body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@victims.setter def victims(self, victims): 'Sets the victims of this CredentialSetSchemaData.\n\n List of purported victims. # noqa: E501\n\n :param victims: The victims of this CredentialSetSchemaData. # noqa: E501\n :type victims: list[CredentialSetSchemaDataVictims]\n ' self._victims = victims
-6,781,148,290,898,929,000
Sets the victims of this CredentialSetSchemaData. List of purported victims. # noqa: E501 :param victims: The victims of this CredentialSetSchemaData. # noqa: E501 :type victims: list[CredentialSetSchemaDataVictims]
titan_client/models/credential_set_schema_data.py
victims
intel471/titan-client-python
python
@victims.setter def victims(self, victims): 'Sets the victims of this CredentialSetSchemaData.\n\n List of purported victims. # noqa: E501\n\n :param victims: The victims of this CredentialSetSchemaData. # noqa: E501\n :type victims: list[CredentialSetSchemaDataVictims]\n ' self._victims = victims
def to_dict(self, serialize=False): 'Returns the model properties as a dict' result = {} def convert(x): if hasattr(x, 'to_dict'): args = getfullargspec(x.to_dict).args if (len(args) == 1): return x.to_dict() else: return x.to_dict(serialize) else: return x for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = (self.attribute_map.get(attr, attr) if serialize else attr) if isinstance(value, list): result[attr] = list(map((lambda x: convert(x)), value)) elif isinstance(value, dict): result[attr] = dict(map((lambda item: (item[0], convert(item[1]))), value.items())) else: result[attr] = convert(value) return result
-1,664,115,404,714,547,500
Returns the model properties as a dict
titan_client/models/credential_set_schema_data.py
to_dict
intel471/titan-client-python
python
def to_dict(self, serialize=False): result = {} def convert(x): if hasattr(x, 'to_dict'): args = getfullargspec(x.to_dict).args if (len(args) == 1): return x.to_dict() else: return x.to_dict(serialize) else: return x for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = (self.attribute_map.get(attr, attr) if serialize else attr) if isinstance(value, list): result[attr] = list(map((lambda x: convert(x)), value)) elif isinstance(value, dict): result[attr] = dict(map((lambda item: (item[0], convert(item[1]))), value.items())) else: result[attr] = convert(value) return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
titan_client/models/credential_set_schema_data.py
to_str
intel471/titan-client-python
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
titan_client/models/credential_set_schema_data.py
__repr__
intel471/titan-client-python
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, CredentialSetSchemaData)): return False return (self.to_dict() == other.to_dict())
-3,107,021,995,298,215,400
Returns true if both objects are equal
titan_client/models/credential_set_schema_data.py
__eq__
intel471/titan-client-python
python
def __eq__(self, other): if (not isinstance(other, CredentialSetSchemaData)): return False return (self.to_dict() == other.to_dict())
def __ne__(self, other): 'Returns true if both objects are not equal' if (not isinstance(other, CredentialSetSchemaData)): return True return (self.to_dict() != other.to_dict())
-4,546,790,678,469,889,000
Returns true if both objects are not equal
titan_client/models/credential_set_schema_data.py
__ne__
intel471/titan-client-python
python
def __ne__(self, other): if (not isinstance(other, CredentialSetSchemaData)): return True return (self.to_dict() != other.to_dict())
def solve1(buses, est): 'Get the earliest bus from the <buses> according to the <est>imate\n time. ' arrival = [(bus - (est % bus)) for bus in buses] earliest = min(arrival) return (min(arrival) * buses[arrival.index(earliest)])
-3,282,658,681,182,208,000
Get the earliest bus from the <buses> according to the <est>imate time.
src/day13.py
solve1
mfrdbigolin/AoC2020
python
def solve1(buses, est): 'Get the earliest bus from the <buses> according to the <est>imate\n time. ' arrival = [(bus - (est % bus)) for bus in buses] earliest = min(arrival) return (min(arrival) * buses[arrival.index(earliest)])
def solve2(buses, depart): 'Find the smallest timestamp, such that all the <buses> follow their\n bus ID, which is indexically paired with <depart>.\n\n Here I used the Chinese Remainder Theorem, someone well acquainted to\n anyone who does competitive or discrete mathematics. ' mods = [((b - d) % b) for (b, d) in zip(buses, depart)] cross_mul = [(product(buses) // b) for b in buses] return (sum([((c * pow(c, (- 1), b)) * m) for (b, c, m) in zip(buses, cross_mul, mods)]) % product(buses))
-6,611,917,787,805,794,000
Find the smallest timestamp, such that all the <buses> follow their bus ID, which is indexically paired with <depart>. Here I used the Chinese Remainder Theorem, someone well acquainted to anyone who does competitive or discrete mathematics.
src/day13.py
solve2
mfrdbigolin/AoC2020
python
def solve2(buses, depart): 'Find the smallest timestamp, such that all the <buses> follow their\n bus ID, which is indexically paired with <depart>.\n\n Here I used the Chinese Remainder Theorem, someone well acquainted to\n anyone who does competitive or discrete mathematics. ' mods = [((b - d) % b) for (b, d) in zip(buses, depart)] cross_mul = [(product(buses) // b) for b in buses] return (sum([((c * pow(c, (- 1), b)) * m) for (b, c, m) in zip(buses, cross_mul, mods)]) % product(buses))
@numba.jit(nopython=True, nogil=True, parallel=True) def _numba_add(xx, yy, nn, cinf, x, y, z, w, typ, zw, varw, ww): '\n numba jit compiled add function\n\n - Numba compiles this function, ensure that no classes/functions are within unless they are also numba-ized\n - Numba.prange forces numba to parallelize, generates exception when parallelism fails, helping you figure out\n what needs to be fixed. Otherwise parallel=True can fail silently\n - nopython=True, this function operates entirely outside of the python interpreter\n - nogil=True, will not use the python GIL (this might be redundant with nopython)\n\n ' grows = yy.size gcols = xx.size doindices = 0 cinf2 = (cinf ** 2) for idx in numba.prange(grows): ddy = ((y - yy[idx]) ** 2) yidx = np.flatnonzero((ddy < cinf2)) if (yidx.size == 0): continue xtest = (cinf2 - ddy[yidx]) for jdx in numba.prange(gcols): xidx = np.flatnonzero((((x[yidx] - xx[jdx]) ** 2) < xtest)) if (xidx.size == 0): continue II = yidx[xidx] if (typ == 'dwm'): if (w.size != 1): R = ((((xx[jdx] - x[II]) ** 2) + ((yy[idx] - y[II]) ** 2)) ** (w[II] / 2.0)) else: R = ((((xx[jdx] - x[II]) ** 2) + ((yy[idx] - y[II]) ** 2)) ** (w / 2.0)) if (not doindices): nn[(idx, jdx)] = np.nansum(np.array([nn[(idx, jdx)], xidx.size])) else: nn[(idx, jdx)] = ((idx * (gcols - 1)) + jdx) if (w.size != 1): chunk_w = w[II] else: chunk_w = w if (typ == 'mean'): (zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)]) = _numba_mean_by_cell(zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)], nn[(idx, jdx)], z[II], chunk_w) elif (typ == 'median'): (zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)]) = _numba_median_by_cell(zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)], z[II]) return (zw, ww, varw, nn)
-2,726,346,112,734,129,700
numba jit compiled add function - Numba compiles this function, ensure that no classes/functions are within unless they are also numba-ized - Numba.prange forces numba to parallelize, generates exception when parallelism fails, helping you figure out what needs to be fixed. Otherwise parallel=True can fail silently - nopython=True, this function operates entirely outside of the python interpreter - nogil=True, will not use the python GIL (this might be redundant with nopython)
VGRID/vgrid.py
_numba_add
valschmidt/vgrid
python
@numba.jit(nopython=True, nogil=True, parallel=True) def _numba_add(xx, yy, nn, cinf, x, y, z, w, typ, zw, varw, ww): '\n numba jit compiled add function\n\n - Numba compiles this function, ensure that no classes/functions are within unless they are also numba-ized\n - Numba.prange forces numba to parallelize, generates exception when parallelism fails, helping you figure out\n what needs to be fixed. Otherwise parallel=True can fail silently\n - nopython=True, this function operates entirely outside of the python interpreter\n - nogil=True, will not use the python GIL (this might be redundant with nopython)\n\n ' grows = yy.size gcols = xx.size doindices = 0 cinf2 = (cinf ** 2) for idx in numba.prange(grows): ddy = ((y - yy[idx]) ** 2) yidx = np.flatnonzero((ddy < cinf2)) if (yidx.size == 0): continue xtest = (cinf2 - ddy[yidx]) for jdx in numba.prange(gcols): xidx = np.flatnonzero((((x[yidx] - xx[jdx]) ** 2) < xtest)) if (xidx.size == 0): continue II = yidx[xidx] if (typ == 'dwm'): if (w.size != 1): R = ((((xx[jdx] - x[II]) ** 2) + ((yy[idx] - y[II]) ** 2)) ** (w[II] / 2.0)) else: R = ((((xx[jdx] - x[II]) ** 2) + ((yy[idx] - y[II]) ** 2)) ** (w / 2.0)) if (not doindices): nn[(idx, jdx)] = np.nansum(np.array([nn[(idx, jdx)], xidx.size])) else: nn[(idx, jdx)] = ((idx * (gcols - 1)) + jdx) if (w.size != 1): chunk_w = w[II] else: chunk_w = w if (typ == 'mean'): (zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)]) = _numba_mean_by_cell(zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)], nn[(idx, jdx)], z[II], chunk_w) elif (typ == 'median'): (zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)]) = _numba_median_by_cell(zw[(idx, jdx)], ww[(idx, jdx)], varw[(idx, jdx)], z[II]) return (zw, ww, varw, nn)
@numba.jit(nopython=True) def _numba_median_by_cell(zw_cell, ww_cell, varw_cell, z): ' Calculate the median value in each grid cell.\n\n The method used here to provide a "running median" is for each add(),\n calculate the average of the existing value with the median of the\n new points. This method works reasonably well, but can produce\n inferior results if a single add() contains only outliers and their\n are insufficient additional adds to constrain it.' zw = np.nanmean(np.append(zw_cell, np.nanmedian(z))) ww = 1 varw = np.nansum(np.append((z - (zw_cell / (ww_cell ** 2))), varw_cell)) return (zw, ww, varw)
1,534,134,619,217,558,300
Calculate the median value in each grid cell. The method used here to provide a "running median" is for each add(), calculate the average of the existing value with the median of the new points. This method works reasonably well, but can produce inferior results if a single add() contains only outliers and their are insufficient additional adds to constrain it.
VGRID/vgrid.py
_numba_median_by_cell
valschmidt/vgrid
python
@numba.jit(nopython=True) def _numba_median_by_cell(zw_cell, ww_cell, varw_cell, z): ' Calculate the median value in each grid cell.\n\n The method used here to provide a "running median" is for each add(),\n calculate the average of the existing value with the median of the\n new points. This method works reasonably well, but can produce\n inferior results if a single add() contains only outliers and their\n are insufficient additional adds to constrain it.' zw = np.nanmean(np.append(zw_cell, np.nanmedian(z))) ww = 1 varw = np.nansum(np.append((z - (zw_cell / (ww_cell ** 2))), varw_cell)) return (zw, ww, varw)
def zz(self): ' Calculate the z values for the grid.' return (self.zw / self.ww)
-3,181,243,170,877,537,000
Calculate the z values for the grid.
VGRID/vgrid.py
zz
valschmidt/vgrid
python
def zz(self): ' ' return (self.zw / self.ww)
def mean_wholegrid(self): ' Calculate mean values for the whole grid.' [self.mean(idx, jdx) for idx in range(self.yy.size) for jdx in range(self.xx.size) if (self._I[idx][jdx] is not None)]
8,913,522,569,416,889,000
Calculate mean values for the whole grid.
VGRID/vgrid.py
mean_wholegrid
valschmidt/vgrid
python
def mean_wholegrid(self): ' ' [self.mean(idx, jdx) for idx in range(self.yy.size) for jdx in range(self.xx.size) if (self._I[idx][jdx] is not None)]
def median_wholegrid(self): ' Calculate median values for the whole grid.' [self.median(idx, jdx) for idx in range(self.yy.size) for jdx in range(self.xx.size) if (self._I[idx][jdx] is not None)]
-3,475,235,760,687,923,700
Calculate median values for the whole grid.
VGRID/vgrid.py
median_wholegrid
valschmidt/vgrid
python
def median_wholegrid(self): ' ' [self.median(idx, jdx) for idx in range(self.yy.size) for jdx in range(self.xx.size) if (self._I[idx][jdx] is not None)]
def mean(self, idx, jdx): 'Mean gridding algorithm.\n\n vgrid implemnets incremental gridding where possible.\n To do this, the sum of the product of the weights and z values are\n retained in addition to the sum of the weights. Then method zz()\n calculates the quotient of the two to obtain the actual weighted\n mean z values. Note that when all weights are one, (or if w is set to\n 1 for shorthand), a standard mean is calculated.\n\n Variance is calcualted in a similar way. In this case the sum of\n w*(z_i - mu)^2 is calculated and stored for each grid node, where\n z_i is the value to be gridded and mu is the mean of the grid node\n calculated thus far. Then this sum is divided by the sum of the\n weights to get the final estimated variance. As the mean of the grid\n node approaches the true mean, this value should approach the true\n variance.\n ' self._II = self._I[idx][jdx] if (self._w.size == 1): self.zw[(idx, jdx)] = np.nansum(np.concatenate((self._z[self._II], [self.zw[(idx, jdx)]]))) self.ww[(idx, jdx)] = self.nn[(idx, jdx)] self.varw[(idx, jdx)] = np.nansum(np.concatenate((np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.nn[(idx, jdx)])), 2), [self.varw[(idx, jdx)]]))) else: self.zw[(idx, jdx)] = np.nansum(np.append(self.zw[(idx, jdx)], (self._z[self._II] * self._w[self._II]))) self.ww[(idx, jdx)] = np.nansum(np.append(self.ww[(idx, jdx)], self._w[self._II])) self.varw[(idx, jdx)] = np.nansum(np.append(np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.ww[(idx, jdx)])), 2), self.varw[(idx, jdx)]))
-1,551,458,373,005,666,000
Mean gridding algorithm. vgrid implemnets incremental gridding where possible. To do this, the sum of the product of the weights and z values are retained in addition to the sum of the weights. Then method zz() calculates the quotient of the two to obtain the actual weighted mean z values. Note that when all weights are one, (or if w is set to 1 for shorthand), a standard mean is calculated. Variance is calcualted in a similar way. In this case the sum of w*(z_i - mu)^2 is calculated and stored for each grid node, where z_i is the value to be gridded and mu is the mean of the grid node calculated thus far. Then this sum is divided by the sum of the weights to get the final estimated variance. As the mean of the grid node approaches the true mean, this value should approach the true variance.
VGRID/vgrid.py
mean
valschmidt/vgrid
python
def mean(self, idx, jdx): 'Mean gridding algorithm.\n\n vgrid implemnets incremental gridding where possible.\n To do this, the sum of the product of the weights and z values are\n retained in addition to the sum of the weights. Then method zz()\n calculates the quotient of the two to obtain the actual weighted\n mean z values. Note that when all weights are one, (or if w is set to\n 1 for shorthand), a standard mean is calculated.\n\n Variance is calcualted in a similar way. In this case the sum of\n w*(z_i - mu)^2 is calculated and stored for each grid node, where\n z_i is the value to be gridded and mu is the mean of the grid node\n calculated thus far. Then this sum is divided by the sum of the\n weights to get the final estimated variance. As the mean of the grid\n node approaches the true mean, this value should approach the true\n variance.\n ' self._II = self._I[idx][jdx] if (self._w.size == 1): self.zw[(idx, jdx)] = np.nansum(np.concatenate((self._z[self._II], [self.zw[(idx, jdx)]]))) self.ww[(idx, jdx)] = self.nn[(idx, jdx)] self.varw[(idx, jdx)] = np.nansum(np.concatenate((np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.nn[(idx, jdx)])), 2), [self.varw[(idx, jdx)]]))) else: self.zw[(idx, jdx)] = np.nansum(np.append(self.zw[(idx, jdx)], (self._z[self._II] * self._w[self._II]))) self.ww[(idx, jdx)] = np.nansum(np.append(self.ww[(idx, jdx)], self._w[self._II])) self.varw[(idx, jdx)] = np.nansum(np.append(np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.ww[(idx, jdx)])), 2), self.varw[(idx, jdx)]))
def var(self): ' Calculate the variance' return (self.varw / self.ww)
8,553,262,426,190,962,000
Calculate the variance
VGRID/vgrid.py
var
valschmidt/vgrid
python
def var(self): ' ' return (self.varw / self.ww)
def std(self): 'Calculate the standard deviation' return np.sqrt(self.var())
-7,358,242,616,525,090,000
Calculate the standard deviation
VGRID/vgrid.py
std
valschmidt/vgrid
python
def std(self): return np.sqrt(self.var())
def meanwithoutlierrejection(self): ' TO DO: Calculate the mean, rejecting values that exceed 3-sigma\n from existing estimate.' pass
4,126,677,113,143,395,000
TO DO: Calculate the mean, rejecting values that exceed 3-sigma from existing estimate.
VGRID/vgrid.py
meanwithoutlierrejection
valschmidt/vgrid
python
def meanwithoutlierrejection(self): ' TO DO: Calculate the mean, rejecting values that exceed 3-sigma\n from existing estimate.' pass
def median(self, idx, jdx): ' Calculate the median value in each grid cell.\n \n The method used here to provide a "running median" is for each add(),\n calculate the average of the existing value with the median of the\n new points. This method works reasonably well, but can produce\n inferior results if a single add() contains only outliers and their\n are insufficient additional adds to constrain it.' self.zw[(idx, jdx)] = np.nanmean(np.append(self.zw[(idx, jdx)], np.nanmedian(self._z[self._II]))) self.ww[(idx, jdx)] = 1 self.varw[(idx, jdx)] = np.nansum(np.append(np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.ww[(idx, jdx)])), 2), self.varw[(idx, jdx)])) pass
-8,187,741,193,710,137,000
Calculate the median value in each grid cell. The method used here to provide a "running median" is for each add(), calculate the average of the existing value with the median of the new points. This method works reasonably well, but can produce inferior results if a single add() contains only outliers and their are insufficient additional adds to constrain it.
