lang
stringclasses 10
values | seed
stringlengths 5
2.12k
|
---|---|
python | REST_FRAMEWORK = {
'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',
'PAGE_SIZE': 10,
}
|
python | url="https://github.com/th-os/iotfs",
packages=setuptools.find_packages(),
platforms=['Linux'],
classifiers=[
"Programming Language :: Python :: 3", |
python | import jsonschema
import json
with open('court-schema.json', 'r') as schema_file:
schema = json.loads(schema_file.read())
with open('sample_court.json', 'r') as court_file:
court = json.loads(court_file.read())
print not jsonschema.validate(court, schema)
|
python |
def get_url(self, host, media_id):
return 'http://videomega.tv/cdn.php?ref=%s' % media_id
def get_host_and_id(self, url):
r = re.search(self.pattern, url)
if r: |
python | ('password', '0015_auto_20170312_1817'),
]
operations = [
migrations.AddField(
model_name='vault', |
python | d['subject'] = subjects
d['outcome'] = outcomes
d['preds'] = preds
for f_id in range(0, num_top_features):
feat = features_best[f_id]
curr_beta = betas[:, order[f_id]]
curr_shap = shap_values[:, order[f_id]]
d[f"{feat}_beta"] = curr_beta
d[f"{feat}_shap"] = curr_shap |
python | # cms geometry
# tracker geometry
# tracker numbering
# KFUpdatoerESProducer |
python | source_type="git",
source_url="https://foo.bar",
source_reference="master",
)
assert a1 == a1 |
python | return download_directory
def remove_remix(string_with_remix):
string_with_remix = string_with_remix.lower()
if 'remix' in string_with_remix:
string_with_remix = string_with_remix.replace('remix', '')
return string_with_remix
|
python |
def connection_info(self):
if self.srv:
return self.srv.client_info()
#
# simpleJSON Reader
#
def readConfig(self):
data = json.load(open('config.json')) |
python | self.cache = {}
def __call__(self, f):
def decorated_function(*args):
try:
return self.cache[self.tag]
except KeyError:
val = f(*args)
self.cache[self.tag] = val
return val
return decorated_function
|
python |
class DeviceTokenAdmin(admin.ModelAdmin):
list_display = ('id', 'device_token', 'uuid', 'user')
list_display_links = ('id', 'device_token', 'uuid', 'user')
admin.site.register(DeviceToken, DeviceTokenAdmin)
class CertFileAdmin(admin.ModelAdmin):
readonly_fields = ('filename', 'target_mode', 'is_use', 'expire_date', 'upload_date')
list_display = ('id', 'filename', 'target_mode', 'is_use', 'expire_date', 'upload_date') |
python | """
eg. a picture, html doc, ...
"""
_SCHEMATEXT = """
@url = jumpscale.docs.docsite.1
name** = ""
path = ""
state** = "image,html,css" (E)
extension** = ""
|
python | MINER_FUND_RATIO = 8
MINER_FUND_ADDR = 'bchreg:pqnqv9lt7e5vjyp0w88zf2af0l92l8rxdgd35g0pkl'
class MinerFundTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 1
self.extra_args = [[
'-enableminerfund',
'-allownonstdtxnconsensus=1',
]] |
python | def _calculate_f1_acc(true_positive, false_positive, false_negative, true_negative):
if true_positive <= 0:
return 0.0, 0.0, 0.0, 0.0
precision = float(true_positive) / (true_positive + false_positive)
recall = float(true_positive) / (true_positive + false_negative)
f_1 = 2 * precision * recall / (precision + recall)
accuracy = float(true_positive + true_negative) / \
(true_positive + false_positive + false_negative + true_negative)
return precision, recall, f_1, accuracy
def print_confusion_matrix(self):
""" 打印混淆矩阵 confusion matrix """
|
python | if type(None) in get_args(fld.type):
# skip optional arguments
continue
elif isclass(fld.type) and issubclass(fld.type, Header):
attr_items[fld.name] = fld.type.empty()
elif get_origin(fld.type) is Union and issubclass(get_args(fld.type)[0], Header):
attr_items[fld.name] = get_args(fld.type)[0].empty()
elif get_origin(fld.type) is list and isclass(get_args(fld.type)[0]) \
and issubclass(get_args(fld.type)[0], Header):
attr_items[fld.name] = [get_args(fld.type)[0].empty()]
else:
attr_items[fld.name] = None
return cls(**attr_items) |
python | pool.also_notifies = mock.MagicMock()
pool.also_notifies.__iter__.return_value = [
mock.Mock(host='192.168.1.1', port=53),
]
self.service.get_pool.return_value = pool
|
python | import uvloop
except ImportError:
pass
else:
uvloop.install() |
python | def __cmp__(self, other):
