions of consecutive known bit values first. if (filterProcessor(false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Set the BestIndex to -1 to indicate so. BestIndex = -1; } // emitTableEntries - Emit state machine entries to decode our share of // instructions. void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { if (Opcodes.size() == 1) { // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. emitSingletonTableEntry(TableInfo, Opcodes[0]); return; } // Choose the best filter to do the decodings! if (BestIndex != -1) { const Filter &Best = Filters[BestIndex]; if (Best.getNumFiltered() == 1) emitSingletonTableEntry(TableInfo, Best); else Best.emitTableEntry(TableInfo); return; } // We don't know how to decode these instructions! Dump the // conflict set and bail. // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); ++i) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } static bool populateInstruction(CodeGenTarget &Target, const CodeGenInstruction &CGI, unsigned Opc, std::map<unsigned, std::vector<OperandInfo> > &Operands){ const Record &Def = *CGI.TheDef; // If all the bit positions are not specified; do not decode this instruction. // We are bound to fail! For proper disassembly, the well-known encoding bits // of the instruction must be fully specified. BitsInit &Bits = getBitsField(Def, "Inst"); if (Bits.allInComplete()) return false; std::vector<OperandInfo> InsnOperands; // If the instruction has specified a custom decoding hook, use that instead // of trying to auto-generate the decoder. std::string InstDecoder = Def.getValueAsString("DecoderMethod"); if (InstDecoder != "") { InsnOperands.push_back(OperandInfo(InstDecoder)); Operands[Opc] = InsnOperands; return true; } // Generate a description of the operand of the instruction that we know // how to decode automatically. // FIXME: We'll need to have a way to manually override this as needed. // Gather the outputs/inputs of the instruction, so we can find their // positions in the encoding. This assumes for now that they appear in the // MCInst in the order that they're listed. std::vector<std::pair<Init*, std::string> > InOutOperands; DagInit *Out = Def.getValueAsDag("OutOperandList"); DagInit *In = Def.getValueAsDag("InOperandList"); for (unsigned i = 0; i < Out->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); for (unsigned i = 0; i < In->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); // Search for tied operands, so that we can correctly instantiate // operands that are not explicitly represented in the encoding. std::map<std::string, std::string> TiedNames; for (unsigned i = 0; i < CGI.Operands.size(); ++i) { int tiedTo = CGI.Operands[i].getTiedRegister(); if (tiedTo != -1) { std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(tiedTo); TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second; TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second; } } std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands; std::set<std::string> NumberedInsnOperandsNoTie; if (Target.getInstructionSet()-> getValueAsBit("decodePositionallyEncodedOperands")) { const std::vector<RecordVal> &Vals = Def.getValues(); unsigned NumberedOp = 0; std::set<unsigned> NamedOpIndices; if (Target.getInstructionSet()-> getValueAsBit("noNamedPositionallyEncodedOperands")) // Collect the set of operand indices that might correspond to named // operand, and skip these when assigning operands based on position. for (unsigned i = 0, e = Vals.size(); i != e; ++i) { unsigned OpIdx; if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) continue; NamedOpIndices.insert(OpIdx); } for (unsigned i = 0, e = Vals.size(); i != e; ++i) { // Ignore fixed fields in the record, we're looking for values like: // bits<5> RST = { ?, ?, ?, ?, ? }; if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) continue; // Determine if Vals[i] actually contributes to the Inst encoding. unsigned bi = 0; for (; bi < Bits.getNumBits(); ++bi) { VarInit *Var = nullptr; VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); if (BI) Var = dyn_cast<VarInit>(BI->getBitVar()); else Var = dyn_cast<VarInit>(Bits.getBit(bi)); if (Var && Var->getName() == Vals[i].getName()) break; } if (bi == Bits.getNumBits()) continue; // Skip variables that correspond to explicitly-named operands. unsigned OpIdx; if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) continue; // Get the bit range for this operand: unsigned bitStart = bi++, bitWidth = 1; for (; bi < Bits.getNumBits(); ++bi) { VarInit *Var = nullptr; VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); if (BI) Var = dyn_cast<VarInit>(BI->getBitVar()); else Var = dyn_cast<VarInit>(Bits.getBit(bi)); if (!Var) break; if (Var->getName() != Vals[i].getName()) break; ++bitWidth; } unsigned NumberOps = CGI.Operands.size(); while (NumberedOp < NumberOps && (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || (!NamedOpIndices.empty() && NamedOpIndices.count( CGI.Operands.getSubOperandNumber(NumberedOp).first)))) ++NumberedOp; OpIdx = NumberedOp++; // OpIdx now holds the ordered operand number of Vals[i]. std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); const std::string &Name = CGI.Operands[SO.first].Name; DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " << Name << "(" << SO.first << ", " << SO.second << ") => " << Vals[i].getName() << "\n"); std::string Decoder = ""; Record *TypeRecord = CGI.Operands[SO.first].Rec; RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); StringInit *String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; if (String && String->getValue() != "") Decoder = String->getValue(); if (Decoder == "" && CGI.Operands[SO.first].MIOperandInfo && CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) { Init *Arg = CGI.Operands[SO.first].MIOperandInfo-> getArg(SO.second); if (TypedInit *TI = cast<TypedInit>(Arg)) { RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); TypeRecord = Type->getRecord(); } } bool isReg = false; if (TypeRecord->isSubClassOf("RegisterOperand")) TypeRecord = TypeRecord->getValueAsDef("RegClass"); if (TypeRecord->isSubClassOf("RegisterClass")) { Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; isReg = true; } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { Decoder = "DecodePointerLikeRegClass" + utostr(TypeRecord->getValueAsInt("RegClassKind")); isReg = true; } DecoderString = TypeRecord->getValue("DecoderMethod"); String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; if (!isReg && String && String->getValue() != "") Decoder = String->getValue(); OperandInfo OpInfo(Decoder); OpInfo.addField(bitStart, bitWidth, 0); NumberedInsnOperands[Name].push_back(OpInfo); // FIXME: For complex operands with custom decoders we can't handle tied // sub-operands automatically. Skip those here and assume that this is // fixed up elsewhere. if (CGI.Operands[SO.first].MIOperandInfo && CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && String && String->getValue() != "") NumberedInsnOperandsNoTie.insert(Name); } } // For each operand, see if we can figure out where it is encoded. for (const auto &Op : InOutOperands) { if (!NumberedInsnOperands[Op.second].empty()) { InsnOperands.insert(InsnOperands.end(), NumberedInsnOperands[Op.second].begin(), NumberedInsnOperands[Op.second].end()); continue; } if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) { if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) { // Figure out to which (sub)operand we're tied. unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]); int tiedTo = CGI.Operands[i].getTiedRegister(); if (tiedTo == -1) { i = CGI.Operands.getOperandNamed(Op.second); tiedTo = CGI.Operands[i].getTiedRegister(); } if (tiedTo != -1) { std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(tiedTo); InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]] [SO.second]); } } continue; } std::string Decoder = ""; // At this point, we can locate the field, but we need to know how to // interpret it. As a first step, require the target to provide callbacks // for decoding register classes. // FIXME: This need to be extended to handle instructions with custom // decoder methods, and operands with (simple) MIOperandInfo's. TypedInit *TI = cast<TypedInit>(Op.first); RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); Record *TypeRecord = Type->getRecord(); bool isReg = false; if (TypeRecord->isSubClassOf("RegisterOperand")) TypeRecord = TypeRecord->getValueAsDef("RegClass"); if (TypeRecord->isSubClassOf("RegisterClass")) { Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; isReg = true; } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { Decoder = "DecodePointerLikeRegClass" + utostr(TypeRecord->getValueAsInt("RegClassKind")); isReg = true; } RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); StringInit *String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; if (!isReg && String && String->getValue() != "") Decoder = String->getValue(); OperandInfo OpInfo(Decoder); unsigned Base = ~0U; unsigned Width = 0; unsigned Offset = 0; for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { VarInit *Var = nullptr; VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); if (BI) Var = dyn_cast<VarInit>(BI->getBitVar()); else Var = dyn_cast<VarInit>(Bits.getBit(bi)); if (!Var) { if (Base != ~0U) { OpInfo.addField(Base, Width, Offset); Base = ~0U; Width = 0; Offset = 0; } continue; } if (Var->getName() != Op.second && Var->getName() != TiedNames[Op.second]) { if (Base != ~0U) { OpInfo.addField(Base, Width, Offset); Base = ~0U; Width = 0; Offset = 0; } continue; } if (Base == ~0U) { Base = bi; Width = 1; Offset = BI ? BI->getBitNum() : 0; } else if (BI && BI->getBitNum() != Offset + Width) { OpInfo.addField(Base, Width, Offset); Base = bi; Width = 1; Offset = BI->getBitNum(); } else { ++Width; } } if (Base != ~0U) OpInfo.addField(Base, Width, Offset); if (OpInfo.numFields() > 0) InsnOperands.push_back(OpInfo); } Operands[Opc] = InsnOperands; #if 0 DEBUG({ // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); #endif return true; } // emitFieldFromInstruction - Emit the templated helper function // fieldFromInstruction(). static void emitFieldFromInstruction(formatted_raw_ostream &OS) { OS << "// Helper function for extracting fields from encoded instructions.\n" << "template<typename InsnType>\n" << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n" << " unsigned numBits) {\n" << " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n" << " \"Instruction field out of bounds!\");\n" << " InsnType fieldMask;\n" << " if (numBits == sizeof(InsnType)*8)\n" << " fieldMask = (InsnType)(-1LL);\n" << " else\n" << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" << " return (insn & fieldMask) >> startBit;\n" << "}\n\n"; } // emitDecodeInstruction - Emit the templated helper function // decodeInstruction(). static void emitDecodeInstruction(formatted_raw_ostream &OS) { OS << "template<typename InsnType>\n" << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n" << " InsnType insn, uint64_t Address,\n" << " const void *DisAsm,\n" << " const MCSubtargetInfo &STI) {\n" << " const FeatureBitset& Bits = STI.getFeatureBits();\n" << "\n" << " const uint8_t *Ptr = DecodeTable;\n" << " uint32_t CurFieldValue = 0;\n" << " DecodeStatus S = MCDisassembler::Success;\n" << " for (;;) {\n" << " ptrdiff_t Loc = Ptr - DecodeTable;\n" << " switch (*Ptr) {\n" << " default:\n" << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" << " return MCDisassembler::Fail;\n" << " case MCD::OPC_ExtractField: {\n" << " unsigned Start = *++Ptr;\n" << " unsigned Len = *++Ptr;\n" << " ++Ptr;\n" << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" << " DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n" << " << Len << \"): \" << CurFieldValue << \"\\n\");\n" << " break;\n" << " }\n" << " case MCD::OPC_FilterValue: {\n" << " // Decode the field value.\n" << " unsigned Len;\n" << " InsnType Val = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << "\n" << " // Perform the filter operation.\n" << " if (Val != CurFieldValue)\n" << " Ptr += NumToSkip;\n" << " DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n" << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n" << " << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" << "\n" << " break;\n" << " }\n" << " case MCD::OPC_CheckField: {\n" << " unsigned Start = *++Ptr;\n" << " unsigned Len = *++Ptr;\n" << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n" << " // Decode the field value.\n" << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << "\n" << " // If the actual and expected values don't match, skip.\n" << " if (ExpectedValue != FieldValue)\n" << " Ptr += NumToSkip;\n" << " DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n" << " << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n" << " << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n" << " << ExpectedValue << \": \"\n" << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n" << " break;\n" << " }\n" << " case MCD::OPC_CheckPredicate: {\n" << " unsigned Len;\n" << " // Decode the Predicate Index value.\n" << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << " // Check the predicate.\n" << " bool Pred;\n" << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" << " Ptr += NumToSkip;\n" << " (void)Pred;\n" << " DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n" << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" << "\n" << " break;\n" << " }\n" << " case MCD::OPC_Decode: {\n" << " unsigned Len;\n" << " // Decode the Opcode value.\n" << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" << " Ptr += Len;\n" << " DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" << " << \", using decoder \" << DecodeIdx << \"\\n\" );\n" << " DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n" << "\n" << " MI.setOpcode(Opc);\n" << " return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n" << " }\n" << " case MCD::OPC_SoftFail: {\n" << " // Decode the mask values.\n" << " unsigned Len;\n" << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n" << " Ptr += Len;\n" << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n" << " if (Fail)\n" << " S = MCDisassembler::SoftFail;\n" << " DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n" << " break;\n" << " }\n" << " case MCD::OPC_Fail: {\n" << " DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" << " return MCDisassembler::Fail;\n" << " }\n" << " }\n" << " }\n" << " llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n" << "}\n\n"; } // Emits disassembler code for instruction decoding. void FixedLenDecoderEmitter::run(raw_ostream &o) { formatted_raw_ostream OS(o); OS << "#include \"llvm/MC/MCInst.h\"\n"; OS << "#include \"llvm/Support/Debug.h\"\n"; OS << "#include \"llvm/Support/DataTypes.h\"\n"; OS << "#include \"llvm/Support/LEB128.h\"\n"; OS << "#include \"llvm/Support/raw_ostream.h\"\n"; OS << "#include <assert.h>\n"; OS << '\n'; OS << "namespace llvm {\n\n"; emitFieldFromInstruction(OS); Target.reverseBitsForLittleEndianEncoding(); // Parameterize the decoders based on namespace and instruction width. NumberedInstructions = &Target.getInstructionsByEnumValue(); std::map<std::pair<std::string, unsigned>, std::vector<unsigned> > OpcMap; std::map<unsigned, std::vector<OperandInfo> > Operands; for (unsigned i = 0; i < NumberedInstructions->size(); ++i) { const CodeGenInstruction *Inst = NumberedInstructions->at(i); const Record *Def = Inst->TheDef; unsigned Size = Def->getValueAsInt("Size"); if (Def->getValueAsString("Namespace") == "TargetOpcode" || Def->getValueAsBit("isPseudo") || Def->getValueAsBit("isAsmParserOnly") || Def->getValueAsBit("isCodeGenOnly")) continue; std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); if (Size) { if (populateInstruction(Target, *Inst, i, Operands)) { OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); } } } DecoderTableInfo TableInfo; for (const auto &Opc : OpcMap) { // Emit the decoder for this namespace+width combination. FilterChooser FC(*NumberedInstructions, Opc.second, Operands, 8*Opc.first.second, this); // The decode table is cleared for each top level decoder function. The // predicates and decoders themselves, however, are shared across all // decoders to give more opportunities for uniqueing. TableInfo.Table.clear(); TableInfo.FixupStack.clear(); TableInfo.Table.reserve(16384); TableInfo.FixupStack.emplace_back(); FC.emitTableEntries(TableInfo); // Any NumToSkip fixups in the top level scope can resolve to the // OPC_Fail at the end of the table. assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.clear(); TableInfo.Table.push_back(MCD::OPC_Fail); // Print the table to the output stream. emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first); OS.flush(); } // Emit the predicate function. emitPredicateFunction(OS, TableInfo.Predicates, 0); // Emit the decoder function. emitDecoderFunction(OS, TableInfo.Decoders, 0); // Emit the main entry point for the decoder, decodeInstruction(). emitDecodeInstruction(OS); OS << "\n} // End llvm namespace\n"; } namespace llvm { void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, std::string PredicateNamespace, std::string GPrefix, std::string GPostfix, std::string ROK, std::string RFail, std::string L) { FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/LLVMBuild.txt
;===- ./utils/TableGen/LLVMBuild.txt ---------------------------*- Conf -*--===; ; ; The LLVM Compiler Infrastructure ; ; This file is distributed under the University of Illinois Open Source ; License. See LICENSE.TXT for details. ; ;===------------------------------------------------------------------------===; ; ; This is an LLVMBuild description file for the components in this subdirectory. ; ; For more information on the LLVMBuild system, please see: ; ; http://llvm.org/docs/LLVMBuild.html ; ;===------------------------------------------------------------------------===; [component_0] type = BuildTool name = tblgen parent = BuildTools required_libraries = Support TableGen
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelMatcherOpt.cpp
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the DAG Matcher optimizer. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "isel-opt" /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' /// into single compound nodes like RecordChild. static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr, const CodeGenDAGPatterns &CGP) { // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (!N) return; // If we have a scope node, walk down all of the children. if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { std::unique_ptr<Matcher> Child(Scope->takeChild(i)); ContractNodes(Child, CGP); Scope->resetChild(i, Child.release()); } return; } // If we found a movechild node with a node that comes in a 'foochild' form, // transform it. if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) { Matcher *New = nullptr; if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext())) if (MC->getChildNo() < 8) // Only have RecordChild0...7 New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), RM->getResultNo()); if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext())) if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 CT->getResNo() == 0) // CheckChildType checks res #0 New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext())) if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext())) if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4 New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue()); if (New) { // Insert the new node. New->setNext(MatcherPtr.release()); MatcherPtr.reset(New); // Remove the old one. MC->setNext(MC->getNext()->takeNext()); return ContractNodes(MatcherPtr, CGP); } } // Zap movechild -> moveparent. if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(MC->getNext())) { MatcherPtr.reset(MP->takeNext()); return ContractNodes(MatcherPtr, CGP); } // Turn EmitNode->MarkFlagResults->CompleteMatch into // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage // MorphNodeTo formation. This is safe because MarkFlagResults never refers // to the root of the pattern. if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) && isa<CompleteMatchMatcher>(N->getNext()->getNext())) { // Unlink the two nodes from the list. Matcher *EmitNode = MatcherPtr.release(); Matcher *MFR = EmitNode->takeNext(); Matcher *Tail = MFR->takeNext(); // Relink them. MatcherPtr.reset(MFR); MFR->setNext(EmitNode); EmitNode->setNext(Tail); return ContractNodes(MatcherPtr, CGP); } // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N)) if (CompleteMatchMatcher *CM = dyn_cast<CompleteMatchMatcher>(EN->getNext())) { // We can only use MorphNodeTo if the result values match up. unsigned RootResultFirst = EN->getFirstResultSlot(); bool ResultsMatch = true; for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) if (CM->getResult(i) != RootResultFirst+i) ResultsMatch = false; // If the selected node defines a subset of the glue/chain results, we // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the // matched pattern has a chain but the root node doesn't. const PatternToMatch &Pattern = CM->getPattern(); if (!EN->hasChain() && Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) ResultsMatch = false; // If the matched node has glue and the output root doesn't, we can't // use MorphNodeTo. // // NOTE: Strictly speaking, we don't have to check for glue here // because the code in the pattern generator doesn't handle it right. We // do it anyway for thoroughness. if (!EN->hasOutFlag() && Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) ResultsMatch = false; // If the root result node defines more results than the source root node // *and* has a chain or glue input, then we can't match it because it // would end up replacing the extra result with the chain/glue. #if 0 if ((EN->hasGlue() || EN->hasChain()) && EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) ResultMatch = false; #endif if (ResultsMatch) { const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList(); const SmallVectorImpl<unsigned> &Operands = EN->getOperandList(); MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), VTs, Operands, EN->hasChain(), EN->hasInFlag(), EN->hasOutFlag(), EN->hasMemRefs(), EN->getNumFixedArityOperands(), Pattern)); return; } // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode // variants. } ContractNodes(N->getNextPtr(), CGP); // If we have a CheckType/CheckChildType/Record node followed by a // CheckOpcode, invert the two nodes. We prefer to do structural checks // before type checks, as this opens opportunities for factoring on targets // like X86 where many operations are valid on multiple types. if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) || isa<RecordMatcher>(N)) && isa<CheckOpcodeMatcher>(N->getNext())) { // Unlink the two nodes from the list. Matcher *CheckType = MatcherPtr.release(); Matcher *CheckOpcode = CheckType->takeNext(); Matcher *Tail = CheckOpcode->takeNext(); // Relink them. MatcherPtr.reset(CheckOpcode); CheckOpcode->setNext(CheckType); CheckType->setNext(Tail); return ContractNodes(MatcherPtr, CGP); } } /// SinkPatternPredicates - Pattern predicates can be checked at any level of /// the matching tree. The generator dumps them at the top level of the pattern /// though, which prevents factoring from being able to see past them. This /// optimization sinks them as far down into the pattern as possible. /// /// Conceptually, we'd like to sink these predicates all the way to the last /// matcher predicate in the series. However, it turns out that some /// ComplexPatterns have side effects on the graph, so we really don't want to /// run a complex pattern if the pattern predicate will fail. For this /// reason, we refuse to sink the pattern predicate past a ComplexPattern. /// static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) { // Recursively scan for a PatternPredicate. // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (!N) return; // Walk down all members of a scope node. if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) { for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { std::unique_ptr<Matcher> Child(Scope->takeChild(i)); SinkPatternPredicates(Child); Scope->resetChild(i, Child.release()); } return; } // If this node isn't a CheckPatternPredicateMatcher we keep scanning until // we find one. CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N); if (!CPPM) return SinkPatternPredicates(N->getNextPtr()); // Ok, we found one, lets try to sink it. Check if we can sink it past the // next node in the chain. If not, we won't be able to change anything and // might as well bail. if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) return; // Okay, we know we can sink it past at least one node. Unlink it from the // chain and scan for the new insertion point. MatcherPtr.release(); // Don't delete CPPM. MatcherPtr.reset(CPPM->takeNext()); N = MatcherPtr.get(); while (N->getNext()->isSafeToReorderWithPatternPredicate()) N = N->getNext(); // At this point, we want to insert CPPM after N. CPPM->setNext(N->takeNext()); N->setNext(CPPM); } /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a /// specified kind. Return null if we didn't find one otherwise return the /// matcher. static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { for (; M; M = M->getNext()) if (M->getKind() == Kind) return M; return nullptr; } /// FactorNodes - Turn matches like this: /// Scope /// OPC_CheckType i32 /// ABC /// OPC_CheckType i32 /// XYZ /// into: /// OPC_CheckType i32 /// Scope /// ABC /// XYZ /// static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) { // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (!N) return; // If this is not a push node, just scan for one. ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N); if (!Scope) return FactorNodes(N->getNextPtr()); // Okay, pull together the children of the scope node into a vector so we can // inspect it more easily. While we're at it, bucket them up by the hash // code of their first predicate. SmallVector<Matcher*, 32> OptionsToMatch; for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { // Factor the subexpression. std::unique_ptr<Matcher> Child(Scope->takeChild(i)); FactorNodes(Child); if (Matcher *N = Child.release()) OptionsToMatch.push_back(N); } SmallVector<Matcher*, 32> NewOptionsToMatch; // Loop over options to match, merging neighboring patterns with identical // starting nodes into a shared matcher. for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { // Find the set of matchers that start with this node. Matcher *Optn = OptionsToMatch[OptionIdx++]; if (OptionIdx == e) { NewOptionsToMatch.push_back(Optn); continue; } // See if the next option starts with the same matcher. If the two // neighbors *do* start with the same matcher, we can factor the matcher out // of at least these two patterns. See what the maximal set we can merge // together is. SmallVector<Matcher*, 8> EqualMatchers; EqualMatchers.push_back(Optn); // Factor all of the known-equal matchers after this one into the same // group. while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); // If we found a non-equal matcher, see if it is contradictory with the // current node. If so, we know that the ordering relation between the // current sets of nodes and this node don't matter. Look past it to see if // we can merge anything else into this matching group. unsigned Scan = OptionIdx; while (1) { // If we ran out of stuff to scan, we're done. if (Scan == e) break; Matcher *ScanMatcher = OptionsToMatch[Scan]; // If we found an entry that matches out matcher, merge it into the set to // handle. if (Optn->isEqual(ScanMatcher)) { // If is equal after all, add the option to EqualMatchers and remove it // from OptionsToMatch. EqualMatchers.push_back(ScanMatcher); OptionsToMatch.erase(OptionsToMatch.begin()+Scan); --e; continue; } // If the option we're checking for contradicts the start of the list, // skip over it. if (Optn->isContradictory(ScanMatcher)) { ++Scan; continue; } // If we're scanning for a simple node, see if it occurs later in the // sequence. If so, and if we can move it up, it might be contradictory // or the same as what we're looking for. If so, reorder it. if (Optn->isSimplePredicateOrRecordNode()) { Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) && (M2->isEqual(Optn) || M2->isContradictory(Optn))) { Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); M2->setNext(MatcherWithoutM2); OptionsToMatch[Scan] = M2; continue; } } // Otherwise, we don't know how to handle this entry, we have to bail. break; } if (Scan != e && // Don't print it's obvious nothing extra could be merged anyway. Scan+1 != e) { DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4); errs() << "into this:\n"; OptionsToMatch[Scan]->print(errs(), 4); if (Scan+1 != e) OptionsToMatch[Scan+1]->printOne(errs()); if (Scan+2 < e) OptionsToMatch[Scan+2]->printOne(errs()); errs() << "\n"); } // If we only found one option starting with this matcher, no factoring is // possible. if (EqualMatchers.size() == 1) { NewOptionsToMatch.push_back(EqualMatchers[0]); continue; } // Factor these checks by pulling the first node off each entry and // discarding it. Take the first one off the first entry to reuse. Matcher *Shared = Optn; Optn = Optn->takeNext(); EqualMatchers[0] = Optn; // Remove and delete the first node from the other matchers we're factoring. for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { Matcher *Tmp = EqualMatchers[i]->takeNext(); delete EqualMatchers[i]; EqualMatchers[i] = Tmp; } Shared->setNext(new ScopeMatcher(EqualMatchers)); // Recursively factor the newly created node. FactorNodes(Shared->getNextPtr()); NewOptionsToMatch.push_back(Shared); } // If we're down to a single pattern to match, then we don't need this scope // anymore. if (NewOptionsToMatch.size() == 1) { MatcherPtr.reset(NewOptionsToMatch[0]); return; } if (NewOptionsToMatch.empty()) { MatcherPtr.reset(); return; } // If our factoring failed (didn't achieve anything) see if we can simplify in // other ways. // Check to see if all of the leading entries are now opcode checks. If so, // we can convert this Scope to be a OpcodeSwitch instead. bool AllOpcodeChecks = true, AllTypeChecks = true; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { // Check to see if this breaks a series of CheckOpcodeMatchers. if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) { #if 0 if (i > 3) { errs() << "FAILING OPC #" << i << "\n"; NewOptionsToMatch[i]->dump(); } #endif AllOpcodeChecks = false; } // Check to see if this breaks a series of CheckTypeMatcher's. if (AllTypeChecks) { CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType)); if (!CTM || // iPTR checks could alias any other case without us knowing, don't // bother with them. CTM->getType() == MVT::iPTR || // SwitchType only works for result #0. CTM->getResNo() != 0 || // If the CheckType isn't at the start of the list, see if we can move // it there. !CTM->canMoveBefore(NewOptionsToMatch[i])) { #if 0 if (i > 3 && AllTypeChecks) { errs() << "FAILING TYPE #" << i << "\n"; NewOptionsToMatch[i]->dump(); } #endif AllTypeChecks = false; } } } // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. if (AllOpcodeChecks) { StringSet<> Opcodes; SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]); assert(Opcodes.insert(COM->getOpcode().getEnumName()).second && "Duplicate opcodes not factored?"); Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); } MatcherPtr.reset(new SwitchOpcodeMatcher(Cases)); return; } // If all the options are CheckType's, we can form the SwitchType, woot. if (AllTypeChecks) { DenseMap<unsigned, unsigned> TypeEntry; SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType)); Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); MVT::SimpleValueType CTMTy = CTM->getType(); delete CTM; unsigned &Entry = TypeEntry[CTMTy]; if (Entry != 0) { // If we have unfactored duplicate types, then we should factor them. Matcher *PrevMatcher = Cases[Entry-1].second; if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) { SM->setNumChildren(SM->getNumChildren()+1); SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); continue; } Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; Cases[Entry-1].second = new ScopeMatcher(Entries); continue; } Entry = Cases.size()+1; Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); } if (Cases.size() != 1) { MatcherPtr.reset(new SwitchTypeMatcher(Cases)); } else { // If we factored and ended up with one case, create it now. MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); MatcherPtr->setNext(Cases[0].second); } return; } // Reassemble the Scope node with the adjusted children. Scope->setNumChildren(NewOptionsToMatch.size()); for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) Scope->resetChild(i, NewOptionsToMatch[i]); } void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr, const CodeGenDAGPatterns &CGP) { ContractNodes(MatcherPtr, CGP); SinkPatternPredicates(MatcherPtr); FactorNodes(MatcherPtr); }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86ModRMFilters.cpp
//===- X86ModRMFilters.cpp - Disassembler ModR/M filterss -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "X86ModRMFilters.h" using namespace llvm::X86Disassembler; void ModRMFilter::anchor() { } void DumbFilter::anchor() { } void ModFilter::anchor() { } void ExtendedFilter::anchor() { } void ExactFilter::anchor() { }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/module.modulemap
module TableGen { umbrella "." module * { export * } }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/InstrInfoEmitter.cpp
//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenSchedule.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "TableGenBackends.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <cstdio> #include <map> #include <vector> using namespace llvm; namespace { class InstrInfoEmitter { RecordKeeper &Records; CodeGenDAGPatterns CDP; const CodeGenSchedModels &SchedModels; public: InstrInfoEmitter(RecordKeeper &R): Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {} // run - Output the instruction set description. void run(raw_ostream &OS); private: void emitEnums(raw_ostream &OS); typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy; /// The keys of this map are maps which have OpName enum values as their keys /// and instruction operand indices as their values. The values of this map /// are lists of instruction names. typedef std::map<std::map<unsigned, unsigned>, std::vector<std::string> > OpNameMapTy; typedef std::map<std::string, unsigned>::iterator StrUintMapIter; void emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EL, const OperandInfoMapTy &OpInfo, raw_ostream &OS); void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target); void initOperandMapData( const std::vector<const CodeGenInstruction *> &NumberedInstructions, const std::string &Namespace, std::map<std::string, unsigned> &Operands, OpNameMapTy &OperandMap); void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target, const std::vector<const CodeGenInstruction*> &NumberedInstructions); // Operand information. void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs); std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst); }; } // End anonymous namespace static void PrintDefList(const std::vector<Record*> &Uses, unsigned Num, raw_ostream &OS) { OS << "static const uint16_t ImplicitList" << Num << "[] = { "; for (unsigned i = 0, e = Uses.size(); i != e; ++i) OS << getQualifiedName(Uses[i]) << ", "; OS << "0 };\n"; } //===----------------------------------------------------------------------===// // Operand Info Emission. //===----------------------------------------------------------------------===// std::vector<std::string> InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) { std::vector<std::string> Result; for (auto &Op : Inst.Operands) { // Handle aggregate operands and normal operands the same way by expanding // either case into a list of operands for this op. std::vector<CGIOperandList::OperandInfo> OperandList; // This might be a multiple operand thing. Targets like X86 have // registers in their multi-operand operands. It may also be an anonymous // operand, which has a single operand, but no declared class for the // operand. DagInit *MIOI = Op.MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandList.push_back(Op); } else { for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) { OperandList.push_back(Op); Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef(); OperandList.back().Rec = OpR; } } for (unsigned j = 0, e = OperandList.size(); j != e; ++j) { Record *OpR = OperandList[j].Rec; std::string Res; if (OpR->isSubClassOf("RegisterOperand")) OpR = OpR->getValueAsDef("RegClass"); if (OpR->isSubClassOf("RegisterClass")) Res += getQualifiedName(OpR) + "RegClassID, "; else if (OpR->isSubClassOf("PointerLikeRegClass")) Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", "; else // -1 means the operand does not have a fixed register class. Res += "-1, "; // Fill in applicable flags. Res += "0"; // Ptr value whose register class is resolved via callback. if (OpR->isSubClassOf("PointerLikeRegClass")) Res += "|(1<<MCOI::LookupPtrRegClass)"; // Predicate operands. Check to see if the original unexpanded operand // was of type PredicateOp. if (Op.Rec->isSubClassOf("PredicateOp")) Res += "|(1<<MCOI::Predicate)"; // Optional def operands. Check to see if the original unexpanded operand // was of type OptionalDefOperand. if (Op.Rec->isSubClassOf("OptionalDefOperand")) Res += "|(1<<MCOI::OptionalDef)"; // Fill in operand type. Res += ", "; assert(!Op.OperandType.empty() && "Invalid operand type."); Res += Op.OperandType; // Fill in constraint info. Res += ", "; const CGIOperandList::ConstraintInfo &Constraint = Op.Constraints[j]; if (Constraint.isNone()) Res += "0"; else if (Constraint.isEarlyClobber()) Res += "(1 << MCOI::EARLY_CLOBBER)"; else { assert(Constraint.isTied()); Res += "((" + utostr(Constraint.getTiedOperand()) + " << 16) | (1 << MCOI::TIED_TO))"; } Result.push_back(Res); } } return Result; } void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs) { // ID #0 is for no operand info. unsigned OperandListNum = 0; OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum; OS << "\n"; const CodeGenTarget &Target = CDP.getTargetInfo(); for (const CodeGenInstruction *Inst : Target.instructions()) { std::vector<std::string> OperandInfo = GetOperandInfo(*Inst); unsigned &N = OperandInfoIDs[OperandInfo]; if (N != 0) continue; N = ++OperandListNum; OS << "static const MCOperandInfo OperandInfo" << N << "[] = { "; for (const std::string &Info : OperandInfo) OS << "{ " << Info << " }, "; OS << "};\n"; } } /// Initialize data structures for generating operand name mappings. /// /// \param Operands [out] A map used to generate the OpName enum with operand /// names as its keys and operand enum values as its values. /// \param OperandMap [out] A map for representing the operand name mappings for /// each instructions. This is used to generate the OperandMap table as /// well as the getNamedOperandIdx() function. void InstrInfoEmitter::initOperandMapData( const std::vector<const CodeGenInstruction *> &NumberedInstructions, const std::string &Namespace, std::map<std::string, unsigned> &Operands, OpNameMapTy &OperandMap) { unsigned NumOperands = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable")) continue; std::map<unsigned, unsigned> OpList; for (const auto &Info : Inst->Operands) { StrUintMapIter I = Operands.find(Info.Name); if (I == Operands.end()) { I = Operands.insert(Operands.begin(), std::pair<std::string, unsigned>(Info.Name, NumOperands++)); } OpList[I->second] = Info.MIOperandNo; } OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName()); } } /// Generate a table and function for looking up the indices of operands by /// name. /// /// This code generates: /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry /// for each operand name. /// - A 2-dimensional table called OperandMap for mapping OpName enum values to /// operand indices. /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) /// for looking up the operand index for an instruction, given a value from /// OpName enum void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target, const std::vector<const CodeGenInstruction*> &NumberedInstructions) { const std::string &Namespace = Target.getInstNamespace(); std::string OpNameNS = "OpName"; // Map of operand names to their enumeration value. This will be used to // generate the OpName enum. std::map<std::string, unsigned> Operands; OpNameMapTy OperandMap; initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap); OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "namespace " << OpNameNS << " { \n"; OS << "enum {\n"; for (const auto &Op : Operands) OS << " " << Op.first << " = " << Op.second << ",\n"; OS << "OPERAND_LAST"; OS << "\n};\n"; OS << "} // End namespace OpName\n"; OS << "} // End namespace " << Namespace << "\n"; OS << "} // End namespace llvm\n"; OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n"; OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n"; OS << "#undef GET_INSTRINFO_NAMED_OPS\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "LLVM_READONLY\n"; OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n"; if (!Operands.empty()) { OS << " static const int16_t OperandMap [][" << Operands.size() << "] = {\n"; for (const auto &Entry : OperandMap) { const std::map<unsigned, unsigned> &OpList = Entry.first; OS << "{"; // Emit a row of the OperandMap table for (unsigned i = 0, e = Operands.size(); i != e; ++i) OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", "; OS << "},\n"; } OS << "};\n"; OS << " switch(Opcode) {\n"; unsigned TableIndex = 0; for (const auto &Entry : OperandMap) { for (const std::string &Name : Entry.second) OS << " case " << Name << ":\n"; OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n"; } OS << " default: return -1;\n"; OS << " }\n"; } else { // There are no operands, so no need to emit anything OS << " return -1;\n"; } OS << "}\n"; OS << "} // End namespace " << Namespace << "\n"; OS << "} // End namespace llvm\n"; OS << "#endif //GET_INSTRINFO_NAMED_OPS\n"; } /// Generate an enum for all the operand types for this target, under the /// llvm::TargetNamespace::OpTypes namespace. /// Operand types are all definitions derived of the Operand Target.td class. void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target) { const std::string &Namespace = Target.getInstNamespace(); std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand"); OS << "\n#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "namespace OpTypes { \n"; OS << "enum OperandType {\n"; unsigned EnumVal = 0; for (const Record *Op : Operands) { if (!Op->isAnonymous()) OS << " " << Op->getName() << " = " << EnumVal << ",\n"; ++EnumVal; } OS << " OPERAND_TYPE_LIST_END" << "\n};\n"; OS << "} // End namespace OpTypes\n"; OS << "} // End namespace " << Namespace << "\n"; OS << "} // End namespace llvm\n"; OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; } //===----------------------------------------------------------------------===// // Main Output. //===----------------------------------------------------------------------===// // run - Emit the main instruction description records for the target... void InstrInfoEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Target Instruction Enum Values", OS); emitEnums(OS); emitSourceFileHeader("Target Instruction Descriptors", OS); OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n"; OS << "#undef GET_INSTRINFO_MC_DESC\n"; OS << "namespace llvm {\n\n"; CodeGenTarget &Target = CDP.getTargetInfo(); const std::string &TargetName = Target.getName(); Record *InstrInfo = Target.getInstructionSet(); // Keep track of all of the def lists we have emitted already. std::map<std::vector<Record*>, unsigned> EmittedLists; unsigned ListNumber = 0; // Emit all of the instruction's implicit uses and defs. for (const CodeGenInstruction *II : Target.instructions()) { Record *Inst = II->TheDef; std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses"); if (!Uses.empty()) { unsigned &IL = EmittedLists[Uses]; if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS); } std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs"); if (!Defs.empty()) { unsigned &IL = EmittedLists[Defs]; if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS); } } OperandInfoMapTy OperandInfoIDs; // Emit all of the operand info records. EmitOperandInfo(OS, OperandInfoIDs); // Emit all of the MCInstrDesc records in their ENUM ordering. // OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n"; const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); SequenceToOffsetTable<std::string> InstrNames; unsigned Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { // Keep a list of the instruction names. InstrNames.add(Inst->TheDef->getName()); // Emit the record into the table. emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS); } OS << "};\n\n"; // Emit the array of instruction names. InstrNames.layout(); OS << "extern const char " << TargetName << "InstrNameData[] = {\n"; InstrNames.emit(OS, printChar); OS << "};\n\n"; OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {"; Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { // Newline every eight entries. if (Num % 8 == 0) OS << "\n "; OS << InstrNames.get(Inst->TheDef->getName()) << "U, "; ++Num; } OS << "\n};\n\n"; // MCInstrInfo initialization routine. OS << "static inline void Init" << TargetName << "MCInstrInfo(MCInstrInfo *II) {\n"; OS << " II->InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_MC_DESC\n\n"; // Create a TargetInstrInfo subclass to hide the MC layer initialization. OS << "\n#ifdef GET_INSTRINFO_HEADER\n"; OS << "#undef GET_INSTRINFO_HEADER\n"; std::string ClassName = TargetName + "GenInstrInfo"; OS << "namespace llvm {\n"; OS << "struct " << ClassName << " : public TargetInstrInfo {\n" << " explicit " << ClassName << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1);\n" << " virtual ~" << ClassName << "();\n" << "};\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_HEADER\n\n"; OS << "\n#ifdef GET_INSTRINFO_CTOR_DTOR\n"; OS << "#undef GET_INSTRINFO_CTOR_DTOR\n"; OS << "namespace llvm {\n"; OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n"; OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n"; OS << "extern const char " << TargetName << "InstrNameData[];\n"; OS << ClassName << "::" << ClassName << "(int CFSetupOpcode, int CFDestroyOpcode)\n" << " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode) {\n" << " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n" << ClassName << "::~" << ClassName << "() {}\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n"; emitOperandNameMappings(OS, Target, NumberedInstructions); emitOperandTypesEnum(OS, Target); } void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EmittedLists, const OperandInfoMapTy &OpInfo, raw_ostream &OS) { int MinOperands = 0; if (!Inst.Operands.empty()) // Each logical operand can be multiple MI operands. MinOperands = Inst.Operands.back().MIOperandNo + Inst.Operands.back().MINumOperands; OS << " { "; OS << Num << ",\t" << MinOperands << ",\t" << Inst.Operands.NumDefs << ",\t" << Inst.TheDef->getValueAsInt("Size") << ",\t" << SchedModels.getSchedClassIdx(Inst) << ",\t0"; // Emit all of the target independent flags... if (Inst.isPseudo) OS << "|(1ULL<<MCID::Pseudo)"; if (Inst.isReturn) OS << "|(1ULL<<MCID::Return)"; if (Inst.isBranch) OS << "|(1ULL<<MCID::Branch)"; if (Inst.isIndirectBranch) OS << "|(1ULL<<MCID::IndirectBranch)"; if (Inst.isCompare) OS << "|(1ULL<<MCID::Compare)"; if (Inst.isMoveImm) OS << "|(1ULL<<MCID::MoveImm)"; if (Inst.isBitcast) OS << "|(1ULL<<MCID::Bitcast)"; if (Inst.isSelect) OS << "|(1ULL<<MCID::Select)"; if (Inst.isBarrier) OS << "|(1ULL<<MCID::Barrier)"; if (Inst.hasDelaySlot) OS << "|(1ULL<<MCID::DelaySlot)"; if (Inst.isCall) OS << "|(1ULL<<MCID::Call)"; if (Inst.canFoldAsLoad) OS << "|(1ULL<<MCID::FoldableAsLoad)"; if (Inst.mayLoad) OS << "|(1ULL<<MCID::MayLoad)"; if (Inst.mayStore) OS << "|(1ULL<<MCID::MayStore)"; if (Inst.isPredicable) OS << "|(1ULL<<MCID::Predicable)"; if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)"; if (Inst.isCommutable) OS << "|(1ULL<<MCID::Commutable)"; if (Inst.isTerminator) OS << "|(1ULL<<MCID::Terminator)"; if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)"; if (Inst.isNotDuplicable) OS << "|(1ULL<<MCID::NotDuplicable)"; if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)"; if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)"; if (Inst.hasPostISelHook) OS << "|(1ULL<<MCID::HasPostISelHook)"; if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)"; if (Inst.hasSideEffects) OS << "|(1ULL<<MCID::UnmodeledSideEffects)"; if (Inst.isAsCheapAsAMove) OS << "|(1ULL<<MCID::CheapAsAMove)"; if (Inst.hasExtraSrcRegAllocReq) OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)"; if (Inst.hasExtraDefRegAllocReq) OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)"; if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)"; if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)"; if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)"; if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)"; // Emit all of the target-specific flags... BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags"); if (!TSF) PrintFatalError("no TSFlags?"); uint64_t Value = 0; for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) { if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i))) Value |= uint64_t(Bit->getValue()) << i; else PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName()); } OS << ", 0x"; OS.write_hex(Value); OS << "ULL, "; // Emit the implicit uses and defs lists... std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses"); if (UseList.empty()) OS << "nullptr, "; else OS << "ImplicitList" << EmittedLists[UseList] << ", "; std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs"); if (DefList.empty()) OS << "nullptr, "; else OS << "ImplicitList" << EmittedLists[DefList] << ", "; // Emit the operand info. std::vector<std::string> OperandInfo = GetOperandInfo(Inst); if (OperandInfo.empty()) OS << "nullptr"; else OS << "OperandInfo" << OpInfo.find(OperandInfo)->second; CodeGenTarget &Target = CDP.getTargetInfo(); if (Inst.HasComplexDeprecationPredicate) // Emit a function pointer to the complex predicate method. OS << ", -1 " << ",&get" << Inst.DeprecatedReason << "DeprecationInfo"; else if (!Inst.DeprecatedReason.empty()) // Emit the Subtarget feature. OS << ", " << Target.getInstNamespace() << "::" << Inst.DeprecatedReason << " ,nullptr"; else // Instruction isn't deprecated. OS << ", -1 ,nullptr"; OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n"; } // emitEnums - Print out enum values for all of the instructions. void InstrInfoEmitter::emitEnums(raw_ostream &OS) { OS << "\n#ifdef GET_INSTRINFO_ENUM\n"; OS << "#undef GET_INSTRINFO_ENUM\n"; OS << "namespace llvm {\n\n"; CodeGenTarget Target(Records); // We must emit the PHI opcode first... std::string Namespace = Target.getInstNamespace(); if (Namespace.empty()) PrintFatalError("No instructions defined!"); const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); OS << "namespace " << Namespace << " {\n"; OS << " enum {\n"; unsigned Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) OS << " " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n"; OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n"; OS << " };\n\n"; OS << "namespace Sched {\n"; OS << " enum {\n"; Num = 0; for (const auto &Class : SchedModels.explicit_classes()) OS << " " << Class.Name << "\t= " << Num++ << ",\n"; OS << " SCHED_LIST_END = " << SchedModels.numInstrSchedClasses() << "\n"; OS << " };\n"; OS << "} // End Sched namespace\n"; OS << "} // End " << Namespace << " namespace\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_ENUM\n\n"; } namespace llvm { void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) { InstrInfoEmitter(RK).run(OS); EmitMapTable(RK, OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/AsmWriterInst.cpp