VGRID/vgrid.py
median
valschmidt/vgrid
python
def median(self, idx, jdx): ' Calculate the median value in each grid cell.\n \n The method used here to provide a "running median" is for each add(),\n calculate the average of the existing value with the median of the\n new points. This method works reasonably well, but can produce\n inferior results if a single add() contains only outliers and their\n are insufficient additional adds to constrain it.' self.zw[(idx, jdx)] = np.nanmean(np.append(self.zw[(idx, jdx)], np.nanmedian(self._z[self._II]))) self.ww[(idx, jdx)] = 1 self.varw[(idx, jdx)] = np.nansum(np.append(np.power((self._z[self._II] - (self.zw[(idx, jdx)] / self.ww[(idx, jdx)])), 2), self.varw[(idx, jdx)])) pass
def gridsizesanitycheck(self, M): 'Check to see if the grid size is going to be REALLY large. ' if (M.__len__() > 10000.0): return False else: return True
-5,416,826,466,113,330,000
Check to see if the grid size is going to be REALLY large.
VGRID/vgrid.py
gridsizesanitycheck
valschmidt/vgrid
python
def gridsizesanitycheck(self, M): ' ' if (M.__len__() > 10000.0): return False else: return True
def create_new_grid(self): ' Create a new empty grid.' self.xx = np.arange(min(self._x), (max(self._x) + self.cs), self.cs) self.yy = np.arange(min(self._y), (max(self._y) + self.cs), self.cs) if (not (self.gridsizesanitycheck(self.xx) and self.gridsizesanitycheck(self.yy))): print('Grid size is too large.') return self.zw = np.empty((self.yy.size, self.xx.size)) self.zw.fill(np.nan) self.nn = np.copy(self.zw) self.ww = np.copy(self.zw) self.varw = np.copy(self.zw)
-1,567,089,638,302,527,200
Create a new empty grid.
VGRID/vgrid.py
create_new_grid
valschmidt/vgrid
python
def create_new_grid(self): ' ' self.xx = np.arange(min(self._x), (max(self._x) + self.cs), self.cs) self.yy = np.arange(min(self._y), (max(self._y) + self.cs), self.cs) if (not (self.gridsizesanitycheck(self.xx) and self.gridsizesanitycheck(self.yy))): print('Grid size is too large.') return self.zw = np.empty((self.yy.size, self.xx.size)) self.zw.fill(np.nan) self.nn = np.copy(self.zw) self.ww = np.copy(self.zw) self.varw = np.copy(self.zw)
def add(self, x, y, z, w): " An incremental gridding function\n\n Arguments:\n x: x-coordinates\n y: y-coordiantes\n z: z-scalar values to grid\n w: w-weight applied to each point (size of x or 1 for no weighting)\n When 'type' = Nlowerthan or Ngreaterthan, w is the threshold value\n When 'type' = distance weighted mean, distance = R^w\n cs: grid cell size\n cinf: cell influence\n type: type of grid (see below)\n\n Output:\n g.xx: vector of grid cell x coordinates.\n g.yy: vector of grid cell y coordiantes.\n g.zz: 2D matrix of grided values times their weights.\n g.nn: 2D matrix containing the number of points in each grid cell.\n g.ww: sum of weights of items in the grid cell\n\n %\n % Grid types:\n % mean:\n % Average of the values. When w != 1, the mean is calculated by\n % multipying each value in the cell by its weight divided by the sum\n % of the weights in that cell.\n %\n % median:\n % Calculates the median value for each grid cell.\n %\n % mode:\n % Calculates the mode of the values for each grid cell.\n %\n % shoalest:\n % Calculates the minimum value for each grid cell.\n %\n % deepest:\n % Calculates the maximum value for each grid cell.\n %\n % stddev:\n % Calculates the standard deviation of the values in each grid cell.\n %\n % stderr:\n % Calculates the standard error of the values in each grid cell\n % (stddev/N, where stddev is the standard deviation and N is the number\n % of points falling in the cell)\n %\n % dwm:\n % Calculates the distance weighted mean where each value in the cell is\n % inversely weighted by the square if it's distance to the cell node.\n %\n % Nlowerthan:\n % Calculates the number of points in the grid cell lower than some value,\n % w.\n %\n % Ngreaterthan:\n % Calculates the number of points greater than some value w.\n %\n % To Do:\n % - Rewrite mean function as a matrix operation to simplify the propagation\n % of uncertainty calcualtion. Actually this might be make more general such\n % that your pass a list of values, their uncertainty and weighting factors\n % and get back a mean and propagated uncertainty. This would allow\n % relatively simple incorporation of things like range weighting, footprint\n % weighting, gaussian weighting, etc.\n % - Add uncertainty to z input and propagate these through the\n % calculations.\n % - Add uncertainty to x and y inputs and propagate these through the\n % calculations (more difficult)\n % Rewrite a C mex function.\n %\n % Val Schmidt\n % CCOM/JHC\n % 2018, 2019\n " if (np.isscalar(x) or np.isscalar(y) or np.isscalar(z)): print('X, Y, or Z is scalar - must be numpy array.') sys.exit() self._x = x.ravel() self._y = y.ravel() self._z = z.ravel() if (not np.isscalar(w)): self._w = w.ravel() else: self._w = np.array(w) if (self._w.size != 1): if sum((self._w == 0)): print('Found zero weights. Weights cannot be zero.') print('Setting to 1e-20.') self._w[(self._w == 0)] = 1e-20 if (self.zw is None): self.create_new_grid() else: self.expand_grid() grows = self.yy.size gcols = self.xx.size doindices = 0 self.sort_data_kdtree() if (self.type == 'dwm'): print('Not yet supported.') if (self.type == 'mean'): self.mean_wholegrid() if (self.type == 'median'): self.median_wholegrid()
6,376,264,592,654,362,000
An incremental gridding function Arguments: x: x-coordinates y: y-coordiantes z: z-scalar values to grid w: w-weight applied to each point (size of x or 1 for no weighting) When 'type' = Nlowerthan or Ngreaterthan, w is the threshold value When 'type' = distance weighted mean, distance = R^w cs: grid cell size cinf: cell influence type: type of grid (see below) Output: g.xx: vector of grid cell x coordinates. g.yy: vector of grid cell y coordiantes. g.zz: 2D matrix of grided values times their weights. g.nn: 2D matrix containing the number of points in each grid cell. g.ww: sum of weights of items in the grid cell % % Grid types: % mean: % Average of the values. When w != 1, the mean is calculated by % multipying each value in the cell by its weight divided by the sum % of the weights in that cell. % % median: % Calculates the median value for each grid cell. % % mode: % Calculates the mode of the values for each grid cell. % % shoalest: % Calculates the minimum value for each grid cell. % % deepest: % Calculates the maximum value for each grid cell. % % stddev: % Calculates the standard deviation of the values in each grid cell. % % stderr: % Calculates the standard error of the values in each grid cell % (stddev/N, where stddev is the standard deviation and N is the number % of points falling in the cell) % % dwm: % Calculates the distance weighted mean where each value in the cell is % inversely weighted by the square if it's distance to the cell node. % % Nlowerthan: % Calculates the number of points in the grid cell lower than some value, % w. % % Ngreaterthan: % Calculates the number of points greater than some value w. % % To Do: % - Rewrite mean function as a matrix operation to simplify the propagation % of uncertainty calcualtion. Actually this might be make more general such % that your pass a list of values, their uncertainty and weighting factors % and get back a mean and propagated uncertainty. This would allow % relatively simple incorporation of things like range weighting, footprint % weighting, gaussian weighting, etc. % - Add uncertainty to z input and propagate these through the % calculations. % - Add uncertainty to x and y inputs and propagate these through the % calculations (more difficult) % Rewrite a C mex function. % % Val Schmidt % CCOM/JHC % 2018, 2019
VGRID/vgrid.py
add
valschmidt/vgrid
python
def add(self, x, y, z, w): " An incremental gridding function\n\n Arguments:\n x: x-coordinates\n y: y-coordiantes\n z: z-scalar values to grid\n w: w-weight applied to each point (size of x or 1 for no weighting)\n When 'type' = Nlowerthan or Ngreaterthan, w is the threshold value\n When 'type' = distance weighted mean, distance = R^w\n cs: grid cell size\n cinf: cell influence\n type: type of grid (see below)\n\n Output:\n g.xx: vector of grid cell x coordinates.\n g.yy: vector of grid cell y coordiantes.\n g.zz: 2D matrix of grided values times their weights.\n g.nn: 2D matrix containing the number of points in each grid cell.\n g.ww: sum of weights of items in the grid cell\n\n %\n % Grid types:\n % mean:\n % Average of the values. When w != 1, the mean is calculated by\n % multipying each value in the cell by its weight divided by the sum\n % of the weights in that cell.\n %\n % median:\n % Calculates the median value for each grid cell.\n %\n % mode:\n % Calculates the mode of the values for each grid cell.\n %\n % shoalest:\n % Calculates the minimum value for each grid cell.\n %\n % deepest:\n % Calculates the maximum value for each grid cell.\n %\n % stddev:\n % Calculates the standard deviation of the values in each grid cell.\n %\n % stderr:\n % Calculates the standard error of the values in each grid cell\n % (stddev/N, where stddev is the standard deviation and N is the number\n % of points falling in the cell)\n %\n % dwm:\n % Calculates the distance weighted mean where each value in the cell is\n % inversely weighted by the square if it's distance to the cell node.\n %\n % Nlowerthan:\n % Calculates the number of points in the grid cell lower than some value,\n % w.\n %\n % Ngreaterthan:\n % Calculates the number of points greater than some value w.\n %\n % To Do:\n % - Rewrite mean function as a matrix operation to simplify the propagation\n % of uncertainty calcualtion. Actually this might be make more general such\n % that your pass a list of values, their uncertainty and weighting factors\n % and get back a mean and propagated uncertainty. This would allow\n % relatively simple incorporation of things like range weighting, footprint\n % weighting, gaussian weighting, etc.\n % - Add uncertainty to z input and propagate these through the\n % calculations.\n % - Add uncertainty to x and y inputs and propagate these through the\n % calculations (more difficult)\n % Rewrite a C mex function.\n %\n % Val Schmidt\n % CCOM/JHC\n % 2018, 2019\n " if (np.isscalar(x) or np.isscalar(y) or np.isscalar(z)): print('X, Y, or Z is scalar - must be numpy array.') sys.exit() self._x = x.ravel() self._y = y.ravel() self._z = z.ravel() if (not np.isscalar(w)): self._w = w.ravel() else: self._w = np.array(w) if (self._w.size != 1): if sum((self._w == 0)): print('Found zero weights. Weights cannot be zero.') print('Setting to 1e-20.') self._w[(self._w == 0)] = 1e-20 if (self.zw is None): self.create_new_grid() else: self.expand_grid() grows = self.yy.size gcols = self.xx.size doindices = 0 self.sort_data_kdtree() if (self.type == 'dwm'): print('Not yet supported.') if (self.type == 'mean'): self.mean_wholegrid() if (self.type == 'median'): self.median_wholegrid()
def sort_data_kdtree(self): ' A sorting of the data into grid cells using KDtrees.' tree = spatial.cKDTree(list(zip(self._x.ravel(), self._y.ravel())), leafsize=10000000.0) (xxx, yyy) = np.meshgrid(self.xx, self.yy) indexes = tree.query_ball_point(np.vstack((xxx.ravel(), yyy.ravel())).T, r=self.cinf, p=2, n_jobs=(- 1)).reshape(xxx.shape) self._I = indexes
-8,088,798,651,022,963,000
A sorting of the data into grid cells using KDtrees.
VGRID/vgrid.py
sort_data_kdtree
valschmidt/vgrid
python
def sort_data_kdtree(self): ' ' tree = spatial.cKDTree(list(zip(self._x.ravel(), self._y.ravel())), leafsize=10000000.0) (xxx, yyy) = np.meshgrid(self.xx, self.yy) indexes = tree.query_ball_point(np.vstack((xxx.ravel(), yyy.ravel())).T, r=self.cinf, p=2, n_jobs=(- 1)).reshape(xxx.shape) self._I = indexes
def sort_data(self): ' Determine which data contributes to each grid node.\n The list of indices is populated in self._I[n][m], where n and m\n indicate the grid node.' self._I = [x[:] for x in ([([None] * self.xx.size)] * self.yy.size)] cinf2 = (self.cinf ** 2) for idx in np.arange(0, self.yy.size, dtype='uint32'): '\n We need to search through all the data efficiently to determine\n indices for points that will contribute to a grid node. Those that\n contribute are ones that fall within the "cell influence" (cinf).\n Thse are the ones that meet the criteria:\n\n sqrt( (x-xo).^2 + (y-yo).^2 ) < cinf\n\n Squaring both sides....\n\n (x-xo)^2 + (y-yo)^2 < cinf^2\n\n This will never be true when either term of the lhs is >= cinf^2.\n So we reduce the search by doing these piece-meal. ' ddy = ((self._y - self.yy[idx]) ** 2) yidx = np.flatnonzero((ddy < cinf2)) if (yidx.size == 0): continue xtest = (cinf2 - ddy[yidx]) for jdx in np.arange(0, self.xx.size, dtype='uint32'): xidx = np.flatnonzero((((self._x[yidx] - self.xx[jdx]) ** 2) < xtest)) if (xidx.size == 0): continue self._I[idx][jdx] = yidx[xidx] self.nn[(idx, jdx)] = np.nansum(np.append(self.nn[(idx, jdx)], xidx.size))
-7,180,185,893,760,760,000
Determine which data contributes to each grid node. The list of indices is populated in self._I[n][m], where n and m indicate the grid node.
VGRID/vgrid.py
sort_data
valschmidt/vgrid
python
def sort_data(self): ' Determine which data contributes to each grid node.\n The list of indices is populated in self._I[n][m], where n and m\n indicate the grid node.' self._I = [x[:] for x in ([([None] * self.xx.size)] * self.yy.size)] cinf2 = (self.cinf ** 2) for idx in np.arange(0, self.yy.size, dtype='uint32'): '\n We need to search through all the data efficiently to determine\n indices for points that will contribute to a grid node. Those that\n contribute are ones that fall within the "cell influence" (cinf).\n Thse are the ones that meet the criteria:\n\n sqrt( (x-xo).^2 + (y-yo).^2 ) < cinf\n\n Squaring both sides....\n\n (x-xo)^2 + (y-yo)^2 < cinf^2\n\n This will never be true when either term of the lhs is >= cinf^2.\n So we reduce the search by doing these piece-meal. ' ddy = ((self._y - self.yy[idx]) ** 2) yidx = np.flatnonzero((ddy < cinf2)) if (yidx.size == 0): continue xtest = (cinf2 - ddy[yidx]) for jdx in np.arange(0, self.xx.size, dtype='uint32'): xidx = np.flatnonzero((((self._x[yidx] - self.xx[jdx]) ** 2) < xtest)) if (xidx.size == 0): continue self._I[idx][jdx] = yidx[xidx] self.nn[(idx, jdx)] = np.nansum(np.append(self.nn[(idx, jdx)], xidx.size))
def numba_add(self, x, y, z, w, chnksize=100000): "\n An attempt at running self.add with numba. Key here is to chunk the points so that the numba compiled function\n _numba_add runs multiple times, where the first run is slow as it compiles. _numba_add is not within the class,\n as classes aren't supported. There is this new thing numba.jitclass, but it appears to still be experimental.\n\n On my test dataset containing about 4.5 million soundings, I got the following results:\n - existing add = 55.8 seconds\n - numba_add (chunksize, time) = (100, 55.2), (1000, 21.2), (10000, 17.9), (100000, 16.6), (150000, 16.2),\n (200000, 15.7), (1000000, 18.0)\n " if (np.isscalar(x) or np.isscalar(y) or np.isscalar(z)): print('X, Y, or Z is scalar - must be numpy array.') sys.exit() self._x = x.ravel() self._y = y.ravel() self._z = z.ravel() if (not np.isscalar(w)): self._w = w.ravel() else: self._w = np.array(w) if (self._w.size != 1): if sum((self._w == 0)): print('Found zero weights. Weights cannot be zero.') print('Setting to 1e-20.') self._w[(self._w == 0)] = 1e-20 if (self.zw is None): self.create_new_grid() else: self.expand_grid() ptlen = len(self._x) chnks = [[(i * chnksize), min(((i + 1) * chnksize), ptlen)] for i in range((int((ptlen / chnksize)) + 1))] for chnk in chnks: chnk_idx = slice(chnk[0], chnk[1]) if (self._w.size != 1): chunk_w = self._w[chnk_idx] else: chunk_w = self._w (self.zw, self.ww, self.varw, self.nn) = _numba_add(self.xx, self.yy, self.nn, self.cinf, self._x[chnk_idx], self._y[chnk_idx], self._z[chnk_idx], chunk_w, self.type, self.zw, self.varw, self.ww)
7,784,261,836,886,096,000
An attempt at running self.add with numba. Key here is to chunk the points so that the numba compiled function _numba_add runs multiple times, where the first run is slow as it compiles. _numba_add is not within the class, as classes aren't supported. There is this new thing numba.jitclass, but it appears to still be experimental. On my test dataset containing about 4.5 million soundings, I got the following results: - existing add = 55.8 seconds - numba_add (chunksize, time) = (100, 55.2), (1000, 21.2), (10000, 17.9), (100000, 16.6), (150000, 16.2), (200000, 15.7), (1000000, 18.0)
VGRID/vgrid.py
numba_add
valschmidt/vgrid
python
def numba_add(self, x, y, z, w, chnksize=100000): "\n An attempt at running self.add with numba. Key here is to chunk the points so that the numba compiled function\n _numba_add runs multiple times, where the first run is slow as it compiles. _numba_add is not within the class,\n as classes aren't supported. There is this new thing numba.jitclass, but it appears to still be experimental.\n\n On my test dataset containing about 4.5 million soundings, I got the following results:\n - existing add = 55.8 seconds\n - numba_add (chunksize, time) = (100, 55.2), (1000, 21.2), (10000, 17.9), (100000, 16.6), (150000, 16.2),\n (200000, 15.7), (1000000, 18.0)\n " if (np.isscalar(x) or np.isscalar(y) or np.isscalar(z)): print('X, Y, or Z is scalar - must be numpy array.') sys.exit() self._x = x.ravel() self._y = y.ravel() self._z = z.ravel() if (not np.isscalar(w)): self._w = w.ravel() else: self._w = np.array(w) if (self._w.size != 1): if sum((self._w == 0)): print('Found zero weights. Weights cannot be zero.') print('Setting to 1e-20.') self._w[(self._w == 0)] = 1e-20 if (self.zw is None): self.create_new_grid() else: self.expand_grid() ptlen = len(self._x) chnks = [[(i * chnksize), min(((i + 1) * chnksize), ptlen)] for i in range((int((ptlen / chnksize)) + 1))] for chnk in chnks: chnk_idx = slice(chnk[0], chnk[1]) if (self._w.size != 1): chunk_w = self._w[chnk_idx] else: chunk_w = self._w (self.zw, self.ww, self.varw, self.nn) = _numba_add(self.xx, self.yy, self.nn, self.cinf, self._x[chnk_idx], self._y[chnk_idx], self._z[chnk_idx], chunk_w, self.type, self.zw, self.varw, self.ww)
def gridTest(N=2, ProfileON=False): ' Method to test gridding.' print(('N=%d' % N)) x = (np.random.random((N, 1)) * 100) y = (np.random.random((N, 1)) * 100) z = np.exp((np.sqrt((((x - 50.0) ** 2) + ((y - 50.0) ** 2))) / 50)) G = vgrid(1, 1, 'mean') if profileON: print('Profiling on.') lp = LineProfiler() GAddProfiled = lp(G.add) lp.add_function(G.mean) GAddProfiled(x, y, z, 1) return (G, lp) else: G.add(x, y, z, 1) return G
2,034,815,446,680,505,300
Method to test gridding.
