code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package org.scaladebugger.api.profiles.traits.info import org.scaladebugger.api.virtualmachines.ScalaVirtualMachine /** * Represents the interface that needs to be implemented to provide * miscellaneous info functionality for a specific debug profile. */ trait MiscInfo { /** * Retrieves the Scala virtual machine associated with this profile instance. * * @return The Scala virtual machine instance */ def toScalaVirtualMachine: ScalaVirtualMachine /** * Retrieves the list of available lines for a specific file. * * @param fileName The name of the file whose lines to retrieve * @return Some list of breakpointable lines if the file exists, * otherwise None */ def availableLinesForFile(fileName: String): Option[Seq[Int]] /** * Retrieves all source paths for the given source name. * * @example nameToPaths("file.scala") yields * Seq("path/to/file.scala", "other/path/to/file.scala") * @param sourceName The source (file) name whose associated paths to find * @return The collection of source paths */ def sourceNameToPaths(sourceName: String): Seq[String] /** * Represents the name of the class used as the entrypoint for this vm. * * @return The main class name as a string */ def mainClassName: String /** * Represents the command line arguments used to start this VM. * * @return The command line arguments as a collection of strings */ def commandLineArguments: Seq[String] }
chipsenkbeil/scala-debugger
scala-debugger-api/src/main/scala/org/scaladebugger/api/profiles/traits/info/MiscInfo.scala
Scala
apache-2.0
1,506
/* * Copyright (c) 2011-2012, Alex McGuire, Louis Botterill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package maker.task.tasks import org.apache.commons.io.FileUtils._ import maker.project._ import maker.task._ import maker.utils.Stopwatch import maker.utils.maven.IvyLock import maker.utils.FileUtils import maker.PomUtils /** * publishes poms and packaged artifacts to the local filesystem at ~/.ivy2/maker-local - subject to change */ case class PublishLocalTask(baseProject : BaseProject, version : String) extends Task { def name = "Publish Local" def module = baseProject def upstreamTasks = baseProject match { case _ : Project => baseProject.immediateUpstreamModules.map(PublishLocalTask(_, version)) case m : Module => PackageMainJarTask(m) :: baseProject.immediateUpstreamModules.map(PublishLocalTask(_, version)) } def exec(results : Iterable[TaskResult], sw : Stopwatch) = { IvyLock.synchronized{ doPublish(baseProject, results, sw) } } private def doPublish(baseProject: BaseProject, results : Iterable[TaskResult], sw : Stopwatch) = { FileUtils.writeToFile(baseProject.publishLocalPomFile, PomUtils.pomXml(baseProject, version)) baseProject match { case _ : Project => case m : Module => copyFileToDirectory(m.outputArtifact, m.publishLocalJarDir) } DefaultTaskResult(this, true, sw) } }
syl20bnr/maker
maker/src/maker/task/tasks/PublishLocalTask.scala
Scala
bsd-2-clause
2,680
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.types import org.json4s.JsonAST.JValue import org.json4s.JsonDSL._ import org.apache.spark.annotation.InterfaceStability /** * The data type for Maps. Keys in a map are not allowed to have `null` values. * * Please use `DataTypes.createMapType()` to create a specific instance. * * @param keyType The data type of map keys. * @param valueType The data type of map values. * @param valueContainsNull Indicates if map values have `null` values. */ @InterfaceStability.Stable case class MapType( keyType: DataType, valueType: DataType, valueContainsNull: Boolean) extends DataType { /** No-arg constructor for kryo. */ def this() = this(null, null, false) private[sql] def buildFormattedString(prefix: String, builder: StringBuilder): Unit = { builder.append(s"$prefix-- key: ${keyType.typeName}\\n") DataType.buildFormattedString(keyType, s"$prefix |", builder) builder.append(s"$prefix-- value: ${valueType.typeName} " + s"(valueContainsNull = $valueContainsNull)\\n") DataType.buildFormattedString(valueType, s"$prefix |", builder) } override private[sql] def jsonValue: JValue = ("type" -> typeName) ~ ("keyType" -> keyType.jsonValue) ~ ("valueType" -> valueType.jsonValue) ~ ("valueContainsNull" -> valueContainsNull) /** * The default size of a value of the MapType is * (the default size of the key type + the default size of the value type). * We assume that there is only 1 element on average in a map. See SPARK-18853. */ override def defaultSize: Int = 1 * (keyType.defaultSize + valueType.defaultSize) override def simpleString: String = s"map<${keyType.simpleString},${valueType.simpleString}>" override def catalogString: String = s"map<${keyType.catalogString},${valueType.catalogString}>" override def sql: String = s"MAP<${keyType.sql}, ${valueType.sql}>" override private[spark] def asNullable: MapType = MapType(keyType.asNullable, valueType.asNullable, valueContainsNull = true) override private[spark] def existsRecursively(f: (DataType) => Boolean): Boolean = { f(this) || keyType.existsRecursively(f) || valueType.existsRecursively(f) } } /** * @since 1.3.0 */ @InterfaceStability.Stable object MapType extends AbstractDataType { override private[sql] def defaultConcreteType: DataType = apply(NullType, NullType) override private[sql] def acceptsType(other: DataType): Boolean = { other.isInstanceOf[MapType] } override private[sql] def simpleString: String = "map" /** * Construct a [[MapType]] object with the given key type and value type. * The `valueContainsNull` is true. */ def apply(keyType: DataType, valueType: DataType): MapType = MapType(keyType: DataType, valueType: DataType, valueContainsNull = true) }
michalsenkyr/spark
sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala
Scala
apache-2.0
3,626
package info.glennengstrand.news import java.util.Date import org.slf4j.Logger; import org.slf4j.LoggerFactory; import info.glennengstrand.io._ /** helper functions for inbound object creation */ object Inbound { val log = LoggerFactory.getLogger("info.glennengstrand.news.Inbound") val reader: PersistentDataStoreReader = new CassandraReader val cache: CacheAware = new MockCache class InboundBindings extends PersistentDataStoreBindings { def entity: String = { "Inbound" } def fetchInputs: Iterable[String] = { List("participantID") } def fetchOutputs: Iterable[(String, String)] = { List(("occurred", "Date"), ("fromParticipantID", "Int"), ("subject", "String"), ("story", "String")) } def upsertInputs: Iterable[String] = { List("participantID", "fromParticipantID", "occurred", "subject", "story") } def upsertOutputs: Iterable[(String, String)] = { List() } def fetchOrder: Map[String, String] = { Map("occurred" -> "desc") } } val bindings = new InboundBindings def apply(id: Int) : InboundFeed = { val criteria: Map[String, Any] = Map("participantID" -> id) new InboundFeed(id, IO.cacheAwareRead(bindings, criteria, reader, cache)) with CassandraWriter with MockCacheAware } def apply(state: String): Inbound = { val s = IO.fromFormPost(state) new Inbound(Link.toLink(s("participantID").asInstanceOf[String].toLong), IO.df.parse(s("occurred").asInstanceOf[String]), Link.toLink(s("fromParticipantID").asInstanceOf[String].toLong), s("subject").asInstanceOf[String], s("story").asInstanceOf[String]) with CassandraWriter with MockCacheAware } } case class InboundState(participantID: String, occurred: Date, fromParticipantID: String, subject: String, story: String) /** represents a news item as it appears in your inbound feed */ class Inbound(participantID: String, occurred: Date, fromParticipantID: String, subject: String, story: String) extends InboundState(participantID, occurred, fromParticipantID, subject, story) with MicroServiceSerializable { this: PersistentDataStoreWriter with CacheAware => def getState: Map[String, Any] = { getState((s) => Link.extractId(participantID).intValue) } def getApiState(l:String => Any): Map[String, Any] = { Map( "to" -> l(participantID), "occurred" -> occurred, "from" -> l(fromParticipantID), "subject" -> subject, "story" -> story ) } def getState(l:String => Any): Map[String, Any] = { Map( "participantID" -> l(participantID), "occurred" -> occurred, "fromParticipantID" -> l(fromParticipantID), "subject" -> subject, "story" -> story ) } /** save item to db */ def save: Unit = { val criteria: Map[String, Any] = Map( "participantID" -> Link.extractId(participantID).intValue ) write(Inbound.bindings, getState, criteria) invalidate(Inbound.bindings, criteria) } override def toJson: String = { IO.toJson(getApiState((s) => s)) } override def toJson(factory: FactoryClass): String = toJson } /** represents a user's inbound collection of news items */ class InboundFeed(id: Int, state: Iterable[Map[String, Any]]) extends Iterator[Inbound] with MicroServiceSerializable { val i = state.iterator def hasNext = i.hasNext def next() = { val kv = i.next() Inbound.log.debug("kv = " + kv) new Inbound(Link.toLink(id.longValue), IO.convertToDate(kv("occurred")), Link.toLink(IO.convertToInt(kv("fromParticipantID")).longValue), kv("subject").toString, kv("story").toString) with CassandraWriter with MockCacheAware } override def toJson: String = { "[" + map(f => f.toJson).reduce(_ + "," + _) + "]" } override def toJson(factory: FactoryClass): String = toJson }
gengstrand/clojure-news-feed
server/feed2/src/main/scala/info/glennengstrand/news/Inbound.scala
Scala
epl-1.0
3,828
/* * Copyright 2021 HM Revenue & Customs * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package services.cache import config.ApplicationConfig import connectors.cache.Conversions import javax.inject.Inject import org.joda.time.{DateTime, DateTimeZone} import play.api.libs.json._ import play.modules.reactivemongo.ReactiveMongoComponent import reactivemongo.api.DefaultDB import reactivemongo.api.commands.WriteResult import reactivemongo.api.indexes.{Index, IndexType} import reactivemongo.bson.{BSONDocument, BSONObjectID} import reactivemongo.play.json.ImplicitBSONHandlers._ import uk.gov.hmrc.crypto.json.{JsonDecryptor, JsonEncryptor} import uk.gov.hmrc.crypto.{ApplicationCrypto, _} import uk.gov.hmrc.http.cache.client.CacheMap import uk.gov.hmrc.mongo.ReactiveRepository import uk.gov.hmrc.mongo.json.ReactiveMongoFormats import scala.concurrent.ExecutionContext.Implicits.global import scala.concurrent.Future import scala.util.{Failure, Success, Try} // $COVERAGE-OFF$ // Coverage has been turned off for these types, as the only things we can really do with them // is mock out the mongo connection, which is bad craic. This has all been manually tested in the running application. case class Cache(id: String, data: Map[String, JsValue], lastUpdated: DateTime = DateTime.now(DateTimeZone.UTC)) { /** * Upsert a value into the cache given its key. * If the data to be inserted is null then remove the entry by key */ def upsert[T](key: String, data: JsValue, hasValue: Boolean) = { val updated = if (hasValue) { this.data + (key -> data) } else { this.data - (key) } this.copy( data = updated, lastUpdated = DateTime.now(DateTimeZone.UTC) ) } } object Cache { implicit val dateFormat = ReactiveMongoFormats.dateTimeFormats implicit val format = Json.format[Cache] def apply(cacheMap: CacheMap): Cache = Cache(cacheMap.id, cacheMap.data) val empty = Cache("", Map()) } /** * Implements getEncryptedEntry[T], which will decrypt the entry on retrieval * This type itself is a type of Cache. * * @param cache The cache to wrap. * @param crypto The cryptography instance to use to decrypt values */ class CryptoCache(cache: Cache, crypto: CompositeSymmetricCrypto) extends Cache(cache.id, cache.data) with CacheOps { def getEncryptedEntry[T](key: String)(implicit fmt: Reads[T]): Option[T] = decryptValue(cache, key)(new JsonDecryptor[T]()(crypto, fmt)) } /** * An injectible factory for creating new MongoCacheClients */ class MongoCacheClientFactory @Inject()(config: ApplicationConfig, applicationCrypto: ApplicationCrypto, component: ReactiveMongoComponent) { def createClient: MongoCacheClient = new MongoCacheClient(config, component.mongoConnector.db, applicationCrypto) } /** * Implements a client which utilises the GOV UK cache repository to store cached data in Mongo. * * @param appConfig The application configuration */ class MongoCacheClient(appConfig: ApplicationConfig, db: () => DefaultDB, applicationCrypto: ApplicationCrypto) extends ReactiveRepository[Cache, BSONObjectID]("app-cache", db, Cache.format) with Conversions with CacheOps { private val logPrefix = "[MongoCacheClient]" // $COVERAGE-OFF$ private def debug(msg: String) = logger.debug(s"$logPrefix $msg") private def error(msg: String, e: Throwable) = logger.error(s"$logPrefix $msg", e) private def error(msg: String) = logger.error(s"$logPrefix $msg") // $COVERAGE-ON$ implicit val compositeSymmetricCrypto: CompositeSymmetricCrypto = applicationCrypto.JsonCrypto val cacheExpiryInSeconds: Int = appConfig.cacheExpiryInSeconds createIndex("lastUpdated", "cacheExpiry", cacheExpiryInSeconds) /** * Inserts data into the cache with the specified key. If the data does not exist, it will be created. */ def createOrUpdate[T](credId: String, data: T, key: String)(implicit writes: Writes[T]): Future[Cache] = { val jsonData = if (appConfig.mongoEncryptionEnabled) { val jsonEncryptor = new JsonEncryptor[T]() Json.toJson(Protected(data))(jsonEncryptor) } else { Json.toJson(data) } fetchAll(Some(credId)) flatMap { maybeNewCache => val cache: Cache = maybeNewCache.getOrElse(Cache(credId, Map.empty)) val updatedCache: Cache = cache.copy( id = credId, data = cache.data + (key -> jsonData), lastUpdated = DateTime.now(DateTimeZone.UTC) ) val document = Json.toJson(updatedCache) val modifier = BSONDocument("$set" -> document) collection.update(ordered = false).one(bsonIdQuery(credId), modifier, upsert = true) map { _ => updatedCache } } } /** * Removes the item with the specified key from the cache */ def removeByKey[T](credId: String, key: String): Future[Cache] = { fetchAll(Some(credId)) flatMap { maybeNewCache => val cache = maybeNewCache.getOrElse(Cache(credId, Map.empty)) val updatedCache = cache.copy( data = cache.data - (key), lastUpdated = DateTime.now(DateTimeZone.UTC) ) val document = Json.toJson(updatedCache) val modifier = BSONDocument("$set" -> document) collection.update(ordered = false).one(bsonIdQuery(credId), modifier, upsert = true) map { _ => updatedCache } } } /** * Inserts data into the existing cache object in memory given the specified key. If the data does not exist, it will be created. */ def upsert[T](targetCache: CacheMap, data: T, key: String)(implicit writes: Writes[T]): CacheMap = { val jsonData = if (appConfig.mongoEncryptionEnabled) { val jsonEncryptor = new JsonEncryptor[T]() Json.toJson(Protected(data))(jsonEncryptor) } else { Json.toJson(data) } toCacheMap(Cache(targetCache).upsert[T](key, jsonData, data != None)) } /** * Finds an item in the cache with the specified key. If the item cannot be found, None is returned. */ def find[T](credId: String, key: String)(implicit reads: Reads[T]): Future[Option[T]] = fetchAll(credId) map { case Some(cache) => if (appConfig.mongoEncryptionEnabled) { decryptValue[T](cache, key)(new JsonDecryptor[T]()) } else { getValue[T](cache, key) } case _ => None } /** * Fetches the whole cache */ def fetchAll(credId: String): Future[Option[Cache]] = collection.find(bsonIdQuery(credId), Option.empty[Cache]).one[Cache] map { case Some(c) if appConfig.mongoEncryptionEnabled => Some(new CryptoCache(c, compositeSymmetricCrypto)) case c => c } def fetchAll(credId: Option[String]): Future[Option[Cache]] = { credId match { case Some(x) => collection.find(key(x), Option.empty[Cache]).one[Cache] map { case Some(c) if appConfig.mongoEncryptionEnabled => Some(new CryptoCache(c, compositeSymmetricCrypto)) case c => c } case _ => Future.successful(None) } } /** * Fetches the whole cache and returns default where not exists */ def fetchAllWithDefault(credId: String): Future[Cache] = fetchAll(Some(credId)).map { _.getOrElse(Cache(credId, Map.empty)) } /** * Removes the item with the specified id from the cache */ def removeById(credId: String) = collection.delete().one(key(credId)) map handleWriteResult /** * Saves the cache data into the database */ def saveAll(cache: Cache): Future[Boolean] = { // Rebuild the cache and decrypt each key if necessary val rebuiltCache = Cache(cache.id, cache.data.foldLeft(Map.empty[String, JsValue]) { (acc, value) => val plainText = tryDecrypt(Crypted(value._2.toString)) if (appConfig.mongoEncryptionEnabled) { acc + (value._1 -> JsString(compositeSymmetricCrypto.encrypt(plainText).value)) } else { acc + (value._1 -> Json.parse(plainText.value)) } }) collection.update(ordered = false).one(bsonIdQuery(cache.id), BSONDocument("$set" -> Json.toJson(rebuiltCache)), upsert = true) map handleWriteResult } def saveAll(cache: Cache, credId: String): Future[Boolean] = { // Rebuild the cache and decrypt each key if necessary val rebuiltCache = Cache(credId, cache.data.foldLeft(Map.empty[String, JsValue]) { (acc, value) => val plainText = tryDecrypt(Crypted(value._2.toString)) if (appConfig.mongoEncryptionEnabled) { acc + (value._1 -> JsString(compositeSymmetricCrypto.encrypt(plainText).value)) } else { acc + (value._1 -> Json.parse(plainText.value)) } }) collection.update(ordered = false).one(bsonIdQuery(rebuiltCache.id), BSONDocument("$set" -> Json.toJson(rebuiltCache)), upsert = true) map handleWriteResult } /** * Creates a new index on the specified field, using the specified name and the ttl */ private def createIndex(field: String, indexName: String, ttl: Int): Future[Boolean] = { collection.indexesManager.ensure(Index( Seq((field, IndexType.Ascending)), Some(indexName), options = BSONDocument("expireAfterSeconds" -> ttl)) ) map { result => debug(s"Index $indexName set with value $ttl -> result: $result") result } recover { case e => error("Failed to set TTL index", e); false } } /** * Generates a BSON document query for an id */ private def bsonIdQuery(id: String) = BSONDocument("_id" -> id) private def key(id: String) = bsonIdQuery(id) /** * Handles logging for write results */ private def handleWriteResult(writeResult: WriteResult) = writeResult match { case w if w.ok => true case w if w.writeErrors.nonEmpty => w.writeErrors.map(_.errmsg).foreach(e => error(e)) throw new RuntimeException(w.writeErrors.map(_.errmsg).mkString("; ")) case _ => throw new RuntimeException("Error while removing the session data") } private def tryDecrypt(value: Crypted): PlainText = Try { compositeSymmetricCrypto.decrypt(value).value } match { case Success(v) => PlainText(v) case Failure(e) if e.isInstanceOf[SecurityException] => PlainText(value.value) case Failure(e) => throw e } } // $COVERAGE-ON$
hmrc/amls-frontend
app/services/cache/MongoCacheClient.scala
Scala
apache-2.0
10,720
package info.armado.ausleihe.client.remote.services import java.time.Year import info.armado.ausleihe.client.transport.dataobjects.entities._ import info.armado.ausleihe.client.transport.dataobjects.inuse._ import info.armado.ausleihe.client.transport.requests.IssueIdentityCardRequestDTO import info.armado.ausleihe.client.transport.results._ import org.arquillian.ape.rdbms.{ShouldMatchDataSet, UsingDataSet} import org.jboss.arquillian.extension.rest.client.ArquillianResteasyResource import org.jboss.arquillian.junit.Arquillian import org.junit.Test import org.junit.runner.RunWith import org.scalatest.Matchers.{convertToAnyShouldWrapper, equal} import org.scalatest.junit.JUnitSuite object IssueIdentityCardsServiceTest extends WebDeployment @RunWith(classOf[Arquillian]) class IssueIdentityCardsServiceTest extends JUnitSuite { @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet( value = Array("datasets/issue-identity-card.xml"), excludeColumns = Array("LENDIDENTITYCARD.ID", "LENDIDENTITYCARD.LENDTIME") ) def successfulIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000032", "44000035")) should equal( IssueIdentityCardSuccessDTO(IdentityCardDTO("33000032"), EnvelopeDTO("44000035")) ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def alreadyIssuedIdentityCardWithGamesIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000010", "44000035")) should equal( LendingEntityInUseDTO( IdentityCardDTO("33000010", "Marc Arndt"), IdentityCardInUseDTO( EnvelopeDTO("44000013"), Array( GameDTO( "11000014", "Titel 1", "Autor 1", "Verlag 1", 12, PlayerCountDTO(2), DurationDTO(90, 120), Year.of(2016) ), GameDTO( "11000025", "Titel 2", "Autor 1", "Verlag 2", 15, null, DurationDTO(90, 120), null ), GameDTO( "11000036", "Titel 2", "Autor 1", "Verlag 2", 15, null, DurationDTO(90, 120), Year.of(2015) ) ) ) ) ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def alreadyIssuedIdentityCardWithoutGamesIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000101", "44000035")) should equal( LendingEntityInUseDTO( IdentityCardDTO("33000101"), IdentityCardInUseDTO(EnvelopeDTO("44000104"), Array()) ) ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def alreadyIssuedEnvelopeIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000032", "44000013")) should equal( LendingEntityInUseDTO( EnvelopeDTO("44000013"), EnvelopeInUseDTO( IdentityCardDTO("33000010", "Marc Arndt"), Array( GameDTO( "11000014", "Titel 1", "Autor 1", "Verlag 1", 12, PlayerCountDTO(2), DurationDTO(90, 120), Year.of(2016) ), GameDTO( "11000025", "Titel 2", "Autor 1", "Verlag 2", 15, null, DurationDTO(90, 120), null ), GameDTO( "11000036", "Titel 2", "Autor 1", "Verlag 2", 15, null, DurationDTO(90, 120), Year.of(2015) ) ) ) ) ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def notActivatedIdentityCardIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000043", "44000035")) should equal( LendingEntityNotExistsDTO("33000043") ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def notActivatedEnvelopeIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000032", "44000046")) should equal( LendingEntityNotExistsDTO("44000046") ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def notExistingIdentityCardIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000054", "44000035")) should equal( LendingEntityNotExistsDTO("33000054") ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def notExistingEnvelopeIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000032", "44000057")) should equal( LendingEntityNotExistsDTO("44000057") ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def incorrectIdentityCardBarcodeIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000011", "44000035")) should equal( IncorrectBarcodeDTO("33000011") ) } @Test @UsingDataSet(Array("datasets/initial.xml")) @ShouldMatchDataSet(Array("datasets/initial.xml")) def incorrectEnvelopeBarcodeIssueIdentityCard( @ArquillianResteasyResource issueIdentityCardsService: IssueIdentityCardsService ): Unit = { issueIdentityCardsService.issueIdentityCard(IssueIdentityCardRequestDTO("33000032", "44000014")) should equal( IncorrectBarcodeDTO("44000014") ) } }
Spielekreis-Darmstadt/lending
lending-client-backend/src/test/scala/info/armado/ausleihe/client/remote/services/IssueIdentityCardsServiceTest.scala
Scala
apache-2.0
7,092