return cmp(self.foo, other.foo)
class AnotherComparable(object):
def __init__(self, baz='qux'):
self.baz = baz
def __hash__(self):
return hash(self.baz) |
python | from ..models import Post
register = template.Library()
@register.simple_tag(name='total_posts')
def total_posts():
return Post.published.count()
@register.inclusion_tag('blog/partials/latest_posts.html')
def show_latest_posts(count=3): |
python | fields = ('id', 'name', 'owner', 'opsim_run', 'maf_comment', 'created_at', 'plots', )
class MetricUploadSerializer(serializers.Serializer):
key = serializers.CharField()
data = MetricSerializer()
|
python |
from SCons.Options import PackageOption
opts = Options(args=ARGUMENTS)
opts.AddOptions(
PackageOption('x11',
'use X11 installed here (yes = search some places', |
python | text = event.get("text")
if text and text.lower() == "start":
return start_onboarding(user_id, channel_id, client)
|
python | if f.endswith('.conf'):
fpath = os.path.join(root, f)
try:
with open(fpath, 'r') as fh:
config = yaml.safe_load(fh)
if config.get('trubblestack', {}).get('returner', {}).get('splunk'):
ret = {'trubblestack': config['trubblestack']}
except:
pass
except:
pass
return ret |
python | import os
username = os.environ.get('USERNAME', 'hoangan2030')
password = os.environ.get('PASSWORD', '<PASSWORD>')
|
python | "eu-west-2" : "894491911112",
"eu-west-3" : "807237891255",
"eu-south-1": "488287956546",
"eu-central-1" : "024640144536",
"ca-central-1" : "557239378090",
"af-south-1" : "143210264188",
"sa-east-1" : "424196993095",
"me-south-1" : "376037874950" |
python | from pywps import Service
from pywps.tests import assert_response_success
from .common import get_output, client_for, CFG_FILE
from emu.processes.wps_multiple_outputs import MultipleOutputs
@pytest.fixture
def resp():
client = client_for(Service(processes=[MultipleOutputs()], cfgfiles=CFG_FILE))
datainputs = 'count=5'
response = client.get(
service="WPS", request="Execute", version="1.0.0", identifier="multiple_outputs",
datainputs=datainputs) |
python | if n <= 1:
return 1
else:
return n * factorial(n - 1)
def main():
if len(sys.argv) != 2:
print('ERROR: One argument is required.')
print('Usage:')
print('\tpython factorial.py <n>') |
python | # print >> f, 'Portion wrong image: ', portion_wrong
# The image generator has some memory issues
gc.collect() |
python | sources.register(r'sources', views.FeedSourceViewset)
summary = SimpleRouter()
summary.register(r'summary', views.FeedViewset)
urlpatterns = [ |
python | import flwr as fl
import sys
# Start Flower server for three rounds of federated learning
if __name__ == "__main__":
fl.server.start_server("0.0.0.0:8080", config={"num_rounds": 10}) |
python | return ret
def convert_to_idx(self, labels, unk=None, bos=None, eos=None, _type=torch.LongTensor):
vec = []
|
python | roman = {1:'I', 2:'II', 3:'III'}
newRoman = roman.copy()
del roman[1]
print(roman)
print(newRoman) |
python | subsections = []
try:
subsections = list(tex_node.subsections)
subsections = [i.string for i in subsections]
except:
pass
return subsections
|
python | conn.send(data)
conn.close()
else:
if(os.path.isfile(request)): |
python | point statistics.
"""
def autocorrelate(X, basis, periodic_axes=[], n_jobs=1, confidence_index=None,
autocorrelations=None):
""" |
python | type='presence'
)
def returned_home_cb(self, entity, attribute, old, new, kwargs):
trigger_type = kwargs['type']
|
python | data_number = 0
cant = (min(max_number + 1, pieces_per_player) // 2)
hand = [(data_number, i) for i in sample(list(range(max_number + 1)), cant)]
if not (0, 0) in hand:
hand.pop()
hand.append((0, 0))
pieces = [(i, j) for i in range(max_number + 1) for j in range(max_number + 1) if i <= j and (i, j) not in hand]
assert 4 * pieces_per_player <= len(pieces) + len(hand)
hand.extend(sample(pieces, 4 * pieces_per_player - len(hand)))
hands = [hand[i:i+pieces_per_player] for i in range(0, 4 * pieces_per_player, pieces_per_player)] |
python |
# check if gateway exsits
"""
gw_id = "38e998af01b5c8d8287a817211e5e52fb23a3e3bb031c0c1437746d9e148bd17"
if(not col.count_documents({"uuid": gw_id})):
print("# Invalid registration request!\n## Received gateway ID doest not exists in local database!")
