body
stringlengths 26
98.2k
| body_hash
int64 -9,222,864,604,528,158,000
9,221,803,474B
| docstring
stringlengths 1
16.8k
| path
stringlengths 5
230
| name
stringlengths 1
96
| repository_name
stringlengths 7
89
| lang
stringclasses 1
value | body_without_docstring
stringlengths 20
98.2k
|
---|---|---|---|---|---|---|---|
@pytest.fixture
def root():
'Root function for tests.'
dirname = tempfile.mkdtemp()
(yield os.path.join(dirname, 'output1'))
print('Directory structure was:')
tree(dirname)
shutil.rmtree(dirname) | 258,632,522,870,728,640 | Root function for tests. | tests/integration/test_data_finder.py | root | Peter9192/ESMValCore | python | @pytest.fixture
def root():
dirname = tempfile.mkdtemp()
(yield os.path.join(dirname, 'output1'))
print('Directory structure was:')
tree(dirname)
shutil.rmtree(dirname) |
@pytest.mark.parametrize('cfg', CONFIG['get_input_filelist'])
def test_get_input_filelist(root, cfg):
'Test retrieving input filelist.'
create_tree(root, cfg.get('available_files'), cfg.get('available_symlinks'))
rootpath = {cfg['variable']['project']: [root]}
drs = {cfg['variable']['project']: cfg['drs']}
input_filelist = get_input_filelist(cfg['variable'], rootpath, drs)
reference = [os.path.join(root, file) for file in cfg['found_files']]
assert (sorted(input_filelist) == sorted(reference)) | -2,881,636,409,293,850,600 | Test retrieving input filelist. | tests/integration/test_data_finder.py | test_get_input_filelist | Peter9192/ESMValCore | python | @pytest.mark.parametrize('cfg', CONFIG['get_input_filelist'])
def test_get_input_filelist(root, cfg):
create_tree(root, cfg.get('available_files'), cfg.get('available_symlinks'))
rootpath = {cfg['variable']['project']: [root]}
drs = {cfg['variable']['project']: cfg['drs']}
input_filelist = get_input_filelist(cfg['variable'], rootpath, drs)
reference = [os.path.join(root, file) for file in cfg['found_files']]
assert (sorted(input_filelist) == sorted(reference)) |
@pytest.mark.parametrize('cfg', CONFIG['get_input_fx_filelist'])
def test_get_input_fx_filelist(root, cfg):
'Test retrieving fx filelist.'
create_tree(root, cfg.get('available_files'), cfg.get('available_symlinks'))
rootpath = {cfg['variable']['project']: [root]}
drs = {cfg['variable']['project']: cfg['drs']}
fx_files = get_input_fx_filelist(cfg['variable'], rootpath, drs)
reference = {fx_var: (os.path.join(root, filename) if filename else None) for (fx_var, filename) in cfg['found_files'].items()}
assert (fx_files == reference) | -1,748,723,419,376,551,200 | Test retrieving fx filelist. | tests/integration/test_data_finder.py | test_get_input_fx_filelist | Peter9192/ESMValCore | python | @pytest.mark.parametrize('cfg', CONFIG['get_input_fx_filelist'])
def test_get_input_fx_filelist(root, cfg):
create_tree(root, cfg.get('available_files'), cfg.get('available_symlinks'))
rootpath = {cfg['variable']['project']: [root]}
drs = {cfg['variable']['project']: cfg['drs']}
fx_files = get_input_fx_filelist(cfg['variable'], rootpath, drs)
reference = {fx_var: (os.path.join(root, filename) if filename else None) for (fx_var, filename) in cfg['found_files'].items()}
assert (fx_files == reference) |
def spline_filter1d(input, order=3, axis=(- 1), output=numpy.float64, output_type=None):
'Calculates a one-dimensional spline filter along the given axis.\n\n The lines of the array along the given axis are filtered by a\n spline filter. The order of the spline must be >= 2 and <= 5.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
(output, return_value) = _ni_support._get_output(output, input, output_type)
if (order in [0, 1]):
output[...] = numpy.array(input)
else:
axis = _ni_support._check_axis(axis, input.ndim)
_nd_image.spline_filter1d(input, order, axis, output)
return return_value | -8,221,713,997,674,315,000 | Calculates a one-dimensional spline filter along the given axis.
The lines of the array along the given axis are filtered by a
spline filter. The order of the spline must be >= 2 and <= 5. | kapteyn/interpolation.py | spline_filter1d | kapteyn-astro/kapteyn | python | def spline_filter1d(input, order=3, axis=(- 1), output=numpy.float64, output_type=None):
'Calculates a one-dimensional spline filter along the given axis.\n\n The lines of the array along the given axis are filtered by a\n spline filter. The order of the spline must be >= 2 and <= 5.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
(output, return_value) = _ni_support._get_output(output, input, output_type)
if (order in [0, 1]):
output[...] = numpy.array(input)
else:
axis = _ni_support._check_axis(axis, input.ndim)
_nd_image.spline_filter1d(input, order, axis, output)
return return_value |
def spline_filter(input, order=3, output=numpy.float64, output_type=None):
'Multi-dimensional spline filter.\n\n Note: The multi-dimensional filter is implemented as a sequence of\n one-dimensional spline filters. The intermediate arrays are stored\n in the same data type as the output. Therefore, for output types\n with a limited precision, the results may be imprecise because\n intermediate results may be stored with insufficient precision.\n '
if ((order < 2) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
(output, return_value) = _ni_support._get_output(output, input, output_type)
if ((order not in [0, 1]) and (input.ndim > 0)):
for axis in range(input.ndim):
spline_filter1d(input, order, axis, output=output)
input = output
else:
output[...] = input[...]
return return_value | 13,522,673,866,341,064 | Multi-dimensional spline filter.
Note: The multi-dimensional filter is implemented as a sequence of
one-dimensional spline filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision. | kapteyn/interpolation.py | spline_filter | kapteyn-astro/kapteyn | python | def spline_filter(input, order=3, output=numpy.float64, output_type=None):
'Multi-dimensional spline filter.\n\n Note: The multi-dimensional filter is implemented as a sequence of\n one-dimensional spline filters. The intermediate arrays are stored\n in the same data type as the output. Therefore, for output types\n with a limited precision, the results may be imprecise because\n intermediate results may be stored with insufficient precision.\n '
if ((order < 2) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
(output, return_value) = _ni_support._get_output(output, input, output_type)
if ((order not in [0, 1]) and (input.ndim > 0)):
for axis in range(input.ndim):
spline_filter1d(input, order, axis, output=output)
input = output
else:
output[...] = input[...]
return return_value |
def geometric_transform(input, mapping, output_shape=None, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={}):
"Apply an arbritrary geometric transform.\n\n The given mapping function is used to find, for each point in the\n output, the corresponding coordinates in the input. The value of the\n input at those coordinates is determined by spline interpolation of\n the requested order.\n\n mapping must be a callable object that accepts a tuple of length\n equal to the output array rank and returns the corresponding input\n coordinates as a tuple of length equal to the input array\n rank. Points outside the boundaries of the input are filled\n according to the given mode ('constant', 'nearest', 'reflect' or\n 'wrap'). The output shape can optionally be given. If not given,\n it is equal to the input shape. The parameter prefilter determines\n if the input is pre-filtered before interpolation (necessary for\n spline interpolation of order > 1). If False it is assumed that\n the input is already filtered. The extra_arguments and\n extra_keywords arguments can be used to provide extra arguments\n and keywords that are passed to the mapping function at each call.\n\n Example\n -------\n >>> a = arange(12.).reshape((4,3))\n >>> def shift_func(output_coordinates):\n ... return (output_coordinates[0]-0.5, output_coordinates[1]-0.5)\n ...\n >>> print geometric_transform(a,shift_func)\n array([[ 0. , 0. , 0. ],\n [ 0. , 1.3625, 2.7375],\n [ 0. , 4.8125, 6.1875],\n [ 0. , 8.2625, 9.6375]])\n "
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (output_shape is None):
output_shape = input.shape
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
_nd_image.geometric_transform(filtered, mapping, None, None, None, output, order, mode, cval, extra_arguments, extra_keywords)
return return_value | 2,634,614,057,414,725,600 | Apply an arbritrary geometric transform.
The given mapping function is used to find, for each point in the
output, the corresponding coordinates in the input. The value of the
input at those coordinates is determined by spline interpolation of
the requested order.
mapping must be a callable object that accepts a tuple of length
equal to the output array rank and returns the corresponding input
coordinates as a tuple of length equal to the input array
rank. Points outside the boundaries of the input are filled
according to the given mode ('constant', 'nearest', 'reflect' or
'wrap'). The output shape can optionally be given. If not given,
it is equal to the input shape. The parameter prefilter determines
if the input is pre-filtered before interpolation (necessary for
spline interpolation of order > 1). If False it is assumed that
the input is already filtered. The extra_arguments and
extra_keywords arguments can be used to provide extra arguments
and keywords that are passed to the mapping function at each call.
Example
-------
>>> a = arange(12.).reshape((4,3))
>>> def shift_func(output_coordinates):
... return (output_coordinates[0]-0.5, output_coordinates[1]-0.5)
...
>>> print geometric_transform(a,shift_func)
array([[ 0. , 0. , 0. ],
[ 0. , 1.3625, 2.7375],
[ 0. , 4.8125, 6.1875],
[ 0. , 8.2625, 9.6375]]) | kapteyn/interpolation.py | geometric_transform | kapteyn-astro/kapteyn | python | def geometric_transform(input, mapping, output_shape=None, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True, extra_arguments=(), extra_keywords={}):
"Apply an arbritrary geometric transform.\n\n The given mapping function is used to find, for each point in the\n output, the corresponding coordinates in the input. The value of the\n input at those coordinates is determined by spline interpolation of\n the requested order.\n\n mapping must be a callable object that accepts a tuple of length\n equal to the output array rank and returns the corresponding input\n coordinates as a tuple of length equal to the input array\n rank. Points outside the boundaries of the input are filled\n according to the given mode ('constant', 'nearest', 'reflect' or\n 'wrap'). The output shape can optionally be given. If not given,\n it is equal to the input shape. The parameter prefilter determines\n if the input is pre-filtered before interpolation (necessary for\n spline interpolation of order > 1). If False it is assumed that\n the input is already filtered. The extra_arguments and\n extra_keywords arguments can be used to provide extra arguments\n and keywords that are passed to the mapping function at each call.\n\n Example\n -------\n >>> a = arange(12.).reshape((4,3))\n >>> def shift_func(output_coordinates):\n ... return (output_coordinates[0]-0.5, output_coordinates[1]-0.5)\n ...\n >>> print geometric_transform(a,shift_func)\n array([[ 0. , 0. , 0. ],\n [ 0. , 1.3625, 2.7375],\n [ 0. , 4.8125, 6.1875],\n [ 0. , 8.2625, 9.6375]])\n "
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (output_shape is None):
output_shape = input.shape
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
_nd_image.geometric_transform(filtered, mapping, None, None, None, output, order, mode, cval, extra_arguments, extra_keywords)
return return_value |
def map_coordinates(input, coordinates, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
"\n Map the input array to new coordinates by interpolation.\n\n The array of coordinates is used to find, for each point in the output,\n the corresponding coordinates in the input. The value of the input at\n those coordinates is determined by spline interpolation of the\n requested order.\n\n The shape of the output is derived from that of the coordinate\n array by dropping the first axis. The values of the array along\n the first axis are the coordinates in the input array at which the\n output value is found.\n\n Parameters\n ----------\n input : ndarray\n The input array\n coordinates : array_like\n The coordinates at which `input` is evaluated.\n output_type : deprecated\n Use `output` instead.\n output : dtype, optional\n If the output has to have a certain type, specify the dtype.\n The default behavior is for the output to have the same type\n as `input`.\n order : int, optional\n The order of the spline interpolation, default is 3.\n The order has to be in the range 0-5.\n mode : str, optional\n Points outside the boundaries of the input are filled according\n to the given mode ('constant', 'nearest', 'reflect' or 'wrap').\n Default is 'constant'.\n cval : scalar, optional\n Value used for points outside the boundaries of the input if\n `mode='constant`. Default is 0.0\n prefilter : bool, optional\n The parameter prefilter determines if the input is\n pre-filtered with `spline_filter`_ before interpolation\n (necessary for spline interpolation of order > 1).\n If False, it is assumed that the input is already filtered.\n\n Returns\n -------\n return_value : ndarray\n The result of transforming the input. The shape of the\n output is derived from that of `coordinates` by dropping\n the first axis.\n\n\n See Also\n --------\n spline_filter, geometric_transform, scipy.interpolate\n\n Examples\n --------\n >>> import scipy.ndimage\n >>> a = np.arange(12.).reshape((4,3))\n >>> print a\n array([[ 0., 1., 2.],\n [ 3., 4., 5.],\n [ 6., 7., 8.],\n [ 9., 10., 11.]])\n >>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)\n [ 2. 7.]\n\n Above, the interpolated value of a[0.5, 0.5] gives output[0], while\n a[2, 1] is output[1].\n\n >>> inds = np.array([[0.5, 2], [0.5, 4]])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)\n array([ 2. , -33.3])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')\n array([ 2., 8.])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)\n array([ True, False], dtype=bool\n\n "
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
coordinates = numpy.asarray(coordinates)
if numpy.iscomplexobj(coordinates):
raise TypeError('Complex type not supported')
output_shape = coordinates.shape[1:]
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
if (coordinates.shape[0] != input.ndim):
raise RuntimeError('invalid shape for coordinate array')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
_nd_image.geometric_transform(filtered, None, coordinates, None, None, output, order, mode, cval, None, None)
return return_value | -8,802,813,107,881,692,000 | Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output,
the corresponding coordinates in the input. The value of the input at
those coordinates is determined by spline interpolation of the
requested order.
The shape of the output is derived from that of the coordinate
array by dropping the first axis. The values of the array along
the first axis are the coordinates in the input array at which the
output value is found.
Parameters
----------
input : ndarray
The input array
coordinates : array_like
The coordinates at which `input` is evaluated.
output_type : deprecated
Use `output` instead.
output : dtype, optional
If the output has to have a certain type, specify the dtype.
The default behavior is for the output to have the same type
as `input`.
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according
to the given mode ('constant', 'nearest', 'reflect' or 'wrap').
Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if
`mode='constant`. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is
pre-filtered with `spline_filter`_ before interpolation
(necessary for spline interpolation of order > 1).
If False, it is assumed that the input is already filtered.
Returns
-------
return_value : ndarray
The result of transforming the input. The shape of the
output is derived from that of `coordinates` by dropping
the first axis.
See Also
--------
spline_filter, geometric_transform, scipy.interpolate
Examples
--------
>>> import scipy.ndimage
>>> a = np.arange(12.).reshape((4,3))
>>> print a
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])
>>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[ 2. 7.]
Above, the interpolated value of a[0.5, 0.5] gives output[0], while
a[2, 1] is output[1].