//===- AsmWriterInst.h - Classes encapsulating a printable inst -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes implement a parser for assembly strings. // //===----------------------------------------------------------------------===// #include "AsmWriterInst.h" #include "CodeGenTarget.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" using namespace llvm; static bool isIdentChar(char C) { return (C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || (C >= '0' && C <= '9') || C == '_'; } std::string AsmWriterOperand::getCode() const { if (OperandType == isLiteralTextOperand) { if (Str.size() == 1) return "O << '" + Str + "'; "; return "O << \"" + Str + "\"; "; } if (OperandType == isLiteralStatementOperand) return Str; std::string Result = Str + "(MI"; if (MIOpNo != ~0U) Result += ", " + utostr(MIOpNo); if (PassSubtarget) Result += ", STI"; Result += ", O"; if (!MiModifier.empty()) Result += ", \"" + MiModifier + '"'; return Result + "); "; } /// ParseAsmString - Parse the specified Instruction's AsmString into this /// AsmWriterInst. /// AsmWriterInst::AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant, unsigned PassSubtarget) { this->CGI = &CGI; // NOTE: Any extensions to this code need to be mirrored in the // AsmPrinter::printInlineAsm code that executes as compile time (assuming // that inline asm strings should also get the new feature)! std::string AsmString = CGI.FlattenAsmStringVariants(CGI.AsmString, Variant); std::string::size_type LastEmitted = 0; while (LastEmitted != AsmString.size()) { std::string::size_type DollarPos = AsmString.find_first_of("$\\", LastEmitted); if (DollarPos == std::string::npos) DollarPos = AsmString.size(); // Emit a constant string fragment. if (DollarPos != LastEmitted) { for (; LastEmitted != DollarPos; ++LastEmitted) switch (AsmString[LastEmitted]) { case '\n': AddLiteralString("\\n"); break; case '\t': AddLiteralString("\\t"); break; case '"': AddLiteralString("\\\""); break; case '\\': AddLiteralString("\\\\"); break; default: AddLiteralString(std::string(1, AsmString[LastEmitted])); break; } } else if (AsmString[DollarPos] == '\\') { if (DollarPos+1 != AsmString.size()) { if (AsmString[DollarPos+1] == 'n') { AddLiteralString("\\n"); } else if (AsmString[DollarPos+1] == 't') { AddLiteralString("\\t"); } else if (std::string("${|}\\").find(AsmString[DollarPos+1]) != std::string::npos) { AddLiteralString(std::string(1, AsmString[DollarPos+1])); } else { PrintFatalError("Non-supported escaped character found in instruction '" + CGI.TheDef->getName() + "'!"); } LastEmitted = DollarPos+2; continue; } } else if (DollarPos+1 != AsmString.size() && AsmString[DollarPos+1] == '$') { AddLiteralString("$"); // "$$" -> $ LastEmitted = DollarPos+2; } else { // Get the name of the variable. std::string::size_type VarEnd = DollarPos+1; // handle ${foo}bar as $foo by detecting whether the character following // the dollar sign is a curly brace. If so, advance VarEnd and DollarPos // so the variable name does not contain the leading curly brace. bool hasCurlyBraces = false; if (VarEnd < AsmString.size() && '{' == AsmString[VarEnd]) { hasCurlyBraces = true; ++DollarPos; ++VarEnd; } while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd])) ++VarEnd; std::string VarName(AsmString.begin()+DollarPos+1, AsmString.begin()+VarEnd); // Modifier - Support ${foo:modifier} syntax, where "modifier" is passed // into printOperand. Also support ${:feature}, which is passed into // PrintSpecial. std::string Modifier; // In order to avoid starting the next string at the terminating curly // brace, advance the end position past it if we found an opening curly // brace. if (hasCurlyBraces) { if (VarEnd >= AsmString.size()) PrintFatalError("Reached end of string before terminating curly brace in '" + CGI.TheDef->getName() + "'"); // Look for a modifier string. if (AsmString[VarEnd] == ':') { ++VarEnd; if (VarEnd >= AsmString.size()) PrintFatalError("Reached end of string before terminating curly brace in '" + CGI.TheDef->getName() + "'"); unsigned ModifierStart = VarEnd; while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd])) ++VarEnd; Modifier = std::string(AsmString.begin()+ModifierStart, AsmString.begin()+VarEnd); if (Modifier.empty()) PrintFatalError("Bad operand modifier name in '"+ CGI.TheDef->getName() + "'"); } if (AsmString[VarEnd] != '}') PrintFatalError("Variable name beginning with '{' did not end with '}' in '" + CGI.TheDef->getName() + "'"); ++VarEnd; } if (VarName.empty() && Modifier.empty()) PrintFatalError("Stray '$' in '" + CGI.TheDef->getName() + "' asm string, maybe you want $$?"); if (VarName.empty()) { // Just a modifier, pass this into PrintSpecial. Operands.emplace_back("PrintSpecial", ~0U, ~0U, Modifier, PassSubtarget); } else { // Otherwise, normal operand. unsigned OpNo = CGI.Operands.getOperandNamed(VarName); CGIOperandList::OperandInfo OpInfo = CGI.Operands[OpNo]; unsigned MIOp = OpInfo.MIOperandNo; Operands.emplace_back(OpInfo.PrinterMethodName, OpNo, MIOp, Modifier, PassSubtarget); } LastEmitted = VarEnd; } } Operands.emplace_back("return;", AsmWriterOperand::isLiteralStatementOperand); } /// MatchesAllButOneOp - If this instruction is exactly identical to the /// specified instruction except for one differing operand, return the differing /// operand number. If more than one operand mismatches, return ~1, otherwise /// if the instructions are identical return ~0. unsigned AsmWriterInst::MatchesAllButOneOp(const AsmWriterInst &Other)const{ if (Operands.size() != Other.Operands.size()) return ~1; unsigned MismatchOperand = ~0U; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] != Other.Operands[i]) { if (MismatchOperand != ~0U) // Already have one mismatch? return ~1U; MismatchOperand = i; } } return MismatchOperand; }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelMatcherGen.cpp
//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "CodeGenRegisters.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include <utility> using namespace llvm; /// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const CodeGenRegister *Reg = T.getRegBank().getReg(R); for (const auto &RC : T.getRegBank().getRegClasses()) { if (!RC.contains(Reg)) continue; if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); continue; } // If this occurs in multiple register classes, they all have to agree. assert(VT == RC.getValueTypeNum(0)); } return VT; } namespace { class MatcherGen { const PatternToMatch &Pattern; const CodeGenDAGPatterns &CGP; /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts /// out with all of the types removed. This allows us to insert type checks /// as we scan the tree. TreePatternNode *PatWithNoTypes; /// VariableMap - A map from variable names ('$dst') to the recorded operand /// number that they were captured as. These are biased by 1 to make /// insertion easier. StringMap<unsigned> VariableMap; /// This maintains the recorded operand number that OPC_CheckComplexPattern /// drops each sub-operand into. We don't want to insert these into /// VariableMap because that leads to identity checking if they are /// encountered multiple times. Biased by 1 like VariableMap for /// consistency. StringMap<unsigned> NamedComplexPatternOperands; /// NextRecordedOperandNo - As we emit opcodes to record matched values in /// the RecordedNodes array, this keeps track of which slot will be next to /// record into. unsigned NextRecordedOperandNo; /// MatchedChainNodes - This maintains the position in the recorded nodes /// array of all of the recorded input nodes that have chains. SmallVector<unsigned, 2> MatchedChainNodes; /// MatchedGlueResultNodes - This maintains the position in the recorded /// nodes array of all of the recorded input nodes that have glue results. SmallVector<unsigned, 2> MatchedGlueResultNodes; /// MatchedComplexPatterns - This maintains a list of all of the /// ComplexPatterns that we need to check. The second element of each pair /// is the recorded operand number of the input node. SmallVector<std::pair<const TreePatternNode*, unsigned>, 2> MatchedComplexPatterns; /// PhysRegInputs - List list has an entry for each explicitly specified /// physreg input to the pattern. The first elt is the Register node, the /// second is the recorded slot number the input pattern match saved it in. SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; /// Matcher - This is the top level of the generated matcher, the result. Matcher *TheMatcher; /// CurPredicate - As we emit matcher nodes, this points to the latest check /// which should have future checks stuck into its Next position. Matcher *CurPredicate; public: MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); ~MatcherGen() { delete PatWithNoTypes; } bool EmitMatcherCode(unsigned Variant); void EmitResultCode(); Matcher *GetMatcher() const { return TheMatcher; } private: void AddMatcher(Matcher *NewNode); void InferPossibleTypes(); // Matcher Generation. void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); void EmitLeafMatchCode(const TreePatternNode *N); void EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); /// If this is the first time a node with unique identifier Name has been /// seen, record it. Otherwise, emit a check to make sure this is the same /// node. Returns true if this is the first encounter. bool recordUniqueNode(std::string Name); // Result Code Generation. unsigned getNamedArgumentSlot(StringRef Name) { unsigned VarMapEntry = VariableMap[Name]; assert(VarMapEntry != 0 && "Variable referenced but not defined and not caught earlier!"); return VarMapEntry-1; } /// GetInstPatternNode - Get the pattern for an instruction. const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, const TreePatternNode *N); void EmitResultOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps); void EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps); void EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps); void EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps); void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps); }; } // end anon namespace. MatcherGen::MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp) : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr), CurPredicate(nullptr) { // We need to produce the matcher tree for the patterns source pattern. To do // this we need to match the structure as well as the types. To do the type // matching, we want to figure out the fewest number of type checks we need to // emit. For example, if there is only one integer type supported by a // target, there should be no type comparisons at all for integer patterns! // // To figure out the fewest number of type checks needed, clone the pattern, // remove the types, then perform type inference on the pattern as a whole. // If there are unresolved types, emit an explicit check for those types, // apply the type to the tree, then rerun type inference. Iterate until all // types are resolved. // PatWithNoTypes = Pattern.getSrcPattern()->clone(); PatWithNoTypes->RemoveAllTypes(); // If there are types that are manifestly known, infer them. InferPossibleTypes(); } /// InferPossibleTypes - As we emit the pattern, we end up generating type /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we /// want to propagate implied types as far throughout the tree as possible so /// that we avoid doing redundant type checks. This does the type propagation. void MatcherGen::InferPossibleTypes() { // TP - Get *SOME* tree pattern, we don't care which. It is only used for // diagnostics, which we know are impossible at this point. TreePattern &TP = *CGP.pf_begin()->second; bool MadeChange = true; while (MadeChange) MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, true/*Ignore reg constraints*/); } /// AddMatcher - Add a matcher node to the current graph we're building. void MatcherGen::AddMatcher(Matcher *NewNode) { if (CurPredicate) CurPredicate->setNext(NewNode); else TheMatcher = NewNode; CurPredicate = NewNode; } //===----------------------------------------------------------------------===// // Pattern Match Generation //===----------------------------------------------------------------------===// /// EmitLeafMatchCode - Generate matching code for leaf nodes. void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { assert(N->isLeaf() && "Not a leaf?"); // Direct match against an integer constant. if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { // If this is the root of the dag we're matching, we emit a redundant opcode // check to ensure that this gets folded into the normal top-level // OpcodeSwitch. if (N == Pattern.getSrcPattern()) { const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); AddMatcher(new CheckOpcodeMatcher(NI)); } return AddMatcher(new CheckIntegerMatcher(II->getValue())); } // An UnsetInit represents a named node without any constraints. if (isa<UnsetInit>(N->getLeafValue())) { assert(N->hasName() && "Unnamed ? leaf"); return; } DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); if (!DI) { errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } Record *LeafRec = DI->getDef(); // A ValueType leaf node can represent a register when named, or itself when // unnamed. if (LeafRec->isSubClassOf("ValueType")) { // A named ValueType leaf always matches: (add i32:$a, i32:$b). if (N->hasName()) return; // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); } if (// Handle register references. Nothing to do here, they always match. LeafRec->isSubClassOf("RegisterClass") || LeafRec->isSubClassOf("RegisterOperand") || LeafRec->isSubClassOf("PointerLikeRegClass") || LeafRec->isSubClassOf("SubRegIndex") || // Place holder for SRCVALUE nodes. Nothing to do here. LeafRec->getName() == "srcvalue") return; // If we have a physreg reference like (mul gpr:$src, EAX) then we need to // record the register if (LeafRec->isSubClassOf("Register")) { AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), NextRecordedOperandNo)); PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); return; } if (LeafRec->isSubClassOf("CondCode")) return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); if (LeafRec->isSubClassOf("ComplexPattern")) { // We can't model ComplexPattern uses that don't have their name taken yet. // The OPC_CheckComplexPattern operation implicitly records the results. if (N->getName().empty()) { std::string S; raw_string_ostream OS(S); OS << "We expect complex pattern uses to have names: " << *N; PrintFatalError(OS.str()); } // Remember this ComplexPattern so that we can emit it after all the other // structural matches are done. unsigned InputOperand = VariableMap[N->getName()] - 1; MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); return; } errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { assert(!N->isLeaf() && "Not an operator?"); if (N->getOperator()->isSubClassOf("ComplexPattern")) { // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is // "MY_PAT:op1:op2". We should already have validated that the uses are // consistent. std::string PatternName = N->getOperator()->getName(); for (unsigned i = 0; i < N->getNumChildren(); ++i) { PatternName += ":"; PatternName += N->getChild(i)->getName(); } if (recordUniqueNode(PatternName)) { auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); MatchedComplexPatterns.push_back(NodeAndOpNum); } return; } const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special // handling of certain large constants (e.g. alpha with it's 8/16/32-bit // handling stuff). Using these instructions is often far more efficient // than materializing the constant. Unfortunately, both the instcombiner // and the dag combiner can often infer that bits are dead, and thus drop // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. if ((N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && N->getPredicateFns().empty()) { if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. // If this is at the root of the pattern, we emit a redundant // CheckOpcode so that the following checks get factored properly under // a single opcode check. if (N == Pattern.getSrcPattern()) AddMatcher(new CheckOpcodeMatcher(CInfo)); // Emit the CheckAndImm/CheckOrImm node. if (N->getOperator()->getName() == "and") AddMatcher(new CheckAndImmMatcher(II->getValue())); else AddMatcher(new CheckOrImmMatcher(II->getValue())); // Match the LHS of the AND as appropriate. AddMatcher(new MoveChildMatcher(0)); EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); AddMatcher(new MoveParentMatcher()); return; } } } // Check that the current opcode lines up. AddMatcher(new CheckOpcodeMatcher(CInfo)); // If this node has memory references (i.e. is a load or store), tell the // interpreter to capture them in the memref array. if (N->NodeHasProperty(SDNPMemOperand, CGP)) AddMatcher(new RecordMemRefMatcher()); // If this node has a chain, then the chain is operand #0 is the SDNode, and // the child numbers of the node are all offset by one. unsigned OpNo = 0; if (N->NodeHasProperty(SDNPHasChain, CGP)) { // Record the node and remember it in our chained nodes list. AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + "' chained node", NextRecordedOperandNo)); // Remember all of the input chains our pattern will match. MatchedChainNodes.push_back(NextRecordedOperandNo++); // Don't look at the input chain when matching the tree pattern to the // SDNode. OpNo = 1; // If this node is not the root and the subtree underneath it produces a // chain, then the result of matching the node is also produce a chain. // Beyond that, this means that we're also folding (at least) the root node // into the node that produce the chain (for example, matching // "(add reg, (load ptr))" as a add_with_memory on X86). This is // problematic, if the 'reg' node also uses the load (say, its chain). // Graphically: // // [LD] // ^ ^ // | \ DAG's like cheese. // / | // / [YY] // | ^ // [XX]--/ // // It would be invalid to fold XX and LD. In this case, folding the two // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' // To prevent this, we emit a dynamic check for legality before allowing // this to be folded. // const TreePatternNode *Root = Pattern.getSrcPattern(); if (N != Root) { // Not the root of the pattern. // If there is a node between the root and this node, then we definitely // need to emit the check. bool NeedCheck = !Root->hasChild(N); // If it *is* an immediate child of the root, we can still need a check if // the root SDNode has multiple inputs. For us, this means that it is an // intrinsic, has multiple operands, or has other inputs like chain or // glue). if (!NeedCheck) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); NeedCheck = Root->getOperator() == CGP.get_intrinsic_void_sdnode() || Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || PInfo.hasProperty(SDNPInGlue) || PInfo.hasProperty(SDNPOptInGlue); } if (NeedCheck) AddMatcher(new CheckFoldableChainNodeMatcher()); } } // If this node has an output glue and isn't the root, remember it. if (N->NodeHasProperty(SDNPOutGlue, CGP) && N != Pattern.getSrcPattern()) { // TODO: This redundantly records nodes with both glues and chains. // Record the node and remember it in our chained nodes list. AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + "' glue output node", NextRecordedOperandNo)); // Remember all of the nodes with output glue our pattern will match. MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); } // If this node is known to have an input glue or if it *might* have an input // glue, capture it as the glue input of the pattern. if (N->NodeHasProperty(SDNPOptInGlue, CGP) || N->NodeHasProperty(SDNPInGlue, CGP)) AddMatcher(new CaptureGlueInputMatcher()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { // Get the code suitable for matching this child. Move to the child, check // it then move back to the parent. AddMatcher(new MoveChildMatcher(OpNo)); EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); AddMatcher(new MoveParentMatcher()); } } bool MatcherGen::recordUniqueNode(std::string Name) { unsigned &VarMapEntry = VariableMap[Name]; if (VarMapEntry == 0) { // If it is a named node, we must emit a 'Record' opcode. AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); VarMapEntry = ++NextRecordedOperandNo; return true; } // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. AddMatcher(new CheckSameMatcher(VarMapEntry-1)); return false; } void MatcherGen::EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { // If N and NodeNoTypes don't agree on a type, then this is a case where we // need to do a type check. Emit the check, apply the type to NodeNoTypes and // reinfer any correlated types. SmallVector<unsigned, 2> ResultsToTypeCheck; for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; NodeNoTypes->setType(i, N->getExtType(i)); InferPossibleTypes(); ResultsToTypeCheck.push_back(i); } // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) if (!recordUniqueNode(N->getName())) return; if (N->isLeaf()) EmitLeafMatchCode(N); else EmitOperatorMatchCode(N, NodeNoTypes); // If there are node predicates for this node, generate their checks. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), ResultsToTypeCheck[i])); } /// EmitMatcherCode - Generate the code that matches the predicate of this /// pattern for the specified Variant. If the variant is invalid this returns /// true and does not generate code, if it is valid, it returns false. bool MatcherGen::EmitMatcherCode(unsigned Variant) { // If the root of the pattern is a ComplexPattern and if it is specified to // match some number of root opcodes, these are considered to be our variants. // Depending on which variant we're generating code for, emit the root opcode // check. if (const ComplexPattern *CP = Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { const std::vector<Record*> &OpNodes = CP->getRootNodes(); assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); if (Variant >= OpNodes.size()) return true; AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); } else { if (Variant != 0) return true; } // Emit the matcher for the pattern structure and types. EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); // If the pattern has a predicate on it (e.g. only enabled when a subtarget // feature is around, do the check). if (!Pattern.getPredicateCheck().empty()) AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); // Now that we've completed the structural type match, emit any ComplexPattern // checks (e.g. addrmode matches). We emit this after the structural match // because they are generally more expensive to evaluate and more difficult to // factor. for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { const TreePatternNode *N = MatchedComplexPatterns[i].first; // Remember where the results of this match get stuck. if (N->isLeaf()) { NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; } else { unsigned CurOp = NextRecordedOperandNo; for (unsigned i = 0; i < N->getNumChildren(); ++i) { NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; CurOp += N->getChild(i)->getNumMIResults(CGP); } } // Get the slot we recorded the value in from the name on the node. unsigned RecNodeEntry = MatchedComplexPatterns[i].second; const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); // Emit a CheckComplexPat operation, which does the match (aborting if it // fails) and pushes the matched operands onto the recorded nodes list. AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, N->getName(), NextRecordedOperandNo)); // Record the right number of operands. NextRecordedOperandNo += CP.getNumOperands(); if (CP.hasProperty(SDNPHasChain)) { // If the complex pattern has a chain, then we need to keep track of the // fact that we just recorded a chain input. The chain input will be // matched as the last operand of the predicate if it was successful. ++NextRecordedOperandNo; // Chained node operand. // It is the last operand recorded. assert(NextRecordedOperandNo > 1 && "Should have recorded input/result chains at least!"); MatchedChainNodes.push_back(NextRecordedOperandNo-1); } // TODO: Complex patterns can't have output glues, if they did, we'd want // to record them. } return false; } //===----------------------------------------------------------------------===// // Node Result Generation //===----------------------------------------------------------------------===// void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps){ assert(!N->getName().empty() && "Operand not named!"); if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { // Complex operands have already been completely selected, just find the // right slot ant add the arguments directly. for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) ResultOps.push_back(SlotNo - 1 + i); return; } unsigned SlotNo = getNamedArgumentSlot(N->getName()); // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target // version of the immediate so that it doesn't get selected due to some other // node use. if (!N->isLeaf()) { StringRef OperatorName = N->getOperator()->getName(); if (OperatorName == "imm" || OperatorName == "fpimm") { AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); ResultOps.push_back(NextRecordedOperandNo++); return; } } for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) ResultOps.push_back(SlotNo + i); } void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps) { assert(N->isLeaf() && "Must be a leaf"); if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } // If this is an explicit register reference, handle it. if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { Record *Def = DI->getDef(); if (Def->isSubClassOf("Register")) { const CodeGenRegister *Reg = CGP.getTargetInfo().getRegBank().getReg(Def); AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } if (Def->getName() == "zero_reg") { AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } // Handle a reference to a register class. This is used // in COPY_TO_SUBREG instructions. if (Def->isSubClassOf("RegisterOperand")) Def = Def->getValueAsDef("RegClass"); if (Def->isSubClassOf("RegisterClass")) { std::string Value = getQualifiedName(Def) + "RegClassID"; AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); ResultOps.push_back(NextRecordedOperandNo++); return; } // Handle a subregister index. This is used for INSERT_SUBREG etc. if (Def->isSubClassOf("SubRegIndex")) { std::string Value = getQualifiedName(Def); AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); ResultOps.push_back(NextRecordedOperandNo++); return; } } errs() << "unhandled leaf node: \n"; N->dump(); } /// GetInstPatternNode - Get the pattern for an instruction. /// const TreePatternNode *MatcherGen:: GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { const TreePattern *InstPat = Inst.getPattern(); // FIXME2?: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode; if (InstPat) InstPatNode = InstPat->getTree(0); else if (/*isRoot*/ N == Pattern.getDstPattern()) InstPatNode = Pattern.getSrcPattern(); else return nullptr; if (InstPatNode && !InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "set") InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); return InstPatNode; } static bool mayInstNodeLoadOrStore(const TreePatternNode *N, const CodeGenDAGPatterns &CGP) { Record *Op = N->getOperator(); const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op); return II.mayLoad || II.mayStore; } static unsigned numNodesThatMayLoadOrStore(const TreePatternNode *N, const CodeGenDAGPatterns &CGP) { if (N->isLeaf()) return 0; Record *OpRec = N->getOperator(); if (!OpRec->isSubClassOf("Instruction")) return 0; unsigned Count = 0; if (mayInstNodeLoadOrStore(N, CGP)) ++Count; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); return Count; } void MatcherGen:: EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &OutputOps) { Record *Op = N->getOperator(); const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op); const DAGInstruction &Inst = CGP.getInstruction(Op); // If we can, get the pattern for the instruction we're generating. We derive // a variety of information from this pattern, such as whether it has a chain. // // FIXME2: This is extremely dubious for several reasons, not the least of // which it gives special status to instructions with patterns that Pat<> // nodes can't duplicate. const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); // NodeHasChain - Whether the instruction node we're creating takes chains. bool NodeHasChain = InstPatNode && InstPatNode->TreeHasProperty(SDNPHasChain, CGP); // Instructions which load and store from memory should have a chain, // regardless of whether they happen to have an internal pattern saying so. if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || II.hasSideEffects)) NodeHasChain = true; bool isRoot = N == Pattern.getDstPattern(); // TreeHasOutGlue - True if this tree has glue. bool TreeHasInGlue = false, TreeHasOutGlue = false; if (isRoot) { const TreePatternNode *SrcPat = Pattern.getSrcPattern(); TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || SrcPat->TreeHasProperty(SDNPInGlue, CGP); // FIXME2: this is checking the entire pattern, not just the node in // question, doing this just for the root seems like a total hack. TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); } // NumResults - This is the number of results produced by the instruction in // the "outs" list. unsigned NumResults = Inst.getNumResults(); // Number of operands we know the output instruction must have. If it is // variadic, we could have more operands. unsigned NumFixedOperands = II.Operands.size(); SmallVector<unsigned, 8> InstOps; // Loop over all of the fixed operands of the instruction pattern, emitting // code to fill them all in. The node 'N' usually has number children equal to // the number of input operands of the instruction. However, in cases where // there are predicate operands for an instruction, we need to fill in the // 'execute always' values. Match up the node operands to the instruction // operands to do this. unsigned ChildNo = 0; for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e; ++InstOpNo) { // Determine what to emit for this operand. Record *OperandNode = II.Operands[InstOpNo].Rec; if (OperandNode->isSubClassOf("OperandWithDefaultOps") && !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { // This is a predicate or optional def operand; emit the // 'default ops' operands. const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(OperandNode); for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); continue; } // Otherwise this is a normal operand or a predicate operand without // 'execute always'; emit it. // For operands with multiple sub-operands we may need to emit // multiple child patterns to cover them all. However, ComplexPattern // children may themselves emit multiple MI operands. unsigned NumSubOps = 1; if (OperandNode->isSubClassOf("Operand")) { DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); if (unsigned NumArgs = MIOpInfo->getNumArgs()) NumSubOps = NumArgs; } unsigned FinalNumOps = InstOps.size() + NumSubOps; while (InstOps.size() < FinalNumOps) { const TreePatternNode *Child = N->getChild(ChildNo); unsigned BeforeAddingNumOps = InstOps.size(); EmitResultOperand(Child, InstOps); assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); // If the operand is an instruction and it produced multiple results, just // take the first one. if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) InstOps.resize(BeforeAddingNumOps+1); ++ChildNo; } } // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't // expand suboperands, use default operands, or other features determined from // the CodeGenInstruction after the fixed operands, which were handled // above. Emit the remaining instructions implicitly added by the use for // variable_ops. if (II.Operands.isVariadic) { for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) EmitResultOperand(N->getChild(I), InstOps); } // If this node has input glue or explicitly specified input physregs, we // need to add chained and glued copyfromreg nodes and materialize the glue // input. if (isRoot && !PhysRegInputs.empty()) { // Emit all of the CopyToReg nodes for the input physical registers. These // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, PhysRegInputs[i].first)); // Even if the node has no other glue inputs, the resultant node must be // glued to the CopyFromReg nodes we just generated. TreeHasInGlue = true; } // Result order: node results, chain, glue // Determine the result types. SmallVector<MVT::SimpleValueType, 4> ResultVTs; for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) ResultVTs.push_back(N->getType(i)); // If this is the root instruction of a pattern that has physical registers in // its result pattern, add output VTs for them. For example, X86 has: // (set AL, (mul ...)) // This also handles implicit results like: // (implicit EFLAGS) if (isRoot && !Pattern.getDstRegs().empty()) { // If the root came from an implicit def in the instruction handling stuff, // don't re-add it. Record *HandledReg = nullptr; if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) HandledReg = II.ImplicitDefs[0]; for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { Record *Reg = Pattern.getDstRegs()[i]; if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; ResultVTs.push_back(getRegisterValueType(Reg, CGT)); } } // If this is the root of the pattern and the pattern we're matching includes // a node that is variadic, mark the generated node as variadic so that it // gets the excess operands from the input DAG. int NumFixedArityOperands = -1; if (isRoot && Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); // If this is the root node and multiple matched nodes in the input pattern // have MemRefs in them, have the interpreter collect them and plop them onto // this node. If there is just one node with MemRefs, leave them on that node // even if it is not the root. // // FIXME3: This is actively incorrect for result patterns with multiple // memory-referencing instructions. bool PatternHasMemOperands = Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); bool NodeHasMemRefs = false; if (PatternHasMemOperands) { unsigned NumNodesThatLoadOrStore = numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && NumNodesThatLoadOrStore == 1; NodeHasMemRefs = NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || NumNodesThatLoadOrStore != 1)); } assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && "Node has no result"); AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), ResultVTs, InstOps, NodeHasChain, TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs, NumFixedArityOperands, NextRecordedOperandNo)); // The non-chain and non-glue results of the newly emitted node get recorded. for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; OutputOps.push_back(NextRecordedOperandNo++); } } void MatcherGen:: EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps) { assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); // Emit the operand. SmallVector<unsigned, 8> InputOps; // FIXME2: Could easily generalize this to support multiple inputs and outputs // to the SDNodeXForm. For now we just support one input and one output like // the old instruction selector. assert(N->getNumChildren() == 1); EmitResultOperand(N->getChild(0), InputOps); // The input currently must have produced exactly one result. assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); ResultOps.push_back(NextRecordedOperandNo++); } void MatcherGen::EmitResultOperand(const TreePatternNode *N, SmallVectorImpl<unsigned> &ResultOps) { // This is something selected from the pattern we matched. if (!N->getName().empty()) return EmitResultOfNamedOperand(N, ResultOps); if (N->isLeaf()) return EmitResultLeafAsOperand(N, ResultOps); Record *OpRec = N->getOperator(); if (OpRec->isSubClassOf("Instruction")) return EmitResultInstructionAsOperand(N, ResultOps); if (OpRec->isSubClassOf("SDNodeXForm")) return EmitResultSDNodeXFormAsOperand(N, ResultOps); errs() << "Unknown result node to emit code for: " << *N << '\n'; PrintFatalError("Unknown node in result pattern!"); } void MatcherGen::EmitResultCode() { // Patterns that match nodes with (potentially multiple) chain inputs have to // merge them together into a token factor. This informs the generated code // what all the chained nodes are. if (!MatchedChainNodes.empty()) AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); // Codegen the root of the result pattern, capturing the resulting values. SmallVector<unsigned, 8> Ops; EmitResultOperand(Pattern.getDstPattern(), Ops); // At this point, we have however many values the result pattern produces. // However, the input pattern might not need all of these. If there are // excess values at the end (such as implicit defs of condition codes etc) // just lop them off. This doesn't need to worry about glue or chains, just // explicit results. // unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); // If the pattern also has (implicit) results, count them as well. if (!Pattern.getDstRegs().empty()) { // If the root came from an implicit def in the instruction handling stuff, // don't re-add it. Record *HandledReg = nullptr; const TreePatternNode *DstPat = Pattern.getDstPattern(); if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) HandledReg = II.ImplicitDefs[0]; } for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { Record *Reg = Pattern.getDstRegs()[i]; if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; ++NumSrcResults; } } assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); Ops.resize(NumSrcResults); // If the matched pattern covers nodes which define a glue result, emit a node // that tells the matcher about them so that it can update their results. if (!MatchedGlueResultNodes.empty()) AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes)); AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); } /// ConvertPatternToMatcher - Create the matcher for the specified pattern with /// the specified variant. If the variant number is invalid, this returns null. Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, unsigned Variant, const CodeGenDAGPatterns &CGP) { MatcherGen Gen(Pattern, CGP); // Generate the code for the matcher. if (Gen.EmitMatcherCode(Variant)) return nullptr; // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. // FIXME2: Split result code out to another table, and make the matcher end // with an "Emit <index>" command. This allows result generation stuff to be // shared and factored? // If the match succeeds, then we generate Pattern. Gen.EmitResultCode(); // Unconditional match. return Gen.GetMatcher(); }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelMatcher.cpp
//===- DAGISelMatcher.cpp - Representation of DAG pattern matcher ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "CodeGenTarget.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Record.h" using namespace llvm; void Matcher::anchor() { } void Matcher::dump() const { print(errs(), 0); } void Matcher::print(raw_ostream &OS, unsigned indent) const { printImpl(OS, indent); if (Next) return Next->print(OS, indent); } void Matcher::printOne(raw_ostream &OS) const { printImpl(OS, 0); } /// unlinkNode - Unlink the specified node from this chain. If Other == this, /// we unlink the next pointer and return it. Otherwise we unlink Other from /// the list and return this. Matcher *Matcher::unlinkNode(Matcher *Other) { if (this == Other) return takeNext(); // Scan until we find the predecessor of Other. Matcher *Cur = this; for (; Cur && Cur->getNext() != Other; Cur = Cur->getNext()) /*empty*/; if (!Cur) return nullptr; Cur->takeNext(); Cur->setNext(Other->takeNext()); return this; } /// canMoveBefore - Return true if this matcher is the same as Other, or if /// we can move this matcher past all of the nodes in-between Other and this /// node. Other must be equal to or before this. bool Matcher::canMoveBefore(const Matcher *Other) const { for (;; Other = Other->getNext()) { assert(Other && "Other didn't come before 'this'?"); if (this == Other) return true; // We have to be able to move this node across the Other node. if (!canMoveBeforeNode(Other)) return false; } } /// canMoveBeforeNode - Return true if it is safe to move the current matcher /// across the specified one. bool Matcher::canMoveBeforeNode(const Matcher *Other) const { // We can move simple predicates before record nodes. if (isSimplePredicateNode()) return Other->isSimplePredicateOrRecordNode(); // We can move record nodes across simple predicates. if (isSimplePredicateOrRecordNode()) return isSimplePredicateNode(); // We can't move record nodes across each other etc. return false; } ScopeMatcher::~ScopeMatcher() { for (unsigned i = 0, e = Children.size(); i != e; ++i) delete Children[i]; } SwitchOpcodeMatcher::~SwitchOpcodeMatcher() { for (unsigned i = 0, e = Cases.size(); i != e; ++i) delete Cases[i].second; } SwitchTypeMatcher::~SwitchTypeMatcher() { for (unsigned i = 0, e = Cases.size(); i != e; ++i) delete Cases[i].second; } CheckPredicateMatcher::CheckPredicateMatcher(const TreePredicateFn &pred) : Matcher(CheckPredicate), Pred(pred.getOrigPatFragRecord()) {} TreePredicateFn CheckPredicateMatcher::getPredicate() const { return TreePredicateFn(Pred); } // printImpl methods. void ScopeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "Scope\n"; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { if (!getChild(i)) OS.indent(indent+1) << "NULL POINTER\n"; else getChild(i)->print(OS, indent+2); } } void RecordMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "Record\n"; } void RecordChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "RecordChild: " << ChildNo << '\n'; } void RecordMemRefMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "RecordMemRef\n"; } void CaptureGlueInputMatcher::printImpl(raw_ostream &OS, unsigned indent) const{ OS.indent(indent) << "CaptureGlueInput\n"; } void MoveChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MoveChild " << ChildNo << '\n'; } void MoveParentMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MoveParent\n"; } void CheckSameMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckSame " << MatchNumber << '\n'; } void CheckChildSameMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckChild" << ChildNo << "Same\n"; } void CheckPatternPredicateMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckPatternPredicate " << Predicate << '\n'; } void CheckPredicateMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckPredicate " << getPredicate().getFnName() << '\n'; } void CheckOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckOpcode " << Opcode.getEnumName() << '\n'; } void SwitchOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "SwitchOpcode: {\n"; for (unsigned i = 0, e = Cases.size(); i != e; ++i) { OS.indent(indent) << "case " << Cases[i].first->getEnumName() << ":\n"; Cases[i].second->print(OS, indent+2); } OS.indent(indent) << "}\n"; } void CheckTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckType " << getEnumName(Type) << ", ResNo=" << ResNo << '\n'; } void SwitchTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "SwitchType: {\n"; for (unsigned i = 0, e = Cases.size(); i != e; ++i) { OS.indent(indent) << "case " << getEnumName(Cases[i].first) << ":\n"; Cases[i].second->print(OS, indent+2); } OS.indent(indent) << "}\n"; } void CheckChildTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckChildType " << ChildNo << " " << getEnumName(Type) << '\n'; } void CheckIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckInteger " << Value << '\n'; } void CheckChildIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckChildInteger " << ChildNo << " " << Value << '\n'; } void CheckCondCodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckCondCode ISD::" << CondCodeName << '\n'; } void CheckValueTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckValueType MVT::" << TypeName << '\n'; } void CheckComplexPatMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckComplexPat " << Pattern.getSelectFunc() << '\n'; } void CheckAndImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckAndImm " << Value << '\n'; } void CheckOrImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckOrImm " << Value << '\n'; } void CheckFoldableChainNodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CheckFoldableChainNode\n"; } void EmitIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitInteger " << Val << " VT=" << VT << '\n'; } void EmitStringIntegerMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitStringInteger " << Val << " VT=" << VT << '\n'; } void EmitRegisterMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitRegister "; if (Reg) OS << Reg->getName(); else OS << "zero_reg"; OS << " VT=" << VT << '\n'; } void EmitConvertToTargetMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitConvertToTarget " << Slot << '\n'; } void EmitMergeInputChainsMatcher:: printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitMergeInputChains <todo: args>\n"; } void EmitCopyToRegMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitCopyToReg <todo: args>\n"; } void EmitNodeXFormMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "EmitNodeXForm " << NodeXForm->getName() << " Slot=" << Slot << '\n'; } void EmitNodeMatcherCommon::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent); OS << (isa<MorphNodeToMatcher>(this) ? "MorphNodeTo: " : "EmitNode: ") << OpcodeName << ": <todo flags> "; for (unsigned i = 0, e = VTs.size(); i != e; ++i) OS << ' ' << getEnumName(VTs[i]); OS << '('; for (unsigned i = 0, e = Operands.size(); i != e; ++i) OS << Operands[i] << ' '; OS << ")\n"; } void MarkGlueResultsMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "MarkGlueResults <todo: args>\n"; } void CompleteMatchMatcher::printImpl(raw_ostream &OS, unsigned indent) const { OS.indent(indent) << "CompleteMatch <todo args>\n"; OS.indent(indent) << "Src = " << *Pattern.getSrcPattern() << "\n"; OS.indent(indent) << "Dst = " << *Pattern.getDstPattern() << "\n"; } // getHashImpl Implementation. unsigned CheckPatternPredicateMatcher::getHashImpl() const { return HashString(Predicate); } unsigned CheckPredicateMatcher::getHashImpl() const { return HashString(getPredicate().getFnName()); } unsigned CheckOpcodeMatcher::getHashImpl() const { return HashString(Opcode.getEnumName()); } unsigned CheckCondCodeMatcher::getHashImpl() const { return HashString(CondCodeName); } unsigned CheckValueTypeMatcher::getHashImpl() const { return HashString(TypeName); } unsigned EmitStringIntegerMatcher::getHashImpl() const { return HashString(Val) ^ VT; } template<typename It> static unsigned HashUnsigneds(It I, It E) { unsigned Result = 0; for (; I != E; ++I) Result = (Result<<3) ^ *I; return Result; } unsigned EmitMergeInputChainsMatcher::getHashImpl() const { return HashUnsigneds(ChainNodes.begin(), ChainNodes.end()); } bool CheckOpcodeMatcher::isEqualImpl(const Matcher *M) const { // Note: pointer equality isn't enough here, we have to check the enum names // to ensure that the nodes are for the same opcode. return cast<CheckOpcodeMatcher>(M)->Opcode.getEnumName() == Opcode.getEnumName(); } bool EmitNodeMatcherCommon::isEqualImpl(const Matcher *m) const { const EmitNodeMatcherCommon *M = cast<EmitNodeMatcherCommon>(m); return M->OpcodeName == OpcodeName && M->VTs == VTs && M->Operands == Operands && M->HasChain == HasChain && M->HasInGlue == HasInGlue && M->HasOutGlue == HasOutGlue && M->HasMemRefs == HasMemRefs && M->NumFixedArityOperands == NumFixedArityOperands; } unsigned EmitNodeMatcherCommon::getHashImpl() const { return (HashString(OpcodeName) << 4) | Operands.size(); } void EmitNodeMatcher::anchor() { } void MorphNodeToMatcher::anchor() { } unsigned MarkGlueResultsMatcher::getHashImpl() const { return HashUnsigneds(GlueResultNodes.begin(), GlueResultNodes.end()); } unsigned CompleteMatchMatcher::getHashImpl() const { return HashUnsigneds(Results.begin(), Results.end()) ^ ((unsigned)(intptr_t)&Pattern << 8); } // isContradictoryImpl Implementations. static bool TypesAreContradictory(MVT::SimpleValueType T1, MVT::SimpleValueType T2) { // If the two types are the same, then they are the same, so they don't // contradict. if (T1 == T2) return false; // If either type is about iPtr, then they don't conflict unless the other // one is not a scalar integer type. if (T1 == MVT::iPTR) return !MVT(T2).isInteger() || MVT(T2).isVector(); if (T2 == MVT::iPTR) return !MVT(T1).isInteger() || MVT(T1).isVector(); // Otherwise, they are two different non-iPTR types, they conflict. return true; } bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckOpcodeMatcher *COM = dyn_cast<CheckOpcodeMatcher>(M)) { // One node can't have two different opcodes! // Note: pointer equality isn't enough here, we have to check the enum names // to ensure that the nodes are for the same opcode. return COM->getOpcode().getEnumName() != getOpcode().getEnumName(); } // If the node has a known type, and if the type we're checking for is // different, then we know they contradict. For example, a check for // ISD::STORE will never be true at the same time a check for Type i32 is. if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) { // If checking for a result the opcode doesn't have, it can't match. if (CT->getResNo() >= getOpcode().getNumResults()) return true; MVT::SimpleValueType NodeType = getOpcode().getKnownType(CT->getResNo()); if (NodeType != MVT::Other) return TypesAreContradictory(NodeType, CT->getType()); } return false; } bool CheckTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) return TypesAreContradictory(getType(), CT->getType()); return false; } bool CheckChildTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckChildTypeMatcher *CC = dyn_cast<CheckChildTypeMatcher>(M)) { // If the two checks are about different nodes, we don't know if they // conflict! if (CC->getChildNo() != getChildNo()) return false; return TypesAreContradictory(getType(), CC->getType()); } return false; } bool CheckIntegerMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckIntegerMatcher *CIM = dyn_cast<CheckIntegerMatcher>(M)) return CIM->getValue() != getValue(); return false; } bool CheckChildIntegerMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckChildIntegerMatcher *CCIM = dyn_cast<CheckChildIntegerMatcher>(M)) { // If the two checks are about different nodes, we don't know if they // conflict! if (CCIM->getChildNo() != getChildNo()) return false; return CCIM->getValue() != getValue(); } return false; } bool CheckValueTypeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckValueTypeMatcher *CVT = dyn_cast<CheckValueTypeMatcher>(M)) return CVT->getTypeName() != getTypeName(); return false; }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenSchedule.h