# self.write("....")
#return
print("Gateway ID valid and registered in local database")
doc = col.find({"uuid" : gw_id}).limit(1)[0]
|
python |
Args:
other (Params): P2 part
Returns:
bool: Return true if NOT equal. Otherwise false
"""
len1 = len(self.data)
len2 = len(self.data)
if len1 != len2:
return True
else:
for item in self.data: |
python | def get_extras():
"""Extra pybm functionality, specified as a valid argument to
setuptools.setup's 'extras_require' keyword argument."""
extra_features = {
"gbm": ["google_benchmark @ git+https://github.com/google/benchmark"]
}
extra_features["all"] = sum(extra_features.values(), []) |
python | # get rl_state
self.p.rl_state[self.p.deta_x_index] = abs(self.a.state[0, -1] - self.w.goal[0, -1])
self.p.rl_state[self.p.deta_y_index] = abs(self.a.state[1, -1] - self.w.goal[1, -1])
self.p.rl_state[self.p.v_x_index] = self.a.state[4, -1] * np.cos(self.a.state[2, -1])
self.p.rl_state[self.p.v_y_index] = self.a.state[4, -1] * np.sin(self.a.state[2, -1])
self.p.rl_state[self.p.heading_index] = np.arccos(np.dot(self.a.state[0:2, -1], self.w.goal[0:2, -1]) / \ |
python | <gh_stars>100-1000
"""Import snow and its metrics."""
from . import snow
metrics_functions = [snow.land_swe_top, ]
|
python | class Class:
def __init__(self, products, postal_code, house_number, country, city):
self.products = products
self.postal_code = postal_code
self.house_number = house_number |
python | from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
import sys
if not sys.platform == 'win32':
include_dirs=['../include', numpy.get_include()]
library_dirs=['../lib'] |
python | from .model_helpers import make_tensorboard_callback, make_save_path
from ..utils import naming
class SimpleModel:
def __init__(self, directory_name: str, n_input: int, n_output: int):
self.directory_name = directory_name
self.model = keras.models.Sequential()
self.model.add(keras.layers.Dense(400, input_dim=n_input))
self.model.add(keras.layers.Activation('relu'))
self.model.add(keras.layers.Dense(800))
self.model.add(keras.layers.Activation('relu')) |
python | defaultRoute='via 192.168.0.224' )
#############
sta5 = net.addStation( 'sta5', ip='10.0.0.2/24', defaultRoute='via 10.0.0.22' )
sta6 = net.addStation( 'sta6', ip='10.0.0.3/24', defaultRoute='via 10.0.0.22')
#############
h1 = net.addHost('h1', ip='192.168.0.5', defaultRoute='via 192.168.0.224')
h2 = net.addHost('h2', ip='192.168.0.6', defaultRoute='via 192.168.0.224')
|
python |
def set_sent_starts(doc):
# Mark each doc as a single sentence.
sent_start_char = 0
sent_end_char = len(doc.text) |
python | def payment_type(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "payment_type", value)
@property
@pulumi.getter
def period(self) -> Optional[pulumi.Input[int]]:
"""
The period. Unit: months. Valid values: `1`,`3`, `6`, `12`, `24`, `36`. |
python | if channel == BUTTONS[pattern[current_step_of_level]]:
current_step_of_level += 1
if current_step_of_level >= current_level:
current_level += 1
is_won_current_level = True
else:
is_game_over = True
|
python | model_name='grouping',
name='shopify_collection',
),
migrations.AddField(
model_name='grouping',
name='shopify_collections',
field=models.ManyToManyField(related_name='grouping', to='shopify.ShopifyCollection'),
), |
python | import functools
def _generate_key(*args, **kwargs):
return (args, frozenset(sorted(kwargs.items())))
def memoize(fun):
"""A simple memoize decorator for functions supporting (hashable)
positional arguments.