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool | kapteyn/interpolation.py | map_coordinates | kapteyn-astro/kapteyn | python | def map_coordinates(input, coordinates, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
"\n Map the input array to new coordinates by interpolation.\n\n The array of coordinates is used to find, for each point in the output,\n the corresponding coordinates in the input. The value of the input at\n those coordinates is determined by spline interpolation of the\n requested order.\n\n The shape of the output is derived from that of the coordinate\n array by dropping the first axis. The values of the array along\n the first axis are the coordinates in the input array at which the\n output value is found.\n\n Parameters\n ----------\n input : ndarray\n The input array\n coordinates : array_like\n The coordinates at which `input` is evaluated.\n output_type : deprecated\n Use `output` instead.\n output : dtype, optional\n If the output has to have a certain type, specify the dtype.\n The default behavior is for the output to have the same type\n as `input`.\n order : int, optional\n The order of the spline interpolation, default is 3.\n The order has to be in the range 0-5.\n mode : str, optional\n Points outside the boundaries of the input are filled according\n to the given mode ('constant', 'nearest', 'reflect' or 'wrap').\n Default is 'constant'.\n cval : scalar, optional\n Value used for points outside the boundaries of the input if\n `mode='constant`. Default is 0.0\n prefilter : bool, optional\n The parameter prefilter determines if the input is\n pre-filtered with `spline_filter`_ before interpolation\n (necessary for spline interpolation of order > 1).\n If False, it is assumed that the input is already filtered.\n\n Returns\n -------\n return_value : ndarray\n The result of transforming the input. The shape of the\n output is derived from that of `coordinates` by dropping\n the first axis.\n\n\n See Also\n --------\n spline_filter, geometric_transform, scipy.interpolate\n\n Examples\n --------\n >>> import scipy.ndimage\n >>> a = np.arange(12.).reshape((4,3))\n >>> print a\n array([[ 0., 1., 2.],\n [ 3., 4., 5.],\n [ 6., 7., 8.],\n [ 9., 10., 11.]])\n >>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)\n [ 2. 7.]\n\n Above, the interpolated value of a[0.5, 0.5] gives output[0], while\n a[2, 1] is output[1].\n\n >>> inds = np.array([[0.5, 2], [0.5, 4]])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)\n array([ 2. , -33.3])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')\n array([ 2., 8.])\n >>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)\n array([ True, False], dtype=bool\n\n "
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
coordinates = numpy.asarray(coordinates)
if numpy.iscomplexobj(coordinates):
raise TypeError('Complex type not supported')
output_shape = coordinates.shape[1:]
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
if (coordinates.shape[0] != input.ndim):
raise RuntimeError('invalid shape for coordinate array')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
_nd_image.geometric_transform(filtered, None, coordinates, None, None, output, order, mode, cval, None, None)
return return_value |
def affine_transform(input, matrix, offset=0.0, output_shape=None, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Apply an affine transformation.\n\n The given matrix and offset are used to find for each point in the\n output the corresponding coordinates in the input by an affine\n transformation. The value of the input at those coordinates is\n determined by spline interpolation of the requested order. Points\n outside the boundaries of the input are filled according to the given\n mode. The output shape can optionally be given. If not given it is\n equal to the input shape. The parameter prefilter determines if the\n input is pre-filtered before interpolation, if False it is assumed\n that the input is already filtered.\n\n The matrix must be two-dimensional or can also be given as a\n one-dimensional sequence or array. In the latter case, it is\n assumed that the matrix is diagonal. A more efficient algorithms\n is then applied that exploits the separability of the problem.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (output_shape is None):
output_shape = input.shape
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
matrix = numpy.asarray(matrix, dtype=numpy.float64)
if ((matrix.ndim not in [1, 2]) or (matrix.shape[0] < 1)):
raise RuntimeError('no proper affine matrix provided')
if (matrix.shape[0] != input.ndim):
raise RuntimeError('affine matrix has wrong number of rows')
if ((matrix.ndim == 2) and (matrix.shape[1] != output.ndim)):
raise RuntimeError('affine matrix has wrong number of columns')
if (not matrix.flags.contiguous):
matrix = matrix.copy()
offset = _ni_support._normalize_sequence(offset, input.ndim)
offset = numpy.asarray(offset, dtype=numpy.float64)
if ((offset.ndim != 1) or (offset.shape[0] < 1)):
raise RuntimeError('no proper offset provided')
if (not offset.flags.contiguous):
offset = offset.copy()
if (matrix.ndim == 1):
_nd_image.zoom_shift(filtered, matrix, offset, output, order, mode, cval)
else:
_nd_image.geometric_transform(filtered, None, None, matrix, offset, output, order, mode, cval, None, None)
return return_value | 9,161,708,642,816,973,000 | Apply an affine transformation.
The given matrix and offset are used to find for each point in the
output the corresponding coordinates in the input by an affine
transformation. The value of the input at those coordinates is
determined by spline interpolation of the requested order. Points
outside the boundaries of the input are filled according to the given
mode. The output shape can optionally be given. If not given it is
equal to the input shape. The parameter prefilter determines if the
input is pre-filtered before interpolation, if False it is assumed
that the input is already filtered.
The matrix must be two-dimensional or can also be given as a
one-dimensional sequence or array. In the latter case, it is
assumed that the matrix is diagonal. A more efficient algorithms
is then applied that exploits the separability of the problem. | kapteyn/interpolation.py | affine_transform | kapteyn-astro/kapteyn | python | def affine_transform(input, matrix, offset=0.0, output_shape=None, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Apply an affine transformation.\n\n The given matrix and offset are used to find for each point in the\n output the corresponding coordinates in the input by an affine\n transformation. The value of the input at those coordinates is\n determined by spline interpolation of the requested order. Points\n outside the boundaries of the input are filled according to the given\n mode. The output shape can optionally be given. If not given it is\n equal to the input shape. The parameter prefilter determines if the\n input is pre-filtered before interpolation, if False it is assumed\n that the input is already filtered.\n\n The matrix must be two-dimensional or can also be given as a\n one-dimensional sequence or array. In the latter case, it is\n assumed that the matrix is diagonal. A more efficient algorithms\n is then applied that exploits the separability of the problem.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (output_shape is None):
output_shape = input.shape
if ((input.ndim < 1) or (len(output_shape) < 1)):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
matrix = numpy.asarray(matrix, dtype=numpy.float64)
if ((matrix.ndim not in [1, 2]) or (matrix.shape[0] < 1)):
raise RuntimeError('no proper affine matrix provided')
if (matrix.shape[0] != input.ndim):
raise RuntimeError('affine matrix has wrong number of rows')
if ((matrix.ndim == 2) and (matrix.shape[1] != output.ndim)):
raise RuntimeError('affine matrix has wrong number of columns')
if (not matrix.flags.contiguous):
matrix = matrix.copy()
offset = _ni_support._normalize_sequence(offset, input.ndim)
offset = numpy.asarray(offset, dtype=numpy.float64)
if ((offset.ndim != 1) or (offset.shape[0] < 1)):
raise RuntimeError('no proper offset provided')
if (not offset.flags.contiguous):
offset = offset.copy()
if (matrix.ndim == 1):
_nd_image.zoom_shift(filtered, matrix, offset, output, order, mode, cval)
else:
_nd_image.geometric_transform(filtered, None, None, matrix, offset, output, order, mode, cval, None, None)
return return_value |
def shift(input, shift, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Shift an array.\n\n The array is shifted using spline interpolation of the requested\n order. Points outside the boundaries of the input are filled according\n to the given mode. The parameter prefilter determines if the input is\n pre-filtered before interpolation, if False it is assumed that the\n input is already filtered.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (input.ndim < 1):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type)
shift = _ni_support._normalize_sequence(shift, input.ndim)
shift = [(- ii) for ii in shift]
shift = numpy.asarray(shift, dtype=numpy.float64)
if (not shift.flags.contiguous):
shift = shift.copy()
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval)
return return_value | 1,732,073,668,687,526,000 | Shift an array.
The array is shifted using spline interpolation of the requested
order. Points outside the boundaries of the input are filled according
to the given mode. The parameter prefilter determines if the input is
pre-filtered before interpolation, if False it is assumed that the
input is already filtered. | kapteyn/interpolation.py | shift | kapteyn-astro/kapteyn | python | def shift(input, shift, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Shift an array.\n\n The array is shifted using spline interpolation of the requested\n order. Points outside the boundaries of the input are filled according\n to the given mode. The parameter prefilter determines if the input is\n pre-filtered before interpolation, if False it is assumed that the\n input is already filtered.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (input.ndim < 1):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
(output, return_value) = _ni_support._get_output(output, input, output_type)
shift = _ni_support._normalize_sequence(shift, input.ndim)
shift = [(- ii) for ii in shift]
shift = numpy.asarray(shift, dtype=numpy.float64)
if (not shift.flags.contiguous):
shift = shift.copy()
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval)
return return_value |
def zoom(input, zoom, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Zoom an array.\n\n The array is zoomed using spline interpolation of the requested order.\n Points outside the boundaries of the input are filled according to the\n given mode. The parameter prefilter determines if the input is pre-\n filtered before interpolation, if False it is assumed that the input\n is already filtered.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (input.ndim < 1):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
zoom = _ni_support._normalize_sequence(zoom, input.ndim)
output_shape = tuple([int((ii * jj)) for (ii, jj) in zip(input.shape, zoom)])
zoom = ((numpy.array(input.shape) - 1) / (numpy.array(output_shape, float) - 1))
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
zoom = numpy.asarray(zoom, dtype=numpy.float64)
zoom = numpy.ascontiguousarray(zoom)
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval)
return return_value | -1,133,667,281,842,703,600 | Zoom an array.
The array is zoomed using spline interpolation of the requested order.
Points outside the boundaries of the input are filled according to the
given mode. The parameter prefilter determines if the input is pre-
filtered before interpolation, if False it is assumed that the input
is already filtered. | kapteyn/interpolation.py | zoom | kapteyn-astro/kapteyn | python | def zoom(input, zoom, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Zoom an array.\n\n The array is zoomed using spline interpolation of the requested order.\n Points outside the boundaries of the input are filled according to the\n given mode. The parameter prefilter determines if the input is pre-\n filtered before interpolation, if False it is assumed that the input\n is already filtered.\n '
if ((order < 0) or (order > 5)):
raise RuntimeError('spline order not supported')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if (input.ndim < 1):
raise RuntimeError('input and output rank must be > 0')
mode = _extend_mode_to_code(mode)
if (prefilter and (order > 1)):
filtered = spline_filter(input, order, output=numpy.float64)
else:
filtered = input
zoom = _ni_support._normalize_sequence(zoom, input.ndim)
output_shape = tuple([int((ii * jj)) for (ii, jj) in zip(input.shape, zoom)])
zoom = ((numpy.array(input.shape) - 1) / (numpy.array(output_shape, float) - 1))
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
zoom = numpy.asarray(zoom, dtype=numpy.float64)
zoom = numpy.ascontiguousarray(zoom)
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval)
return return_value |
def rotate(input, angle, axes=(1, 0), reshape=True, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Rotate an array.\n\n The array is rotated in the plane defined by the two axes given by the\n axes parameter using spline interpolation of the requested order. The\n angle is given in degrees. Points outside the boundaries of the input\n are filled according to the given mode. If reshape is true, the output\n shape is adapted so that the input array is contained completely in\n the output. The parameter prefilter determines if the input is pre-\n filtered before interpolation, if False it is assumed that the input\n is already filtered.\n '
input = numpy.asarray(input)
axes = list(axes)
rank = input.ndim
if (axes[0] < 0):
axes[0] += rank
if (axes[1] < 0):
axes[1] += rank
if ((axes[0] < 0) or (axes[1] < 0) or (axes[0] > rank) or (axes[1] > rank)):
raise RuntimeError('invalid rotation plane specified')
if (axes[0] > axes[1]):
axes = (axes[1], axes[0])
angle = ((numpy.pi / 180) * angle)
m11 = math.cos(angle)
m12 = math.sin(angle)
m21 = (- math.sin(angle))
m22 = math.cos(angle)
matrix = numpy.array([[m11, m12], [m21, m22]], dtype=numpy.float64)
iy = input.shape[axes[0]]
ix = input.shape[axes[1]]
if reshape:
mtrx = numpy.array([[m11, (- m21)], [(- m12), m22]], dtype=numpy.float64)
minc = [0, 0]
maxc = [0, 0]
coor = numpy.dot(mtrx, [0, ix])
(minc, maxc) = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, 0])
(minc, maxc) = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, ix])
(minc, maxc) = _minmax(coor, minc, maxc)
oy = int(((maxc[0] - minc[0]) + 0.5))
ox = int(((maxc[1] - minc[1]) + 0.5))
else:
oy = input.shape[axes[0]]
ox = input.shape[axes[1]]
offset = numpy.zeros((2,), dtype=numpy.float64)
offset[0] = ((float(oy) / 2.0) - 0.5)
offset[1] = ((float(ox) / 2.0) - 0.5)
offset = numpy.dot(matrix, offset)
tmp = numpy.zeros((2,), dtype=numpy.float64)
tmp[0] = ((float(iy) / 2.0) - 0.5)
tmp[1] = ((float(ix) / 2.0) - 0.5)
offset = (tmp - offset)
output_shape = list(input.shape)
output_shape[axes[0]] = oy
output_shape[axes[1]] = ox
output_shape = tuple(output_shape)
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
if (input.ndim <= 2):
affine_transform(input, matrix, offset, output_shape, None, output, order, mode, cval, prefilter)
else:
coordinates = []
size = numpy.product(input.shape, axis=0)
size /= input.shape[axes[0]]
size /= input.shape[axes[1]]
for ii in range(input.ndim):
if (ii not in axes):
coordinates.append(0)
else:
coordinates.append(slice(None, None, None))
iter_axes = list(range(input.ndim))
iter_axes.reverse()
iter_axes.remove(axes[0])
iter_axes.remove(axes[1])
os = (output_shape[axes[0]], output_shape[axes[1]])
for ii in range(size):
ia = input[tuple(coordinates)]
oa = output[tuple(coordinates)]
affine_transform(ia, matrix, offset, os, None, oa, order, mode, cval, prefilter)
for jj in iter_axes:
if (coordinates[jj] < (input.shape[jj] - 1)):
coordinates[jj] += 1
break
else:
coordinates[jj] = 0
return return_value | 8,433,568,912,036,353,000 | Rotate an array.
The array is rotated in the plane defined by the two axes given by the
axes parameter using spline interpolation of the requested order. The
angle is given in degrees. Points outside the boundaries of the input
are filled according to the given mode. If reshape is true, the output
shape is adapted so that the input array is contained completely in
the output. The parameter prefilter determines if the input is pre-
filtered before interpolation, if False it is assumed that the input
is already filtered. | kapteyn/interpolation.py | rotate | kapteyn-astro/kapteyn | python | def rotate(input, angle, axes=(1, 0), reshape=True, output_type=None, output=None, order=3, mode='constant', cval=0.0, prefilter=True):
'Rotate an array.\n\n The array is rotated in the plane defined by the two axes given by the\n axes parameter using spline interpolation of the requested order. The\n angle is given in degrees. Points outside the boundaries of the input\n are filled according to the given mode. If reshape is true, the output\n shape is adapted so that the input array is contained completely in\n the output. The parameter prefilter determines if the input is pre-\n filtered before interpolation, if False it is assumed that the input\n is already filtered.\n '
input = numpy.asarray(input)
axes = list(axes)
rank = input.ndim
if (axes[0] < 0):
axes[0] += rank
if (axes[1] < 0):
axes[1] += rank
if ((axes[0] < 0) or (axes[1] < 0) or (axes[0] > rank) or (axes[1] > rank)):
raise RuntimeError('invalid rotation plane specified')
if (axes[0] > axes[1]):
axes = (axes[1], axes[0])
angle = ((numpy.pi / 180) * angle)
m11 = math.cos(angle)
m12 = math.sin(angle)
m21 = (- math.sin(angle))
m22 = math.cos(angle)
matrix = numpy.array([[m11, m12], [m21, m22]], dtype=numpy.float64)
iy = input.shape[axes[0]]
ix = input.shape[axes[1]]
if reshape:
mtrx = numpy.array([[m11, (- m21)], [(- m12), m22]], dtype=numpy.float64)
minc = [0, 0]
maxc = [0, 0]
coor = numpy.dot(mtrx, [0, ix])
(minc, maxc) = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, 0])
(minc, maxc) = _minmax(coor, minc, maxc)
coor = numpy.dot(mtrx, [iy, ix])
(minc, maxc) = _minmax(coor, minc, maxc)
oy = int(((maxc[0] - minc[0]) + 0.5))
ox = int(((maxc[1] - minc[1]) + 0.5))
else:
oy = input.shape[axes[0]]
ox = input.shape[axes[1]]
offset = numpy.zeros((2,), dtype=numpy.float64)
offset[0] = ((float(oy) / 2.0) - 0.5)
offset[1] = ((float(ox) / 2.0) - 0.5)
offset = numpy.dot(matrix, offset)
tmp = numpy.zeros((2,), dtype=numpy.float64)
tmp[0] = ((float(iy) / 2.0) - 0.5)
tmp[1] = ((float(ix) / 2.0) - 0.5)
offset = (tmp - offset)
output_shape = list(input.shape)
output_shape[axes[0]] = oy
output_shape[axes[1]] = ox
output_shape = tuple(output_shape)
(output, return_value) = _ni_support._get_output(output, input, output_type, shape=output_shape)
if (input.ndim <= 2):
affine_transform(input, matrix, offset, output_shape, None, output, order, mode, cval, prefilter)
else:
coordinates = []
size = numpy.product(input.shape, axis=0)
size /= input.shape[axes[0]]
size /= input.shape[axes[1]]
for ii in range(input.ndim):
if (ii not in axes):
coordinates.append(0)
else:
coordinates.append(slice(None, None, None))
iter_axes = list(range(input.ndim))
iter_axes.reverse()
iter_axes.remove(axes[0])
iter_axes.remove(axes[1])
os = (output_shape[axes[0]], output_shape[axes[1]])
for ii in range(size):
ia = input[tuple(coordinates)]
oa = output[tuple(coordinates)]
affine_transform(ia, matrix, offset, os, None, oa, order, mode, cval, prefilter)
for jj in iter_axes:
if (coordinates[jj] < (input.shape[jj] - 1)):
coordinates[jj] += 1
break
else:
coordinates[jj] = 0
return return_value |
def __init__(self, algorithm=None, max_failed_trial_count=None, max_trial_count=None, metrics_collector_spec=None, nas_config=None, objective=None, parallel_trial_count=None, parameters=None, resume_policy=None, trial_template=None):
'V1alpha3ExperimentSpec - a model defined in Swagger'
self._algorithm = None
self._max_failed_trial_count = None
self._max_trial_count = None
self._metrics_collector_spec = None
self._nas_config = None
self._objective = None
self._parallel_trial_count = None
self._parameters = None
self._resume_policy = None
self._trial_template = None
self.discriminator = None
if (algorithm is not None):
self.algorithm = algorithm
if (max_failed_trial_count is not None):
self.max_failed_trial_count = max_failed_trial_count
if (max_trial_count is not None):
self.max_trial_count = max_trial_count
if (metrics_collector_spec is not None):
self.metrics_collector_spec = metrics_collector_spec
if (nas_config is not None):
self.nas_config = nas_config
if (objective is not None):
self.objective = objective
if (parallel_trial_count is not None):
self.parallel_trial_count = parallel_trial_count
if (parameters is not None):
self.parameters = parameters
if (resume_policy is not None):
self.resume_policy = resume_policy
if (trial_template is not None):
self.trial_template = trial_template | 133,299,599,670,606,750 | V1alpha3ExperimentSpec - a model defined in Swagger | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | __init__ | ChenjunZou/katib | python | def __init__(self, algorithm=None, max_failed_trial_count=None, max_trial_count=None, metrics_collector_spec=None, nas_config=None, objective=None, parallel_trial_count=None, parameters=None, resume_policy=None, trial_template=None):
self._algorithm = None
self._max_failed_trial_count = None
self._max_trial_count = None
self._metrics_collector_spec = None
self._nas_config = None
self._objective = None
self._parallel_trial_count = None
self._parameters = None
self._resume_policy = None
self._trial_template = None
self.discriminator = None
if (algorithm is not None):
self.algorithm = algorithm
if (max_failed_trial_count is not None):
self.max_failed_trial_count = max_failed_trial_count
if (max_trial_count is not None):
self.max_trial_count = max_trial_count
if (metrics_collector_spec is not None):
self.metrics_collector_spec = metrics_collector_spec
if (nas_config is not None):
self.nas_config = nas_config
if (objective is not None):
self.objective = objective
if (parallel_trial_count is not None):
self.parallel_trial_count = parallel_trial_count
if (parameters is not None):
self.parameters = parameters
if (resume_policy is not None):
self.resume_policy = resume_policy
if (trial_template is not None):
self.trial_template = trial_template |
@property
def algorithm(self):
'Gets the algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes the suggestion algorithm. # noqa: E501\n\n :return: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3AlgorithmSpec\n '
return self._algorithm | 7,650,702,324,478,667,000 | Gets the algorithm of this V1alpha3ExperimentSpec. # noqa: E501
Describes the suggestion algorithm. # noqa: E501
:return: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: V1alpha3AlgorithmSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | algorithm | ChenjunZou/katib | python | @property
def algorithm(self):
'Gets the algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes the suggestion algorithm. # noqa: E501\n\n :return: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3AlgorithmSpec\n '
return self._algorithm |
@algorithm.setter
def algorithm(self, algorithm):
'Sets the algorithm of this V1alpha3ExperimentSpec.\n\n Describes the suggestion algorithm. # noqa: E501\n\n :param algorithm: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3AlgorithmSpec\n '
self._algorithm = algorithm | -1,595,579,673,576,640,300 | Sets the algorithm of this V1alpha3ExperimentSpec.