VGRID/vgrid.py
gridTest
valschmidt/vgrid
python
def gridTest(N=2, ProfileON=False): ' ' print(('N=%d' % N)) x = (np.random.random((N, 1)) * 100) y = (np.random.random((N, 1)) * 100) z = np.exp((np.sqrt((((x - 50.0) ** 2) + ((y - 50.0) ** 2))) / 50)) G = vgrid(1, 1, 'mean') if profileON: print('Profiling on.') lp = LineProfiler() GAddProfiled = lp(G.add) lp.add_function(G.mean) GAddProfiled(x, y, z, 1) return (G, lp) else: G.add(x, y, z, 1) return G
def setup_platform(hass, config, add_entities, discovery_info=None): 'Set up the Samsung TV platform.' known_devices = hass.data.get(KNOWN_DEVICES_KEY) if (known_devices is None): known_devices = set() hass.data[KNOWN_DEVICES_KEY] = known_devices uuid = None if (config.get(CONF_HOST) is not None): host = config.get(CONF_HOST) port = config.get(CONF_PORT) name = config.get(CONF_NAME) mac = config.get(CONF_MAC) timeout = config.get(CONF_TIMEOUT) elif (discovery_info is not None): tv_name = discovery_info.get('name') model = discovery_info.get('model_name') host = discovery_info.get('host') name = '{} ({})'.format(tv_name, model) port = DEFAULT_PORT timeout = DEFAULT_TIMEOUT mac = None udn = discovery_info.get('udn') if (udn and udn.startswith('uuid:')): uuid = udn[len('uuid:'):] else: _LOGGER.warning('Cannot determine device') return ip_addr = socket.gethostbyname(host) if (ip_addr not in known_devices): known_devices.add(ip_addr) add_entities([SamsungTVDevice(host, port, name, timeout, mac, uuid)]) _LOGGER.info("Samsung TV %s:%d added as '%s'", host, port, name) else: _LOGGER.info('Ignoring duplicate Samsung TV %s:%d', host, port)
7,478,801,825,985,793,000
Set up the Samsung TV platform.
homeassistant/components/samsungtv/media_player.py
setup_platform
MagicalTrev89/home-assistant
python
def setup_platform(hass, config, add_entities, discovery_info=None): known_devices = hass.data.get(KNOWN_DEVICES_KEY) if (known_devices is None): known_devices = set() hass.data[KNOWN_DEVICES_KEY] = known_devices uuid = None if (config.get(CONF_HOST) is not None): host = config.get(CONF_HOST) port = config.get(CONF_PORT) name = config.get(CONF_NAME) mac = config.get(CONF_MAC) timeout = config.get(CONF_TIMEOUT) elif (discovery_info is not None): tv_name = discovery_info.get('name') model = discovery_info.get('model_name') host = discovery_info.get('host') name = '{} ({})'.format(tv_name, model) port = DEFAULT_PORT timeout = DEFAULT_TIMEOUT mac = None udn = discovery_info.get('udn') if (udn and udn.startswith('uuid:')): uuid = udn[len('uuid:'):] else: _LOGGER.warning('Cannot determine device') return ip_addr = socket.gethostbyname(host) if (ip_addr not in known_devices): known_devices.add(ip_addr) add_entities([SamsungTVDevice(host, port, name, timeout, mac, uuid)]) _LOGGER.info("Samsung TV %s:%d added as '%s'", host, port, name) else: _LOGGER.info('Ignoring duplicate Samsung TV %s:%d', host, port)
def __init__(self, host, port, name, timeout, mac, uuid): 'Initialize the Samsung device.' from samsungctl import exceptions from samsungctl import Remote import wakeonlan self._exceptions_class = exceptions self._remote_class = Remote self._name = name self._mac = mac self._uuid = uuid self._wol = wakeonlan self._muted = False self._playing = True self._state = None self._remote = None self._end_of_power_off = None self._config = {'name': 'HomeAssistant', 'description': name, 'id': 'ha.component.samsung', 'port': port, 'host': host, 'timeout': timeout} if (self._config['port'] in (8001, 8002)): self._config['method'] = 'websocket' else: self._config['method'] = 'legacy'
5,848,817,460,881,256,000
Initialize the Samsung device.
homeassistant/components/samsungtv/media_player.py
__init__
MagicalTrev89/home-assistant
python
def __init__(self, host, port, name, timeout, mac, uuid): from samsungctl import exceptions from samsungctl import Remote import wakeonlan self._exceptions_class = exceptions self._remote_class = Remote self._name = name self._mac = mac self._uuid = uuid self._wol = wakeonlan self._muted = False self._playing = True self._state = None self._remote = None self._end_of_power_off = None self._config = {'name': 'HomeAssistant', 'description': name, 'id': 'ha.component.samsung', 'port': port, 'host': host, 'timeout': timeout} if (self._config['port'] in (8001, 8002)): self._config['method'] = 'websocket' else: self._config['method'] = 'legacy'
def update(self): 'Update state of device.' self.send_key('KEY')
-2,328,262,338,321,575,400
Update state of device.
homeassistant/components/samsungtv/media_player.py
update
MagicalTrev89/home-assistant
python
def update(self): self.send_key('KEY')
def get_remote(self): 'Create or return a remote control instance.' if (self._remote is None): self._remote = self._remote_class(self._config) return self._remote
6,487,959,911,410,992,000
Create or return a remote control instance.
homeassistant/components/samsungtv/media_player.py
get_remote
MagicalTrev89/home-assistant
python
def get_remote(self): if (self._remote is None): self._remote = self._remote_class(self._config) return self._remote
def send_key(self, key): 'Send a key to the tv and handles exceptions.' if (self._power_off_in_progress() and (key not in ('KEY_POWER', 'KEY_POWEROFF'))): _LOGGER.info('TV is powering off, not sending command: %s', key) return try: retry_count = 1 for _ in range((retry_count + 1)): try: self.get_remote().control(key) break except (self._exceptions_class.ConnectionClosed, BrokenPipeError): self._remote = None self._state = STATE_ON except (self._exceptions_class.UnhandledResponse, self._exceptions_class.AccessDenied): self._state = STATE_ON self._remote = None _LOGGER.debug('Failed sending command %s', key, exc_info=True) return except OSError: self._state = STATE_OFF self._remote = None if self._power_off_in_progress(): self._state = STATE_OFF
-9,098,840,057,020,562,000
Send a key to the tv and handles exceptions.
homeassistant/components/samsungtv/media_player.py
send_key
MagicalTrev89/home-assistant
python
def send_key(self, key): if (self._power_off_in_progress() and (key not in ('KEY_POWER', 'KEY_POWEROFF'))): _LOGGER.info('TV is powering off, not sending command: %s', key) return try: retry_count = 1 for _ in range((retry_count + 1)): try: self.get_remote().control(key) break except (self._exceptions_class.ConnectionClosed, BrokenPipeError): self._remote = None self._state = STATE_ON except (self._exceptions_class.UnhandledResponse, self._exceptions_class.AccessDenied): self._state = STATE_ON self._remote = None _LOGGER.debug('Failed sending command %s', key, exc_info=True) return except OSError: self._state = STATE_OFF self._remote = None if self._power_off_in_progress(): self._state = STATE_OFF
@property def unique_id(self) -> str: 'Return the unique ID of the device.' return self._uuid
1,727,077,770,470,627,600
Return the unique ID of the device.
homeassistant/components/samsungtv/media_player.py
unique_id
MagicalTrev89/home-assistant
python
@property def unique_id(self) -> str: return self._uuid
@property def name(self): 'Return the name of the device.' return self._name
-4,231,536,673,663,769,600
Return the name of the device.
homeassistant/components/samsungtv/media_player.py
name
MagicalTrev89/home-assistant
python
@property def name(self): return self._name
@property def state(self): 'Return the state of the device.' return self._state
-1,086,931,682,847,915,500
Return the state of the device.
homeassistant/components/samsungtv/media_player.py
state
MagicalTrev89/home-assistant
python
@property def state(self): return self._state
@property def is_volume_muted(self): 'Boolean if volume is currently muted.' return self._muted
7,300,793,638,546,656,000
Boolean if volume is currently muted.
homeassistant/components/samsungtv/media_player.py
is_volume_muted
MagicalTrev89/home-assistant
python
@property def is_volume_muted(self): return self._muted
@property def source_list(self): 'List of available input sources.' return list(SOURCES)
-9,049,588,076,648,536,000
List of available input sources.
homeassistant/components/samsungtv/media_player.py
source_list
MagicalTrev89/home-assistant
python
@property def source_list(self): return list(SOURCES)
@property def supported_features(self): 'Flag media player features that are supported.' if self._mac: return (SUPPORT_SAMSUNGTV | SUPPORT_TURN_ON) return SUPPORT_SAMSUNGTV
7,980,298,372,656,887,000
Flag media player features that are supported.
homeassistant/components/samsungtv/media_player.py
supported_features
MagicalTrev89/home-assistant
python
@property def supported_features(self): if self._mac: return (SUPPORT_SAMSUNGTV | SUPPORT_TURN_ON) return SUPPORT_SAMSUNGTV
def turn_off(self): 'Turn off media player.' self._end_of_power_off = (dt_util.utcnow() + timedelta(seconds=15)) if (self._config['method'] == 'websocket'): self.send_key('KEY_POWER') else: self.send_key('KEY_POWEROFF') try: self.get_remote().close() self._remote = None except OSError: _LOGGER.debug('Could not establish connection.')
4,279,632,299,341,431,000
Turn off media player.
homeassistant/components/samsungtv/media_player.py
turn_off
MagicalTrev89/home-assistant
python
def turn_off(self): self._end_of_power_off = (dt_util.utcnow() + timedelta(seconds=15)) if (self._config['method'] == 'websocket'): self.send_key('KEY_POWER') else: self.send_key('KEY_POWEROFF') try: self.get_remote().close() self._remote = None except OSError: _LOGGER.debug('Could not establish connection.')
def volume_up(self): 'Volume up the media player.' self.send_key('KEY_VOLUP')
559,289,289,374,248,450
Volume up the media player.
homeassistant/components/samsungtv/media_player.py
volume_up
MagicalTrev89/home-assistant
python
def volume_up(self): self.send_key('KEY_VOLUP')
def volume_down(self): 'Volume down media player.' self.send_key('KEY_VOLDOWN')
7,823,773,795,804,483,000
Volume down media player.
homeassistant/components/samsungtv/media_player.py
volume_down
MagicalTrev89/home-assistant
python
def volume_down(self): self.send_key('KEY_VOLDOWN')
def mute_volume(self, mute): 'Send mute command.' self.send_key('KEY_MUTE')
-5,766,217,316,642,036,000
Send mute command.
homeassistant/components/samsungtv/media_player.py
mute_volume
MagicalTrev89/home-assistant
python
def mute_volume(self, mute): self.send_key('KEY_MUTE')
def media_play_pause(self): 'Simulate play pause media player.' if self._playing: self.media_pause() else: self.media_play()
5,424,839,084,411,945,000
Simulate play pause media player.
homeassistant/components/samsungtv/media_player.py
media_play_pause
MagicalTrev89/home-assistant
python
def media_play_pause(self): if self._playing: self.media_pause() else: self.media_play()
def media_play(self): 'Send play command.' self._playing = True self.send_key('KEY_PLAY')
-4,624,043,560,243,361,000
Send play command.
homeassistant/components/samsungtv/media_player.py
media_play
MagicalTrev89/home-assistant
python
def media_play(self): self._playing = True self.send_key('KEY_PLAY')
def media_pause(self): 'Send media pause command to media player.' self._playing = False self.send_key('KEY_PAUSE')
-4,419,400,526,847,819,000
Send media pause command to media player.
homeassistant/components/samsungtv/media_player.py
media_pause
MagicalTrev89/home-assistant
python
def media_pause(self): self._playing = False self.send_key('KEY_PAUSE')
def media_next_track(self): 'Send next track command.' self.send_key('KEY_FF')
7,350,569,723,410,886,000
Send next track command.
homeassistant/components/samsungtv/media_player.py
media_next_track
MagicalTrev89/home-assistant
python
def media_next_track(self): self.send_key('KEY_FF')
def media_previous_track(self): 'Send the previous track command.' self.send_key('KEY_REWIND')
-6,217,111,541,976,905,000
Send the previous track command.
homeassistant/components/samsungtv/media_player.py
media_previous_track
MagicalTrev89/home-assistant
python
def media_previous_track(self): self.send_key('KEY_REWIND')
async def async_play_media(self, media_type, media_id, **kwargs): 'Support changing a channel.' if (media_type != MEDIA_TYPE_CHANNEL): _LOGGER.error('Unsupported media type') return try: cv.positive_int(media_id) except vol.Invalid: _LOGGER.error('Media ID must be positive integer') return for digit in media_id: (await self.hass.async_add_job(self.send_key, ('KEY_' + digit))) (await asyncio.sleep(KEY_PRESS_TIMEOUT, self.hass.loop)) (await self.hass.async_add_job(self.send_key, 'KEY_ENTER'))
922,428,579,967,757,400
Support changing a channel.
homeassistant/components/samsungtv/media_player.py
async_play_media
MagicalTrev89/home-assistant
python
async def async_play_media(self, media_type, media_id, **kwargs): if (media_type != MEDIA_TYPE_CHANNEL): _LOGGER.error('Unsupported media type') return try: cv.positive_int(media_id) except vol.Invalid: _LOGGER.error('Media ID must be positive integer') return for digit in media_id: (await self.hass.async_add_job(self.send_key, ('KEY_' + digit))) (await asyncio.sleep(KEY_PRESS_TIMEOUT, self.hass.loop)) (await self.hass.async_add_job(self.send_key, 'KEY_ENTER'))
def turn_on(self): 'Turn the media player on.' if self._mac: self._wol.send_magic_packet(self._mac) else: self.send_key('KEY_POWERON')
-8,216,487,931,362,533,000
Turn the media player on.
homeassistant/components/samsungtv/media_player.py
turn_on
MagicalTrev89/home-assistant
python
def turn_on(self): if self._mac: self._wol.send_magic_packet(self._mac) else: self.send_key('KEY_POWERON')
async def async_select_source(self, source): 'Select input source.' if (source not in SOURCES): _LOGGER.error('Unsupported source') return (await self.hass.async_add_job(self.send_key, SOURCES[source]))
2,872,646,657,564,179,500
Select input source.
homeassistant/components/samsungtv/media_player.py
async_select_source
MagicalTrev89/home-assistant
python
async def async_select_source(self, source): if (source not in SOURCES): _LOGGER.error('Unsupported source') return (await self.hass.async_add_job(self.send_key, SOURCES[source]))
def GenerateConfig(context): 'Generate configuration.' base_name = context.env['name'] instance = {'zone': context.properties['zone'], 'machineType': ZonalComputeUrl(context.env['project'], context.properties['zone'], 'machineTypes', 'f1-micro'), 'metadata': {'items': [{'key': 'gce-container-declaration', 'value': GenerateManifest(context)}]}, 'disks': [{'deviceName': 'boot', 'type': 'PERSISTENT', 'autoDelete': True, 'boot': True, 'initializeParams': {'diskName': (base_name + '-disk'), 'sourceImage': GlobalComputeUrl('cos-cloud', 'images', context.properties['containerImage'])}}], 'networkInterfaces': [{'accessConfigs': [{'name': 'external-nat', 'type': 'ONE_TO_ONE_NAT'}], 'network': GlobalComputeUrl(context.env['project'], 'networks', 'default')}], 'serviceAccounts': [{'email': 'default', 'scopes': ['https://www.googleapis.com/auth/logging.write']}]} resources = {'resources': [{'name': base_name, 'type': 'compute.v1.instance', 'properties': instance}]} return resources
-2,596,707,007,980,729,300
Generate configuration.