//===- CodeGenSchedule.h - Scheduling Machine Models ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate the machine model as described in // the target description. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_CODEGENSCHEDULE_H #define LLVM_UTILS_TABLEGEN_CODEGENSCHEDULE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" namespace llvm { class CodeGenTarget; class CodeGenSchedModels; class CodeGenInstruction; typedef std::vector<Record*> RecVec; typedef std::vector<Record*>::const_iterator RecIter; typedef std::vector<unsigned> IdxVec; typedef std::vector<unsigned>::const_iterator IdxIter; void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, RecVec &ReadDefs); /// We have two kinds of SchedReadWrites. Explicitly defined and inferred /// sequences. TheDef is nonnull for explicit SchedWrites, but Sequence may or /// may not be empty. TheDef is null for inferred sequences, and Sequence must /// be nonempty. /// /// IsVariadic controls whether the variants are expanded into multiple operands /// or a sequence of writes on one operand. struct CodeGenSchedRW { unsigned Index; std::string Name; Record *TheDef; bool IsRead; bool IsAlias; bool HasVariants; bool IsVariadic; bool IsSequence; IdxVec Sequence; RecVec Aliases; CodeGenSchedRW() : Index(0), TheDef(nullptr), IsRead(false), IsAlias(false), HasVariants(false), IsVariadic(false), IsSequence(false) {} CodeGenSchedRW(unsigned Idx, Record *Def) : Index(Idx), TheDef(Def), IsAlias(false), IsVariadic(false) { Name = Def->getName(); IsRead = Def->isSubClassOf("SchedRead"); HasVariants = Def->isSubClassOf("SchedVariant"); if (HasVariants) IsVariadic = Def->getValueAsBit("Variadic"); // Read records don't currently have sequences, but it can be easily // added. Note that implicit Reads (from ReadVariant) may have a Sequence // (but no record). IsSequence = Def->isSubClassOf("WriteSequence"); } CodeGenSchedRW(unsigned Idx, bool Read, const IdxVec &Seq, const std::string &Name) : Index(Idx), Name(Name), TheDef(nullptr), IsRead(Read), IsAlias(false), HasVariants(false), IsVariadic(false), IsSequence(true), Sequence(Seq) { assert(Sequence.size() > 1 && "implied sequence needs >1 RWs"); } bool isValid() const { assert((!HasVariants || TheDef) && "Variant write needs record def"); assert((!IsVariadic || HasVariants) && "Variadic write needs variants"); assert((!IsSequence || !HasVariants) && "Sequence can't have variant"); assert((!IsSequence || !Sequence.empty()) && "Sequence should be nonempty"); assert((!IsAlias || Aliases.empty()) && "Alias cannot have aliases"); return TheDef || !Sequence.empty(); } #ifndef NDEBUG void dump() const; #endif }; /// Represent a transition between SchedClasses induced by SchedVariant. struct CodeGenSchedTransition { unsigned ToClassIdx; IdxVec ProcIndices; RecVec PredTerm; }; /// Scheduling class. /// /// Each instruction description will be mapped to a scheduling class. There are /// four types of classes: /// /// 1) An explicitly defined itinerary class with ItinClassDef set. /// Writes and ReadDefs are empty. ProcIndices contains 0 for any processor. /// /// 2) An implied class with a list of SchedWrites and SchedReads that are /// defined in an instruction definition and which are common across all /// subtargets. ProcIndices contains 0 for any processor. /// /// 3) An implied class with a list of InstRW records that map instructions to /// SchedWrites and SchedReads per-processor. InstrClassMap should map the same /// instructions to this class. ProcIndices contains all the processors that /// provided InstrRW records for this class. ItinClassDef or Writes/Reads may /// still be defined for processors with no InstRW entry. /// /// 4) An inferred class represents a variant of another class that may be /// resolved at runtime. ProcIndices contains the set of processors that may /// require the class. ProcIndices are propagated through SchedClasses as /// variants are expanded. Multiple SchedClasses may be inferred from an /// itinerary class. Each inherits the processor index from the ItinRW record /// that mapped the itinerary class to the variant Writes or Reads. struct CodeGenSchedClass { unsigned Index; std::string Name; Record *ItinClassDef; IdxVec Writes; IdxVec Reads; // Sorted list of ProcIdx, where ProcIdx==0 implies any processor. IdxVec ProcIndices; std::vector<CodeGenSchedTransition> Transitions; // InstRW records associated with this class. These records may refer to an // Instruction no longer mapped to this class by InstrClassMap. These // Instructions should be ignored by this class because they have been split // off to join another inferred class. RecVec InstRWs; CodeGenSchedClass(): Index(0), ItinClassDef(nullptr) {} bool isKeyEqual(Record *IC, const IdxVec &W, const IdxVec &R) { return ItinClassDef == IC && Writes == W && Reads == R; } // Is this class generated from a variants if existing classes? Instructions // are never mapped directly to inferred scheduling classes. bool isInferred() const { return !ItinClassDef; } #ifndef NDEBUG void dump(const CodeGenSchedModels *SchedModels) const; #endif }; // Processor model. // // ModelName is a unique name used to name an instantiation of MCSchedModel. // // ModelDef is NULL for inferred Models. This happens when a processor defines // an itinerary but no machine model. If the processor defines neither a machine // model nor itinerary, then ModelDef remains pointing to NoModel. NoModel has // the special "NoModel" field set to true. // // ItinsDef always points to a valid record definition, but may point to the // default NoItineraries. NoItineraries has an empty list of InstrItinData // records. // // ItinDefList orders this processor's InstrItinData records by SchedClass idx. struct CodeGenProcModel { unsigned Index; std::string ModelName; Record *ModelDef; Record *ItinsDef; // Derived members... // Array of InstrItinData records indexed by a CodeGenSchedClass index. // This list is empty if the Processor has no value for Itineraries. // Initialized by collectProcItins(). RecVec ItinDefList; // Map itinerary classes to per-operand resources. // This list is empty if no ItinRW refers to this Processor. RecVec ItinRWDefs; // All read/write resources associated with this processor. RecVec WriteResDefs; RecVec ReadAdvanceDefs; // Per-operand machine model resources associated with this processor. RecVec ProcResourceDefs; RecVec ProcResGroupDefs; CodeGenProcModel(unsigned Idx, const std::string &Name, Record *MDef, Record *IDef) : Index(Idx), ModelName(Name), ModelDef(MDef), ItinsDef(IDef) {} bool hasItineraries() const { return !ItinsDef->getValueAsListOfDefs("IID").empty(); } bool hasInstrSchedModel() const { return !WriteResDefs.empty() || !ItinRWDefs.empty(); } unsigned getProcResourceIdx(Record *PRDef) const; #ifndef NDEBUG void dump() const; #endif }; /// Top level container for machine model data. class CodeGenSchedModels { RecordKeeper &Records; const CodeGenTarget &Target; // Map dag expressions to Instruction lists. SetTheory Sets; // List of unique processor models. std::vector<CodeGenProcModel> ProcModels; // Map Processor's MachineModel or ProcItin to a CodeGenProcModel index. typedef DenseMap<Record*, unsigned> ProcModelMapTy; ProcModelMapTy ProcModelMap; // Per-operand SchedReadWrite types. std::vector<CodeGenSchedRW> SchedWrites; std::vector<CodeGenSchedRW> SchedReads; // List of unique SchedClasses. std::vector<CodeGenSchedClass> SchedClasses; // Any inferred SchedClass has an index greater than NumInstrSchedClassses. unsigned NumInstrSchedClasses; // Map each instruction to its unique SchedClass index considering the // combination of it's itinerary class, SchedRW list, and InstRW records. typedef DenseMap<Record*, unsigned> InstClassMapTy; InstClassMapTy InstrClassMap; public: CodeGenSchedModels(RecordKeeper& RK, const CodeGenTarget &TGT); // iterator access to the scheduling classes. typedef std::vector<CodeGenSchedClass>::iterator class_iterator; typedef std::vector<CodeGenSchedClass>::const_iterator const_class_iterator; class_iterator classes_begin() { return SchedClasses.begin(); } const_class_iterator classes_begin() const { return SchedClasses.begin(); } class_iterator classes_end() { return SchedClasses.end(); } const_class_iterator classes_end() const { return SchedClasses.end(); } iterator_range<class_iterator> classes() { return iterator_range<class_iterator>(classes_begin(), classes_end()); } iterator_range<const_class_iterator> classes() const { return iterator_range<const_class_iterator>(classes_begin(), classes_end()); } iterator_range<class_iterator> explicit_classes() { return iterator_range<class_iterator>( classes_begin(), classes_begin() + NumInstrSchedClasses); } iterator_range<const_class_iterator> explicit_classes() const { return iterator_range<const_class_iterator>( classes_begin(), classes_begin() + NumInstrSchedClasses); } Record *getModelOrItinDef(Record *ProcDef) const { Record *ModelDef = ProcDef->getValueAsDef("SchedModel"); Record *ItinsDef = ProcDef->getValueAsDef("ProcItin"); if (!ItinsDef->getValueAsListOfDefs("IID").empty()) { assert(ModelDef->getValueAsBit("NoModel") && "Itineraries must be defined within SchedMachineModel"); return ItinsDef; } return ModelDef; } const CodeGenProcModel &getModelForProc(Record *ProcDef) const { Record *ModelDef = getModelOrItinDef(ProcDef); ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); assert(I != ProcModelMap.end() && "missing machine model"); return ProcModels[I->second]; } CodeGenProcModel &getProcModel(Record *ModelDef) { ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); assert(I != ProcModelMap.end() && "missing machine model"); return ProcModels[I->second]; } const CodeGenProcModel &getProcModel(Record *ModelDef) const { return const_cast<CodeGenSchedModels*>(this)->getProcModel(ModelDef); } // Iterate over the unique processor models. typedef std::vector<CodeGenProcModel>::const_iterator ProcIter; ProcIter procModelBegin() const { return ProcModels.begin(); } ProcIter procModelEnd() const { return ProcModels.end(); } // Return true if any processors have itineraries. bool hasItineraries() const; // Get a SchedWrite from its index. const CodeGenSchedRW &getSchedWrite(unsigned Idx) const { assert(Idx < SchedWrites.size() && "bad SchedWrite index"); assert(SchedWrites[Idx].isValid() && "invalid SchedWrite"); return SchedWrites[Idx]; } // Get a SchedWrite from its index. const CodeGenSchedRW &getSchedRead(unsigned Idx) const { assert(Idx < SchedReads.size() && "bad SchedRead index"); assert(SchedReads[Idx].isValid() && "invalid SchedRead"); return SchedReads[Idx]; } const CodeGenSchedRW &getSchedRW(unsigned Idx, bool IsRead) const { return IsRead ? getSchedRead(Idx) : getSchedWrite(Idx); } CodeGenSchedRW &getSchedRW(Record *Def) { bool IsRead = Def->isSubClassOf("SchedRead"); unsigned Idx = getSchedRWIdx(Def, IsRead); return const_cast<CodeGenSchedRW&>( IsRead ? getSchedRead(Idx) : getSchedWrite(Idx)); } const CodeGenSchedRW &getSchedRW(Record*Def) const { return const_cast<CodeGenSchedModels&>(*this).getSchedRW(Def); } unsigned getSchedRWIdx(Record *Def, bool IsRead, unsigned After = 0) const; // Return true if the given write record is referenced by a ReadAdvance. bool hasReadOfWrite(Record *WriteDef) const; // Get a SchedClass from its index. CodeGenSchedClass &getSchedClass(unsigned Idx) { assert(Idx < SchedClasses.size() && "bad SchedClass index"); return SchedClasses[Idx]; } const CodeGenSchedClass &getSchedClass(unsigned Idx) const { assert(Idx < SchedClasses.size() && "bad SchedClass index"); return SchedClasses[Idx]; } // Get the SchedClass index for an instruction. Instructions with no // itinerary, no SchedReadWrites, and no InstrReadWrites references return 0 // for NoItinerary. unsigned getSchedClassIdx(const CodeGenInstruction &Inst) const; typedef std::vector<CodeGenSchedClass>::const_iterator SchedClassIter; SchedClassIter schedClassBegin() const { return SchedClasses.begin(); } SchedClassIter schedClassEnd() const { return SchedClasses.end(); } unsigned numInstrSchedClasses() const { return NumInstrSchedClasses; } void findRWs(const RecVec &RWDefs, IdxVec &Writes, IdxVec &Reads) const; void findRWs(const RecVec &RWDefs, IdxVec &RWs, bool IsRead) const; void expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, bool IsRead) const; void expandRWSeqForProc(unsigned RWIdx, IdxVec &RWSeq, bool IsRead, const CodeGenProcModel &ProcModel) const; unsigned addSchedClass(Record *ItinDef, const IdxVec &OperWrites, const IdxVec &OperReads, const IdxVec &ProcIndices); unsigned findOrInsertRW(ArrayRef<unsigned> Seq, bool IsRead); unsigned findSchedClassIdx(Record *ItinClassDef, const IdxVec &Writes, const IdxVec &Reads) const; Record *findProcResUnits(Record *ProcResKind, const CodeGenProcModel &PM) const; private: void collectProcModels(); // Initialize a new processor model if it is unique. void addProcModel(Record *ProcDef); void collectSchedRW(); std::string genRWName(const IdxVec& Seq, bool IsRead); unsigned findRWForSequence(const IdxVec &Seq, bool IsRead); void collectSchedClasses(); std::string createSchedClassName(Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads); std::string createSchedClassName(const RecVec &InstDefs); void createInstRWClass(Record *InstRWDef); void collectProcItins(); void collectProcItinRW(); void inferSchedClasses(); void inferFromRW(const IdxVec &OperWrites, const IdxVec &OperReads, unsigned FromClassIdx, const IdxVec &ProcIndices); void inferFromItinClass(Record *ItinClassDef, unsigned FromClassIdx); void inferFromInstRWs(unsigned SCIdx); bool hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM); void verifyProcResourceGroups(CodeGenProcModel &PM); void collectProcResources(); void collectItinProcResources(Record *ItinClassDef); void collectRWResources(unsigned RWIdx, bool IsRead, const IdxVec &ProcIndices); void collectRWResources(const IdxVec &Writes, const IdxVec &Reads, const IdxVec &ProcIndices); void addProcResource(Record *ProcResourceKind, CodeGenProcModel &PM); void addWriteRes(Record *ProcWriteResDef, unsigned PIdx); void addReadAdvance(Record *ProcReadAdvanceDef, unsigned PIdx); }; } // namespace llvm #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DFAPacketizerEmitter.cpp
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class parses the Schedule.td file and produces an API that can be used // to reason about whether an instruction can be added to a packet on a VLIW // architecture. The class internally generates a deterministic finite // automaton (DFA) that models all possible mappings of machine instructions // to functional units as instructions are added to a packet. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <list> #include <map> #include <string> using namespace llvm; // // class DFAPacketizerEmitter: class that generates and prints out the DFA // for resource tracking. // namespace { class DFAPacketizerEmitter { private: std::string TargetName; // // allInsnClasses is the set of all possible resources consumed by an // InstrStage. // DenseSet<unsigned> allInsnClasses; RecordKeeper &Records; public: DFAPacketizerEmitter(RecordKeeper &R); // // collectAllInsnClasses: Populate allInsnClasses which is a set of units // used in each stage. // void collectAllInsnClasses(const std::string &Name, Record *ItinData, unsigned &NStages, raw_ostream &OS); void run(raw_ostream &OS); }; } // End anonymous namespace. // // // State represents the usage of machine resources if the packet contains // a set of instruction classes. // // Specifically, currentState is a set of bit-masks. // The nth bit in a bit-mask indicates whether the nth resource is being used // by this state. The set of bit-masks in a state represent the different // possible outcomes of transitioning to this state. // For example: consider a two resource architecture: resource L and resource M // with three instruction classes: L, M, and L_or_M. // From the initial state (currentState = 0x00), if we add instruction class // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This // represents the possible resource states that can result from adding a L_or_M // instruction // // Another way of thinking about this transition is we are mapping a NDFA with // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]. // // A State instance also contains a collection of transitions from that state: // a map from inputs to new states. // namespace { class State { public: static int currentStateNum; // stateNum is the only member used for equality/ordering, all other members // can be mutated even in const State objects. const int stateNum; mutable bool isInitial; mutable std::set<unsigned> stateInfo; typedef std::map<unsigned, const State *> TransitionMap; mutable TransitionMap Transitions; State(); bool operator<(const State &s) const { return stateNum < s.stateNum; } // // canAddInsnClass - Returns true if an instruction of type InsnClass is a // valid transition from this state, i.e., can an instruction of type InsnClass // be added to the packet represented by this state. // // PossibleStates is the set of valid resource states that ensue from valid // transitions. // bool canAddInsnClass(unsigned InsnClass) const; // // AddInsnClass - Return all combinations of resource reservation // which are possible from this state (PossibleStates). // void AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const; // // addTransition - Add a transition from this state given the input InsnClass // void addTransition(unsigned InsnClass, const State *To) const; // // hasTransition - Returns true if there is a transition from this state // given the input InsnClass // bool hasTransition(unsigned InsnClass) const; }; } // End anonymous namespace. // // class DFA: deterministic finite automaton for processor resource tracking. // namespace { class DFA { public: DFA(); // Set of states. Need to keep this sorted to emit the transition table. typedef std::set<State> StateSet; StateSet states; State *currentState; // // Modify the DFA. // const State &newState(); // // writeTable: Print out a table representing the DFA. // void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName); }; } // End anonymous namespace. // // Constructors and destructors for State and DFA // State::State() : stateNum(currentStateNum++), isInitial(false) {} DFA::DFA(): currentState(nullptr) {} // // addTransition - Add a transition from this state given the input InsnClass // void State::addTransition(unsigned InsnClass, const State *To) const { assert(!Transitions.count(InsnClass) && "Cannot have multiple transitions for the same input"); Transitions[InsnClass] = To; } // // hasTransition - Returns true if there is a transition from this state // given the input InsnClass // bool State::hasTransition(unsigned InsnClass) const { return Transitions.count(InsnClass) > 0; } // // AddInsnClass - Return all combinations of resource reservation // which are possible from this state (PossibleStates). // void State::AddInsnClass(unsigned InsnClass, std::set<unsigned> &PossibleStates) const { // // Iterate over all resource states in currentState. // for (std::set<unsigned>::iterator SI = stateInfo.begin(); SI != stateInfo.end(); ++SI) { unsigned thisState = *SI; // // Iterate over all possible resources used in InsnClass. // For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}. // DenseSet<unsigned> VisitedResourceStates; for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) { if ((0x1 << j) & InsnClass) { // // For each possible resource used in InsnClass, generate the // resource state if that resource was used. // unsigned ResultingResourceState = thisState | (0x1 << j); // // Check if the resulting resource state can be accommodated in this // packet. // We compute ResultingResourceState OR thisState. // If the result of the OR is different than thisState, it implies // that there is at least one resource that can be used to schedule // InsnClass in the current packet. // Insert ResultingResourceState into PossibleStates only if we haven't // processed ResultingResourceState before. // if ((ResultingResourceState != thisState) && (VisitedResourceStates.count(ResultingResourceState) == 0)) { VisitedResourceStates.insert(ResultingResourceState); PossibleStates.insert(ResultingResourceState); } } } } } // // canAddInsnClass - Quickly verifies if an instruction of type InsnClass is a // valid transition from this state i.e., can an instruction of type InsnClass // be added to the packet represented by this state. // bool State::canAddInsnClass(unsigned InsnClass) const { for (std::set<unsigned>::const_iterator SI = stateInfo.begin(); SI != stateInfo.end(); ++SI) { if (~*SI & InsnClass) return true; } return false; } const State &DFA::newState() { auto IterPair = states.insert(State()); assert(IterPair.second && "State already exists"); return *IterPair.first; } int State::currentStateNum = 0; DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R): TargetName(CodeGenTarget(R).getName()), allInsnClasses(), Records(R) {} // // writeTableAndAPI - Print out a table representing the DFA and the // associated API to create a DFA packetizer. // // Format: // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid // transitions. // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for // the ith state. // // void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName) { static const std::string SentinelEntry = "{-1, -1}"; DFA::StateSet::iterator SI = states.begin(); // This table provides a map to the beginning of the transitions for State s // in DFAStateInputTable. std::vector<int> StateEntry(states.size()); OS << "namespace llvm {\n\n"; OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n"; // Tracks the total valid transitions encountered so far. It is used // to construct the StateEntry table. int ValidTransitions = 0; for (unsigned i = 0; i < states.size(); ++i, ++SI) { assert ((SI->stateNum == (int) i) && "Mismatch in state numbers"); StateEntry[i] = ValidTransitions; for (State::TransitionMap::iterator II = SI->Transitions.begin(), IE = SI->Transitions.end(); II != IE; ++II) { OS << "{" << II->first << ", " << II->second->stateNum << "}, "; } ValidTransitions += SI->Transitions.size(); // If there are no valid transitions from this stage, we need a sentinel // transition. if (ValidTransitions == StateEntry[i]) { OS << SentinelEntry << ","; ++ValidTransitions; } OS << "\n"; } // Print out a sentinel entry at the end of the StateInputTable. This is // needed to iterate over StateInputTable in DFAPacketizer::ReadTable() OS << SentinelEntry << "\n"; OS << "};\n\n"; OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n"; // Multiply i by 2 since each entry in DFAStateInputTable is a set of // two numbers. for (unsigned i = 0; i < states.size(); ++i) OS << StateEntry[i] << ", "; // Print out the index to the sentinel entry in StateInputTable OS << ValidTransitions << ", "; OS << "\n};\n"; OS << "} // namespace\n"; // // Emit DFA Packetizer tables if the target is a VLIW machine. // std::string SubTargetClassName = TargetName + "GenSubtargetInfo"; OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n"; OS << "namespace llvm {\n"; OS << "DFAPacketizer *" << SubTargetClassName << "::" << "createDFAPacketizer(const InstrItineraryData *IID) const {\n" << " return new DFAPacketizer(IID, " << TargetName << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n"; OS << "} // End llvm namespace \n"; } // // collectAllInsnClasses - Populate allInsnClasses which is a set of units // used in each stage. // void DFAPacketizerEmitter::collectAllInsnClasses(const std::string &Name, Record *ItinData, unsigned &NStages, raw_ostream &OS) { // Collect processor itineraries. std::vector<Record*> ProcItinList = Records.getAllDerivedDefinitions("ProcessorItineraries"); // If just no itinerary then don't bother. if (ProcItinList.size() < 2) return; std::map<std::string, unsigned> NameToBitsMap; // Parse functional units for all the itineraries. for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) { Record *Proc = ProcItinList[i]; std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU"); // Convert macros to bits for each stage. for (unsigned i = 0, N = FUs.size(); i < N; ++i) NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i); } const std::vector<Record*> &StageList = ItinData->getValueAsListOfDefs("Stages"); // The number of stages. NStages = StageList.size(); // For each unit. unsigned UnitBitValue = 0; // Compute the bitwise or of each unit used in this stage. for (unsigned i = 0; i < NStages; ++i) { const Record *Stage = StageList[i]; // Get unit list. const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); for (unsigned j = 0, M = UnitList.size(); j < M; ++j) { // Conduct bitwise or. std::string UnitName = UnitList[j]->getName(); assert(NameToBitsMap.count(UnitName)); UnitBitValue |= NameToBitsMap[UnitName]; } if (UnitBitValue != 0) allInsnClasses.insert(UnitBitValue); } } // // Run the worklist algorithm to generate the DFA. // void DFAPacketizerEmitter::run(raw_ostream &OS) { // Collect processor iteraries. std::vector<Record*> ProcItinList = Records.getAllDerivedDefinitions("ProcessorItineraries"); // // Collect the instruction classes. // for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) { Record *Proc = ProcItinList[i]; // Get processor itinerary name. const std::string &Name = Proc->getName(); // Skip default. if (Name == "NoItineraries") continue; // Sanity check for at least one instruction itinerary class. unsigned NItinClasses = Records.getAllDerivedDefinitions("InstrItinClass").size(); if (NItinClasses == 0) return; // Get itinerary data list. std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID"); // Collect instruction classes for all itinerary data. for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) { Record *ItinData = ItinDataList[j]; unsigned NStages; collectAllInsnClasses(Name, ItinData, NStages, OS); } } // // Run a worklist algorithm to generate the DFA. // DFA D; const State *Initial = &D.newState(); Initial->isInitial = true; Initial->stateInfo.insert(0x0); SmallVector<const State*, 32> WorkList; std::map<std::set<unsigned>, const State*> Visited; WorkList.push_back(Initial); // // Worklist algorithm to create a DFA for processor resource tracking. // C = {set of InsnClasses} // Begin with initial node in worklist. Initial node does not have // any consumed resources, // ResourceState = 0x0 // Visited = {} // While worklist != empty // S = first element of worklist // For every instruction class C // if we can accommodate C in S: // S' = state with resource states = {S Union C} // Add a new transition: S x C -> S' // If S' is not in Visited: // Add S' to worklist // Add S' to Visited // while (!WorkList.empty()) { const State *current = WorkList.pop_back_val(); for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(), CE = allInsnClasses.end(); CI != CE; ++CI) { unsigned InsnClass = *CI; std::set<unsigned> NewStateResources; // // If we haven't already created a transition for this input // and the state can accommodate this InsnClass, create a transition. // if (!current->hasTransition(InsnClass) && current->canAddInsnClass(InsnClass)) { const State *NewState; current->AddInsnClass(InsnClass, NewStateResources); assert(!NewStateResources.empty() && "New states must be generated"); // // If we have seen this state before, then do not create a new state. // // auto VI = Visited.find(NewStateResources); if (VI != Visited.end()) NewState = VI->second; else { NewState = &D.newState(); NewState->stateInfo = NewStateResources; Visited[NewStateResources] = NewState; WorkList.push_back(NewState); } current->addTransition(InsnClass, NewState); } } } // Print out the table. D.writeTableAndAPI(OS, TargetName); } namespace llvm { void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Target DFA Packetizer Tables", OS); DFAPacketizerEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenRegisters.h
//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H #define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" #include <cstdlib> #include <list> #include <map> #include <set> #include <string> #include <vector> #include <deque> namespace llvm { class CodeGenRegBank; /// Used to encode a step in a register lane mask transformation. /// Mask the bits specified in Mask, then rotate them Rol bits to the left /// assuming a wraparound at 32bits. struct MaskRolPair { unsigned Mask; uint8_t RotateLeft; bool operator==(const MaskRolPair Other) const { return Mask == Other.Mask && RotateLeft == Other.RotateLeft; } bool operator!=(const MaskRolPair Other) const { return Mask != Other.Mask || RotateLeft != Other.RotateLeft; } }; /// CodeGenSubRegIndex - Represents a sub-register index. class CodeGenSubRegIndex { Record *const TheDef; std::string Name; std::string Namespace; public: uint16_t Size; uint16_t Offset; const unsigned EnumValue; mutable unsigned LaneMask; mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform; // Are all super-registers containing this SubRegIndex covered by their // sub-registers? bool AllSuperRegsCovered; CodeGenSubRegIndex(Record *R, unsigned Enum); CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum); const std::string &getName() const { return Name; } const std::string &getNamespace() const { return Namespace; } std::string getQualifiedName() const; // Map of composite subreg indices. typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *, deref<llvm::less>> CompMap; // Returns the subreg index that results from composing this with Idx. // Returns NULL if this and Idx don't compose. CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const { CompMap::const_iterator I = Composed.find(Idx); return I == Composed.end() ? nullptr : I->second; } // Add a composite subreg index: this+A = B. // Return a conflicting composite, or NULL CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B) { assert(A && B); std::pair<CompMap::iterator, bool> Ins = Composed.insert(std::make_pair(A, B)); // Synthetic subreg indices that aren't contiguous (for instance ARM // register tuples) don't have a bit range, so it's OK to let // B->Offset == -1. For the other cases, accumulate the offset and set // the size here. Only do so if there is no offset yet though. if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) && (B->Offset == (uint16_t)-1)) { B->Offset = Offset + A->Offset; B->Size = A->Size; } return (Ins.second || Ins.first->second == B) ? nullptr : Ins.first->second; } // Update the composite maps of components specified in 'ComposedOf'. void updateComponents(CodeGenRegBank&); // Return the map of composites. const CompMap &getComposites() const { return Composed; } // Compute LaneMask from Composed. Return LaneMask. unsigned computeLaneMask() const; private: CompMap Composed; }; inline bool operator<(const CodeGenSubRegIndex &A, const CodeGenSubRegIndex &B) { return A.EnumValue < B.EnumValue; } /// CodeGenRegister - Represents a register definition. struct CodeGenRegister { Record *TheDef; unsigned EnumValue; unsigned CostPerUse; bool CoveredBySubRegs; bool HasDisjunctSubRegs; // Map SubRegIndex -> Register. typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *, deref<llvm::less>> SubRegMap; CodeGenRegister(Record *R, unsigned Enum); const std::string &getName() const; // Extract more information from TheDef. This is used to build an object // graph after all CodeGenRegister objects have been created. void buildObjectGraph(CodeGenRegBank&); // Lazily compute a map of all sub-registers. // This includes unique entries for all sub-sub-registers. const SubRegMap &computeSubRegs(CodeGenRegBank&); // Compute extra sub-registers by combining the existing sub-registers. void computeSecondarySubRegs(CodeGenRegBank&); // Add this as a super-register to all sub-registers after the sub-register // graph has been built. void computeSuperRegs(CodeGenRegBank&); const SubRegMap &getSubRegs() const { assert(SubRegsComplete && "Must precompute sub-registers"); return SubRegs; } // Add sub-registers to OSet following a pre-order defined by the .td file. void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, CodeGenRegBank&) const; // Return the sub-register index naming Reg as a sub-register of this // register. Returns NULL if Reg is not a sub-register. CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const { return SubReg2Idx.lookup(Reg); } typedef std::vector<const CodeGenRegister*> SuperRegList; // Get the list of super-registers in topological order, small to large. // This is valid after computeSubRegs visits all registers during RegBank // construction. const SuperRegList &getSuperRegs() const { assert(SubRegsComplete && "Must precompute sub-registers"); return SuperRegs; } // Get the list of ad hoc aliases. The graph is symmetric, so the list // contains all registers in 'Aliases', and all registers that mention this // register in 'Aliases'. ArrayRef<CodeGenRegister*> getExplicitAliases() const { return ExplicitAliases; } // Get the topological signature of this register. This is a small integer // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have // identical sub-register structure. That is, they support the same set of // sub-register indices mapping to the same kind of sub-registers // (TopoSig-wise). unsigned getTopoSig() const { assert(SuperRegsComplete && "TopoSigs haven't been computed yet."); return TopoSig; } // List of register units in ascending order. typedef SparseBitVector<> RegUnitList; typedef SmallVector<unsigned, 16> RegUnitLaneMaskList; // How many entries in RegUnitList are native? RegUnitList NativeRegUnits; // Get the list of register units. // This is only valid after computeSubRegs() completes. const RegUnitList &getRegUnits() const { return RegUnits; } ArrayRef<unsigned> getRegUnitLaneMasks() const { return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count()); } // Get the native register units. This is a prefix of getRegUnits(). RegUnitList getNativeRegUnits() const { return NativeRegUnits; } void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) { RegUnitLaneMasks = LaneMasks; } // Inherit register units from subregisters. // Return true if the RegUnits changed. bool inheritRegUnits(CodeGenRegBank &RegBank); // Adopt a register unit for pressure tracking. // A unit is adopted iff its unit number is >= NativeRegUnits.count(). void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); } // Get the sum of this register's register unit weights. unsigned getWeight(const CodeGenRegBank &RegBank) const; // Canonically ordered set. typedef std::vector<const CodeGenRegister*> Vec; private: bool SubRegsComplete; bool SuperRegsComplete; unsigned TopoSig; // The sub-registers explicit in the .td file form a tree. SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices; SmallVector<CodeGenRegister*, 8> ExplicitSubRegs; // Explicit ad hoc aliases, symmetrized to form an undirected graph. SmallVector<CodeGenRegister*, 8> ExplicitAliases; // Super-registers where this is the first explicit sub-register. SuperRegList LeadingSuperRegs; SubRegMap SubRegs; SuperRegList SuperRegs; DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx; RegUnitList RegUnits; RegUnitLaneMaskList RegUnitLaneMasks; }; inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) { return A.EnumValue < B.EnumValue; } inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) { return A.EnumValue == B.EnumValue; } class CodeGenRegisterClass { CodeGenRegister::Vec Members; // Allocation orders. Order[0] always contains all registers in Members. std::vector<SmallVector<Record*, 16> > Orders; // Bit mask of sub-classes including this, indexed by their EnumValue. BitVector SubClasses; // List of super-classes, topologocally ordered to have the larger classes // first. This is the same as sorting by EnumValue. SmallVector<CodeGenRegisterClass*, 4> SuperClasses; Record *TheDef; std::string Name; // For a synthesized class, inherit missing properties from the nearest // super-class. void inheritProperties(CodeGenRegBank&); // Map SubRegIndex -> sub-class. This is the largest sub-class where all // registers have a SubRegIndex sub-register. DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *> SubClassWithSubReg; // Map SubRegIndex -> set of super-reg classes. This is all register // classes SuperRC such that: // // R:SubRegIndex in this RC for all R in SuperRC. // DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>> SuperRegClasses; // Bit vector of TopoSigs for the registers in this class. This will be // very sparse on regular architectures. BitVector TopoSigs; public: unsigned EnumValue; std::string Namespace; SmallVector<MVT::SimpleValueType, 4> VTs; unsigned SpillSize; unsigned SpillAlignment; int CopyCost; bool Allocatable; std::string AltOrderSelect; uint8_t AllocationPriority; /// Contains the combination of the lane masks of all subregisters. unsigned LaneMask; /// True if there are at least 2 subregisters which do not interfere. bool HasDisjunctSubRegs; // Return the Record that defined this class, or NULL if the class was // created by TableGen. Record *getDef() const { return TheDef; } const std::string &getName() const { return Name; } std::string getQualifiedName() const; ArrayRef<MVT::SimpleValueType> getValueTypes() const {return VTs;} unsigned getNumValueTypes() const { return VTs.size(); } MVT::SimpleValueType getValueTypeNum(unsigned VTNum) const { if (VTNum < VTs.size()) return VTs[VTNum]; llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!"); } // Return true if this this class contains the register. bool contains(const CodeGenRegister*) const; // Returns true if RC is a subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // bool hasSubClass(const CodeGenRegisterClass *RC) const { return SubClasses.test(RC->EnumValue); } // getSubClassWithSubReg - Returns the largest sub-class where all // registers have a SubIdx sub-register. CodeGenRegisterClass * getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const { return SubClassWithSubReg.lookup(SubIdx); } void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx, CodeGenRegisterClass *SubRC) { SubClassWithSubReg[SubIdx] = SubRC; } // getSuperRegClasses - Returns a bit vector of all register classes // containing only SubIdx super-registers of this class. void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, BitVector &Out) const; // addSuperRegClass - Add a class containing only SudIdx super-registers. void addSuperRegClass(CodeGenSubRegIndex *SubIdx, CodeGenRegisterClass *SuperRC) { SuperRegClasses[SubIdx].insert(SuperRC); } // getSubClasses - Returns a constant BitVector of subclasses indexed by // EnumValue. // The SubClasses vector includes an entry for this class. const BitVector &getSubClasses() const { return SubClasses; } // getSuperClasses - Returns a list of super classes ordered by EnumValue. // The array does not include an entry for this class. ArrayRef<CodeGenRegisterClass*> getSuperClasses() const { return SuperClasses; } // Returns an ordered list of class members. // The order of registers is the same as in the .td file. // No = 0 is the default allocation order, No = 1 is the first alternative. ArrayRef<Record*> getOrder(unsigned No = 0) const { return Orders[No]; } // Return the total number of allocation orders available. unsigned getNumOrders() const { return Orders.size(); } // Get the set of registers. This set contains the same registers as // getOrder(0). const CodeGenRegister::Vec &getMembers() const { return Members; } // Get a bit vector of TopoSigs present in this register class. const BitVector &getTopoSigs() const { return TopoSigs; } // Populate a unique sorted list of units from a register set. void buildRegUnitSet(std::vector<unsigned> &RegUnits) const; CodeGenRegisterClass(CodeGenRegBank&, Record *R); // A key representing the parts of a register class used for forming // sub-classes. Note the ordering provided by this key is not the same as // the topological order used for the EnumValues. struct Key { const CodeGenRegister::Vec *Members; unsigned SpillSize; unsigned SpillAlignment; Key(const CodeGenRegister::Vec *M, unsigned S = 0, unsigned A = 0) : Members(M), SpillSize(S), SpillAlignment(A) {} Key(const CodeGenRegisterClass &RC) : Members(&RC.getMembers()), SpillSize(RC.SpillSize), SpillAlignment(RC.SpillAlignment) {} // Lexicographical order of (Members, SpillSize, SpillAlignment). bool operator<(const Key&) const; }; // Create a non-user defined register class. CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props); // Called by CodeGenRegBank::CodeGenRegBank(). static void computeSubClasses(CodeGenRegBank&); }; // Register units are used to model interference and register pressure. // Every register is assigned one or more register units such that two // registers overlap if and only if they have a register unit in common. // // Normally, one register unit is created per leaf register. Non-leaf // registers inherit the units of their sub-registers. struct RegUnit { // Weight assigned to this RegUnit for estimating register pressure. // This is useful when equalizing weights in register classes with mixed // register topologies. unsigned Weight; // Each native RegUnit corresponds to one or two root registers. The full // set of registers containing this unit can be computed as the union of // these two registers and their super-registers. const CodeGenRegister *Roots[2]; // Index into RegClassUnitSets where we can find the list of UnitSets that // contain this unit. unsigned RegClassUnitSetsIdx; RegUnit() : Weight(0), RegClassUnitSetsIdx(0) { Roots[0] = Roots[1] = nullptr; } ArrayRef<const CodeGenRegister*> getRoots() const { assert(!(Roots[1] && !Roots[0]) && "Invalid roots array"); return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]); } }; // Each RegUnitSet is a sorted vector with a name. struct RegUnitSet { typedef std::vector<unsigned>::const_iterator iterator; std::string Name; std::vector<unsigned> Units; unsigned Weight; // Cache the sum of all unit weights. unsigned Order; // Cache the sort key. RegUnitSet() : Weight(0), Order(0) {} }; // Base vector for identifying TopoSigs. The contents uniquely identify a // TopoSig, only computeSuperRegs needs to know how. typedef SmallVector<unsigned, 16> TopoSigId; // CodeGenRegBank - Represent a target's registers and the relations between // them. class CodeGenRegBank { SetTheory Sets; std::deque<CodeGenSubRegIndex> SubRegIndices; DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx; CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace); typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>, CodeGenSubRegIndex*> ConcatIdxMap; ConcatIdxMap ConcatIdx; // Registers. std::deque<CodeGenRegister> Registers; StringMap<CodeGenRegister*> RegistersByName; DenseMap<Record*, CodeGenRegister*> Def2Reg; unsigned NumNativeRegUnits; std::map<TopoSigId, unsigned> TopoSigs; // Includes native (0..NumNativeRegUnits-1) and adopted register units. SmallVector<RegUnit, 8> RegUnits; // Register classes. std::list<CodeGenRegisterClass> RegClasses; DenseMap<Record*, CodeGenRegisterClass*> Def2RC; typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap; RCKeyMap Key2RC; // Remember each unique set of register units. Initially, this contains a // unique set for each register class. Simliar sets are coalesced with // pruneUnitSets and new supersets are inferred during computeRegUnitSets. std::vector<RegUnitSet> RegUnitSets; // Map RegisterClass index to the index of the RegUnitSet that contains the // class's units and any inferred RegUnit supersets. // // NOTE: This could grow beyond the number of register classes when we map // register units to lists of unit sets. If the list of unit sets does not // already exist for a register class, we create a new entry in this vector. std::vector<std::vector<unsigned> > RegClassUnitSets; // Give each register unit set an order based on sorting criteria. std::vector<unsigned> RegUnitSetOrder; // Add RC to *2RC maps. void addToMaps(CodeGenRegisterClass*); // Create a synthetic sub-class if it is missing. CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC, const CodeGenRegister::Vec *Membs, StringRef Name); // Infer missing register classes. void computeInferredRegisterClasses(); void inferCommonSubClass(CodeGenRegisterClass *RC); void inferSubClassWithSubReg(CodeGenRegisterClass *RC); void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) { inferMatchingSuperRegClass(RC, RegClasses.begin()); } void inferMatchingSuperRegClass( CodeGenRegisterClass *RC, std::list<CodeGenRegisterClass>::iterator FirstSubRegRC); // Iteratively prune unit sets. void pruneUnitSets(); // Compute a weight for each register unit created during getSubRegs. void computeRegUnitWeights(); // Create a RegUnitSet for each RegClass and infer superclasses. void computeRegUnitSets(); // Populate the Composite map from sub-register relationships. void computeComposites(); // Compute a lane mask for each sub-register index. void computeSubRegLaneMasks(); /// Computes a lane mask for each register unit enumerated by a physical /// register. void computeRegUnitLaneMasks(); public: CodeGenRegBank(RecordKeeper&); SetTheory &getSets() { return Sets; } // Sub-register indices. The first NumNamedIndices are defined by the user // in the .td files. The rest are synthesized such that all sub-registers // have a unique name. const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const { return SubRegIndices; } // Find a SubRegIndex form its Record def. CodeGenSubRegIndex *getSubRegIdx(Record*); // Find or create a sub-register index representing the A+B composition. CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B); // Find or create a sub-register index representing the concatenation of // non-overlapping sibling indices. CodeGenSubRegIndex * getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&); void addConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts, CodeGenSubRegIndex *Idx) { ConcatIdx.insert(std::make_pair(Parts, Idx)); } const std::deque<CodeGenRegister> &getRegisters() { return Registers; } const StringMap<CodeGenRegister*> &getRegistersByName() { return RegistersByName; } // Find a register from its Record def. CodeGenRegister *getReg(Record*); // Get a Register's index into the Registers array. unsigned getRegIndex(const CodeGenRegister *Reg) const { return Reg->EnumValue - 1; } // Return the number of allocated TopoSigs. The first TopoSig representing // leaf registers is allocated number 0. unsigned getNumTopoSigs() const { return TopoSigs.size(); } // Find or create a TopoSig for the given TopoSigId. // This function is only for use by CodeGenRegister::computeSuperRegs(). // Others should simply use Reg->getTopoSig(). unsigned getTopoSig(const TopoSigId &Id) { return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second; } // Create a native register unit that is associated with one or two root // registers. unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) { RegUnits.resize(RegUnits.size() + 1); RegUnits.back().Roots[0] = R0; RegUnits.back().Roots[1] = R1; return RegUnits.size() - 1; } // Create a new non-native register unit that can be adopted by a register // to increase its pressure. Note that NumNativeRegUnits is not increased. unsigned newRegUnit(unsigned Weight) { RegUnits.resize(RegUnits.size() + 1); RegUnits.back().Weight = Weight; return RegUnits.size() - 1; } // Native units are the singular unit of a leaf register. Register aliasing // is completely characterized by native units. Adopted units exist to give // register additional weight but don't affect aliasing. bool isNativeUnit(unsigned RUID) { return RUID < NumNativeRegUnits; } unsigned getNumNativeRegUnits() const { return NumNativeRegUnits; } RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; } const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; } std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; } const std::list<CodeGenRegisterClass> &getRegClasses() const { return RegClasses; } // Find a register class from its def. CodeGenRegisterClass *getRegClass(Record*); /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register /// class, return null. If the register is in multiple classes, and the /// classes have a superset-subset relationship and the same set of types, /// return the superclass. Otherwise return null. const CodeGenRegisterClass* getRegClassForRegister(Record *R); // Get the sum of unit weights. unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const { unsigned Weight = 0; for (std::vector<unsigned>::const_iterator I = Units.begin(), E = Units.end(); I != E; ++I) Weight += getRegUnit(*I).Weight; return Weight; } unsigned getRegSetIDAt(unsigned Order) const { return RegUnitSetOrder[Order]; } const RegUnitSet &getRegSetAt(unsigned Order) const { return RegUnitSets[RegUnitSetOrder[Order]]; } // Increase a RegUnitWeight. void increaseRegUnitWeight(unsigned RUID, unsigned Inc) { getRegUnit(RUID).Weight += Inc; } // Get the number of register pressure dimensions. unsigned getNumRegPressureSets() const { return RegUnitSets.size(); } // Get a set of register unit IDs for a given dimension of pressure. const RegUnitSet &getRegPressureSet(unsigned Idx) const { return RegUnitSets[Idx]; } // The number of pressure set lists may be larget than the number of // register classes if some register units appeared in a list of sets that // did not correspond to an existing register class. unsigned getNumRegClassPressureSetLists() const { return RegClassUnitSets.size(); } // Get a list of pressure set IDs for a register class. Liveness of a // register in this class impacts each pressure set in this list by the // weight of the register. An exact solution requires all registers in a // class to have the same class, but it is not strictly guaranteed. ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const { return RegClassUnitSets[RCIdx]; } // Computed derived records such as missing sub-register indices. void computeDerivedInfo(); // Compute the set of registers completely covered by the registers in Regs. // The returned BitVector will have a bit set for each register in Regs, // all sub-registers, and all super-registers that are covered by the // registers in Regs. // // This is used to compute the mask of call-preserved registers from a list // of callee-saves. BitVector computeCoveredRegisters(ArrayRef<Record*> Regs); // Bit mask of lanes that cover their registers. A sub-register index whose // LaneMask is contained in CoveringLanes will be completely covered by // another sub-register with the same or larger lane mask. unsigned CoveringLanes; }; } #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DAGISelMatcherEmitter.cpp