Describes the suggestion algorithm. # noqa: E501
:param algorithm: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501
:type: V1alpha3AlgorithmSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | algorithm | ChenjunZou/katib | python | @algorithm.setter
def algorithm(self, algorithm):
'Sets the algorithm of this V1alpha3ExperimentSpec.\n\n Describes the suggestion algorithm. # noqa: E501\n\n :param algorithm: The algorithm of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3AlgorithmSpec\n '
self._algorithm = algorithm |
@property
def max_failed_trial_count(self):
'Gets the max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n Max failed trials to mark experiment as failed. # noqa: E501\n\n :return: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._max_failed_trial_count | 5,420,390,502,883,747,000 | Gets the max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
Max failed trials to mark experiment as failed. # noqa: E501
:return: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | max_failed_trial_count | ChenjunZou/katib | python | @property
def max_failed_trial_count(self):
'Gets the max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n Max failed trials to mark experiment as failed. # noqa: E501\n\n :return: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._max_failed_trial_count |
@max_failed_trial_count.setter
def max_failed_trial_count(self, max_failed_trial_count):
'Sets the max_failed_trial_count of this V1alpha3ExperimentSpec.\n\n Max failed trials to mark experiment as failed. # noqa: E501\n\n :param max_failed_trial_count: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._max_failed_trial_count = max_failed_trial_count | 3,150,749,497,333,372,000 | Sets the max_failed_trial_count of this V1alpha3ExperimentSpec.
Max failed trials to mark experiment as failed. # noqa: E501
:param max_failed_trial_count: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:type: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | max_failed_trial_count | ChenjunZou/katib | python | @max_failed_trial_count.setter
def max_failed_trial_count(self, max_failed_trial_count):
'Sets the max_failed_trial_count of this V1alpha3ExperimentSpec.\n\n Max failed trials to mark experiment as failed. # noqa: E501\n\n :param max_failed_trial_count: The max_failed_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._max_failed_trial_count = max_failed_trial_count |
@property
def max_trial_count(self):
'Gets the max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n Max completed trials to mark experiment as succeeded # noqa: E501\n\n :return: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._max_trial_count | 6,569,465,222,338,827,000 | Gets the max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
Max completed trials to mark experiment as succeeded # noqa: E501
:return: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | max_trial_count | ChenjunZou/katib | python | @property
def max_trial_count(self):
'Gets the max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n Max completed trials to mark experiment as succeeded # noqa: E501\n\n :return: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._max_trial_count |
@max_trial_count.setter
def max_trial_count(self, max_trial_count):
'Sets the max_trial_count of this V1alpha3ExperimentSpec.\n\n Max completed trials to mark experiment as succeeded # noqa: E501\n\n :param max_trial_count: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._max_trial_count = max_trial_count | 915,055,181,498,908,300 | Sets the max_trial_count of this V1alpha3ExperimentSpec.
Max completed trials to mark experiment as succeeded # noqa: E501
:param max_trial_count: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:type: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | max_trial_count | ChenjunZou/katib | python | @max_trial_count.setter
def max_trial_count(self, max_trial_count):
'Sets the max_trial_count of this V1alpha3ExperimentSpec.\n\n Max completed trials to mark experiment as succeeded # noqa: E501\n\n :param max_trial_count: The max_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._max_trial_count = max_trial_count |
@property
def metrics_collector_spec(self):
'Gets the metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n\n For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501\n\n :return: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3MetricsCollectorSpec\n '
return self._metrics_collector_spec | -1,540,824,200,271,872,500 | Gets the metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501
For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501
:return: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: V1alpha3MetricsCollectorSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | metrics_collector_spec | ChenjunZou/katib | python | @property
def metrics_collector_spec(self):
'Gets the metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n\n For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501\n\n :return: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3MetricsCollectorSpec\n '
return self._metrics_collector_spec |
@metrics_collector_spec.setter
def metrics_collector_spec(self, metrics_collector_spec):
'Sets the metrics_collector_spec of this V1alpha3ExperimentSpec.\n\n For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501\n\n :param metrics_collector_spec: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3MetricsCollectorSpec\n '
self._metrics_collector_spec = metrics_collector_spec | 5,239,656,019,610,327,000 | Sets the metrics_collector_spec of this V1alpha3ExperimentSpec.
For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501
:param metrics_collector_spec: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501
:type: V1alpha3MetricsCollectorSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | metrics_collector_spec | ChenjunZou/katib | python | @metrics_collector_spec.setter
def metrics_collector_spec(self, metrics_collector_spec):
'Sets the metrics_collector_spec of this V1alpha3ExperimentSpec.\n\n For v1alpha3 we will keep the metrics collector implementation same as v1alpha1. # noqa: E501\n\n :param metrics_collector_spec: The metrics_collector_spec of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3MetricsCollectorSpec\n '
self._metrics_collector_spec = metrics_collector_spec |
@property
def nas_config(self):
'Gets the nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n\n\n :return: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3NasConfig\n '
return self._nas_config | 5,473,597,441,255,212,000 | Gets the nas_config of this V1alpha3ExperimentSpec. # noqa: E501
:return: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: V1alpha3NasConfig | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | nas_config | ChenjunZou/katib | python | @property
def nas_config(self):
'Gets the nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n\n\n :return: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3NasConfig\n '
return self._nas_config |
@nas_config.setter
def nas_config(self, nas_config):
'Sets the nas_config of this V1alpha3ExperimentSpec.\n\n\n :param nas_config: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3NasConfig\n '
self._nas_config = nas_config | -5,358,884,515,209,816,000 | Sets the nas_config of this V1alpha3ExperimentSpec.
:param nas_config: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501
:type: V1alpha3NasConfig | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | nas_config | ChenjunZou/katib | python | @nas_config.setter
def nas_config(self, nas_config):
'Sets the nas_config of this V1alpha3ExperimentSpec.\n\n\n :param nas_config: The nas_config of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3NasConfig\n '
self._nas_config = nas_config |
@property
def objective(self):
'Gets the objective of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes the objective of the experiment. # noqa: E501\n\n :return: The objective of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3ObjectiveSpec\n '
return self._objective | -7,287,374,412,294,059,000 | Gets the objective of this V1alpha3ExperimentSpec. # noqa: E501
Describes the objective of the experiment. # noqa: E501
:return: The objective of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: V1alpha3ObjectiveSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | objective | ChenjunZou/katib | python | @property
def objective(self):
'Gets the objective of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes the objective of the experiment. # noqa: E501\n\n :return: The objective of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3ObjectiveSpec\n '
return self._objective |
@objective.setter
def objective(self, objective):
'Sets the objective of this V1alpha3ExperimentSpec.\n\n Describes the objective of the experiment. # noqa: E501\n\n :param objective: The objective of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3ObjectiveSpec\n '
self._objective = objective | -4,573,635,184,005,900,000 | Sets the objective of this V1alpha3ExperimentSpec.
Describes the objective of the experiment. # noqa: E501
:param objective: The objective of this V1alpha3ExperimentSpec. # noqa: E501
:type: V1alpha3ObjectiveSpec | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | objective | ChenjunZou/katib | python | @objective.setter
def objective(self, objective):
'Sets the objective of this V1alpha3ExperimentSpec.\n\n Describes the objective of the experiment. # noqa: E501\n\n :param objective: The objective of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3ObjectiveSpec\n '
self._objective = objective |
@property
def parallel_trial_count(self):
'Gets the parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n How many trials can be processed in parallel. Defaults to 3 # noqa: E501\n\n :return: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._parallel_trial_count | -989,895,674,724,652,300 | Gets the parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
How many trials can be processed in parallel. Defaults to 3 # noqa: E501
:return: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | parallel_trial_count | ChenjunZou/katib | python | @property
def parallel_trial_count(self):
'Gets the parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n\n How many trials can be processed in parallel. Defaults to 3 # noqa: E501\n\n :return: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: int\n '
return self._parallel_trial_count |
@parallel_trial_count.setter
def parallel_trial_count(self, parallel_trial_count):
'Sets the parallel_trial_count of this V1alpha3ExperimentSpec.\n\n How many trials can be processed in parallel. Defaults to 3 # noqa: E501\n\n :param parallel_trial_count: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._parallel_trial_count = parallel_trial_count | -8,998,847,579,390,305,000 | Sets the parallel_trial_count of this V1alpha3ExperimentSpec.
How many trials can be processed in parallel. Defaults to 3 # noqa: E501
:param parallel_trial_count: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501
:type: int | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | parallel_trial_count | ChenjunZou/katib | python | @parallel_trial_count.setter
def parallel_trial_count(self, parallel_trial_count):
'Sets the parallel_trial_count of this V1alpha3ExperimentSpec.\n\n How many trials can be processed in parallel. Defaults to 3 # noqa: E501\n\n :param parallel_trial_count: The parallel_trial_count of this V1alpha3ExperimentSpec. # noqa: E501\n :type: int\n '
self._parallel_trial_count = parallel_trial_count |
@property
def parameters(self):
'Gets the parameters of this V1alpha3ExperimentSpec. # noqa: E501\n\n List of hyperparameter configurations. # noqa: E501\n\n :return: The parameters of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: list[V1alpha3ParameterSpec]\n '
return self._parameters | 7,362,714,691,322,202,000 | Gets the parameters of this V1alpha3ExperimentSpec. # noqa: E501
List of hyperparameter configurations. # noqa: E501
:return: The parameters of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: list[V1alpha3ParameterSpec] | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | parameters | ChenjunZou/katib | python | @property
def parameters(self):
'Gets the parameters of this V1alpha3ExperimentSpec. # noqa: E501\n\n List of hyperparameter configurations. # noqa: E501\n\n :return: The parameters of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: list[V1alpha3ParameterSpec]\n '
return self._parameters |
@parameters.setter
def parameters(self, parameters):
'Sets the parameters of this V1alpha3ExperimentSpec.\n\n List of hyperparameter configurations. # noqa: E501\n\n :param parameters: The parameters of this V1alpha3ExperimentSpec. # noqa: E501\n :type: list[V1alpha3ParameterSpec]\n '
self._parameters = parameters | -6,827,287,592,512,544,000 | Sets the parameters of this V1alpha3ExperimentSpec.
List of hyperparameter configurations. # noqa: E501
:param parameters: The parameters of this V1alpha3ExperimentSpec. # noqa: E501
:type: list[V1alpha3ParameterSpec] | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | parameters | ChenjunZou/katib | python | @parameters.setter
def parameters(self, parameters):
'Sets the parameters of this V1alpha3ExperimentSpec.\n\n List of hyperparameter configurations. # noqa: E501\n\n :param parameters: The parameters of this V1alpha3ExperimentSpec. # noqa: E501\n :type: list[V1alpha3ParameterSpec]\n '
self._parameters = parameters |
@property
def resume_policy(self):
'Gets the resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes resuming policy which usually take effect after experiment terminated. # noqa: E501\n\n :return: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: str\n '
return self._resume_policy | -902,392,194,512,818,800 | Gets the resume_policy of this V1alpha3ExperimentSpec. # noqa: E501
Describes resuming policy which usually take effect after experiment terminated. # noqa: E501
:return: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: str | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | resume_policy | ChenjunZou/katib | python | @property
def resume_policy(self):
'Gets the resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n\n Describes resuming policy which usually take effect after experiment terminated. # noqa: E501\n\n :return: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: str\n '
return self._resume_policy |
@resume_policy.setter
def resume_policy(self, resume_policy):
'Sets the resume_policy of this V1alpha3ExperimentSpec.\n\n Describes resuming policy which usually take effect after experiment terminated. # noqa: E501\n\n :param resume_policy: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n :type: str\n '
self._resume_policy = resume_policy | -3,797,899,067,050,496,500 | Sets the resume_policy of this V1alpha3ExperimentSpec.
Describes resuming policy which usually take effect after experiment terminated. # noqa: E501
:param resume_policy: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501
:type: str | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | resume_policy | ChenjunZou/katib | python | @resume_policy.setter
def resume_policy(self, resume_policy):
'Sets the resume_policy of this V1alpha3ExperimentSpec.\n\n Describes resuming policy which usually take effect after experiment terminated. # noqa: E501\n\n :param resume_policy: The resume_policy of this V1alpha3ExperimentSpec. # noqa: E501\n :type: str\n '
self._resume_policy = resume_policy |
@property
def trial_template(self):
'Gets the trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n\n Template for each run of the trial. # noqa: E501\n\n :return: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3TrialTemplate\n '
return self._trial_template | 5,719,433,743,809,543,000 | Gets the trial_template of this V1alpha3ExperimentSpec. # noqa: E501
Template for each run of the trial. # noqa: E501
:return: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501
:rtype: V1alpha3TrialTemplate | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | trial_template | ChenjunZou/katib | python | @property
def trial_template(self):
'Gets the trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n\n Template for each run of the trial. # noqa: E501\n\n :return: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n :rtype: V1alpha3TrialTemplate\n '
return self._trial_template |
@trial_template.setter
def trial_template(self, trial_template):
'Sets the trial_template of this V1alpha3ExperimentSpec.\n\n Template for each run of the trial. # noqa: E501\n\n :param trial_template: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3TrialTemplate\n '
self._trial_template = trial_template | -3,362,570,201,147,115,000 | Sets the trial_template of this V1alpha3ExperimentSpec.