It also provides a cache_clear() function for clearing the cache: |
python | log.debug(f'Filename: {file}')
data['file'] = file
data['content_type'] = content_type(file)
self.cache[key] = file
def keys(self):
return self.cache.keys()
def remove(self, key):
if key in self.cache:
del self.cache[key]
|
python | return cmd
if __name__ == "__main__":
# configure logger
logging.basicConfig()
dateTimeTag = datetime.datetime.now().strftime( '%Y-%m-%d_%H%M%S' )
outDataDirPath = 'data/binary_' + dateTimeTag
|
python |
class Handler:
characters = []
# Constructor
def __init__(self, characters=[]):
self.characters = characters
self.load()
def add(self, character):
for character_temp in self.characters:
if character_temp.name == character.name:
return
self.characters.append(character) |
python | def __repr__(self):
return '[Stack:%s]' % self.stack # print, repr(),..
def __eq__(self, other):
return self.stack == other.stack # '==', '!='?
def __len__(self):
return len(self.stack) # len(instance), not instance
def __add__(self, other): |
python | from fundata.request import ApiClient
from fundata.client import init_api_client
from fundata.dota2.match import get_batch_basic_info
print(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
def test(public_key, secret_key):
# 用 public key,secret key 来初始化 client
client = ApiClient(public_key, secret_key)
# 准备 API 需要的参数 |
python | Optional wait durating (in seconds) is specified
with keyword argument wait_t.
"""
responses = None |
python |
class CoinsE(Market):
def __init__(self):
super(CoinsE, self).__init__()
self.update_rate = 60
self.url = url_base + self.p_coin + '_' + self.s_coin + '/depth/'
def update_depth(self): |
python | from typing import Optional
from typer import Argument
from typer import Context as TyperContext
from typer import Option
from typer import echo
from spinta.cli.helpers.store import prepare_manifest
from spinta.components import Mode
from spinta.core.context import configure_context |
python | # 10^12 = 1,000,000,000,000 discs in total, determine
# the number of blue discs that the box would contain.
x = 1
y = 1 |
python | while True:
img = cam.read()[1]
img = cv2.flip(img, 1)
img = cv2.resize(img, (640, 480))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
keypress = cv2.waitKey(1)
if keypress == ord('c'):
hsvCrop = cv2.cvtColor(imgCrop, cv2.COLOR_BGR2HSV)
flagPressedC = True |
python |
plt.plot(ph, vb)
plt.plot(ph, vb1)
plt.ylim(0, 20)
plt.show()
plt.plot(ph, a)
plt.ylim(0, 3)
plt.show()
|
python | def format_seconds(secs):
if secs < 1e-3:
t, u = secs * 1e6, 'microsec'
elif secs < 1e0:
t, u = secs * 1e3, 'millisec'
else:
t, u = secs, 'sec'
return '{:.03f} {}'.format(t, u)
|
python | src: /proc/mounts
register: mounts
- name: Print returned information
ansible.builtin.debug:
msg: "{{ mounts['content'] | b64decode }}"
# From the commandline, find the pid of the remote machine's sshd
# $ ansible host -m slurp -a 'src=/var/run/sshd.pid'
# host | SUCCESS => {
# "changed": false,
# "content": "MjE3OQo=",
# "encoding": "base64", |
python | inbox. The carousel then uses your factory function to create a new child
component. This way, a sequence of operations can be automatically chained
together.
If the argument source needs to receive a "NEXT" message before sending its
first set of arguments, then set the argument make1stRequest=True when creating
the carousel.
You can actually send new orders to the "next" inbox at any time, not just in
response to requests from the Carousel. The carousel will immediately ask that
child to terminate; then as soon as it has done so, it will create the new one
and wire it in in its place.