templates/container_vm.py
GenerateConfig
AlexBulankou/dm-logbook-sample
python
def GenerateConfig(context): base_name = context.env['name'] instance = {'zone': context.properties['zone'], 'machineType': ZonalComputeUrl(context.env['project'], context.properties['zone'], 'machineTypes', 'f1-micro'), 'metadata': {'items': [{'key': 'gce-container-declaration', 'value': GenerateManifest(context)}]}, 'disks': [{'deviceName': 'boot', 'type': 'PERSISTENT', 'autoDelete': True, 'boot': True, 'initializeParams': {'diskName': (base_name + '-disk'), 'sourceImage': GlobalComputeUrl('cos-cloud', 'images', context.properties['containerImage'])}}], 'networkInterfaces': [{'accessConfigs': [{'name': 'external-nat', 'type': 'ONE_TO_ONE_NAT'}], 'network': GlobalComputeUrl(context.env['project'], 'networks', 'default')}], 'serviceAccounts': [{'email': 'default', 'scopes': ['https://www.googleapis.com/auth/logging.write']}]} resources = {'resources': [{'name': base_name, 'type': 'compute.v1.instance', 'properties': instance}]} return resources
def __init__(self, server_port=None): 'Initialize.\n\n :param server_port: Int. local port.\n ' self.server_port = server_port self.logged_requests = {} self.analysis = {'total_requests': 0, 'domains': set(), 'duration': 0}
-7,691,464,755,553,936,000
Initialize. :param server_port: Int. local port.
monitor_requests/data.py
__init__
danpozmanter/monitor_requests
python
def __init__(self, server_port=None): 'Initialize.\n\n :param server_port: Int. local port.\n ' self.server_port = server_port self.logged_requests = {} self.analysis = {'total_requests': 0, 'domains': set(), 'duration': 0}
def delete(self): 'Delete data from server if applicable.' if (not self.server_port): return self._delete()
-1,416,033,866,173,989,000
Delete data from server if applicable.
monitor_requests/data.py
delete
danpozmanter/monitor_requests
python
def delete(self): if (not self.server_port): return self._delete()
def log(self, url, domain, method, response, tb_list, duration): 'Log request, store traceback/response data and update counts.' if self.server_port: self._post({'url': url, 'domain': domain, 'method': method, 'response_content': str(response.content), 'response_status_code': response.status_code, 'duration': duration, 'traceback_list': tb_list}) else: if (url not in self.logged_requests): self.logged_requests[url] = {'count': 0, 'methods': set(), 'tracebacks': set(), 'responses': set()} self.logged_requests[url]['count'] += 1 self.logged_requests[url]['methods'].add(method) self.logged_requests[url]['tracebacks'].add(tuple(tb_list)) self.logged_requests[url]['responses'].add((response.status_code, response.content)) self.analysis['duration'] += duration self.analysis['total_requests'] += 1 self.analysis['domains'].add(domain)
6,867,242,971,886,877,000
Log request, store traceback/response data and update counts.
monitor_requests/data.py
log
danpozmanter/monitor_requests
python
def log(self, url, domain, method, response, tb_list, duration): if self.server_port: self._post({'url': url, 'domain': domain, 'method': method, 'response_content': str(response.content), 'response_status_code': response.status_code, 'duration': duration, 'traceback_list': tb_list}) else: if (url not in self.logged_requests): self.logged_requests[url] = {'count': 0, 'methods': set(), 'tracebacks': set(), 'responses': set()} self.logged_requests[url]['count'] += 1 self.logged_requests[url]['methods'].add(method) self.logged_requests[url]['tracebacks'].add(tuple(tb_list)) self.logged_requests[url]['responses'].add((response.status_code, response.content)) self.analysis['duration'] += duration self.analysis['total_requests'] += 1 self.analysis['domains'].add(domain)
def retrieve(self): 'Retrieve data from server or instance.' if (not self.server_port): return (self.logged_requests, self.analysis) data = self._get() return (data.get('logged_requests'), data.get('analysis'))
9,150,144,056,110,489,000
Retrieve data from server or instance.
monitor_requests/data.py
retrieve
danpozmanter/monitor_requests
python
def retrieve(self): if (not self.server_port): return (self.logged_requests, self.analysis) data = self._get() return (data.get('logged_requests'), data.get('analysis'))
def has_perm(self, perm, obj=None): 'Does the user have a specific permission?' return True
-9,084,859,824,158,067,000
Does the user have a specific permission?
dentalapp-backend/dentalapp/userauth/models.py
has_perm
PavelescuVictor/DentalApplication
python
def has_perm(self, perm, obj=None): return True
def has_module_perms(self, app_label): 'Does the user have permissions to view the app `app_label`?' return True
4,992,969,413,468,943,000
Does the user have permissions to view the app `app_label`?
dentalapp-backend/dentalapp/userauth/models.py
has_module_perms
PavelescuVictor/DentalApplication
python
def has_module_perms(self, app_label): return True
def get_args(): ' Get args from stdin.\n\n The common options are defined in the object\n libs.nnet3.train.common.CommonParser.parser.\n See steps/libs/nnet3/train/common.py\n ' parser = argparse.ArgumentParser(description='Trains a feed forward raw DNN (without transition model)\n using frame-level objectives like cross-entropy and mean-squared-error.\n DNNs include simple DNNs, TDNNs and CNNs.', formatter_class=argparse.ArgumentDefaultsHelpFormatter, conflict_handler='resolve', parents=[common_train_lib.CommonParser(include_chunk_context=False).parser]) parser.add_argument('--egs.frames-per-eg', type=int, dest='frames_per_eg', default=8, help='Number of output labels per example') parser.add_argument('--image.augmentation-opts', type=str, dest='image_augmentation_opts', default=None, help='Image augmentation options') parser.add_argument('--trainer.input-model', type=str, dest='input_model', default=None, action=common_lib.NullstrToNoneAction, help='If specified, this model is used as initial\n raw model (0.raw in the script) instead of initializing\n the model from xconfig. Configs dir is not expected to\n exist and left/right context is computed from this\n model.') parser.add_argument('--trainer.prior-subset-size', type=int, dest='prior_subset_size', default=20000, help='Number of samples for computing priors') parser.add_argument('--trainer.num-jobs-compute-prior', type=int, dest='num_jobs_compute_prior', default=10, help='The prior computation jobs are single threaded and run on the CPU') parser.add_argument('--trainer.optimization.minibatch-size', type=str, dest='minibatch_size', default='512', help='Size of the minibatch used in SGD training\n (argument to nnet3-merge-egs); may be a more general\n rule as accepted by the --minibatch-size option of\n nnet3-merge-egs; run that program without args to see\n the format.') parser.add_argument('--compute-average-posteriors', type=str, action=common_lib.StrToBoolAction, choices=['true', 'false'], default=False, help='If true, then the average output of the\n network is computed and dumped as post.final.vec') parser.add_argument('--nj', type=int, default=4, help='Number of parallel jobs') parser.add_argument('--use-dense-targets', type=str, action=common_lib.StrToBoolAction, default=True, choices=['true', 'false'], help='Train neural network using dense targets') parser.add_argument('--feat-dir', type=str, required=False, help='Directory with features used for training the neural network.') parser.add_argument('--targets-scp', type=str, required=False, help='Targets for training neural network.\n This is a kaldi-format SCP file of target matrices.\n <utterance-id> <extended-filename-of-target-matrix>.\n The target matrix\'s column dim must match \n the neural network output dim, and the\n row dim must match the number of output frames \n i.e. after subsampling if "--frame-subsampling-factor" \n option is passed to --egs.opts.') parser.add_argument('--vad-egs', type=str, action=common_lib.StrToBoolAction, default=False, choices=['true', 'false'], help='Get nnet3 egs with vad applied on features.') parser.add_argument('--dir', type=str, required=True, help='Directory to store the models and all other files.') print(' '.join(sys.argv)) print(sys.argv) args = parser.parse_args() [args, run_opts] = process_args(args) return [args, run_opts]
3,313,513,404,749,398,000
Get args from stdin. The common options are defined in the object libs.nnet3.train.common.CommonParser.parser. See steps/libs/nnet3/train/common.py
egs/wsj/s5/steps/nnet3/train_raw_dnn.py
get_args
iezhanqingran/kaldi
python
def get_args(): ' Get args from stdin.\n\n The common options are defined in the object\n libs.nnet3.train.common.CommonParser.parser.\n See steps/libs/nnet3/train/common.py\n ' parser = argparse.ArgumentParser(description='Trains a feed forward raw DNN (without transition model)\n using frame-level objectives like cross-entropy and mean-squared-error.\n DNNs include simple DNNs, TDNNs and CNNs.', formatter_class=argparse.ArgumentDefaultsHelpFormatter, conflict_handler='resolve', parents=[common_train_lib.CommonParser(include_chunk_context=False).parser]) parser.add_argument('--egs.frames-per-eg', type=int, dest='frames_per_eg', default=8, help='Number of output labels per example') parser.add_argument('--image.augmentation-opts', type=str, dest='image_augmentation_opts', default=None, help='Image augmentation options') parser.add_argument('--trainer.input-model', type=str, dest='input_model', default=None, action=common_lib.NullstrToNoneAction, help='If specified, this model is used as initial\n raw model (0.raw in the script) instead of initializing\n the model from xconfig. Configs dir is not expected to\n exist and left/right context is computed from this\n model.') parser.add_argument('--trainer.prior-subset-size', type=int, dest='prior_subset_size', default=20000, help='Number of samples for computing priors') parser.add_argument('--trainer.num-jobs-compute-prior', type=int, dest='num_jobs_compute_prior', default=10, help='The prior computation jobs are single threaded and run on the CPU') parser.add_argument('--trainer.optimization.minibatch-size', type=str, dest='minibatch_size', default='512', help='Size of the minibatch used in SGD training\n (argument to nnet3-merge-egs); may be a more general\n rule as accepted by the --minibatch-size option of\n nnet3-merge-egs; run that program without args to see\n the format.') parser.add_argument('--compute-average-posteriors', type=str, action=common_lib.StrToBoolAction, choices=['true', 'false'], default=False, help='If true, then the average output of the\n network is computed and dumped as post.final.vec') parser.add_argument('--nj', type=int, default=4, help='Number of parallel jobs') parser.add_argument('--use-dense-targets', type=str, action=common_lib.StrToBoolAction, default=True, choices=['true', 'false'], help='Train neural network using dense targets') parser.add_argument('--feat-dir', type=str, required=False, help='Directory with features used for training the neural network.') parser.add_argument('--targets-scp', type=str, required=False, help='Targets for training neural network.\n This is a kaldi-format SCP file of target matrices.\n <utterance-id> <extended-filename-of-target-matrix>.\n The target matrix\'s column dim must match \n the neural network output dim, and the\n row dim must match the number of output frames \n i.e. after subsampling if "--frame-subsampling-factor" \n option is passed to --egs.opts.') parser.add_argument('--vad-egs', type=str, action=common_lib.StrToBoolAction, default=False, choices=['true', 'false'], help='Get nnet3 egs with vad applied on features.') parser.add_argument('--dir', type=str, required=True, help='Directory to store the models and all other files.') print(' '.join(sys.argv)) print(sys.argv) args = parser.parse_args() [args, run_opts] = process_args(args) return [args, run_opts]
def process_args(args): ' Process the options got from get_args()\n ' if (args.frames_per_eg < 1): raise Exception('--egs.frames-per-eg should have a minimum value of 1') if (not common_train_lib.validate_minibatch_size_str(args.minibatch_size)): raise Exception('--trainer.optimization.minibatch-size has an invalid value') if (not os.path.exists(args.dir)): raise Exception('Directory specified with --dir={0} does not exist.'.format(args.dir)) if ((not os.path.exists((args.dir + '/configs'))) and ((args.input_model is None) or (not os.path.exists(args.input_model)))): raise Exception('Either --trainer.input-model option should be supplied, and exist; or the {0}/configs directory should exist.{0}/configs is the output of make_configs.py'.format(args.dir)) run_opts = common_train_lib.RunOpts() if (args.use_gpu in ['true', 'false']): args.use_gpu = ('yes' if (args.use_gpu == 'true') else 'no') if (args.use_gpu in ['yes', 'wait']): if (not common_lib.check_if_cuda_compiled()): logger.warning('You are running with one thread but you have not compiled\n for CUDA. You may be running a setup optimized for GPUs.\n If you have GPUs and have nvcc installed, go to src/ and do\n ./configure; make') run_opts.train_queue_opt = '--gpu 1' run_opts.parallel_train_opts = '--use-gpu={}'.format(args.use_gpu) run_opts.combine_gpu_opt = '--use-gpu={}'.format(args.use_gpu) run_opts.combine_queue_opt = '--gpu 1' run_opts.prior_gpu_opt = '--use-gpu={}'.format(args.use_gpu) run_opts.prior_queue_opt = '--gpu 1' else: logger.warning('Without using a GPU this will be very slow. nnet3 does not yet support multiple threads.') run_opts.train_queue_opt = '' run_opts.parallel_train_opts = '--use-gpu=no' run_opts.combine_gpu_opt = '--use-gpu=no' run_opts.combine_queue_opt = '' run_opts.prior_gpu_opt = '--use-gpu=no' run_opts.prior_queue_opt = '' run_opts.command = args.command run_opts.egs_command = (args.egs_command if (args.egs_command is not None) else args.command) run_opts.num_jobs_compute_prior = args.num_jobs_compute_prior return [args, run_opts]
5,270,192,292,623,299,000
Process the options got from get_args()
egs/wsj/s5/steps/nnet3/train_raw_dnn.py
process_args
iezhanqingran/kaldi
python
def process_args(args): ' \n ' if (args.frames_per_eg < 1): raise Exception('--egs.frames-per-eg should have a minimum value of 1') if (not common_train_lib.validate_minibatch_size_str(args.minibatch_size)): raise Exception('--trainer.optimization.minibatch-size has an invalid value') if (not os.path.exists(args.dir)): raise Exception('Directory specified with --dir={0} does not exist.'.format(args.dir)) if ((not os.path.exists((args.dir + '/configs'))) and ((args.input_model is None) or (not os.path.exists(args.input_model)))): raise Exception('Either --trainer.input-model option should be supplied, and exist; or the {0}/configs directory should exist.{0}/configs is the output of make_configs.py'.format(args.dir)) run_opts = common_train_lib.RunOpts() if (args.use_gpu in ['true', 'false']): args.use_gpu = ('yes' if (args.use_gpu == 'true') else 'no') if (args.use_gpu in ['yes', 'wait']): if (not common_lib.check_if_cuda_compiled()): logger.warning('You are running with one thread but you have not compiled\n for CUDA. You may be running a setup optimized for GPUs.\n If you have GPUs and have nvcc installed, go to src/ and do\n ./configure; make') run_opts.train_queue_opt = '--gpu 1' run_opts.parallel_train_opts = '--use-gpu={}'.format(args.use_gpu) run_opts.combine_gpu_opt = '--use-gpu={}'.format(args.use_gpu) run_opts.combine_queue_opt = '--gpu 1' run_opts.prior_gpu_opt = '--use-gpu={}'.format(args.use_gpu) run_opts.prior_queue_opt = '--gpu 1' else: logger.warning('Without using a GPU this will be very slow. nnet3 does not yet support multiple threads.') run_opts.train_queue_opt = run_opts.parallel_train_opts = '--use-gpu=no' run_opts.combine_gpu_opt = '--use-gpu=no' run_opts.combine_queue_opt = run_opts.prior_gpu_opt = '--use-gpu=no' run_opts.prior_queue_opt = run_opts.command = args.command run_opts.egs_command = (args.egs_command if (args.egs_command is not None) else args.command) run_opts.num_jobs_compute_prior = args.num_jobs_compute_prior return [args, run_opts]