Template for each run of the trial. # noqa: E501
:param trial_template: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501
:type: V1alpha3TrialTemplate | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | trial_template | ChenjunZou/katib | python | @trial_template.setter
def trial_template(self, trial_template):
'Sets the trial_template of this V1alpha3ExperimentSpec.\n\n Template for each run of the trial. # noqa: E501\n\n :param trial_template: The trial_template of this V1alpha3ExperimentSpec. # noqa: E501\n :type: V1alpha3TrialTemplate\n '
self._trial_template = trial_template |
def to_dict(self):
'Returns the model properties as a dict'
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(V1alpha3ExperimentSpec, dict):
for (key, value) in self.items():
result[key] = value
return result | 5,751,779,662,646,760,000 | Returns the model properties as a dict | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | to_dict | ChenjunZou/katib | python | def to_dict(self):
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(V1alpha3ExperimentSpec, dict):
for (key, value) in self.items():
result[key] = value
return result |
def to_str(self):
'Returns the string representation of the model'
return pprint.pformat(self.to_dict()) | 5,849,158,643,760,736,000 | Returns the string representation of the model | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | to_str | ChenjunZou/katib | python | def to_str(self):
return pprint.pformat(self.to_dict()) |
def __repr__(self):
'For `print` and `pprint`'
return self.to_str() | -8,960,031,694,814,905,000 | For `print` and `pprint` | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | __repr__ | ChenjunZou/katib | python | def __repr__(self):
return self.to_str() |
def __eq__(self, other):
'Returns true if both objects are equal'
if (not isinstance(other, V1alpha3ExperimentSpec)):
return False
return (self.__dict__ == other.__dict__) | 323,282,487,021,102,300 | Returns true if both objects are equal | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | __eq__ | ChenjunZou/katib | python | def __eq__(self, other):
if (not isinstance(other, V1alpha3ExperimentSpec)):
return False
return (self.__dict__ == other.__dict__) |
def __ne__(self, other):
'Returns true if both objects are not equal'
return (not (self == other)) | 7,764,124,047,908,058,000 | Returns true if both objects are not equal | sdk/python/v1alpha3/kubeflow/katib/models/v1alpha3_experiment_spec.py | __ne__ | ChenjunZou/katib | python | def __ne__(self, other):
return (not (self == other)) |
def generate_class_label(data):
'\n generates class label on a copy of data using the columns\n State, From_X, From_Y, To_X, To_Y\n '
r_data = data.copy()
r_data['target'] = ((((((((r_data.State.astype(np.str) + '_') + r_data.From_X.astype(np.str)) + ',') + r_data.From_Y.astype(np.str)) + '_') + r_data.To_X.astype(np.str)) + ',') + r_data.To_Y.astype(np.str))
return r_data | -4,200,562,121,560,064,500 | generates class label on a copy of data using the columns
State, From_X, From_Y, To_X, To_Y | notebooks/pawel_ueb2/utility.py | generate_class_label | hhain/sdap17 | python | def generate_class_label(data):
'\n generates class label on a copy of data using the columns\n State, From_X, From_Y, To_X, To_Y\n '
r_data = data.copy()
r_data['target'] = ((((((((r_data.State.astype(np.str) + '_') + r_data.From_X.astype(np.str)) + ',') + r_data.From_Y.astype(np.str)) + '_') + r_data.To_X.astype(np.str)) + ',') + r_data.To_Y.astype(np.str))
return r_data |
def generate_class_label_and_drop(data):
'\n generates class label on a copy of data using the columns\n State, From_X, From_Y, To_X, To_Y\n '
r_data = data.copy()
r_data['target'] = ((((((((r_data.State.astype(np.str) + '_') + r_data.From_X.astype(np.str)) + ',') + r_data.From_Y.astype(np.str)) + '_') + r_data.To_X.astype(np.str)) + ',') + r_data.To_Y.astype(np.str))
r_data = r_data.drop('From_X', 1)
r_data = r_data.drop('From_Y', 1)
r_data = r_data.drop('To_Y', 1)
r_data = r_data.drop('To_X', 1)
r_data = r_data.drop('State', 1)
r_data = r_data.drop('ID', 1)
r_data = r_data.drop('Rng_ID', 1)
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
return r_data.reset_index() | -977,516,299,108,665,900 | generates class label on a copy of data using the columns
State, From_X, From_Y, To_X, To_Y | notebooks/pawel_ueb2/utility.py | generate_class_label_and_drop | hhain/sdap17 | python | def generate_class_label_and_drop(data):
'\n generates class label on a copy of data using the columns\n State, From_X, From_Y, To_X, To_Y\n '
r_data = data.copy()
r_data['target'] = ((((((((r_data.State.astype(np.str) + '_') + r_data.From_X.astype(np.str)) + ',') + r_data.From_Y.astype(np.str)) + '_') + r_data.To_X.astype(np.str)) + ',') + r_data.To_Y.astype(np.str))
r_data = r_data.drop('From_X', 1)
r_data = r_data.drop('From_Y', 1)
r_data = r_data.drop('To_Y', 1)
r_data = r_data.drop('To_X', 1)
r_data = r_data.drop('State', 1)
r_data = r_data.drop('ID', 1)
r_data = r_data.drop('Rng_ID', 1)
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
return r_data.reset_index() |
def generate_class_label_presence(data, state_variable='target'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Stand'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Walk'), 'target')] = 'Present'
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
r_data.loc[((~ r_data['target'].str.contains('Present')), 'target')] = 'Not Present'
return r_data.reset_index() | -1,007,735,542,717,022,200 | generates class label only for presence on a copy of data using only the columns
Removes: Pause and merges 'Step' and 'Stand' to same class | notebooks/pawel_ueb2/utility.py | generate_class_label_presence | hhain/sdap17 | python | def generate_class_label_presence(data, state_variable='target'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Stand'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Walk'), 'target')] = 'Present'
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
r_data.loc[((~ r_data['target'].str.contains('Present')), 'target')] = 'Not Present'
return r_data.reset_index() |
def generate_class_label_dyn_vs_empty(data, state_variable='target'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data.loc[(r_data['target'].str.contains('Walk'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Empty'), 'target')] = 'Not Present'
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Stand'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
return r_data.reset_index() | -1,956,228,616,649,304,600 | generates class label only for presence on a copy of data using only the columns
Removes: Pause and merges 'Step' and 'Stand' to same class | notebooks/pawel_ueb2/utility.py | generate_class_label_dyn_vs_empty | hhain/sdap17 | python | def generate_class_label_dyn_vs_empty(data, state_variable='target'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data.loc[(r_data['target'].str.contains('Walk'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Present'
r_data.loc[(r_data['target'].str.contains('Empty'), 'target')] = 'Not Present'
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Stand'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
return r_data.reset_index() |
def generate_class_label_presence_and_dynamic(data, state_variable='State'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data['target'] = r_data[state_variable].astype(np.str)
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Step'
r_data.loc[(r_data['target'].str.contains('Walki'), 'target')] = 'Walk'
r_data.loc[(r_data['target'].str.contains('Stand'), 'target')] = 'Stand'
r_data.loc[(r_data['target'].str.contains('Empty'), 'target')] = 'Empty'
return r_data | -8,570,686,824,285,075,000 | generates class label only for presence on a copy of data using only the columns
Removes: Pause and merges 'Step' and 'Stand' to same class | notebooks/pawel_ueb2/utility.py | generate_class_label_presence_and_dynamic | hhain/sdap17 | python | def generate_class_label_presence_and_dynamic(data, state_variable='State'):
"\n generates class label only for presence on a copy of data using only the columns\n Removes: Pause and merges 'Step' and 'Stand' to same class\n "
r_data = data.copy()
r_data['target'] = r_data[state_variable].astype(np.str)
r_data = r_data[(~ r_data['target'].str.contains('Pause'))]
r_data = r_data[(~ r_data['target'].str.contains('Enter'))]
r_data = r_data[(~ r_data['target'].str.contains('Leave'))]
r_data.loc[(r_data['target'].str.contains('Step'), 'target')] = 'Step'
r_data.loc[(r_data['target'].str.contains('Walki'), 'target')] = 'Walk'
r_data.loc[(r_data['target'].str.contains('Stand'), 'target')] = 'Stand'
r_data.loc[(r_data['target'].str.contains('Empty'), 'target')] = 'Empty'
return r_data |
def get_contigous_borders(indices):
'\n helper function to derive contiguous borders from a list of indices\n \n Parameters\n ----------\n indicies : all indices at which a certain thing occurs\n \n \n Returns\n -------\n list of groups when the indices starts and ends (note: last element is the real last element of the group _not_ n+1)\n '
r = [[indices[0]]]
prev = r[0][0]
for (ix, i) in enumerate(indices):
if ((i - prev) > 1):
r[(- 1)].append(indices[(ix - 1)])
r.append([indices[ix]])
prev = i
r[(- 1)].append(indices[(- 1)])
return r | -6,765,649,735,253,048,000 | helper function to derive contiguous borders from a list of indices
Parameters
----------
indicies : all indices at which a certain thing occurs
Returns
-------
list of groups when the indices starts and ends (note: last element is the real last element of the group _not_ n+1) | notebooks/pawel_ueb2/utility.py | get_contigous_borders | hhain/sdap17 | python | def get_contigous_borders(indices):
'\n helper function to derive contiguous borders from a list of indices\n \n Parameters\n ----------\n indicies : all indices at which a certain thing occurs\n \n \n Returns\n -------\n list of groups when the indices starts and ends (note: last element is the real last element of the group _not_ n+1)\n '
r = [[indices[0]]]
prev = r[0][0]
for (ix, i) in enumerate(indices):
if ((i - prev) > 1):
r[(- 1)].append(indices[(ix - 1)])
r.append([indices[ix]])
prev = i
r[(- 1)].append(indices[(- 1)])
return r |
def get_contiguous_activity_borders(data, label):
'\n returns a dict with all starts ends of all labels provided in label variable\n '
labels = data[label].unique()
r = {}
for l in labels:
a = data[(data[label] == l)].index.values
r[l] = get_contigous_borders(a)
r['length'] = data.shape[0]
return r | -4,592,589,030,952,876,500 | returns a dict with all starts ends of all labels provided in label variable | notebooks/pawel_ueb2/utility.py | get_contiguous_activity_borders | hhain/sdap17 | python | def get_contiguous_activity_borders(data, label):
'\n \n '
labels = data[label].unique()
r = {}
for l in labels:
a = data[(data[label] == l)].index.values
r[l] = get_contigous_borders(a)
r['length'] = data.shape[0]
return r |
def annotate(a):
'\n draws annotation into a sns heatmap using plt annotation\n \n a : dictonary with activity name and borders\n '
min_length = 4
for k in a.keys():
if (k == 'length'):
continue
borders = a[k]
for (s, e) in borders:
s_r = (a['length'] - s)
e_r = (a['length'] - e)
plt.annotate('', xy=(4, s_r), xycoords='data', xytext=(4, e_r), textcoords='data', arrowprops=dict(shrink=0.0, headwidth=10.0, headlength=1.0, width=0.25, shrinkA=0.0, shrinkB=0.0))
if ((s_r - e_r) < min_length):
continue
plt.annotate(k, xy=(7, ((s_r - ((s_r - e_r) // 2)) - (min_length // 2))), xycoords='data', xytext=(7, ((s_r - ((s_r - e_r) // 2)) - (min_length // 2))), textcoords='data', size=9) | 5,088,699,391,643,657,000 | draws annotation into a sns heatmap using plt annotation
a : dictonary with activity name and borders | notebooks/pawel_ueb2/utility.py | annotate | hhain/sdap17 | python | def annotate(a):
'\n draws annotation into a sns heatmap using plt annotation\n \n a : dictonary with activity name and borders\n '
min_length = 4
for k in a.keys():
if (k == 'length'):
continue
borders = a[k]
for (s, e) in borders:
s_r = (a['length'] - s)
e_r = (a['length'] - e)
plt.annotate(, xy=(4, s_r), xycoords='data', xytext=(4, e_r), textcoords='data', arrowprops=dict(shrink=0.0, headwidth=10.0, headlength=1.0, width=0.25, shrinkA=0.0, shrinkB=0.0))
if ((s_r - e_r) < min_length):
continue
plt.annotate(k, xy=(7, ((s_r - ((s_r - e_r) // 2)) - (min_length // 2))), xycoords='data', xytext=(7, ((s_r - ((s_r - e_r) // 2)) - (min_length // 2))), textcoords='data', size=9) |
@pytest.mark.django_db
def test_phone_create(self):
' Test phone contact method '
phone_num = '7739441467'
phone = PhoneContactMethodFactory.create(phone=phone_num)
assert (phone_num == phone.phone)
assert (phone.id is not None) | 3,037,570,262,273,459,000 | Test phone contact method | web/tests/test_models.py | test_phone_create | DaveyDevs/maps | python | @pytest.mark.django_db
def test_phone_create(self):
' '
phone_num = '7739441467'
phone = PhoneContactMethodFactory.create(phone=phone_num)
assert (phone_num == phone.phone)
assert (phone.id is not None) |
@pytest.mark.django_db
def test_phone_create_invalid_num(self):
' Test phone contact method '
phone_num = 'abcdefsfdsf'
phone = PhoneContactMethodFactory.create(phone=phone_num)
assert (phone_num == phone.phone)
assert (phone.id is not None)
print('\n\n\n\n-------------id is ', id) | 4,071,800,736,813,351,400 | Test phone contact method | web/tests/test_models.py | test_phone_create_invalid_num | DaveyDevs/maps | python | @pytest.mark.django_db
def test_phone_create_invalid_num(self):
' '
phone_num = 'abcdefsfdsf'
phone = PhoneContactMethodFactory.create(phone=phone_num)
assert (phone_num == phone.phone)
assert (phone.id is not None)
print('\n\n\n\n-------------id is ', id) |
@pytest.mark.django_db
def test_coop_type_create(self):
' Test coop type model '
coop_type = CoopTypeFactory(name='Test Coop Type Name')
assert (coop_type.name == 'Test Coop Type Name') | -4,583,710,025,203,208,700 | Test coop type model | web/tests/test_models.py | test_coop_type_create | DaveyDevs/maps | python | @pytest.mark.django_db
def test_coop_type_create(self):
' '
coop_type = CoopTypeFactory(name='Test Coop Type Name')
assert (coop_type.name == 'Test Coop Type Name') |
@pytest.mark.django_db
def test_address_create(self):
' Test address model '
address = AddressFactory()
assert (address is not None) | 5,765,578,803,282,311,000 | Test address model | web/tests/test_models.py | test_address_create | DaveyDevs/maps | python | @pytest.mark.django_db
def test_address_create(self):
' '
address = AddressFactory()
assert (address is not None) |
@pytest.mark.django_db
def test_coop_create(self):
' Test customer model '
coop_from_factory = CoopFactory()
self.assertIsNotNone(coop_from_factory)
coop = Coop.objects.create(name='test')
coop.addresses.set(coop_from_factory.addresses.all())
self.assertIsNotNone(coop) | 2,080,276,956,993,651,500 | Test customer model | web/tests/test_models.py | test_coop_create | DaveyDevs/maps | python | @pytest.mark.django_db
def test_coop_create(self):
' '
coop_from_factory = CoopFactory()
self.assertIsNotNone(coop_from_factory)
coop = Coop.objects.create(name='test')
coop.addresses.set(coop_from_factory.addresses.all())
self.assertIsNotNone(coop) |
@pytest.mark.django_db
def test_coop_create_with_existing_type(self):
' Test customer model '
coop_from_factory = CoopFactory()
self.assertIsNotNone(coop_from_factory)
coop_types = coop_from_factory.types
coop = CoopFactory.create(types=[coop_types.all().first()], addresses=coop_from_factory.addresses.all())
self.assertIsNotNone(coop) | 130,662,896,693,943,970 | Test customer model | web/tests/test_models.py | test_coop_create_with_existing_type | DaveyDevs/maps | python | @pytest.mark.django_db
def test_coop_create_with_existing_type(self):
' '
coop_from_factory = CoopFactory()
self.assertIsNotNone(coop_from_factory)
coop_types = coop_from_factory.types
coop = CoopFactory.create(types=[coop_types.all().first()], addresses=coop_from_factory.addresses.all())
self.assertIsNotNone(coop) |
@pytest.mark.django_db
def test_coop_create_with_no_types(self):
' Test customer model '
print('\n\n\n\n**********-------- starting test ....\n')
coop = CoopFactory.build(types=[])
print('phone:', coop.phone.phone)
print('email:', coop.email.email)
coop.full_clean()
self.assertIsNotNone(coop)
self.assertIsNone(coop.id) | 8,761,434,052,913,679,000 | Test customer model | web/tests/test_models.py | test_coop_create_with_no_types | DaveyDevs/maps | python | @pytest.mark.django_db
def test_coop_create_with_no_types(self):
' '
print('\n\n\n\n**********-------- starting test ....\n')
coop = CoopFactory.build(types=[])
print('phone:', coop.phone.phone)
print('email:', coop.email.email)
coop.full_clean()
self.assertIsNotNone(coop)
self.assertIsNone(coop.id) |
def test_search_coops_wo_coords(self):
'\n Look for coops with addresses without latitude/longitude coords\n '
address = AddressFactory(latitude=None, longitude=None)
coop_from_factory = CoopFactory(addresses=[address])
coops = Coop.objects.find_wo_coords()
results = list(coops)
assert (len(results) > 0), 'Failed to find any matching results.'
assert (coop_from_factory in list(coops)), 'Failed to find coop.' | -1,202,784,789,676,018,700 | Look for coops with addresses without latitude/longitude coords | web/tests/test_models.py | test_search_coops_wo_coords | DaveyDevs/maps | python | def test_search_coops_wo_coords(self):
'\n \n '
address = AddressFactory(latitude=None, longitude=None)
coop_from_factory = CoopFactory(addresses=[address])
coops = Coop.objects.find_wo_coords()
results = list(coops)
assert (len(results) > 0), 'Failed to find any matching results.'
assert (coop_from_factory in list(coops)), 'Failed to find coop.' |
def make_request(reactor, method, path, content=b'', access_token=None, request=SynapseRequest, shorthand=True):
'\n Make a web request using the given method and path, feed it the\n content, and return the Request and the Channel underneath.\n\n Args:\n method (bytes/unicode): The HTTP request method ("verb").\n path (bytes/unicode): The HTTP path, suitably URL encoded (e.g.\n escaped UTF-8 & spaces and such).\n content (bytes or dict): The body of the request. JSON-encoded, if\n a dict.\n shorthand: Whether to try and be helpful and prefix the given URL\n with the usual REST API path, if it doesn\'t contain it.\n\n Returns:\n A synapse.http.site.SynapseRequest.\n '
if (not isinstance(method, bytes)):
method = method.encode('ascii')
if (not isinstance(path, bytes)):
path = path.encode('ascii')
if (shorthand and (not path.startswith(b'/_matrix'))):
path = (b'/_matrix/client/r0/' + path)
path = path.replace(b'//', b'/')
if isinstance(content, text_type):
content = content.encode('utf8')
site = FakeSite()
channel = FakeChannel(reactor)
req = request(site, channel)
req.process = (lambda : b'')
req.content = BytesIO(content)
if access_token:
req.requestHeaders.addRawHeader(b'Authorization', (b'Bearer ' + access_token.encode('ascii')))
if content:
req.requestHeaders.addRawHeader(b'Content-Type', b'application/json')
req.requestReceived(method, path, b'1.1')
return (req, channel) | -1,632,200,608,994,487,800 | Make a web request using the given method and path, feed it the
content, and return the Request and the Channel underneath.