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.planning import org.apache.spark.Logging import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.catalyst.trees.TreeNode /** * Given a [[plans.logical.LogicalPlan LogicalPlan]], returns a list of `PhysicalPlan`s that can * be used for execution. If this strategy does not apply to the give logical operation then an * empty list should be returned. */ abstract class GenericStrategy[PhysicalPlan <: TreeNode[PhysicalPlan]] extends Logging { def apply(plan: LogicalPlan): Seq[PhysicalPlan] } /** * Abstract class for transforming [[plans.logical.LogicalPlan LogicalPlan]]s into physical plans. * Child classes are responsible for specifying a list of [[Strategy]] objects that each of which * can return a list of possible physical plan options. If a given strategy is unable to plan all * of the remaining operators in the tree, it can call [[planLater]], which returns a placeholder * object that will be filled in using other available strategies. * * TODO: RIGHT NOW ONLY ONE PLAN IS RETURNED EVER... * PLAN SPACE EXPLORATION WILL BE IMPLEMENTED LATER. * * @tparam PhysicalPlan The type of physical plan produced by this [[QueryPlanner]] */ abstract class QueryPlanner[PhysicalPlan <: TreeNode[PhysicalPlan]] { /** A list of execution strategies that can be used by the planner */ def strategies: Seq[GenericStrategy[PhysicalPlan]] /** * Returns a placeholder for a physical plan that executes `plan`. This placeholder will be * filled in automatically by the QueryPlanner using the other execution strategies that are * available. */ protected def planLater(plan: LogicalPlan) = this.plan(plan).next() def plan(plan: LogicalPlan): Iterator[PhysicalPlan] = { // Obviously a lot to do here still... val iter = strategies.view.flatMap(_(plan)).toIterator assert(iter.hasNext, s"No plan for $plan") iter } }
ArvinDevel/onlineAggregationOnSparkV2
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/planning/QueryPlanner.scala
Scala
apache-2.0
2,752
/* * Copyright 2016 rdbc contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.rdbc.pgsql.core.internal.typecodec.sco import io.rdbc.pgsql.core.types._ private[typecodec] object ScodecPgVarcharCodec extends ScodecStringLikeCodec[PgVarchar] { val typ = PgVarcharType }
rdbc-io/rdbc-pgsql
rdbc-pgsql-core/src/main/scala/io/rdbc/pgsql/core/internal/typecodec/sco/ScodecPgVarcharCodec.scala
Scala
apache-2.0
809
package org.ddecap.snv import org.bdgenomics.adam.rdd.ADAMContext import org.bdgenomics.adam.rdd.ADAMContext._ import org.bdgenomics.adam.models.VariantContext import org.bdgenomics.adam.models.ReferenceRegion import org.bdgenomics.adam.rdd.ShuffleRegionJoin import org.bdgenomics.formats.avro._ import org.apache.spark.rdd.RDD import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.conf.Configuration import org.tmoerman.adam.fx.snpeff.SnpEffContext import org.bdgenomics.adam.models.SequenceDictionary import htsjdk.samtools.SAMSequenceRecord import htsjdk.samtools.SAMSequenceDictionary import org.apache.spark.SparkContext import scalax.io.Resource import scalax.io._ object analysis { val matchingDpHist = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "% variants" var x =chart.addCategoryAxis("x", ["_1", "_2"]); x.title = "RD in matching sample" var s = chart.addSeries("_2", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val RocGraphA = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_A" var x =chart.addMeasureAxis("x", "_2"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" chart.addSeries("_1", dimple.plot.line); chart.draw(); } """ val RocGraphB = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_5"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_B" var x =chart.addMeasureAxis("x", "_4"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" chart.addSeries("_1", dimple.plot.line); chart.draw(); } """ val RocGraph2A = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_4"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_A" var x =chart.addMeasureAxis("x", "_3"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); s.addOrderRule("_1") chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val RocGraph2B = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_6"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_B" var x =chart.addMeasureAxis("x", "_5"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); s.addOrderRule("_1") chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val RocGraphOutA = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_4"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_A" var x =chart.addMeasureAxis("x", "_3"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" var s = chart.addSeries("_3", dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val RocGraphOutB = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_6"); y.overrideMin = 0 y.overrideMax = 1 y.title = "1 - FPR_A" var x =chart.addMeasureAxis("x", "_5"); x.overrideMin = 0 x.overrideMax = 1 x.title = "1 - TPR" var s = chart.addSeries("_5", dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val QHist = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "normalized % variants" var x =chart.addLogAxis("x", "_2"); x.title = "Quality" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val RDHist = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "normalized % variants" var x =chart.addMeasureAxis("x", "_2"); x.title = "ReadDepth" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val MRDHist = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "normalized % variants" var x =chart.addMeasureAxis("x", "_2"); x.title = "Matching ReadDepth" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val QBDHist = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "normalized % variants" var x =chart.addMeasureAxis("x", "_2"); x.title = "QualityByDepth" var s = chart.addSeries(["_2", "_1"], dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val annoFreqGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addLogAxis("y", "_3"); y.title = "# variants" var x =chart.addCategoryAxis("x", ["_2", "_1"]); x.title = "annotation type" chart.addSeries("_1", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val annoFreqBarGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "# variants" var x =chart.addCategoryAxis("x", "_2"); x.title = "annotation type" chart.addSeries("_1", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val biotypeFreqBarGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "# variants" var x =chart.addCategoryAxis("x", "_2"); x.title = "transcript biotype" chart.addSeries("_1", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val alleleFreqGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_3"); y.title = "rna allele freq" var x =chart.addMeasureAxis("x", "_2"); x.title = "wxs allele freq" chart.addSeries(["_2","_1"], dimple.plot.line); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val alleleFreqScGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 20, 480, 330) var y =chart.addMeasureAxis("y", "_2"); y.title = "rna allele freq" var x =chart.addMeasureAxis("x", "_3"); var z =chart.addMeasureAxis("z", "_4"); x.title = "wxs allele freq" chart.addSeries(["_2","_3"], dimple.plot.bubble); chart.draw(); } """ val gqGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(60, 30, 480, 330) var x = chart.addMeasureAxis("x", "threshold"); x.ticks = 10 x.title = "Genome Quality threshold"; var y = chart.addMeasureAxis("y", "count"); y.title = "# variants" var s = chart.addSeries(["threshold", "group"], dimple.plot.line); s.lineWeight = 1; s.barGap = 0.05; chart.addLegend(550, 20, 100, 300, "left"); chart.draw(); } """ val rpkmGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(60, 30, 480, 330) var x = chart.addLogAxis("x", "threshold"); x.title = "RPKM threshold"; x.ticks = 10 var y = chart.addMeasureAxis("y", "count"); y.title = "# variants" var s = chart.addSeries(["threshold", "group"], dimple.plot.line); s.lineWeight = 1; s.barGap = 0.05; chart.addLegend(550, 20, 100, 300, "left"); chart.draw(); } """ val dpGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(60, 30, 480, 330) var x = chart.addLogAxis("x", "threshold"); x.title = "Depth threshold"; x.ticks = 10 x.overrideMin = 1 var y = chart.addMeasureAxis("y", "count"); y.title = "# variants" var s = chart.addSeries(["threshold", "group"], dimple.plot.line); s.lineWeight = 1; s.barGap = 0.05; chart.addLegend(550, 20, 100, 300, "left"); chart.draw(); } """ val qGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(60, 30, 480, 330) var x = chart.addLogAxis("x", "threshold"); x.title = "Quality threshold"; x.ticks = 10; x.overrideMin = 1; var y = chart.addMeasureAxis("y", "count"); y.title = "# variants" var s = chart.addSeries(["threshold", "group"], dimple.plot.line); s.lineWeight = 1; s.barGap = 0.05; chart.addLegend(550, 20, 100, 300, "left"); chart.draw(); } """ val splitBsGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 30, 480, 330) chart.addPctAxis("y", "count"); chart.addCategoryAxis("x", ["reference", "group"]); chart.addSeries(["reference", "alternate"], dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val mergedBsGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 30, 480, 330) chart.addMeasureAxis("y", "count"); chart.addCategoryAxis("x", ("group". "threshold")); chart.addSeries("baseChange", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val bChangesGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 30, 480, 330) chart.addMeasureAxis("y", "_3"); chart.addCategoryAxis("x", ["_1", "_2"]); chart.addSeries("_2", dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val bChangesPctGraph = """ function(data, headers, chart /*dimple: http://dimplejs.org/*/) { chart.setBounds(80, 30, 480, 330) chart.addPctAxis("y", "_3"); chart.addCategoryAxis("x", "_1"); chart.addSeries(["_1", "_2"], dimple.plot.bar); chart.addLegend(200, 10, 380, 20, "right"); chart.draw(); } """ val lgOf2 = math.log(2) case class GenotypeWithMetadata( genotype: org.bdgenomics.formats.avro.Genotype, annotations: org.tmoerman.adam.fx.avro.SnpEffAnnotations, rpkm:Double, otherCoverage: Long) def isSingleNucleotideVariant(g: org.bdgenomics.formats.avro.Genotype): Boolean = { g.getVariant().getReferenceAllele().length == 1 && g.getVariant().getAlternateAllele().length == 1 } def filterGenotypes(genotypes: RDD[Iterable[GenotypeWithMetadata]], mDepthFilter: Double = 0, depth: Double = 0, gq: Double = 0, qual: Double= 0, qd: Double = 0, rpkm: Double = 0): RDD[Iterable[GenotypeWithMetadata]] = { genotypes.filter(x => ! x.filter(v => (v.otherCoverage >= mDepthFilter && v.genotype.getReadDepth >= depth && v.genotype.getGenotypeQuality >= gq && v.genotype.getVariantCallingAnnotations.getVariantCallErrorProbability >= qual && v.rpkm >= rpkm && v.genotype.getVariantCallingAnnotations.getVariantQualityByDepth >= qd)).isEmpty) } def qualityByDeptHist(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, Double, Double)] = { val gCount = genotypes.count.toFloat genotypes.map(x => (math.round(x.maxBy(_.genotype.getVariantCallingAnnotations.getVariantQualityByDepth) .genotype.getVariantCallingAnnotations.getVariantQualityByDepth*2)/2.0, 1)).reduceByKey(_+_) .map(x => (name, x._1, x._2/gCount)) } def binQuality(q: Double): Double ={ math.round(math.pow(2, math.ceil(math.log(q)/(lgOf2/4))/4)) } def readDepthHist(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String, th: Int = 100) : RDD[(String, Double, Double)] = { val gCount = genotypes.count.toFloat genotypes.map(x => (x.maxBy(_.genotype.getReadDepth).genotype.getReadDepth/2*2+1, 1)) .map(x => if (x._1 >= th) (th, x._2) else (x._1, x._2)) .reduceByKey(_+_) .map(x => (name, x._1.toFloat, x._2/gCount)) } def matchingReadDepthHist(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String, th: Long = 100) : RDD[(String, Double, Double)] = { val gCount = genotypes.count.toFloat genotypes.map(x => (x.maxBy(_.otherCoverage).otherCoverage/2*2+1, 1)) .map(x => if (x._1 >= th) (th, x._2) else (x._1, x._2)) .reduceByKey(_+_) .map(x => (name, x._1.toFloat, x._2/gCount)) } def qualityHist(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, Double, Double)] = { val gCount = genotypes.count.toFloat genotypes.map(x => (binQuality(x.maxBy(_.genotype.getVariantCallingAnnotations.getVariantCallErrorProbability) .genotype.getVariantCallingAnnotations.getVariantCallErrorProbability.toDouble), 1)) .reduceByKey(_+_) .map(x => (name, x._1, x._2/gCount)) } def biotypeCount(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, String, Int)] = { genotypes.map(x => x.head.annotations.getFunctionalAnnotations.head.getTranscriptBiotype) .map(x => (x, 1)).reduceByKey(_ + _) .map{case (x,r) => (name,x,r)}.map(x => if (x._2 == null) (x._1, "No_Biotype", x._3) else (x._1, x._2, x._3)) } def annotationCount(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, String, Int)] = { genotypes.map(x => x.head.annotations.getFunctionalAnnotations.head.getAnnotations.head) .map(x => (x, 1)).reduceByKey(_ + _) .map{case (x,r) => (name,x,r)} } def isPyrimidine(nucleotyide: String) : Boolean = { return nucleotyide == "C" || nucleotyide == "T" } def isTransition(from: String, to: String) : Boolean = { return isPyrimidine(from) == isPyrimidine(to) } def getTiTvRatio(genotypes: RDD[Iterable[GenotypeWithMetadata]]) : Double = { genotypes.filter(x => isTransition(x.head.genotype.getVariant.getReferenceAllele, x.head.genotype.getVariant.getAlternateAllele)) .count.toDouble / genotypes.filter(x => ! isTransition(x.head.genotype.getVariant.getReferenceAllele, x.head.genotype.getVariant.getAlternateAllele)).count.toDouble } def getMultiAllelicSNVsFraction(genotypes: RDD[Iterable[GenotypeWithMetadata]]) : Double = { genotypes.filter(x => x.size > 1).count.toDouble / genotypes.count.toDouble } def getHomozygousFraction(genotypes: RDD[Iterable[GenotypeWithMetadata]]) : Double = { genotypes.filter(x => x.filter{g => val all = g.genotype.getAlleles all(0) == all(1)}.size == x.size).count.toDouble / genotypes.count.toDouble } def getCommonFraction(genotypes: RDD[Iterable[GenotypeWithMetadata]]) : Double = { genotypes.filter(x => x.head.annotations.getDbSnpAnnotations != null).count.toDouble / genotypes.count.toDouble } def getClinvarFraction(genotypes: RDD[Iterable[GenotypeWithMetadata]]) : Double = { genotypes.filter(x => x.head.annotations.getClinvarAnnotations != null).count.toDouble / genotypes.count.toDouble } def alleleFrequency(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, Double, Int)] = { genotypes.map(x => ("%.1f".format(x.head.genotype.getAlternateReadDepth.toFloat / x.head.genotype.getReadDepth) ,1)) .reduceByKey(_ + _) .map{ case (freq, count) => (name,freq.toDouble,count)} } def getAllFractions(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : Map[String, Double] = { Map(name + " Ti/Tv" -> getTiTvRatio(genotypes), name + " MultiAllele" -> getMultiAllelicSNVsFraction(genotypes), name + " Homozygous" -> getHomozygousFraction(genotypes), name + " Common" -> getCommonFraction(genotypes), name + " ClinVar" -> getClinvarFraction(genotypes)) } def scatterAlleleFrequency(genotypes: RDD[(Iterable[GenotypeWithMetadata], Iterable[GenotypeWithMetadata])], name: String) : RDD[(String, Double, Double, Int)] = { genotypes.map(x => (x._1.head.genotype.getAlternateReadDepth.toFloat / (x._1.head.genotype.getAlternateReadDepth + x._1.head.genotype.getReferenceReadDepth), x._2.head.genotype.getAlternateReadDepth.toFloat / (x._2.head.genotype.getAlternateReadDepth + x._2.head.genotype.getReferenceReadDepth))) .map{ case (x, y) => ((name,"%.1f".format(x),"%.1f".format(y)),1)} .filter(x => x._1._2 != "NaN" && x._1._3 != "NaN") .reduceByKey(_ + _) .map{case (x, y) => (x._1, x._2.toDouble, x._3.toDouble, y.toInt)} } def baseChanges(genotypes: RDD[Iterable[GenotypeWithMetadata]], name: String) : RDD[(String, String, Long)] = { genotypes.filter(g=> g.filter(x=> x.genotype.getVariant.getReferenceAllele.length == 1 && x.genotype.getVariant.getAlternateAllele.length == 1).size > 0) .map(g => { val tmp = g.filter(x=> x.genotype.getVariant.getReferenceAllele.length == 1 && x.genotype.getVariant.getAlternateAllele.length == 1).head ((tmp.genotype.getVariant.getReferenceAllele, tmp.genotype.getVariant.getAlternateAllele), 1) }).reduceByKey(_+_) .map(x => (name, x._1._1+">"+x._1._2, x._2)) } def UniquifyNoAllele(genotype: Genotype): String = { val v = genotype.getVariant genotype.getSampleId + "@" +v.getContig.getContigName+"+"+v.getStart } def Uniquify(genotype: Genotype): String = { val v = genotype.getVariant genotype.getSampleId + "@" +v.getContig.getContigName+"+"+v.getStart+":"+ v.getReferenceAllele + ">" +v.getAlternateAllele } def readSnvWithMetaRepartition(sc: SparkContext, input: String, rpkmFile: String, mCovFile: String, partitions: Int): RDD[(String, GenotypeWithMetadata)] = { val rpkm = sc.textFile(rpkmFile).map(x => x.split("\\t")).map(x => (x(0), x(1).toDouble)).repartition(partitions) val mCov = sc.textFile(mCovFile).map(x => x.split("\\t")).map(x => (x(0), x(1).toLong)).repartition(partitions) val rpkmWithCov = rpkm.cogroup(mCov).map{ case (id, (r, mcov)) => (id, (r.headOption.getOrElse(0.0), mcov.headOption.getOrElse(0L)))} val ec = new SnpEffContext(sc) val genotypes = ec.loadAnnotatedGenotypes(input).map(x => (UniquifyNoAllele(x.getGenotype), x)).repartition(partitions) genotypes.leftOuterJoin(rpkmWithCov).map{ case (id, (g, meta)) => (UniquifyNoAllele(g.getGenotype), GenotypeWithMetadata(g.getGenotype, g.getAnnotations, meta.getOrElse((0.0,0L))._1, meta.getOrElse((0.0,0L))._2)) } } def readSnvWithMeta(sc: SparkContext, input: String, rpkmFile: String, mCovFile: String): RDD[(String, GenotypeWithMetadata)] = { val rpkm = sc.textFile(rpkmFile).map(x => x.split("\\t")).map(x => (x(0), x(1).toDouble)) val mCov = sc.textFile(mCovFile).map(x => x.split("\\t")).map(x => (x(0), x(1).toLong)) val rpkmWithCov = rpkm.cogroup(mCov).map{ case (id, (r, mcov)) => (id, (r.headOption.getOrElse(0.0), mcov.headOption.getOrElse(0L)))} val ec = new SnpEffContext(sc) val genotypes = ec.loadAnnotatedGenotypes(input).map(x => (UniquifyNoAllele(x.getGenotype), x)) genotypes.leftOuterJoin(rpkmWithCov).map{ case (id, (g, meta)) => (UniquifyNoAllele(g.getGenotype), GenotypeWithMetadata(g.getGenotype, g.getAnnotations, meta.getOrElse((0.0,0L))._1, meta.getOrElse((0.0,0L))._2)) } } def getOverlapWithBed(seqDict: SequenceDictionary, genotypes: RDD[Iterable[GenotypeWithMetadata]], bedRDD: RDD[ReferenceRegion]): RDD[Iterable[GenotypeWithMetadata]] = { val posRDD = genotypes.map(g => (ReferenceRegion(g.head.genotype.getVariant.getContig.getContigName, g.head.genotype.getVariant.getStart, g.head.genotype.getVariant.getEnd), g)) val maxPartitions = math.max(bedRDD.partitions.length.toLong, posRDD.partitions.length.toLong) val joinedRDD = ShuffleRegionJoin(seqDict, seqDict.records.map(_.length).sum / maxPartitions) .partitionAndJoin(posRDD, bedRDD.map(v => (v,1))) joinedRDD.reduceByKey(_+_).map(x => x._1) } }
ddcap/rna-wxs-analysis
src/main/scala/org/ddecap/snv/analysis.scala
Scala
gpl-3.0
22,040
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.plan.nodes.dataset import org.apache.calcite.plan.{RelOptCluster, RelOptCost, RelOptPlanner, RelTraitSet} import org.apache.calcite.rel.`type`.RelDataType import org.apache.calcite.rel.metadata.RelMetadataQuery import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel} import org.apache.calcite.rex.{RexCall, RexNode} import org.apache.calcite.sql.SemiJoinType import org.apache.flink.api.common.typeinfo.TypeInformation import org.apache.flink.api.java.DataSet import org.apache.flink.table.api.BatchTableEnvironment import org.apache.flink.table.functions.utils.TableSqlFunction import org.apache.flink.table.plan.nodes.CommonCorrelate import org.apache.flink.table.plan.nodes.logical.FlinkLogicalTableFunctionScan import org.apache.flink.types.Row /** * Flink RelNode which matches along with join a user defined table function. */ class DataSetCorrelate( cluster: RelOptCluster, traitSet: RelTraitSet, inputNode: RelNode, scan: FlinkLogicalTableFunctionScan, condition: Option[RexNode], relRowType: RelDataType, joinRowType: RelDataType, joinType: SemiJoinType, ruleDescription: String) extends SingleRel(cluster, traitSet, inputNode) with CommonCorrelate with DataSetRel { override def deriveRowType() = relRowType override def computeSelfCost(planner: RelOptPlanner, metadata: RelMetadataQuery): RelOptCost = { val rowCnt = metadata.getRowCount(getInput) * 1.5 planner.getCostFactory.makeCost(rowCnt, rowCnt, rowCnt * 0.5) } override def copy(traitSet: RelTraitSet, inputs: java.util.List[RelNode]): RelNode = { new DataSetCorrelate( cluster, traitSet, inputs.get(0), scan, condition, relRowType, joinRowType, joinType, ruleDescription) } override def toString: String = { val rexCall = scan.getCall.asInstanceOf[RexCall] val sqlFunction = rexCall.getOperator.asInstanceOf[TableSqlFunction] correlateToString(rexCall, sqlFunction) } override def explainTerms(pw: RelWriter): RelWriter = { val rexCall = scan.getCall.asInstanceOf[RexCall] val sqlFunction = rexCall.getOperator.asInstanceOf[TableSqlFunction] super.explainTerms(pw) .item("invocation", scan.getCall) .item("function", sqlFunction.getTableFunction.getClass.getCanonicalName) .item("rowType", relRowType) .item("joinType", joinType) .itemIf("condition", condition.orNull, condition.isDefined) } override def translateToPlan(tableEnv: BatchTableEnvironment): DataSet[Row] = { val config = tableEnv.getConfig // we do not need to specify input type val inputDS = inputNode.asInstanceOf[DataSetRel].translateToPlan(tableEnv) val funcRel = scan.asInstanceOf[FlinkLogicalTableFunctionScan] val rexCall = funcRel.getCall.asInstanceOf[RexCall] val sqlFunction = rexCall.getOperator.asInstanceOf[TableSqlFunction] val pojoFieldMapping = sqlFunction.getPojoFieldMapping val udtfTypeInfo = sqlFunction.getRowTypeInfo.asInstanceOf[TypeInformation[Any]] val mapFunc = correlateMapFunction( config, inputDS.getType, udtfTypeInfo, getRowType, joinType, rexCall, condition, Some(pojoFieldMapping), ruleDescription) inputDS.flatMap(mapFunc).name(correlateOpName(rexCall, sqlFunction, relRowType)) } }
hwstreaming/flink
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/dataset/DataSetCorrelate.scala
Scala
apache-2.0
4,189