//===- DAGISelMatcherEmitter.cpp - Matcher Emitter ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains code to generate C++ code for a matcher. // //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/TableGen/Record.h" using namespace llvm; enum { CommentIndent = 30 }; // To reduce generated source code size. static cl::opt<bool> OmitComments("omit-comments", cl::desc("Do not generate comments"), cl::init(false)); namespace { class MatcherTableEmitter { const CodeGenDAGPatterns &CGP; DenseMap<TreePattern *, unsigned> NodePredicateMap; std::vector<TreePredicateFn> NodePredicates; StringMap<unsigned> PatternPredicateMap; std::vector<std::string> PatternPredicates; DenseMap<const ComplexPattern*, unsigned> ComplexPatternMap; std::vector<const ComplexPattern*> ComplexPatterns; DenseMap<Record*, unsigned> NodeXFormMap; std::vector<Record*> NodeXForms; public: MatcherTableEmitter(const CodeGenDAGPatterns &cgp) : CGP(cgp) {} unsigned EmitMatcherList(const Matcher *N, unsigned Indent, unsigned StartIdx, formatted_raw_ostream &OS); void EmitPredicateFunctions(formatted_raw_ostream &OS); void EmitHistogram(const Matcher *N, formatted_raw_ostream &OS); private: unsigned EmitMatcher(const Matcher *N, unsigned Indent, unsigned CurrentIdx, formatted_raw_ostream &OS); unsigned getNodePredicate(TreePredicateFn Pred) { unsigned &Entry = NodePredicateMap[Pred.getOrigPatFragRecord()]; if (Entry == 0) { NodePredicates.push_back(Pred); Entry = NodePredicates.size(); } return Entry-1; } unsigned getPatternPredicate(StringRef PredName) { unsigned &Entry = PatternPredicateMap[PredName]; if (Entry == 0) { PatternPredicates.push_back(PredName.str()); Entry = PatternPredicates.size(); } return Entry-1; } unsigned getComplexPat(const ComplexPattern &P) { unsigned &Entry = ComplexPatternMap[&P]; if (Entry == 0) { ComplexPatterns.push_back(&P); Entry = ComplexPatterns.size(); } return Entry-1; } unsigned getNodeXFormID(Record *Rec) { unsigned &Entry = NodeXFormMap[Rec]; if (Entry == 0) { NodeXForms.push_back(Rec); Entry = NodeXForms.size(); } return Entry-1; } }; } // end anonymous namespace. static unsigned GetVBRSize(unsigned Val) { if (Val <= 127) return 1; unsigned NumBytes = 0; while (Val >= 128) { Val >>= 7; ++NumBytes; } return NumBytes+1; } /// EmitVBRValue - Emit the specified value as a VBR, returning the number of /// bytes emitted. static uint64_t EmitVBRValue(uint64_t Val, raw_ostream &OS) { if (Val <= 127) { OS << Val << ", "; return 1; } uint64_t InVal = Val; unsigned NumBytes = 0; while (Val >= 128) { OS << (Val&127) << "|128,"; Val >>= 7; ++NumBytes; } OS << Val; if (!OmitComments) OS << "/*" << InVal << "*/"; OS << ", "; return NumBytes+1; } /// EmitMatcher - Emit bytes for the specified matcher and return /// the number of bytes emitted. unsigned MatcherTableEmitter:: EmitMatcher(const Matcher *N, unsigned Indent, unsigned CurrentIdx, formatted_raw_ostream &OS) { OS.PadToColumn(Indent*2); switch (N->getKind()) { case Matcher::Scope: { const ScopeMatcher *SM = cast<ScopeMatcher>(N); assert(SM->getNext() == nullptr && "Shouldn't have next after scope"); unsigned StartIdx = CurrentIdx; // Emit all of the children. for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) { if (i == 0) { OS << "OPC_Scope, "; ++CurrentIdx; } else { if (!OmitComments) { OS << "/*" << CurrentIdx << "*/"; OS.PadToColumn(Indent*2) << "/*Scope*/ "; } else OS.PadToColumn(Indent*2); } // We need to encode the child and the offset of the failure code before // emitting either of them. Handle this by buffering the output into a // string while we get the size. Unfortunately, the offset of the // children depends on the VBR size of the child, so for large children we // have to iterate a bit. SmallString<128> TmpBuf; unsigned ChildSize = 0; unsigned VBRSize = 0; do { VBRSize = GetVBRSize(ChildSize); TmpBuf.clear(); raw_svector_ostream OS(TmpBuf); formatted_raw_ostream FOS(OS); ChildSize = EmitMatcherList(SM->getChild(i), Indent+1, CurrentIdx+VBRSize, FOS); } while (GetVBRSize(ChildSize) != VBRSize); assert(ChildSize != 0 && "Should not have a zero-sized child!"); CurrentIdx += EmitVBRValue(ChildSize, OS); if (!OmitComments) { OS << "/*->" << CurrentIdx+ChildSize << "*/"; if (i == 0) OS.PadToColumn(CommentIndent) << "// " << SM->getNumChildren() << " children in Scope"; } OS << '\n' << TmpBuf; CurrentIdx += ChildSize; } // Emit a zero as a sentinel indicating end of 'Scope'. if (!OmitComments) OS << "/*" << CurrentIdx << "*/"; OS.PadToColumn(Indent*2) << "0, "; if (!OmitComments) OS << "/*End of Scope*/"; OS << '\n'; return CurrentIdx - StartIdx + 1; } case Matcher::RecordNode: OS << "OPC_RecordNode,"; if (!OmitComments) OS.PadToColumn(CommentIndent) << "// #" << cast<RecordMatcher>(N)->getResultNo() << " = " << cast<RecordMatcher>(N)->getWhatFor(); OS << '\n'; return 1; case Matcher::RecordChild: OS << "OPC_RecordChild" << cast<RecordChildMatcher>(N)->getChildNo() << ','; if (!OmitComments) OS.PadToColumn(CommentIndent) << "// #" << cast<RecordChildMatcher>(N)->getResultNo() << " = " << cast<RecordChildMatcher>(N)->getWhatFor(); OS << '\n'; return 1; case Matcher::RecordMemRef: OS << "OPC_RecordMemRef,\n"; return 1; case Matcher::CaptureGlueInput: OS << "OPC_CaptureGlueInput,\n"; return 1; case Matcher::MoveChild: OS << "OPC_MoveChild, " << cast<MoveChildMatcher>(N)->getChildNo() << ",\n"; return 2; case Matcher::MoveParent: OS << "OPC_MoveParent,\n"; return 1; case Matcher::CheckSame: OS << "OPC_CheckSame, " << cast<CheckSameMatcher>(N)->getMatchNumber() << ",\n"; return 2; case Matcher::CheckChildSame: OS << "OPC_CheckChild" << cast<CheckChildSameMatcher>(N)->getChildNo() << "Same, " << cast<CheckChildSameMatcher>(N)->getMatchNumber() << ",\n"; return 2; case Matcher::CheckPatternPredicate: { StringRef Pred =cast<CheckPatternPredicateMatcher>(N)->getPredicate(); OS << "OPC_CheckPatternPredicate, " << getPatternPredicate(Pred) << ','; if (!OmitComments) OS.PadToColumn(CommentIndent) << "// " << Pred; OS << '\n'; return 2; } case Matcher::CheckPredicate: { TreePredicateFn Pred = cast<CheckPredicateMatcher>(N)->getPredicate(); OS << "OPC_CheckPredicate, " << getNodePredicate(Pred) << ','; if (!OmitComments) OS.PadToColumn(CommentIndent) << "// " << Pred.getFnName(); OS << '\n'; return 2; } case Matcher::CheckOpcode: OS << "OPC_CheckOpcode, TARGET_VAL(" << cast<CheckOpcodeMatcher>(N)->getOpcode().getEnumName() << "),\n"; return 3; case Matcher::SwitchOpcode: case Matcher::SwitchType: { unsigned StartIdx = CurrentIdx; unsigned NumCases; if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) { OS << "OPC_SwitchOpcode "; NumCases = SOM->getNumCases(); } else { OS << "OPC_SwitchType "; NumCases = cast<SwitchTypeMatcher>(N)->getNumCases(); } if (!OmitComments) OS << "/*" << NumCases << " cases */"; OS << ", "; ++CurrentIdx; // For each case we emit the size, then the opcode, then the matcher. for (unsigned i = 0, e = NumCases; i != e; ++i) { const Matcher *Child; unsigned IdxSize; if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) { Child = SOM->getCaseMatcher(i); IdxSize = 2; // size of opcode in table is 2 bytes. } else { Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i); IdxSize = 1; // size of type in table is 1 byte. } // We need to encode the opcode and the offset of the case code before // emitting the case code. Handle this by buffering the output into a // string while we get the size. Unfortunately, the offset of the // children depends on the VBR size of the child, so for large children we // have to iterate a bit. SmallString<128> TmpBuf; unsigned ChildSize = 0; unsigned VBRSize = 0; do { VBRSize = GetVBRSize(ChildSize); TmpBuf.clear(); raw_svector_ostream OS(TmpBuf); formatted_raw_ostream FOS(OS); ChildSize = EmitMatcherList(Child, Indent+1, CurrentIdx+VBRSize+IdxSize, FOS); } while (GetVBRSize(ChildSize) != VBRSize); assert(ChildSize != 0 && "Should not have a zero-sized child!"); if (i != 0) { if (!OmitComments) OS << "/*" << CurrentIdx << "*/"; OS.PadToColumn(Indent*2); if (!OmitComments) OS << (isa<SwitchOpcodeMatcher>(N) ? "/*SwitchOpcode*/ " : "/*SwitchType*/ "); } // Emit the VBR. CurrentIdx += EmitVBRValue(ChildSize, OS); if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) OS << "TARGET_VAL(" << SOM->getCaseOpcode(i).getEnumName() << "),"; else OS << getEnumName(cast<SwitchTypeMatcher>(N)->getCaseType(i)) << ','; CurrentIdx += IdxSize; if (!OmitComments) OS << "// ->" << CurrentIdx+ChildSize; OS << '\n'; OS << TmpBuf; CurrentIdx += ChildSize; } // Emit the final zero to terminate the switch. if (!OmitComments) OS << "/*" << CurrentIdx << "*/"; OS.PadToColumn(Indent*2) << "0, "; if (!OmitComments) OS << (isa<SwitchOpcodeMatcher>(N) ? "// EndSwitchOpcode" : "// EndSwitchType"); OS << '\n'; ++CurrentIdx; return CurrentIdx-StartIdx; } case Matcher::CheckType: assert(cast<CheckTypeMatcher>(N)->getResNo() == 0 && "FIXME: Add support for CheckType of resno != 0"); OS << "OPC_CheckType, " << getEnumName(cast<CheckTypeMatcher>(N)->getType()) << ",\n"; return 2; case Matcher::CheckChildType: OS << "OPC_CheckChild" << cast<CheckChildTypeMatcher>(N)->getChildNo() << "Type, " << getEnumName(cast<CheckChildTypeMatcher>(N)->getType()) << ",\n"; return 2; case Matcher::CheckInteger: { OS << "OPC_CheckInteger, "; unsigned Bytes=1+EmitVBRValue(cast<CheckIntegerMatcher>(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckChildInteger: { OS << "OPC_CheckChild" << cast<CheckChildIntegerMatcher>(N)->getChildNo() << "Integer, "; unsigned Bytes=1+EmitVBRValue(cast<CheckChildIntegerMatcher>(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckCondCode: OS << "OPC_CheckCondCode, ISD::" << cast<CheckCondCodeMatcher>(N)->getCondCodeName() << ",\n"; return 2; case Matcher::CheckValueType: OS << "OPC_CheckValueType, MVT::" << cast<CheckValueTypeMatcher>(N)->getTypeName() << ",\n"; return 2; case Matcher::CheckComplexPat: { const CheckComplexPatMatcher *CCPM = cast<CheckComplexPatMatcher>(N); const ComplexPattern &Pattern = CCPM->getPattern(); OS << "OPC_CheckComplexPat, /*CP*/" << getComplexPat(Pattern) << ", /*#*/" << CCPM->getMatchNumber() << ','; if (!OmitComments) { OS.PadToColumn(CommentIndent) << "// " << Pattern.getSelectFunc(); OS << ":$" << CCPM->getName(); for (unsigned i = 0, e = Pattern.getNumOperands(); i != e; ++i) OS << " #" << CCPM->getFirstResult()+i; if (Pattern.hasProperty(SDNPHasChain)) OS << " + chain result"; } OS << '\n'; return 3; } case Matcher::CheckAndImm: { OS << "OPC_CheckAndImm, "; unsigned Bytes=1+EmitVBRValue(cast<CheckAndImmMatcher>(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckOrImm: { OS << "OPC_CheckOrImm, "; unsigned Bytes = 1+EmitVBRValue(cast<CheckOrImmMatcher>(N)->getValue(), OS); OS << '\n'; return Bytes; } case Matcher::CheckFoldableChainNode: OS << "OPC_CheckFoldableChainNode,\n"; return 1; case Matcher::EmitInteger: { int64_t Val = cast<EmitIntegerMatcher>(N)->getValue(); OS << "OPC_EmitInteger, " << getEnumName(cast<EmitIntegerMatcher>(N)->getVT()) << ", "; unsigned Bytes = 2+EmitVBRValue(Val, OS); OS << '\n'; return Bytes; } case Matcher::EmitStringInteger: { const std::string &Val = cast<EmitStringIntegerMatcher>(N)->getValue(); // These should always fit into one byte. OS << "OPC_EmitInteger, " << getEnumName(cast<EmitStringIntegerMatcher>(N)->getVT()) << ", " << Val << ",\n"; return 3; } case Matcher::EmitRegister: { const EmitRegisterMatcher *Matcher = cast<EmitRegisterMatcher>(N); const CodeGenRegister *Reg = Matcher->getReg(); // If the enum value of the register is larger than one byte can handle, // use EmitRegister2. if (Reg && Reg->EnumValue > 255) { OS << "OPC_EmitRegister2, " << getEnumName(Matcher->getVT()) << ", "; OS << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n"; return 4; } else { OS << "OPC_EmitRegister, " << getEnumName(Matcher->getVT()) << ", "; if (Reg) { OS << getQualifiedName(Reg->TheDef) << ",\n"; } else { OS << "0 "; if (!OmitComments) OS << "/*zero_reg*/"; OS << ",\n"; } return 3; } } case Matcher::EmitConvertToTarget: OS << "OPC_EmitConvertToTarget, " << cast<EmitConvertToTargetMatcher>(N)->getSlot() << ",\n"; return 2; case Matcher::EmitMergeInputChains: { const EmitMergeInputChainsMatcher *MN = cast<EmitMergeInputChainsMatcher>(N); // Handle the specialized forms OPC_EmitMergeInputChains1_0 and 1_1. if (MN->getNumNodes() == 1 && MN->getNode(0) < 2) { OS << "OPC_EmitMergeInputChains1_" << MN->getNode(0) << ",\n"; return 1; } OS << "OPC_EmitMergeInputChains, " << MN->getNumNodes() << ", "; for (unsigned i = 0, e = MN->getNumNodes(); i != e; ++i) OS << MN->getNode(i) << ", "; OS << '\n'; return 2+MN->getNumNodes(); } case Matcher::EmitCopyToReg: OS << "OPC_EmitCopyToReg, " << cast<EmitCopyToRegMatcher>(N)->getSrcSlot() << ", " << getQualifiedName(cast<EmitCopyToRegMatcher>(N)->getDestPhysReg()) << ",\n"; return 3; case Matcher::EmitNodeXForm: { const EmitNodeXFormMatcher *XF = cast<EmitNodeXFormMatcher>(N); OS << "OPC_EmitNodeXForm, " << getNodeXFormID(XF->getNodeXForm()) << ", " << XF->getSlot() << ','; if (!OmitComments) OS.PadToColumn(CommentIndent) << "// "<<XF->getNodeXForm()->getName(); OS <<'\n'; return 3; } case Matcher::EmitNode: case Matcher::MorphNodeTo: { const EmitNodeMatcherCommon *EN = cast<EmitNodeMatcherCommon>(N); OS << (isa<EmitNodeMatcher>(EN) ? "OPC_EmitNode" : "OPC_MorphNodeTo"); OS << ", TARGET_VAL(" << EN->getOpcodeName() << "), 0"; if (EN->hasChain()) OS << "|OPFL_Chain"; if (EN->hasInFlag()) OS << "|OPFL_GlueInput"; if (EN->hasOutFlag()) OS << "|OPFL_GlueOutput"; if (EN->hasMemRefs()) OS << "|OPFL_MemRefs"; if (EN->getNumFixedArityOperands() != -1) OS << "|OPFL_Variadic" << EN->getNumFixedArityOperands(); OS << ",\n"; OS.PadToColumn(Indent*2+4) << EN->getNumVTs(); if (!OmitComments) OS << "/*#VTs*/"; OS << ", "; for (unsigned i = 0, e = EN->getNumVTs(); i != e; ++i) OS << getEnumName(EN->getVT(i)) << ", "; OS << EN->getNumOperands(); if (!OmitComments) OS << "/*#Ops*/"; OS << ", "; unsigned NumOperandBytes = 0; for (unsigned i = 0, e = EN->getNumOperands(); i != e; ++i) NumOperandBytes += EmitVBRValue(EN->getOperand(i), OS); if (!OmitComments) { // Print the result #'s for EmitNode. if (const EmitNodeMatcher *E = dyn_cast<EmitNodeMatcher>(EN)) { if (unsigned NumResults = EN->getNumVTs()) { OS.PadToColumn(CommentIndent) << "// Results ="; unsigned First = E->getFirstResultSlot(); for (unsigned i = 0; i != NumResults; ++i) OS << " #" << First+i; } } OS << '\n'; if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) { OS.PadToColumn(Indent*2) << "// Src: " << *SNT->getPattern().getSrcPattern() << " - Complexity = " << SNT->getPattern().getPatternComplexity(CGP) << '\n'; OS.PadToColumn(Indent*2) << "// Dst: " << *SNT->getPattern().getDstPattern() << '\n'; } } else OS << '\n'; return 6+EN->getNumVTs()+NumOperandBytes; } case Matcher::MarkGlueResults: { const MarkGlueResultsMatcher *CFR = cast<MarkGlueResultsMatcher>(N); OS << "OPC_MarkGlueResults, " << CFR->getNumNodes() << ", "; unsigned NumOperandBytes = 0; for (unsigned i = 0, e = CFR->getNumNodes(); i != e; ++i) NumOperandBytes += EmitVBRValue(CFR->getNode(i), OS); OS << '\n'; return 2+NumOperandBytes; } case Matcher::CompleteMatch: { const CompleteMatchMatcher *CM = cast<CompleteMatchMatcher>(N); OS << "OPC_CompleteMatch, " << CM->getNumResults() << ", "; unsigned NumResultBytes = 0; for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) NumResultBytes += EmitVBRValue(CM->getResult(i), OS); OS << '\n'; if (!OmitComments) { OS.PadToColumn(Indent*2) << "// Src: " << *CM->getPattern().getSrcPattern() << " - Complexity = " << CM->getPattern().getPatternComplexity(CGP) << '\n'; OS.PadToColumn(Indent*2) << "// Dst: " << *CM->getPattern().getDstPattern(); } OS << '\n'; return 2 + NumResultBytes; } } llvm_unreachable("Unreachable"); } /// EmitMatcherList - Emit the bytes for the specified matcher subtree. unsigned MatcherTableEmitter:: EmitMatcherList(const Matcher *N, unsigned Indent, unsigned CurrentIdx, formatted_raw_ostream &OS) { unsigned Size = 0; while (N) { if (!OmitComments) OS << "/*" << CurrentIdx << "*/"; unsigned MatcherSize = EmitMatcher(N, Indent, CurrentIdx, OS); Size += MatcherSize; CurrentIdx += MatcherSize; // If there are other nodes in this list, iterate to them, otherwise we're // done. N = N->getNext(); } return Size; } void MatcherTableEmitter::EmitPredicateFunctions(formatted_raw_ostream &OS) { // Emit pattern predicates. if (!PatternPredicates.empty()) { OS << "bool CheckPatternPredicate(unsigned PredNo) const override {\n"; OS << " switch (PredNo) {\n"; OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n"; for (unsigned i = 0, e = PatternPredicates.size(); i != e; ++i) OS << " case " << i << ": return " << PatternPredicates[i] << ";\n"; OS << " }\n"; OS << "}\n\n"; } // Emit Node predicates. // FIXME: Annoyingly, these are stored by name, which we never even emit. Yay? StringMap<TreePattern*> PFsByName; for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); I != E; ++I) PFsByName[I->first->getName()] = I->second.get(); if (!NodePredicates.empty()) { OS << "bool CheckNodePredicate(SDNode *Node,\n"; OS << " unsigned PredNo) const override {\n"; OS << " switch (PredNo) {\n"; OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n"; for (unsigned i = 0, e = NodePredicates.size(); i != e; ++i) { // Emit the predicate code corresponding to this pattern. TreePredicateFn PredFn = NodePredicates[i]; assert(!PredFn.isAlwaysTrue() && "No code in this predicate"); OS << " case " << i << ": { // " << NodePredicates[i].getFnName() <<'\n'; OS << PredFn.getCodeToRunOnSDNode() << "\n }\n"; } OS << " }\n"; OS << "}\n\n"; } // Emit CompletePattern matchers. // FIXME: This should be const. if (!ComplexPatterns.empty()) { OS << "bool CheckComplexPattern(SDNode *Root, SDNode *Parent,\n"; OS << " SDValue N, unsigned PatternNo,\n"; OS << " SmallVectorImpl<std::pair<SDValue, SDNode*> > &Result) override {\n"; OS << " unsigned NextRes = Result.size();\n"; OS << " switch (PatternNo) {\n"; OS << " default: llvm_unreachable(\"Invalid pattern # in table?\");\n"; for (unsigned i = 0, e = ComplexPatterns.size(); i != e; ++i) { const ComplexPattern &P = *ComplexPatterns[i]; unsigned NumOps = P.getNumOperands(); if (P.hasProperty(SDNPHasChain)) ++NumOps; // Get the chained node too. OS << " case " << i << ":\n"; OS << " Result.resize(NextRes+" << NumOps << ");\n"; OS << " return " << P.getSelectFunc(); OS << "("; // If the complex pattern wants the root of the match, pass it in as the // first argument. if (P.hasProperty(SDNPWantRoot)) OS << "Root, "; // If the complex pattern wants the parent of the operand being matched, // pass it in as the next argument. if (P.hasProperty(SDNPWantParent)) OS << "Parent, "; OS << "N"; for (unsigned i = 0; i != NumOps; ++i) OS << ", Result[NextRes+" << i << "].first"; OS << ");\n"; } OS << " }\n"; OS << "}\n\n"; } // Emit SDNodeXForm handlers. // FIXME: This should be const. if (!NodeXForms.empty()) { OS << "SDValue RunSDNodeXForm(SDValue V, unsigned XFormNo) override {\n"; OS << " switch (XFormNo) {\n"; OS << " default: llvm_unreachable(\"Invalid xform # in table?\");\n"; // FIXME: The node xform could take SDValue's instead of SDNode*'s. for (unsigned i = 0, e = NodeXForms.size(); i != e; ++i) { const CodeGenDAGPatterns::NodeXForm &Entry = CGP.getSDNodeTransform(NodeXForms[i]); Record *SDNode = Entry.first; const std::string &Code = Entry.second; OS << " case " << i << ": { "; if (!OmitComments) OS << "// " << NodeXForms[i]->getName(); OS << '\n'; std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); if (ClassName == "SDNode") OS << " SDNode *N = V.getNode();\n"; else OS << " " << ClassName << " *N = cast<" << ClassName << ">(V.getNode());\n"; OS << Code << "\n }\n"; } OS << " }\n"; OS << "}\n\n"; } } static void BuildHistogram(const Matcher *M, std::vector<unsigned> &OpcodeFreq){ for (; M != nullptr; M = M->getNext()) { // Count this node. if (unsigned(M->getKind()) >= OpcodeFreq.size()) OpcodeFreq.resize(M->getKind()+1); OpcodeFreq[M->getKind()]++; // Handle recursive nodes. if (const ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M)) { for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) BuildHistogram(SM->getChild(i), OpcodeFreq); } else if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(M)) { for (unsigned i = 0, e = SOM->getNumCases(); i != e; ++i) BuildHistogram(SOM->getCaseMatcher(i), OpcodeFreq); } else if (const SwitchTypeMatcher *STM = dyn_cast<SwitchTypeMatcher>(M)) { for (unsigned i = 0, e = STM->getNumCases(); i != e; ++i) BuildHistogram(STM->getCaseMatcher(i), OpcodeFreq); } } } void MatcherTableEmitter::EmitHistogram(const Matcher *M, formatted_raw_ostream &OS) { if (OmitComments) return; std::vector<unsigned> OpcodeFreq; BuildHistogram(M, OpcodeFreq); OS << " // Opcode Histogram:\n"; for (unsigned i = 0, e = OpcodeFreq.size(); i != e; ++i) { OS << " // #"; switch ((Matcher::KindTy)i) { case Matcher::Scope: OS << "OPC_Scope"; break; case Matcher::RecordNode: OS << "OPC_RecordNode"; break; case Matcher::RecordChild: OS << "OPC_RecordChild"; break; case Matcher::RecordMemRef: OS << "OPC_RecordMemRef"; break; case Matcher::CaptureGlueInput: OS << "OPC_CaptureGlueInput"; break; case Matcher::MoveChild: OS << "OPC_MoveChild"; break; case Matcher::MoveParent: OS << "OPC_MoveParent"; break; case Matcher::CheckSame: OS << "OPC_CheckSame"; break; case Matcher::CheckChildSame: OS << "OPC_CheckChildSame"; break; case Matcher::CheckPatternPredicate: OS << "OPC_CheckPatternPredicate"; break; case Matcher::CheckPredicate: OS << "OPC_CheckPredicate"; break; case Matcher::CheckOpcode: OS << "OPC_CheckOpcode"; break; case Matcher::SwitchOpcode: OS << "OPC_SwitchOpcode"; break; case Matcher::CheckType: OS << "OPC_CheckType"; break; case Matcher::SwitchType: OS << "OPC_SwitchType"; break; case Matcher::CheckChildType: OS << "OPC_CheckChildType"; break; case Matcher::CheckInteger: OS << "OPC_CheckInteger"; break; case Matcher::CheckChildInteger: OS << "OPC_CheckChildInteger"; break; case Matcher::CheckCondCode: OS << "OPC_CheckCondCode"; break; case Matcher::CheckValueType: OS << "OPC_CheckValueType"; break; case Matcher::CheckComplexPat: OS << "OPC_CheckComplexPat"; break; case Matcher::CheckAndImm: OS << "OPC_CheckAndImm"; break; case Matcher::CheckOrImm: OS << "OPC_CheckOrImm"; break; case Matcher::CheckFoldableChainNode: OS << "OPC_CheckFoldableChainNode"; break; case Matcher::EmitInteger: OS << "OPC_EmitInteger"; break; case Matcher::EmitStringInteger: OS << "OPC_EmitStringInteger"; break; case Matcher::EmitRegister: OS << "OPC_EmitRegister"; break; case Matcher::EmitConvertToTarget: OS << "OPC_EmitConvertToTarget"; break; case Matcher::EmitMergeInputChains: OS << "OPC_EmitMergeInputChains"; break; case Matcher::EmitCopyToReg: OS << "OPC_EmitCopyToReg"; break; case Matcher::EmitNode: OS << "OPC_EmitNode"; break; case Matcher::MorphNodeTo: OS << "OPC_MorphNodeTo"; break; case Matcher::EmitNodeXForm: OS << "OPC_EmitNodeXForm"; break; case Matcher::MarkGlueResults: OS << "OPC_MarkGlueResults"; break; case Matcher::CompleteMatch: OS << "OPC_CompleteMatch"; break; } OS.PadToColumn(40) << " = " << OpcodeFreq[i] << '\n'; } OS << '\n'; } void llvm::EmitMatcherTable(const Matcher *TheMatcher, const CodeGenDAGPatterns &CGP, raw_ostream &O) { formatted_raw_ostream OS(O); OS << "// The main instruction selector code.\n"; OS << "SDNode *SelectCode(SDNode *N) {\n"; MatcherTableEmitter MatcherEmitter(CGP); OS << " // Some target values are emitted as 2 bytes, TARGET_VAL handles\n"; OS << " // this.\n"; OS << " #define TARGET_VAL(X) X & 255, unsigned(X) >> 8\n"; OS << " static const unsigned char MatcherTable[] = {\n"; unsigned TotalSize = MatcherEmitter.EmitMatcherList(TheMatcher, 6, 0, OS); OS << " 0\n }; // Total Array size is " << (TotalSize+1) << " bytes\n\n"; MatcherEmitter.EmitHistogram(TheMatcher, OS); OS << " #undef TARGET_VAL\n"; OS << " return SelectCodeCommon(N, MatcherTable,sizeof(MatcherTable));\n}\n"; OS << '\n'; // Next up, emit the function for node and pattern predicates: MatcherEmitter.EmitPredicateFunctions(OS); }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/FastISelEmitter.cpp
//===- FastISelEmitter.cpp - Generate an instruction selector -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits code for use by the "fast" instruction // selection algorithm. See the comments at the top of // lib/CodeGen/SelectionDAG/FastISel.cpp for background. // // This file scans through the target's tablegen instruction-info files // and extracts instructions with obvious-looking patterns, and it emits // code to look up these instructions by type and operator. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; /// InstructionMemo - This class holds additional information about an /// instruction needed to emit code for it. /// namespace { struct InstructionMemo { std::string Name; const CodeGenRegisterClass *RC; std::string SubRegNo; std::vector<std::string>* PhysRegs; std::string PredicateCheck; }; } // End anonymous namespace /// ImmPredicateSet - This uniques predicates (represented as a string) and /// gives them unique (small) integer ID's that start at 0. namespace { class ImmPredicateSet { DenseMap<TreePattern *, unsigned> ImmIDs; std::vector<TreePredicateFn> PredsByName; public: unsigned getIDFor(TreePredicateFn Pred) { unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; if (Entry == 0) { PredsByName.push_back(Pred); Entry = PredsByName.size(); } return Entry-1; } const TreePredicateFn &getPredicate(unsigned i) { assert(i < PredsByName.size()); return PredsByName[i]; } typedef std::vector<TreePredicateFn>::const_iterator iterator; iterator begin() const { return PredsByName.begin(); } iterator end() const { return PredsByName.end(); } }; } // End anonymous namespace /// OperandsSignature - This class holds a description of a list of operand /// types. It has utility methods for emitting text based on the operands. /// namespace { struct OperandsSignature { class OpKind { enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; char Repr; public: OpKind() : Repr(OK_Invalid) {} bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } static OpKind getImm(unsigned V) { assert((unsigned)OK_Imm+V < 128 && "Too many integer predicates for the 'Repr' char"); OpKind K; K.Repr = OK_Imm+V; return K; } bool isReg() const { return Repr == OK_Reg; } bool isFP() const { return Repr == OK_FP; } bool isImm() const { return Repr >= OK_Imm; } unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, bool StripImmCodes) const { if (isReg()) OS << 'r'; else if (isFP()) OS << 'f'; else { OS << 'i'; if (!StripImmCodes) if (unsigned Code = getImmCode()) OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); } } }; SmallVector<OpKind, 3> Operands; bool operator<(const OperandsSignature &O) const { return Operands < O.Operands; } bool operator==(const OperandsSignature &O) const { return Operands == O.Operands; } bool empty() const { return Operands.empty(); } bool hasAnyImmediateCodes() const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (Operands[i].isImm() && Operands[i].getImmCode() != 0) return true; return false; } /// getWithoutImmCodes - Return a copy of this with any immediate codes forced /// to zero. OperandsSignature getWithoutImmCodes() const { OperandsSignature Result; for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (!Operands[i].isImm()) Result.Operands.push_back(Operands[i]); else Result.Operands.push_back(OpKind::getImm(0)); return Result; } void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { bool EmittedAnything = false; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (!Operands[i].isImm()) continue; unsigned Code = Operands[i].getImmCode(); if (Code == 0) continue; if (EmittedAnything) OS << " &&\n "; TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); // Emit the type check. OS << "VT == " << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) << " && "; OS << PredFn.getFnName() << "(imm" << i <<')'; EmittedAnything = true; } } /// initialize - Examine the given pattern and initialize the contents /// of the Operands array accordingly. Return true if all the operands /// are supported, false otherwise. /// bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates, const CodeGenRegisterClass *OrigDstRC) { if (InstPatNode->isLeaf()) return false; if (InstPatNode->getOperator()->getName() == "imm") { Operands.push_back(OpKind::getImm(0)); return true; } if (InstPatNode->getOperator()->getName() == "fpimm") { Operands.push_back(OpKind::getFP()); return true; } const CodeGenRegisterClass *DstRC = nullptr; for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { TreePatternNode *Op = InstPatNode->getChild(i); // Handle imm operands specially. if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { unsigned PredNo = 0; if (!Op->getPredicateFns().empty()) { TreePredicateFn PredFn = Op->getPredicateFns()[0]; // If there is more than one predicate weighing in on this operand // then we don't handle it. This doesn't typically happen for // immediates anyway. if (Op->getPredicateFns().size() > 1 || !PredFn.isImmediatePattern()) return false; // Ignore any instruction with 'FastIselShouldIgnore', these are // not needed and just bloat the fast instruction selector. For // example, X86 doesn't need to generate code to match ADD16ri8 since // ADD16ri will do just fine. Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); if (Rec->getValueAsBit("FastIselShouldIgnore")) return false; PredNo = ImmediatePredicates.getIDFor(PredFn)+1; } // Handle unmatched immediate sizes here. //if (Op->getType(0) != VT) // return false; Operands.push_back(OpKind::getImm(PredNo)); continue; } // For now, filter out any operand with a predicate. // For now, filter out any operand with multiple values. if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) return false; if (!Op->isLeaf()) { if (Op->getOperator()->getName() == "fpimm") { Operands.push_back(OpKind::getFP()); continue; } // For now, ignore other non-leaf nodes. return false; } assert(Op->hasTypeSet(0) && "Type infererence not done?"); // For now, all the operands must have the same type (if they aren't // immediates). Note that this causes us to reject variable sized shifts // on X86. if (Op->getType(0) != VT) return false; DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); if (!OpDI) return false; Record *OpLeafRec = OpDI->getDef(); // For now, the only other thing we accept is register operands. const CodeGenRegisterClass *RC = nullptr; if (OpLeafRec->isSubClassOf("RegisterOperand")) OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); if (OpLeafRec->isSubClassOf("RegisterClass")) RC = &Target.getRegisterClass(OpLeafRec); else if (OpLeafRec->isSubClassOf("Register")) RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); else if (OpLeafRec->isSubClassOf("ValueType")) { RC = OrigDstRC; } else return false; // For now, this needs to be a register class of some sort. if (!RC) return false; // For now, all the operands must have the same register class or be // a strict subclass of the destination. if (DstRC) { if (DstRC != RC && !DstRC->hasSubClass(RC)) return false; } else DstRC = RC; Operands.push_back(OpKind::getReg()); } return true; } void PrintParameters(raw_ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) { OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; } else if (Operands[i].isImm()) { OS << "uint64_t imm" << i; } else if (Operands[i].isFP()) { OS << "const ConstantFP *f" << i; } else { llvm_unreachable("Unknown operand kind!"); } if (i + 1 != e) OS << ", "; } } void PrintArguments(raw_ostream &OS, const std::vector<std::string> &PR) const { assert(PR.size() == Operands.size()); bool PrintedArg = false; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (PR[i] != "") // Implicit physical register operand. continue; if (PrintedArg) OS << ", "; if (Operands[i].isReg()) { OS << "Op" << i << ", Op" << i << "IsKill"; PrintedArg = true; } else if (Operands[i].isImm()) { OS << "imm" << i; PrintedArg = true; } else if (Operands[i].isFP()) { OS << "f" << i; PrintedArg = true; } else { llvm_unreachable("Unknown operand kind!"); } } } void PrintArguments(raw_ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) { OS << "Op" << i << ", Op" << i << "IsKill"; } else if (Operands[i].isImm()) { OS << "imm" << i; } else if (Operands[i].isFP()) { OS << "f" << i; } else { llvm_unreachable("Unknown operand kind!"); } if (i + 1 != e) OS << ", "; } } void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, ImmPredicateSet &ImmPredicates, bool StripImmCodes = false) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (PR[i] != "") // Implicit physical register operand. e.g. Instruction::Mul expect to // select to a binary op. On x86, mul may take a single operand with // the other operand being implicit. We must emit something that looks // like a binary instruction except for the very inner fastEmitInst_* // call. continue; Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); } } void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, bool StripImmCodes = false) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); } }; } // End anonymous namespace namespace { class FastISelMap { // A multimap is needed instead of a "plain" map because the key is // the instruction's complexity (an int) and they are not unique. typedef std::multimap<int, InstructionMemo> PredMap; typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> OperandsOpcodeTypeRetPredMap; OperandsOpcodeTypeRetPredMap SimplePatterns; // This is used to check that there are no duplicate predicates typedef std::multimap<std::string, bool> PredCheckMap; typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> OperandsOpcodeTypeRetPredCheckMap; OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; std::map<OperandsSignature, std::vector<OperandsSignature> > SignaturesWithConstantForms; std::string InstNS; ImmPredicateSet ImmediatePredicates; public: explicit FastISelMap(std::string InstNS); void collectPatterns(CodeGenDAGPatterns &CGP); void printImmediatePredicates(raw_ostream &OS); void printFunctionDefinitions(raw_ostream &OS); private: void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands, const PredMap &PM, const std::string &RetVTName); }; } // End anonymous namespace static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { return CGP.getSDNodeInfo(Op).getEnumName(); } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } FastISelMap::FastISelMap(std::string instns) : InstNS(instns) { } static std::string PhyRegForNode(TreePatternNode *Op, const CodeGenTarget &Target) { std::string PhysReg; if (!Op->isLeaf()) return PhysReg; Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); if (!OpLeafRec->isSubClassOf("Register")) return PhysReg; PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) ->getValue(); PhysReg += "::"; PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); return PhysReg; } void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { const CodeGenTarget &Target = CGP.getTargetInfo(); // Determine the target's namespace name. InstNS = Target.getInstNamespace() + "::"; assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); // Scan through all the patterns and record the simple ones. for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { const PatternToMatch &Pattern = *I; // For now, just look at Instructions, so that we don't have to worry // about emitting multiple instructions for a pattern. TreePatternNode *Dst = Pattern.getDstPattern(); if (Dst->isLeaf()) continue; Record *Op = Dst->getOperator(); if (!Op->isSubClassOf("Instruction")) continue; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); if (II.Operands.empty()) continue; // For now, ignore multi-instruction patterns. bool MultiInsts = false; for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { TreePatternNode *ChildOp = Dst->getChild(i); if (ChildOp->isLeaf()) continue; if (ChildOp->getOperator()->isSubClassOf("Instruction")) { MultiInsts = true; break; } } if (MultiInsts) continue; // For now, ignore instructions where the first operand is not an // output register. const CodeGenRegisterClass *DstRC = nullptr; std::string SubRegNo; if (Op->getName() != "EXTRACT_SUBREG") { Record *Op0Rec = II.Operands[0].Rec; if (Op0Rec->isSubClassOf("RegisterOperand")) Op0Rec = Op0Rec->getValueAsDef("RegClass"); if (!Op0Rec->isSubClassOf("RegisterClass")) continue; DstRC = &Target.getRegisterClass(Op0Rec); if (!DstRC) continue; } else { // If this isn't a leaf, then continue since the register classes are // a bit too complicated for now. if (!Dst->getChild(1)->isLeaf()) continue; DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); if (SR) SubRegNo = getQualifiedName(SR->getDef()); else SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); } // Inspect the pattern. TreePatternNode *InstPatNode = Pattern.getSrcPattern(); if (!InstPatNode) continue; if (InstPatNode->isLeaf()) continue; // Ignore multiple result nodes for now. if (InstPatNode->getNumTypes() > 1) continue; Record *InstPatOp = InstPatNode->getOperator(); std::string OpcodeName = getOpcodeName(InstPatOp, CGP); MVT::SimpleValueType RetVT = MVT::isVoid; if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); MVT::SimpleValueType VT = RetVT; if (InstPatNode->getNumChildren()) { assert(InstPatNode->getChild(0)->getNumTypes() == 1); VT = InstPatNode->getChild(0)->getType(0); } // For now, filter out any instructions with predicates. if (!InstPatNode->getPredicateFns().empty()) continue; // Check all the operands. OperandsSignature Operands; if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, DstRC)) continue; std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); if (InstPatNode->getOperator()->getName() == "imm" || InstPatNode->getOperator()->getName() == "fpimm") PhysRegInputs->push_back(""); else { // Compute the PhysRegs used by the given pattern, and check that // the mapping from the src to dst patterns is simple. bool FoundNonSimplePattern = false; unsigned DstIndex = 0; for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); if (PhysReg.empty()) { if (DstIndex >= Dst->getNumChildren() || Dst->getChild(DstIndex)->getName() != InstPatNode->getChild(i)->getName()) { FoundNonSimplePattern = true; break; } ++DstIndex; } PhysRegInputs->push_back(PhysReg); } if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) FoundNonSimplePattern = true; if (FoundNonSimplePattern) continue; } // Check if the operands match one of the patterns handled by FastISel. std::string ManglingSuffix; raw_string_ostream SuffixOS(ManglingSuffix); Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); SuffixOS.flush(); if (!StringSwitch<bool>(ManglingSuffix) .Cases("", "r", "rr", "ri", "rf", true) .Cases("rri", "i", "f", true) .Default(false)) continue; // Get the predicate that guards this pattern. std::string PredicateCheck = Pattern.getPredicateCheck(); // Ok, we found a pattern that we can handle. Remember it. InstructionMemo Memo = { Pattern.getDstPattern()->getOperator()->getName(), DstRC, SubRegNo, PhysRegInputs, PredicateCheck }; int complexity = Pattern.getPatternComplexity(CGP); if (SimplePatternsCheck[Operands][OpcodeName][VT] [RetVT].count(PredicateCheck)) { PrintFatalError(Pattern.getSrcRecord()->getLoc(), "Duplicate predicate in FastISel table!"); } SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( std::make_pair(PredicateCheck, true)); // Note: Instructions with the same complexity will appear in the order // that they are encountered. SimplePatterns[Operands][OpcodeName][VT][RetVT].insert( std::make_pair(complexity, Memo)); // If any of the operands were immediates with predicates on them, strip // them down to a signature that doesn't have predicates so that we can // associate them with the stripped predicate version. if (Operands.hasAnyImmediateCodes()) { SignaturesWithConstantForms[Operands.getWithoutImmCodes()] .push_back(Operands); } } } void FastISelMap::printImmediatePredicates(raw_ostream &OS) { if (ImmediatePredicates.begin() == ImmediatePredicates.end()) return; OS << "\n// FastEmit Immediate Predicate functions.\n"; for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), E = ImmediatePredicates.end(); I != E; ++I) { OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; OS << I->getImmediatePredicateCode() << "\n}\n"; } OS << "\n\n"; } void FastISelMap::emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands, const PredMap &PM, const std::string &RetVTName) { // Emit code for each possible instruction. There may be // multiple if there are subtarget concerns. A reverse iterator // is used to produce the ones with highest complexity first. bool OneHadNoPredicate = false; for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); PI != PE; ++PI) { const InstructionMemo &Memo = PI->second; std::string PredicateCheck = Memo.PredicateCheck; if (PredicateCheck.empty()) { assert(!OneHadNoPredicate && "Multiple instructions match and more than one had " "no predicate!"); OneHadNoPredicate = true; } else { if (OneHadNoPredicate) { // FIXME: This should be a PrintError once the x86 target // fixes PR21575. PrintWarning("Multiple instructions match and one with no " "predicate came before one with a predicate! " "name:" + Memo.Name + " predicate: " + PredicateCheck); } OS << " if (" + PredicateCheck + ") {\n"; OS << " "; } for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { if ((*Memo.PhysRegs)[i] != "") OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " << "TII.get(TargetOpcode::COPY), " << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; } OS << " return fastEmitInst_"; if (Memo.SubRegNo.empty()) { Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, ImmediatePredicates, true); OS << "(" << InstNS << Memo.Name << ", "; OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS, *Memo.PhysRegs); OS << ");\n"; } else { OS << "extractsubreg(" << RetVTName << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; } if (!PredicateCheck.empty()) { OS << " }\n"; } } // Return 0 if all of the possibilities had predicates but none // were satisfied. if (!OneHadNoPredicate) OS << " return 0;\n"; OS << "}\n"; OS << "\n"; } void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { // Now emit code for all the patterns that we collected. for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeRetPredMap &OTM = OI->second; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeRetPredMap &TM = I->second; OS << "// FastEmit functions for " << Opcode << ".\n"; OS << "\n"; // Emit one function for each opcode,type pair. for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; const RetPredMap &RM = TI->second; if (RM.size() != 1) { for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); RI != RE; ++RI) { MVT::SimpleValueType RetVT = RI->first; const PredMap &PM = RI->second; OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_" << getLegalCName(getName(RetVT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "("; Operands.PrintParameters(OS); OS << ") {\n"; emitInstructionCode(OS, Operands, PM, getName(RetVT)); } // Emit one function for the type that demultiplexes on return type. OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\nswitch (RetVT.SimpleTy) {\n"; for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); RI != RE; ++RI) { MVT::SimpleValueType RetVT = RI->first; OS << " case " << getName(RetVT) << ": return fastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_" << getLegalCName(getName(RetVT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "("; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n}\n}\n\n"; } else { // Non-variadic return type. OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) << ")\n return 0;\n"; const PredMap &PM = RM.begin()->second; emitInstructionCode(OS, Operands, PM, "RetVT"); } } // Emit one function for the opcode that demultiplexes based on the type. OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT VT, MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (VT.SimpleTy) {\n"; for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; std::string TypeName = getName(VT); OS << " case " << TypeName << ": return fastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } OS << "// Top-level FastEmit function.\n"; OS << "\n"; // Emit one function for the operand signature that demultiplexes based // on opcode and type. OS << "unsigned fastEmit_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT VT, MVT RetVT, unsigned Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") "; if (!Operands.hasAnyImmediateCodes()) OS << "override "; OS << "{\n"; // If there are any forms of this signature available that operate on // constrained forms of the immediate (e.g., 32-bit sext immediate in a // 64-bit operand), check them first. std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI = SignaturesWithConstantForms.find(Operands); if (MI != SignaturesWithConstantForms.end()) { // Unique any duplicates out of the list. std::sort(MI->second.begin(), MI->second.end()); MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), MI->second.end()); // Check each in order it was seen. It would be nice to have a good // relative ordering between them, but we're not going for optimality // here. for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { OS << " if ("; MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); OS << ")\n if (unsigned Reg = fastEmit_"; MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); OS << "(VT, RetVT, Opcode"; if (!MI->second[i].empty()) OS << ", "; MI->second[i].PrintArguments(OS); OS << "))\n return Reg;\n\n"; } // Done with this, remove it. SignaturesWithConstantForms.erase(MI); } OS << " switch (Opcode) {\n"; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; OS << " case " << Opcode << ": return fastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(VT, RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } // TODO: SignaturesWithConstantForms should be empty here. } namespace llvm { void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { CodeGenDAGPatterns CGP(RK); const CodeGenTarget &Target = CGP.getTargetInfo(); emitSourceFileHeader("\"Fast\" Instruction Selector for the " + Target.getName() + " target", OS); // Determine the target's namespace name. std::string InstNS = Target.getInstNamespace() + "::"; assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); FastISelMap F(InstNS); F.collectPatterns(CGP); F.printImmediatePredicates(OS); F.printFunctionDefinitions(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86DisassemblerTables.cpp
