Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
vgaraujov's picture
Upload dataset
3f8b2fb verified
metadata
language:
  - ar
  - de
  - en
  - es
  - ha
  - pt
  - ro
  - ru
  - uk
  - zh
license: cc-by-4.0
dataset_info:
  - config_name: arq
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 178401.95138168443
        num_examples: 901
      - name: dev
        num_bytes: 19159.729599227427
        num_examples: 100
      - name: test
        num_bytes: 182325.91774094536
        num_examples: 902
    download_size: 168878
    dataset_size: 379887.5987218572
  - config_name: chn
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 523127.5866264265
        num_examples: 2642
      - name: dev
        num_bytes: 38319.45919845485
        num_examples: 200
      - name: test
        num_bytes: 534041.1027401083
        num_examples: 2642
    download_size: 776879
    dataset_size: 1095488.1485649897
  - config_name: deu
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 515405.4155899274
        num_examples: 2603
      - name: dev
        num_bytes: 38319.45919845485
        num_examples: 200
      - name: test
        num_bytes: 526359.9665159886
        num_examples: 2604
    download_size: 900359
    dataset_size: 1080084.8413043707
  - config_name: eng
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 548076.1392058851
        num_examples: 2768
      - name: dev
        num_bytes: 22225.286335103814
        num_examples: 116
      - name: test
        num_bytes: 559307.998214186
        num_examples: 2767
    download_size: 384196
    dataset_size: 1129609.423755175
  - config_name: esp
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 395216.75356031314
        num_examples: 1996
      - name: dev
        num_bytes: 35253.902462578466
        num_examples: 184
      - name: test
        num_bytes: 342619.1026284949
        num_examples: 1695
    download_size: 206706
    dataset_size: 773089.7586513865
  - config_name: hau
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 424719.4070074507
        num_examples: 2145
      - name: dev
        num_bytes: 68208.63737324964
        num_examples: 356
      - name: test
        num_bytes: 218305.97689603214
        num_examples: 1080
    download_size: 258984
    dataset_size: 711234.0212767324
  - config_name: ptbr
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 440757.7622371027
        num_examples: 2226
      - name: dev
        num_bytes: 38319.45919845485
        num_examples: 200
      - name: test
        num_bytes: 449952.87460237736
        num_examples: 2226
    download_size: 449617
    dataset_size: 929030.096037935
  - config_name: ron
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 245327.43369801
        num_examples: 1239
      - name: dev
        num_bytes: 23566.467407049735
        num_examples: 123
      - name: test
        num_bytes: 226189.2482839444
        num_examples: 1119
    download_size: 229120
    dataset_size: 495083.1493890041
  - config_name: rus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 439569.73592379515
        num_examples: 2220
      - name: dev
        num_bytes: 65717.87252535007
        num_examples: 343
      - name: test
        num_bytes: 131387.85646520453
        num_examples: 650
    download_size: 257485
    dataset_size: 636675.4649143497
  - config_name: ukr
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: anger
        dtype: int64
      - name: disgust
        dtype: int64
      - name: fear
        dtype: int64
      - name: joy
        dtype: int64
      - name: sadness
        dtype: int64
      - name: surprise
        dtype: int64
    splits:
      - name: train
        num_bytes: 488278.8147694049
        num_examples: 2466
      - name: dev
        num_bytes: 47707.72670207629
        num_examples: 249
      - name: test
        num_bytes: 451569.9559127183
        num_examples: 2234
    download_size: 380447
    dataset_size: 987556.4973841995
configs:
  - config_name: arq
    data_files:
      - split: train
        path: arq/train-*
      - split: dev
        path: arq/dev-*
      - split: test
        path: arq/test-*
  - config_name: chn
    data_files:
      - split: train
        path: chn/train-*
      - split: dev
        path: chn/dev-*
      - split: test
        path: chn/test-*
  - config_name: deu
    data_files:
      - split: train
        path: deu/train-*
      - split: dev
        path: deu/dev-*
      - split: test
        path: deu/test-*
  - config_name: eng
    data_files:
      - split: train
        path: eng/train-*
      - split: dev
        path: eng/dev-*
      - split: test
        path: eng/test-*
  - config_name: esp
    data_files:
      - split: train
        path: esp/train-*
      - split: dev
        path: esp/dev-*
      - split: test
        path: esp/test-*
  - config_name: hau
    data_files:
      - split: train
        path: hau/train-*
      - split: dev
        path: hau/dev-*
      - split: test
        path: hau/test-*
  - config_name: ptbr
    data_files:
      - split: train
        path: ptbr/train-*
      - split: dev
        path: ptbr/dev-*
      - split: test
        path: ptbr/test-*
  - config_name: ron
    data_files:
      - split: train
        path: ron/train-*
      - split: dev
        path: ron/dev-*
      - split: test
        path: ron/test-*
  - config_name: rus
    data_files:
      - split: train
        path: rus/train-*
      - split: dev
        path: rus/dev-*
      - split: test
        path: rus/test-*
  - config_name: ukr
    data_files:
      - split: train
        path: ukr/train-*
      - split: dev
        path: ukr/dev-*
      - split: test
        path: ukr/test-*

BRIGHTER Emotion Intensities Dataset

This dataset contains the emotion intensities data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.

Dataset Description

The BRIGHTER Emotion Intensities dataset is a comprehensive multi-language emotion intensity dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages, providing numerical intensity scores for emotions.

  • Total languages: 10 languages
  • Total examples: 41196
  • Splits: train, dev, test

About BRIGHTER

BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six emotion intensities: anger, disgust, fear, joy, sadness, and surprise.

The dataset contains text in the following languages: Algerian Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Portuguese (Brazil), Romanian, Russian, and Ukrainian.

Language Configurations

Each language is available as a separate configuration with the following statistics:

Original Code ISO Code Train Examples Dev Examples Test Examples Total
arq ar 901 100 902 1903
chn zh 2642 200 2642 5484
deu de 2603 200 2604 5407
eng en 2768 116 2767 5651
esp es 1996 184 1695 3875
hau ha 2145 356 1080 3581
ptbr pt 2226 200 2226 4652
ron ro 1239 123 1119 2481
rus ru 2220 343 650 3213
ukr uk 2466 249 2234 4949

Features

  • id: Unique identifier for each example
  • text: Text content to classify
  • anger, disgust, fear, joy, sadness, surprise: Intensity scores for each emotion

Dataset Characteristics

Unlike the BRIGHTER-emotion-categories dataset that provides binary labels for emotion presence, this dataset provides intensity scores on a scale, making it suitable for regression tasks or fine-grained emotion analysis.

Usage

from datasets import load_dataset

# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-intensities", "eng")

# Or load a specific split for a language
eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-intensities", "eng", split="train")

Citation

If you use this dataset, please cite the following papers:

@misc{muhammad2025brighterbridginggaphumanannotated,
      title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2502.11926},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.11926}, 
}
@misc{muhammad2025semeval2025task11bridging,
      title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2503.07269},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.07269}, 
}

License

This dataset is licensed under CC-BY 4.0.