/* * Copyright 2016 Coursera Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.coursera.naptime.router2 import org.coursera.courier.codecs.InlineStringCodec import org.coursera.courier.templates.DataTemplates.DataConversion import org.coursera.naptime.courier.StringKeyCodec import org.coursera.naptime.actions.SortOrder import org.junit.Test import org.scalatest.junit.AssertionsForJUnit import play.api.test.FakeRequest class CourierQueryParsersTest extends AssertionsForJUnit { @Test def checkStrictParseSimple(): Unit = { val sortOrder = SortOrder(field = "startDate", descending = false) val sortOrderStr = InlineStringCodec.dataToString(sortOrder.data()) val fakeRequest = FakeRequest("GET", s"/foo?sort=$sortOrderStr") val parsedDataMap = CourierQueryParsers.strictParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } @Test def checkStrictParseMalformed(): Unit = { val fakeRequest = FakeRequest("GET", s"/foo?sort=baz") val parsedDataMap = CourierQueryParsers.strictParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isLeft) } @Test def checkStrictParseMalformed2(): Unit = { val fakeRequest = FakeRequest("GET", s"/foo?sort=(a~b)") val parsedDataMap = CourierQueryParsers.strictParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isLeft) } @Test def checkStrictParseMissingField(): Unit = { val sortOrder = SortOrder(field = "startDate") // Field descending should be default val fakeRequest = FakeRequest("GET", s"/foo?sort=(field~startDate)") val parsedDataMap = CourierQueryParsers.strictParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } @Test def checkStrictParseOldFormat(): Unit = { val sortOrder = SortOrder(field = "startDate", descending = false) val sortOrderStr = new String(new StringKeyCodec(SortOrder.SCHEMA).mapToBytes(sortOrder.data())) assert("startDate~false" === sortOrderStr) val fakeRequest = FakeRequest("GET", s"/foo?sort=$sortOrderStr") val parsedDataMap = CourierQueryParsers.strictParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } @Test def checkOptParsePresent(): Unit = { val sortOrder = SortOrder(field = "startDate", descending = false) val sortOrderStr = InlineStringCodec.dataToString(sortOrder.data()) val fakeRequest = FakeRequest("GET", s"/foo?sort=$sortOrderStr") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) assert(parsedDataMap.right.get.isDefined) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } @Test def checkOptParseAbsent(): Unit = { val fakeRequest = FakeRequest("GET", s"/foo?bar=baz") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) assert(parsedDataMap.right.get.isEmpty) } @Test def checkOptParseMalformed(): Unit = { val fakeRequest = FakeRequest("GET", s"/foo?sort=baz") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isLeft) } @Test def checkOptParseMalformed2(): Unit = { val fakeRequest = FakeRequest("GET", s"/foo?sort=(a~b)") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isLeft) } @Test def checkOptParseMissingField(): Unit = { val sortOrder = SortOrder(field = "startDate") // Field descending should be default val fakeRequest = FakeRequest("GET", s"/foo?sort=(field~startDate)") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) assert(parsedDataMap.right.get.isDefined) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } @Test def checkOptParseOldFormat(): Unit = { val sortOrder = SortOrder(field = "startDate", descending = false) val sortOrderStr = new String(new StringKeyCodec(SortOrder.SCHEMA).mapToBytes(sortOrder.data())) assert("startDate~false" === sortOrderStr) val fakeRequest = FakeRequest("GET", s"/foo?sort=$sortOrderStr") val parsedDataMap = CourierQueryParsers.optParse("sort", SortOrder.SCHEMA, getClass, fakeRequest) assert(parsedDataMap.isRight) assert(parsedDataMap.right.get.isDefined) val parsedSortOrder = SortOrder.build(parsedDataMap.right.get.get, DataConversion.SetReadOnly) assert(sortOrder === parsedSortOrder) } }
vkuo-coursera/naptime
naptime/src/test/scala/org/coursera/naptime/router2/CourierQueryParsersTest.scala
Scala
apache-2.0
5,836
package io.getquill.context.cassandra.zio import io.getquill.context.cassandra.QueryResultTypeCassandraSpec class QueryResultTypeCassandraZioSpec extends ZioCassandraSpec with QueryResultTypeCassandraSpec { val context = testZioDB import context._ override def beforeAll = { super.beforeAll() result(context.run(deleteAll)) result(context.run(liftQuery(entries).foreach(e => insert(e)))) () } "query" in { result(context.run(selectAll)) mustEqual entries } "stream" in { result(context.stream(selectAll)) mustEqual entries } "querySingle" - { "size" in { result(context.run(entitySize)) mustEqual 3 } "parametrized size" in { result(context.run(parametrizedSize(lift(10000)))) mustEqual 0 } } }
getquill/quill
quill-cassandra-zio/src/test/scala/io/getquill/context/cassandra/zio/QueryResultTypeCassandraZioSpec.scala
Scala
apache-2.0
775
// Generated by the Scala Plugin for the Protocol Buffer Compiler. // Do not edit! // // Protofile syntax: PROTO3 package com.google.protobuf.`type` import _root_.scalapb.internal.compat.JavaConverters._ /** Enum value definition. * * @param name * Enum value name. * @param number * Enum value number. * @param options * Protocol buffer options. */ @SerialVersionUID(0L) final case class EnumValue( name: _root_.scala.Predef.String = "", number: _root_.scala.Int = 0, options: _root_.scala.Seq[com.google.protobuf.`type`.OptionProto] = _root_.scala.Seq.empty, unknownFields: _root_.scalapb.UnknownFieldSet = _root_.scalapb.UnknownFieldSet.empty ) extends scalapb.GeneratedMessage with scalapb.lenses.Updatable[EnumValue] { @transient private[this] var __serializedSizeMemoized: _root_.scala.Int = 0 private[this] def __computeSerializedSize(): _root_.scala.Int = { var __size = 0 { val __value = name if (!__value.isEmpty) { __size += _root_.com.google.protobuf.CodedOutputStream.computeStringSize(1, __value) } }; { val __value = number if (__value != 0) { __size += _root_.com.google.protobuf.CodedOutputStream.computeInt32Size(2, __value) } }; options.foreach { __item => val __value = __item __size += 1 + _root_.com.google.protobuf.CodedOutputStream.computeUInt32SizeNoTag(__value.serializedSize) + __value.serializedSize } __size += unknownFields.serializedSize __size } override def serializedSize: _root_.scala.Int = { var __size = __serializedSizeMemoized if (__size == 0) { __size = __computeSerializedSize() + 1 __serializedSizeMemoized = __size } __size - 1 } def writeTo(`_output__`: _root_.com.google.protobuf.CodedOutputStream): _root_.scala.Unit = { { val __v = name if (!__v.isEmpty) { _output__.writeString(1, __v) } }; { val __v = number if (__v != 0) { _output__.writeInt32(2, __v) } }; options.foreach { __v => val __m = __v _output__.writeTag(3, 2) _output__.writeUInt32NoTag(__m.serializedSize) __m.writeTo(_output__) }; unknownFields.writeTo(_output__) } def withName(__v: _root_.scala.Predef.String): EnumValue = copy(name = __v) def withNumber(__v: _root_.scala.Int): EnumValue = copy(number = __v) def clearOptions = copy(options = _root_.scala.Seq.empty) def addOptions(__vs: com.google.protobuf.`type`.OptionProto *): EnumValue = addAllOptions(__vs) def addAllOptions(__vs: Iterable[com.google.protobuf.`type`.OptionProto]): EnumValue = copy(options = options ++ __vs) def withOptions(__v: _root_.scala.Seq[com.google.protobuf.`type`.OptionProto]): EnumValue = copy(options = __v) def withUnknownFields(__v: _root_.scalapb.UnknownFieldSet) = copy(unknownFields = __v) def discardUnknownFields = copy(unknownFields = _root_.scalapb.UnknownFieldSet.empty) def getFieldByNumber(__fieldNumber: _root_.scala.Int): _root_.scala.Any = { (__fieldNumber: @_root_.scala.unchecked) match { case 1 => { val __t = name if (__t != "") __t else null } case 2 => { val __t = number if (__t != 0) __t else null } case 3 => options } } def getField(__field: _root_.scalapb.descriptors.FieldDescriptor): _root_.scalapb.descriptors.PValue = { _root_.scala.Predef.require(__field.containingMessage eq companion.scalaDescriptor) (__field.number: @_root_.scala.unchecked) match { case 1 => _root_.scalapb.descriptors.PString(name) case 2 => _root_.scalapb.descriptors.PInt(number) case 3 => _root_.scalapb.descriptors.PRepeated(options.iterator.map(_.toPMessage).toVector) } } def toProtoString: _root_.scala.Predef.String = _root_.scalapb.TextFormat.printToUnicodeString(this) def companion: com.google.protobuf.`type`.EnumValue.type = com.google.protobuf.`type`.EnumValue // @@protoc_insertion_point(GeneratedMessage[google.protobuf.EnumValue]) } object EnumValue extends scalapb.GeneratedMessageCompanion[com.google.protobuf.`type`.EnumValue] with scalapb.JavaProtoSupport[com.google.protobuf.`type`.EnumValue, com.google.protobuf.EnumValue] { implicit def messageCompanion: scalapb.GeneratedMessageCompanion[com.google.protobuf.`type`.EnumValue] with scalapb.JavaProtoSupport[com.google.protobuf.`type`.EnumValue, com.google.protobuf.EnumValue] = this def toJavaProto(scalaPbSource: com.google.protobuf.`type`.EnumValue): com.google.protobuf.EnumValue = { val javaPbOut = com.google.protobuf.EnumValue.newBuilder javaPbOut.setName(scalaPbSource.name) javaPbOut.setNumber(scalaPbSource.number) javaPbOut.addAllOptions(_root_.scalapb.internal.compat.toIterable(scalaPbSource.options.iterator.map(com.google.protobuf.`type`.OptionProto.toJavaProto(_))).asJava) javaPbOut.build } def fromJavaProto(javaPbSource: com.google.protobuf.EnumValue): com.google.protobuf.`type`.EnumValue = com.google.protobuf.`type`.EnumValue( name = javaPbSource.getName, number = javaPbSource.getNumber.intValue, options = javaPbSource.getOptionsList.asScala.iterator.map(com.google.protobuf.`type`.OptionProto.fromJavaProto(_)).toSeq ) def parseFrom(`_input__`: _root_.com.google.protobuf.CodedInputStream): com.google.protobuf.`type`.EnumValue = { var __name: _root_.scala.Predef.String = "" var __number: _root_.scala.Int = 0 val __options: _root_.scala.collection.immutable.VectorBuilder[com.google.protobuf.`type`.OptionProto] = new _root_.scala.collection.immutable.VectorBuilder[com.google.protobuf.`type`.OptionProto] var `_unknownFields__`: _root_.scalapb.UnknownFieldSet.Builder = null var _done__ = false while (!_done__) { val _tag__ = _input__.readTag() _tag__ match { case 0 => _done__ = true case 10 => __name = _input__.readStringRequireUtf8() case 16 => __number = _input__.readInt32() case 26 => __options += _root_.scalapb.LiteParser.readMessage[com.google.protobuf.`type`.OptionProto](_input__) case tag => if (_unknownFields__ == null) { _unknownFields__ = new _root_.scalapb.UnknownFieldSet.Builder() } _unknownFields__.parseField(tag, _input__) } } com.google.protobuf.`type`.EnumValue( name = __name, number = __number, options = __options.result(), unknownFields = if (_unknownFields__ == null) _root_.scalapb.UnknownFieldSet.empty else _unknownFields__.result() ) } implicit def messageReads: _root_.scalapb.descriptors.Reads[com.google.protobuf.`type`.EnumValue] = _root_.scalapb.descriptors.Reads{ case _root_.scalapb.descriptors.PMessage(__fieldsMap) => _root_.scala.Predef.require(__fieldsMap.keys.forall(_.containingMessage eq scalaDescriptor), "FieldDescriptor does not match message type.") com.google.protobuf.`type`.EnumValue( name = __fieldsMap.get(scalaDescriptor.findFieldByNumber(1).get).map(_.as[_root_.scala.Predef.String]).getOrElse(""), number = __fieldsMap.get(scalaDescriptor.findFieldByNumber(2).get).map(_.as[_root_.scala.Int]).getOrElse(0), options = __fieldsMap.get(scalaDescriptor.findFieldByNumber(3).get).map(_.as[_root_.scala.Seq[com.google.protobuf.`type`.OptionProto]]).getOrElse(_root_.scala.Seq.empty) ) case _ => throw new RuntimeException("Expected PMessage") } def javaDescriptor: _root_.com.google.protobuf.Descriptors.Descriptor = TypeProto.javaDescriptor.getMessageTypes().get(3) def scalaDescriptor: _root_.scalapb.descriptors.Descriptor = TypeProto.scalaDescriptor.messages(3) def messageCompanionForFieldNumber(__number: _root_.scala.Int): _root_.scalapb.GeneratedMessageCompanion[_] = { var __out: _root_.scalapb.GeneratedMessageCompanion[_] = null (__number: @_root_.scala.unchecked) match { case 3 => __out = com.google.protobuf.`type`.OptionProto } __out } lazy val nestedMessagesCompanions: Seq[_root_.scalapb.GeneratedMessageCompanion[_ <: _root_.scalapb.GeneratedMessage]] = Seq.empty def enumCompanionForFieldNumber(__fieldNumber: _root_.scala.Int): _root_.scalapb.GeneratedEnumCompanion[_] = throw new MatchError(__fieldNumber) lazy val defaultInstance = com.google.protobuf.`type`.EnumValue( name = "", number = 0, options = _root_.scala.Seq.empty ) implicit class EnumValueLens[UpperPB](_l: _root_.scalapb.lenses.Lens[UpperPB, com.google.protobuf.`type`.EnumValue]) extends _root_.scalapb.lenses.ObjectLens[UpperPB, com.google.protobuf.`type`.EnumValue](_l) { def name: _root_.scalapb.lenses.Lens[UpperPB, _root_.scala.Predef.String] = field(_.name)((c_, f_) => c_.copy(name = f_)) def number: _root_.scalapb.lenses.Lens[UpperPB, _root_.scala.Int] = field(_.number)((c_, f_) => c_.copy(number = f_)) def options: _root_.scalapb.lenses.Lens[UpperPB, _root_.scala.Seq[com.google.protobuf.`type`.OptionProto]] = field(_.options)((c_, f_) => c_.copy(options = f_)) } final val NAME_FIELD_NUMBER = 1 final val NUMBER_FIELD_NUMBER = 2 final val OPTIONS_FIELD_NUMBER = 3 def of( name: _root_.scala.Predef.String, number: _root_.scala.Int, options: _root_.scala.Seq[com.google.protobuf.`type`.OptionProto] ): _root_.com.google.protobuf.`type`.EnumValue = _root_.com.google.protobuf.`type`.EnumValue( name, number, options ) // @@protoc_insertion_point(GeneratedMessageCompanion[google.protobuf.EnumValue]) }
scalapb/ScalaPB
scalapb-runtime/src/main/scalajvm/com/google/protobuf/type/EnumValue.scala
Scala
apache-2.0
9,777
package pl.touk.nussknacker.engine.api import java.util.UUID import scala.util.Random object Context { // prefix is to distinguish between externally provided and internal (initially created) id private val initialContextIdPrefix = "initial-" /** * For performance reasons, is used unsecure random - see UUIDBenchmark for details. In this case random correlation id * is used only for internal purpose so is not important in security context. */ private val random = new Random() /** * Deprecated: should be used ContextIdGenerator e.g. via EngineRuntimeContext.contextIdGenerator * Should be used for newly created context - when there is no suitable external correlation / tracing id */ def withInitialId: Context = { Context(initialContextIdPrefix + new UUID(random.nextLong(), random.nextLong()).toString) } def apply(id: String) : Context = Context(id, Map.empty, None) } case class ContextId(value: String) /** * Context is container for variables used in expression evaluation * @param id correlation id/trace id used for tracing (logs, error presentation) and for tests mechanism, it should be always defined * @param variables variables available in evaluation * @param parentContext context used for scopes handling, mainly for subprocess invocation purpose */ case class Context(id: String, variables: Map[String, Any], parentContext: Option[Context]) { def apply[T](name: String): T = getOrElse(name, throw new RuntimeException(s"Unknown variable: $name")) def getOrElse[T](name: String, default: => T) = get(name).getOrElse(default) def get[T](name: String): Option[T] = variables.get(name).map(_.asInstanceOf[T]) def modifyVariable[T](name: String, f: T => T): Context = withVariable(name, f(apply(name))) def modifyOptionalVariable[T](name: String, f: Option[T] => T): Context = withVariable(name, f(get[T](name))) def withVariable(name: String, value: Any): Context = withVariables(Map(name -> value)) def withVariables(otherVariables: Map[String, Any]): Context = copy(variables = variables ++ otherVariables) def pushNewContext(variables: Map[String, Any]) : Context = { Context(id, variables, Some(this)) } def popContext : Context = parentContext.getOrElse(throw new RuntimeException("No parent context available")) def clearUserVariables: Context = { //clears variables from context but leaves technical variables, hidden from user val variablesToLeave = Set(VariableConstants.EventTimestampVariableName) copy(variables = variables.filterKeys(variablesToLeave)) } }
TouK/nussknacker
components-api/src/main/scala/pl/touk/nussknacker/engine/api/Context.scala
Scala
apache-2.0
2,633
/* * Copyright (C) 2016-2019 Lightbend Inc. <https://www.lightbend.com> */ package com.lightbend.lagom.sbt import com.lightbend.lagom.core.LagomVersion import sbt.Keys._ import sbt._ object LagomImport extends LagomImportCompat { private val moduleOrganization = "com.lightbend.lagom" def component(id: String) = moduleOrganization %% id % LagomVersion.current private[sbt] val lagomLogbackModuleName = "lagom-logback" val lagomJavadslApi = component("lagom-javadsl-api") val lagomJavadslClient = component("lagom-javadsl-client") val lagomJavadslAkkaDiscovery = component("lagom-javadsl-akka-discovery-service-locator") val lagomJavadslIntegrationClient = component("lagom-javadsl-integration-client") val lagomJavadslCluster = component("lagom-javadsl-cluster") // Scoped to `Provided` because it's needed only at compile-time. val lagomJavadslImmutables = component("lagom-javadsl-immutables") % Provided val lagomJavadslJackson = component("lagom-javadsl-jackson") val lagomJavadslBroker = component("lagom-javadsl-broker") val lagomJavadslKafkaClient = component("lagom-javadsl-kafka-client") val lagomJavadslKafkaBroker = component("lagom-javadsl-kafka-broker") val lagomJavadslPersistence = component("lagom-javadsl-persistence") val lagomJavadslPersistenceCassandra = component("lagom-javadsl-persistence-cassandra") val lagomJavadslPersistenceJdbc = component("lagom-javadsl-persistence-jdbc") val lagomJavadslPersistenceJpa = component("lagom-javadsl-persistence-jpa") val lagomJavadslPubSub = component("lagom-javadsl-pubsub") val lagomJavadslServer = component("lagom-javadsl-server") val lagomJavadslTestKit = component("lagom-javadsl-testkit") % Test val lagomLogback = component(lagomLogbackModuleName) val lagomLog4j2 = component("lagom-log4j2") val lagomScaladslApi = component("lagom-scaladsl-api") val lagomScaladslClient = component("lagom-scaladsl-client") val lagomScaladslAkkaDiscovery = component("lagom-scaladsl-akka-discovery-service-locator") val lagomScaladslServer = component("lagom-scaladsl-server") val lagomScaladslDevMode = component("lagom-scaladsl-dev-mode") val lagomScaladslCluster = component("lagom-scaladsl-cluster") val lagomScaladslBroker = component("lagom-scaladsl-broker") val lagomScaladslKafkaClient = component("lagom-scaladsl-kafka-client") val lagomScaladslKafkaBroker = component("lagom-scaladsl-kafka-broker") val lagomScaladslPersistence = component("lagom-scaladsl-persistence") val lagomScaladslPersistenceCassandra = component("lagom-scaladsl-persistence-cassandra") val lagomScaladslPersistenceJdbc = component("lagom-scaladsl-persistence-jdbc") val lagomScaladslPubSub = component("lagom-scaladsl-pubsub") val lagomScaladslTestKit = component("lagom-scaladsl-testkit") % Test val lagomJUnitDeps = Seq( "junit" % "junit" % "4.12" % Test, "com.novocode" % "junit-interface" % "0.11" % Test ) // for forked tests, necessary for Cassandra def lagomForkedTestSettings: Seq[Setting[_]] = Seq( fork in Test := true, concurrentRestrictions in Global += Tags.limit(Tags.Test, 1), javaOptions in Test ++= Seq("-Xms256M", "-Xmx512M"), testGrouping in Test := singleTestsGrouping((definedTests in Test).value, (javaOptions in Test).value) ) // group tests, a single test per group private def singleTestsGrouping(tests: Seq[TestDefinition], javaOptions: Seq[String]) = { // We could group non Cassandra tests into another group // to avoid new JVM for each test, see http://www.scala-sbt.org/release/docs/Testing.html val forkOptions = getForkOptions(javaOptions.toVector) tests.map { test => Tests.Group( name = test.name, tests = Seq(test), runPolicy = Tests.SubProcess(forkOptions) ) } } }
rcavalcanti/lagom
dev/sbt-plugin/src/main/scala/com/lightbend/lagom/sbt/LagomImport.scala
Scala
apache-2.0
4,191
package com.github.utaal.m68k import com.github.utaal.m68k.ast._ object RegisterState { def apply(): RegisterState = RegisterState() } case class RegisterState(value: Long) { require (value >= 0L && value <= 0xffffffffL) def getMask(size: Size): Long = size match { case Size.B => 0xffL case Size.W => 0xffffL case Size.L => 0xffffffffL } def mask(size: Size, value: Long): Long = value & getMask(size) def reverseMask(size: Size, value: Long): Long = value & (0xffffffffL ^ getMask(size)) def get(size: Size): Long = mask(size, value) def set(size: Size, newValue: Long) = new RegisterState(reverseMask(size, value) | mask(size, newValue)) } object ProgramCounter { def apply(): ProgramCounter = ProgramCounter(0L) } case class ProgramCounter(value: Long) { require (value >= 0L && value <= 0xffffffL) } object StatusRegister { def apply(): StatusRegister = StatusRegister(false, false, false, false, false) } case class StatusRegister(C: Boolean, V: Boolean, Z: Boolean, N: Boolean, X: Boolean) object CPUState { val DataRegisterNumber = 8 val AddressRegisterNumber = 8 val FramePointerRegister = 6 val StackPointerRegister = 7 private def makeRegisterArray(num: Int): Vector[RegisterState] = { val emptyRegState = RegisterState(0L) Vector.fill[RegisterState](num)(emptyRegState) } def apply(): CPUState = CPUState( CPUState.makeRegisterArray(CPUState.DataRegisterNumber), CPUState.makeRegisterArray(CPUState.AddressRegisterNumber), ProgramCounter(), StatusRegister() ) } case class CPUState( D: Vector[RegisterState], A: Vector[RegisterState], PC: ProgramCounter, SR: StatusRegister ) { private def updatedRegVector(vec: Vector[RegisterState], num: Int, size: Size, value: Long) = vec.updated(num, vec(num).set(size, value)) def setD(number: Int, size: Size, value: Long) = { require (number >= 0 && number < CPUState.DataRegisterNumber) this.copy(D = updatedRegVector(D, number, size, value)) } def setA(number: Int, size: Size, value: Long) = { require (number >= 0 && number < CPUState.AddressRegisterNumber) this.copy(A = updatedRegVector(A, number, size, value)) } val FP = A(CPUState.FramePointerRegister) def setFP(size: Size, value: Long) = setA(CPUState.FramePointerRegister, size, value) val SP = A(CPUState.StackPointerRegister) def setSP(size: Size, value: Long) = setA(CPUState.StackPointerRegister, size, value) def setPC(value: Long) = this.copy(PC = ProgramCounter(value)) def setSR(sr: StatusRegister) = this.copy(SR = sr) }
utaal/m68k-interpreter
src/main/scala/CPUState.scala
Scala
mit
2,610