//===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of the disassembler tables. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86DisassemblerTables.h" #include "X86DisassemblerShared.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include <map> using namespace llvm; using namespace X86Disassembler; /// stringForContext - Returns a string containing the name of a particular /// InstructionContext, usually for diagnostic purposes. /// /// @param insnContext - The instruction class to transform to a string. /// @return - A statically-allocated string constant that contains the /// name of the instruction class. static inline const char* stringForContext(InstructionContext insnContext) { switch (insnContext) { default: llvm_unreachable("Unhandled instruction class"); #define ENUM_ENTRY(n, r, d) case n: return #n; break; #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\ ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\ ENUM_ENTRY(n##_KZ_B, r, d) INSTRUCTION_CONTEXTS #undef ENUM_ENTRY #undef ENUM_ENTRY_K_B } } /// stringForOperandType - Like stringForContext, but for OperandTypes. static inline const char* stringForOperandType(OperandType type) { switch (type) { default: llvm_unreachable("Unhandled type"); #define ENUM_ENTRY(i, d) case i: return #i; TYPES #undef ENUM_ENTRY } } /// stringForOperandEncoding - like stringForContext, but for /// OperandEncodings. static inline const char* stringForOperandEncoding(OperandEncoding encoding) { switch (encoding) { default: llvm_unreachable("Unhandled encoding"); #define ENUM_ENTRY(i, d) case i: return #i; ENCODINGS #undef ENUM_ENTRY } } /// inheritsFrom - Indicates whether all instructions in one class also belong /// to another class. /// /// @param child - The class that may be the subset /// @param parent - The class that may be the superset /// @return - True if child is a subset of parent, false otherwise. static inline bool inheritsFrom(InstructionContext child, InstructionContext parent, bool VEX_LIG = false, bool AdSize64 = false) { if (child == parent) return true; switch (parent) { case IC: return(inheritsFrom(child, IC_64BIT, AdSize64) || inheritsFrom(child, IC_OPSIZE) || inheritsFrom(child, IC_ADSIZE) || inheritsFrom(child, IC_XD) || inheritsFrom(child, IC_XS)); case IC_64BIT: return(inheritsFrom(child, IC_64BIT_REXW) || inheritsFrom(child, IC_64BIT_OPSIZE) || (!AdSize64 && inheritsFrom(child, IC_64BIT_ADSIZE)) || inheritsFrom(child, IC_64BIT_XD) || inheritsFrom(child, IC_64BIT_XS)); case IC_OPSIZE: return inheritsFrom(child, IC_64BIT_OPSIZE) || inheritsFrom(child, IC_OPSIZE_ADSIZE); case IC_ADSIZE: return inheritsFrom(child, IC_OPSIZE_ADSIZE); case IC_OPSIZE_ADSIZE: return false; case IC_64BIT_ADSIZE: return inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE); case IC_64BIT_OPSIZE_ADSIZE: return false; case IC_XD: return inheritsFrom(child, IC_64BIT_XD); case IC_XS: return inheritsFrom(child, IC_64BIT_XS); case IC_XD_OPSIZE: return inheritsFrom(child, IC_64BIT_XD_OPSIZE); case IC_XS_OPSIZE: return inheritsFrom(child, IC_64BIT_XS_OPSIZE); case IC_64BIT_REXW: return(inheritsFrom(child, IC_64BIT_REXW_XS) || inheritsFrom(child, IC_64BIT_REXW_XD) || inheritsFrom(child, IC_64BIT_REXW_OPSIZE) || (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE))); case IC_64BIT_OPSIZE: return inheritsFrom(child, IC_64BIT_REXW_OPSIZE) || (!AdSize64 && inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE)) || (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE)); case IC_64BIT_XD: return(inheritsFrom(child, IC_64BIT_REXW_XD)); case IC_64BIT_XS: return(inheritsFrom(child, IC_64BIT_REXW_XS)); case IC_64BIT_XD_OPSIZE: case IC_64BIT_XS_OPSIZE: return false; case IC_64BIT_REXW_XD: case IC_64BIT_REXW_XS: case IC_64BIT_REXW_OPSIZE: case IC_64BIT_REXW_ADSIZE: return false; case IC_VEX: return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) || inheritsFrom(child, IC_VEX_W) || (VEX_LIG && inheritsFrom(child, IC_VEX_L)); case IC_VEX_XS: return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) || inheritsFrom(child, IC_VEX_W_XS) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS)); case IC_VEX_XD: return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) || inheritsFrom(child, IC_VEX_W_XD) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD)); case IC_VEX_OPSIZE: return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) || inheritsFrom(child, IC_VEX_W_OPSIZE) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE)); case IC_VEX_W: return VEX_LIG && inheritsFrom(child, IC_VEX_L_W); case IC_VEX_W_XS: return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS); case IC_VEX_W_XD: return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD); case IC_VEX_W_OPSIZE: return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE); case IC_VEX_L: return inheritsFrom(child, IC_VEX_L_W); case IC_VEX_L_XS: return inheritsFrom(child, IC_VEX_L_W_XS); case IC_VEX_L_XD: return inheritsFrom(child, IC_VEX_L_W_XD); case IC_VEX_L_OPSIZE: return inheritsFrom(child, IC_VEX_L_W_OPSIZE); case IC_VEX_L_W: case IC_VEX_L_W_XS: case IC_VEX_L_W_XD: case IC_VEX_L_W_OPSIZE: return false; case IC_EVEX: return inheritsFrom(child, IC_EVEX_W) || inheritsFrom(child, IC_EVEX_L_W); case IC_EVEX_XS: return inheritsFrom(child, IC_EVEX_W_XS) || inheritsFrom(child, IC_EVEX_L_W_XS); case IC_EVEX_XD: return inheritsFrom(child, IC_EVEX_W_XD) || inheritsFrom(child, IC_EVEX_L_W_XD); case IC_EVEX_OPSIZE: return inheritsFrom(child, IC_EVEX_W_OPSIZE) || inheritsFrom(child, IC_EVEX_L_W_OPSIZE); case IC_EVEX_B: return false; case IC_EVEX_W: case IC_EVEX_W_XS: case IC_EVEX_W_XD: case IC_EVEX_W_OPSIZE: return false; case IC_EVEX_L: case IC_EVEX_L_K_B: case IC_EVEX_L_KZ_B: case IC_EVEX_L_B: case IC_EVEX_L_XS: case IC_EVEX_L_XD: case IC_EVEX_L_OPSIZE: return false; case IC_EVEX_L_W: case IC_EVEX_L_W_XS: case IC_EVEX_L_W_XD: case IC_EVEX_L_W_OPSIZE: return false; case IC_EVEX_L2: case IC_EVEX_L2_XS: case IC_EVEX_L2_XD: case IC_EVEX_L2_OPSIZE: return false; case IC_EVEX_L2_W: case IC_EVEX_L2_W_XS: case IC_EVEX_L2_W_XD: case IC_EVEX_L2_W_OPSIZE: return false; case IC_EVEX_K: return inheritsFrom(child, IC_EVEX_W_K) || inheritsFrom(child, IC_EVEX_L_W_K); case IC_EVEX_XS_K: case IC_EVEX_XS_K_B: case IC_EVEX_XS_KZ_B: return inheritsFrom(child, IC_EVEX_W_XS_K) || inheritsFrom(child, IC_EVEX_L_W_XS_K); case IC_EVEX_XD_K: case IC_EVEX_XD_K_B: case IC_EVEX_XD_KZ_B: return inheritsFrom(child, IC_EVEX_W_XD_K) || inheritsFrom(child, IC_EVEX_L_W_XD_K); case IC_EVEX_XS_B: case IC_EVEX_XD_B: case IC_EVEX_K_B: case IC_EVEX_KZ: return false; case IC_EVEX_XS_KZ: return inheritsFrom(child, IC_EVEX_W_XS_KZ) || inheritsFrom(child, IC_EVEX_L_W_XS_KZ); case IC_EVEX_XD_KZ: return inheritsFrom(child, IC_EVEX_W_XD_KZ) || inheritsFrom(child, IC_EVEX_L_W_XD_KZ); case IC_EVEX_KZ_B: case IC_EVEX_OPSIZE_K: case IC_EVEX_OPSIZE_B: case IC_EVEX_OPSIZE_K_B: case IC_EVEX_OPSIZE_KZ: case IC_EVEX_OPSIZE_KZ_B: return false; case IC_EVEX_W_K: case IC_EVEX_W_B: case IC_EVEX_W_K_B: case IC_EVEX_W_KZ_B: case IC_EVEX_W_XS_K: case IC_EVEX_W_XD_K: case IC_EVEX_W_OPSIZE_K: case IC_EVEX_W_OPSIZE_B: case IC_EVEX_W_OPSIZE_K_B: return false; case IC_EVEX_L_K: case IC_EVEX_L_XS_K: case IC_EVEX_L_XD_K: case IC_EVEX_L_XD_B: case IC_EVEX_L_XD_K_B: case IC_EVEX_L_OPSIZE_K: case IC_EVEX_L_OPSIZE_B: case IC_EVEX_L_OPSIZE_K_B: return false; case IC_EVEX_W_KZ: case IC_EVEX_W_XS_KZ: case IC_EVEX_W_XD_KZ: case IC_EVEX_W_XS_B: case IC_EVEX_W_XD_B: case IC_EVEX_W_XS_K_B: case IC_EVEX_W_XD_K_B: case IC_EVEX_W_XS_KZ_B: case IC_EVEX_W_XD_KZ_B: case IC_EVEX_W_OPSIZE_KZ: case IC_EVEX_W_OPSIZE_KZ_B: return false; case IC_EVEX_L_KZ: case IC_EVEX_L_XS_KZ: case IC_EVEX_L_XS_B: case IC_EVEX_L_XS_K_B: case IC_EVEX_L_XS_KZ_B: case IC_EVEX_L_XD_KZ: case IC_EVEX_L_XD_KZ_B: case IC_EVEX_L_OPSIZE_KZ: case IC_EVEX_L_OPSIZE_KZ_B: return false; case IC_EVEX_L_W_K: case IC_EVEX_L_W_B: case IC_EVEX_L_W_K_B: case IC_EVEX_L_W_XS_K: case IC_EVEX_L_W_XS_B: case IC_EVEX_L_W_XS_K_B: case IC_EVEX_L_W_XS_KZ: case IC_EVEX_L_W_XS_KZ_B: case IC_EVEX_L_W_OPSIZE_K: case IC_EVEX_L_W_OPSIZE_B: case IC_EVEX_L_W_OPSIZE_K_B: case IC_EVEX_L_W_KZ: case IC_EVEX_L_W_KZ_B: case IC_EVEX_L_W_XD_K: case IC_EVEX_L_W_XD_B: case IC_EVEX_L_W_XD_K_B: case IC_EVEX_L_W_XD_KZ: case IC_EVEX_L_W_XD_KZ_B: case IC_EVEX_L_W_OPSIZE_KZ: case IC_EVEX_L_W_OPSIZE_KZ_B: return false; case IC_EVEX_L2_K: case IC_EVEX_L2_B: case IC_EVEX_L2_K_B: case IC_EVEX_L2_KZ_B: case IC_EVEX_L2_XS_K: case IC_EVEX_L2_XS_K_B: case IC_EVEX_L2_XS_B: case IC_EVEX_L2_XD_B: case IC_EVEX_L2_XD_K: case IC_EVEX_L2_XD_K_B: case IC_EVEX_L2_OPSIZE_K: case IC_EVEX_L2_OPSIZE_B: case IC_EVEX_L2_OPSIZE_K_B: case IC_EVEX_L2_KZ: case IC_EVEX_L2_XS_KZ: case IC_EVEX_L2_XS_KZ_B: case IC_EVEX_L2_XD_KZ: case IC_EVEX_L2_XD_KZ_B: case IC_EVEX_L2_OPSIZE_KZ: case IC_EVEX_L2_OPSIZE_KZ_B: return false; case IC_EVEX_L2_W_K: case IC_EVEX_L2_W_B: case IC_EVEX_L2_W_K_B: case IC_EVEX_L2_W_KZ_B: case IC_EVEX_L2_W_XS_K: case IC_EVEX_L2_W_XS_B: case IC_EVEX_L2_W_XS_K_B: case IC_EVEX_L2_W_XD_K: case IC_EVEX_L2_W_XD_B: case IC_EVEX_L2_W_OPSIZE_K: case IC_EVEX_L2_W_OPSIZE_B: case IC_EVEX_L2_W_OPSIZE_K_B: case IC_EVEX_L2_W_KZ: case IC_EVEX_L2_W_XS_KZ: case IC_EVEX_L2_W_XS_KZ_B: case IC_EVEX_L2_W_XD_KZ: case IC_EVEX_L2_W_XD_K_B: case IC_EVEX_L2_W_XD_KZ_B: case IC_EVEX_L2_W_OPSIZE_KZ: case IC_EVEX_L2_W_OPSIZE_KZ_B: return false; default: errs() << "Unknown instruction class: " << stringForContext((InstructionContext)parent) << "\n"; llvm_unreachable("Unknown instruction class"); } } /// outranks - Indicates whether, if an instruction has two different applicable /// classes, which class should be preferred when performing decode. This /// imposes a total ordering (ties are resolved toward "lower") /// /// @param upper - The class that may be preferable /// @param lower - The class that may be less preferable /// @return - True if upper is to be preferred, false otherwise. static inline bool outranks(InstructionContext upper, InstructionContext lower) { assert(upper < IC_max); assert(lower < IC_max); #define ENUM_ENTRY(n, r, d) r, #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \ ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \ ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d) static int ranks[IC_max] = { INSTRUCTION_CONTEXTS }; #undef ENUM_ENTRY #undef ENUM_ENTRY_K_B return (ranks[upper] > ranks[lower]); } /// getDecisionType - Determines whether a ModRM decision with 255 entries can /// be compacted by eliminating redundant information. /// /// @param decision - The decision to be compacted. /// @return - The compactest available representation for the decision. static ModRMDecisionType getDecisionType(ModRMDecision &decision) { bool satisfiesOneEntry = true; bool satisfiesSplitRM = true; bool satisfiesSplitReg = true; bool satisfiesSplitMisc = true; for (unsigned index = 0; index < 256; ++index) { if (decision.instructionIDs[index] != decision.instructionIDs[0]) satisfiesOneEntry = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0xc0])) satisfiesSplitRM = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0x00])) satisfiesSplitRM = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8])) satisfiesSplitReg = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0x38])) satisfiesSplitMisc = false; } if (satisfiesOneEntry) return MODRM_ONEENTRY; if (satisfiesSplitRM) return MODRM_SPLITRM; if (satisfiesSplitReg && satisfiesSplitMisc) return MODRM_SPLITREG; if (satisfiesSplitMisc) return MODRM_SPLITMISC; return MODRM_FULL; } /// stringForDecisionType - Returns a statically-allocated string corresponding /// to a particular decision type. /// /// @param dt - The decision type. /// @return - A pointer to the statically-allocated string (e.g., /// "MODRM_ONEENTRY" for MODRM_ONEENTRY). static const char* stringForDecisionType(ModRMDecisionType dt) { #define ENUM_ENTRY(n) case n: return #n; switch (dt) { default: llvm_unreachable("Unknown decision type"); MODRMTYPES }; #undef ENUM_ENTRY } DisassemblerTables::DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) { Tables[i] = new ContextDecision; memset(Tables[i], 0, sizeof(ContextDecision)); } HasConflicts = false; } DisassemblerTables::~DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) delete Tables[i]; } void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, ModRMDecision &decision) const { static uint32_t sTableNumber = 0; static uint32_t sEntryNumber = 1; ModRMDecisionType dt = getDecisionType(decision); if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0) { o2.indent(i2) << "{ /* ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << 0 << " /* EmptyTable */\n"; i2--; o2.indent(i2) << "}"; return; } std::vector<unsigned> ModRMDecision; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: ModRMDecision.push_back(decision.instructionIDs[0]); break; case MODRM_SPLITRM: ModRMDecision.push_back(decision.instructionIDs[0x00]); ModRMDecision.push_back(decision.instructionIDs[0xc0]); break; case MODRM_SPLITREG: for (unsigned index = 0; index < 64; index += 8) ModRMDecision.push_back(decision.instructionIDs[index]); for (unsigned index = 0xc0; index < 256; index += 8) ModRMDecision.push_back(decision.instructionIDs[index]); break; case MODRM_SPLITMISC: for (unsigned index = 0; index < 64; index += 8) ModRMDecision.push_back(decision.instructionIDs[index]); for (unsigned index = 0xc0; index < 256; ++index) ModRMDecision.push_back(decision.instructionIDs[index]); break; case MODRM_FULL: for (unsigned index = 0; index < 256; ++index) ModRMDecision.push_back(decision.instructionIDs[index]); break; } unsigned &EntryNumber = ModRMTable[ModRMDecision]; if (EntryNumber == 0) { EntryNumber = ModRMTableNum; ModRMTableNum += ModRMDecision.size(); o1 << "/* Table" << EntryNumber << " */\n"; i1++; for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(), E = ModRMDecision.end(); I != E; ++I) { o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* " << InstructionSpecifiers[*I].name << " */\n"; } i1--; } o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n"; i2--; o2.indent(i2) << "}"; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: sEntryNumber += 1; break; case MODRM_SPLITRM: sEntryNumber += 2; break; case MODRM_SPLITREG: sEntryNumber += 16; break; case MODRM_SPLITMISC: sEntryNumber += 8 + 64; break; case MODRM_FULL: sEntryNumber += 256; break; } // We assume that the index can fit into uint16_t. assert(sEntryNumber < 65536U && "Index into ModRMDecision is too large for uint16_t!"); ++sTableNumber; } void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, OpcodeDecision &decision) const { o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n"; i2++; o2.indent(i2) << "{" << "\n"; i2++; for (unsigned index = 0; index < 256; ++index) { o2.indent(i2); o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n"; emitModRMDecision(o1, o2, i1, i2, ModRMTableNum, decision.modRMDecisions[index]); if (index < 255) o2 << ","; o2 << "\n"; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "}" << "\n"; } void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum, ContextDecision &decision, const char* name) const { o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n"; i2++; o2.indent(i2) << "{ /* opcodeDecisions */" << "\n"; i2++; for (unsigned index = 0; index < IC_max; ++index) { o2.indent(i2) << "/* "; o2 << stringForContext((InstructionContext)index); o2 << " */"; o2 << "\n"; emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum, decision.opcodeDecisions[index]); if (index + 1 < IC_max) o2 << ", "; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "};" << "\n"; } void DisassemblerTables::emitInstructionInfo(raw_ostream &o, unsigned &i) const { unsigned NumInstructions = InstructionSpecifiers.size(); o << "static const struct OperandSpecifier x86OperandSets[][" << X86_MAX_OPERANDS << "] = {\n"; typedef SmallVector<std::pair<OperandEncoding, OperandType>, X86_MAX_OPERANDS> OperandListTy; std::map<OperandListTy, unsigned> OperandSets; unsigned OperandSetNum = 0; for (unsigned Index = 0; Index < NumInstructions; ++Index) { OperandListTy OperandList; for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS; ++OperandIndex) { OperandEncoding Encoding = (OperandEncoding)InstructionSpecifiers[Index] .operands[OperandIndex].encoding; OperandType Type = (OperandType)InstructionSpecifiers[Index] .operands[OperandIndex].type; OperandList.push_back(std::make_pair(Encoding, Type)); } unsigned &N = OperandSets[OperandList]; if (N != 0) continue; N = ++OperandSetNum; o << " { /* " << (OperandSetNum - 1) << " */\n"; for (unsigned i = 0, e = OperandList.size(); i != e; ++i) { const char *Encoding = stringForOperandEncoding(OperandList[i].first); const char *Type = stringForOperandType(OperandList[i].second); o << " { " << Encoding << ", " << Type << " },\n"; } o << " },\n"; } o << "};" << "\n\n"; o.indent(i * 2) << "static const struct InstructionSpecifier "; o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n"; i++; for (unsigned index = 0; index < NumInstructions; ++index) { o.indent(i * 2) << "{ /* " << index << " */\n"; i++; OperandListTy OperandList; for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS; ++OperandIndex) { OperandEncoding Encoding = (OperandEncoding)InstructionSpecifiers[index] .operands[OperandIndex].encoding; OperandType Type = (OperandType)InstructionSpecifiers[index] .operands[OperandIndex].type; OperandList.push_back(std::make_pair(Encoding, Type)); } o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n"; o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */\n"; i--; o.indent(i * 2) << "},\n"; } i--; o.indent(i * 2) << "};" << "\n"; } void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const { const unsigned int tableSize = 16384; o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR "[" << tableSize << "] = {\n"; i++; for (unsigned index = 0; index < tableSize; ++index) { o.indent(i * 2); if (index & ATTR_EVEX) { o << "IC_EVEX"; if (index & ATTR_EVEXL2) o << "_L2"; else if (index & ATTR_EVEXL) o << "_L"; if (index & ATTR_REXW) o << "_W"; if (index & ATTR_OPSIZE) o << "_OPSIZE"; else if (index & ATTR_XD) o << "_XD"; else if (index & ATTR_XS) o << "_XS"; if (index & ATTR_EVEXKZ) o << "_KZ"; else if (index & ATTR_EVEXK) o << "_K"; if (index & ATTR_EVEXB) o << "_B"; } else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_VEX_L_W_OPSIZE"; else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD)) o << "IC_VEX_L_W_XD"; else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS)) o << "IC_VEX_L_W_XS"; else if ((index & ATTR_VEXL) && (index & ATTR_REXW)) o << "IC_VEX_L_W"; else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE)) o << "IC_VEX_L_OPSIZE"; else if ((index & ATTR_VEXL) && (index & ATTR_XD)) o << "IC_VEX_L_XD"; else if ((index & ATTR_VEXL) && (index & ATTR_XS)) o << "IC_VEX_L_XS"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_VEX_W_OPSIZE"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD)) o << "IC_VEX_W_XD"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS)) o << "IC_VEX_W_XS"; else if (index & ATTR_VEXL) o << "IC_VEX_L"; else if ((index & ATTR_VEX) && (index & ATTR_REXW)) o << "IC_VEX_W"; else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE)) o << "IC_VEX_OPSIZE"; else if ((index & ATTR_VEX) && (index & ATTR_XD)) o << "IC_VEX_XD"; else if ((index & ATTR_VEX) && (index & ATTR_XS)) o << "IC_VEX_XS"; else if (index & ATTR_VEX) o << "IC_VEX"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS)) o << "IC_64BIT_REXW_XS"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD)) o << "IC_64BIT_REXW_XD"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_64BIT_REXW_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_ADSIZE)) o << "IC_64BIT_REXW_ADSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE)) o << "IC_64BIT_XD_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE)) o << "IC_64BIT_XS_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XS)) o << "IC_64BIT_XS"; else if ((index & ATTR_64BIT) && (index & ATTR_XD)) o << "IC_64BIT_XD"; else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE) && (index & ATTR_ADSIZE)) o << "IC_64BIT_OPSIZE_ADSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE)) o << "IC_64BIT_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE)) o << "IC_64BIT_ADSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW)) o << "IC_64BIT_REXW"; else if ((index & ATTR_64BIT)) o << "IC_64BIT"; else if ((index & ATTR_XS) && (index & ATTR_OPSIZE)) o << "IC_XS_OPSIZE"; else if ((index & ATTR_XD) && (index & ATTR_OPSIZE)) o << "IC_XD_OPSIZE"; else if (index & ATTR_XS) o << "IC_XS"; else if (index & ATTR_XD) o << "IC_XD"; else if ((index & ATTR_OPSIZE) && (index & ATTR_ADSIZE)) o << "IC_OPSIZE_ADSIZE"; else if (index & ATTR_OPSIZE) o << "IC_OPSIZE"; else if (index & ATTR_ADSIZE) o << "IC_ADSIZE"; else o << "IC"; if (index < tableSize - 1) o << ","; else o << " "; o << " /* " << index << " */"; o << "\n"; } i--; o.indent(i * 2) << "};" << "\n"; } void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, unsigned &ModRMTableNum) const { emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR); emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR); } void DisassemblerTables::emit(raw_ostream &o) const { unsigned i1 = 0; unsigned i2 = 0; std::string s1; std::string s2; raw_string_ostream o1(s1); raw_string_ostream o2(s2); emitInstructionInfo(o, i2); o << "\n"; emitContextTable(o, i2); o << "\n"; unsigned ModRMTableNum = 0; o << "static const InstrUID modRMTable[] = {\n"; i1++; std::vector<unsigned> EmptyTable(1, 0); ModRMTable[EmptyTable] = ModRMTableNum; ModRMTableNum += EmptyTable.size(); o1 << "/* EmptyTable */\n"; o1.indent(i1 * 2) << "0x0,\n"; i1--; emitContextDecisions(o1, o2, i1, i2, ModRMTableNum); o << o1.str(); o << " 0x0\n"; o << "};\n"; o << "\n"; o << o2.str(); o << "\n"; o << "\n"; } void DisassemblerTables::setTableFields(ModRMDecision &decision, const ModRMFilter &filter, InstrUID uid, uint8_t opcode) { for (unsigned index = 0; index < 256; ++index) { if (filter.accepts(index)) { if (decision.instructionIDs[index] == uid) continue; if (decision.instructionIDs[index] != 0) { InstructionSpecifier &newInfo = InstructionSpecifiers[uid]; InstructionSpecifier &previousInfo = InstructionSpecifiers[decision.instructionIDs[index]]; if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" || newInfo.name == "XCHG32ar" || newInfo.name == "XCHG32ar64" || newInfo.name == "XCHG64ar")) continue; // special case for XCHG*ar and NOOP if (outranks(previousInfo.insnContext, newInfo.insnContext)) continue; if (previousInfo.insnContext == newInfo.insnContext) { errs() << "Error: Primary decode conflict: "; errs() << newInfo.name << " would overwrite " << previousInfo.name; errs() << "\n"; errs() << "ModRM " << index << "\n"; errs() << "Opcode " << (uint16_t)opcode << "\n"; errs() << "Context " << stringForContext(newInfo.insnContext) << "\n"; HasConflicts = true; } } decision.instructionIDs[index] = uid; } } } void DisassemblerTables::setTableFields(OpcodeType type, InstructionContext insnContext, uint8_t opcode, const ModRMFilter &filter, InstrUID uid, bool is32bit, bool ignoresVEX_L, unsigned addressSize) { ContextDecision &decision = *Tables[type]; for (unsigned index = 0; index < IC_max; ++index) { if ((is32bit || addressSize == 16) && inheritsFrom((InstructionContext)index, IC_64BIT)) continue; bool adSize64 = addressSize == 64; if (inheritsFrom((InstructionContext)index, InstructionSpecifiers[uid].insnContext, ignoresVEX_L, adSize64)) setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode], filter, uid, opcode); } }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenIntrinsics.h
//===- CodeGenIntrinsic.h - Intrinsic Class Wrapper ------------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a wrapper class for the 'Intrinsic' TableGen class. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_CODEGENINTRINSICS_H #define LLVM_UTILS_TABLEGEN_CODEGENINTRINSICS_H #include "llvm/CodeGen/MachineValueType.h" #include <string> #include <vector> namespace llvm { class Record; class RecordKeeper; class CodeGenTarget; struct CodeGenIntrinsic { Record *TheDef; // The actual record defining this intrinsic. std::string Name; // The name of the LLVM function "llvm.bswap.i32" std::string EnumName; // The name of the enum "bswap_i32" std::string GCCBuiltinName;// Name of the corresponding GCC builtin, or "". std::string MSBuiltinName; // Name of the corresponding MS builtin, or "". std::string TargetPrefix; // Target prefix, e.g. "ppc" for t-s intrinsics. /// IntrinsicSignature - This structure holds the return values and /// parameter values of an intrinsic. If the number of return values is > 1, /// then the intrinsic implicitly returns a first-class aggregate. The /// numbering of the types starts at 0 with the first return value and /// continues from there through the parameter list. This is useful for /// "matching" types. struct IntrinsicSignature { /// RetVTs - The MVT::SimpleValueType for each return type. Note that this /// list is only populated when in the context of a target .td file. When /// building Intrinsics.td, this isn't available, because we don't know /// the target pointer size. std::vector<MVT::SimpleValueType> RetVTs; /// RetTypeDefs - The records for each return type. std::vector<Record*> RetTypeDefs; /// ParamVTs - The MVT::SimpleValueType for each parameter type. Note that /// this list is only populated when in the context of a target .td file. /// When building Intrinsics.td, this isn't available, because we don't /// know the target pointer size. std::vector<MVT::SimpleValueType> ParamVTs; /// ParamTypeDefs - The records for each parameter type. std::vector<Record*> ParamTypeDefs; }; IntrinsicSignature IS; // Memory mod/ref behavior of this intrinsic. enum { NoMem, ReadArgMem, ReadMem, ReadWriteArgMem, ReadWriteMem } ModRef; /// This is set to true if the intrinsic is overloaded by its argument /// types. bool isOverloaded; /// isCommutative - True if the intrinsic is commutative. bool isCommutative; /// canThrow - True if the intrinsic can throw. bool canThrow; /// isNoDuplicate - True if the intrinsic is marked as noduplicate. bool isNoDuplicate; /// isNoReturn - True if the intrinsic is no-return. bool isNoReturn; /// isConvergent - True if the intrinsic is marked as convergent. bool isConvergent; enum ArgAttribute { NoCapture, ReadOnly, ReadNone }; std::vector<std::pair<unsigned, ArgAttribute> > ArgumentAttributes; CodeGenIntrinsic(Record *R); }; /// LoadIntrinsics - Read all of the intrinsics defined in the specified /// .td file. std::vector<CodeGenIntrinsic> LoadIntrinsics(const RecordKeeper &RC, bool TargetOnly); } #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenDAGPatterns.cpp
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeGenDAGPatterns class, which is used to read and // represent the patterns present in a .td file for instructions. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include <algorithm> #include <cstdio> #include <set> using namespace llvm; #define DEBUG_TYPE "dag-patterns" //===----------------------------------------------------------------------===// // EEVT::TypeSet Implementation //===----------------------------------------------------------------------===// static inline bool isInteger(MVT::SimpleValueType VT) { return MVT(VT).isInteger(); } static inline bool isFloatingPoint(MVT::SimpleValueType VT) { return MVT(VT).isFloatingPoint(); } static inline bool isVector(MVT::SimpleValueType VT) { return MVT(VT).isVector(); } static inline bool isScalar(MVT::SimpleValueType VT) { return !MVT(VT).isVector(); } EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { if (VT == MVT::iAny) EnforceInteger(TP); else if (VT == MVT::fAny) EnforceFloatingPoint(TP); else if (VT == MVT::vAny) EnforceVector(TP); else { assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); TypeVec.push_back(VT); } } EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { assert(!VTList.empty() && "empty list?"); TypeVec.append(VTList.begin(), VTList.end()); if (!VTList.empty()) assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && VTList[0] != MVT::fAny); // Verify no duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); } /// FillWithPossibleTypes - Set to all legal types and return true, only valid /// on completely unknown type sets. bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, bool (*Pred)(MVT::SimpleValueType), const char *PredicateName) { assert(isCompletelyUnknown()); ArrayRef<MVT::SimpleValueType> LegalTypes = TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); if (TP.hasError()) return false; for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) if (!Pred || Pred(LegalTypes[i])) TypeVec.push_back(LegalTypes[i]); // If we have nothing that matches the predicate, bail out. if (TypeVec.empty()) { TP.error("Type inference contradiction found, no " + std::string(PredicateName) + " types found"); return false; } // No need to sort with one element. if (TypeVec.size() == 1) return true; // Remove duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); return true; } /// hasIntegerTypes - Return true if this TypeSet contains iAny or an /// integer value type. bool EEVT::TypeSet::hasIntegerTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isInteger(TypeVec[i])) return true; return false; } /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or /// a floating point value type. bool EEVT::TypeSet::hasFloatingPointTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isFloatingPoint(TypeVec[i])) return true; return false; } /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. bool EEVT::TypeSet::hasScalarTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isScalar(TypeVec[i])) return true; return false; } /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector /// value type. bool EEVT::TypeSet::hasVectorTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isVector(TypeVec[i])) return true; return false; } std::string EEVT::TypeSet::getName() const { if (TypeVec.empty()) return "<empty>"; std::string Result; for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { std::string VTName = llvm::getEnumName(TypeVec[i]); // Strip off MVT:: prefix if present. if (VTName.substr(0,5) == "MVT::") VTName = VTName.substr(5); if (i) Result += ':'; Result += VTName; } if (TypeVec.size() == 1) return Result; return "{" + Result + "}"; } /// MergeInTypeInfo - This merges in type information from the specified /// argument. If 'this' changes, it returns true. If the two types are /// contradictory (e.g. merge f32 into i32) then this flags an error. bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) return false; if (isCompletelyUnknown()) { *this = InVT; return true; } assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); // Handle the abstract cases, seeing if we can resolve them better. switch (TypeVec[0]) { default: break; case MVT::iPTR: case MVT::iPTRAny: if (InVT.hasIntegerTypes()) { EEVT::TypeSet InCopy(InVT); InCopy.EnforceInteger(TP); InCopy.EnforceScalar(TP); if (InCopy.isConcrete()) { // If the RHS has one integer type, upgrade iPTR to i32. TypeVec[0] = InVT.TypeVec[0]; return true; } // If the input has multiple scalar integers, this doesn't add any info. if (!InCopy.isCompletelyUnknown()) return false; } break; } // If the input constraint is iAny/iPTR and this is an integer type list, // remove non-integer types from the list. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && hasIntegerTypes()) { bool MadeChange = EnforceInteger(TP); // If we're merging in iPTR/iPTRAny and the node currently has a list of // multiple different integer types, replace them with a single iPTR. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && TypeVec.size() != 1) { TypeVec.resize(1); TypeVec[0] = InVT.TypeVec[0]; MadeChange = true; } return MadeChange; } // If this is a type list and the RHS is a typelist as well, eliminate entries // from this list that aren't in the other one. bool MadeChange = false; TypeSet InputSet(*this); for (unsigned i = 0; i != TypeVec.size(); ++i) { bool InInVT = false; for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) if (TypeVec[i] == InVT.TypeVec[j]) { InInVT = true; break; } if (InInVT) continue; TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } // If we removed all of our types, we have a type contradiction. if (!TypeVec.empty()) return MadeChange; // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, merging '" + InVT.getName() + "' into '" + InputSet.getName() + "'"); return false; } /// EnforceInteger - Remove all non-integer types from this set. bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { if (TP.hasError()) return false; // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isInteger, "integer"); if (!hasFloatingPointTypes()) return false; TypeSet InputSet(*this); // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isInteger(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be integer"); return false; } return true; } /// EnforceFloatingPoint - Remove all integer types from this set. bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { if (TP.hasError()) return false; // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); if (!hasIntegerTypes()) return false; TypeSet InputSet(*this); // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isFloatingPoint(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be floating point"); return false; } return true; } /// EnforceScalar - Remove all vector types from this. bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { if (TP.hasError()) return false; // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isScalar, "scalar"); if (!hasVectorTypes()) return false; TypeSet InputSet(*this); // Filter out all the vector types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isScalar(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be scalar"); return false; } return true; } /// EnforceVector - Remove all vector types from this. bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { if (TP.hasError()) return false; // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isVector, "vector"); TypeSet InputSet(*this); bool MadeChange = false; // Filter out all the scalar types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isVector(TypeVec[i])) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } if (TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be a vector"); return false; } return MadeChange; } /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors /// this shoud be based on the element type. Update this and other based on /// this information. bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { if (TP.hasError()) return false; // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; if (isCompletelyUnknown()) MadeChange = FillWithPossibleTypes(TP); if (Other.isCompletelyUnknown()) MadeChange = Other.FillWithPossibleTypes(TP); // If one side is known to be integer or known to be FP but the other side has // no information, get at least the type integrality info in there. if (!hasFloatingPointTypes()) MadeChange |= Other.EnforceInteger(TP); else if (!hasIntegerTypes()) MadeChange |= Other.EnforceFloatingPoint(TP); if (!Other.hasFloatingPointTypes()) MadeChange |= EnforceInteger(TP); else if (!Other.hasIntegerTypes()) MadeChange |= EnforceFloatingPoint(TP); assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && "Should have a type list now"); // If one contains vectors but the other doesn't pull vectors out. if (!hasVectorTypes()) MadeChange |= Other.EnforceScalar(TP); else if (!hasScalarTypes()) MadeChange |= Other.EnforceVector(TP); if (!Other.hasVectorTypes()) MadeChange |= EnforceScalar(TP); else if (!Other.hasScalarTypes()) MadeChange |= EnforceVector(TP); // This code does not currently handle nodes which have multiple types, // where some types are integer, and some are fp. Assert that this is not // the case. assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); if (TP.hasError()) return false; // Okay, find the smallest type from current set and remove anything the // same or smaller from the other set. We need to ensure that the scalar // type size is smaller than the scalar size of the smallest type. For // vectors, we also need to make sure that the total size is no larger than // the size of the smallest type. TypeSet InputSet(Other); MVT Smallest = TypeVec[0]; for (unsigned i = 0; i != Other.TypeVec.size(); ++i) { MVT OtherVT = Other.TypeVec[i]; // Don't compare vector and non-vector types. if (OtherVT.isVector() != Smallest.isVector()) continue; // The getSizeInBits() check here is only needed for vectors, but is // a subset of the scalar check for scalars so no need to qualify. if (OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() || OtherVT.getSizeInBits() < Smallest.getSizeInBits()) { Other.TypeVec.erase(Other.TypeVec.begin()+i--); MadeChange = true; } } if (Other.TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' has nothing larger than '" + getName() +"'!"); return false; } // Okay, find the largest type from the other set and remove anything the // same or smaller from the current set. We need to ensure that the scalar // type size is larger than the scalar size of the largest type. For // vectors, we also need to make sure that the total size is no smaller than // the size of the largest type. InputSet = TypeSet(*this); MVT Largest = Other.TypeVec[Other.TypeVec.size()-1]; for (unsigned i = 0; i != TypeVec.size(); ++i) { MVT OtherVT = TypeVec[i]; // Don't compare vector and non-vector types. if (OtherVT.isVector() != Largest.isVector()) continue; // The getSizeInBits() check here is only needed for vectors, but is // a subset of the scalar check for scalars so no need to qualify. if (OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || OtherVT.getSizeInBits() > Largest.getSizeInBits()) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) { TP.error("Type inference contradiction found, '" + InputSet.getName() + "' has nothing smaller than '" + Other.getName() +"'!"); return false; } return MadeChange; } /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type /// whose element is specified by VTOperand. bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, TreePattern &TP) { bool MadeChange = false; MadeChange |= EnforceVector(TP); TypeSet InputSet(*this); // Filter out all the types which don't have the right element type. for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have a vector element"); return false; } return MadeChange; } /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type /// whose element is specified by VTOperand. bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, TreePattern &TP) { if (TP.hasError()) return false; // "This" must be a vector and "VTOperand" must be a scalar. bool MadeChange = false; MadeChange |= EnforceVector(TP); MadeChange |= VTOperand.EnforceScalar(TP); // If we know the vector type, it forces the scalar to agree. if (isConcrete()) { MVT IVT = getConcrete(); IVT = IVT.getVectorElementType(); return MadeChange | VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); } // If the scalar type is known, filter out vector types whose element types // disagree. if (!VTOperand.isConcrete()) return MadeChange; MVT::SimpleValueType VT = VTOperand.getConcrete(); TypeSet InputSet(*this); // Filter out all the types which don't have the right element type. for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have a vector element"); return false; } return MadeChange; } /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a /// vector type specified by VTOperand. bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, TreePattern &TP) { if (TP.hasError()) return false; // "This" must be a vector and "VTOperand" must be a vector. bool MadeChange = false; MadeChange |= EnforceVector(TP); MadeChange |= VTOperand.EnforceVector(TP); // If one side is known to be integer or known to be FP but the other side has // no information, get at least the type integrality info in there. if (!hasFloatingPointTypes()) MadeChange |= VTOperand.EnforceInteger(TP); else if (!hasIntegerTypes()) MadeChange |= VTOperand.EnforceFloatingPoint(TP); if (!VTOperand.hasFloatingPointTypes()) MadeChange |= EnforceInteger(TP); else if (!VTOperand.hasIntegerTypes()) MadeChange |= EnforceFloatingPoint(TP); assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && "Should have a type list now"); // If we know the vector type, it forces the scalar types to agree. // Also force one vector to have more elements than the other. if (isConcrete()) { MVT IVT = getConcrete(); unsigned NumElems = IVT.getVectorNumElements(); IVT = IVT.getVectorElementType(); EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); // Only keep types that have less elements than VTOperand. TypeSet InputSet(VTOperand); for (unsigned i = 0; i != VTOperand.TypeVec.size(); ++i) { assert(isVector(VTOperand.TypeVec[i]) && "EnforceVector didn't work"); if (MVT(VTOperand.TypeVec[i]).getVectorNumElements() >= NumElems) { VTOperand.TypeVec.erase(VTOperand.TypeVec.begin()+i--); MadeChange = true; } } if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have less vector elements than '" + getName() + "'"); return false; } } else if (VTOperand.isConcrete()) { MVT IVT = VTOperand.getConcrete(); unsigned NumElems = IVT.getVectorNumElements(); IVT = IVT.getVectorElementType(); EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); // Only keep types that have more elements than 'this'. TypeSet InputSet(*this); for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); if (MVT(TypeVec[i]).getVectorNumElements() <= NumElems) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have more vector elements than '" + VTOperand.getName() + "'"); return false; } } return MadeChange; } /// EnforceVectorSameNumElts - 'this' is now constrainted to /// be a vector with same num elements as VTOperand. bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand, TreePattern &TP) { if (TP.hasError()) return false; // "This" must be a vector and "VTOperand" must be a vector. bool MadeChange = false; MadeChange |= EnforceVector(TP); MadeChange |= VTOperand.EnforceVector(TP); // If we know one of the vector types, it forces the other type to agree. if (isConcrete()) { MVT IVT = getConcrete(); unsigned NumElems = IVT.getVectorNumElements(); // Only keep types that have same elements as VTOperand. TypeSet InputSet(VTOperand); for (unsigned i = 0; i != VTOperand.TypeVec.size(); ++i) { assert(isVector(VTOperand.TypeVec[i]) && "EnforceVector didn't work"); if (MVT(VTOperand.TypeVec[i]).getVectorNumElements() != NumElems) { VTOperand.TypeVec.erase(VTOperand.TypeVec.begin()+i--); MadeChange = true; } } if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have same number elements as '" + getName() + "'"); return false; } } else if (VTOperand.isConcrete()) { MVT IVT = VTOperand.getConcrete(); unsigned NumElems = IVT.getVectorNumElements(); // Only keep types that have same elements as 'this'. TypeSet InputSet(*this); for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); if (MVT(TypeVec[i]).getVectorNumElements() != NumElems) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have same number elements than '" + VTOperand.getName() + "'"); return false; } } return MadeChange; } //===----------------------------------------------------------------------===// // Helpers for working with extended types. /// Dependent variable map for CodeGenDAGPattern variant generation typedef std::map<std::string, int> DepVarMap; /// Const iterator shorthand for DepVarMap typedef DepVarMap::const_iterator DepVarMap_citer; static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { if (N->isLeaf()) { if (isa<DefInit>(N->getLeafValue())) DepMap[N->getName()]++; } else { for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) FindDepVarsOf(N->getChild(i), DepMap); } } /// Find dependent variables within child patterns static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { DepVarMap depcounts; FindDepVarsOf(N, depcounts); for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { if (i->second > 1) // std::pair<std::string, int> DepVars.insert(i->first); } } #ifndef NDEBUG /// Dump the dependent variable set: static void DumpDepVars(MultipleUseVarSet &DepVars) { if (DepVars.empty()) { DEBUG(errs() << "<empty set>"); } else { DEBUG(errs() << "[ "); for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); i != e; ++i) { DEBUG(errs() << (*i) << " "); } DEBUG(errs() << "]"); } } #endif //===----------------------------------------------------------------------===// // TreePredicateFn Implementation //===----------------------------------------------------------------------===// /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { assert((getPredCode().empty() || getImmCode().empty()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"); } std::string TreePredicateFn::getPredCode() const { return PatFragRec->getRecord()->getValueAsString("PredicateCode"); } std::string TreePredicateFn::getImmCode() const { return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); } /// isAlwaysTrue - Return true if this is a noop predicate. bool TreePredicateFn::isAlwaysTrue() const { return getPredCode().empty() && getImmCode().empty(); } /// Return the name to use in the generated code to reference this, this is /// "Predicate_foo" if from a pattern fragment "foo". std::string TreePredicateFn::getFnName() const { return "Predicate_" + PatFragRec->getRecord()->getName(); } /// getCodeToRunOnSDNode - Return the code for the function body that /// evaluates this predicate. The argument is expected to be in "Node", /// not N. This handles casting and conversion to a concrete node type as /// appropriate. std::string TreePredicateFn::getCodeToRunOnSDNode() const { // Handle immediate predicates first. std::string ImmCode = getImmCode(); if (!ImmCode.empty()) { std::string Result = " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; return Result + ImmCode; } // Handle arbitrary node predicates. assert(!getPredCode().empty() && "Don't have any predicate code!"); std::string ClassName; if (PatFragRec->getOnlyTree()->isLeaf()) ClassName = "SDNode"; else { Record *Op = PatFragRec->getOnlyTree()->getOperator(); ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); } std::string Result; if (ClassName == "SDNode") Result = " SDNode *N = Node;\n"; else Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; return Result + getPredCode(); } //===----------------------------------------------------------------------===// // PatternToMatch implementation // /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(const TreePatternNode *P, const CodeGenDAGPatterns &CGP) { unsigned Size = 3; // The node itself. // If the root node is a ConstantSDNode, increases its size. // e.g. (set R32:$dst, 0). if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) Size += 2; // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. const ComplexPattern *AM = P->getComplexPatternInfo(CGP); if (AM) { Size += AM->getNumOperands() * 3; // We don't want to count any children twice, so return early. return Size; } // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFns().empty()) ++Size; // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getNumTypes() && Child->getType(0) != MVT::Other) Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { if (isa<IntInit>(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (Child->getComplexPatternInfo(CGP)) Size += getPatternSize(Child, CGP); else if (!Child->getPredicateFns().empty()) ++Size; } } return Size; } /// Compute the complexity metric for the input pattern. This roughly /// corresponds to the number of nodes that are covered. int PatternToMatch:: getPatternComplexity(const CodeGenDAGPatterns &CGP) const { return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); } /// getPredicateCheck - Return a single string containing all of this /// pattern's predicates concatenated with "&&" operators. /// std::string PatternToMatch::getPredicateCheck() const { std::string PredicateCheck; for (Init *I : Predicates->getValues()) { if (DefInit *Pred = dyn_cast<DefInit>(I)) { Record *Def = Pred->getDef(); if (!Def->isSubClassOf("Predicate")) { #ifndef NDEBUG Def->dump(); #endif llvm_unreachable("Unknown predicate type!"); } if (!PredicateCheck.empty()) PredicateCheck += " && "; PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; } } return PredicateCheck; } //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); if (x.SDTCisVT_Info.VT == MVT::isVoid) PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisVec")) { ConstraintType = SDTCisVec; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisEltOfVec")) { ConstraintType = SDTCisEltOfVec; x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { ConstraintType = SDTCisSubVecOfVec; x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else if (R->isSubClassOf("SDTCVecEltisVT")) { ConstraintType = SDTCVecEltisVT; x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) PrintFatalError(R->getLoc(), "Must use integer or floating point type " "as SDTCVecEltisVT"); } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { ConstraintType = SDTCisSameNumEltsAs; x.SDTCisSameNumEltsAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else { PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, and the result number in ResNo. static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, const SDNodeInfo &NodeInfo, unsigned &ResNo) { unsigned NumResults = NodeInfo.getNumResults(); if (OpNo < NumResults) { ResNo = OpNo; return N; } OpNo -= NumResults; if (OpNo >= N->getNumChildren()) { std::string S; raw_string_ostream OS(S); OS << "Invalid operand number in type constraint " << (OpNo+NumResults) << " "; N->print(OS); PrintFatalError(OS.str()); } return N->getChild(OpNo); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, flag an error. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { if (TP.hasError()) return false; unsigned ResNo = 0; // The result number being referenced. TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); switch (ConstraintType) { case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); case SDTCisPtrTy: // Operand must be same as target pointer type. return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); case SDTCisInt: // Require it to be one of the legal integer VTs. return NodeToApply->getExtType(ResNo).EnforceInteger(TP); case SDTCisFP: // Require it to be one of the legal fp VTs. return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); case SDTCisVec: // Require it to be one of the legal vector VTs. return NodeToApply->getExtType(ResNo).EnforceVector(TP); case SDTCisSameAs: { unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); return (int) NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP) | (int) OtherNode->UpdateNodeType(OResNo, NodeToApply->getExtType(ResNo),TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !isa<DefInit>(NodeToApply->getLeafValue()) || !