def train(args, run_opts): ' The main function for training.\n\n Args:\n args: a Namespace object with the required parameters\n obtained from the function process_args()\n run_opts: RunOpts object obtained from the process_args()\n ' arg_string = pprint.pformat(vars(args)) logger.info('Arguments for the experiment\n{0}'.format(arg_string)) feat_dim = common_lib.get_feat_dim(args.feat_dir) ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir) ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir) config_dir = '{0}/configs'.format(args.dir) var_file = '{0}/vars'.format(config_dir) if (args.input_model is None): config_dir = '{0}/configs'.format(args.dir) var_file = '{0}/vars'.format(config_dir) variables = common_train_lib.parse_generic_config_vars_file(var_file) else: variables = common_train_lib.get_input_model_info(args.input_model) try: model_left_context = variables['model_left_context'] model_right_context = variables['model_right_context'] except KeyError as e: raise Exception('KeyError {0}: Variables need to be defined in {1}'.format(str(e), '{0}/configs'.format(args.dir))) left_context = model_left_context right_context = model_right_context if ((args.stage <= (- 4)) and os.path.exists((args.dir + '/configs/init.config')) and (args.input_model is None)): logger.info('Initializing the network for computing the LDA stats') common_lib.execute_command('{command} {dir}/log/nnet_init.log nnet3-init --srand=-2 {dir}/configs/init.config {dir}/init.raw'.format(command=run_opts.command, dir=args.dir)) default_egs_dir = '{0}/egs'.format(args.dir) if ((args.stage <= (- 3)) and (args.egs_dir is None)): if ((args.targets_scp is None) or (args.feat_dir is None)): raise Exception("If you don't supply the --egs-dir option, the --targets-scp and --feat-dir options are required.") logger.info('Generating egs') if args.use_dense_targets: target_type = 'dense' try: num_targets = int(variables['num_targets']) if (common_lib.get_feat_dim_from_scp(args.targets_scp) != num_targets): raise Exception('Mismatch between num-targets provided to script vs configs') except KeyError as e: num_targets = (- 1) else: target_type = 'sparse' try: num_targets = int(variables['num_targets']) except KeyError as e: raise Exception('KeyError {0}: Variables need to be defined in {1}'.format(str(e), '{0}/configs'.format(args.dir))) train_lib.raw_model.generate_egs_using_targets(data=args.feat_dir, targets_scp=args.targets_scp, vad_egs=args.vad_egs, egs_dir=default_egs_dir, left_context=left_context, right_context=right_context, run_opts=run_opts, frames_per_eg_str=str(args.frames_per_eg), srand=args.srand, egs_opts=args.egs_opts, cmvn_opts=args.cmvn_opts, online_ivector_dir=args.online_ivector_dir, samples_per_iter=args.samples_per_iter, stage=args.egs_stage, target_type=target_type, num_targets=num_targets) if (args.egs_dir is None): egs_dir = default_egs_dir else: egs_dir = args.egs_dir [egs_left_context, egs_right_context, frames_per_eg_str, num_archives] = common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim, ivector_id, left_context, right_context) assert (str(args.frames_per_eg) == frames_per_eg_str) if (args.num_jobs_final > num_archives): raise Exception('num_jobs_final cannot exceed the number of archives in the egs directory') common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir) if ((args.stage <= (- 2)) and os.path.exists((args.dir + '/configs/init.config')) and (args.input_model is None)): logger.info('Computing the preconditioning matrix for input features') train_lib.common.compute_preconditioning_matrix(args.dir, egs_dir, num_archives, run_opts, max_lda_jobs=args.max_lda_jobs, rand_prune=args.rand_prune) if (args.stage <= (- 2)): logger.info('Computing initial vector for FixedScaleComponent before softmax, using priors^{prior_scale} and rescaling to average 1'.format(prior_scale=args.presoftmax_prior_scale_power)) counts_path = (os.path.dirname(args.targets_scp) + '/target_counts') common_train_lib.compute_presoftmax_prior_scale_targets(args.dir, counts_path, presoftmax_prior_scale_power=args.presoftmax_prior_scale_power) if (args.stage <= (- 1)): logger.info('Preparing the initial network.') common_train_lib.prepare_initial_network(args.dir, run_opts, args.srand, args.input_model) num_archives_expanded = (num_archives * args.frames_per_eg) num_archives_to_process = int((args.num_epochs * num_archives_expanded)) num_archives_processed = 0 num_iters = int(((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))) if args.do_final_combination: models_to_combine = common_train_lib.get_model_combine_iters(num_iters, args.num_epochs, num_archives_expanded, args.max_models_combine, args.num_jobs_final) else: models_to_combine = None if os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir)): if os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir)): raise Exception('both {0}/valid_diagnostic.egs and {0}/valid_diagnostic.scp exist.This script expects only one of them to exist.'.format(egs_dir)) use_multitask_egs = True else: if (not os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir))): raise Exception('neither {0}/valid_diagnostic.egs nor {0}/valid_diagnostic.scp exist.This script expects one of them.'.format(egs_dir)) use_multitask_egs = False logger.info('Training will run for {0} epochs = {1} iterations'.format(args.num_epochs, num_iters)) for iter in range(num_iters): if ((args.exit_stage is not None) and (iter == args.exit_stage)): logger.info('Exiting early due to --exit-stage {0}'.format(iter)) return current_num_jobs = common_train_lib.get_current_num_jobs(iter, num_iters, args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final) if (args.stage <= iter): lrate = common_train_lib.get_learning_rate(iter, current_num_jobs, num_iters, num_archives_processed, num_archives_to_process, args.initial_effective_lrate, args.final_effective_lrate) shrinkage_value = (1.0 - (args.proportional_shrink * lrate)) if (shrinkage_value <= 0.5): raise Exception('proportional-shrink={0} is too large, it gives shrink-value={1}'.format(args.proportional_shrink, shrinkage_value)) percent = ((num_archives_processed * 100.0) / num_archives_to_process) epoch = ((num_archives_processed * args.num_epochs) / num_archives_to_process) shrink_info_str = '' if (shrinkage_value != 1.0): shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value) logger.info('Iter: {0}/{1} Jobs: {2} Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete) lr: {6:0.6f} {7}'.format(iter, (num_iters - 1), current_num_jobs, epoch, args.num_epochs, percent, lrate, shrink_info_str)) train_lib.common.train_one_iteration(dir=args.dir, iter=iter, srand=args.srand, egs_dir=egs_dir, num_jobs=current_num_jobs, num_archives_processed=num_archives_processed, num_archives=num_archives, learning_rate=lrate, dropout_edit_string=common_train_lib.get_dropout_edit_string(args.dropout_schedule, (float(num_archives_processed) / num_archives_to_process), iter), train_opts=' '.join(args.train_opts), minibatch_size_str=args.minibatch_size, frames_per_eg=args.frames_per_eg, momentum=args.momentum, max_param_change=args.max_param_change, shrinkage_value=shrinkage_value, shuffle_buffer_size=args.shuffle_buffer_size, run_opts=run_opts, get_raw_nnet_from_am=False, image_augmentation_opts=args.image_augmentation_opts, use_multitask_egs=use_multitask_egs, backstitch_training_scale=args.backstitch_training_scale, backstitch_training_interval=args.backstitch_training_interval) if args.cleanup: common_train_lib.remove_model(args.dir, (iter - 2), num_iters, models_to_combine, args.preserve_model_interval, get_raw_nnet_from_am=False) if (args.email is not None): reporting_iter_interval = (num_iters * args.reporting_interval) if ((iter % reporting_iter_interval) == 0): [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir) message = report subject = 'Update : Expt {dir} : Iter {iter}'.format(dir=args.dir, iter=iter) common_lib.send_mail(message, subject, args.email) num_archives_processed = (num_archives_processed + current_num_jobs) if (args.stage <= num_iters): if args.do_final_combination: logger.info('Doing final combination to produce final.raw') train_lib.common.combine_models(dir=args.dir, num_iters=num_iters, models_to_combine=models_to_combine, egs_dir=egs_dir, minibatch_size_str=args.minibatch_size, run_opts=run_opts, get_raw_nnet_from_am=False, max_objective_evaluations=args.max_objective_evaluations, use_multitask_egs=use_multitask_egs) else: common_lib.force_symlink('{0}.raw'.format(num_iters), '{0}/final.raw'.format(args.dir)) if (args.compute_average_posteriors and (args.stage <= (num_iters + 1))): logger.info("Getting average posterior for output-node 'output'.") train_lib.common.compute_average_posterior(dir=args.dir, iter='final', egs_dir=egs_dir, num_archives=num_archives, prior_subset_size=args.prior_subset_size, run_opts=run_opts, get_raw_nnet_from_am=False) if args.cleanup: logger.info('Cleaning up the experiment directory {0}'.format(args.dir)) remove_egs = args.remove_egs if (args.egs_dir is not None): remove_egs = False common_train_lib.clean_nnet_dir(nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir, preserve_model_interval=args.preserve_model_interval, remove_egs=remove_egs, get_raw_nnet_from_am=False) outputs_list = common_train_lib.get_outputs_list('{0}/final.raw'.format(args.dir), get_raw_nnet_from_am=False) if ('output' in outputs_list): [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir) if (args.email is not None): common_lib.send_mail(report, 'Update : Expt {0} : complete'.format(args.dir), args.email) with open('{dir}/accuracy.{output_name}.report'.format(dir=args.dir, output_name='output'), 'w') as f: f.write(report) common_lib.execute_command('steps/info/nnet3_dir_info.pl {0}'.format(args.dir))
2,651,687,824,782,216,700
The main function for training. Args: args: a Namespace object with the required parameters obtained from the function process_args() run_opts: RunOpts object obtained from the process_args()
egs/wsj/s5/steps/nnet3/train_raw_dnn.py
train
iezhanqingran/kaldi
python
def train(args, run_opts): ' The main function for training.\n\n Args:\n args: a Namespace object with the required parameters\n obtained from the function process_args()\n run_opts: RunOpts object obtained from the process_args()\n ' arg_string = pprint.pformat(vars(args)) logger.info('Arguments for the experiment\n{0}'.format(arg_string)) feat_dim = common_lib.get_feat_dim(args.feat_dir) ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir) ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir) config_dir = '{0}/configs'.format(args.dir) var_file = '{0}/vars'.format(config_dir) if (args.input_model is None): config_dir = '{0}/configs'.format(args.dir) var_file = '{0}/vars'.format(config_dir) variables = common_train_lib.parse_generic_config_vars_file(var_file) else: variables = common_train_lib.get_input_model_info(args.input_model) try: model_left_context = variables['model_left_context'] model_right_context = variables['model_right_context'] except KeyError as e: raise Exception('KeyError {0}: Variables need to be defined in {1}'.format(str(e), '{0}/configs'.format(args.dir))) left_context = model_left_context right_context = model_right_context if ((args.stage <= (- 4)) and os.path.exists((args.dir + '/configs/init.config')) and (args.input_model is None)): logger.info('Initializing the network for computing the LDA stats') common_lib.execute_command('{command} {dir}/log/nnet_init.log nnet3-init --srand=-2 {dir}/configs/init.config {dir}/init.raw'.format(command=run_opts.command, dir=args.dir)) default_egs_dir = '{0}/egs'.format(args.dir) if ((args.stage <= (- 3)) and (args.egs_dir is None)): if ((args.targets_scp is None) or (args.feat_dir is None)): raise Exception("If you don't supply the --egs-dir option, the --targets-scp and --feat-dir options are required.") logger.info('Generating egs') if args.use_dense_targets: target_type = 'dense' try: num_targets = int(variables['num_targets']) if (common_lib.get_feat_dim_from_scp(args.targets_scp) != num_targets): raise Exception('Mismatch between num-targets provided to script vs configs') except KeyError as e: num_targets = (- 1) else: target_type = 'sparse' try: num_targets = int(variables['num_targets']) except KeyError as e: raise Exception('KeyError {0}: Variables need to be defined in {1}'.format(str(e), '{0}/configs'.format(args.dir))) train_lib.raw_model.generate_egs_using_targets(data=args.feat_dir, targets_scp=args.targets_scp, vad_egs=args.vad_egs, egs_dir=default_egs_dir, left_context=left_context, right_context=right_context, run_opts=run_opts, frames_per_eg_str=str(args.frames_per_eg), srand=args.srand, egs_opts=args.egs_opts, cmvn_opts=args.cmvn_opts, online_ivector_dir=args.online_ivector_dir, samples_per_iter=args.samples_per_iter, stage=args.egs_stage, target_type=target_type, num_targets=num_targets) if (args.egs_dir is None): egs_dir = default_egs_dir else: egs_dir = args.egs_dir [egs_left_context, egs_right_context, frames_per_eg_str, num_archives] = common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim, ivector_id, left_context, right_context) assert (str(args.frames_per_eg) == frames_per_eg_str) if (args.num_jobs_final > num_archives): raise Exception('num_jobs_final cannot exceed the number of archives in the egs directory') common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir) if ((args.stage <= (- 2)) and os.path.exists((args.dir + '/configs/init.config')) and (args.input_model is None)): logger.info('Computing the preconditioning matrix for input features') train_lib.common.compute_preconditioning_matrix(args.dir, egs_dir, num_archives, run_opts, max_lda_jobs=args.max_lda_jobs, rand_prune=args.rand_prune) if (args.stage <= (- 2)): logger.info('Computing initial vector for FixedScaleComponent before softmax, using priors^{prior_scale} and rescaling to average 1'.format(prior_scale=args.presoftmax_prior_scale_power)) counts_path = (os.path.dirname(args.targets_scp) + '/target_counts') common_train_lib.compute_presoftmax_prior_scale_targets(args.dir, counts_path, presoftmax_prior_scale_power=args.presoftmax_prior_scale_power) if (args.stage <= (- 1)): logger.info('Preparing the initial network.') common_train_lib.prepare_initial_network(args.dir, run_opts, args.srand, args.input_model) num_archives_expanded = (num_archives * args.frames_per_eg) num_archives_to_process = int((args.num_epochs * num_archives_expanded)) num_archives_processed = 0 num_iters = int(((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))) if args.do_final_combination: models_to_combine = common_train_lib.get_model_combine_iters(num_iters, args.num_epochs, num_archives_expanded, args.max_models_combine, args.num_jobs_final) else: models_to_combine = None if os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir)): if os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir)): raise Exception('both {0}/valid_diagnostic.egs and {0}/valid_diagnostic.scp exist.This script expects only one of them to exist.'.format(egs_dir)) use_multitask_egs = True else: if (not os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir))): raise Exception('neither {0}/valid_diagnostic.egs nor {0}/valid_diagnostic.scp exist.This script expects one of them.'.format(egs_dir)) use_multitask_egs = False logger.info('Training will run for {0} epochs = {1} iterations'.format(args.num_epochs, num_iters)) for iter in range(num_iters): if ((args.exit_stage is not None) and (iter == args.exit_stage)): logger.info('Exiting early due to --exit-stage {0}'.format(iter)) return current_num_jobs = common_train_lib.get_current_num_jobs(iter, num_iters, args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final) if (args.stage <= iter): lrate = common_train_lib.get_learning_rate(iter, current_num_jobs, num_iters, num_archives_processed, num_archives_to_process, args.initial_effective_lrate, args.final_effective_lrate) shrinkage_value = (1.0 - (args.proportional_shrink * lrate)) if (shrinkage_value <= 0.5): raise Exception('proportional-shrink={0} is too large, it gives shrink-value={1}'.format(args.proportional_shrink, shrinkage_value)) percent = ((num_archives_processed * 100.0) / num_archives_to_process) epoch = ((num_archives_processed * args.num_epochs) / num_archives_to_process) shrink_info_str = if (shrinkage_value != 1.0): shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value) logger.info('Iter: {0}/{1} Jobs: {2} Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete) lr: {6:0.6f} {7}'.format(iter, (num_iters - 1), current_num_jobs, epoch, args.num_epochs, percent, lrate, shrink_info_str)) train_lib.common.train_one_iteration(dir=args.dir, iter=iter, srand=args.srand, egs_dir=egs_dir, num_jobs=current_num_jobs, num_archives_processed=num_archives_processed, num_archives=num_archives, learning_rate=lrate, dropout_edit_string=common_train_lib.get_dropout_edit_string(args.dropout_schedule, (float(num_archives_processed) / num_archives_to_process), iter), train_opts=' '.join(args.train_opts), minibatch_size_str=args.minibatch_size, frames_per_eg=args.frames_per_eg, momentum=args.momentum, max_param_change=args.max_param_change, shrinkage_value=shrinkage_value, shuffle_buffer_size=args.shuffle_buffer_size, run_opts=run_opts, get_raw_nnet_from_am=False, image_augmentation_opts=args.image_augmentation_opts, use_multitask_egs=use_multitask_egs, backstitch_training_scale=args.backstitch_training_scale, backstitch_training_interval=args.backstitch_training_interval) if args.cleanup: common_train_lib.remove_model(args.dir, (iter - 2), num_iters, models_to_combine, args.preserve_model_interval, get_raw_nnet_from_am=False) if (args.email is not None): reporting_iter_interval = (num_iters * args.reporting_interval) if ((iter % reporting_iter_interval) == 0): [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir) message = report subject = 'Update : Expt {dir} : Iter {iter}'.format(dir=args.dir, iter=iter) common_lib.send_mail(message, subject, args.email) num_archives_processed = (num_archives_processed + current_num_jobs) if (args.stage <= num_iters): if args.do_final_combination: logger.info('Doing final combination to produce final.raw') train_lib.common.combine_models(dir=args.dir, num_iters=num_iters, models_to_combine=models_to_combine, egs_dir=egs_dir, minibatch_size_str=args.minibatch_size, run_opts=run_opts, get_raw_nnet_from_am=False, max_objective_evaluations=args.max_objective_evaluations, use_multitask_egs=use_multitask_egs) else: common_lib.force_symlink('{0}.raw'.format(num_iters), '{0}/final.raw'.format(args.dir)) if (args.compute_average_posteriors and (args.stage <= (num_iters + 1))): logger.info("Getting average posterior for output-node 'output'.") train_lib.common.compute_average_posterior(dir=args.dir, iter='final', egs_dir=egs_dir, num_archives=num_archives, prior_subset_size=args.prior_subset_size, run_opts=run_opts, get_raw_nnet_from_am=False) if args.cleanup: logger.info('Cleaning up the experiment directory {0}'.format(args.dir)) remove_egs = args.remove_egs if (args.egs_dir is not None): remove_egs = False common_train_lib.clean_nnet_dir(nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir, preserve_model_interval=args.preserve_model_interval, remove_egs=remove_egs, get_raw_nnet_from_am=False) outputs_list = common_train_lib.get_outputs_list('{0}/final.raw'.format(args.dir), get_raw_nnet_from_am=False) if ('output' in outputs_list): [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir) if (args.email is not None): common_lib.send_mail(report, 'Update : Expt {0} : complete'.format(args.dir), args.email) with open('{dir}/accuracy.{output_name}.report'.format(dir=args.dir, output_name='output'), 'w') as f: f.write(report) common_lib.execute_command('steps/info/nnet3_dir_info.pl {0}'.format(args.dir))
def mock_get_activity_streams(streams_file): "\n @TODO: I needed to mock the behavior the `stravalib.client.get_activity_streams`,\n it isn't the best alternative for mock the request from strava by passing a json file.\n " stream_mock = MockResponse(streams_file).json() entities = {} for (key, value) in stream_mock.items(): value['type'] = key stream = Stream.deserialize(value) entities[stream.type] = stream return entities
-8,311,206,817,446,089,000
@TODO: I needed to mock the behavior the `stravalib.client.get_activity_streams`, it isn't the best alternative for mock the request from strava by passing a json file.