Args:
method (bytes/unicode): The HTTP request method ("verb").
path (bytes/unicode): The HTTP path, suitably URL encoded (e.g.
escaped UTF-8 & spaces and such).
content (bytes or dict): The body of the request. JSON-encoded, if
a dict.
shorthand: Whether to try and be helpful and prefix the given URL
with the usual REST API path, if it doesn't contain it.
Returns:
A synapse.http.site.SynapseRequest. | tests/server.py | make_request | AlohaHealth/synapse | python | def make_request(reactor, method, path, content=b, access_token=None, request=SynapseRequest, shorthand=True):
'\n Make a web request using the given method and path, feed it the\n content, and return the Request and the Channel underneath.\n\n Args:\n method (bytes/unicode): The HTTP request method ("verb").\n path (bytes/unicode): The HTTP path, suitably URL encoded (e.g.\n escaped UTF-8 & spaces and such).\n content (bytes or dict): The body of the request. JSON-encoded, if\n a dict.\n shorthand: Whether to try and be helpful and prefix the given URL\n with the usual REST API path, if it doesn\'t contain it.\n\n Returns:\n A synapse.http.site.SynapseRequest.\n '
if (not isinstance(method, bytes)):
method = method.encode('ascii')
if (not isinstance(path, bytes)):
path = path.encode('ascii')
if (shorthand and (not path.startswith(b'/_matrix'))):
path = (b'/_matrix/client/r0/' + path)
path = path.replace(b'//', b'/')
if isinstance(content, text_type):
content = content.encode('utf8')
site = FakeSite()
channel = FakeChannel(reactor)
req = request(site, channel)
req.process = (lambda : b)
req.content = BytesIO(content)
if access_token:
req.requestHeaders.addRawHeader(b'Authorization', (b'Bearer ' + access_token.encode('ascii')))
if content:
req.requestHeaders.addRawHeader(b'Content-Type', b'application/json')
req.requestReceived(method, path, b'1.1')
return (req, channel) |
def wait_until_result(clock, request, timeout=100):
'\n Wait until the request is finished.\n '
clock.run()
x = 0
while (not request.finished):
if request._channel._producer:
request._channel._producer.resumeProducing()
x += 1
if (x > timeout):
raise TimedOutException('Timed out waiting for request to finish.')
clock.advance(0.1) | 1,815,053,821,847,915,300 | Wait until the request is finished. | tests/server.py | wait_until_result | AlohaHealth/synapse | python | def wait_until_result(clock, request, timeout=100):
'\n \n '
clock.run()
x = 0
while (not request.finished):
if request._channel._producer:
request._channel._producer.resumeProducing()
x += 1
if (x > timeout):
raise TimedOutException('Timed out waiting for request to finish.')
clock.advance(0.1) |
def setup_test_homeserver(cleanup_func, *args, **kwargs):
'\n Set up a synchronous test server, driven by the reactor used by\n the homeserver.\n '
d = _sth(cleanup_func, *args, **kwargs).result
if isinstance(d, Failure):
d.raiseException()
clock = d.get_clock()
pool = d.get_db_pool()
def runWithConnection(func, *args, **kwargs):
return threads.deferToThreadPool(pool._reactor, pool.threadpool, pool._runWithConnection, func, *args, **kwargs)
def runInteraction(interaction, *args, **kwargs):
return threads.deferToThreadPool(pool._reactor, pool.threadpool, pool._runInteraction, interaction, *args, **kwargs)
pool.runWithConnection = runWithConnection
pool.runInteraction = runInteraction
class ThreadPool():
'\n Threadless thread pool.\n '
def start(self):
pass
def stop(self):
pass
def callInThreadWithCallback(self, onResult, function, *args, **kwargs):
def _(res):
if isinstance(res, Failure):
onResult(False, res)
else:
onResult(True, res)
d = Deferred()
d.addCallback((lambda x: function(*args, **kwargs)))
d.addBoth(_)
clock._reactor.callLater(0, d.callback, True)
return d
clock.threadpool = ThreadPool()
pool.threadpool = ThreadPool()
pool.running = True
return d | 2,878,812,827,671,844,000 | Set up a synchronous test server, driven by the reactor used by
the homeserver. | tests/server.py | setup_test_homeserver | AlohaHealth/synapse | python | def setup_test_homeserver(cleanup_func, *args, **kwargs):
'\n Set up a synchronous test server, driven by the reactor used by\n the homeserver.\n '
d = _sth(cleanup_func, *args, **kwargs).result
if isinstance(d, Failure):
d.raiseException()
clock = d.get_clock()
pool = d.get_db_pool()
def runWithConnection(func, *args, **kwargs):
return threads.deferToThreadPool(pool._reactor, pool.threadpool, pool._runWithConnection, func, *args, **kwargs)
def runInteraction(interaction, *args, **kwargs):
return threads.deferToThreadPool(pool._reactor, pool.threadpool, pool._runInteraction, interaction, *args, **kwargs)
pool.runWithConnection = runWithConnection
pool.runInteraction = runInteraction
class ThreadPool():
'\n Threadless thread pool.\n '
def start(self):
pass
def stop(self):
pass
def callInThreadWithCallback(self, onResult, function, *args, **kwargs):
def _(res):
if isinstance(res, Failure):
onResult(False, res)
else:
onResult(True, res)
d = Deferred()
d.addCallback((lambda x: function(*args, **kwargs)))
d.addBoth(_)
clock._reactor.callLater(0, d.callback, True)
return d
clock.threadpool = ThreadPool()
pool.threadpool = ThreadPool()
pool.running = True
return d |
def callFromThread(self, callback, *args, **kwargs):
'\n Make the callback fire in the next reactor iteration.\n '
d = Deferred()
d.addCallback((lambda x: callback(*args, **kwargs)))
self.callLater(0, d.callback, True)
return d | -1,258,819,838,172,941,300 | Make the callback fire in the next reactor iteration. | tests/server.py | callFromThread | AlohaHealth/synapse | python | def callFromThread(self, callback, *args, **kwargs):
'\n \n '
d = Deferred()
d.addCallback((lambda x: callback(*args, **kwargs)))
self.callLater(0, d.callback, True)
return d |
def __init__(self, output_dim, nb_ctrl_sig, **kwargs):
"\n This layer is used to split the output of a previous Dense layer into\n nb_ctrl_sig groups of size output_dim, and choose which group to provide\n as output using a discrete control signal.\n It takes as input two tensors, namely the output of the previous layer \n and a column tensor with int32 or int64 values for the control signal.\n\n The Dense input to this layer must be of shape (None, prev_output_dim),\n where prev_output_dim = output_dim * nb_ctrl_sig.\n No checks are done at runtime to ensure that the input to the layer is\n correct, so it's better to double check.\n\n An example usage of this layer may be:\n\n input = Input(shape=(3,))\n control = Input(shape=(1,), dtype='int32')\n hidden = Dense(6)(i) # output_dim == 2, nb_ctrl_sig == 3\n output = Multiplexer(2, 3)([hidden, control])\n model = Model(input=[input, control], output=output)\n \n ...\n \n x = randn(3) # Input has size 3\n ctrl = array([0, 1, 2])\n \n # Outputs the first two neurons of the Dense layer\n model.predict([x, ctrl[0]])\n \n # Outputs the middle two neurons of the Dense layer\n model.predict([x, ctrl[1]])\n \n # Outputs the last two neurons of the Dense layer\n model.predict([x, ctrl[2]])\n \n # Arguments\n output_dim: positive integer, dimensionality of the output space.\n nb_ctrl_sig: positive integer, number of groups in which to split \n the output of the previous layer. Must satisfy the relation:\n input_size = nb_ctrl_sig * output_dim\n \n "
self.output_dim = output_dim
self.nb_ctrl_sig = nb_ctrl_sig
super(Multiplexer, self).__init__(**kwargs) | -5,426,948,042,926,424,000 | This layer is used to split the output of a previous Dense layer into
nb_ctrl_sig groups of size output_dim, and choose which group to provide
as output using a discrete control signal.
It takes as input two tensors, namely the output of the previous layer
and a column tensor with int32 or int64 values for the control signal.
The Dense input to this layer must be of shape (None, prev_output_dim),
where prev_output_dim = output_dim * nb_ctrl_sig.
No checks are done at runtime to ensure that the input to the layer is
correct, so it's better to double check.
An example usage of this layer may be:
input = Input(shape=(3,))
control = Input(shape=(1,), dtype='int32')
hidden = Dense(6)(i) # output_dim == 2, nb_ctrl_sig == 3
output = Multiplexer(2, 3)([hidden, control])
model = Model(input=[input, control], output=output)
...
x = randn(3) # Input has size 3
ctrl = array([0, 1, 2])
# Outputs the first two neurons of the Dense layer
model.predict([x, ctrl[0]])
# Outputs the middle two neurons of the Dense layer
model.predict([x, ctrl[1]])
# Outputs the last two neurons of the Dense layer
model.predict([x, ctrl[2]])
# Arguments
output_dim: positive integer, dimensionality of the output space.
nb_ctrl_sig: positive integer, number of groups in which to split
the output of the previous layer. Must satisfy the relation:
input_size = nb_ctrl_sig * output_dim | multiplexer.py | __init__ | 2vin/multiplexed_cnn | python | def __init__(self, output_dim, nb_ctrl_sig, **kwargs):
"\n This layer is used to split the output of a previous Dense layer into\n nb_ctrl_sig groups of size output_dim, and choose which group to provide\n as output using a discrete control signal.\n It takes as input two tensors, namely the output of the previous layer \n and a column tensor with int32 or int64 values for the control signal.\n\n The Dense input to this layer must be of shape (None, prev_output_dim),\n where prev_output_dim = output_dim * nb_ctrl_sig.\n No checks are done at runtime to ensure that the input to the layer is\n correct, so it's better to double check.\n\n An example usage of this layer may be:\n\n input = Input(shape=(3,))\n control = Input(shape=(1,), dtype='int32')\n hidden = Dense(6)(i) # output_dim == 2, nb_ctrl_sig == 3\n output = Multiplexer(2, 3)([hidden, control])\n model = Model(input=[input, control], output=output)\n \n ...\n \n x = randn(3) # Input has size 3\n ctrl = array([0, 1, 2])\n \n # Outputs the first two neurons of the Dense layer\n model.predict([x, ctrl[0]])\n \n # Outputs the middle two neurons of the Dense layer\n model.predict([x, ctrl[1]])\n \n # Outputs the last two neurons of the Dense layer\n model.predict([x, ctrl[2]])\n \n # Arguments\n output_dim: positive integer, dimensionality of the output space.\n nb_ctrl_sig: positive integer, number of groups in which to split \n the output of the previous layer. Must satisfy the relation:\n input_size = nb_ctrl_sig * output_dim\n \n "
self.output_dim = output_dim
self.nb_ctrl_sig = nb_ctrl_sig
super(Multiplexer, self).__init__(**kwargs) |
@staticmethod
def multiplexer(args, output_size, nb_actions):
'\n Returns a tensor of shape (None, output_size) where each sample is\n the result of masking each sample in full_input with a binary mask that \n preserves only output_size elements, based on the corresponding control \n value in indices.\n '
(full_input, indices) = args
'\n For example, given:\n full_input: [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]\n nb_actions: 3\n output_size: 2\n indices: [[0], [2]]\n desired output: [[1, 2], [11, 12]]\n we want to output the first two elements (index 0) of the first sample \n and the last two elements (index 2) of the second sample.\n To do this, we need the absolute indices [[0, 1], [4, 5]].\n\n To build these, first compute the base absolute indices (0 and 4) by\n multiplying the control indices for the output size:\n [[0], [2]] * 2 = [[0], [4]]\n\n '
base_absolute_indices = tf.multiply(indices, output_size)
'\n Build an array containing the base absolute indices repeated output_size\n times:\n [[0, 0], [4, 4]]\n '
bai_repeated = tf.tile(base_absolute_indices, [1, output_size])
'\n Finally, add range(output_size) to these tensors to get the full\n absolute indices:\n [0, 0] + [0, 1] = [0, 1]\n [4, 4] + [0, 1] = [4, 5]\n so we have:\n [[0, 1], [4, 5]]\n '
absolute_indices = tf.add(bai_repeated, tf.range(output_size))
'\n Flatten this tensor in order to compute the one hot encoding for each \n absolute index:\n [0, 1, 4, 5]\n '
ai_flat = tf.reshape(absolute_indices, [(- 1)])
'\n Compute the one-hot encoding for the absolute indices.\n From [0, 1, 4, 5] we get:\n [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]\n '
ai_onehot = tf.one_hot(ai_flat, (output_size * nb_actions))
'\n Build the mask for full_input from the one-hot-encoded absolute indices.\n We need to group the one-hot absolute indices into groups of output_size\n elements.\n We get:\n [\n [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]],\n [[0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]\n ]\n '
group_shape = [(- 1), output_size, (output_size * nb_actions)]
group = tf.reshape(ai_onehot, group_shape)
'\n Reduce_sum along axis 1 to collapse the group and get the binary masks.\n [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1]]\n '
masks = tf.reduce_sum(group, axis=1)
'\n Convert the mask to boolean.\n [[True, True, False, False, False, False],\n [False, False, False, False, True, True]]\n '
zero = tf.constant(0, dtype=tf.float32)
bool_masks = tf.not_equal(masks, zero)
'\n Convert the boolean masks back to absolute indices for the full_input\n tensor (each element represents [sample index, value index]).\n We get:\n [[0, 0], [0, 1], [1, 4], [1, 5]]\n '
ai_mask = tf.where(bool_masks)
'\n Apply the masks to full_input. We get a 1D tensor:\n [1, 2, 11, 12]\n '
reduced_output = tf.gather_nd(full_input, ai_mask)
'\n Reshape the reduction to match the output shape.\n We get:\n [[1, 2], [11, 12]]\n '
return tf.reshape(reduced_output, [(- 1), output_size]) | 7,943,560,504,436,702,000 | Returns a tensor of shape (None, output_size) where each sample is
the result of masking each sample in full_input with a binary mask that
preserves only output_size elements, based on the corresponding control
value in indices. | multiplexer.py | multiplexer | 2vin/multiplexed_cnn | python | @staticmethod
def multiplexer(args, output_size, nb_actions):
'\n Returns a tensor of shape (None, output_size) where each sample is\n the result of masking each sample in full_input with a binary mask that \n preserves only output_size elements, based on the corresponding control \n value in indices.\n '
(full_input, indices) = args
'\n For example, given:\n full_input: [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]\n nb_actions: 3\n output_size: 2\n indices: [[0], [2]]\n desired output: [[1, 2], [11, 12]]\n we want to output the first two elements (index 0) of the first sample \n and the last two elements (index 2) of the second sample.\n To do this, we need the absolute indices [[0, 1], [4, 5]].\n\n To build these, first compute the base absolute indices (0 and 4) by\n multiplying the control indices for the output size:\n [[0], [2]] * 2 = [[0], [4]]\n\n '
base_absolute_indices = tf.multiply(indices, output_size)
'\n Build an array containing the base absolute indices repeated output_size\n times:\n [[0, 0], [4, 4]]\n '
bai_repeated = tf.tile(base_absolute_indices, [1, output_size])
'\n Finally, add range(output_size) to these tensors to get the full\n absolute indices:\n [0, 0] + [0, 1] = [0, 1]\n [4, 4] + [0, 1] = [4, 5]\n so we have:\n [[0, 1], [4, 5]]\n '
absolute_indices = tf.add(bai_repeated, tf.range(output_size))
'\n Flatten this tensor in order to compute the one hot encoding for each \n absolute index:\n [0, 1, 4, 5]\n '
ai_flat = tf.reshape(absolute_indices, [(- 1)])
'\n Compute the one-hot encoding for the absolute indices.\n From [0, 1, 4, 5] we get:\n [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]\n '
ai_onehot = tf.one_hot(ai_flat, (output_size * nb_actions))
'\n Build the mask for full_input from the one-hot-encoded absolute indices.\n We need to group the one-hot absolute indices into groups of output_size\n elements.\n We get:\n [\n [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]],\n [[0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]\n ]\n '
group_shape = [(- 1), output_size, (output_size * nb_actions)]
group = tf.reshape(ai_onehot, group_shape)
'\n Reduce_sum along axis 1 to collapse the group and get the binary masks.\n [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1]]\n '
masks = tf.reduce_sum(group, axis=1)
'\n Convert the mask to boolean.\n [[True, True, False, False, False, False],\n [False, False, False, False, True, True]]\n '
zero = tf.constant(0, dtype=tf.float32)
bool_masks = tf.not_equal(masks, zero)
'\n Convert the boolean masks back to absolute indices for the full_input\n tensor (each element represents [sample index, value index]).\n We get:\n [[0, 0], [0, 1], [1, 4], [1, 5]]\n '
ai_mask = tf.where(bool_masks)
'\n Apply the masks to full_input. We get a 1D tensor:\n [1, 2, 11, 12]\n '
reduced_output = tf.gather_nd(full_input, ai_mask)
'\n Reshape the reduction to match the output shape.\n We get:\n [[1, 2], [11, 12]]\n '
return tf.reshape(reduced_output, [(- 1), output_size]) |
def generate_token(user):
" Currently this is workaround\n since the latest version that already has this function\n is not published on PyPI yet and we don't want\n to install the package directly from GitHub.\n See: https://github.com/mattupstate/flask-jwt/blob/9f4f3bc8dce9da5dd8a567dfada0854e0cf656ae/flask_jwt/__init__.py#L145\n "
jwt = current_app.extensions['jwt']
token = jwt.jwt_encode_callback(user)
return token | 8,879,896,876,340,914,000 | Currently this is workaround
since the latest version that already has this function
is not published on PyPI yet and we don't want
to install the package directly from GitHub.