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) { TP.error(N->getOperator()->getName() + " expects a VT operand!"); return false; } MVT::SimpleValueType VT = getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); EEVT::TypeSet TypeListTmp(VT, TP); unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo); return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); } case SDTCisOpSmallerThanOp: { unsigned BResNo = 0; TreePatternNode *BigOperand = getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo); return NodeToApply->getExtType(ResNo). EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); } case SDTCisEltOfVec: { unsigned VResNo = 0; TreePatternNode *VecOperand = getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); // Filter vector types out of VecOperand that don't have the right element // type. return VecOperand->getExtType(VResNo). EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); } case SDTCisSubVecOfVec: { unsigned VResNo = 0; TreePatternNode *BigVecOperand = getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); // Filter vector types out of BigVecOperand that don't have the // right subvector type. return BigVecOperand->getExtType(VResNo). EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); } case SDTCVecEltisVT: { return NodeToApply->getExtType(ResNo). EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); } case SDTCisSameNumEltsAs: { unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, N, NodeInfo, OResNo); return OtherNode->getExtType(OResNo). EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP); } } llvm_unreachable("Invalid ConstraintType!"); } // Update the node type to match an instruction operand or result as specified // in the ins or outs lists on the instruction definition. Return true if the // type was actually changed. bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP) { // The 'unknown' operand indicates that types should be inferred from the // context. if (Operand->isSubClassOf("unknown_class")) return false; // The Operand class specifies a type directly. if (Operand->isSubClassOf("Operand")) return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), TP); // PointerLikeRegClass has a type that is determined at runtime. if (Operand->isSubClassOf("PointerLikeRegClass")) return UpdateNodeType(ResNo, MVT::iPTR, TP); // Both RegisterClass and RegisterOperand operands derive their types from a // register class def. Record *RC = nullptr; if (Operand->isSubClassOf("RegisterClass")) RC = Operand; else if (Operand->isSubClassOf("RegisterOperand")) RC = Operand->getValueAsDef("RegClass"); assert(RC && "Unknown operand type"); CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the properties. Properties = 0; std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) { if (PropList[i]->getName() == "SDNPCommutative") { Properties |= 1 << SDNPCommutative; } else if (PropList[i]->getName() == "SDNPAssociative") { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOutGlue") { Properties |= 1 << SDNPOutGlue; } else if (PropList[i]->getName() == "SDNPInGlue") { Properties |= 1 << SDNPInGlue; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else { PrintFatalError("Unknown SD Node property '" + PropList[i]->getName() + "' on node '" + R->getName() + "'!"); } } // Parse the type constraints. std::vector<Record*> ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); } /// getKnownType - If the type constraints on this node imply a fixed type /// (e.g. all stores return void, etc), then return it as an /// MVT::SimpleValueType. Otherwise, return EEVT::Other. MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { unsigned NumResults = getNumResults(); assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); assert(ResNo == 0 && "Only handles single result nodes so far"); for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { // Make sure that this applies to the correct node result. if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # continue; switch (TypeConstraints[i].ConstraintType) { default: break; case SDTypeConstraint::SDTCisVT: return TypeConstraints[i].x.SDTCisVT_Info.VT; case SDTypeConstraint::SDTCisPtrTy: return MVT::iPTR; } } return MVT::Other; } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { if (Operator->getName() == "set" || Operator->getName() == "implicit") return 0; // All return nothing. if (Operator->isSubClassOf("Intrinsic")) return CDP.getIntrinsic(Operator).IS.RetVTs.size(); if (Operator->isSubClassOf("SDNode")) return CDP.getSDNodeInfo(Operator).getNumResults(); if (Operator->isSubClassOf("PatFrag")) { // If we've already parsed this pattern fragment, get it. Otherwise, handle // the forward reference case where one pattern fragment references another // before it is processed. if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) return PFRec->getOnlyTree()->getNumTypes(); // Get the result tree. DagInit *Tree = Operator->getValueAsDag("Fragment"); Record *Op = nullptr; if (Tree) if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) Op = DI->getDef(); assert(Op && "Invalid Fragment"); return GetNumNodeResults(Op, CDP); } if (Operator->isSubClassOf("Instruction")) { CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; // Subtract any defaulted outputs. for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { Record *OperandNode = InstInfo.Operands[i].Rec; if (OperandNode->isSubClassOf("OperandWithDefaultOps") && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) --NumDefsToAdd; } // Add on one implicit def if it has a resolvable type. if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) ++NumDefsToAdd; return NumDefsToAdd; } if (Operator->isSubClassOf("SDNodeXForm")) return 1; // FIXME: Generalize SDNodeXForm if (Operator->isSubClassOf("ValueType")) return 1; // A type-cast of one result. if (Operator->isSubClassOf("ComplexPattern")) return 1; Operator->dump(); PrintFatalError("Unhandled node in GetNumNodeResults"); } void TreePatternNode::print(raw_ostream &OS) const { if (isLeaf()) OS << *getLeafValue(); else OS << '(' << getOperator()->getName(); for (unsigned i = 0, e = Types.size(); i != e; ++i) OS << ':' << getExtType(i).getName(); if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; if (TransformFn) OS << "<<X:" << TransformFn->getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(errs()); } /// isIsomorphicTo - Return true if this node is recursively /// isomorphic to the specified node. For this comparison, the node's /// entire state is considered. The assigned name is ignored, since /// nodes with differing names are considered isomorphic. However, if /// the assigned name is present in the dependent variable set, then /// the assigned name is considered significant and the node is /// isomorphic if the names match. bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, const MultipleUseVarSet &DepVars) const { if (N == this) return true; if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || getPredicateFns() != N->getPredicateFns() || getTransformFn() != N->getTransformFn()) return false; if (isLeaf()) { if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { return ((DI->getDef() == NDI->getDef()) && (DepVars.find(getName()) == DepVars.end() || getName() == N->getName())); } } return getLeafValue() == N->getLeafValue(); } if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) return false; return true; } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue(), getNumTypes()); } else { std::vector<TreePatternNode*> CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); } New->setName(getName()); New->Types = Types; New->setPredicateFns(getPredicateFns()); New->setTransformFn(getTransformFn()); return New; } /// RemoveAllTypes - Recursively strip all the types of this tree. void TreePatternNode::RemoveAllTypes() { for (unsigned i = 0, e = Types.size(); i != e; ++i) Types[i] = EEVT::TypeSet(); // Reset to unknown type. if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) getChild(i)->RemoveAllTypes(); } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); // Note that, when substituting into an output pattern, Val might be an // UnsetInit. if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && cast<DefInit>(Val)->getDef()->getName() == "node")) { // We found a use of a formal argument, replace it with its value. TreePatternNode *NewChild = ArgMap[Child->getName()]; assert(NewChild && "Couldn't find formal argument!"); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (TP.hasError()) return nullptr; if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); TreePatternNode *NewChild = Child->InlinePatternFragments(TP); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) { TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); return nullptr; } TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); TreePredicateFn PredFn(Frag); if (!PredFn.isAlwaysTrue()) FragTree->addPredicateFn(PredFn); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map<std::string, TreePatternNode*> ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); for (unsigned i = 0, e = Types.size(); i != e; ++i) FragTree->UpdateNodeType(i, getExtType(i), TP); // Transfer in the old predicates. for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) FragTree->addPredicateFn(getPredicateFns()[i]); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! // The fragment we inlined could have recursive inlining that is needed. See // if there are any pattern fragments in it and inline them as needed. return FragTree->InlinePatternFragments(TP); } /// getImplicitType - Check to see if the specified record has an implicit /// type which should be applied to it. This will infer the type of register /// references from the register file information, for example. /// /// When Unnamed is set, return the type of a DAG operand with no name, such as /// the F8RC register class argument in: /// /// (COPY_TO_REGCLASS GPR:$src, F8RC) /// /// When Unnamed is false, return the type of a named DAG operand such as the /// GPR:$src operand above. /// static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, bool NotRegisters, bool Unnamed, TreePattern &TP) { // Check to see if this is a register operand. if (R->isSubClassOf("RegisterOperand")) { assert(ResNo == 0 && "Regoperand ref only has one result!"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. Record *RegClass = R->getValueAsDef("RegClass"); const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); } // Check to see if this is a register or a register class. if (R->isSubClassOf("RegisterClass")) { assert(ResNo == 0 && "Regclass ref only has one result!"); // An unnamed register class represents itself as an i32 immediate, for // example on a COPY_TO_REGCLASS instruction. if (Unnamed) return EEVT::TypeSet(MVT::i32, TP); // In a named operand, the register class provides the possible set of // types. if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); } if (R->isSubClassOf("PatFrag")) { assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); // Pattern fragment types will be resolved when they are inlined. return EEVT::TypeSet(); // Unknown. } if (R->isSubClassOf("Register")) { assert(ResNo == 0 && "Registers only produce one result!"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterVTs(R)); } if (R->isSubClassOf("SubRegIndex")) { assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); return EEVT::TypeSet(MVT::i32, TP); } if (R->isSubClassOf("ValueType")) { assert(ResNo == 0 && "This node only has one result!"); // An unnamed VTSDNode represents itself as an MVT::Other immediate. // // (sext_inreg GPR:$src, i16) // ~~~ if (Unnamed) return EEVT::TypeSet(MVT::Other, TP); // With a name, the ValueType simply provides the type of the named // variable. // // (sext_inreg i32:$src, i16) // ~~~~~~~~ if (NotRegisters) return EEVT::TypeSet(); // Unknown. return EEVT::TypeSet(getValueType(R), TP); } if (R->isSubClassOf("CondCode")) { assert(ResNo == 0 && "This node only has one result!"); // Using a CondCodeSDNode. return EEVT::TypeSet(MVT::Other, TP); } if (R->isSubClassOf("ComplexPattern")) { assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), TP); } if (R->isSubClassOf("PointerLikeRegClass")) { assert(ResNo == 0 && "Regclass can only have one result!"); return EEVT::TypeSet(MVT::iPTR, TP); } if (R->getName() == "node" || R->getName() == "srcvalue" || R->getName() == "zero_reg") { // Placeholder. return EEVT::TypeSet(); // Unknown. } if (R->isSubClassOf("Operand")) return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); TP.error("Unknown node flavor used in pattern: " + R->getName()); return EEVT::TypeSet(MVT::Other, TP); } /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the /// CodeGenIntrinsic information for it, otherwise return a null pointer. const CodeGenIntrinsic *TreePatternNode:: getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { if (getOperator() != CDP.get_intrinsic_void_sdnode() && getOperator() != CDP.get_intrinsic_w_chain_sdnode() && getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) return nullptr; unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); return &CDP.getIntrinsicInfo(IID); } /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, /// return the ComplexPattern information, otherwise return null. const ComplexPattern * TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { Record *Rec; if (isLeaf()) { DefInit *DI = dyn_cast<DefInit>(getLeafValue()); if (!DI) return nullptr; Rec = DI->getDef(); } else Rec = getOperator(); if (!Rec->isSubClassOf("ComplexPattern")) return nullptr; return &CGP.getComplexPattern(Rec); } unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { // A ComplexPattern specifically declares how many results it fills in. if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) return CP->getNumOperands(); // If MIOperandInfo is specified, that gives the count. if (isLeaf()) { DefInit *DI = dyn_cast<DefInit>(getLeafValue()); if (DI && DI->getDef()->isSubClassOf("Operand")) { DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); if (MIOps->getNumArgs()) return MIOps->getNumArgs(); } } // Otherwise there is just one result. return 1; } /// NodeHasProperty - Return true if this node has the specified property. bool TreePatternNode::NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const { if (isLeaf()) { if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) return CP->hasProperty(Property); return false; } Record *Operator = getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; return CGP.getSDNodeInfo(Operator).hasProperty(Property); } /// TreeHasProperty - Return true if any node in this tree has the specified /// property. bool TreePatternNode::TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const { if (NodeHasProperty(Property, CGP)) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (getChild(i)->TreeHasProperty(Property, CGP)) return true; return false; } /// isCommutativeIntrinsic - Return true if the node corresponds to a /// commutative intrinsic. bool TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) return Int->isCommutative; return false; } static bool isOperandClass(const TreePatternNode *N, StringRef Class) { if (!N->isLeaf()) return N->getOperator()->isSubClassOf(Class); DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); if (DI && DI->getDef()->isSubClassOf(Class)) return true; return false; } static void emitTooManyOperandsError(TreePattern &TP, StringRef InstName, unsigned Expected, unsigned Actual) { TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + " operands but expected only " + Twine(Expected) + "!"); } static void emitTooFewOperandsError(TreePattern &TP, StringRef InstName, unsigned Actual) { TP.error("Instruction '" + InstName + "' expects more than the provided " + Twine(Actual) + " operands!"); } /// ApplyTypeConstraints - Apply all of the type constraints relevant to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, flag an error. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if (TP.hasError()) return false; CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); if (isLeaf()) { if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { // If it's a regclass or something else known, include the type. bool MadeChange = false; for (unsigned i = 0, e = Types.size(); i != e; ++i) MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, NotRegisters, !hasName(), TP), TP); return MadeChange; } if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { assert(Types.size() == 1 && "Invalid IntInit"); // Int inits are always integers. :) bool MadeChange = Types[0].EnforceInteger(TP); if (!Types[0].isConcrete()) return MadeChange; MVT::SimpleValueType VT = getType(0); if (VT == MVT::iPTR || VT == MVT::iPTRAny) return MadeChange; unsigned Size = MVT(VT).getSizeInBits(); // Make sure that the value is representable for this type. if (Size >= 32) return MadeChange; // Check that the value doesn't use more bits than we have. It must either // be a sign- or zero-extended equivalent of the original. int64_t SignBitAndAbove = II->getValue() >> (Size - 1); if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) return MadeChange; TP.error("Integer value '" + itostr(II->getValue()) + "' is out of range for type '" + getEnumName(getType(0)) + "'!"); return false; } return false; } // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert(getNumTypes() == 0 && "Set doesn't produce a value"); assert(getNumChildren() >= 2 && "Missing RHS of a set?"); unsigned NC = getNumChildren(); TreePatternNode *SetVal = getChild(NC-1); bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); for (unsigned i = 0; i < NC-1; ++i) { TreePatternNode *Child = getChild(i); MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); // Types of operands must match. MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); } return MadeChange; } if (getOperator()->getName() == "implicit") { assert(getNumTypes() == 0 && "Node doesn't produce a value"); bool MadeChange = false; for (unsigned i = 0; i < getNumChildren(); ++i) MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { bool MadeChange = false; // Apply the result type to the node. unsigned NumRetVTs = Int->IS.RetVTs.size(); unsigned NumParamVTs = Int->IS.ParamVTs.size(); for (unsigned i = 0, e = NumRetVTs; i != e; ++i) MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); if (getNumChildren() != NumParamVTs + 1) { TP.error("Intrinsic '" + Int->Name + "' expects " + utostr(NumParamVTs) + " operands, not " + utostr(getNumChildren() - 1) + " operands!"); return false; } // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); } return MadeChange; } if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); // Check that the number of operands is sane. Negative operands -> varargs. if (NI.getNumOperands() >= 0 && getNumChildren() != (unsigned)NI.getNumOperands()) { TP.error(getOperator()->getName() + " node requires exactly " + itostr(NI.getNumOperands()) + " operands!"); return false; } bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = CDP.getInstruction(getOperator()); CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(getOperator()); bool MadeChange = false; // Apply the result types to the node, these come from the things in the // (outs) list of the instruction. unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, Inst.getNumResults()); for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); // If the instruction has implicit defs, we apply the first one as a result. // FIXME: This sucks, it should apply all implicit defs. if (!InstInfo.ImplicitDefs.empty()) { unsigned ResNo = NumResultsToAdd; // FIXME: Generalize to multiple possible types and multiple possible // ImplicitDefs. MVT::SimpleValueType VT = InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); if (VT != MVT::Other) MadeChange |= UpdateNodeType(ResNo, VT, TP); } // If this is an INSERT_SUBREG, constrain the source and destination VTs to // be the same. if (getOperator()->getName() == "INSERT_SUBREG") { assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); } else if (getOperator()->getName() == "REG_SEQUENCE") { // We need to do extra, custom typechecking for REG_SEQUENCE since it is // variadic. unsigned NChild = getNumChildren(); if (NChild < 3) { TP.error("REG_SEQUENCE requires at least 3 operands!"); return false; } if (NChild % 2 == 0) { TP.error("REG_SEQUENCE requires an odd number of operands!"); return false; } if (!isOperandClass(getChild(0), "RegisterClass")) { TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); return false; } for (unsigned I = 1; I < NChild; I += 2) { TreePatternNode *SubIdxChild = getChild(I + 1); if (!isOperandClass(SubIdxChild, "SubRegIndex")) { TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + itostr(I + 1) + "!"); return false; } } } unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); // If the instruction expects a predicate or optional def operand, we // codegen this by setting the operand to it's default value if it has a // non-empty DefaultOps field. if (OperandNode->isSubClassOf("OperandWithDefaultOps") && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) continue; // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) { emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); return false; } TreePatternNode *Child = getChild(ChildNo++); unsigned ChildResNo = 0; // Instructions always use res #0 of their op. // If the operand has sub-operands, they may be provided by distinct // child patterns, so attempt to match each sub-operand separately. if (OperandNode->isSubClassOf("Operand")) { DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); if (unsigned NumArgs = MIOpInfo->getNumArgs()) { // But don't do that if the whole operand is being provided by // a single ComplexPattern-related Operand. if (Child->getNumMIResults(CDP) < NumArgs) { // Match first sub-operand against the child we already have. Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); // And the remaining sub-operands against subsequent children. for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { if (ChildNo >= getNumChildren()) { emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); return false; } Child = getChild(ChildNo++); SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); } continue; } } } // If we didn't match by pieces above, attempt to match the whole // operand now. MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); } if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { emitTooManyOperandsError(TP, getOperator()->getName(), ChildNo, getNumChildren()); return false; } for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } if (getOperator()->isSubClassOf("ComplexPattern")) { bool MadeChange = false; for (unsigned i = 0; i < getNumChildren(); ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand. if (getNumChildren() != 1) { TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); return false; } bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. #if 0 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); return MadeChange; } #endif return MadeChange; } /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the /// RHS of a commutative operation, not the on LHS. static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { if (!N->isLeaf() && N->getOperator()->getName() == "imm") return true; if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) return true; return false; } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. This is /// used as a sanity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. bool TreePatternNode::canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP) { if (isLeaf()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->canPatternMatch(Reason, CDP)) return false; // If this is an intrinsic, handle cases that would make it not match. For // example, if an operand is required to be an immediate. if (getOperator()->isSubClassOf("Intrinsic")) { // TODO: return true; } if (getOperator()->isSubClassOf("ComplexPattern")) return true; // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); bool isCommIntrinsic = isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { // Scan all of the operands of the node and make sure that only the last one // is a constant node, unless the RHS also is. if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) if (OnlyOnRHSOfCommutative(getChild(i))) { Reason="Immediate value must be on the RHS of commutative operators!"; return false; } } } return true; } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false) { for (Init *I : RawPat->getValues()) Trees.push_back(ParseTreePattern(I, "")); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false) { Trees.push_back(ParseTreePattern(Pat, "")); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false) { Trees.push_back(Pat); } void TreePattern::error(const Twine &Msg) { if (HasError) return; dump(); PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); HasError = true; } void TreePattern::ComputeNamedNodes() { for (unsigned i = 0, e = Trees.size(); i != e; ++i) ComputeNamedNodes(Trees[i]); } void TreePattern::ComputeNamedNodes(TreePatternNode *N) { if (!N->getName().empty()) NamedNodes[N->getName()].push_back(N); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) ComputeNamedNodes(N->getChild(i)); } TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { Record *R = DI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode of its own. For example: /// (foo GPR, imm) -> (foo GPR, (imm)) if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) return ParseTreePattern( DagInit::get(DI, "", std::vector<std::pair<Init*, std::string> >()), OpName); // Input argument? TreePatternNode *Res = new TreePatternNode(DI, 1); if (R->getName() == "node" && !OpName.empty()) { if (OpName.empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(OpName); } Res->setName(OpName); return Res; } // ?:$name or just $name. if (isa<UnsetInit>(TheInit)) { if (OpName.empty()) error("'?' argument requires a name to match with operand list"); TreePatternNode *Res = new TreePatternNode(TheInit, 1); Args.push_back(OpName); Res->setName(OpName); return Res; } if (IntInit *II = dyn_cast<IntInit>(TheInit)) { if (!OpName.empty()) error("Constant int argument should not have a name!"); return new TreePatternNode(II, 1); } if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(IntRecTy::get()); if (!II || !isa<IntInit>(II)) error("Bits value must be constants!"); return ParseTreePattern(II, OpName); } DagInit *Dag = dyn_cast<DagInit>(TheInit); if (!Dag) { TheInit->dump(); error("Pattern has unexpected init kind!"); } DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); // Apply the type cast. assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); New->UpdateNodeType(0, getValueType(Operator), *this); if (!OpName.empty()) error("ValueType cast should not have a name!"); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && !Operator->isSubClassOf("ComplexPattern") && Operator->getName() != "set" && Operator->getName() != "implicit") error("Unrecognized node '" + Operator->getName() + "'!"); // Check to see if this is something that is illegal in an input pattern. if (isInputPattern) { if (Operator->isSubClassOf("Instruction") || Operator->isSubClassOf("SDNodeXForm")) error("Cannot use '" + Operator->getName() + "' in an input pattern!"); } else { if (Operator->isSubClassOf("Intrinsic")) error("Cannot use '" + Operator->getName() + "' in an output pattern!"); if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && Operator->getName() != "fpimm" && Operator->getName() != "tglobaltlsaddr" && Operator->getName() != "tconstpool" && Operator->getName() != "tjumptable" && Operator->getName() != "tframeindex" && Operator->getName() != "texternalsym" && Operator->getName() != "tblockaddress" && Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && Operator->getName() != "vt" && Operator->getName() != "mcsym") error("Cannot use '" + Operator->getName() + "' in an output pattern!"); } std::vector<TreePatternNode*> Children; // Parse all the operands. for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); // If the operator is an intrinsic, then this is just syntactic sugar for for // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; // If this intrinsic returns void, it must have side-effects and thus a // chain. if (Int.IS.RetVTs.empty()) Operator = getDAGPatterns().get_intrinsic_void_sdnode(); else if (Int.ModRef != CodeGenIntrinsic::NoMem) // Has side-effects, requires chain. Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); else // Otherwise, no chain. Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); Children.insert(Children.begin(), IIDNode); } if (Operator->isSubClassOf("ComplexPattern")) { for (unsigned i = 0; i < Children.size(); ++i) { TreePatternNode *Child = Children[i]; if (Child->getName().empty()) error("All arguments to a ComplexPattern must be named"); // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". auto OperandId = std::make_pair(Operator, i); auto PrevOp = ComplexPatternOperands.find(Child->getName()); if (PrevOp != ComplexPatternOperands.end()) { if (PrevOp->getValue() != OperandId) error("All ComplexPattern operands must appear consistently: " "in the same order in just one ComplexPattern instance."); } else ComplexPatternOperands[Child->getName()] = OperandId; } } unsigned NumResults = GetNumNodeResults(Operator, CDP); TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); Result->setName(OpName); if (!Dag->getName().empty()) { assert(Result->getName().empty()); Result->setName(Dag->getName()); } return Result; } /// SimplifyTree - See if we can simplify this tree to eliminate something that /// will never match in favor of something obvious that will. This is here /// strictly as a convenience to target authors because it allows them to write /// more type generic things and have useless type casts fold away. /// /// This returns true if any change is made. static bool SimplifyTree(TreePatternNode *&N) { if (N->isLeaf()) return false; // If we have a bitconvert with a resolved type and if the source and // destination types are the same, then the bitconvert is useless, remove it. if (N->getOperator()->getName() == "bitconvert" && N->getExtType(0).isConcrete() && N->getExtType(0) == N->getChild(0)->getExtType(0) && N->getName().empty()) { N = N->getChild(0); SimplifyTree(N); return true; } // Walk all children. bool MadeChange = false; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); MadeChange |= SimplifyTree(Child); N->setChild(i, Child); } return MadeChange; } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are inferred, false /// otherwise. Flags an error if a type contradiction is found. bool TreePattern:: InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { if (NamedNodes.empty()) ComputeNamedNodes(); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); MadeChange |= SimplifyTree(Trees[i]); } // If there are constraints on our named nodes, apply them. for (StringMap<SmallVector<TreePatternNode*,1> >::iterator I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { SmallVectorImpl<TreePatternNode*> &Nodes = I->second; // If we have input named node types, propagate their types to the named // values here. if (InNamedTypes) { if (!InNamedTypes->count(I->getKey())) { error("Node '" + std::string(I->getKey()) + "' in output pattern but not input pattern"); return true; } const SmallVectorImpl<TreePatternNode*> &InNodes = InNamedTypes->find(I->getKey())->second; // The input types should be fully resolved by now. for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { // If this node is a register class, and it is the root of the pattern // then we're mapping something onto an input register. We allow // changing the type of the input register in this case. This allows // us to match things like: // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || DI->getDef()->isSubClassOf("RegisterOperand"))) continue; } assert(Nodes[i]->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); } } // If there are multiple nodes with the same name, they must all have the // same type. if (I->second.size() > 1) { for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); } } } } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(raw_ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(errs()); } //===----------------------------------------------------------------------===// // CodeGenDAGPatterns implementation // CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R), Target(R) { Intrinsics = LoadIntrinsics(Records, false); TgtIntrinsics = LoadIntrinsics(Records, true); ParseNodeInfo(); ParseNodeTransforms(); ParseComplexPatterns(); ParsePatternFragments(); ParseDefaultOperands(); ParseInstructions(); ParsePatternFragments(/*OutFrags*/true); ParsePatterns(); // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); // Infer instruction flags. For example, we can detect loads, // stores, and side effects in many cases by examining an // instruction's pattern. InferInstructionFlags(); // Verify that instruction flags match the patterns. VerifyInstructionFlags(); } Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { Record *N = Records.getDef(Name); if (!N || !N->isSubClassOf("SDNode")) PrintFatalError("Error getting SDNode '" + Name + "'!"); return N; } // Parse all of the SDNode definitions for the target, populating SDNodes. void CodeGenDAGPatterns::ParseNodeInfo() { std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } // Get the builtin intrinsic nodes. intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void CodeGenDAGPatterns::ParseNodeTransforms() { std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsString("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); Xforms.pop_back(); } } void CodeGenDAGPatterns::ParseComplexPatterns() { std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); while (!AMs.empty()) { ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); AMs.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) continue; DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = (PatternFragments[Fragments[i]] = llvm::make_unique<TreePattern>( Fragments[i], Tree, !Fragments[i]->isSubClassOf("OutPatFrag"), *this)).get(); // Validate the argument list, converting it to set, to discard duplicates. std::vector<std::string> &Args = P->getArgList(); std::set<std::string> OperandsSet(Args.begin(), Args.end()); if (OperandsSet.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); // Special cases: ops == outs == ins. Different names are used to // improve readability. if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && OpsOp->getDef()->getName() != "outs" && OpsOp->getDef()->getName() != "ins")) P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!isa<DefInit>(OpsList->getArg(j)) || cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsSet.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsSet.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsSet.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsSet.begin() + "'!"); // If there is a code init for this fragment, keep track of the fact that // this fragment uses it. TreePredicateFn PredFn(P); if (!PredFn.isAlwaysTrue()) P->getOnlyTree()->addPredicateFn(PredFn); // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) continue; TreePattern &ThePat = *PatternFragments[Fragments[i]]; ThePat.InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. ThePat.InferAllTypes(); ThePat.resetError(); // If debugging, print out the pattern fragment result. DEBUG(ThePat.dump()); } } void CodeGenDAGPatterns::ParseDefaultOperands() { std::vector<Record*> DefaultOps; DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); // Clone the DefaultInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector<std::pair<Init*, std::string> > Ops; for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) Ops.push_back(std::make_pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); DagInit *DI = DagInit::get(SomeSDNode, "", Ops); // Create a TreePattern to parse this. TreePattern P(DefaultOps[i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGDefaultOperand. DAGDefaultOperand DefaultOpInfo; TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; if (TPN->ContainsUnresolvedType()) { PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + DefaultOps[i]->getName() + "' doesn't have a concrete type!"); } DefaultOpInfo.DefaultOps.push_back(TPN); } // Insert it into the DefaultOperands map so we can find it later. DefaultOperands[DefaultOps[i]] = DefaultOpInfo; } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map<std::string, TreePatternNode*> &InstInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || DI->getDef()->isSubClassOf("RegisterOperand"))) I->error("Input " + DI->getDef()->getName() + " must be named!"); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { Rec = Pat->getOperator(); } // SRCVALUE nodes are ignored. if (Rec->getName() == "srcvalue") return false; TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; return true; } Record *SlotRec; if (Slot->isLeaf()) { SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getExtTypes() != Pat->getExtTypes()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void CodeGenDAGPatterns:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map<std::string, TreePatternNode*> &InstInputs, std::map<std::string, TreePatternNode*>&InstResults, std::vector<Record*> &InstImpResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } if (Pat->getOperator()->getName() == "implicit") { for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("implicitly defined value should be a register!"); DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); if (!Val || !Val->getDef()->isSubClassOf("Register")) I->error("implicitly defined value should be a register!"); InstImpResults.push_back(Val->getDef()); } return; } if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getNumTypes() == 0) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumDests = Pat->getNumChildren()-1; for (unsigned i = 0; i != NumDests; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); if (!Val) { I->error("set destination should be a register!"); continue; } if (Val->getDef()->isSubClassOf("RegisterClass") || Val->getDef()->isSubClassOf("ValueType") || Val->getDef()->isSubClassOf("RegisterOperand") || Val->getDef()->isSubClassOf("PointerLikeRegClass")) { if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Dest; } else if (Val->getDef()->isSubClassOf("Register")) { InstImpResults.push_back(Val->getDef()); } else { I->error("set destination should be a register!"); } } // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), InstInputs, InstResults, InstImpResults); } //===----------------------------------------------------------------------===// // Instruction Analysis //===----------------------------------------------------------------------===// class InstAnalyzer { const CodeGenDAGPatterns &CDP; public: bool hasSideEffects; bool mayStore; bool mayLoad; bool isBitcast; bool isVariadic; InstAnalyzer(const CodeGenDAGPatterns &cdp) : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), isBitcast(false), isVariadic(false) {} void Analyze(const TreePattern *Pat) { // Assume only the first tree is the pattern. The others are clobber nodes. AnalyzeNode(Pat->getTree(0)); } void Analyze(const PatternToMatch *Pat) { AnalyzeNode(Pat->getSrcPattern()); } private: bool IsNodeBitcast(const TreePatternNode *N) const { if (hasSideEffects || mayLoad || mayStore || isVariadic) return false; if (N->getNumChildren() != 2) return false; const TreePatternNode *N0 = N->getChild(0); if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) return false; const TreePatternNode *N1 = N->getChild(1); if (N1->isLeaf()) return false; if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) return false; const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) return false; return OpInfo.getEnumName() == "ISD::BITCAST"; } public: void AnalyzeNode(const TreePatternNode *N) { if (N->isLeaf()) { if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { Record *LeafRec = DI->getDef(); // Handle ComplexPattern leaves. if (LeafRec->isSubClassOf("ComplexPattern")) { const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); if (CP.hasProperty(SDNPMayStore)) mayStore = true; if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; } } return; } // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) AnalyzeNode(N->getChild(i)); // Ignore set nodes, which are not SDNodes. if (N->getOperator()->getName() == "set") { isBitcast = IsNodeBitcast(N); return; } // Notice properties of the node. if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { // If this is an intrinsic, analyze it. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) mayLoad = true;// These may load memory. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) mayStore = true;// Intrinsics that can write to memory are 'mayStore'. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) // WriteMem intrinsics can have other strange effects. hasSideEffects = true; } } }; static bool InferFromPattern(CodeGenInstruction &InstInfo, const InstAnalyzer &PatInfo, Record *PatDef) { bool Error = false; // Remember where InstInfo got its flags. if (InstInfo.hasUndefFlags()) InstInfo.InferredFrom = PatDef; // Check explicitly set flags for consistency. if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && !InstInfo.hasSideEffects_Unset) { // Allow explicitly setting hasSideEffects = 1 on instructions, even when // the pattern has no side effects. That could be useful for div/rem // instructions that may trap. if (!InstInfo.hasSideEffects) { Error = true; PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + Twine(InstInfo.hasSideEffects)); } } if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { Error = true; PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + Twine(InstInfo.mayStore)); } if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. // Some targets translate imediates to loads. if (!InstInfo.mayLoad) { Error = true; PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + Twine(InstInfo.mayLoad)); } } // Transfer inferred flags. InstInfo.hasSideEffects |= PatInfo.hasSideEffects; InstInfo.mayStore |= PatInfo.mayStore; InstInfo.mayLoad |= PatInfo.mayLoad; // These flags are silently added without any verification. InstInfo.isBitcast |= PatInfo.isBitcast; // Don't infer isVariadic. This flag means something different on SDNodes and // instructions. For example, a CALL SDNode is variadic because it has the // call arguments as operands, but a CALL instruction is not variadic - it // has argument registers as implicit, not explicit uses. return Error; } /// hasNullFragReference - Return true if the DAG has any reference to the /// null_frag operator. static bool hasNullFragReference(DagInit *DI) { DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); if (!OpDef) return false; Record *Operator = OpDef->getDef(); // If this is the null fragment, return true. if (Operator->getName() == "null_frag") return true; // If any of the arguments reference the null fragment, return true. for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); if (Arg && hasNullFragReference(Arg)) return true; } return false; } /// hasNullFragReference - Return true if any DAG in the list references /// the null_frag operator. static bool hasNullFragReference(ListInit *LI) { for (Init *I : LI->getValues()) { DagInit *DI = dyn_cast<DagInit>(I); assert(DI && "non-dag in an instruction Pattern list?!"); if (hasNullFragReference(DI)) return true; } return false; } /// Get all the instructions in a tree. static void getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { if (Tree->isLeaf()) return; if (Tree->getOperator()->isSubClassOf("Instruction")) Instrs.push_back(Tree->getOperator()); for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) getInstructionsInTree(Tree->getChild(i), Instrs); } /// Check the class of a pattern leaf node against the instruction operand it /// represents. static bool checkOperandClass(CGIOperandList::OperandInfo &OI, Record *Leaf) { if (OI.Rec == Leaf) return true; // Allow direct value types to be used in instruction set patterns. // The type will be checked later. if (Leaf->isSubClassOf("ValueType")) return true; // Patterns can also be ComplexPattern instances. if (Leaf->isSubClassOf("ComplexPattern")) return true; return false; } const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); // Parse the instruction. TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map<std::string, TreePatternNode*> InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map<std::string, TreePatternNode*> InstResults; std::vector<Record*> InstImpResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getNumTypes() != 0) I->error("Top-level forms in instruction pattern should have" " void types"); // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, InstImpResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. assert(I->getArgList().empty() && "Args list should still be empty here!"); // Check that all of the results occur first in the list. std::vector<Record*> Results; SmallVector<TreePatternNode *, 2> ResNodes; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.Operands.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.Operands[i].Name; // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (!RNode) I->error("Operand $" + OpName + " does not exist in operand list!"); ResNodes.push_back(RNode); Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); if (!R) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (!checkOperandClass(CGI.Operands[i], R)) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. Results.push_back(CGI.Operands[i].Rec); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); std::vector<TreePatternNode*> ResultNodeOperands; std::vector<Record*> Operands; for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { CGIOperandList::OperandInfo &Op = CGI.Operands[i]; const std::string &OpName = Op.Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) { // If this is an operand with a DefaultOps set filled in, we can ignore // this. When we codegen it, we will do so as always executed. if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { // Does it have a non-empty DefaultOps field? If so, ignore this // operand. if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) continue; } I->error("Operand $" + OpName + " does not appear in the instruction pattern"); } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); if (!checkOperandClass(Op, InRec)) I->error("Operand $" + OpName + "'s register class disagrees" " between the operand and pattern"); } Operands.push_back(Op.Rec); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->clearPredicateFns(); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(nullptr); std::vector<TreePatternNode*> Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands, GetNumNodeResults(I->getRecord(), *this)); // Copy fully inferred output node types to instruction result pattern. for (unsigned i = 0; i != NumResults; ++i) { assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); ResultPattern->setType(i, ResNodes[i]->getExtType(0)); } // Create and insert the instruction. // FIXME: InstImpResults should not be part of DAGInstruction. DAGInstruction TheInst(I, Results, Operands, InstImpResults); DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the DAGInsts map. TreePattern Temp(I->getRecord(), ResultPattern, false, *this); Temp.InferAllTypes(&I->getNamedNodesMap()); DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); return TheInsertedInst; } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void CodeGenDAGPatterns::ParseInstructions() { std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = nullptr; if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. A pattern which references the // null_frag operator is as-if no pattern were specified. Normally this // is from a multiclass expansion w/ a SDPatternOperator passed in as // null_frag. if (!LI || LI->empty() || hasNullFragReference(LI)) { std::vector<Record*> Results; std::vector<Record*> Operands; CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); if (InstInfo.Operands.size() != 0) { for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) Results.push_back(InstInfo.Operands[j].Rec); // The rest are inputs. for (unsigned j = InstInfo.Operands.NumDefs, e = InstInfo.Operands.size(); j < e; ++j) Operands.push_back(InstInfo.Operands[j].Rec); } // Create and insert the instruction. std::vector<Record*> ImpResults; Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(nullptr, Results, Operands, ImpResults))); continue; // no pattern. } CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); (void)DI; DEBUG(DI.getPattern()->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { DAGInstruction &TheInst = II->second; TreePattern *I = TheInst.getPattern(); if (!I) continue; // No pattern. // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. TreePatternNode *Pattern = I->getTree(0); TreePatternNode *SrcPattern; if (Pattern->getOperator()->getName() == "set") { SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); } else{ // Not a set (store or something?) SrcPattern = Pattern; } Record *Instr = II->first; AddPatternToMatch(I, PatternToMatch(Instr, Instr->getValueAsListInit("Predicates"), SrcPattern, TheInst.getResultPattern(), TheInst.getImpResults(), Instr->getValueAsInt("AddedComplexity"), Instr->getID())); } } typedef std::pair<const TreePatternNode*, unsigned> NameRecord; static void FindNames(const TreePatternNode *P, std::map<std::string, NameRecord> &Names, TreePattern *PatternTop) { if (!P->getName().empty()) { NameRecord &Rec = Names[P->getName()]; // If this is the first instance of the name, remember the node. if (Rec.second++ == 0) Rec.first = P; else if (Rec.first->getExtTypes() != P->getExtTypes()) PatternTop->error("repetition of value: $" + P->getName() + " where different uses have different types!"); } if (!P->isLeaf()) { for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) FindNames(P->getChild(i), Names, PatternTop); } } void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM) { // Do some sanity checking on the pattern we're about to match. std::string Reason; if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { PrintWarning(Pattern->getRecord()->getLoc(), Twine("Pattern can never match: ") + Reason); return; } // If the source pattern's root is a complex pattern, that complex pattern // must specify the nodes it can potentially match. if (const ComplexPattern *CP = PTM.getSrcPattern()->getComplexPatternInfo(*this)) if (CP->getRootNodes().empty()) Pattern->error("ComplexPattern at root must specify list of opcodes it" " could match"); // Find all of the named values in the input and output, ensure they have the // same type. std::map<std::string, NameRecord> SrcNames, DstNames; FindNames(PTM.getSrcPattern(), SrcNames, Pattern); FindNames(PTM.getDstPattern(), DstNames, Pattern); // Scan all of the named values in the destination pattern, rejecting them if // they don't exist in the input pattern. for (std::map<std::string, NameRecord>::iterator I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { if (SrcNames[I->first].first == nullptr) Pattern->error("Pattern has input without matching name in output: $" + I->first); } // Scan all of the named values in the source pattern, rejecting them if the // name isn't used in the dest, and isn't used to tie two values together. for (std::map<std::string, NameRecord>::iterator I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) if (DstNames[I->first].first == nullptr && SrcNames[I->first].second == 1) Pattern->error("Pattern has dead named input: $" + I->first); PatternsToMatch.push_back(PTM); } void CodeGenDAGPatterns::InferInstructionFlags() { const std::vector<const CodeGenInstruction*> &Instructions = Target.getInstructionsByEnumValue(); // First try to infer flags from the primary instruction pattern, if any. SmallVector<CodeGenInstruction*, 8> Revisit; unsigned Errors = 0; for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { CodeGenInstruction &InstInfo = const_cast<CodeGenInstruction &>(*Instructions[i]); // Get the primary instruction pattern. const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); if (!Pattern) { if (InstInfo.hasUndefFlags()) Revisit.push_back(&InstInfo); continue; } InstAnalyzer PatInfo(*this); PatInfo.Analyze(Pattern); Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); } // Second, look for single-instruction patterns defined outside the // instruction. for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { const PatternToMatch &PTM = *I; // We can only infer from single-instruction patterns, otherwise we won't // know which instruction should get the flags. SmallVector<Record*, 8> PatInstrs; getInstructionsInTree(PTM.getDstPattern(), PatInstrs); if (PatInstrs.size() != 1) continue; // Get the single instruction. CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); // Only infer properties from the first pattern. We'll verify the others. if (InstInfo.InferredFrom) continue; InstAnalyzer PatInfo(*this); PatInfo.Analyze(&PTM); Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); } if (Errors) PrintFatalError("pattern conflicts"); // Revisit instructions with undefined flags and no pattern. if (Target.guessInstructionProperties()) { for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { CodeGenInstruction &InstInfo = *Revisit[i]; if (InstInfo.InferredFrom) continue; // The mayLoad and mayStore flags default to false. // Conservatively assume hasSideEffects if it wasn't explicit. if (InstInfo.hasSideEffects_Unset) InstInfo.hasSideEffects = true; } return; } // Complain about any flags that are still undefined. for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { CodeGenInstruction &InstInfo = *Revisit[i]; if (InstInfo.InferredFrom) continue; if (InstInfo.hasSideEffects_Unset) PrintError(InstInfo.TheDef->getLoc(), "Can't infer hasSideEffects from patterns"); if (InstInfo.mayStore_Unset) PrintError(InstInfo.TheDef->getLoc(), "Can't infer mayStore from patterns"); if (InstInfo.mayLoad_Unset) PrintError(InstInfo.TheDef->getLoc(), "Can't infer mayLoad from patterns"); } } /// Verify instruction flags against pattern node properties. void CodeGenDAGPatterns::VerifyInstructionFlags() { unsigned Errors = 0; for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { const PatternToMatch &PTM = *I; SmallVector<Record*, 8> Instrs; getInstructionsInTree(PTM.getDstPattern(), Instrs); if (Instrs.empty()) continue; // Count the number of instructions with each flag set. unsigned NumSideEffects = 0; unsigned NumStores = 0; unsigned NumLoads = 0; for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); NumSideEffects += InstInfo.hasSideEffects; NumStores += InstInfo.mayStore; NumLoads += InstInfo.mayLoad; } // Analyze the source pattern. InstAnalyzer PatInfo(*this); PatInfo.Analyze(&PTM); // Collect error messages. SmallVector<std::string, 4> Msgs; // Check for missing flags in the output. // Permit extra flags for now at least. if (PatInfo.hasSideEffects && !NumSideEffects) Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); // Don't verify store flags on instructions with side effects. At least for // intrinsics, side effects implies mayStore. if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) Msgs.push_back("pattern may store, but mayStore isn't set"); // Similarly, mayStore implies mayLoad on intrinsics. if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) Msgs.push_back("pattern may load, but mayLoad isn't set"); // Print