/* * Licensed to STRATIO (C) under one or more contributor license agreements. * See the NOTICE file distributed with this work for additional information * regarding copyright ownership. The STRATIO (C) licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package com.stratio.crossdata.server.actors import akka.actor.{Actor, ActorLogging, ActorRef, ActorSelection, Props} import akka.routing.RoundRobinPool import com.stratio.crossdata.common.connector.ConnectorClusterConfig import com.stratio.crossdata.common.data import com.stratio.crossdata.common.data.{ClusterName, ConnectorName, Status} import com.stratio.crossdata.common.exceptions.ExecutionException import com.stratio.crossdata.common.exceptions.validation.CoordinationException import com.stratio.crossdata.common.executionplan._ import com.stratio.crossdata.common.logicalplan.PartialResults import com.stratio.crossdata.common.metadata.{CatalogMetadata, ConnectorMetadata, TableMetadata, UpdatableMetadata} import com.stratio.crossdata.common.result._ import com.stratio.crossdata.common.statements.structures.SelectorHelper import com.stratio.crossdata.common.utils.{Constants, StringUtils} import com.stratio.crossdata.communication._ import com.stratio.crossdata.core.coordinator.Coordinator import com.stratio.crossdata.core.execution.{ExecutionManager, ExecutionManagerException} import com.stratio.crossdata.core.metadata.MetadataManager import com.stratio.crossdata.core.query.IPlannedQuery import scala.collection.JavaConversions._ import scala.collection.JavaConverters._ object CoordinatorActor { /** * Token attached to query identifiers when the query is part of a trigger execution workflow. */ val TriggerToken = Constants.TRIGGER_TOKEN def props(connectorMgr: ActorRef, coordinator: Coordinator): Props = Props(new CoordinatorActor (connectorMgr, coordinator)) } class CoordinatorActor(connectorMgr: ActorRef, coordinator: Coordinator) extends Actor with ActorLogging { log.info("Lifting coordinator actor") val host = coordinator.getHost def receive: Receive = { case plannedQuery: IPlannedQuery => { val workflow = plannedQuery.getExecutionWorkflow() log.debug("Workflow for " + workflow.getActorRef) manageWorkflow(plannedQuery.getQueryId, workflow, None) } case workflow: ExecutionWorkflow => { log.debug(s"Retrying workflow ${workflow.toString}") Option(ExecutionManager.MANAGER.getValue(workflow.getQueryId)) match { case Some(exInfo: ExecutionInfo) => manageWorkflow(workflow.getQueryId, workflow, Some(exInfo.getSender)) case _ => log.error("The retried query has not been found in MetadataManager") } } case connectResult: ConnectToConnectorResult => val queryId = connectResult.getQueryId log.info("Receiving result from " + sender + " with queryId = " + queryId + " result: " + connectResult) if(queryId.contains("#")){ if(queryId.endsWith("#1")){ connectResult.setQueryId(queryId.split("#")(0)) } } try { val executionInfo = ExecutionManager.MANAGER.getValue(queryId) val sendResultToClient = executionInfo.asInstanceOf[ExecutionInfo].getSender != null if(!connectResult.hasError) { val storedWorkflow = executionInfo.asInstanceOf[ExecutionInfo].getWorkflow if (storedWorkflow.isInstanceOf[ManagementWorkflow]) { val managementWorkflow = storedWorkflow.asInstanceOf[ManagementWorkflow] require(managementWorkflow.getExecutionType == ExecutionType.ATTACH_CONNECTOR) if (executionInfo.asInstanceOf[ExecutionInfo].isPersistOnSuccess) { coordinator.executeManagementOperation(managementWorkflow.createManagementOperationMessage()) } if (executionInfo.asInstanceOf[ExecutionInfo].isUpdateOnSuccess) { for (catalogName <- MetadataManager.MANAGER.getCluster(managementWorkflow.getClusterName).getPersistedCatalogs.asScala.toList){ for (tableMetadata <- MetadataManager.MANAGER.getTablesByCatalogName(catalogName.getName)){ sender ! UpdateMetadata(tableMetadata, remove = false) } } } if (executionInfo.asInstanceOf[ExecutionInfo].isRemoveOnSuccess) { ExecutionManager.MANAGER.deleteEntry(queryId) } }else log.error( "QueryId refering to ConnectResult should have an ManagementWorkflow associated") } if(sendResultToClient) { //TODO Add two methods to StringUtils to retrieve AkkaActorRefUri tokening with # for connectors,and $ for clients val target = executionInfo.asInstanceOf[ExecutionInfo].getSender .replace("Actor[", "").replace("]", "").split("#")(0) val clientActor = context.actorSelection(target) log.info("Send result to: " + target) clientActor ! connectResult } } catch { case ex: ExecutionManagerException => { log.error("Cannot access queryId actorRef associated value:" + System.lineSeparator() + ex.getMessage) } } case ACKResult(queryId, status) => { if(ExecutionManager.MANAGER.exists(queryId) && status == QueryStatus.EXECUTED && ExecutionManager.MANAGER.getValue(queryId).asInstanceOf[ExecutionInfo].isRemoveOnSuccess && !ExecutionManager.MANAGER.getValue(queryId).asInstanceOf[ExecutionInfo].isTriggeredByStreaming){ log.error("Query " + queryId + " failed") val executionInfo = ExecutionManager.MANAGER.getValue(queryId) if(executionInfo != null){ val target = executionInfo.asInstanceOf[ExecutionInfo].getSender .replace("Actor[", "").replace("]", "").split("#")(0) val clientActor = context.actorSelection(target) ExecutionManager.MANAGER.deleteEntry(queryId) val result = Result.createErrorResult(new ExecutionException("Query failed")) result.setQueryId(queryId) clientActor ! result } } } case result: Result => { val queryId = result.getQueryId var retryQuery = false log.info(s"Receiving result from $sender with queryId = $queryId result: $result") try{ lazy val executionInfo = ExecutionManager.MANAGER.getValue(queryId) if(result.isInstanceOf[ErrorResult]){ log.warning(result.asInstanceOf[ErrorResult].getErrorMessage) if (executionInfo != null ){ val ew = executionInfo.asInstanceOf[ExecutionInfo].getWorkflow val nextCandidateQueryWorkflow = ew.getLowPriorityExecutionWorkflow if(nextCandidateQueryWorkflow.isPresent){ log.info(s"Query failed in connector:${ew.getActorRef}. Retrying in another connector.") retryQuery = true self ! nextCandidateQueryWorkflow.get() } } } if(!retryQuery){ //TODO Add two methods to StringUtils to retrieve AkkaActorRefUri tokening with # for connectors, // and $ for clients val target = executionInfo.asInstanceOf[ExecutionInfo].getSender .replace("Actor[", "").replace("]", "").split("#")(0) val clientActor = context.actorSelection(target) var sendResultToClient = true if(queryId.contains("#")){ if(queryId.endsWith("#1")){ result.setQueryId(queryId.split("#")(0)) } else { sendResultToClient = false } } if(!result.hasError){ if (executionInfo.asInstanceOf[ExecutionInfo].isPersistOnSuccess) { val storedWorkflow = executionInfo.asInstanceOf[ExecutionInfo].getWorkflow if(storedWorkflow.isInstanceOf[MetadataWorkflow]){ coordinator.persist(storedWorkflow.asInstanceOf[MetadataWorkflow], result.asInstanceOf[MetadataResult]) } else if (storedWorkflow.isInstanceOf[ManagementWorkflow]) { coordinator.executeManagementOperation(storedWorkflow.asInstanceOf[ManagementWorkflow].createManagementOperationMessage()) } } if (executionInfo.asInstanceOf[ExecutionInfo].isUpdateOnSuccess) { executionInfo.asInstanceOf[ExecutionInfo].getWorkflow match { case mw: MetadataWorkflow => processUpdateMetadataWorkflow(mw, result) case managementWorkflow: ManagementWorkflow => managementWorkflow.getExecutionType match { case ExecutionType.DETACH_CONNECTOR => { for (catalogName <- MetadataManager.MANAGER.getCluster(managementWorkflow.getClusterName).getPersistedCatalogs.asScala.toList){ sender ! UpdateMetadata(MetadataManager.MANAGER.getCatalog(catalogName), remove = true) } } case message => log.warning ("Sending metadata updates cannot be performed for the ExecutionType :" + message.toString) } case _ => log.warning ("Attempt to update the metadata after an operation which is not expected :" +executionInfo.asInstanceOf[ExecutionInfo].getWorkflow.getClass) } } if (executionInfo.asInstanceOf[ExecutionInfo].isRemoveOnSuccess || (result.isInstanceOf[QueryResult] && result.asInstanceOf[QueryResult].isLastResultSet && !executionInfo.asInstanceOf[ExecutionInfo].isTriggeredByStreaming)) { ExecutionManager.MANAGER.deleteEntry(queryId) } } if(sendResultToClient) { if (executionInfo.asInstanceOf[ExecutionInfo].isTriggeredByStreaming) { result match { case res: QueryResult => res.setLastResultSet(false) case _ => } } log.info("Send result to: " + target) clientActor ! result } } } catch { case ex: ExecutionManagerException => { log.error("Cannot access queryId actorRef associated value:" + System.lineSeparator() + ex.getMessage) } } } //TODO both cases below seem to be unused (ConnectResult and DisconnectResult are sent instead) case ctc: ConnectToConnector => MetadataManager.MANAGER.setConnectorStatus(new ConnectorName(ctc.msg), data.Status.ONLINE) log.info("Connected to connector") case dfc: DisconnectFromConnector => MetadataManager.MANAGER.setConnectorStatus(new ConnectorName(dfc.msg), data.Status.OFFLINE) log.info("Disconnected from connector") case _ => { sender ! new ExecutionException("Non recognized workflow") } } def manageWorkflow(queryId: String, workflow: ExecutionWorkflow, explicitSender: Option[String]) = workflow match { case metadataWorkflow: MetadataWorkflow => { val executionInfo = new ExecutionInfo executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) //Getting the connector name to tell sender val connectorsMetadata=MetadataManager.MANAGER.getConnectors(Status.ONLINE); val connector=connectorsMetadata.filter(connectorMetadata => connectorMetadata.getActorRefs.contains (metadataWorkflow.getActorRef)) if (connector.size>0) sender ! InfoResult(connector.apply(0).getName.getName, metadataWorkflow.getQueryId) else //Special case of first create catalog statement sender ! InfoResult("none", metadataWorkflow.getQueryId) if (metadataWorkflow.getExecutionType == ExecutionType.DROP_CATALOG) { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(false) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val result = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_DROP_CATALOG) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else if (metadataWorkflow.getExecutionType == ExecutionType.ALTER_CATALOG) { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setUpdateOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val result = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_ALTER_CATALOG) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else if (metadataWorkflow.getExecutionType == ExecutionType.DROP_TABLE) { // Drop table in the Crossdata servers through the MetadataManager coordinator.persistDropTable(metadataWorkflow.getTableName) // Send action to the connector val actorRef = context.actorSelection(metadataWorkflow.getActorRef) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() // Prepare data for the reply of the connector executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(false) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) } else if(metadataWorkflow.getExecutionType == ExecutionType.UNREGISTER_TABLE) { // Drop table in the Crossdata servers through the MetadataManager coordinator.persistDropTable(metadataWorkflow.getTableName) var result:MetadataResult = null val tableMetadata = metadataWorkflow.getTableMetadata updateMetadata(tableMetadata, tableMetadata.getClusterRef, toRemove = true) executionInfo.setQueryStatus(QueryStatus.PLANNED) result = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_UNREGISTER_TABLE) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else if (metadataWorkflow.getExecutionType == ExecutionType.ALTER_TABLE) { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val actorRef = context.actorSelection(metadataWorkflow.getActorRef) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() }else if (metadataWorkflow.getExecutionType == ExecutionType.CREATE_INDEX || metadataWorkflow.getExecutionType == ExecutionType.CREATE_GLOBAL_INDEX) { if (metadataWorkflow.isIfNotExists && MetadataManager.MANAGER.exists(metadataWorkflow.getIndexName)) { val result: MetadataResult = MetadataResult.createSuccessMetadataResult( MetadataResult.OPERATION_CREATE_INDEX, metadataWorkflow.isIfNotExists) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val actorRef = context.actorSelection(metadataWorkflow.getActorRef) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } } else if (metadataWorkflow.getExecutionType == ExecutionType.DROP_INDEX) { if (metadataWorkflow.isIfExists && !MetadataManager.MANAGER.exists(metadataWorkflow.getIndexName)) { val result: MetadataResult = MetadataResult.createSuccessMetadataResult( MetadataResult.OPERATION_DROP_INDEX, metadataWorkflow.isIfExists) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val actorRef = context.actorSelection(metadataWorkflow.getActorRef) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } } else if (metadataWorkflow.getExecutionType == ExecutionType.DISCOVER_METADATA) { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(false) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val actorRef = context.actorSelection(metadataWorkflow.getActorRef) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } else if (metadataWorkflow.getExecutionType == ExecutionType.IMPORT_CATALOGS || metadataWorkflow.getExecutionType == ExecutionType.IMPORT_CATALOG || metadataWorkflow.getExecutionType == ExecutionType.IMPORT_TABLE) { executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setRemoveOnSuccess(true) executionInfo.setUpdateOnSuccess(true) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(metadataWorkflow) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val actorRef = context.actorSelection(metadataWorkflow.getActorRef) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } else if (metadataWorkflow.getExecutionType == ExecutionType.CREATE_CATALOG){ coordinator.persistCreateCatalog(metadataWorkflow.getCatalogMetadata, metadataWorkflow.isIfNotExists) executionInfo.setQueryStatus(QueryStatus.EXECUTED) val result = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_CREATE_CATALOG) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } }else if (metadataWorkflow.getExecutionType == ExecutionType.CREATE_TABLE_AND_CATALOG || metadataWorkflow.getExecutionType == ExecutionType.CREATE_TABLE) { if (metadataWorkflow.isIfNotExists && MetadataManager.MANAGER.exists(metadataWorkflow.getTableName)) { val result: MetadataResult = MetadataResult.createSuccessMetadataResult( MetadataResult.OPERATION_CREATE_TABLE, metadataWorkflow.isIfNotExists) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else { if (metadataWorkflow.getActorRef != null && metadataWorkflow.getActorRef.length() > 0) { val actorRef = context.actorSelection(metadataWorkflow.getActorRef) executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setUpdateOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } else { throw new CoordinationException("Actor ref URI is null"); } } } else if (metadataWorkflow.getExecutionType == ExecutionType.CREATE_TABLE_REGISTER_CATALOG) { //Connector is able to create the catalog of the registered table if (metadataWorkflow.getActorRef != null && metadataWorkflow.getActorRef.length() > 0) { val actorRef = context.actorSelection(metadataWorkflow.getActorRef) executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setPersistOnSuccess(true) executionInfo.setUpdateOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) log.info("ActorRef: " + actorRef.toString()) actorRef.asInstanceOf[ActorSelection] ! metadataWorkflow.createMetadataOperationMessage() } else { throw new CoordinationException("Actor ref URI is null"); } }else if (metadataWorkflow.getExecutionType == ExecutionType.REGISTER_TABLE || metadataWorkflow.getExecutionType == ExecutionType.REGISTER_TABLE_AND_CATALOG) { if (metadataWorkflow.isIfNotExists && MetadataManager.MANAGER.exists(metadataWorkflow.getTableName)) { val result: MetadataResult = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_REGISTER_TABLE, metadataWorkflow.isIfNotExists) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } else { val result = MetadataResult.createSuccessMetadataResult(MetadataResult.OPERATION_REGISTER_TABLE) if (metadataWorkflow.getExecutionType == ExecutionType.REGISTER_TABLE_AND_CATALOG) { coordinator.persistCreateCatalogInCluster(metadataWorkflow.getCatalogName, metadataWorkflow.getClusterName) } //Connector is not able to create the catalog of the registered table coordinator.persistCreateTable(metadataWorkflow.getTableMetadata) val tableMetadata = metadataWorkflow.getTableMetadata updateMetadata(tableMetadata, tableMetadata.getClusterRef, toRemove = false) executionInfo.setQueryStatus(QueryStatus.EXECUTED) result.setQueryId(queryId) explicitSender.fold{ sender ! result }{ explSender => context.actorSelection(explSender) ! result } } } else { throw new CoordinationException("Operation not supported yet"); } } case storageWorkflow: StorageWorkflow => { log.debug("CoordinatorActor: StorageWorkflow received") val executionInfo = new ExecutionInfo executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), false)) executionInfo.setWorkflow(storageWorkflow) executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) log.info("\\nCoordinate workflow: " + storageWorkflow.toString) if ((storageWorkflow.getPreviousExecutionWorkflow == null) && (ResultType.RESULTS.equals(storageWorkflow.getResultType))) { executionInfo.setRemoveOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo) //Getting the connector name to tell sender val connectorsMetadata=MetadataManager.MANAGER.getConnectors(Status.ONLINE); val connector=connectorsMetadata.filter(connectorMetadata => connectorMetadata.getActorRefs.contains(storageWorkflow.getActorRef)) sender ! InfoResult(connector.apply(0).getName.getName, storageWorkflow.getQueryId) val actorRef = context.actorSelection(storageWorkflow.getActorRef()) actorRef ! storageWorkflow.getStorageOperation() } else if ((storageWorkflow.getPreviousExecutionWorkflow != null) && (ResultType.TRIGGER_EXECUTION.equals(storageWorkflow.getPreviousExecutionWorkflow.getResultType))) { val storedExInfo = new ExecutionInfo storedExInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), false)) val previousExecutionWorkflow = storageWorkflow.getPreviousExecutionWorkflow storedExInfo.setWorkflow(previousExecutionWorkflow) storedExInfo.setQueryStatus(QueryStatus.IN_PROGRESS) if (previousExecutionWorkflow.isInstanceOf[QueryWorkflow]){ //TODO make it beautiful storedExInfo.setRemoveOnSuccess(Execute.getClass.isInstance(previousExecutionWorkflow.asInstanceOf[QueryWorkflow].getExecuteOperation(""))) }else{ storedExInfo.setRemoveOnSuccess(false); } storedExInfo.setTriggeredByStreaming(true) ExecutionManager.MANAGER.createEntry(queryId, storedExInfo) val actorRef = StringUtils.getAkkaActorRefUri(previousExecutionWorkflow.getActorRef, false) val firstConnectorRef = context.actorSelection(actorRef) log.info(s"Sending init trigger operation: ${queryId} to $firstConnectorRef") firstConnectorRef ! TriggerExecution(previousExecutionWorkflow, executionInfo) } } case managementWorkflow: ManagementWorkflow => { log.info("ManagementWorkflow received") var sendResultToClient = true if (managementWorkflow.getExecutionType == ExecutionType.ATTACH_CONNECTOR) { val credentials = null val managementOperation = managementWorkflow.createManagementOperationMessage() val attachConnectorOperation = managementOperation.asInstanceOf[AttachConnector] val clusterName = attachConnectorOperation.targetCluster val clusterMetadata = MetadataManager.MANAGER.getCluster(clusterName) val datastoreName = clusterMetadata.getDataStoreRef val datastoreMetadata = MetadataManager.MANAGER.getDataStore(datastoreName) val clusterAttachedOpts = datastoreMetadata.getClusterAttachedRefs.get(clusterName) val clusterOptions = SelectorHelper.convertSelectorMapToStringMap(clusterAttachedOpts.getProperties) val connectorOptions = SelectorHelper.convertSelectorMapToStringMap(attachConnectorOperation.options) val connectorClusterConfig = new ConnectorClusterConfig( clusterName, connectorOptions, clusterOptions) connectorClusterConfig.setDataStoreName(datastoreName) val actorRefs = managementWorkflow.getActorRefs var count = 1 for(actorRef <- actorRefs){ val connectorSelection = context.actorSelection(StringUtils.getAkkaActorRefUri(actorRef, false)) connectorSelection ! new Connect(queryId+"#"+count, credentials, connectorClusterConfig) count+=1 } log.info("connectorOptions: " + connectorClusterConfig.getConnectorOptions.toString + " clusterOptions: " + connectorClusterConfig.getClusterOptions.toString) val executionInfo = new ExecutionInfo() executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), false)) executionInfo.setWorkflow(managementWorkflow) executionInfo.setPersistOnSuccess(true) executionInfo.setRemoveOnSuccess(true) count = 1 for(actorRef <- actorRefs){ ExecutionManager.MANAGER.createEntry(queryId+"#"+count, executionInfo, true) count+=1 } sendResultToClient = false } else if (managementWorkflow.getExecutionType == ExecutionType.DETACH_CONNECTOR) { val managementOperation = managementWorkflow.createManagementOperationMessage() val detachConnectorOperation = managementOperation.asInstanceOf[DetachConnector] val clusterName = detachConnectorOperation.targetCluster val connectorClusterConfig = new ConnectorClusterConfig( clusterName, SelectorHelper.convertSelectorMapToStringMap( MetadataManager.MANAGER.getConnector( new ConnectorName(detachConnectorOperation.connectorName.getName)).getClusterProperties.get(clusterName)), SelectorHelper.convertSelectorMapToStringMap( MetadataManager.MANAGER.getCluster(clusterName).getOptions) ) val clusterMetadata = MetadataManager.MANAGER.getCluster(clusterName) connectorClusterConfig.setDataStoreName(clusterMetadata.getDataStoreRef) val actorRefs = managementWorkflow.getActorRefs for(actorRef <- actorRefs){ val connectorSelection = context.actorSelection(StringUtils.getAkkaActorRefUri(actorRef, false)) connectorSelection ! new DisconnectFromCluster(queryId, connectorClusterConfig.getName.getName) } createExecutionInfoForDetach(managementWorkflow, queryId) } else if (managementWorkflow.getExecutionType == ExecutionType.FORCE_DETACH_CONNECTOR) { val actorRefs = managementWorkflow.getActorRefs for(actorRef <- actorRefs){ if(actorRef != null){ val connectorSelection = context.actorSelection(StringUtils.getAkkaActorRefUri(actorRef, false)) connectorSelection ! new DisconnectFromCluster(queryId, managementWorkflow.getConnectorClusterConfig.getName.getName) } } createExecutionInfoForDetach(managementWorkflow, queryId) } if(sendResultToClient){ explicitSender.fold{ sender ! coordinator.executeManagementOperation(managementWorkflow.createManagementOperationMessage()) }{ explSender => context.actorSelection(explSender) ! coordinator.executeManagementOperation(managementWorkflow.createManagementOperationMessage) } } } case queryWorkflow: QueryWorkflow => { log.info("\\nCoordinatorActor: QueryWorkflow received") val executionInfo = new ExecutionInfo executionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) executionInfo.setWorkflow(queryWorkflow) log.info("\\nCoordinate workflow: " + queryWorkflow.toString) executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) //Getting the connector name to tell sender val connectorsMetadata=MetadataManager.MANAGER.getConnectors(Status.ONLINE); val connector=connectorsMetadata.filter(connectorMetadata => connectorMetadata.getActorRefs.contains(executionInfo.getWorkflow.getActorRef)) if (ResultType.RESULTS.equals(queryWorkflow.getResultType)) { //TODO AkkaRefURI should be stored. Indeed, it is likely to be stored instead of toString. val actorRef = StringUtils.getAkkaActorRefUri(queryWorkflow.getActorRef, false) val actorSelection = context.actorSelection(actorRef) val operation = queryWorkflow.getExecuteOperation(queryId) executionInfo.setRemoveOnSuccess(operation.isInstanceOf[Execute]) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) //Send to sender in which connector will be executed the query sender ! InfoResult(connector.apply(0).getName.getName , executionInfo.getWorkflow.getQueryId) actorSelection.asInstanceOf[ActorSelection] ! operation log.info("\\nMessage sent to " + actorRef.toString()) } else if (ResultType.TRIGGER_EXECUTION.equals(queryWorkflow.getResultType) || ResultType.GLOBAL_INDEX_RESULTS.equals(queryWorkflow.getResultType)) { val actorRef = StringUtils.getAkkaActorRefUri(queryWorkflow.getActorRef, false) val firstConnectorActorSelection = context.actorSelection(actorRef) val isWindowFound = QueryWorkflow.checkStreaming(queryWorkflow.getWorkflow.getLastStep) executionInfo.setTriggeredByStreaming(isWindowFound) executionInfo.setRemoveOnSuccess(!isWindowFound) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) val nextExecutionInfo = new ExecutionInfo nextExecutionInfo.setSender(StringUtils.getAkkaActorRefUri(explicitSender.getOrElse(sender), true)) nextExecutionInfo.setWorkflow(queryWorkflow.getNextExecutionWorkflow) nextExecutionInfo.getWorkflow.setTriggerStep(executionInfo.getWorkflow.getTriggerStep) nextExecutionInfo.setRemoveOnSuccess(!isWindowFound) nextExecutionInfo.setTriggeredByStreaming(isWindowFound) //Send to sender in which connector will be executed the query sender ! InfoResult(connector.apply(0).getName.getName , executionInfo.getWorkflow.getQueryId) firstConnectorActorSelection ! TriggerExecution(queryWorkflow, nextExecutionInfo) log.info(s"Sending init trigger operation: ${queryId} to $firstConnectorActorSelection") } } case _ => { log.error("Non recognized workflow") } } def createExecutionInfoForDetach(managementWorkflow: ManagementWorkflow, queryId: String): Unit = { val executionInfo = new ExecutionInfo() executionInfo.setQueryStatus(QueryStatus.IN_PROGRESS) executionInfo.setSender(StringUtils.getAkkaActorRefUri(sender, false)) executionInfo.setWorkflow(managementWorkflow) executionInfo.setUpdateOnSuccess(true) ExecutionManager.MANAGER.createEntry(queryId, executionInfo, true) } private def processUpdateMetadataWorkflow(mw: MetadataWorkflow, result: Result) = mw.getExecutionType match { case ExecutionType.CREATE_TABLE | ExecutionType.ALTER_TABLE => { val tableMetadata = mw.getTableMetadata updateMetadata(tableMetadata, tableMetadata.getClusterRef, toRemove = false) } case ExecutionType.CREATE_TABLE_AND_CATALOG | ExecutionType.CREATE_TABLE_REGISTER_CATALOG => { val tableMetadata = mw.getTableMetadata //TODO updateMetadata(mw.getCatalogMetadata, ...)