See: https://github.com/mattupstate/flask-jwt/blob/9f4f3bc8dce9da5dd8a567dfada0854e0cf656ae/flask_jwt/__init__.py#L145 | Chapter04/app/auth/resources.py | generate_token | Abhishek1373/Building-Serverless-Python-Web-Services-with-Zappa | python | def generate_token(user):
" Currently this is workaround\n since the latest version that already has this function\n is not published on PyPI yet and we don't want\n to install the package directly from GitHub.\n See: https://github.com/mattupstate/flask-jwt/blob/9f4f3bc8dce9da5dd8a567dfada0854e0cf656ae/flask_jwt/__init__.py#L145\n "
jwt = current_app.extensions['jwt']
token = jwt.jwt_encode_callback(user)
return token |
def crawl_page(project_data, prerequisites):
' Picks a random image off of the passed URL.'
result = {'status': 'success', 'image': None}
url = project_data.get('url')
if (not url):
result['status'] = 'error'
result['error_message'] = 'URL was not provided.'
return result
logger.info('Starting to crawl %s', url)
images = find_images(url)
num_images = len(images)
logger.info('Found %s images', num_images)
if (num_images == 0):
result['status'] = 'error'
result['error_message'] = 'Unable to find images at the provided URL.'
return result
logger.info('Picking a random one...')
image = random.choice(list(images))
result['image'] = image
return result | 9,174,871,841,792,264,000 | Picks a random image off of the passed URL. | simple_workflow/v1/crawl.py | crawl_page | b12io/orchestra | python | def crawl_page(project_data, prerequisites):
' '
result = {'status': 'success', 'image': None}
url = project_data.get('url')
if (not url):
result['status'] = 'error'
result['error_message'] = 'URL was not provided.'
return result
logger.info('Starting to crawl %s', url)
images = find_images(url)
num_images = len(images)
logger.info('Found %s images', num_images)
if (num_images == 0):
result['status'] = 'error'
result['error_message'] = 'Unable to find images at the provided URL.'
return result
logger.info('Picking a random one...')
image = random.choice(list(images))
result['image'] = image
return result |
def find_images(url):
" Fetches a url's HTML and extracts all image sources in an <img> tag.\n "
images = set()
headers = {'User-Agent': 'Mozilla/5.0 (compatible; OrchestraBot/1.0; [email protected])'}
response = requests.get(url, headers=headers)
if ((response.status_code < 200) or (response.status_code >= 300)):
logger.error("Couldn't fetch url {}".format(url))
return images
content = response.text
soup = BeautifulSoup(content)
tags = soup.find_all('img', src=IMAGE_FILE_REGEX)
for tag in tags:
link = tag.get('src')
if (link is None):
continue
if (not bool(urlparse(link).netloc)):
link = urljoin(url, link)
images.add(link)
return images | 4,603,273,694,007,618,000 | Fetches a url's HTML and extracts all image sources in an <img> tag. | simple_workflow/v1/crawl.py | find_images | b12io/orchestra | python | def find_images(url):
" \n "
images = set()
headers = {'User-Agent': 'Mozilla/5.0 (compatible; OrchestraBot/1.0; [email protected])'}
response = requests.get(url, headers=headers)
if ((response.status_code < 200) or (response.status_code >= 300)):
logger.error("Couldn't fetch url {}".format(url))
return images
content = response.text
soup = BeautifulSoup(content)
tags = soup.find_all('img', src=IMAGE_FILE_REGEX)
for tag in tags:
link = tag.get('src')
if (link is None):
continue
if (not bool(urlparse(link).netloc)):
link = urljoin(url, link)
images.add(link)
return images |
def verify_votes(message_hash: Hash32, votes: Iterable[Tuple[(ValidatorIndex, BLSSignature, BLSPubkey)]], domain: Domain) -> Tuple[(Tuple[(BLSSignature, ...)], Tuple[(ValidatorIndex, ...)])]:
'\n Verify the given votes.\n '
sigs_with_committee_info = tuple(((sig, committee_index) for (committee_index, sig, pubkey) in votes if bls.verify(message_hash=message_hash, pubkey=pubkey, signature=sig, domain=domain)))
try:
(sigs, committee_indices) = zip(*sigs_with_committee_info)
except ValueError:
sigs = tuple()
committee_indices = tuple()
return (sigs, committee_indices) | -5,234,643,532,797,015,000 | Verify the given votes. | eth2/beacon/tools/builder/validator.py | verify_votes | AndrewBezold/trinity | python | def verify_votes(message_hash: Hash32, votes: Iterable[Tuple[(ValidatorIndex, BLSSignature, BLSPubkey)]], domain: Domain) -> Tuple[(Tuple[(BLSSignature, ...)], Tuple[(ValidatorIndex, ...)])]:
'\n \n '
sigs_with_committee_info = tuple(((sig, committee_index) for (committee_index, sig, pubkey) in votes if bls.verify(message_hash=message_hash, pubkey=pubkey, signature=sig, domain=domain)))
try:
(sigs, committee_indices) = zip(*sigs_with_committee_info)
except ValueError:
sigs = tuple()
committee_indices = tuple()
return (sigs, committee_indices) |
def aggregate_votes(bitfield: Bitfield, sigs: Sequence[BLSSignature], voting_sigs: Sequence[BLSSignature], attesting_indices: Sequence[CommitteeIndex]) -> Tuple[(Bitfield, BLSSignature)]:
'\n Aggregate the votes.\n '
sigs = (tuple(sigs) + tuple(voting_sigs))
bitfield = pipe(bitfield, *(set_voted(index=committee_index) for committee_index in attesting_indices))
return (bitfield, bls.aggregate_signatures(sigs)) | 6,790,892,440,111,287,000 | Aggregate the votes. | eth2/beacon/tools/builder/validator.py | aggregate_votes | AndrewBezold/trinity | python | def aggregate_votes(bitfield: Bitfield, sigs: Sequence[BLSSignature], voting_sigs: Sequence[BLSSignature], attesting_indices: Sequence[CommitteeIndex]) -> Tuple[(Bitfield, BLSSignature)]:
'\n \n '
sigs = (tuple(sigs) + tuple(voting_sigs))
bitfield = pipe(bitfield, *(set_voted(index=committee_index) for committee_index in attesting_indices))
return (bitfield, bls.aggregate_signatures(sigs)) |
def create_mock_proposer_slashing_at_block(state: BeaconState, config: Eth2Config, keymap: Dict[(BLSPubkey, int)], block_root_1: Hash32, block_root_2: Hash32, proposer_index: ValidatorIndex) -> ProposerSlashing:
'\n Return a `ProposerSlashing` derived from the given block roots.\n\n If the header roots do not match, the `ProposerSlashing` is valid.\n If the header roots do match, the `ProposerSlashing` is not valid.\n '
slots_per_epoch = config.SLOTS_PER_EPOCH
block_header_1 = create_block_header_with_signature(state, block_root_1, keymap[state.validators[proposer_index].pubkey], slots_per_epoch)
block_header_2 = create_block_header_with_signature(state, block_root_2, keymap[state.validators[proposer_index].pubkey], slots_per_epoch)
return ProposerSlashing(proposer_index=proposer_index, header_1=block_header_1, header_2=block_header_2) | -93,324,441,760,108,860 | Return a `ProposerSlashing` derived from the given block roots.
If the header roots do not match, the `ProposerSlashing` is valid.
If the header roots do match, the `ProposerSlashing` is not valid. | eth2/beacon/tools/builder/validator.py | create_mock_proposer_slashing_at_block | AndrewBezold/trinity | python | def create_mock_proposer_slashing_at_block(state: BeaconState, config: Eth2Config, keymap: Dict[(BLSPubkey, int)], block_root_1: Hash32, block_root_2: Hash32, proposer_index: ValidatorIndex) -> ProposerSlashing:
'\n Return a `ProposerSlashing` derived from the given block roots.\n\n If the header roots do not match, the `ProposerSlashing` is valid.\n If the header roots do match, the `ProposerSlashing` is not valid.\n '
slots_per_epoch = config.SLOTS_PER_EPOCH
block_header_1 = create_block_header_with_signature(state, block_root_1, keymap[state.validators[proposer_index].pubkey], slots_per_epoch)
block_header_2 = create_block_header_with_signature(state, block_root_2, keymap[state.validators[proposer_index].pubkey], slots_per_epoch)
return ProposerSlashing(proposer_index=proposer_index, header_1=block_header_1, header_2=block_header_2) |
def create_mock_slashable_attestation(state: BeaconState, config: Eth2Config, keymap: Dict[(BLSPubkey, int)], attestation_slot: Slot) -> IndexedAttestation:
'\n Create an `IndexedAttestation` that is signed by one attester.\n '
attester_index = ValidatorIndex(0)
committee = (attester_index,)
shard = Shard(0)
beacon_block_root = get_block_root_at_slot(state, attestation_slot, config.SLOTS_PER_HISTORICAL_ROOT)
target_root = _get_target_root(state, config, beacon_block_root)
source_root = get_block_root_at_slot(state, compute_start_slot_of_epoch(state.current_justified_checkpoint.epoch, config.SLOTS_PER_EPOCH), config.SLOTS_PER_HISTORICAL_ROOT)
previous_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=source_root), target=Checkpoint(epoch=compute_epoch_of_slot(attestation_slot, config.SLOTS_PER_EPOCH), root=target_root), crosslink=previous_crosslink)
(message_hash, attesting_indices) = _get_mock_message_and_attesting_indices(attestation_data, committee, num_voted_attesters=1)
signature = sign_transaction(message_hash=message_hash, privkey=keymap[state.validators[attesting_indices[0]].pubkey], state=state, slot=attestation_slot, signature_domain=SignatureDomain.DOMAIN_ATTESTATION, slots_per_epoch=config.SLOTS_PER_EPOCH)
validator_indices = tuple((committee[i] for i in attesting_indices))
return IndexedAttestation(custody_bit_0_indices=validator_indices, custody_bit_1_indices=tuple(), data=attestation_data, signature=signature) | 4,591,191,133,249,815,600 | Create an `IndexedAttestation` that is signed by one attester. | eth2/beacon/tools/builder/validator.py | create_mock_slashable_attestation | AndrewBezold/trinity | python | def create_mock_slashable_attestation(state: BeaconState, config: Eth2Config, keymap: Dict[(BLSPubkey, int)], attestation_slot: Slot) -> IndexedAttestation:
'\n \n '
attester_index = ValidatorIndex(0)
committee = (attester_index,)
shard = Shard(0)
beacon_block_root = get_block_root_at_slot(state, attestation_slot, config.SLOTS_PER_HISTORICAL_ROOT)
target_root = _get_target_root(state, config, beacon_block_root)
source_root = get_block_root_at_slot(state, compute_start_slot_of_epoch(state.current_justified_checkpoint.epoch, config.SLOTS_PER_EPOCH), config.SLOTS_PER_HISTORICAL_ROOT)
previous_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=source_root), target=Checkpoint(epoch=compute_epoch_of_slot(attestation_slot, config.SLOTS_PER_EPOCH), root=target_root), crosslink=previous_crosslink)
(message_hash, attesting_indices) = _get_mock_message_and_attesting_indices(attestation_data, committee, num_voted_attesters=1)
signature = sign_transaction(message_hash=message_hash, privkey=keymap[state.validators[attesting_indices[0]].pubkey], state=state, slot=attestation_slot, signature_domain=SignatureDomain.DOMAIN_ATTESTATION, slots_per_epoch=config.SLOTS_PER_EPOCH)
validator_indices = tuple((committee[i] for i in attesting_indices))
return IndexedAttestation(custody_bit_0_indices=validator_indices, custody_bit_1_indices=tuple(), data=attestation_data, signature=signature) |
def _get_mock_message_and_attesting_indices(attestation_data: AttestationData, committee: Sequence[ValidatorIndex], num_voted_attesters: int) -> Tuple[(Hash32, Tuple[(CommitteeIndex, ...)])]:
'\n Get ``message_hash`` and voting indices of the given ``committee``.\n '
message_hash = AttestationDataAndCustodyBit(data=attestation_data, custody_bit=False).hash_tree_root
committee_size = len(committee)
assert (num_voted_attesters <= committee_size)
attesting_indices = tuple((CommitteeIndex(i) for i in random.sample(range(committee_size), num_voted_attesters)))
return (message_hash, tuple(sorted(attesting_indices))) | 3,754,444,967,802,969,000 | Get ``message_hash`` and voting indices of the given ``committee``. | eth2/beacon/tools/builder/validator.py | _get_mock_message_and_attesting_indices | AndrewBezold/trinity | python | def _get_mock_message_and_attesting_indices(attestation_data: AttestationData, committee: Sequence[ValidatorIndex], num_voted_attesters: int) -> Tuple[(Hash32, Tuple[(CommitteeIndex, ...)])]:
'\n \n '
message_hash = AttestationDataAndCustodyBit(data=attestation_data, custody_bit=False).hash_tree_root
committee_size = len(committee)
assert (num_voted_attesters <= committee_size)
attesting_indices = tuple((CommitteeIndex(i) for i in random.sample(range(committee_size), num_voted_attesters)))
return (message_hash, tuple(sorted(attesting_indices))) |
def _create_mock_signed_attestation(state: BeaconState, attestation_data: AttestationData, attestation_slot: Slot, committee: Sequence[ValidatorIndex], num_voted_attesters: int, keymap: Dict[(BLSPubkey, int)], slots_per_epoch: int) -> Attestation:
'\n Create a mocking attestation of the given ``attestation_data`` slot with ``keymap``.\n '
(message_hash, attesting_indices) = _get_mock_message_and_attesting_indices(attestation_data, committee, num_voted_attesters)
signatures = [sign_transaction(message_hash=message_hash, privkey=keymap[state.validators[committee[committee_index]].pubkey], state=state, slot=attestation_slot, signature_domain=SignatureDomain.DOMAIN_ATTESTATION, slots_per_epoch=slots_per_epoch) for committee_index in attesting_indices]
(aggregation_bits, aggregate_signature) = aggregate_votes(bitfield=get_empty_bitfield(len(committee)), sigs=(), voting_sigs=signatures, attesting_indices=attesting_indices)
return Attestation(aggregation_bits=aggregation_bits, data=attestation_data, custody_bits=Bitfield(((False,) * len(aggregation_bits))), signature=aggregate_signature) | 8,585,584,768,922,157,000 | Create a mocking attestation of the given ``attestation_data`` slot with ``keymap``. | eth2/beacon/tools/builder/validator.py | _create_mock_signed_attestation | AndrewBezold/trinity | python | def _create_mock_signed_attestation(state: BeaconState, attestation_data: AttestationData, attestation_slot: Slot, committee: Sequence[ValidatorIndex], num_voted_attesters: int, keymap: Dict[(BLSPubkey, int)], slots_per_epoch: int) -> Attestation:
'\n \n '
(message_hash, attesting_indices) = _get_mock_message_and_attesting_indices(attestation_data, committee, num_voted_attesters)
signatures = [sign_transaction(message_hash=message_hash, privkey=keymap[state.validators[committee[committee_index]].pubkey], state=state, slot=attestation_slot, signature_domain=SignatureDomain.DOMAIN_ATTESTATION, slots_per_epoch=slots_per_epoch) for committee_index in attesting_indices]
(aggregation_bits, aggregate_signature) = aggregate_votes(bitfield=get_empty_bitfield(len(committee)), sigs=(), voting_sigs=signatures, attesting_indices=attesting_indices)
return Attestation(aggregation_bits=aggregation_bits, data=attestation_data, custody_bits=Bitfield(((False,) * len(aggregation_bits))), signature=aggregate_signature) |
def create_signed_attestation_at_slot(state: BeaconState, config: Eth2Config, state_machine: BaseBeaconStateMachine, attestation_slot: Slot, beacon_block_root: Hash32, validator_privkeys: Dict[(ValidatorIndex, int)], committee: Tuple[(ValidatorIndex, ...)], shard: Shard) -> Attestation:
'\n Create the attestations of the given ``attestation_slot`` slot with ``validator_privkeys``.\n '
state_transition = state_machine.state_transition
state = state_transition.apply_state_transition(state, future_slot=attestation_slot)
target_epoch = compute_epoch_of_slot(attestation_slot, config.SLOTS_PER_EPOCH)
target_root = _get_target_root(state, config, beacon_block_root)
parent_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=state.current_justified_checkpoint.root), target=Checkpoint(root=target_root, epoch=target_epoch), crosslink=Crosslink(shard=shard, parent_root=parent_crosslink.hash_tree_root, start_epoch=parent_crosslink.end_epoch, end_epoch=target_epoch))