error messages. if (Msgs.empty()) continue; ++Errors; for (unsigned i = 0, e = Msgs.size(); i != e; ++i) PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + (Instrs.size() == 1 ? "instruction" : "output instructions")); // Provide the location of the relevant instruction definitions. for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { if (Instrs[i] != PTM.getSrcRecord()) PrintError(Instrs[i]->getLoc(), "defined here"); const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); if (InstInfo.InferredFrom && InstInfo.InferredFrom != InstInfo.TheDef && InstInfo.InferredFrom != PTM.getSrcRecord()) PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); } } if (Errors) PrintFatalError("Errors in DAG patterns"); } /// Given a pattern result with an unresolved type, see if we can find one /// instruction with an unresolved result type. Force this result type to an /// arbitrary element if it's possible types to converge results. static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { if (N->isLeaf()) return false; // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) if (ForceArbitraryInstResultType(N->getChild(i), TP)) return true; if (!N->getOperator()->isSubClassOf("Instruction")) return false; // If this type is already concrete or completely unknown we can't do // anything. for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) continue; // Otherwise, force its type to the first possibility (an arbitrary choice). if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) return true; } return false; } void CodeGenDAGPatterns::ParsePatterns() { std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { Record *CurPattern = Patterns[i]; DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); // If the pattern references the null_frag, there's nothing to do. if (hasNullFragReference(Tree)) continue; TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); // Inline pattern fragments into it. Pattern->InlinePatternFragments(); ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); if (LI->empty()) continue; // no pattern. // Parse the instruction. TreePattern Result(CurPattern, LI, false, *this); // Inline pattern fragments into it. Result.InlinePatternFragments(); if (Result.getNumTrees() != 1) Result.error("Cannot handle instructions producing instructions " "with temporaries yet!"); bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result.InferAllTypes(&Pattern->getNamedNodesMap()); IterateInference = false; // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or // 64-bits. Infer the other way for good measure. for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), Pattern->getTree(0)->getNumTypes()); i != e; ++i) { IterateInference = Pattern->getTree(0)->UpdateNodeType( i, Result.getTree(0)->getExtType(i), Result); IterateInference |= Result.getTree(0)->UpdateNodeType( i, Pattern->getTree(0)->getExtType(i), Result); } // If our iteration has converged and the input pattern's types are fully // resolved but the result pattern is not fully resolved, we may have a // situation where we have two instructions in the result pattern and // the instructions require a common register class, but don't care about // what actual MVT is used. This is actually a bug in our modelling: // output patterns should have register classes, not MVTs. // // In any case, to handle this, we just go through and disambiguate some // arbitrary types to the result pattern's nodes. if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) IterateInference = ForceArbitraryInstResultType(Result.getTree(0), Result); } while (IterateInference); // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) Pattern->error("Could not infer all types in pattern!"); if (!InferredAllResultTypes) { Pattern->dump(); Result.error("Could not infer all types in pattern result!"); } // Validate that the input pattern is correct. std::map<std::string, TreePatternNode*> InstInputs; std::map<std::string, TreePatternNode*> InstResults; std::vector<Record*> InstImpResults; for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), InstInputs, InstResults, InstImpResults); // Promote the xform function to be an explicit node if set. TreePatternNode *DstPattern = Result.getOnlyTree(); std::vector<TreePatternNode*> ResultNodeOperands; for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { TreePatternNode *OpNode = DstPattern->getChild(ii); if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(nullptr); std::vector<TreePatternNode*> Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } ResultNodeOperands.push_back(OpNode); } DstPattern = Result.getOnlyTree(); if (!DstPattern->isLeaf()) DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands, DstPattern->getNumTypes()); for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); TreePattern Temp(Result.getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); AddPatternToMatch(Pattern, PatternToMatch(CurPattern, CurPattern->getValueAsListInit("Predicates"), Pattern->getTree(0), Temp.getOnlyTree(), InstImpResults, CurPattern->getValueAsInt("AddedComplexity"), CurPattern->getID())); } } /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. static void CombineChildVariants(TreePatternNode *Orig, const std::vector<std::vector<TreePatternNode*> > &ChildVariants, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // Make sure that each operand has at least one variant to choose from. for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; // The end result is an all-pairs construction of the resultant pattern. std::vector<unsigned> Idxs; Idxs.resize(ChildVariants.size()); bool NotDone; do { #ifndef NDEBUG DEBUG(if (!Idxs.empty()) { errs() << Orig->getOperator()->getName() << ": Idxs = [ "; for (unsigned i = 0; i < Idxs.size(); ++i) { errs() << Idxs[i] << " "; } errs() << "]\n"; }); #endif // Create the variant and add it to the output list. std::vector<TreePatternNode*> NewChildren; for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, Orig->getNumTypes()); // Copy over properties. R->setName(Orig->getName()); R->setPredicateFns(Orig->getPredicateFns()); R->setTransformFn(Orig->getTransformFn()); for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) R->setType(i, Orig->getExtType(i)); // If this pattern cannot match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, CDP)) { delete R; } else { bool AlreadyExists = false; // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) // which are the same pattern. Ignore the dups. for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) if (R->isIsomorphicTo(OutVariants[i], DepVars)) { AlreadyExists = true; break; } if (AlreadyExists) delete R; else OutVariants.push_back(R); } // Increment indices to the next permutation by incrementing the // indicies from last index backward, e.g., generate the sequence // [0, 0], [0, 1], [1, 0], [1, 1]. int IdxsIdx; for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) Idxs[IdxsIdx] = 0; else break; } NotDone = (IdxsIdx >= 0); } while (NotDone); } /// CombineChildVariants - A helper function for binary operators. /// static void CombineChildVariants(TreePatternNode *Orig, const std::vector<TreePatternNode*> &LHS, const std::vector<TreePatternNode*> &RHS, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { std::vector<std::vector<TreePatternNode*> > ChildVariants; ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); } static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector<TreePatternNode *> &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFns().empty() || N->getTransformFn()) { Children.push_back(N); return; } if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) Children.push_back(N->getChild(0)); else GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) Children.push_back(N->getChild(1)); else GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); } /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of /// the (potentially recursive) pattern by using algebraic laws. /// static void GenerateVariantsOf(TreePatternNode *N, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // We cannot permute leaves or ComplexPattern uses. if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { OutVariants.push_back(N); return; } // Look up interesting info about the node. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); // If this node is associative, re-associate. if (NodeInfo.hasProperty(SDNPAssociative)) { // Re-associate by pulling together all of the linked operators std::vector<TreePatternNode*> MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); // Only handle child sizes of 3. Otherwise we'll end up trying too many // permutations. if (MaximalChildren.size() == 3) { // Find the variants of all of our maximal children. std::vector<TreePatternNode*> AVariants, BVariants, CVariants; GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. // Generate legal pair permutations of A/B/C. std::vector<TreePatternNode*> ABVariants; std::vector<TreePatternNode*> BAVariants; std::vector<TreePatternNode*> ACVariants; std::vector<TreePatternNode*> CAVariants; std::vector<TreePatternNode*> BCVariants; std::vector<TreePatternNode*> CBVariants; CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); // Combine those into the result: (x op x) op x CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); // Combine those into the result: x op (x op x) CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); return; } } // Compute permutations of all children. std::vector<std::vector<TreePatternNode*> > ChildVariants; ChildVariants.resize(N->getNumChildren()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); // Build all permutations based on how the children were formed. CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); // If this node is commutative, consider the commuted order. bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { assert((N->getNumChildren()==2 || isCommIntrinsic) && "Commutative but doesn't have 2 children!"); // Don't count children which are actually register references. unsigned NC = 0; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (Child->isLeaf()) if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) continue; } NC++; } // Consider the commuted order. if (isCommIntrinsic) { // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd // operands are the commutative operands, and there might be more operands // after those. assert(NC >= 3 && "Commutative intrinsic should have at least 3 childrean!"); std::vector<std::vector<TreePatternNode*> > Variants; Variants.push_back(ChildVariants[0]); // Intrinsic id. Variants.push_back(ChildVariants[2]); Variants.push_back(ChildVariants[1]); for (unsigned i = 3; i != NC; ++i) Variants.push_back(ChildVariants[i]); CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); } else if (NC == 2) CombineChildVariants(N, ChildVariants[1], ChildVariants[0], OutVariants, CDP, DepVars); } } // GenerateVariants - Generate variants. For example, commutative patterns can // match multiple ways. Add them to PatternsToMatch as well. void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << "Generating instruction variants.\n"); // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide aggressive matching without // the .td file having to contain tons of variants of instructions. // // Note that this loop adds new patterns to the PatternsToMatch list, but we // intentionally do not reconsider these. Any variants of added patterns have // already been added. // for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { MultipleUseVarSet DepVars; std::vector<TreePatternNode*> Variants; FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); DEBUG(errs() << "Dependent/multiply used variables: "); DEBUG(DumpDepVars(DepVars)); DEBUG(errs() << "\n"); GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. if (Variants.empty()) // No variants for this pattern. continue; DEBUG(errs() << "FOUND VARIANTS OF: "; PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); for (unsigned v = 0, e = Variants.size(); v != e; ++v) { TreePatternNode *Variant = Variants[v]; DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); errs() << "\n"); // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { // Skip if the top level predicates do not match. if (PatternsToMatch[i].getPredicates() != PatternsToMatch[p].getPredicates()) continue; // Check to see if this variant already exists. if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); AlreadyExists = true; break; } } // If we already have it, ignore the variant. if (AlreadyExists) continue; // Otherwise, add it to the list of patterns we have. PatternsToMatch.emplace_back( PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), Variant, PatternsToMatch[i].getDstPattern(), PatternsToMatch[i].getDstRegs(), PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); } DEBUG(errs() << "\n"); } }
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CallingConvEmitter.cpp
//===- CallingConvEmitter.cpp - Generate calling conventions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting descriptions of the calling // conventions supported by this target. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <cassert> using namespace llvm; namespace { class CallingConvEmitter { RecordKeeper &Records; public: explicit CallingConvEmitter(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); private: void EmitCallingConv(Record *CC, raw_ostream &O); void EmitAction(Record *Action, unsigned Indent, raw_ostream &O); unsigned Counter; }; } // End anonymous namespace void CallingConvEmitter::run(raw_ostream &O) { std::vector<Record*> CCs = Records.getAllDerivedDefinitions("CallingConv"); // Emit prototypes for all of the non-custom CC's so that they can forward ref // each other. for (unsigned i = 0, e = CCs.size(); i != e; ++i) { if (!CCs[i]->getValueAsBit("Custom")) { O << "static bool " << CCs[i]->getName() << "(unsigned ValNo, MVT ValVT,\n" << std::string(CCs[i]->getName().size() + 13, ' ') << "MVT LocVT, CCValAssign::LocInfo LocInfo,\n" << std::string(CCs[i]->getName().size() + 13, ' ') << "ISD::ArgFlagsTy ArgFlags, CCState &State);\n"; } } // Emit each non-custom calling convention description in full. for (unsigned i = 0, e = CCs.size(); i != e; ++i) { if (!CCs[i]->getValueAsBit("Custom")) EmitCallingConv(CCs[i], O); } } void CallingConvEmitter::EmitCallingConv(Record *CC, raw_ostream &O) { ListInit *CCActions = CC->getValueAsListInit("Actions"); Counter = 0; O << "\n\nstatic bool " << CC->getName() << "(unsigned ValNo, MVT ValVT,\n" << std::string(CC->getName().size()+13, ' ') << "MVT LocVT, CCValAssign::LocInfo LocInfo,\n" << std::string(CC->getName().size()+13, ' ') << "ISD::ArgFlagsTy ArgFlags, CCState &State) {\n"; // Emit all of the actions, in order. for (unsigned i = 0, e = CCActions->size(); i != e; ++i) { O << "\n"; EmitAction(CCActions->getElementAsRecord(i), 2, O); } O << "\n return true; // CC didn't match.\n"; O << "}\n"; } void CallingConvEmitter::EmitAction(Record *Action, unsigned Indent, raw_ostream &O) { std::string IndentStr = std::string(Indent, ' '); if (Action->isSubClassOf("CCPredicateAction")) { O << IndentStr << "if ("; if (Action->isSubClassOf("CCIfType")) { ListInit *VTs = Action->getValueAsListInit("VTs"); for (unsigned i = 0, e = VTs->size(); i != e; ++i) { Record *VT = VTs->getElementAsRecord(i); if (i != 0) O << " ||\n " << IndentStr; O << "LocVT == " << getEnumName(getValueType(VT)); } } else if (Action->isSubClassOf("CCIf")) { O << Action->getValueAsString("Predicate"); } else { Action->dump(); PrintFatalError("Unknown CCPredicateAction!"); } O << ") {\n"; EmitAction(Action->getValueAsDef("SubAction"), Indent+2, O); O << IndentStr << "}\n"; } else { if (Action->isSubClassOf("CCDelegateTo")) { Record *CC = Action->getValueAsDef("CC"); O << IndentStr << "if (!" << CC->getName() << "(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))\n" << IndentStr << " return false;\n"; } else if (Action->isSubClassOf("CCAssignToReg")) { ListInit *RegList = Action->getValueAsListInit("RegList"); if (RegList->size() == 1) { O << IndentStr << "if (unsigned Reg = State.AllocateReg("; O << getQualifiedName(RegList->getElementAsRecord(0)) << ")) {\n"; } else { O << IndentStr << "static const MCPhysReg RegList" << ++Counter << "[] = {\n"; O << IndentStr << " "; for (unsigned i = 0, e = RegList->size(); i != e; ++i) { if (i != 0) O << ", "; O << getQualifiedName(RegList->getElementAsRecord(i)); } O << "\n" << IndentStr << "};\n"; O << IndentStr << "if (unsigned Reg = State.AllocateReg(RegList" << Counter << ")) {\n"; } O << IndentStr << " State.addLoc(CCValAssign::getReg(ValNo, ValVT, " << "Reg, LocVT, LocInfo));\n"; O << IndentStr << " return false;\n"; O << IndentStr << "}\n"; } else if (Action->isSubClassOf("CCAssignToRegWithShadow")) { ListInit *RegList = Action->getValueAsListInit("RegList"); ListInit *ShadowRegList = Action->getValueAsListInit("ShadowRegList"); if (!ShadowRegList->empty() && ShadowRegList->size() != RegList->size()) PrintFatalError("Invalid length of list of shadowed registers"); if (RegList->size() == 1) { O << IndentStr << "if (unsigned Reg = State.AllocateReg("; O << getQualifiedName(RegList->getElementAsRecord(0)); O << ", " << getQualifiedName(ShadowRegList->getElementAsRecord(0)); O << ")) {\n"; } else { unsigned RegListNumber = ++Counter; unsigned ShadowRegListNumber = ++Counter; O << IndentStr << "static const MCPhysReg RegList" << RegListNumber << "[] = {\n"; O << IndentStr << " "; for (unsigned i = 0, e = RegList->size(); i != e; ++i) { if (i != 0) O << ", "; O << getQualifiedName(RegList->getElementAsRecord(i)); } O << "\n" << IndentStr << "};\n"; O << IndentStr << "static const MCPhysReg RegList" << ShadowRegListNumber << "[] = {\n"; O << IndentStr << " "; for (unsigned i = 0, e = ShadowRegList->size(); i != e; ++i) { if (i != 0) O << ", "; O << getQualifiedName(ShadowRegList->getElementAsRecord(i)); } O << "\n" << IndentStr << "};\n"; O << IndentStr << "if (unsigned Reg = State.AllocateReg(RegList" << RegListNumber << ", " << "RegList" << ShadowRegListNumber << ")) {\n"; } O << IndentStr << " State.addLoc(CCValAssign::getReg(ValNo, ValVT, " << "Reg, LocVT, LocInfo));\n"; O << IndentStr << " return false;\n"; O << IndentStr << "}\n"; } else if (Action->isSubClassOf("CCAssignToStack")) { int Size = Action->getValueAsInt("Size"); int Align = Action->getValueAsInt("Align"); O << IndentStr << "unsigned Offset" << ++Counter << " = State.AllocateStack("; if (Size) O << Size << ", "; else O << "\n" << IndentStr << " State.getMachineFunction().getTarget().getDataLayout()" "->getTypeAllocSize(EVT(LocVT).getTypeForEVT(State.getContext()))," " "; if (Align) O << Align; else O << "\n" << IndentStr << " State.getMachineFunction().getTarget().getDataLayout()" "->getABITypeAlignment(EVT(LocVT).getTypeForEVT(State.getContext()" "))"; O << ");\n" << IndentStr << "State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset" << Counter << ", LocVT, LocInfo));\n"; O << IndentStr << "return false;\n"; } else if (Action->isSubClassOf("CCAssignToStackWithShadow")) { int Size = Action->getValueAsInt("Size"); int Align = Action->getValueAsInt("Align"); ListInit *ShadowRegList = Action->getValueAsListInit("ShadowRegList"); unsigned ShadowRegListNumber = ++Counter; O << IndentStr << "static const MCPhysReg ShadowRegList" << ShadowRegListNumber << "[] = {\n"; O << IndentStr << " "; for (unsigned i = 0, e = ShadowRegList->size(); i != e; ++i) { if (i != 0) O << ", "; O << getQualifiedName(ShadowRegList->getElementAsRecord(i)); } O << "\n" << IndentStr << "};\n"; O << IndentStr << "unsigned Offset" << ++Counter << " = State.AllocateStack(" << Size << ", " << Align << ", " << "ShadowRegList" << ShadowRegListNumber << ");\n"; O << IndentStr << "State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset" << Counter << ", LocVT, LocInfo));\n"; O << IndentStr << "return false;\n"; } else if (Action->isSubClassOf("CCPromoteToType")) { Record *DestTy = Action->getValueAsDef("DestTy"); MVT::SimpleValueType DestVT = getValueType(DestTy); O << IndentStr << "LocVT = " << getEnumName(DestVT) <<";\n"; if (MVT(DestVT).isFloatingPoint()) { O << IndentStr << "LocInfo = CCValAssign::FPExt;\n"; } else { O << IndentStr << "if (ArgFlags.isSExt())\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::SExt;\n" << IndentStr << "else if (ArgFlags.isZExt())\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::ZExt;\n" << IndentStr << "else\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::AExt;\n"; } } else if (Action->isSubClassOf("CCPromoteToUpperBitsInType")) { Record *DestTy = Action->getValueAsDef("DestTy"); MVT::SimpleValueType DestVT = getValueType(DestTy); O << IndentStr << "LocVT = " << getEnumName(DestVT) << ";\n"; if (MVT(DestVT).isFloatingPoint()) { PrintFatalError("CCPromoteToUpperBitsInType does not handle floating " "point"); } else { O << IndentStr << "if (ArgFlags.isSExt())\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::SExtUpper;\n" << IndentStr << "else if (ArgFlags.isZExt())\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::ZExtUpper;\n" << IndentStr << "else\n" << IndentStr << IndentStr << "LocInfo = CCValAssign::AExtUpper;\n"; } } else if (Action->isSubClassOf("CCBitConvertToType")) { Record *DestTy = Action->getValueAsDef("DestTy"); O << IndentStr << "LocVT = " << getEnumName(getValueType(DestTy)) <<";\n"; O << IndentStr << "LocInfo = CCValAssign::BCvt;\n"; } else if (Action->isSubClassOf("CCPassIndirect")) { Record *DestTy = Action->getValueAsDef("DestTy"); O << IndentStr << "LocVT = " << getEnumName(getValueType(DestTy)) <<";\n"; O << IndentStr << "LocInfo = CCValAssign::Indirect;\n"; } else if (Action->isSubClassOf("CCPassByVal")) { int Size = Action->getValueAsInt("Size"); int Align = Action->getValueAsInt("Align"); O << IndentStr << "State.HandleByVal(ValNo, ValVT, LocVT, LocInfo, " << Size << ", " << Align << ", ArgFlags);\n"; O << IndentStr << "return false;\n"; } else if (Action->isSubClassOf("CCCustom")) { O << IndentStr << "if (" << Action->getValueAsString("FuncName") << "(ValNo, ValVT, " << "LocVT, LocInfo, ArgFlags, State))\n"; O << IndentStr << IndentStr << "return false;\n"; } else { Action->dump(); PrintFatalError("Unknown CCAction!"); } } } namespace llvm { void EmitCallingConv(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Calling Convention Implementation Fragment", OS); CallingConvEmitter(RK).run(OS); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/CodeGenTarget.h
//===- CodeGenTarget.h - Target Class Wrapper -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines wrappers for the Target class and related global // functionality. This makes it easier to access the data and provides a single // place that needs to check it for validity. All of these classes abort // on error conditions. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_CODEGENTARGET_H #define LLVM_UTILS_TABLEGEN_CODEGENTARGET_H #include "CodeGenInstruction.h" #include "CodeGenRegisters.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Record.h" #include <algorithm> namespace llvm { struct CodeGenRegister; class CodeGenSchedModels; class CodeGenTarget; // SelectionDAG node properties. // SDNPMemOperand: indicates that a node touches memory and therefore must // have an associated memory operand that describes the access. enum SDNP { SDNPCommutative, SDNPAssociative, SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPOptInGlue, SDNPMayLoad, SDNPMayStore, SDNPSideEffect, SDNPMemOperand, SDNPVariadic, SDNPWantRoot, SDNPWantParent }; /// getValueType - Return the MVT::SimpleValueType that the specified TableGen /// record corresponds to. MVT::SimpleValueType getValueType(Record *Rec); std::string getName(MVT::SimpleValueType T); std::string getEnumName(MVT::SimpleValueType T); /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. std::string getQualifiedName(const Record *R); /// CodeGenTarget - This class corresponds to the Target class in the .td files. /// class CodeGenTarget { RecordKeeper &Records; Record *TargetRec; mutable DenseMap<const Record*, std::unique_ptr<CodeGenInstruction>> Instructions; mutable std::unique_ptr<CodeGenRegBank> RegBank; mutable std::vector<Record*> RegAltNameIndices; mutable SmallVector<MVT::SimpleValueType, 8> LegalValueTypes; void ReadRegAltNameIndices() const; void ReadInstructions() const; void ReadLegalValueTypes() const; mutable std::unique_ptr<CodeGenSchedModels> SchedModels; mutable std::vector<const CodeGenInstruction*> InstrsByEnum; public: CodeGenTarget(RecordKeeper &Records); ~CodeGenTarget(); Record *getTargetRecord() const { return TargetRec; } const std::string &getName() const; /// getInstNamespace - Return the target-specific instruction namespace. /// std::string getInstNamespace() const; /// getInstructionSet - Return the InstructionSet object. /// Record *getInstructionSet() const; /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *getAsmParser() const; /// getAsmParserVariant - Return the AssmblyParserVariant definition for /// this target. /// Record *getAsmParserVariant(unsigned i) const; /// getAsmParserVariantCount - Return the AssmblyParserVariant definition /// available for this target. /// unsigned getAsmParserVariantCount() const; /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *getAsmWriter() const; /// getRegBank - Return the register bank description. CodeGenRegBank &getRegBank() const; /// getRegisterByName - If there is a register with the specific AsmName, /// return it. const CodeGenRegister *getRegisterByName(StringRef Name) const; const std::vector<Record*> &getRegAltNameIndices() const { if (RegAltNameIndices.empty()) ReadRegAltNameIndices(); return RegAltNameIndices; } const CodeGenRegisterClass &getRegisterClass(Record *R) const { return *getRegBank().getRegClass(R); } /// getRegisterVTs - Find the union of all possible SimpleValueTypes for the /// specified physical register. std::vector<MVT::SimpleValueType> getRegisterVTs(Record *R) const; ArrayRef<MVT::SimpleValueType> getLegalValueTypes() const { if (LegalValueTypes.empty()) ReadLegalValueTypes(); return LegalValueTypes; } /// isLegalValueType - Return true if the specified value type is natively /// supported by the target (i.e. there are registers that directly hold it). bool isLegalValueType(MVT::SimpleValueType VT) const { ArrayRef<MVT::SimpleValueType> LegalVTs = getLegalValueTypes(); for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) if (LegalVTs[i] == VT) return true; return false; } CodeGenSchedModels &getSchedModels() const; private: DenseMap<const Record*, std::unique_ptr<CodeGenInstruction>> & getInstructions() const { if (Instructions.empty()) ReadInstructions(); return Instructions; } public: CodeGenInstruction &getInstruction(const Record *InstRec) const { if (Instructions.empty()) ReadInstructions(); auto I = Instructions.find(InstRec); assert(I != Instructions.end() && "Not an instruction"); return *I->second; } /// getInstructionsByEnumValue - Return all of the instructions defined by the /// target, ordered by their enum value. const std::vector<const CodeGenInstruction*> & getInstructionsByEnumValue() const { if (InstrsByEnum.empty()) ComputeInstrsByEnum(); return InstrsByEnum; } typedef std::vector<const CodeGenInstruction*>::const_iterator inst_iterator; inst_iterator inst_begin() const{return getInstructionsByEnumValue().begin();} inst_iterator inst_end() const { return getInstructionsByEnumValue().end(); } iterator_range<inst_iterator> instructions() const { return iterator_range<inst_iterator>(inst_begin(), inst_end()); } /// isLittleEndianEncoding - are instruction bit patterns defined as [0..n]? /// bool isLittleEndianEncoding() const; /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit /// encodings, reverse the bit order of all instructions. void reverseBitsForLittleEndianEncoding(); /// guessInstructionProperties - should we just guess unset instruction /// properties? bool guessInstructionProperties() const; private: void ComputeInstrsByEnum() const; }; /// ComplexPattern - ComplexPattern info, corresponding to the ComplexPattern /// tablegen class in TargetSelectionDAG.td class ComplexPattern { MVT::SimpleValueType Ty; unsigned NumOperands; std::string SelectFunc; std::vector<Record*> RootNodes; unsigned Properties; // Node properties public: ComplexPattern() : NumOperands(0) {} ComplexPattern(Record *R); MVT::SimpleValueType getValueType() const { return Ty; } unsigned getNumOperands() const { return NumOperands; } const std::string &getSelectFunc() const { return SelectFunc; } const std::vector<Record*> &getRootNodes() const { return RootNodes; } bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } }; } // End llvm namespace #endif
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/X86RecognizableInstr.cpp
//===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of a single recognizable instruction. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86RecognizableInstr.h" #include "X86DisassemblerShared.h" #include "X86ModRMFilters.h" #include "llvm/Support/ErrorHandling.h" #include <string> using namespace llvm; #define MRM_MAPPING \ MAP(C0, 32) \ MAP(C1, 33) \ MAP(C2, 34) \ MAP(C3, 35) \ MAP(C4, 36) \ MAP(C5, 37) \ MAP(C6, 38) \ MAP(C7, 39) \ MAP(C8, 40) \ MAP(C9, 41) \ MAP(CA, 42) \ MAP(CB, 43) \ MAP(CC, 44) \ MAP(CD, 45) \ MAP(CE, 46) \ MAP(CF, 47) \ MAP(D0, 48) \ MAP(D1, 49) \ MAP(D2, 50) \ MAP(D3, 51) \ MAP(D4, 52) \ MAP(D5, 53) \ MAP(D6, 54) \ MAP(D7, 55) \ MAP(D8, 56) \ MAP(D9, 57) \ MAP(DA, 58) \ MAP(DB, 59) \ MAP(DC, 60) \ MAP(DD, 61) \ MAP(DE, 62) \ MAP(DF, 63) \ MAP(E0, 64) \ MAP(E1, 65) \ MAP(E2, 66) \ MAP(E3, 67) \ MAP(E4, 68) \ MAP(E5, 69) \ MAP(E6, 70) \ MAP(E7, 71) \ MAP(E8, 72) \ MAP(E9, 73) \ MAP(EA, 74) \ MAP(EB, 75) \ MAP(EC, 76) \ MAP(ED, 77) \ MAP(EE, 78) \ MAP(EF, 79) \ MAP(F0, 80) \ MAP(F1, 81) \ MAP(F2, 82) \ MAP(F3, 83) \ MAP(F4, 84) \ MAP(F5, 85) \ MAP(F6, 86) \ MAP(F7, 87) \ MAP(F8, 88) \ MAP(F9, 89) \ MAP(FA, 90) \ MAP(FB, 91) \ MAP(FC, 92) \ MAP(FD, 93) \ MAP(FE, 94) \ MAP(FF, 95) // A clone of X86 since we can't depend on something that is generated. namespace X86Local { enum { Pseudo = 0, RawFrm = 1, AddRegFrm = 2, MRMDestReg = 3, MRMDestMem = 4, MRMSrcReg = 5, MRMSrcMem = 6, RawFrmMemOffs = 7, RawFrmSrc = 8, RawFrmDst = 9, RawFrmDstSrc = 10, RawFrmImm8 = 11, RawFrmImm16 = 12, MRMXr = 14, MRMXm = 15, MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, #define MAP(from, to) MRM_##from = to, MRM_MAPPING #undef MAP lastMRM }; enum { OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6 }; enum { PS = 1, PD = 2, XS = 3, XD = 4 }; enum { VEX = 1, XOP = 2, EVEX = 3 }; enum { OpSize16 = 1, OpSize32 = 2 }; enum { AdSize16 = 1, AdSize32 = 2, AdSize64 = 3 }; } using namespace X86Disassembler; /// isRegFormat - Indicates whether a particular form requires the Mod field of /// the ModR/M byte to be 0b11. /// /// @param form - The form of the instruction. /// @return - true if the form implies that Mod must be 0b11, false /// otherwise. static bool isRegFormat(uint8_t form) { return (form == X86Local::MRMDestReg || form == X86Local::MRMSrcReg || form == X86Local::MRMXr || (form >= X86Local::MRM0r && form <= X86Local::MRM7r)); } /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. /// Useful for switch statements and the like. /// /// @param init - A reference to the BitsInit to be decoded. /// @return - The field, with the first bit in the BitsInit as the lowest /// order bit. static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (static_cast<BitInit*>(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } /// byteFromRec - Extract a value at most 8 bits in with from a Record given the /// name of the field. /// /// @param rec - The record from which to extract the value. /// @param name - The name of the field in the record. /// @return - The field, as translated by byteFromBitsInit(). static uint8_t byteFromRec(const Record* rec, const std::string &name) { BitsInit* bits = rec->getValueAsBitsInit(name); return byteFromBitsInit(*bits); } RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { UID = uid; Rec = insn.TheDef; Name = Rec->getName(); Spec = &tables.specForUID(UID); if (!Rec->isSubClassOf("X86Inst")) { ShouldBeEmitted = false; return; } OpPrefix = byteFromRec(Rec, "OpPrefixBits"); OpMap = byteFromRec(Rec, "OpMapBits"); Opcode = byteFromRec(Rec, "Opcode"); Form = byteFromRec(Rec, "FormBits"); Encoding = byteFromRec(Rec, "OpEncBits"); OpSize = byteFromRec(Rec, "OpSizeBits"); AdSize = byteFromRec(Rec, "AdSizeBits"); HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix"); HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); HasVEX_4VOp3 = Rec->getValueAsBit("hasVEX_4VOp3"); HasVEX_WPrefix = Rec->getValueAsBit("hasVEX_WPrefix"); HasMemOp4Prefix = Rec->getValueAsBit("hasMemOp4Prefix"); IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2"); HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); CD8_Scale = byteFromRec(Rec, "CD8_Scale"); Name = Rec->getName(); AsmString = Rec->getValueAsString("AsmString"); Operands = &insn.Operands.OperandList; HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L"); // Check for 64-bit inst which does not require REX Is32Bit = false; Is64Bit = false; // FIXME: Is there some better way to check for In64BitMode? std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { if (Predicates[i]->getName().find("Not64Bit") != Name.npos || Predicates[i]->getName().find("In32Bit") != Name.npos) { Is32Bit = true; break; } if (Predicates[i]->getName().find("In64Bit") != Name.npos) { Is64Bit = true; break; } } if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) { ShouldBeEmitted = false; return; } // Special case since there is no attribute class for 64-bit and VEX if (Name == "VMASKMOVDQU64") { ShouldBeEmitted = false; return; } ShouldBeEmitted = true; } void RecognizableInstr::processInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { // Ignore "asm parser only" instructions. if (insn.TheDef->getValueAsBit("isAsmParserOnly")) return; RecognizableInstr recogInstr(tables, insn, uid); if (recogInstr.shouldBeEmitted()) { recogInstr.emitInstructionSpecifier(); recogInstr.emitDecodePath(tables); } } #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \ (HasEVEX_K && HasEVEX_B ? n##_K_B : \ (HasEVEX_KZ ? n##_KZ : \ (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n))))) InstructionContext RecognizableInstr::insnContext() const { InstructionContext insnContext; if (Encoding == X86Local::EVEX) { if (HasVEX_LPrefix && HasEVEX_L2Prefix) { errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); } // VEX_L & VEX_W if (HasVEX_LPrefix && HasVEX_WPrefix) { if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasVEX_LPrefix) { // VEX_L if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasEVEX_L2Prefix && HasVEX_WPrefix) { // EVEX_L2 & VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasEVEX_L2Prefix) { // EVEX_L2 if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasVEX_WPrefix) { // VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } // No L, no W else if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_XS); else insnContext = EVEX_KB(IC_EVEX); /// eof EVEX } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { if (HasVEX_LPrefix && HasVEX_WPrefix) { if (OpPrefix == X86Local::PD) insnContext = IC_VEX_L_W_OPSIZE; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_L_W_XS; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_L_W_XD; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX_L_W; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix) insnContext = IC_VEX_L_OPSIZE; else if (OpPrefix == X86Local::PD && HasVEX_WPrefix) insnContext = IC_VEX_W_OPSIZE; else if (OpPrefix == X86Local::PD) insnContext = IC_VEX_OPSIZE; else if (HasVEX_LPrefix && OpPrefix == X86Local::XS) insnContext = IC_VEX_L_XS; else if (HasVEX_LPrefix && OpPrefix == X86Local::XD) insnContext = IC_VEX_L_XD; else if (HasVEX_WPrefix && OpPrefix == X86Local::XS) insnContext = IC_VEX_W_XS; else if (HasVEX_WPrefix && OpPrefix == X86Local::XD) insnContext = IC_VEX_W_XD; else if (HasVEX_WPrefix && OpPrefix == X86Local::PS) insnContext = IC_VEX_W; else if (HasVEX_LPrefix && OpPrefix == X86Local::PS) insnContext = IC_VEX_L; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_XS; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) { if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) insnContext = IC_64BIT_REXW_OPSIZE; else if (HasREX_WPrefix && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_REXW_ADSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS_OPSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE; else if (AdSize == X86Local::AdSize32) insnContext = IC_64BIT_ADSIZE; else if (HasREX_WPrefix && OpPrefix == X86Local::XS) insnContext = IC_64BIT_REXW_XS; else if (HasREX_WPrefix && OpPrefix == X86Local::XD) insnContext = IC_64BIT_REXW_XD; else if (OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS; else if (HasREX_WPrefix) insnContext = IC_64BIT_REXW; else insnContext = IC_64BIT; } else { if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_OPSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16) insnContext = IC_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_OPSIZE; else if (AdSize == X86Local::AdSize16) insnContext = IC_ADSIZE; else if (OpPrefix == X86Local::XD) insnContext = IC_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_XS; else insnContext = IC; } return insnContext; } void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { // The scaling factor for AVX512 compressed displacement encoding is an // instruction attribute. Adjust the ModRM encoding type to include the // scale for compressed displacement. if (encoding != ENCODING_RM || CD8_Scale == 0) return; encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling"); } void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex, unsigned &numPhysicalOperands, const unsigned *operandMapping, OperandEncoding (*encodingFromString) (const std::string&, uint8_t OpSize)) { if (optional) { if (physicalOperandIndex >= numPhysicalOperands) return; } else { assert(physicalOperandIndex < numPhysicalOperands); } while (operandMapping[operandIndex] != operandIndex) { Spec->operands[operandIndex].encoding = ENCODING_DUP; Spec->operands[operandIndex].type = (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); ++operandIndex; } const std::string &typeName = (*Operands)[operandIndex].Rec->getName(); OperandEncoding encoding = encodingFromString(typeName, OpSize); // Adjust the encoding type for an operand based on the instruction. adjustOperandEncoding(encoding); Spec->operands[operandIndex].encoding = encoding; Spec->operands[operandIndex].type = typeFromString(typeName, HasREX_WPrefix, OpSize); ++operandIndex; ++physicalOperandIndex; } void RecognizableInstr::emitInstructionSpecifier() { Spec->name = Name; Spec->insnContext = insnContext(); const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands; unsigned numOperands = OperandList.size(); unsigned numPhysicalOperands = 0; // operandMapping maps from operands in OperandList to their originals. // If operandMapping[i] != i, then the entry is a duplicate. unsigned operandMapping[X86_MAX_OPERANDS]; assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { if (!OperandList[operandIndex].Constraints.empty()) { const CGIOperandList::ConstraintInfo &Constraint = OperandList[operandIndex].Constraints[0]; if (Constraint.isTied()) { operandMapping[operandIndex] = operandIndex; operandMapping[Constraint.getTiedOperand()] = operandIndex; } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } #define HANDLE_OPERAND(class) \ handleOperand(false, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); #define HANDLE_OPTIONAL(class) \ handleOperand(true, \ operandIndex, \ physicalOperandIndex, \ numPhysicalOperands, \ operandMapping, \ class##EncodingFromString); // operandIndex should always be < numOperands unsigned operandIndex = 0; // physicalOperandIndex should always be < numPhysicalOperands unsigned physicalOperandIndex = 0; // Given the set of prefix bits, how many additional operands does the // instruction have? unsigned additionalOperands = 0; if (HasVEX_4V || HasVEX_4VOp3) ++additionalOperands; if (HasEVEX_K) ++additionalOperands; switch (Form) { default: llvm_unreachable("Unhandled form"); case X86Local::RawFrmSrc: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDst: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDstSrc: HANDLE_OPERAND(relocation); HANDLE_OPERAND(relocation); return; case X86Local::RawFrm: // Operand 1 (optional) is an address or immediate. // Operand 2 (optional) is an immediate. assert(numPhysicalOperands <= 2 && "Unexpected number of operands for RawFrm"); HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) break; case X86Local::RawFrmMemOffs: // Operand 1 is an address. HANDLE_OPERAND(relocation); break; case X86Local::AddRegFrm: // Operand 1 is added to the opcode. // Operand 2 (optional) is an address. assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && "Unexpected number of operands for AddRegFrm"); HANDLE_OPERAND(opcodeModifier) HANDLE_OPTIONAL(relocation) break; case X86Local::MRMDestReg: // Operand 1 is a register operand in the R/M field. // - In AVX512 there may be a mask operand here - // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestRegFrm"); HANDLE_OPERAND(rmRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMDestMem: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); HANDLE_OPERAND(memory) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcReg: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a register operand in the R/M field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. // Operand 4 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcRegFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) if (HasMemOp4Prefix) HANDLE_OPERAND(immediate) HANDLE_OPERAND(rmRegister) if (HasVEX_4VOp3) HANDLE_OPERAND(vvvvRegister) if (!HasMemOp4Prefix) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcMem: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a memory operand (possibly SIB-extended) // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcMemFrm"); HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) if (HasMemOp4Prefix) HANDLE_OPERAND(immediate) HANDLE_OPERAND(memory) if (HasVEX_4VOp3) HANDLE_OPERAND(vvvvRegister) if (!HasMemOp4Prefix) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMXr: case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: // Operand 1 is a register operand in the R/M field. // Operand 2 (optional) is an immediate or relocation. // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 0 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMnr"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPTIONAL(rmRegister) HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMXm: case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 (optional) is an immediate or relocation. assert(numPhysicalOperands >= 1 + additionalOperands && numPhysicalOperands <= 2 + additionalOperands && "Unexpected number of operands for MRMnm"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(relocation) break; case X86Local::RawFrmImm8: // operand 1 is a 16-bit immediate // operand 2 is an 8-bit immediate assert(numPhysicalOperands == 2 && "Unexpected number of operands for X86Local::RawFrmImm8"); HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::RawFrmImm16: // operand 1 is a 16-bit immediate // operand 2 is a 16-bit immediate HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::MRM_F8: if (Opcode == 0xc6) { assert(numPhysicalOperands == 1 && "Unexpected number of operands for X86Local::MRM_F8"); HANDLE_OPERAND(immediate) } else if (Opcode == 0xc7) { assert(numPhysicalOperands == 1 && "Unexpected number of operands for X86Local::MRM_F8"); HANDLE_OPERAND(relocation) } break; case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2: case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8: case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB: case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1: case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6: case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9: case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC: case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF: case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2: case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5: case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA: case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED: case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1: case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4: case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7: case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB: case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE: case X86Local::MRM_FF: // Ignored. break; } #undef HANDLE_OPERAND #undef HANDLE_OPTIONAL } void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { // Special cases where the LLVM tables are not complete #define MAP(from, to) \ case X86Local::MRM_##from: OpcodeType opcodeType = (OpcodeType)-1; ModRMFilter* filter = nullptr; uint8_t opcodeToSet = 0; switch (OpMap) { default: llvm_unreachable("Invalid map!"); case X86Local::OB: case X86Local::TB: case X86Local::T8: case X86Local::TA: case X86Local::XOP8: case X86Local::XOP9: case X86Local::XOPA: switch (OpMap) { default: llvm_unreachable("Unexpected map!"); case X86Local::OB: opcodeType = ONEBYTE; break; case X86Local::TB: opcodeType = TWOBYTE; break; case X86Local::T8: opcodeType = THREEBYTE_38; break; case X86Local::TA: opcodeType = THREEBYTE_3A; break; case X86Local::XOP8: opcodeType = XOP8_MAP; break; case X86Local::XOP9: opcodeType = XOP9_MAP; break; case X86Local::XOPA: opcodeType = XOPA_MAP; break; } switch (Form) { default: filter = new DumbFilter(); break; case X86Local::MRMDestReg: case X86Local::MRMDestMem: case X86Local::MRMSrcReg: case X86Local::MRMSrcMem: case X86Local::MRMXr: case X86Local::MRMXm: filter = new ModFilter(isRegFormat(Form)); break; case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: filter = new ExtendedFilter(true, Form - X86Local::MRM0r); break; case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: filter = new ExtendedFilter(false, Form - X86Local::MRM0m); break; MRM_MAPPING filter = new ExactFilter(0xC0 + Form - X86Local::MRM_C0); \ break; } // switch (Form) opcodeToSet = Opcode; break; } // switch (OpMap) unsigned AddressSize = 0; switch (AdSize) { case X86Local::AdSize16: AddressSize = 16; break; case X86Local::AdSize32: AddressSize = 32; break; case X86Local::AdSize64: AddressSize = 64; break; } assert(opcodeType != (OpcodeType)-1 && "Opcode type not set"); assert(filter && "Filter not set"); if (Form == X86Local::AddRegFrm) { assert(((opcodeToSet & 7) == 0) && "ADDREG_FRM opcode not aligned"); uint8_t currentOpcode; for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + 8; ++currentOpcode) tables.setTableFields(opcodeType, insnContext(), currentOpcode, *filter, UID, Is32Bit, IgnoresVEX_L, AddressSize); } else { tables.setTableFields(opcodeType, insnContext(), opcodeToSet, *filter, UID, Is32Bit, IgnoresVEX_L, AddressSize); } delete filter; #undef MAP } #define TYPE(str, type) if (s == str) return type; OperandType RecognizableInstr::typeFromString(const std::string &s, bool hasREX_WPrefix, uint8_t OpSize) { if(hasREX_WPrefix) { // For instructions with a REX_W prefix, a declared 32-bit register encoding // is special. TYPE("GR32", TYPE_R32) } if(OpSize == X86Local::OpSize16) { // For OpSize16 instructions, a declared 16-bit register or // immediate encoding is special. TYPE("GR16", TYPE_Rv) TYPE("i16imm", TYPE_IMMv) } else if(OpSize == X86Local::OpSize32) { // For OpSize32 instructions, a declared 32-bit register or // immediate encoding is special. TYPE("GR32", TYPE_Rv) } TYPE("i16mem", TYPE_Mv) TYPE("i16imm", TYPE_IMM16) TYPE("i16i8imm", TYPE_IMMv) TYPE("GR16", TYPE_R16) TYPE("i32mem", TYPE_Mv) TYPE("i32imm", TYPE_IMMv) TYPE("i32i8imm", TYPE_IMM32) TYPE("GR32", TYPE_R32) TYPE("GR32orGR64", TYPE_R32) TYPE("i64mem", TYPE_Mv) TYPE("i64i32imm", TYPE_IMM64) TYPE("i64i8imm", TYPE_IMM64) TYPE("GR64", TYPE_R64) TYPE("i8mem", TYPE_M8) TYPE("i8imm", TYPE_IMM8) TYPE("u8imm", TYPE_UIMM8) TYPE("i32u8imm", TYPE_UIMM8) TYPE("GR8", TYPE_R8) TYPE("VR128", TYPE_XMM128) TYPE("VR128X", TYPE_XMM128) TYPE("f128mem", TYPE_M128) TYPE("f256mem", TYPE_M256) TYPE("f512mem", TYPE_M512) TYPE("FR64", TYPE_XMM64) TYPE("FR64X", TYPE_XMM64) TYPE("f64mem", TYPE_M64FP) TYPE("sdmem", TYPE_M64FP) TYPE("FR32", TYPE_XMM32) TYPE("FR32X", TYPE_XMM32) TYPE("f32mem", TYPE_M32FP) TYPE("ssmem", TYPE_M32FP) TYPE("RST", TYPE_ST) TYPE("i128mem", TYPE_M128) TYPE("i256mem", TYPE_M256) TYPE("i512mem", TYPE_M512) TYPE("i64i32imm_pcrel", TYPE_REL64) TYPE("i16imm_pcrel", TYPE_REL16) TYPE("i32imm_pcrel", TYPE_REL32) TYPE("SSECC", TYPE_IMM3) TYPE("XOPCC", TYPE_IMM3) TYPE("AVXCC", TYPE_IMM5) TYPE("AVX512ICC", TYPE_AVX512ICC) TYPE("AVX512RC", TYPE_IMM32) TYPE("brtarget32", TYPE_RELv) TYPE("brtarget16", TYPE_RELv) TYPE("brtarget8", TYPE_REL8) TYPE("f80mem", TYPE_M80FP) TYPE("lea64_32mem", TYPE_LEA) TYPE("lea64mem", TYPE_LEA) TYPE("VR64", TYPE_MM64) TYPE("i64imm", TYPE_IMMv) TYPE("anymem", TYPE_M) TYPE("opaque32mem", TYPE_M1616) TYPE("opaque48mem", TYPE_M1632) TYPE("opaque80mem", TYPE_M1664) TYPE("opaque512mem", TYPE_M512) TYPE("SEGMENT_REG", TYPE_SEGMENTREG) TYPE("DEBUG_REG", TYPE_DEBUGREG) TYPE("CONTROL_REG", TYPE_CONTROLREG) TYPE("srcidx8", TYPE_SRCIDX8) TYPE("srcidx16", TYPE_SRCIDX16) TYPE("srcidx32", TYPE_SRCIDX32) TYPE("srcidx64", TYPE_SRCIDX64) TYPE("dstidx8", TYPE_DSTIDX8) TYPE("dstidx16", TYPE_DSTIDX16) TYPE("dstidx32", TYPE_DSTIDX32) TYPE("dstidx64", TYPE_DSTIDX64) TYPE("offset16_8", TYPE_MOFFS8) TYPE("offset16_16", TYPE_MOFFS16) TYPE("offset16_32", TYPE_MOFFS32) TYPE("offset32_8", TYPE_MOFFS8) TYPE("offset32_16", TYPE_MOFFS16) TYPE("offset32_32", TYPE_MOFFS32) TYPE("offset32_64", TYPE_MOFFS64) TYPE("offset64_8", TYPE_MOFFS8) TYPE("offset64_16", TYPE_MOFFS16) TYPE("offset64_32", TYPE_MOFFS32) TYPE("offset64_64", TYPE_MOFFS64) TYPE("VR256", TYPE_XMM256) TYPE("VR256X", TYPE_XMM256) TYPE("VR512", TYPE_XMM512) TYPE("VK1", TYPE_VK1) TYPE("VK1WM", TYPE_VK1) TYPE("VK2", TYPE_VK2) TYPE("VK2WM", TYPE_VK2) TYPE("VK4", TYPE_VK4) TYPE("VK4WM", TYPE_VK4) TYPE("VK8", TYPE_VK8) TYPE("VK8WM", TYPE_VK8) TYPE("VK16", TYPE_VK16) TYPE("VK16WM", TYPE_VK16) TYPE("VK32", TYPE_VK32) TYPE("VK32WM", TYPE_VK32) TYPE("VK64", TYPE_VK64) TYPE("VK64WM", TYPE_VK64) TYPE("GR16_NOAX", TYPE_Rv) TYPE("GR32_NOAX", TYPE_Rv) TYPE("GR64_NOAX", TYPE_R64) TYPE("vx32mem", TYPE_M32) TYPE("vx32xmem", TYPE_M32) TYPE("vy32mem", TYPE_M32) TYPE("vy32xmem", TYPE_M32) TYPE("vz32mem", TYPE_M32) TYPE("vx64mem", TYPE_M64) TYPE("vx64xmem", TYPE_M64) TYPE("vy64mem", TYPE_M64) TYPE("vy64xmem", TYPE_M64) TYPE("vz64mem", TYPE_M64) TYPE("BNDR", TYPE_BNDR) errs() << "Unhandled type string " << s << "\n"; llvm_unreachable("Unhandled type string"); } #undef TYPE #define ENCODING(str, encoding) if (s == str) return encoding; OperandEncoding RecognizableInstr::immediateEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i32i8imm", ENCODING_IB) ENCODING("SSECC", ENCODING_IB) ENCODING("XOPCC", ENCODING_IB) ENCODING("AVXCC", ENCODING_IB) ENCODING("AVX512ICC", ENCODING_IB) ENCODING("AVX512RC", ENCODING_IB) ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) // This is not a typo. Instructions like BLENDVPD put // register IDs in 8-bit immediates nowadays. ENCODING("FR32", ENCODING_IB) ENCODING("FR64", ENCODING_IB) ENCODING("VR128", ENCODING_IB) ENCODING("VR256", ENCODING_IB) ENCODING("FR32X", ENCODING_IB) ENCODING("FR64X", ENCODING_IB) ENCODING("VR128X", ENCODING_IB) ENCODING("VR256X", ENCODING_IB) ENCODING("VR512", ENCODING_IB) errs() << "Unhandled immediate encoding " << s << "\n"; llvm_unreachable("Unhandled immediate encoding"); } OperandEncoding RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("RST", ENCODING_FP) ENCODING("GR16", ENCODING_RM) ENCODING("GR32", ENCODING_RM) ENCODING("GR32orGR64", ENCODING_RM) ENCODING("GR64", ENCODING_RM) ENCODING("GR8", ENCODING_RM) ENCODING("VR128", ENCODING_RM) ENCODING("VR128X", ENCODING_RM) ENCODING("FR64", ENCODING_RM) ENCODING("FR32", ENCODING_RM) ENCODING("FR64X", ENCODING_RM) ENCODING("FR32X", ENCODING_RM) ENCODING("VR64", ENCODING_RM) ENCODING("VR256", ENCODING_RM) ENCODING("VR256X", ENCODING_RM) ENCODING("VR512", ENCODING_RM) ENCODING("VK1", ENCODING_RM) ENCODING("VK2", ENCODING_RM) ENCODING("VK4", ENCODING_RM) ENCODING("VK8", ENCODING_RM) ENCODING("VK16", ENCODING_RM) ENCODING("VK32", ENCODING_RM) ENCODING("VK64", ENCODING_RM) ENCODING("BNDR", ENCODING_RM) errs() << "Unhandled R/M register encoding " << s << "\n"; llvm_unreachable("Unhandled R/M register encoding"); } OperandEncoding RecognizableInstr::roRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR16", ENCODING_REG) ENCODING("GR32", ENCODING_REG) ENCODING("GR32orGR64", ENCODING_REG) ENCODING("GR64", ENCODING_REG) ENCODING("GR8", ENCODING_REG) ENCODING("VR128", ENCODING_REG) ENCODING("FR64", ENCODING_REG) ENCODING("FR32", ENCODING_REG) ENCODING("VR64", ENCODING_REG) ENCODING("SEGMENT_REG", ENCODING_REG) ENCODING("DEBUG_REG", ENCODING_REG) ENCODING("CONTROL_REG", ENCODING_REG) ENCODING("VR256", ENCODING_REG) ENCODING("VR256X", ENCODING_REG) ENCODING("VR128X", ENCODING_REG) ENCODING("FR64X", ENCODING_REG) ENCODING("FR32X", ENCODING_REG) ENCODING("VR512", ENCODING_REG) ENCODING("VK1", ENCODING_REG) ENCODING("VK2", ENCODING_REG) ENCODING("VK4", ENCODING_REG) ENCODING("VK8", ENCODING_REG) ENCODING("VK16", ENCODING_REG) ENCODING("VK32", ENCODING_REG) ENCODING("VK64", ENCODING_REG) ENCODING("VK1WM", ENCODING_REG) ENCODING("VK2WM", ENCODING_REG) ENCODING("VK4WM", ENCODING_REG) ENCODING("VK8WM", ENCODING_REG) ENCODING("VK16WM", ENCODING_REG) ENCODING("VK32WM", ENCODING_REG) ENCODING("VK64WM", ENCODING_REG) ENCODING("BNDR", ENCODING_REG) errs() << "Unhandled reg/opcode register encoding " << s << "\n"; llvm_unreachable("Unhandled reg/opcode register encoding"); } OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_VVVV) ENCODING("GR64", ENCODING_VVVV) ENCODING("FR32", ENCODING_VVVV) ENCODING("FR64", ENCODING_VVVV) ENCODING("VR128", ENCODING_VVVV) ENCODING("VR256", ENCODING_VVVV) ENCODING("FR32X", ENCODING_VVVV) ENCODING("FR64X", ENCODING_VVVV) ENCODING("VR128X", ENCODING_VVVV) ENCODING("VR256X", ENCODING_VVVV) ENCODING("VR512", ENCODING_VVVV) ENCODING("VK1", ENCODING_VVVV) ENCODING("VK2", ENCODING_VVVV) ENCODING("VK4", ENCODING_VVVV) ENCODING("VK8", ENCODING_VVVV) ENCODING("VK16", ENCODING_VVVV) ENCODING("VK32", ENCODING_VVVV) ENCODING("VK64", ENCODING_VVVV) errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; llvm_unreachable("Unhandled VEX.vvvv register encoding"); } OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("VK1WM", ENCODING_WRITEMASK) ENCODING("VK2WM", ENCODING_WRITEMASK) ENCODING("VK4WM", ENCODING_WRITEMASK) ENCODING("VK8WM", ENCODING_WRITEMASK) ENCODING("VK16WM", ENCODING_WRITEMASK) ENCODING("VK32WM", ENCODING_WRITEMASK) ENCODING("VK64WM", ENCODING_WRITEMASK) errs() << "Unhandled mask register encoding " << s << "\n"; llvm_unreachable("Unhandled mask register encoding"); } OperandEncoding RecognizableInstr::memoryEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("i16mem", ENCODING_RM) ENCODING("i32mem", ENCODING_RM) ENCODING("i64mem", ENCODING_RM) ENCODING("i8mem", ENCODING_RM) ENCODING("ssmem", ENCODING_RM) ENCODING("sdmem", ENCODING_RM) ENCODING("f128mem", ENCODING_RM) ENCODING("f256mem", ENCODING_RM) ENCODING("f512mem", ENCODING_RM) ENCODING("f64mem", ENCODING_RM) ENCODING("f32mem", ENCODING_RM) ENCODING("i128mem", ENCODING_RM) ENCODING("i256mem", ENCODING_RM) ENCODING("i512mem", ENCODING_RM) ENCODING("f80mem", ENCODING_RM) ENCODING("lea64_32mem", ENCODING_RM) ENCODING("lea64mem", ENCODING_RM) ENCODING("anymem", ENCODING_RM) ENCODING("opaque32mem", ENCODING_RM) ENCODING("opaque48mem", ENCODING_RM) ENCODING("opaque80mem", ENCODING_RM) ENCODING("opaque512mem", ENCODING_RM) ENCODING("vx32mem", ENCODING_RM) ENCODING("vx32xmem", ENCODING_RM) ENCODING("vy32mem", ENCODING_RM) ENCODING("vy32xmem", ENCODING_RM) ENCODING("vz32mem", ENCODING_RM) ENCODING("vx64mem", ENCODING_RM) ENCODING("vx64xmem", ENCODING_RM) ENCODING("vy64mem", ENCODING_RM) ENCODING("vy64xmem", ENCODING_RM) ENCODING("vz64mem", ENCODING_RM) errs() << "Unhandled memory encoding " << s << "\n"; llvm_unreachable("Unhandled memory encoding"); } OperandEncoding RecognizableInstr::relocationEncodingFromString(const std::string &s, uint8_t OpSize) { if(OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i32i8imm", ENCODING_IB) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) ENCODING("i64i32imm_pcrel", ENCODING_ID) ENCODING("i16imm_pcrel", ENCODING_IW) ENCODING("i32imm_pcrel", ENCODING_ID) ENCODING("brtarget32", ENCODING_Iv) ENCODING("brtarget16", ENCODING_Iv) ENCODING("brtarget8", ENCODING_IB) ENCODING("i64imm", ENCODING_IO) ENCODING("offset16_8", ENCODING_Ia) ENCODING("offset16_16", ENCODING_Ia) ENCODING("offset16_32", ENCODING_Ia) ENCODING("offset32_8", ENCODING_Ia) ENCODING("offset32_16", ENCODING_Ia) ENCODING("offset32_32", ENCODING_Ia) ENCODING("offset32_64", ENCODING_Ia) ENCODING("offset64_8", ENCODING_Ia) ENCODING("offset64_16", ENCODING_Ia) ENCODING("offset64_32", ENCODING_Ia) ENCODING("offset64_64", ENCODING_Ia) ENCODING("srcidx8", ENCODING_SI) ENCODING("srcidx16", ENCODING_SI) ENCODING("srcidx32", ENCODING_SI) ENCODING("srcidx64", ENCODING_SI) ENCODING("dstidx8", ENCODING_DI) ENCODING("dstidx16", ENCODING_DI) ENCODING("dstidx32", ENCODING_DI) ENCODING("dstidx64", ENCODING_DI) errs() << "Unhandled relocation encoding " << s << "\n"; llvm_unreachable("Unhandled relocation encoding"); } OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_Rv) ENCODING("GR64", ENCODING_RO) ENCODING("GR16", ENCODING_Rv) ENCODING("GR8", ENCODING_RB) ENCODING("GR16_NOAX", ENCODING_Rv) ENCODING("GR32_NOAX", ENCODING_Rv) ENCODING("GR64_NOAX", ENCODING_RO) errs() << "Unhandled opcode modifier encoding " << s << "\n"; llvm_unreachable("Unhandled opcode modifier encoding"); } #undef ENCODING