|
python |
def f_principal(parametros):
if len(parametros) != 1:
raise SystemExit(f'Uso adecuado: {parametros[0]} ')
archivos_png(parametros)
return
if __name__ == '__main__':
import sys
f_principal(sys.argv) |
python | # uncompyle6 version 3.2.0
# Python bytecode 2.4 (62061)
# Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)]
# Embedded file name: otp.ai.AIBaseGlobal
from AIBase import *
__builtins__['simbase'] = AIBase() |
python | # http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from arjuna import *
class MyDataClass:
def __iter__(self): |
python | while len(ms):
e = ms.pop()
print(e, end='')
print("")
lq.close()
lq.unlink() |
python |
class FacultyListView(generics.ListAPIView):
"""API view for faculty lists"""
queryset = Faculty.objects.all()
serializer_class = FacultySerializer
# authentication_classes = (authentication.TokenAuthentication,)
# permission_classes = (permissions.IsAuthenticated,)
filter_backends = [DjangoFilterBackend,] |
python |
from face_detector import detect_faces
def cut_and_save_face_imgs():
ORIGINAL_DATA_DIR_PATH = './data/original_images/face_dataset/' |
python | class Migration(migrations.Migration):
dependencies = [
('steambird', '0002_auto_20190328_2255'),
]
operations = [
migrations.AlterField(
model_name='teacher',
name='user',
field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='The user associated to this'),
),
] |
python | )
tb = row.column()
tb1 = tb.column(align=True)
tb1.operator('mmd_tools.display_item_frame_add', text='', icon=ICON_ADD)
tb1.operator('mmd_tools.display_item_frame_remove', text='', icon=ICON_REMOVE)
tb1.menu('OBJECT_MT_mmd_tools_display_item_frame_menu', text='', icon='DOWNARROW_HLT')
tb.separator()
tb1 = tb.column(align=True) |
python | while next_player is None:
next_player = input("Who should be the first player? 'X' or 'O': ")
if 'x' in next_player.lower():
game.next_player = "X"
elif 'o' in next_player.lower():
game.next_player = "O" |
python | def getch():
try:
tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
|
python | self.options.update(self.define_options(['pepfile', 'proteincol'],
prottable_options))
def parse_input(self, **kwargs):
super().parse_input(**kwargs)
self.headertypes = ['probability']
def initialize_input(self):
super().initialize_input()
self.in_peptides = reader.generate_tsv_peptides(self.pepfile)
pepheader = reader.get_tsv_header(self.pepfile)
self.get_column_header_for_number(['proteincol'], pepheader) |
python | # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and |
python | self.path += '?%s' % parsed.query
self._bufr = StringIO()
self._bufw = StringIO()
self._conn = None
self._timeout = None
self._headers = None
def open (self):
if self._conn is not None:
self.close() |
python | x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.preprocessing.sequence.pad_sequences(x_val, maxlen=maxlen)
"""
## Train and evaluate the model
"""
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val)) |
python |
@pytest.mark.parametrize(
'activation_slot,exit_slot,slot,expected',
[
(0, 1, 0, True),
(1, 1, 1, False),
(0, 1, 1, False),
(0, 1, 2, False),
],
)
def test_is_active(sample_validator_record_params,
activation_slot, |
python | # You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import operator
import numpy as np
|
python | fig, ax = plt.subplots(1)
ax.plot(t, mu1, lw=2, label='mean population 1', color='blue')
ax.plot(t, mu2, lw=2, label='mean population 2', color='yellow')
ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor='blue', alpha=0.5)
ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='yellow', alpha=0.5)
ax.set_title(r'random walkers empirical $\mu$ and $\pm \sigma$ interval')
ax.legend(loc='upper left')
ax.set_xlabel('num steps')
ax.set_ylabel('position')
ax.grid()
###############################################################################
# The ``where`` keyword argument is very handy for highlighting certain
# regions of the graph. ``where`` takes a boolean mask the same length
# as the x, ymin and ymax arguments, and only fills in the region where |
python | gif_lat_file = pd.read_excel(
excel_path,
header=0,
sheet_name='Full GIF Map for Review ', engine="openpyxl",
)
gifs_right = gif_lat_file.loc[gif_lat_file['R'].notnull(), 'R'].copy() |
python | if users[col].dtype == np.object:
users = users[users[col].map(len) > 0]
logging.info(" -> Without empty strings: %d records", len(users))
# # 8. Write results
logging.info("8. WRITING result")