return _create_mock_signed_attestation(state, attestation_data, attestation_slot, committee, len(committee), keymapper((lambda index: state.validators[index].pubkey), validator_privkeys), config.SLOTS_PER_EPOCH) | 2,879,226,919,838,314,500 | Create the attestations of the given ``attestation_slot`` slot with ``validator_privkeys``. | eth2/beacon/tools/builder/validator.py | create_signed_attestation_at_slot | AndrewBezold/trinity | python | def create_signed_attestation_at_slot(state: BeaconState, config: Eth2Config, state_machine: BaseBeaconStateMachine, attestation_slot: Slot, beacon_block_root: Hash32, validator_privkeys: Dict[(ValidatorIndex, int)], committee: Tuple[(ValidatorIndex, ...)], shard: Shard) -> Attestation:
'\n \n '
state_transition = state_machine.state_transition
state = state_transition.apply_state_transition(state, future_slot=attestation_slot)
target_epoch = compute_epoch_of_slot(attestation_slot, config.SLOTS_PER_EPOCH)
target_root = _get_target_root(state, config, beacon_block_root)
parent_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=state.current_justified_checkpoint.root), target=Checkpoint(root=target_root, epoch=target_epoch), crosslink=Crosslink(shard=shard, parent_root=parent_crosslink.hash_tree_root, start_epoch=parent_crosslink.end_epoch, end_epoch=target_epoch))
return _create_mock_signed_attestation(state, attestation_data, attestation_slot, committee, len(committee), keymapper((lambda index: state.validators[index].pubkey), validator_privkeys), config.SLOTS_PER_EPOCH) |
@to_tuple
def create_mock_signed_attestations_at_slot(state: BeaconState, config: Eth2Config, state_machine: BaseBeaconStateMachine, attestation_slot: Slot, beacon_block_root: Hash32, keymap: Dict[(BLSPubkey, int)], voted_attesters_ratio: float=1.0) -> Iterable[Attestation]:
'\n Create the mocking attestations of the given ``attestation_slot`` slot with ``keymap``.\n '
crosslink_committees_at_slot = get_crosslink_committees_at_slot(state, attestation_slot, config)
target_root = _get_target_root(state, config, beacon_block_root)
target_epoch = compute_epoch_of_slot(state.slot, config.SLOTS_PER_EPOCH)
for crosslink_committee in crosslink_committees_at_slot:
(committee, shard) = crosslink_committee
parent_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=state.current_justified_checkpoint.root), target=Checkpoint(root=target_root, epoch=target_epoch), crosslink=Crosslink(shard=shard, parent_root=parent_crosslink.hash_tree_root, start_epoch=parent_crosslink.end_epoch, end_epoch=min(target_epoch, (parent_crosslink.end_epoch + config.MAX_EPOCHS_PER_CROSSLINK))))
num_voted_attesters = int((len(committee) * voted_attesters_ratio))
(yield _create_mock_signed_attestation(state, attestation_data, attestation_slot, committee, num_voted_attesters, keymap, config.SLOTS_PER_EPOCH)) | 9,024,412,771,648,650,000 | Create the mocking attestations of the given ``attestation_slot`` slot with ``keymap``. | eth2/beacon/tools/builder/validator.py | create_mock_signed_attestations_at_slot | AndrewBezold/trinity | python | @to_tuple
def create_mock_signed_attestations_at_slot(state: BeaconState, config: Eth2Config, state_machine: BaseBeaconStateMachine, attestation_slot: Slot, beacon_block_root: Hash32, keymap: Dict[(BLSPubkey, int)], voted_attesters_ratio: float=1.0) -> Iterable[Attestation]:
'\n \n '
crosslink_committees_at_slot = get_crosslink_committees_at_slot(state, attestation_slot, config)
target_root = _get_target_root(state, config, beacon_block_root)
target_epoch = compute_epoch_of_slot(state.slot, config.SLOTS_PER_EPOCH)
for crosslink_committee in crosslink_committees_at_slot:
(committee, shard) = crosslink_committee
parent_crosslink = state.current_crosslinks[shard]
attestation_data = AttestationData(beacon_block_root=beacon_block_root, source=Checkpoint(epoch=state.current_justified_checkpoint.epoch, root=state.current_justified_checkpoint.root), target=Checkpoint(root=target_root, epoch=target_epoch), crosslink=Crosslink(shard=shard, parent_root=parent_crosslink.hash_tree_root, start_epoch=parent_crosslink.end_epoch, end_epoch=min(target_epoch, (parent_crosslink.end_epoch + config.MAX_EPOCHS_PER_CROSSLINK))))
num_voted_attesters = int((len(committee) * voted_attesters_ratio))
(yield _create_mock_signed_attestation(state, attestation_data, attestation_slot, committee, num_voted_attesters, keymap, config.SLOTS_PER_EPOCH)) |
def open(self, path, mode):
'Wrapper on __builtin__.open used to simplify unit testing.'
import __builtin__
return __builtin__.open(path, mode) | -6,685,491,992,604,253,000 | Wrapper on __builtin__.open used to simplify unit testing. | nova/virt/hyperv/pathutils.py | open | bopopescu/nested_quota_final | python | def open(self, path, mode):
import __builtin__
return __builtin__.open(path, mode) |
def test_username_validation_error_msg(self, user: User):
"\n Tests UserCreation Form's unique validator functions correctly by testing:\n 1) A new user with an existing username cannot be added.\n 2) Only 1 error is raised by the UserCreation Form\n 3) The desired error message is raised\n "
form = UserCreationForm({'username': user.username, 'password1': user.password, 'password2': user.password})
assert (not form.is_valid())
assert (len(form.errors) == 1)
assert ('username' in form.errors)
assert (form.errors['username'][0] == _('This username has already been taken.')) | 1,755,965,056,911,758,800 | Tests UserCreation Form's unique validator functions correctly by testing:
1) A new user with an existing username cannot be added.
2) Only 1 error is raised by the UserCreation Form
3) The desired error message is raised | djcutter/users/tests/test_forms.py | test_username_validation_error_msg | macbotxxx/djcutter | python | def test_username_validation_error_msg(self, user: User):
"\n Tests UserCreation Form's unique validator functions correctly by testing:\n 1) A new user with an existing username cannot be added.\n 2) Only 1 error is raised by the UserCreation Form\n 3) The desired error message is raised\n "
form = UserCreationForm({'username': user.username, 'password1': user.password, 'password2': user.password})
assert (not form.is_valid())
assert (len(form.errors) == 1)
assert ('username' in form.errors)
assert (form.errors['username'][0] == _('This username has already been taken.')) |
def drive_pump(self, volume, direction):
'Converts volume to cycles and ensures and checks pump level and values'
if (direction == 0):
space_in_pump = (self.max_pump_capacity - self.volume_in_pump)
if (volume > space_in_pump):
interfaces.lcd_out('Filling Error', line=4)
else:
interfaces.lcd_out('Filling {0:1.2f} ml'.format(volume), line=4)
cycles = analysis.determine_pump_cycles(volume)
self.drive_step_stick(cycles, direction)
self.volume_in_pump += volume
elif (direction == 1):
if (volume > self.volume_in_pump):
interfaces.lcd_out('Pumping Error', line=4)
else:
interfaces.lcd_out('Pumping {0:1.2f} ml'.format(volume), line=4)
cycles = analysis.determine_pump_cycles(volume)
offset = self.drive_step_stick(cycles, direction)
if (offset != 0):
self.drive_step_stick(offset, 0)
self.drive_step_stick(offset, 1)
self.volume_in_pump -= volume
interfaces.lcd_out('Pump Vol: {0:1.2f} ml'.format(self.volume_in_pump), line=4) | -9,125,726,388,624,055,000 | Converts volume to cycles and ensures and checks pump level and values | titration/utils/devices/syringe_pump_mock.py | drive_pump | KonradMcClure/AlkalinityTitrator | python | def drive_pump(self, volume, direction):
if (direction == 0):
space_in_pump = (self.max_pump_capacity - self.volume_in_pump)
if (volume > space_in_pump):
interfaces.lcd_out('Filling Error', line=4)
else:
interfaces.lcd_out('Filling {0:1.2f} ml'.format(volume), line=4)
cycles = analysis.determine_pump_cycles(volume)
self.drive_step_stick(cycles, direction)
self.volume_in_pump += volume
elif (direction == 1):
if (volume > self.volume_in_pump):
interfaces.lcd_out('Pumping Error', line=4)
else:
interfaces.lcd_out('Pumping {0:1.2f} ml'.format(volume), line=4)
cycles = analysis.determine_pump_cycles(volume)
offset = self.drive_step_stick(cycles, direction)
if (offset != 0):
self.drive_step_stick(offset, 0)
self.drive_step_stick(offset, 1)
self.volume_in_pump -= volume
interfaces.lcd_out('Pump Vol: {0:1.2f} ml'.format(self.volume_in_pump), line=4) |
def drive_step_stick(self, cycles, direction):
'\n cycles and direction are integers\n Communicates with arduino to add HCl through pump\n :param cycles: number of rising edges for the pump\n :param direction: direction of pump\n '
if (cycles == 0):
return 0
if self.serial.writable():
self.serial.write(cycles.to_bytes(4, 'little'))
self.serial.write(direction.to_bytes(1, 'little'))
self.serial.flush()
temp = self.serial.readline()
if ((temp == b'DONE\r\n') or (temp == b'')):
return 0
else:
return int(temp)
else:
interfaces.lcd_out('Arduino Unavailable', 4, constants.LCD_CENT_JUST) | 5,106,291,834,239,962,000 | cycles and direction are integers
Communicates with arduino to add HCl through pump
:param cycles: number of rising edges for the pump
:param direction: direction of pump | titration/utils/devices/syringe_pump_mock.py | drive_step_stick | KonradMcClure/AlkalinityTitrator | python | def drive_step_stick(self, cycles, direction):
'\n cycles and direction are integers\n Communicates with arduino to add HCl through pump\n :param cycles: number of rising edges for the pump\n :param direction: direction of pump\n '
if (cycles == 0):
return 0
if self.serial.writable():
self.serial.write(cycles.to_bytes(4, 'little'))
self.serial.write(direction.to_bytes(1, 'little'))
self.serial.flush()
temp = self.serial.readline()
if ((temp == b'DONE\r\n') or (temp == b)):
return 0
else:
return int(temp)
else:
interfaces.lcd_out('Arduino Unavailable', 4, constants.LCD_CENT_JUST) |
def all_entities_on_same_layout(entities: Iterable[DXFEntity]):
' Check if all entities are on the same layout (model space or any paper\n layout but not block).\n\n '
owners = set((entity.dxf.owner for entity in entities))
return (len(owners) < 2) | -3,090,958,499,230,387,700 | Check if all entities are on the same layout (model space or any paper
layout but not block). | src/ezdxf/entities/dxfgroups.py | all_entities_on_same_layout | dmtvanzanten/ezdxf | python | def all_entities_on_same_layout(entities: Iterable[DXFEntity]):
' Check if all entities are on the same layout (model space or any paper\n layout but not block).\n\n '
owners = set((entity.dxf.owner for entity in entities))
return (len(owners) < 2) |
def get_group_name(group: DXFGroup, db: 'EntityDB') -> str:
' Get name of `group`. '
group_table = cast('Dictionary', db[group.dxf.owner])
for (name, entity) in group_table.items():
if (entity is group):
return name | -3,521,012,806,978,972,000 | Get name of `group`. | src/ezdxf/entities/dxfgroups.py | get_group_name | dmtvanzanten/ezdxf | python | def get_group_name(group: DXFGroup, db: 'EntityDB') -> str:
' '
group_table = cast('Dictionary', db[group.dxf.owner])
for (name, entity) in group_table.items():
if (entity is group):
return name |
def export_entity(self, tagwriter: 'TagWriter') -> None:
' Export entity specific data as DXF tags. '
super().export_entity(tagwriter)
tagwriter.write_tag2(const.SUBCLASS_MARKER, acdb_group.name)
self.dxf.export_dxf_attribs(tagwriter, ['description', 'unnamed', 'selectable'])
self.export_group(tagwriter) | 8,806,658,115,378,163,000 | Export entity specific data as DXF tags. | src/ezdxf/entities/dxfgroups.py | export_entity | dmtvanzanten/ezdxf | python | def export_entity(self, tagwriter: 'TagWriter') -> None:
' '
super().export_entity(tagwriter)
tagwriter.write_tag2(const.SUBCLASS_MARKER, acdb_group.name)
self.dxf.export_dxf_attribs(tagwriter, ['description', 'unnamed', 'selectable'])
self.export_group(tagwriter) |
def __iter__(self) -> Iterable[DXFEntity]:
' Iterate over all DXF entities in :class:`DXFGroup` as instances of\n :class:`DXFGraphic` or inherited (LINE, CIRCLE, ...).\n\n '
return (e for e in self._data if e.is_alive) | -6,451,279,862,838,398,000 | Iterate over all DXF entities in :class:`DXFGroup` as instances of
:class:`DXFGraphic` or inherited (LINE, CIRCLE, ...). | src/ezdxf/entities/dxfgroups.py | __iter__ | dmtvanzanten/ezdxf | python | def __iter__(self) -> Iterable[DXFEntity]:
' Iterate over all DXF entities in :class:`DXFGroup` as instances of\n :class:`DXFGraphic` or inherited (LINE, CIRCLE, ...).\n\n '
return (e for e in self._data if e.is_alive) |
def __len__(self) -> int:
' Returns the count of DXF entities in :class:`DXFGroup`. '
return len(self._data) | -7,403,369,686,114,288,000 | Returns the count of DXF entities in :class:`DXFGroup`. | src/ezdxf/entities/dxfgroups.py | __len__ | dmtvanzanten/ezdxf | python | def __len__(self) -> int:
' '
return len(self._data) |
def __getitem__(self, item):
' Returns entities by standard Python indexing and slicing. '
return self._data[item] | 5,059,744,694,121,915,000 | Returns entities by standard Python indexing and slicing. | src/ezdxf/entities/dxfgroups.py | __getitem__ | dmtvanzanten/ezdxf | python | def __getitem__(self, item):
' '
return self._data[item] |
def __contains__(self, item: Union[(str, DXFEntity)]) -> bool:
' Returns ``True`` if item is in :class:`DXFGroup`. `item` has to be\n a handle string or an object of type :class:`DXFEntity` or inherited.\n\n '
handle = (item if isinstance(item, str) else item.dxf.handle)
return (handle in set(self.handles())) | 8,053,672,929,536,613,000 | Returns ``True`` if item is in :class:`DXFGroup`. `item` has to be
a handle string or an object of type :class:`DXFEntity` or inherited. | src/ezdxf/entities/dxfgroups.py | __contains__ | dmtvanzanten/ezdxf | python | def __contains__(self, item: Union[(str, DXFEntity)]) -> bool:
' Returns ``True`` if item is in :class:`DXFGroup`. `item` has to be\n a handle string or an object of type :class:`DXFEntity` or inherited.\n\n '
handle = (item if isinstance(item, str) else item.dxf.handle)
return (handle in set(self.handles())) |
def handles(self) -> Iterable[str]:
' Iterable of handles of all DXF entities in :class:`DXFGroup`. '
return (entity.dxf.handle for entity in self) | -6,554,987,980,983,336,000 | Iterable of handles of all DXF entities in :class:`DXFGroup`. | src/ezdxf/entities/dxfgroups.py | handles | dmtvanzanten/ezdxf | python | def handles(self) -> Iterable[str]:
' '
return (entity.dxf.handle for entity in self) |
@contextmanager
def edit_data(self) -> List[DXFEntity]:
' Context manager which yields all the group entities as\n standard Python list::\n\n with group.edit_data() as data:\n # add new entities to a group\n data.append(modelspace.add_line((0, 0), (3, 0)))\n # remove last entity from a group\n data.pop()\n\n '
data = list(self)
(yield data)
self.set_data(data) | -544,134,383,874,083,260 | Context manager which yields all the group entities as
standard Python list::
with group.edit_data() as data:
# add new entities to a group
data.append(modelspace.add_line((0, 0), (3, 0)))
# remove last entity from a group
data.pop() | src/ezdxf/entities/dxfgroups.py | edit_data | dmtvanzanten/ezdxf | python | @contextmanager
def edit_data(self) -> List[DXFEntity]:
' Context manager which yields all the group entities as\n standard Python list::\n\n with group.edit_data() as data:\n # add new entities to a group\n data.append(modelspace.add_line((0, 0), (3, 0)))\n # remove last entity from a group\n data.pop()\n\n '
data = list(self)
(yield data)
self.set_data(data) |
def set_data(self, entities: Iterable[DXFEntity]) -> None:
' Set `entities` as new group content, entities should be an iterable\n :class:`DXFGraphic` or inherited (LINE, CIRCLE, ...).\n Raises :class:`DXFValueError` if not all entities be on the same layout\n (modelspace or any paperspace layout but not block)\n\n '
entities = list(entities)
if (not all_entities_on_same_layout(entities)):
raise const.DXFStructureError('All entities have to be in the same layout and are not allowed to be in a block layout.')