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/DisassemblerEmitter.cpp
//===- DisassemblerEmitter.cpp - Generate a disassembler ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" // #include "X86DisassemblerTables.h" // HLSL Change // #include "X86RecognizableInstr.h" // HLSL Change #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; // using namespace llvm::X86Disassembler; // HLSL Change /// DisassemblerEmitter - Contains disassembler table emitters for various /// architectures. /// X86 Disassembler Emitter /// /// *** IF YOU'RE HERE TO RESOLVE A "Primary decode conflict", LOOK DOWN NEAR /// THE END OF THIS COMMENT! /// /// The X86 disassembler emitter is part of the X86 Disassembler, which is /// documented in lib/Target/X86/X86Disassembler.h. /// /// The emitter produces the tables that the disassembler uses to translate /// instructions. The emitter generates the following tables: /// /// - One table (CONTEXTS_SYM) that contains a mapping of attribute masks to /// instruction contexts. Although for each attribute there are cases where /// that attribute determines decoding, in the majority of cases decoding is /// the same whether or not an attribute is present. For example, a 64-bit /// instruction with an OPSIZE prefix and an XS prefix decodes the same way in /// all cases as a 64-bit instruction with only OPSIZE set. (The XS prefix /// may have effects on its execution, but does not change the instruction /// returned.) This allows considerable space savings in other tables. /// - Six tables (ONEBYTE_SYM, TWOBYTE_SYM, THREEBYTE38_SYM, THREEBYTE3A_SYM, /// THREEBYTEA6_SYM, and THREEBYTEA7_SYM contain the hierarchy that the /// decoder traverses while decoding an instruction. At the lowest level of /// this hierarchy are instruction UIDs, 16-bit integers that can be used to /// uniquely identify the instruction and correspond exactly to its position /// in the list of CodeGenInstructions for the target. /// - One table (INSTRUCTIONS_SYM) contains information about the operands of /// each instruction and how to decode them. /// /// During table generation, there may be conflicts between instructions that /// occupy the same space in the decode tables. These conflicts are resolved as /// follows in setTableFields() (X86DisassemblerTables.cpp) /// /// - If the current context is the native context for one of the instructions /// (that is, the attributes specified for it in the LLVM tables specify /// precisely the current context), then it has priority. /// - If the current context isn't native for either of the instructions, then /// the higher-priority context wins (that is, the one that is more specific). /// That hierarchy is determined by outranks() (X86DisassemblerTables.cpp) /// - If the current context is native for both instructions, then the table /// emitter reports a conflict and dies. /// /// *** RESOLUTION FOR "Primary decode conflict"S /// /// If two instructions collide, typically the solution is (in order of /// likelihood): /// /// (1) to filter out one of the instructions by editing filter() /// (X86RecognizableInstr.cpp). This is the most common resolution, but /// check the Intel manuals first to make sure that (2) and (3) are not the /// problem. /// (2) to fix the tables (X86.td and its subsidiaries) so the opcodes are /// accurate. Sometimes they are not. /// (3) to fix the tables to reflect the actual context (for example, required /// prefixes), and possibly to add a new context by editing /// lib/Target/X86/X86DisassemblerDecoderCommon.h. This is unlikely to be /// the cause. /// /// DisassemblerEmitter.cpp contains the implementation for the emitter, /// which simply pulls out instructions from the CodeGenTarget and pushes them /// into X86DisassemblerTables. /// X86DisassemblerTables.h contains the interface for the instruction tables, /// which manage and emit the structures discussed above. /// X86DisassemblerTables.cpp contains the implementation for the instruction /// tables. /// X86ModRMFilters.h contains filters that can be used to determine which /// ModR/M values are valid for a particular instruction. These are used to /// populate ModRMDecisions. /// X86RecognizableInstr.h contains the interface for a single instruction, /// which knows how to translate itself from a CodeGenInstruction and provide /// the information necessary for integration into the tables. /// X86RecognizableInstr.cpp contains the implementation for a single /// instruction. namespace llvm { extern void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, std::string PredicateNamespace, std::string GPrefix, std::string GPostfix, std::string ROK, std::string RFail, std::string L); void EmitDisassembler(RecordKeeper &Records, raw_ostream &OS) { CodeGenTarget Target(Records); emitSourceFileHeader(" * " + Target.getName() + " Disassembler", OS); #if 0 // HLSL Change // X86 uses a custom disassembler. if (Target.getName() == "X86") { DisassemblerTables Tables; const std::vector<const CodeGenInstruction*> &numberedInstructions = Target.getInstructionsByEnumValue(); for (unsigned i = 0, e = numberedInstructions.size(); i != e; ++i) RecognizableInstr::processInstr(Tables, *numberedInstructions[i], i); if (Tables.hasConflicts()) { PrintError(Target.getTargetRecord()->getLoc(), "Primary decode conflict"); return; } Tables.emit(OS); return; } // ARM and Thumb have a CHECK() macro to deal with DecodeStatuses. if (Target.getName() == "ARM" || Target.getName() == "Thumb" || Target.getName() == "AArch64" || Target.getName() == "ARM64") { std::string PredicateNamespace = Target.getName(); if (PredicateNamespace == "Thumb") PredicateNamespace = "ARM"; EmitFixedLenDecoder(Records, OS, PredicateNamespace, "if (!Check(S, ", ")) return MCDisassembler::Fail;", "S", "MCDisassembler::Fail", " MCDisassembler::DecodeStatus S = " "MCDisassembler::Success;\n(void)S;"); return; } #endif // HLSL Change EmitFixedLenDecoder(Records, OS, Target.getName(), "if (", " == MCDisassembler::Fail)" " return MCDisassembler::Fail;", "MCDisassembler::Success", "MCDisassembler::Fail", ""); } } // End llvm namespace
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/TableGen/TableGen.cpp
//===- TableGen.cpp - Top-Level TableGen implementation for LLVM ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the main function for LLVM's TableGen. // //===----------------------------------------------------------------------===// #include "TableGenBackends.h" // Declares all backends. #include "llvm/Support/CommandLine.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Main.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" // HLSL Change Starts #ifdef _WIN32 #ifndef NOMINMAX #define NOMINMAX #endif #include <windows.h> #endif #include "llvm/Support/FileSystem.h" #include "llvm/Support/MSFileSystem.h" // HLSL Change Ends using namespace llvm; enum ActionType { PrintRecords, GenEmitter, GenRegisterInfo, GenInstrInfo, GenAsmWriter, GenAsmMatcher, GenDisassembler, GenPseudoLowering, GenCallingConv, GenDAGISel, GenDFAPacketizer, GenFastISel, GenSubtarget, GenIntrinsic, GenTgtIntrinsic, PrintEnums, PrintSets, GenOptParserDefs, GenCTags }; namespace { cl::opt<ActionType> Action(cl::desc("Action to perform:"), cl::values(clEnumValN(PrintRecords, "print-records", "Print all records to stdout (default)"), clEnumValN(GenEmitter, "gen-emitter", "Generate machine code emitter"), clEnumValN(GenRegisterInfo, "gen-register-info", "Generate registers and register classes info"), clEnumValN(GenInstrInfo, "gen-instr-info", "Generate instruction descriptions"), clEnumValN(GenCallingConv, "gen-callingconv", "Generate calling convention descriptions"), clEnumValN(GenAsmWriter, "gen-asm-writer", "Generate assembly writer"), clEnumValN(GenDisassembler, "gen-disassembler", "Generate disassembler"), clEnumValN(GenPseudoLowering, "gen-pseudo-lowering", "Generate pseudo instruction lowering"), clEnumValN(GenAsmMatcher, "gen-asm-matcher", "Generate assembly instruction matcher"), clEnumValN(GenDAGISel, "gen-dag-isel", "Generate a DAG instruction selector"), clEnumValN(GenDFAPacketizer, "gen-dfa-packetizer", "Generate DFA Packetizer for VLIW targets"), clEnumValN(GenFastISel, "gen-fast-isel", "Generate a \"fast\" instruction selector"), clEnumValN(GenSubtarget, "gen-subtarget", "Generate subtarget enumerations"), clEnumValN(GenIntrinsic, "gen-intrinsic", "Generate intrinsic information"), clEnumValN(GenTgtIntrinsic, "gen-tgt-intrinsic", "Generate target intrinsic information"), clEnumValN(PrintEnums, "print-enums", "Print enum values for a class"), clEnumValN(PrintSets, "print-sets", "Print expanded sets for testing DAG exprs"), clEnumValN(GenOptParserDefs, "gen-opt-parser-defs", "Generate option definitions"), clEnumValN(GenCTags, "gen-ctags", "Generate ctags-compatible index"), clEnumValEnd)); cl::opt<std::string> Class("class", cl::desc("Print Enum list for this class"), cl::value_desc("class name")); bool LLVMTableGenMain(raw_ostream &OS, RecordKeeper &Records) { switch (Action) { case PrintRecords: OS << Records; // No argument, dump all contents break; case GenEmitter: EmitCodeEmitter(Records, OS); break; case GenRegisterInfo: EmitRegisterInfo(Records, OS); break; case GenInstrInfo: EmitInstrInfo(Records, OS); break; case GenCallingConv: EmitCallingConv(Records, OS); break; case GenAsmWriter: EmitAsmWriter(Records, OS); break; case GenAsmMatcher: EmitAsmMatcher(Records, OS); break; case GenDisassembler: EmitDisassembler(Records, OS); break; case GenPseudoLowering: EmitPseudoLowering(Records, OS); break; case GenDAGISel: EmitDAGISel(Records, OS); break; case GenDFAPacketizer: EmitDFAPacketizer(Records, OS); break; case GenFastISel: EmitFastISel(Records, OS); break; case GenSubtarget: EmitSubtarget(Records, OS); break; case GenIntrinsic: EmitIntrinsics(Records, OS); break; case GenTgtIntrinsic: EmitIntrinsics(Records, OS, true); break; case GenOptParserDefs: EmitOptParser(Records, OS); break; case PrintEnums: { for (Record *Rec : Records.getAllDerivedDefinitions(Class)) OS << Rec->getName() << ", "; OS << "\n"; break; } case PrintSets: { SetTheory Sets; Sets.addFieldExpander("Set", "Elements"); for (Record *Rec : Records.getAllDerivedDefinitions("Set")) { OS << Rec->getName() << " = ["; const std::vector<Record*> *Elts = Sets.expand(Rec); assert(Elts && "Couldn't expand Set instance"); for (Record *Elt : *Elts) OS << ' ' << Elt->getName(); OS << " ]\n"; } break; } case GenCTags: EmitCTags(Records, OS); break; } return false; } } int main(int argc, char **argv) { // HLSL Change Starts if (std::error_code ec = llvm::sys::fs::SetupPerThreadFileSystem()) return 1; llvm::sys::fs::AutoCleanupPerThreadFileSystem auto_cleanup_fs; llvm::sys::fs::MSFileSystem* msfPtr; HRESULT hr; if (!SUCCEEDED(hr = CreateMSFileSystemForDisk(&msfPtr))) return 1; std::unique_ptr<llvm::sys::fs::MSFileSystem> msf(msfPtr); llvm::sys::fs::AutoPerThreadSystem pts(msf.get()); // HLSL Change Ends // sys::PrintStackTraceOnErrorSignal(); // HLSL Change // PrettyStackTraceProgram X(argc, argv); // HLSL Change cl::ParseCommandLineOptions(argc, argv); return TableGenMain(argv[0], &LLVMTableGenMain); } #ifdef __has_feature #if __has_feature(address_sanitizer) #include <sanitizer/lsan_interface.h> // Disable LeakSanitizer for this binary as it has too many leaks that are not // very interesting to fix. See compiler-rt/include/sanitizer/lsan_interface.h . int __lsan_is_turned_off() { return 1; } #endif // __has_feature(address_sanitizer) #endif // defined(__has_feature)
0
repos/DirectXShaderCompiler/utils/textmate
repos/DirectXShaderCompiler/utils/textmate/TableGen.tmbundle/info.plist
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>name</key> <string>TableGen</string> <key>ordering</key> <array/> <key>uuid</key> <string>96925448-7219-41E9-A7F0-8D5B70E9B877</string> </dict> </plist>
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/jedit/tablegen.xml
<?xml version="1.0"?> <!DOCTYPE MODE SYSTEM "xmode.dtd"> <MODE> <PROPS> <PROPERTY NAME="lineComment" VALUE="//" /> <PROPERTY NAME="commentStart" VALUE="/*" /> <PROPERTY NAME="commentEnd" VALUE="*/" /> <PROPERTY NAME="indentOpenBrackets" VALUE="{" /> <PROPERTY NAME="indentCloseBrackets" VALUE="}" /> <PROPERTY NAME="wordBreakChars" VALUE=",+-=&lt;&gt;/?^&amp;*" /> <PROPERTY NAME="unalignedOpenBrackets" VALUE="(&lt;" /> <PROPERTY NAME="unalignedCloseBrackets" VALUE=")&gt;" /> </PROPS> <RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE"> <EOL_SPAN TYPE="COMMENT1">//</EOL_SPAN> <SPAN TYPE="COMMENT1"> <BEGIN>/*</BEGIN> <END>*/</END> </SPAN> <SPAN TYPE="LITERAL1" NO_LINE_BREAK="TRUE" ESCAPE="\"> <BEGIN>"</BEGIN> <END>"</END> </SPAN> <KEYWORDS> <KEYWORD1>let</KEYWORD1> <KEYWORD1>def</KEYWORD1> <KEYWORD1>class</KEYWORD1> <KEYWORD1>include</KEYWORD1> <KEYWORD3>bit</KEYWORD3> <KEYWORD3>int</KEYWORD3> <KEYWORD3>string</KEYWORD3> <KEYWORD3>bits</KEYWORD3> <KEYWORD3>list</KEYWORD3> <KEYWORD3>dag</KEYWORD3> <KEYWORD3>code</KEYWORD3> </KEYWORDS> </RULES> </MODE>
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lint/cpp_lint.py
#!/usr/bin/python # # Checks C++ files to make sure they conform to LLVM standards, as specified in # http://llvm.org/docs/CodingStandards.html . # # TODO: add unittests for the verifier functions: # http://docs.python.org/library/unittest.html . import common_lint import re import sys def VerifyIncludes(filename, lines): """Makes sure the #includes are in proper order and no disallows files are #included. Args: filename: the file under consideration as string lines: contents of the file as string array """ lint = [] include_gtest_re = re.compile(r'^#include "gtest/(.*)"') include_llvm_re = re.compile(r'^#include "llvm/(.*)"') include_support_re = re.compile(r'^#include "(Support/.*)"') include_config_re = re.compile(r'^#include "(Config/.*)"') include_system_re = re.compile(r'^#include <(.*)>') DISALLOWED_SYSTEM_HEADERS = ['iostream'] line_num = 1 prev_config_header = None prev_system_header = None for line in lines: # TODO: implement private headers # TODO: implement gtest headers # TODO: implement top-level llvm/* headers # TODO: implement llvm/Support/* headers # Process Config/* headers config_header = include_config_re.match(line) if config_header: curr_config_header = config_header.group(1) if prev_config_header: if prev_config_header > curr_config_header: lint.append((filename, line_num, 'Config headers not in order: "%s" before "%s"' % ( prev_config_header, curr_config_header))) # Process system headers system_header = include_system_re.match(line) if system_header: curr_system_header = system_header.group(1) # Is it blacklisted? if curr_system_header in DISALLOWED_SYSTEM_HEADERS: lint.append((filename, line_num, 'Disallowed system header: <%s>' % curr_system_header)) elif prev_system_header: # Make sure system headers are alphabetized amongst themselves if prev_system_header > curr_system_header: lint.append((filename, line_num, 'System headers not in order: <%s> before <%s>' % ( prev_system_header, curr_system_header))) prev_system_header = curr_system_header line_num += 1 return lint class CppLint(common_lint.BaseLint): MAX_LINE_LENGTH = 80 def RunOnFile(self, filename, lines): lint = [] lint.extend(VerifyIncludes(filename, lines)) lint.extend(common_lint.VerifyLineLength(filename, lines, CppLint.MAX_LINE_LENGTH)) lint.extend(common_lint.VerifyTabs(filename, lines)) lint.extend(common_lint.VerifyTrailingWhitespace(filename, lines)) return lint def CppLintMain(filenames): all_lint = common_lint.RunLintOverAllFiles(CppLint(), filenames) for lint in all_lint: print '%s:%d:%s' % (lint[0], lint[1], lint[2]) return 0 if __name__ == '__main__': sys.exit(CppLintMain(sys.argv[1:]))
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lint/generic_lint.py
#!/usr/bin/python # # Checks files to make sure they conform to LLVM standards which can be applied # to any programming language: at present, line length and trailing whitespace. import common_lint import sys class GenericCodeLint(common_lint.BaseLint): MAX_LINE_LENGTH = 80 def RunOnFile(self, filename, lines): common_lint.VerifyLineLength(filename, lines, GenericCodeLint.MAX_LINE_LENGTH) common_lint.VerifyTrailingWhitespace(filename, lines) def GenericCodeLintMain(filenames): common_lint.RunLintOverAllFiles(GenericCodeLint(), filenames) return 0 if __name__ == '__main__': sys.exit(GenericCodeLintMain(sys.argv[1:]))
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lint/remove_trailing_whitespace.sh
#!/bin/sh # Deletes trailing whitespace in-place in the passed-in files. # Sample syntax: # $0 *.cpp perl -pi -e 's/\s+$/\n/' $*
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lint/common_lint.py
#!/usr/bin/python # # Common lint functions applicable to multiple types of files. import re def VerifyLineLength(filename, lines, max_length): """Checks to make sure the file has no lines with lines exceeding the length limit. Args: filename: the file under consideration as string lines: contents of the file as string array max_length: maximum acceptable line length as number Returns: A list of tuples with format [(filename, line number, msg), ...] with any violations found. """ lint = [] line_num = 1 for line in lines: length = len(line.rstrip('\n')) if length > max_length: lint.append((filename, line_num, 'Line exceeds %d chars (%d)' % (max_length, length))) line_num += 1 return lint def VerifyTabs(filename, lines): """Checks to make sure the file has no tab characters. Args: filename: the file under consideration as string lines: contents of the file as string array Returns: A list of tuples with format [(line_number, msg), ...] with any violations found. """ lint = [] tab_re = re.compile(r'\t') line_num = 1 for line in lines: if tab_re.match(line.rstrip('\n')): lint.append((filename, line_num, 'Tab found instead of whitespace')) line_num += 1 return lint def VerifyTrailingWhitespace(filename, lines): """Checks to make sure the file has no lines with trailing whitespace. Args: filename: the file under consideration as string lines: contents of the file as string array Returns: A list of tuples with format [(filename, line number, msg), ...] with any violations found. """ lint = [] trailing_whitespace_re = re.compile(r'\s+$') line_num = 1 for line in lines: if trailing_whitespace_re.match(line.rstrip('\n')): lint.append((filename, line_num, 'Trailing whitespace')) line_num += 1 return lint class BaseLint: def RunOnFile(filename, lines): raise Exception('RunOnFile() unimplemented') def RunLintOverAllFiles(linter, filenames): """Runs linter over the contents of all files. Args: lint: subclass of BaseLint, implementing RunOnFile() filenames: list of all files whose contents will be linted Returns: A list of tuples with format [(filename, line number, msg), ...] with any violations found. """ lint = [] for filename in filenames: file = open(filename, 'r') if not file: print 'Cound not open %s' % filename continue lines = file.readlines() lint.extend(linter.RunOnFile(filename, lines)) return lint
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/testgen/mc-bundling-x86-gen.py
#!/usr/bin/python # Auto-generates an exhaustive and repetitive test for correct bundle-locked # alignment on x86. # For every possible offset in an aligned bundle, a bundle-locked group of every # size in the inclusive range [1, bundle_size] is inserted. An appropriate CHECK # is added to verify that NOP padding occurred (or did not occur) as expected. # Run with --align-to-end to generate a similar test with align_to_end for each # .bundle_lock directive. # This script runs with Python 2.7 and 3.2+ from __future__ import print_function import argparse BUNDLE_SIZE_POW2 = 4 BUNDLE_SIZE = 2 ** BUNDLE_SIZE_POW2 PREAMBLE = ''' # RUN: llvm-mc -filetype=obj -triple i386-pc-linux-gnu %s -o - \\ # RUN: | llvm-objdump -triple i386 -disassemble -no-show-raw-insn - | FileCheck %s # !!! This test is auto-generated from utils/testgen/mc-bundling-x86-gen.py !!! # It tests that bundle-aligned grouping works correctly in MC. Read the # source of the script for more details. .text .bundle_align_mode {0} '''.format(BUNDLE_SIZE_POW2).lstrip() ALIGNTO = ' .align {0}, 0x90' NOPFILL = ' .fill {0}, 1, 0x90' def print_bundle_locked_sequence(len, align_to_end=False): print(' .bundle_lock{0}'.format(' align_to_end' if align_to_end else '')) print(' .rept {0}'.format(len)) print(' inc %eax') print(' .endr') print(' .bundle_unlock') def generate(align_to_end=False): print(PREAMBLE) ntest = 0 for instlen in range(1, BUNDLE_SIZE + 1): for offset in range(0, BUNDLE_SIZE): # Spread out all the instructions to not worry about cross-bundle # interference. print(ALIGNTO.format(2 * BUNDLE_SIZE)) print('INSTRLEN_{0}_OFFSET_{1}:'.format(instlen, offset)) if offset > 0: print(NOPFILL.format(offset)) print_bundle_locked_sequence(instlen, align_to_end) # Now generate an appropriate CHECK line base_offset = ntest * 2 * BUNDLE_SIZE inst_orig_offset = base_offset + offset # had it not been padded... def print_check(adjusted_offset=None, nop_split_offset=None): if adjusted_offset is not None: print('# CHECK: {0:x}: nop'.format(inst_orig_offset)) if nop_split_offset is not None: print('# CHECK: {0:x}: nop'.format(nop_split_offset)) print('# CHECK: {0:x}: incl'.format(adjusted_offset)) else: print('# CHECK: {0:x}: incl'.format(inst_orig_offset)) if align_to_end: if offset + instlen == BUNDLE_SIZE: # No padding needed print_check() elif offset + instlen < BUNDLE_SIZE: # Pad to end at nearest bundle boundary offset_to_end = base_offset + (BUNDLE_SIZE - instlen) print_check(offset_to_end) else: # offset + instlen > BUNDLE_SIZE # Pad to end at next bundle boundary, splitting the nop sequence # at the nearest bundle boundary offset_to_nearest_bundle = base_offset + BUNDLE_SIZE offset_to_end = base_offset + (BUNDLE_SIZE * 2 - instlen) if offset_to_nearest_bundle == offset_to_end: offset_to_nearest_bundle = None print_check(offset_to_end, offset_to_nearest_bundle) else: if offset + instlen > BUNDLE_SIZE: # Padding needed aligned_offset = (inst_orig_offset + instlen) & ~(BUNDLE_SIZE - 1) print_check(aligned_offset) else: # No padding needed print_check() print() ntest += 1 if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('--align-to-end', action='store_true', help='generate .bundle_lock with align_to_end option') args = argparser.parse_args() generate(align_to_end=args.align_to_end)
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lit/setup.py
import lit import os from setuptools import setup, find_packages # setuptools expects to be invoked from within the directory of setup.py, but it # is nice to allow: # python path/to/setup.py install # to work (for scripts, etc.) os.chdir(os.path.dirname(os.path.abspath(__file__))) setup( name = "lit", version = lit.__version__, author = lit.__author__, author_email = lit.__email__, url = 'http://llvm.org', license = 'BSD', description = "A Software Testing Tool", keywords = 'test C++ automatic discovery', long_description = """\ *lit* +++++ About ===== *lit* is a portable tool for executing LLVM and Clang style test suites, summarizing their results, and providing indication of failures. *lit* is designed to be a lightweight testing tool with as simple a user interface as possible. Features ======== * Portable! * Flexible test discovery. * Parallel test execution. * Support for multiple test formats and test suite designs. Documentation ============= The official *lit* documentation is in the man page, available online at the LLVM Command Guide: http://llvm.org/cmds/lit.html. Source ====== The *lit* source is available as part of LLVM, in the LLVM SVN repository: http://llvm.org/svn/llvm-project/llvm/trunk/utils/lit. """, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: University of Illinois/NCSA Open Source License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Testing', ], zip_safe = False, packages = find_packages(), entry_points = { 'console_scripts': [ 'lit = lit:main', ], } )
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lit/lit.py
#!/usr/bin/env python if __name__=='__main__': import lit lit.main()
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lit/MANIFEST.in
include TODO lit.py recursive-include tests * recursive-include examples * global-exclude *pyc global-exclude *~ prune tests/Output prune tests/*/Output prune tests/*/*/Output prune tests/*/*/*/Output
0
repos/DirectXShaderCompiler/utils
repos/DirectXShaderCompiler/utils/lit/README.txt
=============================== lit - A Software Testing Tool =============================== lit is a portable tool for executing LLVM and Clang style test suites, summarizing their results, and providing indication of failures. lit is designed to be a lightweight testing tool with as simple a user interface as possible.
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/test-data.py
# Test features related to formats which support reporting additional test data. # RUN: %{lit} -j 1 -v %{inputs}/test-data > %t.out # RUN: FileCheck < %t.out %s # CHECK: -- Testing: # CHECK: PASS: test-data :: metrics.ini # CHECK-NEXT: *** TEST 'test-data :: metrics.ini' RESULTS *** # CHECK-NEXT: value0: 1 # CHECK-NEXT: value1: 2.3456 # CHECK-NEXT: ***
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/shtest-shell.py
# Check the internal shell handling component of the ShTest format. # # RUN: not %{lit} -j 1 -v %{inputs}/shtest-shell > %t.out # RUN: FileCheck < %t.out %s # # END. # CHECK: -- Testing: # CHECK: FAIL: shtest-shell :: error-0.txt # CHECK: *** TEST 'shtest-shell :: error-0.txt' FAILED *** # CHECK: Command 0: "not-a-real-command" # CHECK: Command 0 Result: 127 # CHECK: Command 0 Stderr: # CHECK: 'not-a-real-command': command not found # CHECK: *** # FIXME: The output here sucks. # # CHECK: FAIL: shtest-shell :: error-1.txt # CHECK: *** TEST 'shtest-shell :: error-1.txt' FAILED *** # CHECK: shell parser error on: 'echo "missing quote' # CHECK: *** # CHECK: FAIL: shtest-shell :: error-2.txt # CHECK: *** TEST 'shtest-shell :: error-2.txt' FAILED *** # CHECK: Unsupported redirect: # CHECK: *** # CHECK: PASS: shtest-shell :: redirects.txt # CHECK: PASS: shtest-shell :: sequencing-0.txt # CHECK: XFAIL: shtest-shell :: sequencing-1.txt # CHECK: Failing Tests (3)
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/progress-bar.py
# Check the simple progress bar. # # RUN: not %{lit} -j 1 -s %{inputs}/progress-bar > %t.out # RUN: FileCheck < %t.out %s # # CHECK: Testing: 0 .. 10.. 20 # CHECK: FAIL: shtest-shell :: test-1.txt (1 of 4) # CHECK: Testing: 0 .. 10.. 20.. 30.. 40.. # CHECK: FAIL: shtest-shell :: test-2.txt (2 of 4) # CHECK: Testing: 0 .. 10.. 20.. 30.. 40.. 50.. 60.. 70 # CHECK: FAIL: shtest-shell :: test-3.txt (3 of 4) # CHECK: Testing: 0 .. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90.. # CHECK: FAIL: shtest-shell :: test-4.txt (4 of 4)
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/shell-parsing.py
# Just run the ShUtil unit tests. # # RUN: %{python} -m lit.ShUtil
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/shtest-if-else.py
# RUN: %{lit} -v --show-all %{inputs}/shtest-if-else/test.txt \ # RUN: | FileCheck %{inputs}/shtest-if-else/test.txt # RUN: not %{lit} -v %{inputs}/shtest-if-else/test-neg1.txt 2>&1 \ # RUN: | FileCheck %{inputs}/shtest-if-else/test-neg1.txt # RUN: not %{lit} -v %{inputs}/shtest-if-else/test-neg2.txt 2>&1 \ # RUN: | FileCheck %{inputs}/shtest-if-else/test-neg2.txt # RUN: not %{lit} -v %{inputs}/shtest-if-else/test-neg3.txt 2>&1 \ # RUN: | FileCheck %{inputs}/shtest-if-else/test-neg3.txt # RUN: not %{lit} -v %{inputs}/shtest-if-else/test-neg4.txt 2>&1 \ # RUN: | FileCheck %{inputs}/shtest-if-else/test-neg4.txt
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/usage.py
# Basic sanity check that usage works. # # RUN: %{lit} --help > %t.out # RUN: FileCheck < %t.out %s # # CHECK: Usage: lit.py [options] {file-or-path}
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/googletest-format.py
# Check the various features of the GoogleTest format. # # RUN: not %{lit} -j 1 -v %{inputs}/googletest-format > %t.out # RUN: FileCheck < %t.out %s # # END. # CHECK: -- Testing: # CHECK: PASS: googletest-format :: DummySubDir/OneTest/FirstTest.subTestA # CHECK: FAIL: googletest-format :: DummySubDir/OneTest/FirstTest.subTestB # CHECK-NEXT: *** TEST 'googletest-format :: DummySubDir/OneTest/FirstTest.subTestB' FAILED *** # CHECK-NEXT: I am subTest B, I FAIL # CHECK-NEXT: And I have two lines of output # CHECK: *** # CHECK: PASS: googletest-format :: DummySubDir/OneTest/ParameterizedTest/0.subTest # CHECK: PASS: googletest-format :: DummySubDir/OneTest/ParameterizedTest/1.subTest # CHECK: Failing Tests (1) # CHECK: Expected Passes : 3 # CHECK: Unexpected Failures: 1
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/discovery.py
# Check the basic discovery process, including a sub-suite. # # RUN: %{lit} %{inputs}/discovery \ # RUN: -j 1 --debug --show-tests --show-suites \ # RUN: -v > %t.out 2> %t.err # RUN: FileCheck --check-prefix=CHECK-BASIC-OUT < %t.out %s # RUN: FileCheck --check-prefix=CHECK-BASIC-ERR < %t.err %s # # CHECK-BASIC-ERR: loading suite config '{{.*}}/discovery/lit.cfg' # CHECK-BASIC-ERR: loading suite config '{{.*}}/discovery/subsuite/lit.cfg' # CHECK-BASIC-ERR: loading local config '{{.*}}/discovery/subdir/lit.local.cfg' # # CHECK-BASIC-OUT: -- Test Suites -- # CHECK-BASIC-OUT: sub-suite - 2 tests # CHECK-BASIC-OUT: Source Root: {{.*/discovery/subsuite$}} # CHECK-BASIC-OUT: Exec Root : {{.*/discovery/subsuite$}} # CHECK-BASIC-OUT: top-level-suite - 3 tests # CHECK-BASIC-OUT: Source Root: {{.*/discovery$}} # CHECK-BASIC-OUT: Exec Root : {{.*/discovery$}} # # CHECK-BASIC-OUT: -- Available Tests -- # CHECK-BASIC-OUT: sub-suite :: test-one # CHECK-BASIC-OUT: sub-suite :: test-two # CHECK-BASIC-OUT: top-level-suite :: subdir/test-three # CHECK-BASIC-OUT: top-level-suite :: test-one # CHECK-BASIC-OUT: top-level-suite :: test-two # Check discovery when exact test names are given. # # RUN: %{lit} \ # RUN: %{inputs}/discovery/subdir/test-three.py \ # RUN: %{inputs}/discovery/subsuite/test-one.txt \ # RUN: -j 1 --show-tests --show-suites -v > %t.out # RUN: FileCheck --check-prefix=CHECK-EXACT-TEST < %t.out %s # # CHECK-EXACT-TEST: -- Available Tests -- # CHECK-EXACT-TEST: sub-suite :: test-one # CHECK-EXACT-TEST: top-level-suite :: subdir/test-three # Check discovery when using an exec path. # # RUN: %{lit} %{inputs}/exec-discovery \ # RUN: -j 1 --debug --show-tests --show-suites \ # RUN: -v > %t.out 2> %t.err # RUN: FileCheck --check-prefix=CHECK-ASEXEC-OUT < %t.out %s # RUN: FileCheck --check-prefix=CHECK-ASEXEC-ERR < %t.err %s # # CHECK-ASEXEC-ERR: loading suite config '{{.*}}/exec-discovery/lit.site.cfg' # CHECK-ASEXEC-ERR: load_config from '{{.*}}/discovery/lit.cfg' # CHECK-ASEXEC-ERR: loaded config '{{.*}}/discovery/lit.cfg' # CHECK-ASEXEC-ERR: loaded config '{{.*}}/exec-discovery/lit.site.cfg' # CHECK-ASEXEC-ERR: loading suite config '{{.*}}/discovery/subsuite/lit.cfg' # CHECK-ASEXEC-ERR: loading local config '{{.*}}/discovery/subdir/lit.local.cfg' # # CHECK-ASEXEC-OUT: -- Test Suites -- # CHECK-ASEXEC-OUT: sub-suite - 2 tests # CHECK-ASEXEC-OUT: Source Root: {{.*/discovery/subsuite$}} # CHECK-ASEXEC-OUT: Exec Root : {{.*/discovery/subsuite$}} # CHECK-ASEXEC-OUT: top-level-suite - 3 tests # CHECK-ASEXEC-OUT: Source Root: {{.*/discovery$}} # CHECK-ASEXEC-OUT: Exec Root : {{.*/exec-discovery$}} # # CHECK-ASEXEC-OUT: -- Available Tests -- # CHECK-ASEXEC-OUT: sub-suite :: test-one # CHECK-ASEXEC-OUT: sub-suite :: test-two # CHECK-ASEXEC-OUT: top-level-suite :: subdir/test-three # CHECK-ASEXEC-OUT: top-level-suite :: test-one # CHECK-ASEXEC-OUT: top-level-suite :: test-two # Check discovery when exact test names are given. # # FIXME: Note that using a path into a subsuite doesn't work correctly here. # # RUN: %{lit} \ # RUN: %{inputs}/exec-discovery/subdir/test-three.py \ # RUN: -j 1 --show-tests --show-suites -v > %t.out # RUN: FileCheck --check-prefix=CHECK-ASEXEC-EXACT-TEST < %t.out %s # # CHECK-ASEXEC-EXACT-TEST: -- Available Tests -- # CHECK-ASEXEC-EXACT-TEST: top-level-suite :: subdir/test-three # Check that we don't recurse infinitely when loading an site specific test # suite located inside the test source root. # # RUN: %{lit} \ # RUN: %{inputs}/exec-discovery-in-tree/obj/ \ # RUN: -j 1 --show-tests --show-suites -v > %t.out # RUN: FileCheck --check-prefix=CHECK-ASEXEC-INTREE < %t.out %s # # CHECK-ASEXEC-INTREE: exec-discovery-in-tree-suite - 1 tests # CHECK-ASEXEC-INTREE-NEXT: Source Root: {{.*/exec-discovery-in-tree$}} # CHECK-ASEXEC-INTREE-NEXT: Exec Root : {{.*/exec-discovery-in-tree/obj$}} # CHECK-ASEXEC-INTREE-NEXT: -- Available Tests -- # CHECK-ASEXEC-INTREE-NEXT: exec-discovery-in-tree-suite :: test-one
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/xunit-output.py
# Check xunit output # RUN: %{lit} --xunit-xml-output %t.xunit.xml --xml-include-test-output %{inputs}/test-data # RUN: FileCheck < %t.xunit.xml %s # CHECK: <?xml version="1.0" encoding="UTF-8" ?> # CHECK: <testsuites> # CHECK: <testsuite name='test-data' tests='2' failures='0'> # CHECK: <testcase classname='test-data.test-data' name='metrics.ini' time='0.{{[0-9]+}}'> # CHECK: <system-out> # CHECK: Test passed. # CHECK: </system-out> # CHECK: <testcase classname='test-data.test-data' name='utf8_output_message.ini' time='0.{{[0-9]+}}'> # CHECK: <system-out> # CHECK: This test is 🔥 # CHECK: </system-out> # CHECK: </testcase> # CHECK: </testsuite> # CHECK: </testsuites>
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/test-output.py
# RUN: %{lit} -j 1 -v %{inputs}/test-data --output %t.results.out > %t.out # RUN: FileCheck < %t.results.out %s # CHECK: { # CHECK: "__version__" # CHECK: "elapsed" # CHECK-NEXT: "tests": [ # CHECK-NEXT: { # CHECK-NEXT: "code": "PASS", # CHECK-NEXT: "elapsed": {{[0-9.]+}}, # CHECK-NEXT: "metrics": { # CHECK-NEXT: "value0": 1, # CHECK-NEXT: "value1": 2.3456 # CHECK-NEXT: } # CHECK-NEXT: "name": "test-data :: metrics.ini", # CHECK-NEXT: "output": "Test passed." # CHECK-NEXT: } # CHECK-NEXT: ] # CHECK-NEXT: }
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/shtest-format.py
# Check the various features of the ShTest format. # # RUN: not %{lit} -j 1 -v %{inputs}/shtest-format > %t.out # RUN: FileCheck < %t.out %s # # END. # CHECK: -- Testing: # CHECK: PASS: shtest-format :: argv0.txt # CHECK: FAIL: shtest-format :: external_shell/fail.txt # CHECK-NEXT: *** TEST 'shtest-format :: external_shell/fail.txt' FAILED *** # CHECK: Command Output (stdout): # CHECK-NEXT: -- # CHECK-NEXT: line 1: failed test output on stdout # CHECK-NEXT: line 2: failed test output on stdout # CHECK: Command Output (stderr): # CHECK-NEXT: -- # CHECK-NEXT: cat: does-not-exist: No such file or directory # CHECK: -- # CHECK: FAIL: shtest-format :: external_shell/fail_with_bad_encoding.txt # CHECK-NEXT: *** TEST 'shtest-format :: external_shell/fail_with_bad_encoding.txt' FAILED *** # CHECK: Command Output (stdout): # CHECK-NEXT: -- # CHECK-NEXT: a line with bad encoding: # CHECK: -- # CHECK: PASS: shtest-format :: external_shell/pass.txt # CHECK: FAIL: shtest-format :: fail.txt # CHECK-NEXT: *** TEST 'shtest-format :: fail.txt' FAILED *** # CHECK-NEXT: Script: # CHECK-NEXT: -- # CHECK-NEXT: printf "line 1 # CHECK-NEXT: false # CHECK-NEXT: -- # CHECK-NEXT: Exit Code: 1 # # CHECK: Command Output (stdout): # CHECK-NEXT: -- # CHECK-NEXT: Command 0: "printf" # CHECK-NEXT: Command 0 Result: 0 # CHECK-NEXT: Command 0 Output: # CHECK-NEXT: line 1: failed test output on stdout # CHECK-NEXT: line 2: failed test output on stdout # CHECK: UNRESOLVED: shtest-format :: no-test-line.txt # CHECK: PASS: shtest-format :: pass.txt # CHECK: UNSUPPORTED: shtest-format :: requires-missing.txt # CHECK: PASS: shtest-format :: requires-present.txt # CHECK: UNSUPPORTED: shtest-format :: unsupported_dir/some-test.txt # CHECK: XFAIL: shtest-format :: xfail-feature.txt # CHECK: XFAIL: shtest-format :: xfail-target.txt # CHECK: XFAIL: shtest-format :: xfail.txt # CHECK: XPASS: shtest-format :: xpass.txt # CHECK-NEXT: *** TEST 'shtest-format :: xpass.txt' FAILED *** # CHECK-NEXT: Script # CHECK-NEXT: -- # CHECK-NEXT: true # CHECK-NEXT: -- # CHECK: Testing Time # CHECK: Unexpected Passing Tests (1) # CHECK: shtest-format :: xpass.txt # CHECK: Failing Tests (3) # CHECK: shtest-format :: external_shell/fail.txt # CHECK: shtest-format :: external_shell/fail_with_bad_encoding.txt # CHECK: shtest-format :: fail.txt # CHECK: Expected Passes : 4 # CHECK: Expected Failures : 3 # CHECK: Unsupported Tests : 2 # CHECK: Unresolved Tests : 1 # CHECK: Unexpected Passes : 1 # CHECK: Unexpected Failures: 3
0
repos/DirectXShaderCompiler/utils/lit
repos/DirectXShaderCompiler/utils/lit/tests/unittest-adaptor.py
# Check the lit adaption to run under unittest. # # RUN: %{python} %s %{inputs}/unittest-adaptor 2> %t.err # RUN: FileCheck < %t.err %s # # CHECK-DAG: unittest-adaptor :: test-two.txt ... FAIL # CHECK-DAG: unittest-adaptor :: test-one.txt ... ok import unittest import sys import lit import lit.discovery input_path = sys.argv[1] unittest_suite = lit.discovery.load_test_suite([input_path]) runner = unittest.TextTestRunner(verbosity=2) runner.run(unittest_suite)
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/unittest-adaptor/test-one.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/unittest-adaptor/test-two.txt
# RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/xfail-target.txt
RUN: false XFAIL: x86_64
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/xfail-feature.txt
# RUN: false # XFAIL: a-present-feature
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/argv0.txt
# Check that we route argv[0] as it was written, instead of the resolved # path. This is important for some tools, in particular '[' which at least on OS # X only recognizes that it is in '['-mode when its argv[0] is exactly # '['. Otherwise it will refuse to accept the trailing closing bracket. # # RUN: [ "A" = "A" ]
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/requires-missing.txt
RUN: true REQUIRES: a-missing-feature
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/xpass.txt
RUN: true XFAIL: x86_64
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/fail.txt
# RUN: printf "line 1: failed test output on stdout\nline 2: failed test output on stdout" # RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/xfail.txt
RUN: false XFAIL: *
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/pass.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/requires-present.txt
RUN: true REQUIRES: a-present-feature
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/no-test-line.txt
# Empty!
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/external_shell/fail.txt
# Run a command that fails with error on stdout. # # RUN: echo "line 1: failed test output on stdout" # RUN: echo "line 2: failed test output on stdout" # RUN: cat "does-not-exist"
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/external_shell/pass.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/external_shell/fail_with_bad_encoding.txt
# Run a command that fails with error on stdout. # # RUN: %S/write-bad-encoding.sh # RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-format/unsupported_dir/some-test.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery/test-one.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery/test-two.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery/subdir/test-three.py
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery/subsuite/test-one.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/discovery/subsuite/test-two.txt
# RUN: true
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/test-data/utf8_output_message.ini
[global] result_code = PASS result_output = This test is 🔥 [results] value0 = 1
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/test-data/metrics.ini
[global] result_code = PASS result_output = Test passed. [results] value0 = 1 value1 = 2.3456
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-if-else/test-neg4.txt
# CHECK: ValueError: '%}' is missing for %else substitution # # RUN: %if feature %{ echo %} %else %{ fail
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-if-else/test-neg2.txt
# CHECK: ValueError: '%}' is missing for %if substitution # # RUN: %if feature %{ echo
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-if-else/test.txt
# CHECK: -- Testing:{{.*}} # CHECK-NEXT: PASS: shtest-if-else :: test.txt (1 of 1) # CHECK-NEXT: Script: # CHECK-NEXT: -- # RUN: %if feature %{ echo "feature" %} %else %{ echo "missing feature" %} # CHECK-NEXT: echo "feature" # # RUN: %if nofeature %{ echo "found unicorn" %} %else %{ echo "nofeature" %} # CHECK-NEXT: "nofeature" # CHECK-NOT: found unicorn # Spaces inside curly braces are not ignored # # RUN: echo test-%if feature %{ 3 %} %else %{ echo "fail" %}-test # RUN: echo test-%if feature %{ 4 4 %} %else %{ echo "fail" %}-test # RUN: echo test-%if nofeature %{ echo "fail" %} %else %{ 5 5 %}-test # CHECK-NEXT: echo test- 3 -test # CHECK-NOT: echo "fail" # CHECK-NEXT: echo test- 4 4 -test # CHECK-NOT: echo "fail" # CHECK-NEXT: echo test- 5 5 -test # CHECK-NOT: echo "fail" # Escape line breaks for multi-line expressions # # RUN: %if feature \ # RUN: %{ echo \ # RUN: "test-5" \ # RUN: %} %else %{ echo "fail" %} # CHECK-NEXT: echo "test-5" # RUN: %if nofeature \ # RUN: %{ echo "fail" %} \ # RUN: %else \ # RUN: %{ echo "test-6" %} # CHECK-NEXT: echo "test-6" # RUN: echo "test%if feature %{%} %else %{%}-7" # CHECK-NEXT: echo "test-7" # Nested expressions are supported: # # RUN: echo %if feature %{ %if feature %{ %if nofeature %{"fail"%} %else %{"test-9"%} %} %} # CHECK-NEXT: echo "test-9" # Spaces between %if and %else are ignored. If there is no %else - # space after %if %{...%} is not ignored. # # RUN: echo XX %if feature %{YY%} ZZ # RUN: echo AA %if feature %{BB%} %else %{CC%} DD # RUN: echo AA %if nofeature %{BB%} %else %{CC%} DD # CHECK-NEXT: echo XX YY ZZ # CHECK-NEXT: echo AA BB DD # CHECK-NEXT: echo AA CC DD # '{' and '}' can be used without escaping # # RUN: %if feature %{echo {}%} # CHECK-NEXT: echo {} # Spaces are not required # # RUN: echo %if feature%{"ok"%}%else%{"fail"%} # CHECK-NEXT: echo "ok" # Substitutions with braces are handled correctly # # RUN: echo %{sub} %if feature%{test-%{sub}%}%else%{"fail"%} # CHECK-NEXT: echo ok test-ok # CHECK-NEXT: -- # CHECK-NEXT: Exit Code: 0
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-if-else/test-neg1.txt
# CHECK: ValueError: '%{' is missing for %if substitution # # RUN: %if feature echo "test-1"
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-if-else/test-neg3.txt
# CHECK: ValueError: '%{' is missing for %else substitution # # RUN: %if feature %{ echo %} %else fail
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/progress-bar/test-1.txt
# RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/progress-bar/test-4.txt
# RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/progress-bar/test-3.txt
# RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/progress-bar/test-2.txt
# RUN: false
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-shell/write-to-stdout-and-stderr.sh
#!/bin/sh echo "a line on stdout" echo "a line on stderr" 1>&2
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-shell/sequencing-1.txt
# RUN: false && true # XFAIL: *
0
repos/DirectXShaderCompiler/utils/lit/tests/Inputs
repos/DirectXShaderCompiler/utils/lit/tests/Inputs/shtest-shell/sequencing-0.txt
# Check sequencing operations. # # RUN: echo "first-line" > %t.out && echo "second-line" >> %t.out # RUN: FileCheck --check-prefix CHECK-AND < %t.out %s # # CHECK-AND: first-line # CHECK-AND: second-line # # The false case of && is tested in sequencing-2.txt # RUN: echo "first-line" > %t.out || echo "second-line" >> %t.out # RUN: FileCheck --check-prefix CHECK-OR-1 < %t.out %s # # CHECK-OR-1: first-line # CHECK-OR-1-NOT: second-line # RUN: false || echo "second-line" > %t.out # RUN: FileCheck --check-prefix CHECK-OR-2 < %t.out %s # # CHECK-OR-2: second-line # RUN: echo "first-line" > %t.out; echo "second-line" >> %t.out # RUN: FileCheck --check-prefix CHECK-SEQ < %t.out %s # # CHECK-SEQ: first-line # CHECK-SEQ: second-line