? updateMetadata(tableMetadata, tableMetadata.getClusterRef, toRemove = false) } case ExecutionType.CREATE_INDEX | ExecutionType.DROP_INDEX | ExecutionType.CREATE_GLOBAL_INDEX=> () case ExecutionType.DROP_TABLE => { val tableMetadata = mw.getTableMetadata updateMetadata(tableMetadata, tableMetadata.getClusterRef, toRemove = true) } case ExecutionType.ALTER_CATALOG | ExecutionType.CREATE_CATALOG => { val catalogMetadata = mw.getCatalogMetadata for (tableMetadata <- mw.getCatalogMetadata.getTables.values.asScala.toList){ updateMetadata(catalogMetadata, tableMetadata.asInstanceOf[TableMetadata].getClusterRef, toRemove = false) } } case ExecutionType.DROP_CATALOG => { val catalogMetadata = mw.getCatalogMetadata for (tableMetadata <- mw.getCatalogMetadata.getTables.values.asScala.toList) yield updateMetadata(catalogMetadata, tableMetadata.asInstanceOf[TableMetadata].getClusterRef, toRemove = true) } case ExecutionType.IMPORT_TABLE => { for { tableMetadata <- result.asInstanceOf[MetadataResult].getTableList.asScala.toList } yield updateMetadata(tableMetadata, tableMetadata.asInstanceOf[TableMetadata].getClusterRef, toRemove = false) } case ExecutionType.IMPORT_CATALOGS | ExecutionType.IMPORT_CATALOG => { for { catalogMetadata <- result.asInstanceOf[MetadataResult].getCatalogMetadataList.asScala.toList } yield updateMetadata(catalogMetadata, toRemove = false) } case message => log.warning ("Sending metadata updates cannot be performed for the ExecutionType :" + message.toString) } /** * Send a message to the connectors attached to a cluster to update its metadata. It is called any time an update's operation which persist data is finished. * @param uMetadata the new metadata to be updated * @param clusterInvolved the cluster which contains the metadata to update * @param toRemove whether the metadata has been created or deleted */ private def updateMetadata(uMetadata: UpdatableMetadata, clusterInvolved: ClusterName, toRemove: Boolean): Unit = { val listConnectorMetadata = MetadataManager.MANAGER.getAttachedConnectors(Status.ONLINE, clusterInvolved) listConnectorMetadata.asScala.toList.flatMap(actorToBroadcast).foreach(actor => broadcastMetadata(actor, uMetadata)) def actorToBroadcast(cMetadata: ConnectorMetadata): List[ActorSelection] = StringUtils.getAkkaActorRefUri(cMetadata.getActorRef(host), false) match { case null => List() case strActorRefUri => List(context.actorSelection(strActorRefUri)) } def broadcastMetadata(bcConnectorActor: ActorSelection, uMetadata: UpdatableMetadata) = { log.debug("Updating metadata in " + bcConnectorActor.toString) bcConnectorActor ! UpdateMetadata(uMetadata, toRemove) } } /** * Send a message to the connectors attached to a cluster to update its metadata. It is called any time an update's operation which persist data is finished. * @param cMetadata the new metadata to be updated * @param toRemove whether the metadata has been created or deleted */ private def updateMetadata(cMetadata: CatalogMetadata, toRemove: Boolean): Unit = { val setConnectorMetadata = cMetadata.getTables.values().asScala.toList.flatMap( tableMetadata => MetadataManager.MANAGER.getAttachedConnectors(Status.ONLINE, tableMetadata.getClusterRef).asScala.toList).toSet setConnectorMetadata.flatMap(actorToBroadcast).foreach(actor => broadcastMetadata(actor, cMetadata)) def actorToBroadcast(cMetadata: ConnectorMetadata): List[ActorSelection] = StringUtils.getAkkaActorRefUri(cMetadata.getActorRef(host), false) match { case null => List() case strActorRefUri => List(context.actorSelection(strActorRefUri)) } def broadcastMetadata(bcConnectorActor: ActorSelection, uMetadata: UpdatableMetadata) = { log.debug("Updating metadata in " + bcConnectorActor.toString) bcConnectorActor ! UpdateMetadata(uMetadata, toRemove) } } }
pfcoperez/crossdata
crossdata-server/src/main/scala/com/stratio/crossdata/server/actors/CoordinatorActor.scala
Scala
apache-2.0
39,954
package sharry.common import java.util.concurrent.ForkJoinPool import java.util.concurrent.ForkJoinPool.ForkJoinWorkerThreadFactory import java.util.concurrent.ForkJoinWorkerThread import java.util.concurrent.atomic.AtomicLong import java.util.concurrent.{Executors, ThreadFactory} import scala.concurrent._ import cats.effect._ object ThreadFactories { def ofName(prefix: String): ThreadFactory = new ThreadFactory { val counter = new AtomicLong(0) override def newThread(r: Runnable): Thread = { val t = Executors.defaultThreadFactory().newThread(r) t.setName(s"$prefix-${counter.getAndIncrement()}") t } } def ofNameFJ(prefix: String): ForkJoinWorkerThreadFactory = new ForkJoinWorkerThreadFactory { val tf = ForkJoinPool.defaultForkJoinWorkerThreadFactory val counter = new AtomicLong(0) def newThread(pool: ForkJoinPool): ForkJoinWorkerThread = { val t = tf.newThread(pool) t.setName(s"$prefix-${counter.getAndIncrement()}") t } } def executorResource[F[_]: Sync]( c: => ExecutionContextExecutorService ): Resource[F, ExecutionContextExecutorService] = Resource.make(Sync[F].delay(c))(ec => Sync[F].delay(ec.shutdown)) def cached[F[_]: Sync]( tf: ThreadFactory ): Resource[F, ExecutionContextExecutorService] = executorResource( ExecutionContext.fromExecutorService(Executors.newCachedThreadPool(tf)) ) def fixed[F[_]: Sync]( n: Int, tf: ThreadFactory ): Resource[F, ExecutionContextExecutorService] = executorResource( ExecutionContext.fromExecutorService(Executors.newFixedThreadPool(n, tf)) ) def workSteal[F[_]: Sync]( n: Int, tf: ForkJoinWorkerThreadFactory ): Resource[F, ExecutionContextExecutorService] = executorResource( ExecutionContext.fromExecutorService( new ForkJoinPool(n, tf, null, true) ) ) def workSteal[F[_]: Sync]( tf: ForkJoinWorkerThreadFactory ): Resource[F, ExecutionContextExecutorService] = workSteal[F](Runtime.getRuntime().availableProcessors() + 1, tf) }
eikek/sharry
modules/common/src/main/scala/sharry/common/ThreadFactories.scala
Scala
gpl-3.0
2,140
/** * Copyright (C) 2009-2011 the original author or authors. * See the notice.md file distributed with this work for additional * information regarding copyright ownership. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.fusesource.scalate.rest import java.lang.annotation.Annotation import java.lang.reflect.Type import java.io.OutputStream import javax.servlet.ServletContext import javax.servlet.http.{ HttpServletResponse, HttpServletRequest } import javax.ws.rs.ext.{ Provider, MessageBodyWriter } import javax.ws.rs.core.{ UriInfo, MultivaluedMap, MediaType, Context } import org.fusesource.scalate.servlet.{ ServletRenderContext, ServletTemplateEngine, ServletHelper, TemplateEngineServlet } import org.fusesource.scalate.TemplateException import org.fusesource.scalate.util.{ Log, ResourceNotFoundException } import javax.ws.rs.WebApplicationException object ScalateTemplateProvider extends Log; /** * A template provider for <a href="https://jersey.dev.java.net/">Jersey</a> using Scalate templates * to produce HTML of an object. * * @version $Revision : 1.1 $ */ @Provider class ScalateTemplateProvider extends MessageBodyWriter[AnyRef] { import ScalateTemplateProvider._ @Context var servletContext: ServletContext = _ @Context var request: HttpServletRequest = _ @Context var response: HttpServletResponse = _ @Context var uriInfo: UriInfo = _ def resolve(engine: ServletTemplateEngine, argType: Class[_]): String = { val argBase = argType.getName.replace('.', '/') engine.extensions.foreach { ext => val path = "/" + argBase + "." + ext try { engine.load(path) return path } catch { case x: ResourceNotFoundException => case x: TemplateException => return path } } null } def getSize(arg: AnyRef, argType: Class[_], genericType: Type, annotations: Array[Annotation], mediaType: MediaType) = -1L def isWriteable(argType: Class[_], genericType: Type, annotations: Array[Annotation], mediaType: MediaType) = { var answer = false if (mediaType.getType == "text" && mediaType.getSubtype == "html") { val engine = ServletTemplateEngine(servletContext) if (engine != null && engine.resourceLoader != null) { val path = resolve(engine, argType) answer = path != null } } answer } def writeTo(arg: AnyRef, argType: Class[_], genericType: Type, annotations: Array[Annotation], media: MediaType, headers: MultivaluedMap[String, AnyRef], out: OutputStream) = { // Ensure headers are committed out.flush() val engine = ServletTemplateEngine(servletContext) val path = resolve(engine, argType) try { assert(path != null) request.setAttribute("uri_info", uriInfo) request.setAttribute("it", arg) val context = new ServletRenderContext(engine, request, response, servletContext) context.include(path, true) } catch { case e: Exception => // lets forward to the error handler var notFound = true for (uri <- ServletHelper.errorUris() if notFound) { try { val template = engine.load(uri) request.setAttribute("javax.servlet.error.exception", e) request.setAttribute("javax.servlet.error.exception_type", e.getClass) request.setAttribute("javax.servlet.error.message", e.getMessage) request.setAttribute("javax.servlet.error.request_uri", request.getRequestURI) request.setAttribute("javax.servlet.error.servlet_name", request.getServerName) // TODO how to get the status code??? val status = 500 request.setAttribute("javax.servlet.error.status_code", status) request.setAttribute("it", e) TemplateEngineServlet.render(uri, engine, servletContext, request, response) notFound = false } catch { case _: Exception => } } if (notFound) { throw createContainerException(e) } } } protected def createContainerException(e: Exception) = { new WebApplicationException(e) } }
maslovalex/scalate
scalate-jaxrs/src/main/scala/org/fusesource/scalate/rest/ScalateTemplateProvider.scala
Scala
apache-2.0
4,697
package net.sansa_stack.query.spark.graph.jena.expression import net.sansa_stack.query.spark.graph.jena.util.Result import org.apache.jena.graph.Node class Lang(expr: Expression) extends FunctionOne(expr) { private val tag = "Lang" override def getValue(result: Map[Node, Node]): Node = { // compiler here throw new UnsupportedOperationException } override def getValue(result: Result[Node]): Node = { var lang: Node = null expr match { case e: NodeVar => lang = result.getValue(e.getNode) case e: NodeVal => lang = e.getNode case _ => throw new TypeNotPresentException("Variable or Value", new Throwable) } lang } override def getTag: String = { tag } }
SANSA-Stack/SANSA-RDF
sansa-query/sansa-query-spark/src/main/scala/net/sansa_stack/query/spark/graph/jena/expression/Lang.scala
Scala
apache-2.0
715
package org.broadinstitute.clio.util.model import scala.util.Random /** * A unique identifier for each operation that modifies the database. */ final class UpsertId private (val id: String) extends AnyVal { /** * The filename used for persisting a document's upsert data. * * @return the filename where the upsert with the given ID's data is stored */ def persistenceFilename: String = s"$id.json" } /** * Generate a lexically-ordered, unique ID based on the Firebase Push ID. * * Each ID is a 20-byte string of by 8 characters of timestamp * followed by 12 characters of random (yet sequential) data. * * A recent one looks like this: -KuzbQJIFBhwvtkvrBHF * * @see [[https://firebase.googleblog.com/2015/02/the-2120-ways-to-ensure-unique_68.html]] */ object UpsertId { implicit val upsertIdOrdering: Ordering[UpsertId] = Ordering.by(_.id) private val source = new Random() /** * Map from 7-bit data to character encoding. */ private val Encoding = "-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz" /** * There are this many characters of timestamp data. */ private val TimestampCount = 8 /** * There are this many characters of randomized data. */ private val RandomCount = 12 /** * The length of a valid upsert ID. */ val IdLength: Int = TimestampCount + RandomCount /** * The latest time used to construct an ID. */ private var was = 0L /** * 8 characters encoded from `was`. */ private var timestamp = "timestam" /** * 12 characters of monotonic increment seeded with a random value. */ private var randomCharacters = Array.fill[Int](12)(Encoding.length) /** * Return a random index into `Encoding`. */ private val next6bitIndex = (_: Int) => source.nextInt(Encoding.length) /** * Return with new values for was, timestamp, and randomCharacters. * * @param now is the current system time */ private def refreshRandomState(now: Long): Unit = { was = now timestamp = Stream .iterate(now, TimestampCount)(_ / Encoding.length) .map(n => Encoding((n % Encoding.length).toInt)) .reverse .mkString randomCharacters = Stream.iterate(next6bitIndex(0), RandomCount)(next6bitIndex(_)).toArray } /** * Increment `randomCharacters` or wait until `now` changes when * `randomCharacters` would roll over to 0. */ private def incrementRandomBytes(now: Long): Unit = { val where = randomCharacters.lastIndexWhere(_ != Encoding.length - 1) val randomRollover = where == -1 if (randomRollover) { var still = now while (still == was) { still = System.currentTimeMillis() refreshRandomState(now) } } else { randomCharacters(where) = randomCharacters(where) + 1 for (n <- where + 1 until RandomCount) randomCharacters(n) = 0 } } /** * Check if `idText` is a valid upsert ID. * * @param idText the text to validate * @return true if `idText` is a valid ID */ def isValidId(idText: String): Boolean = { idText.length == IdLength && idText.forall(Encoding.contains(_)) } /** * Create an ID from `idText`. The text must be a valid ID. * * @param idText the text to construct an ID from * @return the created ID or `None` */ def fromString(idText: String): Option[UpsertId] = { List(idText).filter(isValidId).map(new UpsertId(_)).headOption } /** * Return the next unique ID. * * @return a 20-character unique ID */ val nextId: () => UpsertId = () => synchronized { val now = System.currentTimeMillis() if (now == was) { incrementRandomBytes(now) } else { refreshRandomState(now) } new UpsertId(timestamp + randomCharacters.map(Encoding(_)).mkString) } }
broadinstitute/clio
clio-util/src/main/scala/org/broadinstitute/clio/util/model/UpsertId.scala
Scala
bsd-3-clause
3,894
/** * BasePlate API * An API for BasePlate to connect with Loanapp. * * OpenAPI spec version: 1.0.0 * Contact: [email protected] * * NOTE: This class is auto generated by the swagger code generator program. * https://github.com/swagger-api/swagger-codegen.git * Do not edit the class manually. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.eclipse.jetty.server._ import org.eclipse.jetty.webapp.WebAppContext import org.scalatra.servlet.ScalatraListener object JettyMain { object conf { val port = sys.env.get("PORT") map (_.toInt) getOrElse (8080) val stopTimeout = sys.env.get("STOP_TIMEOUT") map (_.toInt) getOrElse (5000) val connectorIdleTimeout = sys.env.get("CONNECTOR_IDLE_TIMEOUT") map (_.toInt) getOrElse (90000) val webapp = sys.env.get("PUBLIC") getOrElse "webapp" val contextPath = sys.env.get("CONTEXT_PATH") getOrElse "/" } def main(args: Array[String]) = { val server: Server = new Server println("starting jetty") server setStopTimeout conf.stopTimeout //server setDumpAfterStart true server setStopAtShutdown true val httpConfig = new HttpConfiguration() httpConfig setSendDateHeader true httpConfig setSendServerVersion false val connector = new NetworkTrafficServerConnector(server, new HttpConnectionFactory(httpConfig)) connector setPort conf.port connector setSoLingerTime 0 connector setIdleTimeout conf.connectorIdleTimeout server addConnector connector val webapp = conf.webapp val webApp = new WebAppContext webApp setContextPath conf.contextPath webApp setResourceBase conf.webapp webApp setEventListeners Array(new ScalatraListener) server setHandler webApp server.start() } }
garywong89/PetStoreAPI
scalatra/src/main/scala/JettyMain.scala
Scala
apache-2.0
2,257
/** * Copyright (c) 2014-2016 Tim Bruijnzeels * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of this software, nor the names of its contributors, nor * the names of the contributors' employers may be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package nl.bruijnzeels.tim.rpki.common.cqrs import java.util.UUID object EventStore { // TODO: Use persistent thread safe storage, sign and verify this shit!, log this stuff? var storedEventList: List[StoredEvent] = List.empty var listeners: List[EventListener] = List.empty def subscribe(listener: EventListener) = listeners = listeners :+ listener def retrieve(aggregateType: AggregateRootType, aggregateId: UUID): List[Event] = storedEventList.filter(e => e.aggregateType == aggregateType && e.versionedId.id == aggregateId).map(_.event) def store(aggregate: AggregateRoot): Unit = { val aggregateType = aggregate.aggregateType val newVersionedId = aggregate.versionedId.next val newStoredEvents = aggregate.events.map(StoredEvent(aggregateType, newVersionedId, _)) storedEventList = storedEventList ++ newStoredEvents listeners.foreach(l => l.handle(newStoredEvents)) } def clear(): Unit = { storedEventList = List.empty listeners = List.empty } } trait EventListener { def handle(events: List[StoredEvent]): Unit } case class StoredEvent(aggregateType: AggregateRootType, versionedId: VersionedId, event: Event)
timbru/rpki-ca
src/main/scala/nl/bruijnzeels/tim/rpki/common/cqrs/EventStore.scala
Scala
bsd-3-clause
2,816
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive import java.io.IOException import java.lang.reflect.InvocationTargetException import java.util import java.util.Locale import scala.collection.mutable import scala.util.control.NonFatal import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.hive.metastore.api.hive_metastoreConstants.DDL_TIME import org.apache.hadoop.hive.ql.metadata.HiveException import org.apache.hadoop.hive.serde.serdeConstants.SERIALIZATION_FORMAT import org.apache.thrift.TException import org.apache.spark.{SparkConf, SparkException} import org.apache.spark.internal.Logging import org.apache.spark.sql.AnalysisException import org.apache.spark.sql.catalyst.TableIdentifier import org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException import org.apache.spark.sql.catalyst.catalog._ import org.apache.spark.sql.catalyst.catalog.ExternalCatalogUtils._ import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.plans.logical.ColumnStat import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap import org.apache.spark.sql.execution.command.DDLUtils import org.apache.spark.sql.execution.datasources.{PartitioningUtils, SourceOptions} import org.apache.spark.sql.hive.client.HiveClient import org.apache.spark.sql.internal.HiveSerDe import org.apache.spark.sql.internal.StaticSQLConf._ import org.apache.spark.sql.types.{DataType, StructType} /** * A persistent implementation of the system catalog using Hive. * All public methods must be synchronized for thread-safety. */ private[spark] class HiveExternalCatalog(conf: SparkConf, hadoopConf: Configuration) extends ExternalCatalog with Logging { import CatalogTypes.TablePartitionSpec import HiveExternalCatalog._ import CatalogTableType._ /** * A Hive client used to interact with the metastore. */ lazy val client: HiveClient = { HiveUtils.newClientForMetadata(conf, hadoopConf) } // Exceptions thrown by the hive client that we would like to wrap private val clientExceptions = Set( classOf[HiveException].getCanonicalName, classOf[TException].getCanonicalName, classOf[InvocationTargetException].getCanonicalName) /** * Whether this is an exception thrown by the hive client that should be wrapped. * * Due to classloader isolation issues, pattern matching won't work here so we need * to compare the canonical names of the exceptions, which we assume to be stable. */ private def isClientException(e: Throwable): Boolean = { var temp: Class[_] = e.getClass var found = false while (temp != null && !found) { found = clientExceptions.contains(temp.getCanonicalName) temp = temp.getSuperclass } found } /** * Run some code involving `client` in a [[synchronized]] block and wrap certain * exceptions thrown in the process in [[AnalysisException]]. */ private def withClient[T](body: => T): T = synchronized { try { body } catch { case NonFatal(exception) if isClientException(exception) => val e = exception match { // Since we are using shim, the exceptions thrown by the underlying method of // Method.invoke() are wrapped by InvocationTargetException case i: InvocationTargetException => i.getCause case o => o } throw new AnalysisException( e.getClass.getCanonicalName + ": " + e.getMessage, cause = Some(e)) } } /** * Get the raw table metadata from hive metastore directly. The raw table metadata may contain * special data source properties that should not be exposed outside of `HiveExternalCatalog`. We * should interpret these special data source properties and restore the original table metadata * before returning it. */ private[hive] def getRawTable(db: String, table: String): CatalogTable = { client.getTable(db, table) } /** * If the given table properties contains datasource properties, throw an exception. We will do * this check when create or alter a table, i.e. when we try to write table metadata to Hive * metastore. */ private def verifyTableProperties(table: CatalogTable): Unit = { val invalidKeys = table.properties.keys.filter(_.startsWith(SPARK_SQL_PREFIX)) if (invalidKeys.nonEmpty) { throw new AnalysisException(s"Cannot persist ${table.qualifiedName} into Hive metastore " + s"as table property keys may not start with '$SPARK_SQL_PREFIX': " + invalidKeys.mkString("[", ", ", "]")) } // External users are not allowed to set/switch the table type. In Hive metastore, the table // type can be switched by changing the value of a case-sensitive table property `EXTERNAL`. if (table.properties.contains("EXTERNAL")) { throw new AnalysisException("Cannot set or change the preserved property key: 'EXTERNAL'") } } /** * Checks the validity of data column names. Hive metastore disallows the table to use some * special characters (',', ':', and ';') in data column names, including nested column names. * Partition columns do not have such a restriction. Views do not have such a restriction. */ private def verifyDataSchema( tableName: TableIdentifier, tableType: CatalogTableType, dataSchema: StructType): Unit = { if (tableType != VIEW) { val invalidChars = Seq(",", ":", ";") def verifyNestedColumnNames(schema: StructType): Unit = schema.foreach { f => f.dataType match { case st: StructType => verifyNestedColumnNames(st) case _ if invalidChars.exists(f.name.contains) => val invalidCharsString = invalidChars.map(c => s"'$c'").mkString(", ") val errMsg = "Cannot create a table having a nested column whose name contains " + s"invalid characters ($invalidCharsString) in Hive metastore. Table: $tableName; " + s"Column: ${f.name}" throw new AnalysisException(errMsg) case _ => } } dataSchema.foreach { f => f.dataType match { // Checks top-level column names case _ if f.name.contains(",") => throw