self.clear()
self._data = entities | -666,040,995,580,035,200 | Set `entities` as new group content, entities should be an iterable
:class:`DXFGraphic` or inherited (LINE, CIRCLE, ...).
Raises :class:`DXFValueError` if not all entities be on the same layout
(modelspace or any paperspace layout but not block) | src/ezdxf/entities/dxfgroups.py | set_data | dmtvanzanten/ezdxf | python | def set_data(self, entities: Iterable[DXFEntity]) -> None:
' Set `entities` as new group content, entities should be an iterable\n :class:`DXFGraphic` or inherited (LINE, CIRCLE, ...).\n Raises :class:`DXFValueError` if not all entities be on the same layout\n (modelspace or any paperspace layout but not block)\n\n '
entities = list(entities)
if (not all_entities_on_same_layout(entities)):
raise const.DXFStructureError('All entities have to be in the same layout and are not allowed to be in a block layout.')
self.clear()
self._data = entities |
def extend(self, entities: Iterable[DXFEntity]) -> None:
' Add `entities` to :class:`DXFGroup`. '
self._data.extend(entities) | 704,611,828,692,593,000 | Add `entities` to :class:`DXFGroup`. | src/ezdxf/entities/dxfgroups.py | extend | dmtvanzanten/ezdxf | python | def extend(self, entities: Iterable[DXFEntity]) -> None:
' '
self._data.extend(entities) |
def clear(self) -> None:
' Remove all entities from :class:`DXFGroup`, does not delete any\n drawing entities referenced by this group.\n\n '
self._data = [] | 7,693,783,732,229,944,000 | Remove all entities from :class:`DXFGroup`, does not delete any
drawing entities referenced by this group. | src/ezdxf/entities/dxfgroups.py | clear | dmtvanzanten/ezdxf | python | def clear(self) -> None:
' Remove all entities from :class:`DXFGroup`, does not delete any\n drawing entities referenced by this group.\n\n '
self._data = [] |
def audit(self, auditor: 'Auditor') -> None:
' Remove invalid handles from :class:`DXFGroup`.\n\n Invalid handles are: deleted entities, not all entities in the same\n layout or entities in a block layout.\n\n '
self.purge(auditor.entitydb)
if (not all_entities_on_same_layout(self._data)):
auditor.fixed_error(code=AuditError.GROUP_ENTITIES_IN_DIFFERENT_LAYOUTS, message=f'Cleared {str(self)}, not all entities are located in the same layout.')
self.clear() | 5,824,201,630,456,137,000 | Remove invalid handles from :class:`DXFGroup`.
Invalid handles are: deleted entities, not all entities in the same
layout or entities in a block layout. | src/ezdxf/entities/dxfgroups.py | audit | dmtvanzanten/ezdxf | python | def audit(self, auditor: 'Auditor') -> None:
' Remove invalid handles from :class:`DXFGroup`.\n\n Invalid handles are: deleted entities, not all entities in the same\n layout or entities in a block layout.\n\n '
self.purge(auditor.entitydb)
if (not all_entities_on_same_layout(self._data)):
auditor.fixed_error(code=AuditError.GROUP_ENTITIES_IN_DIFFERENT_LAYOUTS, message=f'Cleared {str(self)}, not all entities are located in the same layout.')
self.clear() |
def purge(self, db: 'EntityDB') -> None:
' Remove invalid group entities. '
self._data = self._filter_invalid_entities(db) | 7,017,494,116,063,099,000 | Remove invalid group entities. | src/ezdxf/entities/dxfgroups.py | purge | dmtvanzanten/ezdxf | python | def purge(self, db: 'EntityDB') -> None:
' '
self._data = self._filter_invalid_entities(db) |
def groups(self) -> Iterable[DXFGroup]:
' Iterable of all existing groups. '
for (name, group) in self:
(yield group) | 3,448,898,582,352,388,000 | Iterable of all existing groups. | src/ezdxf/entities/dxfgroups.py | groups | dmtvanzanten/ezdxf | python | def groups(self) -> Iterable[DXFGroup]:
' '
for (name, group) in self:
(yield group) |
def new(self, name: str=None, description: str='', selectable: bool=True) -> DXFGroup:
' Creates a new group. If `name` is ``None`` an unnamed group is\n created, which has an automatically generated name like "\\*Annnn".\n\n Args:\n name: group name as string\n description: group description as string\n selectable: group is selectable if ``True``\n\n '
if (name in self):
raise const.DXFValueError(f"GROUP '{name}' already exists.")
if (name is None):
name = self.next_name()
unnamed = 1
else:
unnamed = 0
dxfattribs = {'description': description, 'unnamed': unnamed, 'selectable': int(bool(selectable))}
return cast(DXFGroup, self._new(name, dxfattribs)) | 4,705,095,474,630,304,000 | Creates a new group. If `name` is ``None`` an unnamed group is
created, which has an automatically generated name like "\*Annnn".
Args:
name: group name as string
description: group description as string
selectable: group is selectable if ``True`` | src/ezdxf/entities/dxfgroups.py | new | dmtvanzanten/ezdxf | python | def new(self, name: str=None, description: str=, selectable: bool=True) -> DXFGroup:
' Creates a new group. If `name` is ``None`` an unnamed group is\n created, which has an automatically generated name like "\\*Annnn".\n\n Args:\n name: group name as string\n description: group description as string\n selectable: group is selectable if ``True``\n\n '
if (name in self):
raise const.DXFValueError(f"GROUP '{name}' already exists.")
if (name is None):
name = self.next_name()
unnamed = 1
else:
unnamed = 0
dxfattribs = {'description': description, 'unnamed': unnamed, 'selectable': int(bool(selectable))}
return cast(DXFGroup, self._new(name, dxfattribs)) |
def delete(self, group: Union[(DXFGroup, str)]) -> None:
' Delete `group`, `group` can be an object of type :class:`DXFGroup`\n or a group name as string.\n\n '
if isinstance(group, str):
name = group
elif (group.dxftype() == 'GROUP'):
name = get_group_name(group, self.entitydb)
else:
raise TypeError(group.dxftype())
if (name in self):
super().delete(name)
else:
raise const.DXFValueError('GROUP not in group table registered.') | -8,989,171,775,912,609,000 | Delete `group`, `group` can be an object of type :class:`DXFGroup`
or a group name as string. | src/ezdxf/entities/dxfgroups.py | delete | dmtvanzanten/ezdxf | python | def delete(self, group: Union[(DXFGroup, str)]) -> None:
' Delete `group`, `group` can be an object of type :class:`DXFGroup`\n or a group name as string.\n\n '
if isinstance(group, str):
name = group
elif (group.dxftype() == 'GROUP'):
name = get_group_name(group, self.entitydb)
else:
raise TypeError(group.dxftype())
if (name in self):
super().delete(name)
else:
raise const.DXFValueError('GROUP not in group table registered.') |
def audit(self, auditor: 'Auditor') -> None:
' Removes empty groups and invalid handles from all groups. '
trash = []
for (name, group) in self:
group.audit(auditor)
if (not len(group)):
trash.append(name)
for name in trash:
auditor.fixed_error(code=AuditError.REMOVE_EMPTY_GROUP, message=f'Removed empty group "{name}".')
self.delete(name) | -5,605,563,065,586,540,000 | Removes empty groups and invalid handles from all groups. | src/ezdxf/entities/dxfgroups.py | audit | dmtvanzanten/ezdxf | python | def audit(self, auditor: 'Auditor') -> None:
' '
trash = []
for (name, group) in self:
group.audit(auditor)
if (not len(group)):
trash.append(name)
for name in trash:
auditor.fixed_error(code=AuditError.REMOVE_EMPTY_GROUP, message=f'Removed empty group "{name}".')
self.delete(name) |
def __init__(self, more_items_remaining=None, total_item_count=None, continuation_token=None, items=None, total=None):
'\n Keyword args:\n more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved.\n total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned.\n continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified).\n items (list[VolumeSnapshot]): Returns a list of all items after filtering. The values are displayed for each name where meaningful. If `total_only=true`, the `items` list will be empty.\n total (list[VolumeSnapshot]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful.\n '
if (more_items_remaining is not None):
self.more_items_remaining = more_items_remaining
if (total_item_count is not None):
self.total_item_count = total_item_count
if (continuation_token is not None):
self.continuation_token = continuation_token
if (items is not None):
self.items = items
if (total is not None):
self.total = total | 7,190,323,510,957,232,000 | Keyword args:
more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved.
total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned.
continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified).
items (list[VolumeSnapshot]): Returns a list of all items after filtering. The values are displayed for each name where meaningful. If `total_only=true`, the `items` list will be empty.
total (list[VolumeSnapshot]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful. | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | __init__ | Flav-STOR-WL/py-pure-client | python | def __init__(self, more_items_remaining=None, total_item_count=None, continuation_token=None, items=None, total=None):
'\n Keyword args:\n more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved.\n total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned.\n continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified).\n items (list[VolumeSnapshot]): Returns a list of all items after filtering. The values are displayed for each name where meaningful. If `total_only=true`, the `items` list will be empty.\n total (list[VolumeSnapshot]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful.\n '
if (more_items_remaining is not None):
self.more_items_remaining = more_items_remaining
if (total_item_count is not None):
self.total_item_count = total_item_count
if (continuation_token is not None):
self.continuation_token = continuation_token
if (items is not None):
self.items = items
if (total is not None):
self.total = total |
def to_dict(self):
'Returns the model properties as a dict'
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(VolumeSnapshotGetResponse, dict):
for (key, value) in self.items():
result[key] = value
return result | 230,603,998,305,512,800 | Returns the model properties as a dict | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | to_dict | Flav-STOR-WL/py-pure-client | python | def to_dict(self):
result = {}
for (attr, _) in six.iteritems(self.swagger_types):
if hasattr(self, attr):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value))
elif hasattr(value, 'to_dict'):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items()))
else:
result[attr] = value
if issubclass(VolumeSnapshotGetResponse, dict):
for (key, value) in self.items():
result[key] = value
return result |
def to_str(self):
'Returns the string representation of the model'
return pprint.pformat(self.to_dict()) | 5,849,158,643,760,736,000 | Returns the string representation of the model | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | to_str | Flav-STOR-WL/py-pure-client | python | def to_str(self):
return pprint.pformat(self.to_dict()) |
def __repr__(self):
'For `print` and `pprint`'
return self.to_str() | -8,960,031,694,814,905,000 | For `print` and `pprint` | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | __repr__ | Flav-STOR-WL/py-pure-client | python | def __repr__(self):
return self.to_str() |
def __eq__(self, other):
'Returns true if both objects are equal'
if (not isinstance(other, VolumeSnapshotGetResponse)):
return False
return (self.__dict__ == other.__dict__) | -7,413,502,122,930,958,000 | Returns true if both objects are equal | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | __eq__ | Flav-STOR-WL/py-pure-client | python | def __eq__(self, other):
if (not isinstance(other, VolumeSnapshotGetResponse)):
return False
return (self.__dict__ == other.__dict__) |
def __ne__(self, other):
'Returns true if both objects are not equal'
return (not (self == other)) | 7,764,124,047,908,058,000 | Returns true if both objects are not equal | pypureclient/flasharray/FA_2_7/models/volume_snapshot_get_response.py | __ne__ | Flav-STOR-WL/py-pure-client | python | def __ne__(self, other):
return (not (self == other)) |
def get_all_concentrations(self, projection={'_id': 0, 'inchi': 1, 'inchikey': 1, 'smiles': 1, 'name': 1}):
"Get all entries that have concentration values\n \n Args:\n projection (dict, optional): mongodb query projection. Defaults to {'_id': 0, 'inchi': 1,'inchikey': 1, 'smiles': 1, 'name': 1}.\n\n Returns:\n (list): all results that meet the constraint.\n "
result = []
query = {'concentrations': {'$ne': None}}
docs = self.collection.find(filter=query, projection=projection)
for doc in docs:
result.append(doc)
return result | 5,753,718,575,970,389,000 | Get all entries that have concentration values
Args:
projection (dict, optional): mongodb query projection. Defaults to {'_id': 0, 'inchi': 1,'inchikey': 1, 'smiles': 1, 'name': 1}.
Returns:
(list): all results that meet the constraint. | datanator_query_python/query/query_xmdb.py | get_all_concentrations | KarrLab/datanator_query_python | python | def get_all_concentrations(self, projection={'_id': 0, 'inchi': 1, 'inchikey': 1, 'smiles': 1, 'name': 1}):
"Get all entries that have concentration values\n \n Args:\n projection (dict, optional): mongodb query projection. Defaults to {'_id': 0, 'inchi': 1,'inchikey': 1, 'smiles': 1, 'name': 1}.\n\n Returns:\n (list): all results that meet the constraint.\n "
result = []
query = {'concentrations': {'$ne': None}}
docs = self.collection.find(filter=query, projection=projection)
for doc in docs:
result.append(doc)
return result |
def get_name_by_inchikey(self, inchikey):
"Get metabolite's name by its inchikey\n \n Args:\n inchikey (:obj:`str`): inchi key of metabolite\n\n Return:\n (:obj:`str`): name of metabolite\n "
query = {'inchikey': inchikey}
projection = {'_id': 0, 'name': 1}
doc = self.collection.find_one(filter=query, projection=projection, collation=self.collation)
if (doc is None):
return 'No metabolite found.'
else:
return doc['name'] | -1,496,111,138,151,051,300 | Get metabolite's name by its inchikey
Args:
inchikey (:obj:`str`): inchi key of metabolite
Return:
(:obj:`str`): name of metabolite | datanator_query_python/query/query_xmdb.py | get_name_by_inchikey | KarrLab/datanator_query_python | python | def get_name_by_inchikey(self, inchikey):
"Get metabolite's name by its inchikey\n \n Args:\n inchikey (:obj:`str`): inchi key of metabolite\n\n Return:\n (:obj:`str`): name of metabolite\n "
query = {'inchikey': inchikey}
projection = {'_id': 0, 'name': 1}
doc = self.collection.find_one(filter=query, projection=projection, collation=self.collation)
if (doc is None):
return 'No metabolite found.'
else:
return doc['name'] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.