runpandas/tests/test_strava_parser.py
mock_get_activity_streams
bitner/runpandas
python
def mock_get_activity_streams(streams_file): "\n @TODO: I needed to mock the behavior the `stravalib.client.get_activity_streams`,\n it isn't the best alternative for mock the request from strava by passing a json file.\n " stream_mock = MockResponse(streams_file).json() entities = {} for (key, value) in stream_mock.items(): value['type'] = key stream = Stream.deserialize(value) entities[stream.type] = stream return entities
@RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_collate_checkpoint(tmpdir): 'Test to ensure that with DeepSpeed Stage 3 we can collate the sharded checkpoints into a single file.' model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') checkpoint_path = trainer.strategy.broadcast(checkpoint_path) trainer.save_checkpoint(checkpoint_path) trainer.strategy.barrier() if trainer.is_global_zero: output_path = os.path.join(tmpdir, 'single_model.pt') convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, output_path) _assert_checkpoint_equal(model, output_path)
6,974,235,595,776,155,000
Test to ensure that with DeepSpeed Stage 3 we can collate the sharded checkpoints into a single file.
tests/utilities/test_deepspeed_collate_checkpoint.py
test_deepspeed_collate_checkpoint
Borda/pytorch-lightning
python
@RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_collate_checkpoint(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') checkpoint_path = trainer.strategy.broadcast(checkpoint_path) trainer.save_checkpoint(checkpoint_path) trainer.strategy.barrier() if trainer.is_global_zero: output_path = os.path.join(tmpdir, 'single_model.pt') convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, output_path) _assert_checkpoint_equal(model, output_path)
@property def ExperimenterData(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('experimenterData')
3,597,934,062,364,696,000
NOT DEFINED Returns: str
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
ExperimenterData
kakkotetsu/IxNetwork
python
@property def ExperimenterData(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('experimenterData')
@property def ExperimenterDataLength(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tnumber\n\t\t' return self._get_attribute('experimenterDataLength')
-5,109,781,219,003,124,000
NOT DEFINED Returns: number
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
ExperimenterDataLength
kakkotetsu/IxNetwork
python
@property def ExperimenterDataLength(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tnumber\n\t\t' return self._get_attribute('experimenterDataLength')
@property def ExperimenterId(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tnumber\n\t\t' return self._get_attribute('experimenterId')
-575,094,733,073,153,400
NOT DEFINED Returns: number
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
ExperimenterId
kakkotetsu/IxNetwork
python
@property def ExperimenterId(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tnumber\n\t\t' return self._get_attribute('experimenterId')
@property def NextTableIds(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('nextTableIds')
-2,984,752,472,315,336,700
NOT DEFINED Returns: str
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
NextTableIds
kakkotetsu/IxNetwork
python
@property def NextTableIds(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('nextTableIds')
@property def Property(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('property')
8,491,170,648,330,608,000
NOT DEFINED Returns: str
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
Property
kakkotetsu/IxNetwork
python
@property def Property(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('property')
@property def SupportedField(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('supportedField')
-1,446,900,343,078,529,300
NOT DEFINED Returns: str
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
SupportedField
kakkotetsu/IxNetwork
python
@property def SupportedField(self): 'NOT DEFINED\n\n\t\tReturns:\n\t\t\tstr\n\t\t' return self._get_attribute('supportedField')
def find(self, ExperimenterData=None, ExperimenterDataLength=None, ExperimenterId=None, NextTableIds=None, Property=None, SupportedField=None): 'Finds and retrieves writeActionsMissLearnedInfo data from the server.\n\n\t\tAll named parameters support regex and can be used to selectively retrieve writeActionsMissLearnedInfo data from the server.\n\t\tBy default the find method takes no parameters and will retrieve all writeActionsMissLearnedInfo data from the server.\n\n\t\tArgs:\n\t\t\tExperimenterData (str): NOT DEFINED\n\t\t\tExperimenterDataLength (number): NOT DEFINED\n\t\t\tExperimenterId (number): NOT DEFINED\n\t\t\tNextTableIds (str): NOT DEFINED\n\t\t\tProperty (str): NOT DEFINED\n\t\t\tSupportedField (str): NOT DEFINED\n\n\t\tReturns:\n\t\t\tself: This instance with matching writeActionsMissLearnedInfo data retrieved from the server available through an iterator or index\n\n\t\tRaises:\n\t\t\tServerError: The server has encountered an uncategorized error condition\n\t\t' return self._select(locals())
-6,545,267,429,349,218,000
Finds and retrieves writeActionsMissLearnedInfo data from the server. All named parameters support regex and can be used to selectively retrieve writeActionsMissLearnedInfo data from the server. By default the find method takes no parameters and will retrieve all writeActionsMissLearnedInfo data from the server. Args: ExperimenterData (str): NOT DEFINED ExperimenterDataLength (number): NOT DEFINED ExperimenterId (number): NOT DEFINED NextTableIds (str): NOT DEFINED Property (str): NOT DEFINED SupportedField (str): NOT DEFINED Returns: self: This instance with matching writeActionsMissLearnedInfo data retrieved from the server available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
find
kakkotetsu/IxNetwork
python
def find(self, ExperimenterData=None, ExperimenterDataLength=None, ExperimenterId=None, NextTableIds=None, Property=None, SupportedField=None): 'Finds and retrieves writeActionsMissLearnedInfo data from the server.\n\n\t\tAll named parameters support regex and can be used to selectively retrieve writeActionsMissLearnedInfo data from the server.\n\t\tBy default the find method takes no parameters and will retrieve all writeActionsMissLearnedInfo data from the server.\n\n\t\tArgs:\n\t\t\tExperimenterData (str): NOT DEFINED\n\t\t\tExperimenterDataLength (number): NOT DEFINED\n\t\t\tExperimenterId (number): NOT DEFINED\n\t\t\tNextTableIds (str): NOT DEFINED\n\t\t\tProperty (str): NOT DEFINED\n\t\t\tSupportedField (str): NOT DEFINED\n\n\t\tReturns:\n\t\t\tself: This instance with matching writeActionsMissLearnedInfo data retrieved from the server available through an iterator or index\n\n\t\tRaises:\n\t\t\tServerError: The server has encountered an uncategorized error condition\n\t\t' return self._select(locals())
def read(self, href): 'Retrieves a single instance of writeActionsMissLearnedInfo data from the server.\n\n\t\tArgs:\n\t\t\thref (str): An href to the instance to be retrieved\n\n\t\tReturns:\n\t\t\tself: This instance with the writeActionsMissLearnedInfo data from the server available through an iterator or index\n\n\t\tRaises:\n\t\t\tNotFoundError: The requested resource does not exist on the server\n\t\t\tServerError: The server has encountered an uncategorized error condition\n\t\t' return self._read(href)
3,049,726,136,629,737,500
Retrieves a single instance of writeActionsMissLearnedInfo data from the server. Args: href (str): An href to the instance to be retrieved Returns: self: This instance with the writeActionsMissLearnedInfo data from the server available through an iterator or index Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/openflow/writeactionsmisslearnedinfo.py
read
kakkotetsu/IxNetwork
python
def read(self, href): 'Retrieves a single instance of writeActionsMissLearnedInfo data from the server.\n\n\t\tArgs:\n\t\t\thref (str): An href to the instance to be retrieved\n\n\t\tReturns:\n\t\t\tself: This instance with the writeActionsMissLearnedInfo data from the server available through an iterator or index\n\n\t\tRaises:\n\t\t\tNotFoundError: The requested resource does not exist on the server\n\t\t\tServerError: The server has encountered an uncategorized error condition\n\t\t' return self._read(href)
def command_line_interface(root_path): '\n A simple command-line interface for running a tool to resample a library of template spectra onto fixed\n logarithmic rasters representing each of the 4MOST arms.\n\n We use the python argparse module to build the interface, and return the inputs supplied by the user.\n\n :param root_path:\n The root path of this 4GP installation; the directory where we can find 4FS.\n\n :return:\n An object containing the arguments supplied by the user.\n ' parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('--templates-in', required=False, default='turbospec_rv_templates', dest='templates_in', help='Library of spectra to use as templates for RV code') parser.add_argument('--workspace', dest='workspace', default='', help='Directory where we expect to find spectrum libraries') parser.add_argument('--templates-out', required=False, default='rv_templates_resampled', dest='templates_out', help='Library into which to place resampled templates for RV code') parser.add_argument('--binary-path', required=False, default=root_path, dest='binary_path', help='Specify a directory where 4FS binary package is installed') args = parser.parse_args() logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(filename)s:%(message)s', datefmt='%d/%m/%Y %H:%M:%S') logger = logging.getLogger(__name__) logger.info('Resampling template spectra') return args
-1,154,686,518,924,430,000
A simple command-line interface for running a tool to resample a library of template spectra onto fixed logarithmic rasters representing each of the 4MOST arms. We use the python argparse module to build the interface, and return the inputs supplied by the user. :param root_path: The root path of this 4GP installation; the directory where we can find 4FS. :return: An object containing the arguments supplied by the user.
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
command_line_interface
dcf21/4most-4gp
python
def command_line_interface(root_path): '\n A simple command-line interface for running a tool to resample a library of template spectra onto fixed\n logarithmic rasters representing each of the 4MOST arms.\n\n We use the python argparse module to build the interface, and return the inputs supplied by the user.\n\n :param root_path:\n The root path of this 4GP installation; the directory where we can find 4FS.\n\n :return:\n An object containing the arguments supplied by the user.\n ' parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('--templates-in', required=False, default='turbospec_rv_templates', dest='templates_in', help='Library of spectra to use as templates for RV code') parser.add_argument('--workspace', dest='workspace', default=, help='Directory where we expect to find spectrum libraries') parser.add_argument('--templates-out', required=False, default='rv_templates_resampled', dest='templates_out', help='Library into which to place resampled templates for RV code') parser.add_argument('--binary-path', required=False, default=root_path, dest='binary_path', help='Specify a directory where 4FS binary package is installed') args = parser.parse_args() logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(filename)s:%(message)s', datefmt='%d/%m/%Y %H:%M:%S') logger = logging.getLogger(__name__) logger.info('Resampling template spectra') return args
def logarithmic_raster(lambda_min, lambda_max, lambda_step): '\n Create a logarithmic raster with a fixed logarithmic stride, based on a starting wavelength, finishing wavelength,\n and a mean wavelength step.\n\n :param lambda_min:\n Smallest wavelength in raster.\n :param lambda_max:\n Largest wavelength in raster.\n :param lambda_step:\n The approximate pixel size in the raster.\n :return:\n A numpy array containing a wavelength raster with fixed logarithmic stride.\n ' return np.exp(np.arange(np.log(lambda_min), np.log(lambda_max), np.log((1 + (lambda_step / lambda_min)))))
6,637,842,274,579,725,000
Create a logarithmic raster with a fixed logarithmic stride, based on a starting wavelength, finishing wavelength, and a mean wavelength step. :param lambda_min: Smallest wavelength in raster. :param lambda_max: Largest wavelength in raster. :param lambda_step: The approximate pixel size in the raster. :return: A numpy array containing a wavelength raster with fixed logarithmic stride.
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
logarithmic_raster
dcf21/4most-4gp
python
def logarithmic_raster(lambda_min, lambda_max, lambda_step): '\n Create a logarithmic raster with a fixed logarithmic stride, based on a starting wavelength, finishing wavelength,\n and a mean wavelength step.\n\n :param lambda_min:\n Smallest wavelength in raster.\n :param lambda_max:\n Largest wavelength in raster.\n :param lambda_step:\n The approximate pixel size in the raster.\n :return:\n A numpy array containing a wavelength raster with fixed logarithmic stride.\n ' return np.exp(np.arange(np.log(lambda_min), np.log(lambda_max), np.log((1 + (lambda_step / lambda_min)))))
def resample_templates(args, logger): '\n Resample a spectrum library of templates onto a fixed logarithmic stride, representing each of the 4MOST arms in\n turn. We use 4FS to down-sample the templates to the resolution of 4MOST observations, and automatically detect\n the list of arms contained within each 4FS mock observation. We then resample the 4FS output onto a new raster\n with fixed logarithmic stride.\n\n :param args:\n Object containing arguments supplied by the used, for example the name of the spectrum libraries we use for\n input and output. The required fields are defined by the user interface above.\n :param logger:\n A python logging object.\n :return:\n None.\n ' workspace = (args.workspace if args.workspace else os_path.join(args.our_path, '../../../workspace')) spectra = SpectrumLibrarySqlite.open_and_search(library_spec=args.templates_in, workspace=workspace, extra_constraints={'continuum_normalised': 0}) (templates_library, templates_library_items, templates_spectra_constraints) = [spectra[i] for i in ('library', 'items', 'constraints')] library_path = os_path.join(workspace, args.templates_out) output_library = SpectrumLibrarySqlite(path=library_path, create=True) etc_wrapper = FourFS(path_to_4fs=os_path.join(args.binary_path, 'OpSys/ETC'), snr_list=[250.0], magnitude=13, snr_per_pixel=True) for input_spectrum_id in templates_library_items: logger.info('Working on <{}>'.format(input_spectrum_id['filename'])) input_spectrum_array = templates_library.open(ids=input_spectrum_id['specId']) template_flux_normalised = input_spectrum_array.extract_item(0) spectrum_matching_field = ('uid' if ('uid' in template_flux_normalised.metadata) else 'Starname') object_name = template_flux_normalised.metadata[spectrum_matching_field] search_criteria = {spectrum_matching_field: object_name, 'continuum_normalised': 1} continuum_normalised_spectrum_id = templates_library.search(**search_criteria) assert (len(continuum_normalised_spectrum_id) == 1), 'Could not find continuum-normalised spectrum.' template_continuum_normalised_arr = templates_library.open(ids=continuum_normalised_spectrum_id[0]['specId']) template_continuum_normalised = template_continuum_normalised_arr.extract_item(0) logger.info('Passing template through 4FS') mock_observed_template = etc_wrapper.process_spectra(spectra_list=((template_flux_normalised, template_continuum_normalised),)) for mode in mock_observed_template: for index in mock_observed_template[mode]: for snr in mock_observed_template[mode][index]: unique_id = hashlib.md5(os.urandom(32)).hexdigest()[:16] for spectrum_type in mock_observed_template[mode][index][snr]: logger.info('Resampling {} spectrum'.format(mode)) mock_observed = mock_observed_template[mode][index][snr][spectrum_type] mock_observed.value_errors[np.isnan(mock_observed.value_errors)] = 1000.0 if (not np.all(np.isfinite(mock_observed.values))): print('Warning: NaN values in template <{}>'.format(template_flux_normalised.metadata['Starname'])) mock_observed.value_errors[np.isnan(mock_observed.values)] = 1000.0 mock_observed.values[np.isnan(mock_observed.values)] = 1.0 resampler = SpectrumResampler(mock_observed) wavelength_arms = SpectrumProperties(mock_observed.wavelengths).wavelength_arms() for (arm_count, arm) in enumerate(wavelength_arms['wavelength_arms']): (arm_raster, mean_pixel_width) = arm name = '{}_{}'.format(mode, arm_count) arm_info = {'lambda_min': arm_raster[0], 'lambda_max': arm_raster[(- 1)], 'lambda_step': mean_pixel_width} arm_raster = logarithmic_raster(lambda_min=arm_info['lambda_min'], lambda_max=arm_info['lambda_max'], lambda_step=arm_info['lambda_step']) mock_observed_arm = resampler.onto_raster(arm_raster) output_library.insert(spectra=mock_observed_arm, filenames=input_spectrum_id['filename'], metadata_list={'uid': unique_id, 'template_id': object_name, 'mode': mode, 'arm_name': '{}_{}'.format(mode, arm_count), 'lambda_min': arm_raster[0], 'lambda_max': arm_raster[(- 1)], 'lambda_step': mean_pixel_width})
-6,798,017,792,568,985,000
Resample a spectrum library of templates onto a fixed logarithmic stride, representing each of the 4MOST arms in turn. We use 4FS to down-sample the templates to the resolution of 4MOST observations, and automatically detect the list of arms contained within each 4FS mock observation. We then resample the 4FS output onto a new raster with fixed logarithmic stride. :param args: Object containing arguments supplied by the used, for example the name of the spectrum libraries we use for input and output. The required fields are defined by the user interface above. :param logger: A python logging object. :return: None.