new AnalysisException("Cannot create a table having a column whose name " + s"contains commas in Hive metastore. Table: $tableName; Column: ${f.name}") // Checks nested column names case st: StructType => verifyNestedColumnNames(st) case _ => } } } } // -------------------------------------------------------------------------- // Databases // -------------------------------------------------------------------------- override def createDatabase( dbDefinition: CatalogDatabase, ignoreIfExists: Boolean): Unit = withClient { client.createDatabase(dbDefinition, ignoreIfExists) } override def dropDatabase( db: String, ignoreIfNotExists: Boolean, cascade: Boolean): Unit = withClient { client.dropDatabase(db, ignoreIfNotExists, cascade) } /** * Alter a database whose name matches the one specified in `dbDefinition`, * assuming the database exists. * * Note: As of now, this only supports altering database properties! */ override def alterDatabase(dbDefinition: CatalogDatabase): Unit = withClient { val existingDb = getDatabase(dbDefinition.name) if (existingDb.properties == dbDefinition.properties) { logWarning(s"Request to alter database ${dbDefinition.name} is a no-op because " + s"the provided database properties are the same as the old ones. Hive does not " + s"currently support altering other database fields.") } client.alterDatabase(dbDefinition) } override def getDatabase(db: String): CatalogDatabase = withClient { client.getDatabase(db) } override def databaseExists(db: String): Boolean = withClient { client.databaseExists(db) } override def listDatabases(): Seq[String] = withClient { client.listDatabases("*") } override def listDatabases(pattern: String): Seq[String] = withClient { client.listDatabases(pattern) } override def setCurrentDatabase(db: String): Unit = withClient { client.setCurrentDatabase(db) } // -------------------------------------------------------------------------- // Tables // -------------------------------------------------------------------------- override def createTable( tableDefinition: CatalogTable, ignoreIfExists: Boolean): Unit = withClient { assert(tableDefinition.identifier.database.isDefined) val db = tableDefinition.identifier.database.get val table = tableDefinition.identifier.table requireDbExists(db) verifyTableProperties(tableDefinition) verifyDataSchema( tableDefinition.identifier, tableDefinition.tableType, tableDefinition.dataSchema) if (tableExists(db, table) && !ignoreIfExists) { throw new TableAlreadyExistsException(db = db, table = table) } // Ideally we should not create a managed table with location, but Hive serde table can // specify location for managed table. And in [[CreateDataSourceTableAsSelectCommand]] we have // to create the table directory and write out data before we create this table, to avoid // exposing a partial written table. val needDefaultTableLocation = tableDefinition.tableType == MANAGED && tableDefinition.storage.locationUri.isEmpty val tableLocation = if (needDefaultTableLocation) { Some(CatalogUtils.stringToURI(defaultTablePath(tableDefinition.identifier))) } else { tableDefinition.storage.locationUri } if (DDLUtils.isDatasourceTable(tableDefinition)) { createDataSourceTable( tableDefinition.withNewStorage(locationUri = tableLocation), ignoreIfExists) } else { val tableWithDataSourceProps = tableDefinition.copy( // We can't leave `locationUri` empty and count on Hive metastore to set a default table // location, because Hive metastore uses hive.metastore.warehouse.dir to generate default // table location for tables in default database, while we expect to use the location of // default database. storage = tableDefinition.storage.copy(locationUri = tableLocation), // Here we follow data source tables and put table metadata like table schema, partition // columns etc. in table properties, so that we can work around the Hive metastore issue // about not case preserving and make Hive serde table and view support mixed-case column // names. properties = tableDefinition.properties ++ tableMetaToTableProps(tableDefinition)) client.createTable(tableWithDataSourceProps, ignoreIfExists) } } private def createDataSourceTable(table: CatalogTable, ignoreIfExists: Boolean): Unit = { // data source table always have a provider, it's guaranteed by `DDLUtils.isDatasourceTable`. val provider = table.provider.get val options = new SourceOptions(table.storage.properties) // To work around some hive metastore issues, e.g. not case-preserving, bad decimal type // support, no column nullability, etc., we should do some extra works before saving table // metadata into Hive metastore: // 1. Put table metadata like table schema, partition columns, etc. in table properties. // 2. Check if this table is hive compatible. // 2.1 If it's not hive compatible, set location URI, schema, partition columns and bucket // spec to empty and save table metadata to Hive. // 2.2 If it's hive compatible, set serde information in table metadata and try to save // it to Hive. If it fails, treat it as not hive compatible and go back to 2.1 val tableProperties = tableMetaToTableProps(table) // put table provider and partition provider in table properties. tableProperties.put(DATASOURCE_PROVIDER, provider) if (table.tracksPartitionsInCatalog) { tableProperties.put(TABLE_PARTITION_PROVIDER, TABLE_PARTITION_PROVIDER_CATALOG) } // Ideally we should also put `locationUri` in table properties like provider, schema, etc. // However, in older version of Spark we already store table location in storage properties // with key "path". Here we keep this behaviour for backward compatibility. val storagePropsWithLocation = table.storage.properties ++ table.storage.locationUri.map("path" -> CatalogUtils.URIToString(_)) // converts the table metadata to Spark SQL specific format, i.e. set data schema, names and // bucket specification to empty. Note that partition columns are retained, so that we can // call partition-related Hive API later. def newSparkSQLSpecificMetastoreTable(): CatalogTable = { table.copy( // Hive only allows directory paths as location URIs while Spark SQL data source tables // also allow file paths. For non-hive-compatible format, we should not set location URI // to avoid hive metastore to throw exception. storage = table.storage.copy( locationUri = None, properties = storagePropsWithLocation), schema = StructType(EMPTY_DATA_SCHEMA ++ table.partitionSchema), bucketSpec = None, properties = table.properties ++ tableProperties) } // converts the table metadata to Hive compatible format, i.e. set the serde information. def newHiveCompatibleMetastoreTable(serde: HiveSerDe): CatalogTable = { val location = if (table.tableType == EXTERNAL) { // When we hit this branch, we are saving an external data source table with hive // compatible format, which means the data source is file-based and must have a `path`. require(table.storage.locationUri.isDefined, "External file-based data source table must have a `path` entry in storage properties.") Some(table.location) } else { None } table.copy( storage = table.storage.copy( locationUri = location, inputFormat = serde.inputFormat, outputFormat = serde.outputFormat, serde = serde.serde, properties = storagePropsWithLocation ), properties = table.properties ++ tableProperties) } val qualifiedTableName = table.identifier.quotedString val maybeSerde = HiveSerDe.sourceToSerDe(provider) val (hiveCompatibleTable, logMessage) = maybeSerde match { case _ if options.skipHiveMetadata => val message = s"Persisting data source table $qualifiedTableName into Hive metastore in" + "Spark SQL specific format, which is NOT compatible with Hive." (None, message) // our bucketing is un-compatible with hive(different hash function) case _ if table.bucketSpec.nonEmpty => val message = s"Persisting bucketed data source table $qualifiedTableName into " + "Hive metastore in Spark SQL specific format, which is NOT compatible with Hive. " (None, message) case Some(serde) => val message = s"Persisting file based data source table $qualifiedTableName into " + s"Hive metastore in Hive compatible format." (Some(newHiveCompatibleMetastoreTable(serde)), message) case _ => val message = s"Couldn't find corresponding Hive SerDe for data source provider $provider. " + s"Persisting data source table $qualifiedTableName into Hive metastore in " + s"Spark SQL specific format, which is NOT compatible with Hive." (None, message) } (hiveCompatibleTable, logMessage) match { case (Some(table), message) => // We first try to save the metadata of the table in a Hive compatible way. // If Hive throws an error, we fall back to save its metadata in the Spark SQL // specific way. try { logInfo(message) saveTableIntoHive(table, ignoreIfExists) } catch { case NonFatal(e) => val warningMessage = s"Could not persist ${table.identifier.quotedString} in a Hive " + "compatible way. Persisting it into Hive metastore in Spark SQL specific format." logWarning(warningMessage, e) saveTableIntoHive(newSparkSQLSpecificMetastoreTable(), ignoreIfExists) } case (None, message) => logWarning(message) saveTableIntoHive(newSparkSQLSpecificMetastoreTable(), ignoreIfExists) } } /** * Data source tables may be non Hive compatible and we need to store table metadata in table * properties to workaround some Hive metastore limitations. * This method puts table schema, partition column names, bucket specification into a map, which * can be used as table properties later. */ private def tableMetaToTableProps(table: CatalogTable): mutable.Map[String, String] = { tableMetaToTableProps(table, table.schema) } private def tableMetaToTableProps( table: CatalogTable, schema: StructType): mutable.Map[String, String] = { val partitionColumns = table.partitionColumnNames val bucketSpec = table.bucketSpec val properties = new mutable.HashMap[String, String] properties.put(CREATED_SPARK_VERSION, table.createVersion) // Serialized JSON schema string may be too long to be stored into a single metastore table // property. In this case, we split the JSON string and store each part as a separate table // property. val threshold = conf.get(SCHEMA_STRING_LENGTH_THRESHOLD) val schemaJsonString = schema.json // Split the JSON string. val parts = schemaJsonString.grouped(threshold).toSeq properties.put(DATASOURCE_SCHEMA_NUMPARTS, parts.size.toString) parts.zipWithIndex.foreach { case (part, index) => properties.put(s"$DATASOURCE_SCHEMA_PART_PREFIX$index", part) } if (partitionColumns.nonEmpty) { properties.put(DATASOURCE_SCHEMA_NUMPARTCOLS, partitionColumns.length.toString) partitionColumns.zipWithIndex.foreach { case (partCol, index) => properties.put(s"$DATASOURCE_SCHEMA_PARTCOL_PREFIX$index", partCol) } } if (bucketSpec.isDefined) { val BucketSpec(numBuckets, bucketColumnNames, sortColumnNames) = bucketSpec.get properties.put(DATASOURCE_SCHEMA_NUMBUCKETS, numBuckets.toString) properties.put(DATASOURCE_SCHEMA_NUMBUCKETCOLS, bucketColumnNames.length.toString) bucketColumnNames.zipWithIndex.foreach { case (bucketCol, index) => properties.put(s"$DATASOURCE_SCHEMA_BUCKETCOL_PREFIX$index", bucketCol) } if (sortColumnNames.nonEmpty) { properties.put(DATASOURCE_SCHEMA_NUMSORTCOLS, sortColumnNames.length.toString) sortColumnNames.zipWithIndex.foreach { case (sortCol, index) => properties.put(s"$DATASOURCE_SCHEMA_SORTCOL_PREFIX$index", sortCol) } } } properties } private def defaultTablePath(tableIdent: TableIdentifier): String = { val dbLocation = getDatabase(tableIdent.database.get).locationUri new Path(new Path(dbLocation), tableIdent.table).toString } private def saveTableIntoHive(tableDefinition: CatalogTable, ignoreIfExists: Boolean): Unit = { assert(DDLUtils.isDatasourceTable(tableDefinition), "saveTableIntoHive only takes data source table.") // If this is an external data source table... if (tableDefinition.tableType == EXTERNAL && // ... that is not persisted as Hive compatible format (external tables in Hive compatible // format always set `locationUri` to the actual data location and should NOT be hacked as // following.) tableDefinition.storage.locationUri.isEmpty) { // !! HACK ALERT !! // // Due to a restriction of Hive metastore, here we have to set `locationUri` to a temporary // directory that doesn't exist yet but can definitely be successfully created, and then // delete it right after creating the external data source table. This location will be // persisted to Hive metastore as standard Hive table location URI, but Spark SQL doesn't // really use it. Also, since we only do this workaround for external tables, deleting the // directory after the fact doesn't do any harm. // // Please refer to https://issues.apache.org/jira/browse/SPARK-15269 for more details. val tempPath = { val dbLocation = new Path(getDatabase(tableDefinition.database).locationUri) new Path(dbLocation, tableDefinition.identifier.table + "-__PLACEHOLDER__") } try { client.createTable( tableDefinition.withNewStorage(locationUri = Some(tempPath.toUri)), ignoreIfExists) } finally { FileSystem.get(tempPath.toUri, hadoopConf).delete(tempPath, true) } } else { client.createTable(tableDefinition, ignoreIfExists) } } override def dropTable( db: String, table: String, ignoreIfNotExists: Boolean, purge: Boolean): Unit = withClient { requireDbExists(db) client.dropTable(db, table, ignoreIfNotExists, purge) } override def renameTable( db: String, oldName: String, newName: String): Unit = withClient { val rawTable = getRawTable(db, oldName) // Note that Hive serde tables don't use path option in storage properties to store the value // of table location, but use `locationUri` field to store it directly. And `locationUri` field // will be updated automatically in Hive metastore by the `alterTable` call at the end of this // method. Here we only update the path option if the path option already exists in storage // properties, to avoid adding a unnecessary path option for Hive serde tables. val hasPathOption = CaseInsensitiveMap(rawTable.storage.properties).contains("path") val storageWithNewPath = if (rawTable.tableType == MANAGED && hasPathOption) { // If it's a managed table with path option and we are renaming it, then the path option // becomes inaccurate and we need to update it according to the new table name. val newTablePath = defaultTablePath(TableIdentifier(newName, Some(db))) updateLocationInStorageProps(rawTable, Some(newTablePath)) } else { rawTable.storage } val newTable = rawTable.copy( identifier = TableIdentifier(newName, Some(db)), storage = storageWithNewPath) client.alterTable(db, oldName, newTable) } private def getLocationFromStorageProps(table: CatalogTable): Option[String] = { CaseInsensitiveMap(table.storage.properties).get("path") } private def updateLocationInStorageProps( table: CatalogTable, newPath: Option[String]): CatalogStorageFormat = { // We can't use `filterKeys` here, as the map returned by `filterKeys` is not serializable, // while `CatalogTable` should be serializable. val propsWithoutPath = table.storage.properties.filter { case (k, v) => k.toLowerCase(Locale.ROOT) != "path" } table.storage.copy(properties = propsWithoutPath ++ newPath.map("path" -> _)) } /** * Alter a table whose name that matches the one specified in `tableDefinition`, * assuming the table exists. This method does not change the properties for data source and * statistics. * * Note: As of now, this doesn't support altering table schema, partition column names and bucket * specification. We will ignore them even if users do specify different values for these fields. */ override def alterTable(tableDefinition: CatalogTable): Unit = withClient { assert(tableDefinition.identifier.database.isDefined) val db = tableDefinition.identifier.database.get requireTableExists(db, tableDefinition.identifier.table) verifyTableProperties(tableDefinition) if (tableDefinition.tableType == VIEW) { client.alterTable(tableDefinition) } else { val oldTableDef = getRawTable(db, tableDefinition.identifier.table) val newStorage = if (DDLUtils.isHiveTable(tableDefinition)) { tableDefinition.storage } else { // We can't alter the table storage of data source table directly for 2 reasons: // 1. internally we use path option in storage properties to store the value of table // location, but the given `tableDefinition` is from outside and doesn't have the path // option, we need to add it manually. // 2. this data source table may be created on a file, not a directory, then we can't set // the `locationUri` field and save it to Hive metastore, because Hive only allows // directory as table location. // // For example, an external data source table is created with a single file '/path/to/file'. // Internally, we will add a path option with value '/path/to/file' to storage properties, // and set the `locationUri` to a special value due to SPARK-15269(please see // `saveTableIntoHive` for more details). When users try to get the table metadata back, we // will restore the `locationUri` field from the path option and remove the path option from // storage properties. When users try to alter the table storage, the given // `tableDefinition` will have `locationUri` field with value `/path/to/file` and the path // option is not set. // // Here we need 2 extra steps: // 1. add path option to storage properties, to match the internal format, i.e. using path // option to store the value of table location. // 2. set the `locationUri` field back to the old one from the existing table metadata, // if users don't want to alter the table location. This step is necessary as the // `locationUri` is not always same with the path option, e.g. in the above example // `locationUri` is a special value and we should respect it. Note that, if users // want to alter the table location to a file path, we will fail. This should be fixed // in the future. val newLocation = tableDefinition.storage.locationUri.map(CatalogUtils.URIToString(_)) val storageWithPathOption = tableDefinition.storage.copy( properties = tableDefinition.storage.properties ++ newLocation.map("path" -> _)) val oldLocation = getLocationFromStorageProps(oldTableDef) if (oldLocation == newLocation) { storageWithPathOption.copy(locationUri = oldTableDef.storage.locationUri) } else { storageWithPathOption } } val partitionProviderProp = if (tableDefinition.tracksPartitionsInCatalog) { TABLE_PARTITION_PROVIDER -> TABLE_PARTITION_PROVIDER_CATALOG } else { TABLE_PARTITION_PROVIDER -> TABLE_PARTITION_PROVIDER_FILESYSTEM } // Add old data source properties to table properties, to retain the data source table format. // Add old stats properties to table properties, to retain spark's stats. // Set the `schema`, `partitionColumnNames` and `bucketSpec` from the old table definition, // to retain the spark specific format if it is. val propsFromOldTable = oldTableDef.properties.filter { case (k, v) => k.startsWith(DATASOURCE_PREFIX) || k.startsWith(STATISTICS_PREFIX) || k.startsWith(CREATED_SPARK_VERSION) } val newTableProps = propsFromOldTable ++ tableDefinition.properties + partitionProviderProp val newDef = tableDefinition.copy( storage = newStorage, schema = oldTableDef.schema, partitionColumnNames = oldTableDef.partitionColumnNames, bucketSpec = oldTableDef.bucketSpec, properties = newTableProps) client.alterTable(newDef) } } /** * Alter the data schema of a table identified by the provided database and table name. The new * data schema should not have conflict column names with the existing partition columns, and * should still contain all the existing data columns. */ override def alterTableDataSchema( db: String, table: String, newDataSchema: StructType): Unit = withClient { requireTableExists(db, table) val oldTable = getTable(db, table) verifyDataSchema(oldTable.identifier, oldTable.tableType, newDataSchema) val schemaProps = tableMetaToTableProps(oldTable, StructType(newDataSchema ++ oldTable.partitionSchema)).toMap if (isDatasourceTable(oldTable)) { // For data source tables, first try to write it with the schema set; if that does not work, // try again with updated properties and the partition schema. This is a simplified version of // what createDataSourceTable() does, and may leave the table in a state unreadable by Hive // (for example, the schema does not match the data source schema, or does not match the // storage descriptor). try { client.alterTableDataSchema(db, table, newDataSchema, schemaProps) } catch { case NonFatal(e) => val warningMessage = s"Could not alter schema of table ${oldTable.identifier.quotedString} in a Hive " + "compatible way. Updating Hive metastore in Spark SQL specific format." logWarning(warningMessage, e) client.alterTableDataSchema(db, table, EMPTY_DATA_SCHEMA, schemaProps) } } else { client.alterTableDataSchema(db, table, newDataSchema, schemaProps) } } /** Alter the statistics of a table. If `stats` is None, then remove all existing statistics. */ override def alterTableStats( db: String, table: String, stats: Option[CatalogStatistics]): Unit = withClient { requireTableExists(db, table) val rawTable = getRawTable(db, table) // convert table statistics to properties so that we can persist them through hive client val statsProperties = if (stats.isDefined) { statsToProperties(stats.get) } else { new mutable.HashMap[String, String]() } val oldTableNonStatsProps = rawTable.properties.filterNot(_._1.startsWith(STATISTICS_PREFIX)) val updatedTable = rawTable.copy(properties = oldTableNonStatsProps ++ statsProperties) client.alterTable(updatedTable) } override def getTable(db: String, table: String): CatalogTable = withClient { restoreTableMetadata(getRawTable(db, table)) } /** * Restores table metadata from the table properties. This method is kind of a opposite version * of [[createTable]]. * * It reads table schema, provider, partition column names and bucket specification from table * properties, and filter out these special entries from table properties. */ private def restoreTableMetadata(inputTable: CatalogTable): CatalogTable = { if (conf.get(DEBUG_MODE)) { return inputTable } var table = inputTable table.properties.get(DATASOURCE_PROVIDER) match { case None if table.tableType == VIEW => // If this is a view created by Spark 2.2 or higher versions, we should restore its schema // from table properties. if (table.properties.contains(DATASOURCE_SCHEMA_NUMPARTS)) { table = table.copy(schema = getSchemaFromTableProperties(table)) } // No provider in table properties, which means this is a Hive serde table. case None => table = restoreHiveSerdeTable(table) // This is a regular data source table. case Some(provider) => table = restoreDataSourceTable(table, provider) } // Restore version info val version: String = table.properties.getOrElse(CREATED_SPARK_VERSION, "2.2 or prior") // Restore Spark's statistics from information in Metastore. val restoredStats = statsFromProperties(table.properties, table.identifier.table, table.schema) if (restoredStats.isDefined) { table = table.copy(stats = restoredStats) } // Get the original table properties as defined by the user. table.copy( createVersion = version, properties = table.properties.filterNot { case (key, _) => key.startsWith(SPARK_SQL_PREFIX) }) } // Reorder table schema to put partition columns at the end. Before Spark 2.2, the partition // columns are not put at the end of schema. We need to reorder it when reading the schema // from the table properties. private def reorderSchema(schema: StructType, partColumnNames: Seq[String]): StructType = { val partitionFields = partColumnNames.map { partCol => schema.find(_.name == partCol).getOrElse { throw new AnalysisException("The metadata is corrupted. Unable to find the " + s"partition column names from the schema. schema: ${schema.catalogString}. " + s"Partition columns: ${partColumnNames.mkString("[", ", ", "]")}") } } StructType(schema.filterNot(partitionFields.contains) ++ partitionFields) } private def restoreHiveSerdeTable(table: CatalogTable): CatalogTable = { val options = new SourceOptions(table.storage.properties) val hiveTable = table.copy( provider = Some(DDLUtils.HIVE_PROVIDER), tracksPartitionsInCatalog = true) // If this is a Hive serde table created by Spark 2.1 or higher versions, we should restore its // schema from table properties. if (table.properties.contains(DATASOURCE_SCHEMA_NUMPARTS)) { val schemaFromTableProps = getSchemaFromTableProperties(table) val partColumnNames = getPartitionColumnsFromTableProperties(table) val reorderedSchema = reorderSchema(schema = schemaFromTableProps, partColumnNames) if (DataType.equalsIgnoreCaseAndNullability(reorderedSchema, table.schema) || options.respectSparkSchema) { hiveTable.copy( schema = reorderedSchema, partitionColumnNames = partColumnNames, bucketSpec = getBucketSpecFromTableProperties(table)) } else { // Hive metastore may change the table schema, e.g. schema inference. If the table // schema we read back is different(ignore case and nullability) from the one in table // properties which was written when creating table, we should respect the table schema // from hive. logWarning(s"The table schema given by Hive metastore(${table.schema.catalogString}) is " + "different from the schema when this table was created by Spark SQL" + s"(${schemaFromTableProps.catalogString}). We have to fall back to the table schema " + "from Hive metastore which is not case preserving.") hiveTable.copy(schemaPreservesCase = false) } } else { hiveTable.copy(schemaPreservesCase = false) } } private def restoreDataSourceTable(table: CatalogTable, provider: String): CatalogTable = { // Internally we store the table location in storage properties with key "path" for data // source tables. Here we set the table location to `locationUri` field and filter out the // path option in storage properties, to avoid exposing this concept externally. val storageWithLocation = { val tableLocation = getLocationFromStorageProps(table) // We pass None as `newPath` here, to remove the path option in storage properties. updateLocationInStorageProps(table, newPath = None).copy( locationUri = tableLocation.map(CatalogUtils.stringToURI(_))) } val storageWithoutHiveGeneratedProperties = storageWithLocation.copy( properties = storageWithLocation.properties.filterKeys(!HIVE_GENERATED_STORAGE_PROPERTIES(_))) val partitionProvider = table.properties.get(TABLE_PARTITION_PROVIDER) val schemaFromTableProps = getSchemaFromTableProperties(table) val partColumnNames = getPartitionColumnsFromTableProperties(table) val reorderedSchema = reorderSchema(schema = schemaFromTableProps, partColumnNames) table.copy( provider = Some(provider), storage = storageWithoutHiveGeneratedProperties, schema = reorderedSchema, partitionColumnNames = partColumnNames, bucketSpec = getBucketSpecFromTableProperties(table), tracksPartitionsInCatalog = partitionProvider == Some(TABLE_PARTITION_PROVIDER_CATALOG), properties = table.properties.filterKeys(!HIVE_GENERATED_TABLE_PROPERTIES(_))) } override def tableExists(db: String, table: String): Boolean = withClient { client.tableExists(db, table) } override def listTables(db: String): Seq[String] = withClient { requireDbExists(db) client.listTables(db) } override def listTables(db: String, pattern: String): Seq[String] = withClient { requireDbExists(db) client.listTables(db, pattern) } override def loadTable( db: String, table: String, loadPath: String, isOverwrite: Boolean, isSrcLocal: Boolean): Unit = withClient { requireTableExists(db, table) client.loadTable( loadPath, s"$db.$table", isOverwrite, isSrcLocal) } override def loadPartition( db: String, table: String, loadPath: String, partition: TablePartitionSpec, isOverwrite: Boolean, inheritTableSpecs: Boolean, isSrcLocal: Boolean): Unit = withClient { requireTableExists(db, table) val orderedPartitionSpec = new util.LinkedHashMap[String, String]() getTable(db, table).partitionColumnNames.foreach { colName => // Hive metastore is not case preserving and keeps partition columns with lower cased names, // and Hive will validate the column names in partition spec to make sure they are partition // columns. Here we Lowercase the column names before passing the partition spec to Hive // client, to satisfy Hive. // scalastyle:off caselocale orderedPartitionSpec.put(colName.toLowerCase, partition(colName)) // scalastyle:on caselocale } client.loadPartition( loadPath, db, table, orderedPartitionSpec, isOverwrite, inheritTableSpecs, isSrcLocal) } override def loadDynamicPartitions( db: String, table: String, loadPath: String, partition: TablePartitionSpec, replace: Boolean, numDP: Int): Unit = withClient { requireTableExists(db, table) val orderedPartitionSpec = new util.LinkedHashMap[String, String]() getTable(db, table).partitionColumnNames.foreach { colName => // Hive metastore is not case preserving and keeps partition columns with lower cased names, // and Hive will validate the column names in partition spec to make sure they are partition // columns. Here we Lowercase the column names before passing the partition spec to Hive // client, to satisfy Hive. // scalastyle:off caselocale orderedPartitionSpec.put(colName.toLowerCase, partition(colName)) // scalastyle:on caselocale } client.loadDynamicPartitions( loadPath, db, table, orderedPartitionSpec, replace, numDP) } // -------------------------------------------------------------------------- // Partitions // -------------------------------------------------------------------------- // Hive metastore is not case preserving and the partition columns are always lower cased. We need // to lower case the column names in partition specification before calling partition related Hive // APIs, to match this behaviour. private def lowerCasePartitionSpec(spec: TablePartitionSpec): TablePartitionSpec = { // scalastyle:off caselocale spec.map { case (k, v) => k.toLowerCase -> v } // scalastyle:on caselocale } // Build a map from lower-cased partition column names to exact column names for a given table private def buildLowerCasePartColNameMap(table: CatalogTable): Map[String, String] = { val actualPartColNames = table.partitionColumnNames // scalastyle:off caselocale actualPartColNames.map(colName => (colName.toLowerCase, colName)).toMap // scalastyle:on caselocale } // Hive metastore is not case preserving and the column names of the partition specification we // get from the metastore are always lower cased. We should restore them w.r.t. the actual table // partition columns. private def restorePartitionSpec( spec: TablePartitionSpec, partColMap: Map[String, String]): TablePartitionSpec = { // scalastyle:off caselocale spec.map { case (k, v) => partColMap(k.toLowerCase) -> v } // scalastyle:on caselocale } private def restorePartitionSpec( spec: TablePartitionSpec, partCols: Seq[String]): TablePartitionSpec = { spec.map { case (k, v) => partCols.find(_.equalsIgnoreCase(k)).get -> v } } override def createPartitions( db: String, table: String, parts: Seq[CatalogTablePartition], ignoreIfExists: Boolean): Unit = withClient { requireTableExists(db, table) val tableMeta = getTable(db, table) val partitionColumnNames = tableMeta.partitionColumnNames val tablePath = new Path(tableMeta.location) val partsWithLocation = parts.map { p => // Ideally we can leave the partition location empty and let Hive metastore to set it. // However, Hive metastore is not case preserving and will generate wrong partition location // with lower cased partition column names. Here we set the default partition location // manually to avoid this problem. val partitionPath = p.storage.locationUri.map(uri => new Path(uri)).getOrElse { ExternalCatalogUtils.generatePartitionPath(p.spec, partitionColumnNames, tablePath) } p.copy(storage = p.storage.copy(locationUri = Some(partitionPath.toUri))) } val lowerCasedParts = partsWithLocation.map(p => p.copy(spec = lowerCasePartitionSpec(p.spec))) client.createPartitions(db, table, lowerCasedParts, ignoreIfExists) } override def dropPartitions( db: String, table: String, parts: Seq[TablePartitionSpec], ignoreIfNotExists: Boolean, purge: Boolean, retainData: Boolean): Unit = withClient { requireTableExists(db, table) client.dropPartitions( db, table, parts.map(lowerCasePartitionSpec), ignoreIfNotExists, purge, retainData) } override def renamePartitions( db: String, table: String, specs: Seq[TablePartitionSpec], newSpecs: Seq[TablePartitionSpec]): Unit = withClient { client.renamePartitions( db, table, specs.map(lowerCasePartitionSpec), newSpecs.map(lowerCasePartitionSpec)) val tableMeta = getTable(db, table) val partitionColumnNames = tableMeta.partitionColumnNames // Hive metastore is not case preserving and keeps partition columns with lower cased names. // When Hive rename partition for managed tables, it will create the partition location with // a default path generate by the new spec with lower cased partition column names. This is // unexpected and we need to rename them manually and alter the partition location. // scalastyle:off caselocale val hasUpperCasePartitionColumn = partitionColumnNames.exists(col => col.toLowerCase != col) // scalastyle:on caselocale if (tableMeta.tableType == MANAGED && hasUpperCasePartitionColumn) { val tablePath = new Path(tableMeta.location) val fs = tablePath.getFileSystem(hadoopConf) val newParts = newSpecs.map { spec => val rightPath = renamePartitionDirectory(fs, tablePath, partitionColumnNames, spec) val partition = client.getPartition(db, table, lowerCasePartitionSpec(spec)) partition.copy(storage = partition.storage.copy(locationUri = Some(rightPath.toUri))) } alterPartitions(db, table, newParts) } } /** * Rename the partition directory w.r.t. the actual partition columns. * * It will recursively rename the partition directory from the first partition column, to be most * compatible with different file systems. e.g. in some file systems, renaming `a=1/b=2` to * `A=1/B=2` will result to `a=1/B=2`, while in some other file systems, the renaming works, but * will leave an empty directory `a=1`. */ private def renamePartitionDirectory( fs: FileSystem, tablePath: Path, partCols: Seq[String], newSpec: TablePartitionSpec): Path = { import ExternalCatalogUtils.getPartitionPathString var currentFullPath = tablePath partCols.foreach { col => val partValue = newSpec(col) val expectedPartitionString = getPartitionPathString(col, partValue) val expectedPartitionPath = new Path(currentFullPath, expectedPartitionString) if (fs.exists(expectedPartitionPath)) { // It is possible that some parental partition directories already exist or doesn't need to // be renamed. e.g. the partition columns are `a` and `B`, then we don't need to rename // `/table_path/a=1`. Or we already have a partition directory `A=1/B=2`, and we rename // another partition to `A=1/B=3`, then we will have `A=1/B=2` and `a=1/b=3`, and we should // just move `a=1/b=3` into `A=1` with new name `B=3`. } else { // scalastyle:off caselocale val actualPartitionString = getPartitionPathString(col.toLowerCase, partValue) // scalastyle:on caselocale val actualPartitionPath = new Path(currentFullPath, actualPartitionString) try { fs.rename(actualPartitionPath, expectedPartitionPath) } catch { case e: IOException => throw new SparkException("Unable to rename partition path from " + s"$actualPartitionPath to $expectedPartitionPath", e) } } currentFullPath = expectedPartitionPath } currentFullPath } private def statsToProperties(stats: CatalogStatistics): Map[String, String] = { val statsProperties = new mutable.HashMap[String, String]() statsProperties += STATISTICS_TOTAL_SIZE -> stats.sizeInBytes.toString() if (stats.rowCount.isDefined) { statsProperties += STATISTICS_NUM_ROWS -> stats.rowCount.get.toString() } stats.colStats.foreach { case (colName, colStat) => colStat.toMap(colName).foreach { case (k, v) => // Fully qualified name used in table properties for a particular column stat. // For example, for column "mycol", and "min" stat, this should return // "spark.sql.statistics.colStats.mycol.min". statsProperties += (STATISTICS_COL_STATS_PREFIX + k -> v) } } statsProperties.toMap } private def statsFromProperties( properties: Map[String, String], table: String, schema: StructType): Option[CatalogStatistics] = { val statsProps = properties.filterKeys(_.startsWith(STATISTICS_PREFIX)) if (statsProps.isEmpty) { None } else { val colStats = new mutable.HashMap[String, CatalogColumnStat] val colStatsProps = properties.filterKeys(_.startsWith(STATISTICS_COL_STATS_PREFIX)).map { case (k, v) => k.drop(STATISTICS_COL_STATS_PREFIX.length) -> v } // Find all the column names by matching the KEY_VERSION properties for them. colStatsProps.keys.filter { k => k.endsWith(CatalogColumnStat.KEY_VERSION) }.map { k => k.dropRight(CatalogColumnStat.KEY_VERSION.length + 1) }.foreach { fieldName => // and for each, create a column stat. CatalogColumnStat.fromMap(table, fieldName, colStatsProps).foreach { cs => colStats += fieldName -> cs } } Some(CatalogStatistics( sizeInBytes = BigInt(statsProps(STATISTICS_TOTAL_SIZE)), rowCount = statsProps.get(STATISTICS_NUM_ROWS).map(BigInt(_)), colStats = colStats.toMap)) } } override def alterPartitions( db: String, table: String, newParts: Seq[CatalogTablePartition]): Unit = withClient { val lowerCasedParts = newParts.map(p => p.copy(spec = lowerCasePartitionSpec(p.spec))) val rawTable = getRawTable(db, table) // convert partition statistics to properties so that we can persist them through hive api val withStatsProps = lowerCasedParts.map { p => if (p.stats.isDefined) { val statsProperties = statsToProperties(p.stats.get) p.copy(parameters = p.parameters ++ statsProperties) } else { p } } client.alterPartitions(db, table, withStatsProps) } override def getPartition( db: String, table: String, spec: TablePartitionSpec): CatalogTablePartition = withClient { val part = client.getPartition(db, table, lowerCasePartitionSpec(spec)) restorePartitionMetadata(part, getTable(db, table)) } /** * Restores partition metadata from the partition properties. * * Reads partition-level statistics from partition properties, puts these * into [[CatalogTablePartition#stats]] and removes these special entries * from the partition properties. */ private def restorePartitionMetadata( partition: CatalogTablePartition, table: CatalogTable): CatalogTablePartition = { val restoredSpec = restorePartitionSpec(partition.spec, table.partitionColumnNames) // Restore Spark's statistics from information in Metastore. // Note: partition-level statistics were introduced in 2.3. val restoredStats = statsFromProperties(partition.parameters, table.identifier.table, table.schema) if (restoredStats.isDefined) { partition.copy( spec = restoredSpec, stats = restoredStats, parameters = partition.parameters.filterNot { case (key, _) => key.startsWith(SPARK_SQL_PREFIX) }) } else { partition.copy(spec = restoredSpec) } } /** * Returns the specified partition or None if it does not exist. */ override def getPartitionOption( db: String, table: String, spec: TablePartitionSpec): Option[CatalogTablePartition] = withClient { client.getPartitionOption(db, table, lowerCasePartitionSpec(spec)).map { part => restorePartitionMetadata(part, getTable(db, table)) } } /** * Returns the partition names from hive metastore for a given table in a database. */ override def listPartitionNames( db: String, table: String, partialSpec: Option[TablePartitionSpec] = None): Seq[String] = withClient { val catalogTable = getTable(db, table) val partColNameMap = buildLowerCasePartColNameMap(catalogTable).mapValues(escapePathName) val clientPartitionNames = client.getPartitionNames(catalogTable, partialSpec.map(lowerCasePartitionSpec)) clientPartitionNames.map { partitionPath => val partSpec = PartitioningUtils.parsePathFragmentAsSeq(partitionPath) partSpec.map { case (partName, partValue) => // scalastyle:off caselocale partColNameMap(partName.toLowerCase) + "=" + escapePathName(partValue) // scalastyle:on caselocale }.mkString("/") } } /** * Returns the partitions from hive metastore for a given table in a database. */ override def listPartitions( db: String, table: String, partialSpec: Option[TablePartitionSpec] = None): Seq[CatalogTablePartition] = withClient { val partColNameMap = buildLowerCasePartColNameMap(getTable(db, table)) val res = client.getPartitions(db, table, partialSpec.map(lowerCasePartitionSpec)).map { part => part.copy(spec = restorePartitionSpec(part.spec, partColNameMap)) } partialSpec match { // This might be a bug of Hive: When the partition value inside the partial partition spec // contains dot, and we ask Hive to list partitions w.r.t. the partial partition spec, Hive // treats dot as matching any single character and may return more partitions than we // expected. Here we do an extra filter to drop unexpected partitions. case Some(spec) if spec.exists(_._2.contains(".")) => res.filter(p => isPartialPartitionSpec(spec, p.spec)) case _ => res } } override def listPartitionsByFilter( db: String, table: String, predicates: Seq[Expression], defaultTimeZoneId: String): Seq[CatalogTablePartition] = withClient { val rawTable = getRawTable(db, table) val catalogTable = restoreTableMetadata(rawTable) val partColNameMap = buildLowerCasePartColNameMap(catalogTable) val clientPrunedPartitions = client.getPartitionsByFilter(rawTable, predicates).map { part => part.copy(spec = restorePartitionSpec(part.spec, partColNameMap)) } prunePartitionsByFilter(catalogTable, clientPrunedPartitions, predicates, defaultTimeZoneId) } // -------------------------------------------------------------------------- // Functions // -------------------------------------------------------------------------- override def createFunction( db: String, funcDefinition: CatalogFunction): Unit = withClient { requireDbExists(db) // Hive's metastore is case insensitive. However, Hive's createFunction does // not normalize the function name (unlike the getFunction part). So, // we are normalizing the function name. val functionName = funcDefinition.identifier.funcName.toLowerCase(Locale.ROOT) requireFunctionNotExists(db, functionName) val functionIdentifier = funcDefinition.identifier.copy(funcName = functionName) client.createFunction(db, funcDefinition.copy(identifier = functionIdentifier)) } override def dropFunction(db: String, name: String): Unit = withClient { requireFunctionExists(db, name) client.dropFunction(db, name) } override def alterFunction( db: String, funcDefinition: CatalogFunction): Unit = withClient { requireDbExists(db) val functionName = funcDefinition.identifier.funcName.toLowerCase(Locale.ROOT) requireFunctionExists(db, functionName) val functionIdentifier = funcDefinition.identifier.copy(funcName = functionName) client.alterFunction(db, funcDefinition.copy(identifier = functionIdentifier)) } override def renameFunction( db: String, oldName: String, newName: String): Unit = withClient { requireFunctionExists(db, oldName) requireFunctionNotExists(db, newName) client.renameFunction(db, oldName, newName) } override def getFunction(db: String, funcName: String): CatalogFunction = withClient { requireFunctionExists(db, funcName) client.getFunction(db, funcName) } override def functionExists(db: String, funcName: String): Boolean = withClient { requireDbExists(db) client.functionExists(db, funcName) } override def listFunctions(db: String, pattern: String): Seq[String] = withClient { requireDbExists(db) client.listFunctions(db, pattern) } } object HiveExternalCatalog { val SPARK_SQL_PREFIX = "spark.sql." val DATASOURCE_PREFIX = SPARK_SQL_PREFIX + "sources." val DATASOURCE_PROVIDER = DATASOURCE_PREFIX + "provider" val DATASOURCE_SCHEMA = DATASOURCE_PREFIX + "schema" val DATASOURCE_SCHEMA_PREFIX = DATASOURCE_SCHEMA + "." val DATASOURCE_SCHEMA_NUMPARTS = DATASOURCE_SCHEMA_PREFIX + "numParts" val DATASOURCE_SCHEMA_NUMPARTCOLS = DATASOURCE_SCHEMA_PREFIX + "numPartCols" val DATASOURCE_SCHEMA_NUMSORTCOLS = DATASOURCE_SCHEMA_PREFIX + "numSortCols" val DATASOURCE_SCHEMA_NUMBUCKETS = DATASOURCE_SCHEMA_PREFIX + "numBuckets" val DATASOURCE_SCHEMA_NUMBUCKETCOLS = DATASOURCE_SCHEMA_PREFIX + "numBucketCols" val DATASOURCE_SCHEMA_PART_PREFIX = DATASOURCE_SCHEMA_PREFIX + "part." val DATASOURCE_SCHEMA_PARTCOL_PREFIX = DATASOURCE_SCHEMA_PREFIX + "partCol." val DATASOURCE_SCHEMA_BUCKETCOL_PREFIX = DATASOURCE_SCHEMA_PREFIX + "bucketCol." val DATASOURCE_SCHEMA_SORTCOL_PREFIX = DATASOURCE_SCHEMA_PREFIX + "sortCol." val STATISTICS_PREFIX = SPARK_SQL_PREFIX + "statistics." val STATISTICS_TOTAL_SIZE = STATISTICS_PREFIX + "totalSize" val STATISTICS_NUM_ROWS = STATISTICS_PREFIX + "numRows" val STATISTICS_COL_STATS_PREFIX = STATISTICS_PREFIX + "colStats." val TABLE_PARTITION_PROVIDER = SPARK_SQL_PREFIX + "partitionProvider" val TABLE_PARTITION_PROVIDER_CATALOG = "catalog" val TABLE_PARTITION_PROVIDER_FILESYSTEM = "filesystem" val CREATED_SPARK_VERSION = SPARK_SQL_PREFIX + "create.version" val HIVE_GENERATED_TABLE_PROPERTIES = Set(DDL_TIME) val HIVE_GENERATED_STORAGE_PROPERTIES = Set(SERIALIZATION_FORMAT) // When storing data source tables in hive metastore, we need to set data schema to empty if the // schema is hive-incompatible. However we need a hack to preserve existing behavior. Before // Spark 2.0, we do not set a default serde here (this was done in Hive), and so if the user // provides an empty schema Hive would automatically populate the schema with a single field // "col". However, after SPARK-14388, we set the default serde to LazySimpleSerde so this // implicit behavior no longer happens. Therefore, we need to do it in Spark ourselves. val EMPTY_DATA_SCHEMA = new StructType() .add("col", "array<string>", nullable = true, comment = "from deserializer") // A persisted data source table always store its schema in the catalog. private def getSchemaFromTableProperties(metadata: CatalogTable): StructType = { val errorMessage = "Could not read schema from the hive metastore because it is corrupted." val props = metadata.properties val schema = props.get(DATASOURCE_SCHEMA) if (schema.isDefined) { // Originally, we used `spark.sql.sources.schema` to store the schema of a data source table. // After SPARK-6024, we removed this flag. // Although we are not using `spark.sql.sources.schema` any more, we need to still support. DataType.fromJson(schema.get).asInstanceOf[StructType] } else if (props.filterKeys(_.startsWith(DATASOURCE_SCHEMA_PREFIX)).isEmpty) { // If there is no schema information in table properties, it means the schema of this table // was empty when saving into metastore, which is possible in older version(prior to 2.1) of // Spark. We should respect it. new StructType() } else { val numSchemaParts = props.get(DATASOURCE_SCHEMA_NUMPARTS) if (numSchemaParts.isDefined) { val parts = (0 until numSchemaParts.get.toInt).map { index => val part = metadata.properties.get(s"$DATASOURCE_SCHEMA_PART_PREFIX$index").orNull if (part == null) { throw new AnalysisException(errorMessage + s" (missing part $index of the schema, ${numSchemaParts.get} parts are expected).") } part } // Stick all parts back to a single schema string. DataType.fromJson(parts.mkString).asInstanceOf[StructType] } else { throw new AnalysisException(errorMessage) } } } private def getColumnNamesByType( props: Map[String, String], colType: String, typeName: String): Seq[String] = { for { numCols <- props.get(s"spark.sql.sources.schema.num${colType.capitalize}Cols").toSeq index <- 0 until numCols.toInt } yield props.getOrElse( s"$DATASOURCE_SCHEMA_PREFIX${colType}Col.$index", throw new AnalysisException( s"Corrupted $typeName in catalog: $numCols parts expected, but part $index is missing." ) ) } private def getPartitionColumnsFromTableProperties(metadata: CatalogTable): Seq[String] = { getColumnNamesByType(metadata.properties, "part", "partitioning columns") } private def getBucketSpecFromTableProperties(metadata: CatalogTable): Option[BucketSpec] = { metadata.properties.get(DATASOURCE_SCHEMA_NUMBUCKETS).map { numBuckets => BucketSpec( numBuckets.toInt, getColumnNamesByType(metadata.properties, "bucket", "bucketing columns"), getColumnNamesByType(metadata.properties, "sort", "sorting columns")) } } /** * Detects a data source table. This checks both the table provider and the table properties, * unlike DDLUtils which just checks the former. */ private[spark] def isDatasourceTable(table: CatalogTable): Boolean = { val provider = table.provider.orElse(table.properties.get(DATASOURCE_PROVIDER)) provider.isDefined && provider != Some(DDLUtils.HIVE_PROVIDER) } }