logging.info(" ColDelimiter=%s | RowDelimiter=%s",
DST_COL_DELIMITER, DST_ROW_DELIMITER)
logging.info(" Export columns: %s", DST_COLS_OUTPUT)
DST_FILE_NAME = ".".join(os.path.basename(users_file).split(".")[:-1])
DST_FILE_EXT = os.path.basename(users_file).split(".")[-1] |
python | ZAL = '\u0630'
RE = '\u0631'
ZE = '\u0632'
ZHE = '\u0698'
SIN = '\u0633'
SHIN = '\u0634'
SAD = '\u0635'
ZAD = '\u0636'
TA = '\u0637'
ZA = '\u0638'
EYN = '\u0639'
GHEYN = '\u063a'
FE = '\u0641'
GHAF = '\u0642'
KAF = '\u06a9' |
python | has_receive = 0
while has_receive != filesize:
data = dir_socket.recv(1024) # 第二次获取请求,这次获取的就是传递的具体内容了,1024为文件发送的单位
f.write(data)
has_receive += len(data)
f.close()
def deal_dir():
# 待完善用于处理子文件夹,需要利用递归完成
|
python | socket_down = context.socket(zmq.SUB)
socket_up = context.socket(zmq.PUB)
socket_down.connect("tcp://127.0.0.1:5555")
# socket_down.bind("ipc:///@capnzero.ipc")
socket_down.setsockopt_string(zmq.SUBSCRIBE, rcv_topic) |
python |
print(Counter('aaaaaaaaaaaabbbbbbbbbcccccccccc'))
d = {'a': 10}
d = defaultdict(lambda: 0) |
python | if can_admin(user, world):
return True
if world.properties.get('features', {}).get('coordLink', False):
return True
return False
def is_superuser(user):
return user.is_authenticated() and user.is_superuser
def can_urllink(user, world): |
python | 'test.class1',
'test.class2',
{'model_alias1': ['test.class3']}]}
self.assertEqual(
lc_utils.get_test_steps(),
{'default_alias': ['test.class1', 'test.class2'],
'model_alias1': ['test.class3']})
|
python | print("Metadata misssing from database. Skipping experiment.")
db_id = exp_id
sample_dict = collections.OrderedDict()
if library == 'SINGLE':
sample_dict = collections.OrderedDict([('fastq_1',''), ('fastq_2',''), ('md5_1',''), ('md5_2',''), ('single_end','true')])
if fastq_files:
sample_dict['fastq_1'] = fastq_files
sample_dict['md5_1'] = fastq_md5
else:
## In some instances FTP links don't exist for FastQ files
## These have to be downloaded via fastq-dump / fasterq-dump / parallel-fastq-dump via the run id
db_id = run_id
|
python | fund_mapping = Mapping(fund_gsheet, Fund.constructor_parameters, field_casts=field_casts)
funds = extract_from_detailed_ledger(
'funds',
'A11',
('fund', 'type', 'parish fund', 'realised', 'bank account id')
) |
python | pipeline.raise_from_status()
# Since Kafka emission is asynchronous, we must wait a little bit so that
# the changes are actually processed.
time.sleep(kafka_post_ingestion_wait_sec)
@pytest.mark.dependency(
depends=[
"test_ingestion_via_rest",
"test_ingestion_via_kafka",
"test_ingestion_usage_via_rest",
]
) |
python |
if src_lang not in self.supported_langs:
raise RuntimeError('Unsupported source language.')
if tgt_lang not in self.supported_langs:
raise RuntimeError('Unsupported target language.')
self.tokenizer.src_lang = src_lang
encoded_text = self.tokenizer(input_text, return_tensors='pt')
generated_tokens = self.model.generate(**encoded_text, forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang])
output_text_arr = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
python |
def setUp(self):
'''
Set up method that will run before every Test
'''
self.new_headlines = Top_Headlines('<NAME>', '<NAME> delivers on Man United return with two goals and a show to delight Old Trafford - ESPN', 'Twelve years after he left Old Trafford, Ronaldo picked up where he left off in a Man United shirt, showing that he remains a difference maker.', "https://www.espn.com/soccer/english-premier-league/story/4472125/cristiano-ronaldo-delivers-on-man-united-return-with-two-goals-and-a-show-to-delight-old-trafford","https://a2.espncdn.com/combiner/i?img=%2Fphoto%2F2021%2F0911%2Fr907512_1296x729_16%2D9.jpg", '2021-09-11T18:50:39Z')
def test_instance(self):
'''
Test to check creation of new headline instance
''' |
python | 'author_email': '<EMAIL>',
'version': '1.0',
'install_requires': ['nose'],
'packages': ['parking'],
'scripts': [],
'name': 'parking-calculator'
} |
python | # -*- encoding: utf-8 -*-
__author__ = 'gotlium'
|
python | Created on Tue Dec 5 20:32:45 2017
@author: Flame
"""
from main import check
"""
from TuringMachine import Rule, Q, Move, TuringMachine, Tape |
python | """
def disambiguate(self, word):
"""Disambiguate Prefix Rule 1b
Rule 1b : berV -> be-rV
"""
matches = re.match(r'^ber([aiueo].*)$', word)
if matches:
return 'r' + matches.group(1)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.