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
resample_templates
dcf21/4most-4gp
python
def resample_templates(args, logger): '\n Resample a spectrum library of templates onto a fixed logarithmic stride, representing each of the 4MOST arms in\n turn. We use 4FS to down-sample the templates to the resolution of 4MOST observations, and automatically detect\n the list of arms contained within each 4FS mock observation. We then resample the 4FS output onto a new raster\n with fixed logarithmic stride.\n\n :param args:\n Object containing arguments supplied by the used, for example the name of the spectrum libraries we use for\n input and output. The required fields are defined by the user interface above.\n :param logger:\n A python logging object.\n :return:\n None.\n ' workspace = (args.workspace if args.workspace else os_path.join(args.our_path, '../../../workspace')) spectra = SpectrumLibrarySqlite.open_and_search(library_spec=args.templates_in, workspace=workspace, extra_constraints={'continuum_normalised': 0}) (templates_library, templates_library_items, templates_spectra_constraints) = [spectra[i] for i in ('library', 'items', 'constraints')] library_path = os_path.join(workspace, args.templates_out) output_library = SpectrumLibrarySqlite(path=library_path, create=True) etc_wrapper = FourFS(path_to_4fs=os_path.join(args.binary_path, 'OpSys/ETC'), snr_list=[250.0], magnitude=13, snr_per_pixel=True) for input_spectrum_id in templates_library_items: logger.info('Working on <{}>'.format(input_spectrum_id['filename'])) input_spectrum_array = templates_library.open(ids=input_spectrum_id['specId']) template_flux_normalised = input_spectrum_array.extract_item(0) spectrum_matching_field = ('uid' if ('uid' in template_flux_normalised.metadata) else 'Starname') object_name = template_flux_normalised.metadata[spectrum_matching_field] search_criteria = {spectrum_matching_field: object_name, 'continuum_normalised': 1} continuum_normalised_spectrum_id = templates_library.search(**search_criteria) assert (len(continuum_normalised_spectrum_id) == 1), 'Could not find continuum-normalised spectrum.' template_continuum_normalised_arr = templates_library.open(ids=continuum_normalised_spectrum_id[0]['specId']) template_continuum_normalised = template_continuum_normalised_arr.extract_item(0) logger.info('Passing template through 4FS') mock_observed_template = etc_wrapper.process_spectra(spectra_list=((template_flux_normalised, template_continuum_normalised),)) for mode in mock_observed_template: for index in mock_observed_template[mode]: for snr in mock_observed_template[mode][index]: unique_id = hashlib.md5(os.urandom(32)).hexdigest()[:16] for spectrum_type in mock_observed_template[mode][index][snr]: logger.info('Resampling {} spectrum'.format(mode)) mock_observed = mock_observed_template[mode][index][snr][spectrum_type] mock_observed.value_errors[np.isnan(mock_observed.value_errors)] = 1000.0 if (not np.all(np.isfinite(mock_observed.values))): print('Warning: NaN values in template <{}>'.format(template_flux_normalised.metadata['Starname'])) mock_observed.value_errors[np.isnan(mock_observed.values)] = 1000.0 mock_observed.values[np.isnan(mock_observed.values)] = 1.0 resampler = SpectrumResampler(mock_observed) wavelength_arms = SpectrumProperties(mock_observed.wavelengths).wavelength_arms() for (arm_count, arm) in enumerate(wavelength_arms['wavelength_arms']): (arm_raster, mean_pixel_width) = arm name = '{}_{}'.format(mode, arm_count) arm_info = {'lambda_min': arm_raster[0], 'lambda_max': arm_raster[(- 1)], 'lambda_step': mean_pixel_width} arm_raster = logarithmic_raster(lambda_min=arm_info['lambda_min'], lambda_max=arm_info['lambda_max'], lambda_step=arm_info['lambda_step']) mock_observed_arm = resampler.onto_raster(arm_raster) output_library.insert(spectra=mock_observed_arm, filenames=input_spectrum_id['filename'], metadata_list={'uid': unique_id, 'template_id': object_name, 'mode': mode, 'arm_name': '{}_{}'.format(mode, arm_count), 'lambda_min': arm_raster[0], 'lambda_max': arm_raster[(- 1)], 'lambda_step': mean_pixel_width})
def reset(self): " Reset detectors\n\n Resets statistics and adwin's window.\n\n Returns\n -------\n ADWIN\n self\n\n " self.__init__(delta=self.delta)
3,523,812,558,410,450,000
Reset detectors Resets statistics and adwin's window. Returns ------- ADWIN self
src/skmultiflow/drift_detection/adwin.py
reset
denisesato/scikit-multiflow
python
def reset(self): " Reset detectors\n\n Resets statistics and adwin's window.\n\n Returns\n -------\n ADWIN\n self\n\n " self.__init__(delta=self.delta)
def get_change(self): ' Get drift\n\n Returns\n -------\n bool\n Whether or not a drift occurred\n\n ' return self.bln_bucket_deleted
5,362,007,572,281,735,000
Get drift Returns ------- bool Whether or not a drift occurred
src/skmultiflow/drift_detection/adwin.py
get_change
denisesato/scikit-multiflow
python
def get_change(self): ' Get drift\n\n Returns\n -------\n bool\n Whether or not a drift occurred\n\n ' return self.bln_bucket_deleted
def __init_buckets(self): " Initialize the bucket's List and statistics\n\n Set all statistics to 0 and create a new bucket List.\n\n " self.list_row_bucket = List() self.last_bucket_row = 0 self._total = 0 self._variance = 0 self._width = 0 self.bucket_number = 0
1,576,856,208,439,225,900
Initialize the bucket's List and statistics Set all statistics to 0 and create a new bucket List.
src/skmultiflow/drift_detection/adwin.py
__init_buckets
denisesato/scikit-multiflow
python
def __init_buckets(self): " Initialize the bucket's List and statistics\n\n Set all statistics to 0 and create a new bucket List.\n\n " self.list_row_bucket = List() self.last_bucket_row = 0 self._total = 0 self._variance = 0 self._width = 0 self.bucket_number = 0
def add_element(self, value): " Add a new element to the sample window.\n\n Apart from adding the element value to the window, by inserting it in\n the correct bucket, it will also update the relevant statistics, in\n this case the total sum of all values, the window width and the total\n variance.\n\n Parameters\n ----------\n value: int or float (a numeric value)\n\n Notes\n -----\n The value parameter can be any numeric value relevant to the analysis\n of concept change. For the learners in this framework we are using\n either 0's or 1's, that are interpreted as follows:\n 0: Means the learners prediction was wrong\n 1: Means the learners prediction was correct\n\n This function should be used at every new sample analysed.\n\n " if self.in_concept_change: self.reset() self._width += 1 self.__insert_element_bucket(0, value, self.list_row_bucket.first) incremental_variance = 0 if (self._width > 1): incremental_variance = ((((self._width - 1) * (value - (self._total / (self._width - 1)))) * (value - (self._total / (self._width - 1)))) / self._width) self._variance += incremental_variance self._total += value self.__compress_buckets()
-116,700,837,709,506,830
Add a new element to the sample window. Apart from adding the element value to the window, by inserting it in the correct bucket, it will also update the relevant statistics, in this case the total sum of all values, the window width and the total variance. Parameters ---------- value: int or float (a numeric value) Notes ----- The value parameter can be any numeric value relevant to the analysis of concept change. For the learners in this framework we are using either 0's or 1's, that are interpreted as follows: 0: Means the learners prediction was wrong 1: Means the learners prediction was correct This function should be used at every new sample analysed.
src/skmultiflow/drift_detection/adwin.py
add_element
denisesato/scikit-multiflow
python
def add_element(self, value): " Add a new element to the sample window.\n\n Apart from adding the element value to the window, by inserting it in\n the correct bucket, it will also update the relevant statistics, in\n this case the total sum of all values, the window width and the total\n variance.\n\n Parameters\n ----------\n value: int or float (a numeric value)\n\n Notes\n -----\n The value parameter can be any numeric value relevant to the analysis\n of concept change. For the learners in this framework we are using\n either 0's or 1's, that are interpreted as follows:\n 0: Means the learners prediction was wrong\n 1: Means the learners prediction was correct\n\n This function should be used at every new sample analysed.\n\n " if self.in_concept_change: self.reset() self._width += 1 self.__insert_element_bucket(0, value, self.list_row_bucket.first) incremental_variance = 0 if (self._width > 1): incremental_variance = ((((self._width - 1) * (value - (self._total / (self._width - 1)))) * (value - (self._total / (self._width - 1)))) / self._width) self._variance += incremental_variance self._total += value self.__compress_buckets()
def delete_element(self): ' Delete an Item from the bucket list.\n\n Deletes the last Item and updates relevant statistics kept by ADWIN.\n\n Returns\n -------\n int\n The bucket size from the updated bucket\n\n ' node = self.list_row_bucket.last n1 = self.bucket_size(self.last_bucket_row) self._width -= n1 self._total -= node.get_total(0) u1 = (node.get_total(0) / n1) incremental_variance = (node.get_variance(0) + ((((n1 * self._width) * (u1 - (self._total / self._width))) * (u1 - (self._total / self._width))) / (n1 + self._width))) self._variance -= incremental_variance node.remove_bucket() self.bucket_number -= 1 if (node.bucket_size_row == 0): self.list_row_bucket.remove_from_tail() self.last_bucket_row -= 1 return n1
-1,062,732,316,874,703,100
Delete an Item from the bucket list. Deletes the last Item and updates relevant statistics kept by ADWIN. Returns ------- int The bucket size from the updated bucket
src/skmultiflow/drift_detection/adwin.py
delete_element
denisesato/scikit-multiflow
python
def delete_element(self): ' Delete an Item from the bucket list.\n\n Deletes the last Item and updates relevant statistics kept by ADWIN.\n\n Returns\n -------\n int\n The bucket size from the updated bucket\n\n ' node = self.list_row_bucket.last n1 = self.bucket_size(self.last_bucket_row) self._width -= n1 self._total -= node.get_total(0) u1 = (node.get_total(0) / n1) incremental_variance = (node.get_variance(0) + ((((n1 * self._width) * (u1 - (self._total / self._width))) * (u1 - (self._total / self._width))) / (n1 + self._width))) self._variance -= incremental_variance node.remove_bucket() self.bucket_number -= 1 if (node.bucket_size_row == 0): self.list_row_bucket.remove_from_tail() self.last_bucket_row -= 1 return n1
def detected_change(self): " Detects concept change in a drifting data stream.\n\n The ADWIN algorithm is described in Bifet and Gavaldà's 'Learning from\n Time-Changing Data with Adaptive Windowing'. The general idea is to keep\n statistics from a window of variable size while detecting concept drift.\n\n This function is responsible for analysing different cutting points in\n the sliding window, to verify if there is a significant change in concept.\n\n Returns\n -------\n bln_change : bool\n Whether change was detected or not\n\n Notes\n -----\n If change was detected, one should verify the new window size, by reading\n the width property.\n\n " bln_change = False bln_exit = False bln_bucket_deleted = False self.mint_time += 1 n0 = 0 if (((self.mint_time % self.mint_clock) == 0) and (self.width > self.mint_min_window_longitude)): bln_reduce_width = True while bln_reduce_width: bln_reduce_width = (not bln_reduce_width) bln_exit = False n0 = 0 n1 = self._width u0 = 0 u1 = self.total v0 = 0 v1 = self._variance n2 = 0 u2 = 0 cursor = self.list_row_bucket.last i = self.last_bucket_row while ((not bln_exit) and (cursor is not None)): for k in range(cursor.bucket_size_row): n2 = self.bucket_size(i) u2 = cursor.get_total(k) if (n0 > 0): v0 += (cursor.get_variance(k) + (((((1.0 * n0) * n2) * ((u0 / n0) - (u2 / n2))) * ((u0 / n0) - (u2 / n2))) / (n0 + n2))) if (n1 > 0): v1 -= (cursor.get_variance(k) + (((((1.0 * n1) * n2) * ((u1 / n1) - (u2 / n2))) * ((u1 / n1) - (u2 / n2))) / (n1 + n2))) n0 += self.bucket_size(i) n1 -= self.bucket_size(i) u0 += cursor.get_total(k) u1 -= cursor.get_total(k) if ((i == 0) and (k == (cursor.bucket_size_row - 1))): bln_exit = True break abs_value = (1.0 * ((u0 / n0) - (u1 / n1))) if ((n1 >= self.mint_min_window_length) and (n0 >= self.mint_min_window_length) and self.__bln_cut_expression(n0, n1, u0, u1, v0, v1, abs_value, self.delta)): bln_bucket_deleted = True self.detect = self.mint_time if (self.detect == 0): self.detect = self.mint_time elif (self.detect_twice == 0): self.detect_twice = self.mint_time bln_reduce_width = True bln_change = True if (self.width > 0): n0 -= self.delete_element() bln_exit = True break cursor = cursor.get_previous() i -= 1 self.mdbl_width += self.width if bln_change: self._n_detections += 1 self.in_concept_change = bln_change return bln_change
5,073,971,440,688,084,000
Detects concept change in a drifting data stream. The ADWIN algorithm is described in Bifet and Gavaldà's 'Learning from Time-Changing Data with Adaptive Windowing'. The general idea is to keep statistics from a window of variable size while detecting concept drift. This function is responsible for analysing different cutting points in the sliding window, to verify if there is a significant change in concept. Returns ------- bln_change : bool Whether change was detected or not Notes ----- If change was detected, one should verify the new window size, by reading the width property.
src/skmultiflow/drift_detection/adwin.py
detected_change
denisesato/scikit-multiflow
python
def detected_change(self): " Detects concept change in a drifting data stream.\n\n The ADWIN algorithm is described in Bifet and Gavaldà's 'Learning from\n Time-Changing Data with Adaptive Windowing'. The general idea is to keep\n statistics from a window of variable size while detecting concept drift.\n\n This function is responsible for analysing different cutting points in\n the sliding window, to verify if there is a significant change in concept.\n\n Returns\n -------\n bln_change : bool\n Whether change was detected or not\n\n Notes\n -----\n If change was detected, one should verify the new window size, by reading\n the width property.\n\n " bln_change = False bln_exit = False bln_bucket_deleted = False self.mint_time += 1 n0 = 0 if (((self.mint_time % self.mint_clock) == 0) and (self.width > self.mint_min_window_longitude)): bln_reduce_width = True while bln_reduce_width: bln_reduce_width = (not bln_reduce_width) bln_exit = False n0 = 0 n1 = self._width u0 = 0 u1 = self.total v0 = 0 v1 = self._variance n2 = 0 u2 = 0 cursor = self.list_row_bucket.last i = self.last_bucket_row while ((not bln_exit) and (cursor is not None)): for k in range(cursor.bucket_size_row): n2 = self.bucket_size(i) u2 = cursor.get_total(k) if (n0 > 0): v0 += (cursor.get_variance(k) + (((((1.0 * n0) * n2) * ((u0 / n0) - (u2 / n2))) * ((u0 / n0) - (u2 / n2))) / (n0 + n2))) if (n1 > 0): v1 -= (cursor.get_variance(k) + (((((1.0 * n1) * n2) * ((u1 / n1) - (u2 / n2))) * ((u1 / n1) - (u2 / n2))) / (n1 + n2))) n0 += self.bucket_size(i) n1 -= self.bucket_size(i) u0 += cursor.get_total(k) u1 -= cursor.get_total(k) if ((i == 0) and (k == (cursor.bucket_size_row - 1))): bln_exit = True break abs_value = (1.0 * ((u0 / n0) - (u1 / n1))) if ((n1 >= self.mint_min_window_length) and (n0 >= self.mint_min_window_length) and self.__bln_cut_expression(n0, n1, u0, u1, v0, v1, abs_value, self.delta)): bln_bucket_deleted = True self.detect = self.mint_time if (self.detect == 0): self.detect = self.mint_time elif (self.detect_twice == 0): self.detect_twice = self.mint_time bln_reduce_width = True bln_change = True if (self.width > 0): n0 -= self.delete_element() bln_exit = True break cursor = cursor.get_previous() i -= 1 self.mdbl_width += self.width if bln_change: self._n_detections += 1 self.in_concept_change = bln_change return bln_change
def reset(self): " Reset the algorithm's statistics and window\n\n Returns\n -------\n ADWIN\n self\n\n " self.bucket_size_row = 0 for i in range((ADWIN.MAX_BUCKETS + 1)): self.__clear_buckets(i) return self
1,662,833,394,584,415,000
Reset the algorithm's statistics and window Returns ------- ADWIN self
src/skmultiflow/drift_detection/adwin.py
reset
denisesato/scikit-multiflow
python
def reset(self): " Reset the algorithm's statistics and window\n\n Returns\n -------\n ADWIN\n self\n\n " self.bucket_size_row = 0 for i in range((ADWIN.MAX_BUCKETS + 1)): self.__clear_buckets(i) return self
def set_dof(self, dof_value_map): '\n dof_value_map: A dict that maps robot attribute name to a list of corresponding values\n ' if (not isinstance(self._geom, Robot)): return dof_val = self.env_body.GetActiveDOFValues() for (k, v) in dof_value_map.items(): if ((k not in self._geom.dof_map) or np.any(np.isnan(v))): continue inds = self._geom.dof_map[k] try: dof_val[inds] = v except IndexError: print(('\n\n\nBad index in set dof:', inds, k, v, self._geom, '\n\n\n')) self.env_body.SetActiveDOFValues(dof_val)
-6,041,207,392,714,247,000
dof_value_map: A dict that maps robot attribute name to a list of corresponding values
opentamp/src/core/util_classes/no_openrave_body.py
set_dof
Algorithmic-Alignment-Lab/OpenTAMP
python
def set_dof(self, dof_value_map): '\n \n ' if (not isinstance(self._geom, Robot)): return dof_val = self.env_body.GetActiveDOFValues() for (k, v) in dof_value_map.items(): if ((k not in self._geom.dof_map) or np.any(np.isnan(v))): continue inds = self._geom.dof_map[k] try: dof_val[inds] = v except IndexError: print(('\n\n\nBad index in set dof:', inds, k, v, self._geom, '\n\n\n')) self.env_body.SetActiveDOFValues(dof_val)
def _set_active_dof_inds(self, inds=None): '\n Set active dof index to the one we are interested\n This function is implemented to simplify jacobian calculation in the CollisionPredicate\n inds: Optional list of index specifying dof index we are interested in\n ' robot = self.env_body if (inds == None): dof_inds = np.ndarray(0, dtype=np.int) if (robot.GetJoint('torso_lift_joint') != None): dof_inds = np.r_[(dof_inds, robot.GetJoint('torso_lift_joint').GetDOFIndex())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('leftarm').GetArmIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('leftarm').GetGripperIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('rightarm').GetArmIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('rightarm').GetGripperIndices())] robot.SetActiveDOFs(dof_inds, ((DOFAffine.X + DOFAffine.Y) + DOFAffine.RotationAxis), [0, 0, 1]) else: robot.SetActiveDOFs(inds)
-5,458,568,516,933,556,000
Set active dof index to the one we are interested This function is implemented to simplify jacobian calculation in the CollisionPredicate inds: Optional list of index specifying dof index we are interested in
opentamp/src/core/util_classes/no_openrave_body.py
_set_active_dof_inds
Algorithmic-Alignment-Lab/OpenTAMP
python
def _set_active_dof_inds(self, inds=None): '\n Set active dof index to the one we are interested\n This function is implemented to simplify jacobian calculation in the CollisionPredicate\n inds: Optional list of index specifying dof index we are interested in\n ' robot = self.env_body if (inds == None): dof_inds = np.ndarray(0, dtype=np.int) if (robot.GetJoint('torso_lift_joint') != None): dof_inds = np.r_[(dof_inds, robot.GetJoint('torso_lift_joint').GetDOFIndex())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('leftarm').GetArmIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('leftarm').GetGripperIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('rightarm').GetArmIndices())] dof_inds = np.r_[(dof_inds, robot.GetManipulator('rightarm').GetGripperIndices())] robot.SetActiveDOFs(dof_inds, ((DOFAffine.X + DOFAffine.Y) + DOFAffine.RotationAxis), [0, 0, 1]) else: robot.SetActiveDOFs(inds)
def __init__(self, rate_tables=None): 'RateTableResponse - a model defined in Swagger' self._rate_tables = None self.discriminator = None if (rate_tables is not None): self.rate_tables = rate_tables
9,004,336,416,813,501,000
RateTableResponse - a model defined in Swagger
src/ebay_rest/api/sell_account/models/rate_table_response.py
__init__
craiga/ebay_rest
python
def __init__(self, rate_tables=None): self._rate_tables = None self.discriminator = None if (rate_tables is not None): self.rate_tables = rate_tables
@property def rate_tables(self): 'Gets the rate_tables of this RateTableResponse. # noqa: E501\n\n A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501\n\n :return: The rate_tables of this RateTableResponse. # noqa: E501\n :rtype: list[RateTable]\n ' return self._rate_tables
5,818,470,464,169,381,000
Gets the rate_tables of this RateTableResponse. # noqa: E501 A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501 :return: The rate_tables of this RateTableResponse. # noqa: E501 :rtype: list[RateTable]
src/ebay_rest/api/sell_account/models/rate_table_response.py
rate_tables
craiga/ebay_rest
python
@property def rate_tables(self): 'Gets the rate_tables of this RateTableResponse. # noqa: E501\n\n A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501\n\n :return: The rate_tables of this RateTableResponse. # noqa: E501\n :rtype: list[RateTable]\n ' return self._rate_tables
@rate_tables.setter def rate_tables(self, rate_tables): 'Sets the rate_tables of this RateTableResponse.\n\n A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501\n\n :param rate_tables: The rate_tables of this RateTableResponse. # noqa: E501\n :type: list[RateTable]\n ' self._rate_tables = rate_tables
205,337,510,896,969,600
Sets the rate_tables of this RateTableResponse. A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501 :param rate_tables: The rate_tables of this RateTableResponse. # noqa: E501 :type: list[RateTable]
src/ebay_rest/api/sell_account/models/rate_table_response.py
rate_tables
craiga/ebay_rest
python
@rate_tables.setter def rate_tables(self, rate_tables): 'Sets the rate_tables of this RateTableResponse.\n\n A list of elements that provide information on the seller-defined shipping rate tables. # noqa: E501\n\n :param rate_tables: The rate_tables of this RateTableResponse. # noqa: E501\n :type: list[RateTable]\n ' self._rate_tables = rate_tables
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(RateTableResponse, dict): for (key, value) in self.items(): result[key] = value return result
-8,185,449,808,055,180,000
Returns the model properties as a dict
src/ebay_rest/api/sell_account/models/rate_table_response.py
to_dict
craiga/ebay_rest
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(RateTableResponse, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
src/ebay_rest/api/sell_account/models/rate_table_response.py
to_str
craiga/ebay_rest
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
src/ebay_rest/api/sell_account/models/rate_table_response.py
__repr__
craiga/ebay_rest
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, RateTableResponse)): return False return (self.__dict__ == other.__dict__)
-6,882,749,671,341,800,000
Returns true if both objects are equal
src/ebay_rest/api/sell_account/models/rate_table_response.py
__eq__
craiga/ebay_rest
python
def __eq__(self, other): if (not isinstance(other, RateTableResponse)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
src/ebay_rest/api/sell_account/models/rate_table_response.py
__ne__
craiga/ebay_rest
python
def __ne__(self, other): return (not (self == other))
def _check_before_run(self): 'Check if all files are available before going deeper' if (not osp.exists(self.dataset_dir)): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if (not osp.exists(self.train_dir)): raise RuntimeError("'{}' is not available".format(self.train_dir)) if (not osp.exists(self.query_dir)): raise RuntimeError("'{}' is not available".format(self.query_dir)) if (not osp.exists(self.gallery_dir)): raise RuntimeError("'{}' is not available".format(self.gallery_dir))
-3,003,780,492,068,818,000
Check if all files are available before going deeper
torchreid/datasets/dukemtmcvidreid.py
_check_before_run
ArronHZG/ABD-Net
python
def _check_before_run(self): if (not osp.exists(self.dataset_dir)): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if (not osp.exists(self.train_dir)): raise RuntimeError("'{}' is not available".format(self.train_dir)) if (not osp.exists(self.query_dir)): raise RuntimeError("'{}' is not available".format(self.query_dir)) if (not osp.exists(self.gallery_dir)): raise RuntimeError("'{}' is not available".format(self.gallery_dir))
def __init__(self, t_prof, eval_env_bldr, chief_handle, evaluator_name, log_conf_interval=False): '\n Args:\n t_prof (TrainingProfile)\n chief_handle (class instance or ray ActorHandle)\n evaluator_name (str): Name of the evaluator\n ' super().__init__(t_prof=t_prof) self._eval_env_bldr = eval_env_bldr self._chief_handle = chief_handle self._is_multi_stack = (len(self._t_prof.eval_stack_sizes) > 1) self._log_conf_interval = log_conf_interval self._evaluator_name = evaluator_name (self._exp_name_total, self._exp_names_conf) = self._create_experiments(self_name=evaluator_name) if self._is_multi_stack: self._exp_name_multi_stack = {eval_mode: self._ray.get(self._ray.remote(self._chief_handle.create_experiment, ((((((self._t_prof.name + ' ') + eval_mode) + 'Multi_Stack') + ': ') + evaluator_name) + ' Averaged Total'))) for eval_mode in self._t_prof.eval_modes_of_algo} if self._log_conf_interval: self._exp_names_multi_stack_conf = {eval_mode: self._ray.get([self._ray.remote(self._chief_handle.create_experiment, ((((((self._t_prof.name + ' ') + eval_mode) + ': ') + evaluator_name) + ' Conf_') + bound_end)) for bound_end in ['lower95', 'upper95']]) for eval_mode in self._t_prof.eval_modes_of_algo}
6,732,575,788,846,942,000
Args: t_prof (TrainingProfile) chief_handle (class instance or ray ActorHandle) evaluator_name (str): Name of the evaluator
PokerRL/eval/_/EvaluatorMasterBase.py
__init__
EricSteinberger/DREAM
python
def __init__(self, t_prof, eval_env_bldr, chief_handle, evaluator_name, log_conf_interval=False): '\n Args:\n t_prof (TrainingProfile)\n chief_handle (class instance or ray ActorHandle)\n evaluator_name (str): Name of the evaluator\n ' super().__init__(t_prof=t_prof) self._eval_env_bldr = eval_env_bldr self._chief_handle = chief_handle self._is_multi_stack = (len(self._t_prof.eval_stack_sizes) > 1) self._log_conf_interval = log_conf_interval self._evaluator_name = evaluator_name (self._exp_name_total, self._exp_names_conf) = self._create_experiments(self_name=evaluator_name) if self._is_multi_stack: self._exp_name_multi_stack = {eval_mode: self._ray.get(self._ray.remote(self._chief_handle.create_experiment, ((((((self._t_prof.name + ' ') + eval_mode) + 'Multi_Stack') + ': ') + evaluator_name) + ' Averaged Total'))) for eval_mode in self._t_prof.eval_modes_of_algo} if self._log_conf_interval: self._exp_names_multi_stack_conf = {eval_mode: self._ray.get([self._ray.remote(self._chief_handle.create_experiment, ((((((self._t_prof.name + ' ') + eval_mode) + ': ') + evaluator_name) + ' Conf_') + bound_end)) for bound_end in ['lower95', 'upper95']]) for eval_mode in self._t_prof.eval_modes_of_algo}
@property def is_multi_stack(self): '\n Whether the agent is evaluated in games that start with different stack sizes each time.\n ' return self._is_multi_stack
719,053,695,574,214,300
Whether the agent is evaluated in games that start with different stack sizes each time.
PokerRL/eval/_/EvaluatorMasterBase.py
is_multi_stack
EricSteinberger/DREAM
python
@property def is_multi_stack(self): '\n \n ' return self._is_multi_stack
def evaluate(self, iter_nr): ' Evaluate an agent and send the results as logs to the Chief. ' raise NotImplementedError
2,693,691,242,665,896,400
Evaluate an agent and send the results as logs to the Chief.
PokerRL/eval/_/EvaluatorMasterBase.py
evaluate
EricSteinberger/DREAM
python
def evaluate(self, iter_nr): ' ' raise NotImplementedError
def update_weights(self): ' Update the local weights on the master, for instance by calling .pull_current_strat_from_chief() ' raise NotImplementedError
-622,503,933,067,415,300
Update the local weights on the master, for instance by calling .pull_current_strat_from_chief()
PokerRL/eval/_/EvaluatorMasterBase.py
update_weights
EricSteinberger/DREAM
python
def update_weights(self): ' ' raise NotImplementedError
def pull_current_strat_from_chief(self): '\n Pulls and Returns weights or any other changing algorithm info of any format from the Chief.\n ' return self._ray.get(self._ray.remote(self._chief_handle.pull_current_eval_strategy, self._evaluator_name))
5,797,578,648,283,884,000
Pulls and Returns weights or any other changing algorithm info of any format from the Chief.
PokerRL/eval/_/EvaluatorMasterBase.py
pull_current_strat_from_chief
EricSteinberger/DREAM
python
def pull_current_strat_from_chief(self): '\n \n ' return self._ray.get(self._ray.remote(self._chief_handle.pull_current_eval_strategy, self._evaluator_name))
def _create_experiments(self, self_name): '\n Registers a new experiment either for each player and their average or just for their average.\n ' if self._log_conf_interval: exp_names_conf = {eval_mode: [self._ray.get([self._ray.remote(self._chief_handle.create_experiment, ((((((((self._t_prof.name + ' ') + eval_mode) + '_stack_') + str(stack_size[0])) + ': ') + self_name) + ' Conf_') + bound_end)) for bound_end in ['lower95', 'upper95']]) for stack_size in self._t_prof.eval_stack_sizes] for eval_mode in self._t_prof.eval_modes_of_algo} else: exp_names_conf = None exp_name_total = {eval_mode: [self._ray.get(self._ray.remote(self._chief_handle.create_experiment, (((((((self._t_prof.name + ' ') + eval_mode) + '_stack_') + str(stack_size[0])) + ': ') + self_name) + ' Total'))) for stack_size in self._t_prof.eval_stack_sizes] for eval_mode in self._t_prof.eval_modes_of_algo} return (exp_name_total, exp_names_conf)
-4,117,428,563,300,774,000
Registers a new experiment either for each player and their average or just for their average.
PokerRL/eval/_/EvaluatorMasterBase.py
_create_experiments
EricSteinberger/DREAM
python
def _create_experiments(self, self_name): '\n \n ' if self._log_conf_interval: exp_names_conf = {eval_mode: [self._ray.get([self._ray.remote(self._chief_handle.create_experiment, ((((((((self._t_prof.name + ' ') + eval_mode) + '_stack_') + str(stack_size[0])) + ': ') + self_name) + ' Conf_') + bound_end)) for bound_end in ['lower95', 'upper95']]) for stack_size in self._t_prof.eval_stack_sizes] for eval_mode in self._t_prof.eval_modes_of_algo} else: exp_names_conf = None exp_name_total = {eval_mode: [self._ray.get(self._ray.remote(self._chief_handle.create_experiment, (((((((self._t_prof.name + ' ') + eval_mode) + '_stack_') + str(stack_size[0])) + ': ') + self_name) + ' Total'))) for stack_size in self._t_prof.eval_stack_sizes] for eval_mode in self._t_prof.eval_modes_of_algo} return (exp_name_total, exp_names_conf)
def _log_results(self, agent_mode, stack_size_idx, iter_nr, score, upper_conf95=None, lower_conf95=None): '\n Log evaluation results by sending these results to the Chief, who will later send them to the Crayon log server.\n\n Args:\n agent_mode: Evaluation mode of the agent whose performance is logged\n stack_size_idx: If evaluating multiple starting stack sizes, this is an index describing which one\n this data is from.\n iter_nr: Algorithm Iteration of this data\n score: Score in this evaluation (e.g. exploitability)\n ' graph_name = ('Evaluation/' + self._eval_env_bldr.env_cls.WIN_METRIC) self._ray.remote(self._chief_handle.add_scalar, self._exp_name_total[agent_mode][stack_size_idx], graph_name, iter_nr, score) if self._log_conf_interval: assert (upper_conf95 is not None) assert (lower_conf95 is not None) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_conf[agent_mode][stack_size_idx][0], graph_name, iter_nr, lower_conf95) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_conf[agent_mode][stack_size_idx][1], graph_name, iter_nr, upper_conf95)
5,679,980,090,370,800,000
Log evaluation results by sending these results to the Chief, who will later send them to the Crayon log server. Args: agent_mode: Evaluation mode of the agent whose performance is logged stack_size_idx: If evaluating multiple starting stack sizes, this is an index describing which one this data is from. iter_nr: Algorithm Iteration of this data score: Score in this evaluation (e.g. exploitability)
PokerRL/eval/_/EvaluatorMasterBase.py
_log_results
EricSteinberger/DREAM
python
def _log_results(self, agent_mode, stack_size_idx, iter_nr, score, upper_conf95=None, lower_conf95=None): '\n Log evaluation results by sending these results to the Chief, who will later send them to the Crayon log server.\n\n Args:\n agent_mode: Evaluation mode of the agent whose performance is logged\n stack_size_idx: If evaluating multiple starting stack sizes, this is an index describing which one\n this data is from.\n iter_nr: Algorithm Iteration of this data\n score: Score in this evaluation (e.g. exploitability)\n ' graph_name = ('Evaluation/' + self._eval_env_bldr.env_cls.WIN_METRIC) self._ray.remote(self._chief_handle.add_scalar, self._exp_name_total[agent_mode][stack_size_idx], graph_name, iter_nr, score) if self._log_conf_interval: assert (upper_conf95 is not None) assert (lower_conf95 is not None) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_conf[agent_mode][stack_size_idx][0], graph_name, iter_nr, lower_conf95) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_conf[agent_mode][stack_size_idx][1], graph_name, iter_nr, upper_conf95)
def _log_multi_stack(self, agent_mode, iter_nr, score_total, upper_conf95=None, lower_conf95=None): '\n Additional logging for multistack evaluations\n ' graph_name = ('Evaluation/' + self._eval_env_bldr.env_cls.WIN_METRIC) self._ray.remote(self._chief_handle.add_scalar, self._exp_name_multi_stack[agent_mode], graph_name, iter_nr, score_total) if self._log_conf_interval: assert (upper_conf95 is not None) assert (lower_conf95 is not None) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_multi_stack_conf[agent_mode][0], graph_name, iter_nr, lower_conf95) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_multi_stack_conf[agent_mode][1], graph_name, iter_nr, upper_conf95)
5,770,338,791,580,326,000
Additional logging for multistack evaluations
PokerRL/eval/_/EvaluatorMasterBase.py
_log_multi_stack
EricSteinberger/DREAM
python
def _log_multi_stack(self, agent_mode, iter_nr, score_total, upper_conf95=None, lower_conf95=None): '\n \n ' graph_name = ('Evaluation/' + self._eval_env_bldr.env_cls.WIN_METRIC) self._ray.remote(self._chief_handle.add_scalar, self._exp_name_multi_stack[agent_mode], graph_name, iter_nr, score_total) if self._log_conf_interval: assert (upper_conf95 is not None) assert (lower_conf95 is not None) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_multi_stack_conf[agent_mode][0], graph_name, iter_nr, lower_conf95) self._ray.remote(self._chief_handle.add_scalar, self._exp_names_multi_stack_conf[agent_mode][1], graph_name, iter_nr, upper_conf95)
def makeSemVer(version): 'Turn simple float number (0.1) into semver-compatible number\n for comparison by adding .0(s): (0.1.0)' version = str(version) if (version.count('.') < 2): version = '.'.join(map(str, list(map(int, version.split('.'))))) version = (version + ((2 - version.count('.')) * '.0')) return version
-6,835,943,435,101,553,000
Turn simple float number (0.1) into semver-compatible number for comparison by adding .0(s): (0.1.0)
Lib/typeworld/api/__init__.py
makeSemVer
typeWorld/api
python
def makeSemVer(version): 'Turn simple float number (0.1) into semver-compatible number\n for comparison by adding .0(s): (0.1.0)' version = str(version) if (version.count('.') < 2): version = '.'.join(map(str, list(map(int, version.split('.'))))) version = (version + ((2 - version.count('.')) * '.0')) return version
def getTextAndLocale(self, locale=['en']): 'Like getText(), but additionally returns the language of whatever\n text was found first.' if (type(locale) == str): if self.get(locale): return (self.get(locale), locale) elif (type(locale) in (list, tuple)): for key in locale: if self.get(key): return (self.get(key), key) if self.get('en'): return (self.get('en'), 'en') for key in self._possible_keys: if self.get(key): return (self.get(key), key) return (None, None)
-655,386,166,473,927,700
Like getText(), but additionally returns the language of whatever text was found first.
Lib/typeworld/api/__init__.py
getTextAndLocale
typeWorld/api
python
def getTextAndLocale(self, locale=['en']): 'Like getText(), but additionally returns the language of whatever\n text was found first.' if (type(locale) == str): if self.get(locale): return (self.get(locale), locale) elif (type(locale) in (list, tuple)): for key in locale: if self.get(key): return (self.get(key), key) if self.get('en'): return (self.get('en'), 'en') for key in self._possible_keys: if self.get(key): return (self.get(key), key) return (None, None)
def getText(self, locale=['en']): 'Returns the text in the first language found from the specified\n list of languages. If that language can’t be found, we’ll try English\n as a standard. If that can’t be found either, return the first language\n you can find.' (text, locale) = self.getTextAndLocale(locale) return text
5,000,335,307,026,303,000
Returns the text in the first language found from the specified list of languages. If that language can’t be found, we’ll try English as a standard. If that can’t be found either, return the first language you can find.
Lib/typeworld/api/__init__.py
getText
typeWorld/api
python
def getText(self, locale=['en']): 'Returns the text in the first language found from the specified\n list of languages. If that language can’t be found, we’ll try English\n as a standard. If that can’t be found either, return the first language\n you can find.' (text, locale) = self.getTextAndLocale(locale) return text