yanboliang/spark
sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveExternalCatalog.scala
Scala
apache-2.0
61,366
import scala.language.implicitConversions trait Fooable[T] object Fooable { implicit def conjure[T]: Fooable[T] = { println("conjure") new Fooable[T]{} } } object Test { implicit def traversable[T, Coll[_] <: Iterable[_]](implicit elem: Fooable[T]): Fooable[Coll[T]] = { println("traversable") new Fooable[Coll[T]]{} } def main(args: Array[String]): Unit = { implicitly[Fooable[List[Any]]] } }
scala/scala
test/files/run/t7291.scala
Scala
apache-2.0
430
package mesosphere.marathon package core.base /** * Simple value container which is used to help things know if Marathon is on it's way down */ trait LifecycleState { def isRunning: Boolean } object LifecycleState { object WatchingJVM extends LifecycleState { private[this] var running = true /* Note - each shutdown hook is run in it's own thread, so this won't have to wait until some other shutdownHook * finishes before the boolean can be set */ sys.addShutdownHook { running = false } override def isRunning: Boolean = running } object Ignore extends LifecycleState { override val isRunning: Boolean = true } }
guenter/marathon
src/main/scala/mesosphere/marathon/core/base/LifecycleState.scala
Scala
apache-2.0
670
package mypipe.kafka import mypipe.api.event.Mutation import scala.reflect.runtime.universe._ import org.slf4j.LoggerFactory import mypipe.avro.schema.GenericSchemaRepository import org.apache.avro.Schema import org.apache.avro.specific.SpecificRecord import mypipe.avro.AvroVersionedRecordDeserializer abstract class KafkaMutationAvroConsumer[InsertMutationType <: SpecificRecord, UpdateMutationType <: SpecificRecord, DeleteMutationType <: SpecificRecord, SchemaId]( topic: String, zkConnect: String, groupId: String, schemaIdSizeInBytes: Int)(insertCallback: (InsertMutationType) ⇒ Boolean, updateCallback: (UpdateMutationType) ⇒ Boolean, deleteCallback: (DeleteMutationType) ⇒ Boolean, implicit val insertTag: TypeTag[InsertMutationType], implicit val updateTag: TypeTag[UpdateMutationType], implicit val deletetag: TypeTag[DeleteMutationType]) extends KafkaConsumer(topic, zkConnect, groupId) { // abstract fields and methods protected val schemaRepoClient: GenericSchemaRepository[SchemaId, Schema] protected def bytesToSchemaId(bytes: Array[Byte], offset: Int): SchemaId protected def avroSchemaSubjectForMutationByte(byte: Byte): String protected val logger = LoggerFactory.getLogger(getClass.getName) protected val headerLength = PROTO_HEADER_LEN_V0 + schemaIdSizeInBytes val insertDeserializer: AvroVersionedRecordDeserializer[InsertMutationType] val updateDeserializer: AvroVersionedRecordDeserializer[UpdateMutationType] val deleteDeserializer: AvroVersionedRecordDeserializer[DeleteMutationType] override def onEvent(bytes: Array[Byte]): Boolean = try { val magicByte = bytes(0) if (magicByte != PROTO_MAGIC_V0) { logger.error(s"We have encountered an unknown magic byte! Magic Byte: $magicByte") false } else { val mutationType = bytes(1) val schemaId = bytesToSchemaId(bytes, PROTO_HEADER_LEN_V0) val continue = mutationType match { case Mutation.InsertByte ⇒ schemaRepoClient .getSchema(avroSchemaSubjectForMutationByte(Mutation.InsertByte), schemaId) .map(insertDeserializer.deserialize(_, bytes, headerLength).map(m ⇒ insertCallback(m))) .getOrElse(None) case Mutation.UpdateByte ⇒ schemaRepoClient .getSchema(avroSchemaSubjectForMutationByte(Mutation.UpdateByte), schemaId) .map(updateDeserializer.deserialize(_, bytes, headerLength).map(m ⇒ updateCallback(m))) .getOrElse(None) case Mutation.DeleteByte ⇒ schemaRepoClient .getSchema(avroSchemaSubjectForMutationByte(Mutation.DeleteByte), schemaId) .map(deleteDeserializer.deserialize(_, bytes, headerLength).map(m ⇒ deleteCallback(m))) .getOrElse(None) } continue.getOrElse(false) } } catch { case e: Exception ⇒ log.error("Could not run callback on " + bytes.mkString + " => " + e.getMessage + "\\n" + e.getStackTraceString) false } }
Asana/mypipe
mypipe-kafka/src/main/scala/mypipe/kafka/KafkaMutationAvroConsumer.scala
Scala
apache-2.0
3,103
import org.scalatest._ import java.util.Date class Test1 extends FlatSpec { it should "work" in { val start = Counter.add(13) println(s"Starting test 1 ($start)...") Thread.sleep(2000L) val end = Counter.get println(s"Test 1 done ($end)") assert(end == start, s"Expected Counter to stay at $start, but it changed to $end") } }
pdalpra/sbt
sbt/src/sbt-test/tests/serial/sub1/src/test/scala/Test1.scala
Scala
bsd-3-clause
346
package fpinscala.answers.streamingio /* * `Eq[A,B]` provides evidence that types `A` and `B` are equal. * There is just one public constructor, `Eq.refl`, ensuring that * we cannot construct an `Eq` instance in which the `A` and `B` * differ. * * There is a version of this in the scala standard library, * called =:=[A,B] (and usually written infix as `A =:= B`) but * we include a version here just to show that it is not magic. */ case class Eq[A,B] private(to: A => B, from: B => A) object Eq { def refl[A]: Eq[A,A] = Eq(identity, identity) }
fpinscala/fpinscala
src/main/scala/fpinscala/answers/streamingio/Eq.scala
Scala
mit
565
package com.stackstate.actor import akka.actor.{ActorRef, ActorSystem, Props} import com.stackstate.event._ import com.stackstate.graph.Node import com.typesafe.config.ConfigFactory class NodeActorTest extends ActorTestBase(ActorSystem("test-tasker", ConfigFactory.load("application.conf"))) { private val node: Node = Node("A") describe("A Node Actor") { it("should propagate failure to parent if thresold is breached") { val nodeActor: ActorRef = system.actorOf(Props(classOf[NodeActor], node)) nodeActor ! Major expectNoMsg nodeActor ! Critical expectNoMsg nodeActor ! Fatal expectMsg(PropagationAlert(node, Warning)) } it("should acknowledge its state when health check event is received"){ val nodeActor: ActorRef = system.actorOf(Props(classOf[NodeActor], node)) nodeActor ! Major expectNoMsg nodeActor ! HealthCheck expectMsg(Ok) } it("should send a failure alert if severity is more than threshold when health check event is received"){ val nodeActor: ActorRef = system.actorOf(Props(classOf[NodeActor], node)) nodeActor ! Major expectNoMsg nodeActor ! Critical expectNoMsg nodeActor ! Fatal expectMsg(PropagationAlert(node, Warning)) nodeActor ! HealthCheck expectMsg(Alert(5,Some("Node is in critical condition, please take remedial actions"))) } } }
sameerarora/dependency-graph
src/test/scala/com/stackstate/actor/NodeActorTest.scala
Scala
apache-2.0
1,425
package avrohugger package input package parsers import reflectivecompilation._ import reflectivecompilation.schemagen._ import org.apache.avro.Protocol import org.apache.avro.Schema import org.apache.avro.Schema.Parser import org.apache.avro.SchemaParseException import org.apache.avro.compiler.idl.Idl import org.apache.avro.compiler.idl.ParseException import scala.collection.JavaConverters._ import java.nio.charset.Charset import scala.reflect.runtime.universe._ import scala.reflect.runtime.currentMirror import scala.tools.reflect.ToolBox // tries schema first, then protocol, then idl, then for case class defs class StringInputParser { lazy val schemaParser = new Parser() def getSchemas(inputString: String): List[Schema] = { def trySchema(str: String) = { try { List(schemaParser.parse(inputString))} catch { case notSchema: SchemaParseException => tryProtocol(inputString) case unknown: Throwable => sys.error("Unexpected exception: " + unknown) } } def tryProtocol(protocolStr: String): List[Schema] = { try { Protocol.parse(protocolStr).getTypes().asScala.toList} catch { case notProtocol: SchemaParseException => tryIDL(inputString) case unknown: Throwable => sys.error("Unexpected exception: " + unknown) } } def tryIDL(idlString: String): List[Schema] = { try { val bytes = idlString.getBytes(Charset.forName("UTF-8")) val inStream = new java.io.ByteArrayInputStream(bytes) val idlParser = new Idl(inStream) val protocol = idlParser.CompilationUnit() val types = protocol.getTypes types.asScala.toList} catch { case notIDL: ParseException => tryCaseClass(inputString) case unknown: Throwable => sys.error("Unexpected exception: " + unknown) } } def tryCaseClass(codeStr: String): List[Schema] = { val compilationUnits = PackageSplitter.getCompilationUnits(codeStr) val trees = compilationUnits.map(compUnit => Toolbox.toolBox.parse(compUnit)) val schemas = trees.flatMap(tree => TreeInputParser.parse(tree)) TypecheckDependencyStore.knownClasses.clear schemas } // tries schema first, then protocol, then idl, then for case class defs val schemas: List[Schema] = trySchema(inputString) schemas } }
ppearcy/avrohugger
avrohugger-core/src/main/scala/input/parsers/StringInputParser.scala
Scala
apache-2.0
2,378
package unfiltered.request import org.specs._ object BasicAuthSpecJetty extends unfiltered.spec.jetty.Served with BasicAuthSpec { def setup = { _.filter(unfiltered.filter.Planify(intent)) } } object BasicAuthSpecNetty extends unfiltered.spec.netty.Served with BasicAuthSpec { def setup = { p => unfiltered.netty.Http(p).handler(unfiltered.netty.cycle.Planify(intent)) } } trait BasicAuthSpec extends unfiltered.spec.Hosted { import unfiltered.response._ import unfiltered.request._ import unfiltered.request.{Path => UFPath} import dispatch._ def intent[A,B]: unfiltered.Cycle.Intent[A,B] = { case GET(UFPath("/secret") & BasicAuth(name, pass)) => (name, pass) match { case ("test", "secret") => ResponseString("pass") case _ => ResponseString("fail") } } "Basic Auth" should { shareVariables() "authenticate a valid user" in { val resp = Http(host / "secret" as_!("test", "secret") as_str) resp must_=="pass" } "not authenticate an invalid user" in { val resp = Http(host / "secret" as_!("joe", "shmo") as_str) resp must_=="fail" } } }
softprops/Unfiltered
library/src/test/scala/BasicAuthSpec.scala
Scala
mit
1,139
/* * Copyright (C) 2009-2018 Lightbend Inc. <https://www.lightbend.com> */ package play.core.utils import util.control.Exception._ import org.specs2.mutable.Specification import play.utils.Threads class ThreadsSpec extends Specification { "Threads" should { "restore the correct class loader" in { "if the block returns successfully" in { val currentCl = Thread.currentThread.getContextClassLoader Threads.withContextClassLoader(testClassLoader) { Thread.currentThread.getContextClassLoader must be equalTo testClassLoader "a string" } must be equalTo "a string" Thread.currentThread.getContextClassLoader must be equalTo currentCl } "if the block throws an exception" in { val currentCl = Thread.currentThread.getContextClassLoader (catching(classOf[RuntimeException]) opt Threads.withContextClassLoader(testClassLoader) { Thread.currentThread.getContextClassLoader must be equalTo testClassLoader throw new RuntimeException("Uh oh") }) must beNone Thread.currentThread.getContextClassLoader must be equalTo currentCl } } } val testClassLoader = new ClassLoader() {} }
Shenker93/playframework
framework/src/play/src/test/scala/play/core/utils/ThreadsSpec.scala
Scala
apache-2.0
1,218
/* Copyright (c) 2017, Qvantel All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Qvantel nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Qvantel BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.qvantel.jsonapi import scala.annotation.compileTimeOnly import scala.reflect.macros.whitebox.{Context => WhiteboxContext} import mojolly.inflector.Inflector import com.qvantel.jsonapi.JsonApiResourceMacro.{Mode, NoId, Normal} import com.qvantel.jsonapi.macrosupport.JsonApiCommon @compileTimeOnly("‘jsonApiResource’ is a compile-time annotation") final class JsonApiResourceMacro(val c: WhiteboxContext) extends JsonApiCommon { import c.universe._ private[this] def createIdentifiable(name: TypeName): c.Tree = q"""implicit final val ${TermName(s"${name}Identifiable")}: _root_.com.qvantel.jsonapi.Identifiable[$name] = _root_.com.qvantel.jsonapi.Identifiable.by(_.id.toString)""" private[this] def createResourceType(name: TypeName, resourceTypeName: String): c.Tree = q"""implicit final val ${TermName(s"${name}ResourceType")}: _root_.com.qvantel.jsonapi.ResourceType[$name] = _root_.com.qvantel.jsonapi.ResourceType($resourceTypeName)""" private[this] def createPathToId(name: TypeName, resourceTypeName: String): c.Tree = { val path = s"/$resourceTypeName" q"""implicit final val ${TermName(s"${name}PathTo")}: _root_.com.qvantel.jsonapi.PathToId[$name] = new _root_.com.qvantel.jsonapi.PathToId[$name] { import _root_.io.lemonlabs.uri.typesafe.dsl._ override final val root: _root_.io.lemonlabs.uri.Url = _root_.scala.Predef.implicitly[_root_.com.qvantel.jsonapi.ApiRoot].apiRoot match { case _root_.scala.Some(root) => root.addPathPart($resourceTypeName) case _root_.scala.None => $path } }""" } private[this] def createPathTo(name: TypeName, resourceTypeName: String): c.Tree = { val path = s"/$resourceTypeName" q"""implicit final val ${TermName(s"${name}PathTo")}: _root_.com.qvantel.jsonapi.PathTo[$name] = new _root_.com.qvantel.jsonapi.PathTo[$name] { import _root_.io.lemonlabs.uri.typesafe.dsl._ override final val root: _root_.io.lemonlabs.uri.Url = _root_.scala.Predef.implicitly[_root_.com.qvantel.jsonapi.ApiRoot].apiRoot match { case _root_.scala.Some(root) => root.addPathPart($resourceTypeName) case _root_.scala.None => $path } }""" } private[this] def createIncludes(name: TypeName): c.Tree = q"""implicit final val ${TermName(s"${name}Includes")}: _root_.com.qvantel.jsonapi.Includes[$name] = _root_.com.qvantel.jsonapi.includes[$name]""" private[this] def createJsonApiFormat(name: TypeName): c.Tree = q"""implicit final val ${TermName(s"${name}JsonApiFormat")}: _root_.com.qvantel.jsonapi.JsonApiFormat[$name] = _root_.com.qvantel.jsonapi.jsonApiFormat[$name]""" private[this] def modifiedDeclaration(classDecl: ClassDef, maybeCompanionDecl: Option[ModuleDef]): Tree = { val className = classDecl.name val (maybeResourceTypeName, mode) = getResourceTypeAndMode(c.prefix.tree) val noId = mode == NoId val resourceTypeName = maybeResourceTypeName.getOrElse(Inflector.pluralize(NameManglers.dasherized(className.toString))) val companionDecl = maybeCompanionDecl getOrElse q"""object ${className.toTermName} {}""" match { case m @ q"$mods object $name extends { ..$earlydefns } with ..$parents { $self => ..$body }" => val defaultParts = List(createResourceType(className, resourceTypeName), createIncludes(className), createJsonApiFormat(className)) val withIdRequiringParts = if (noId) { defaultParts ++ List(createPathTo(className, resourceTypeName)) } else { defaultParts ++ List(createIdentifiable(className), createPathToId(className, resourceTypeName)) } q"""object $name { ..$withIdRequiringParts ..$body }""" } val result = q""" $classDecl $companionDecl """ result } private[this] def getResourceTypeAndMode(tree: Tree): (Option[String], Mode) = { def resourceTypeToOpt(res: String) = res match { case "normal" => None case _ => Some(res) } tree match { case q"new $name( ..$params )" => params match { case resourceType :: mode :: Nil => (resourceTypeToOpt(c.eval[String](c.Expr(resourceType))), Mode(c.eval[String](c.Expr(mode)))) case resourceType :: Nil => (resourceTypeToOpt(c.eval[String](c.Expr(resourceType))), Normal) case _ => (None, Normal) } case _ => (None, Normal) } } def impl(annottees: c.Tree*): c.Tree = { import c.universe._ annottees match { case (classDecl: ClassDef) :: Nil => modifiedDeclaration(classDecl, None) case (classDecl: ClassDef) :: (compDecl: ModuleDef) :: Nil => modifiedDeclaration(classDecl, Some(compDecl)) case _ => c.abort(c.enclosingPosition, "Invalid annottee") } } } object JsonApiResourceMacro { sealed trait Mode case object NoId extends Mode case object Normal extends Mode object Mode { def apply(str: String): Mode = str.toLowerCase match { case "normal" => Normal case "no-id" => NoId case _ => Normal } } }
qvantel/jsonapi-scala
core/src/main/scala/com/qvantel/jsonapi/JsonApiResourceMacro.scala
Scala
bsd-3-clause
6,768
package scodec.protocols package ip package v6 import scodec._ import scodec.bits._ import scodec.codecs._ import scodec.codecs.literals._ import scodec.stream._ /** Simple version of an IPv6 header. Does not support extension headers. */ case class SimpleHeader( trafficClass: Int, flowLabel: Int, payloadLength: Int, protocol: Int, hopLimit: Int, sourceIp: Address, destinationIp: Address ) object SimpleHeader { implicit val codec: Codec[SimpleHeader] = { ("version" | bin"0110") :~>: ("traffic_class" | uint8) :: ("flow_label" | uint(20)) :: ("payload_length" | uint(16)) :: ("next_header" | uint8) :: ("hop_limit" | uint8) :: ("source_address" | Codec[Address]) :: ("destination_address" | Codec[Address]) }.as[SimpleHeader] def sdecoder(ethernetHeader: pcap.EthernetFrameHeader): StreamDecoder[SimpleHeader] = if (ethernetHeader.ethertype == Some(pcap.EtherType.IPv6)) decode.once[SimpleHeader] else decode.empty }
scodec/scodec-protocols
src/main/scala/scodec/protocols/ip/v6/SimpleHeader.scala
Scala
bsd-3-clause
1,040
package net.fwbrasil.radon.transaction import scala.collection.JavaConversions.collectionAsScalaIterable import scala.collection.mutable.ListBuffer import scala.concurrent.Await import scala.concurrent.ExecutionContext import scala.concurrent.Future import scala.concurrent.duration.Duration import scala.util.Failure import scala.util.Success import net.fwbrasil.radon.ref.Ref import net.fwbrasil.radon.ref.RefContent import net.fwbrasil.radon.util.ExclusiveThreadLocalItem import net.fwbrasil.radon.util.Lockable.lockall import java.util.concurrent.atomic.AtomicLong class Transaction private[fwbrasil] (val transient: Boolean = false, transactionType: TransactionType = ReadWrite(), val shadow: Boolean = false)(implicit val context: TransactionContext) extends TransactionValidator with ExclusiveThreadLocalItem { def this()(implicit context: TransactionContext) = this(false, ReadWrite()) import context._ private var refsRead: ListBuffer[Ref[Any]] = _ private var refsReadOnly: ListBuffer[Ref[Any]] = _ private var refsWrite: ListBuffer[Ref[Any]] = _ private var snapshots: List[RefSnapshot] = _ private var readLocks: List[Ref[Any]] = _ private var writeLocks: List[Ref[Any]] = _ var attachments = new ListBuffer[Any]() def reads = refsReadOnly def assignments = if (snapshots != null) for (snapshot <- snapshots if (snapshot.isWrite == true)) yield (snapshot.ref, snapshot.value, snapshot.destroyedFlag) else List() private[radon] def put[T](ref: Ref[T], value: Option[T]) = { if (transactionType == readOnly) throw new IllegalStateException("Trying to write on a read only transaction. Ref: " + ref + " Value: " + value) val anyRef = ref.asInstanceOf[Ref[Any]] snapshotWrite(anyRef, value) } private[radon] def get[T](ref: Ref[T]): Option[T] = snapshotRead(ref.asInstanceOf[Ref[Any]]).asInstanceOf[Option[T]] private[radon] def getOriginalValue[T](ref: Ref[T]): Option[T] = snapshotReadOriginalValue(ref.asInstanceOf[Ref[Any]]).asInstanceOf[Option[T]] private[radon] def destroy[T](ref: Ref[T]): Unit = { val anyRef = ref.asInstanceOf[Ref[Any]] snapshotDestroy(anyRef) } private[radon] def isDestroyed[T](ref: Ref[T]): Boolean = snapshotIsDestroyed(ref.asInstanceOf[Ref[Any]]) private[radon] def isDirty[T](ref: Ref[T]): Boolean = { val snap = refsSnapshot.get(ref) snap != null && snap.isWrite } def commit(): Unit = commit(rollback = false) def asyncCommit()(implicit ectx: ExecutionContext): Future[Unit] = asyncCommit(rollback = false) private def updateReadsAndWrites = { import scala.collection.JavaConversions._ val refsRead = new ListBuffer[Ref[Any]]() val refsReadOnly = new ListBuffer[Ref[Any]]() val refsWrite = new ListBuffer[Ref[Any]]() val snapshots = refsSnapshot.values.toList for (snapshot <- snapshots) { val ref = snapshot.ref if (snapshot.isRead) { refsRead += ref if (!snapshot.isWrite) refsReadOnly += ref } if (snapshot.isWrite) refsWrite += ref } this.refsRead = refsRead this.refsReadOnly = refsReadOnly this.refsWrite = refsWrite this.snapshots = snapshots } private def acquireLocks = { val (readLockeds, readUnlockeds) = lockall(refsReadOnly, _.tryReadLock) val (writeLockeds, writeUnlockeds) = lockall(refsWrite, _.tryWriteLock) readLocks = readLockeds writeLocks = writeLockeds retryIfTrue(readUnlockeds.nonEmpty, readUnlockeds) retryIfTrue(writeUnlockeds.nonEmpty, writeUnlockeds) } private def freeLocks = { if (writeLocks != null) writeLocks.foreach(_.writeUnlock) if (readLocks != null) readLocks.foreach(_.readUnlock) writeLocks = null readLocks = null } private def commit(rollback: Boolean): Unit = { if (!rollback) transactionManager.runInTransaction(this)(beforeCommit(this)) updateReadsAndWrites if (transactionType.validateCommit || !refsWrite.isEmpty) { startIfNotStarted try { acquireLocks if (!shadow) validateTransaction if (!transient && !rollback) context.makeDurable(this) flushTransaction if (!rollback) afterCommit(this) attachments.clear } catch { case e: Throwable => prepareRollback flushTransaction attachments.clear throw e } } } private def asyncCommit(rollback: Boolean)(implicit ectx: ExecutionContext): Future[Unit] = { if (!rollback) transactionManager.runInTransaction(this)(beforeCommit(this)) updateReadsAndWrites startIfNotStarted Future { acquireLocks validateTransaction }.flatMap { _ => if (!transient && !rollback) context.makeDurableAsync(this) else Future.successful() }.transform( { _ => flushTransaction if (!rollback) afterCommit(this) attachments.clear }, { e => prepareRollback flushTransaction attachments.clear throw e }) } private def flushTransaction = { startIfNotStarted stop flushToMemory freeLocks clear } private def flushToMemory = { val snapshotsIterator = snapshots.iterator snapshots = List() snapshotsIterator.foreach(setRefContent) } private def validateTransaction = if (transactionType.validateCommit) { refsReadOnly.foreach(e => { validateContext(e) validateConcurrentRefCreation(e) }) if (transactionType.validateReads) refsRead.foreach { e => validateRead(e) validateDestroyed(e) } refsWrite.foreach(e => { validateContext(e) validateConcurrentRefCreation(e) validateWrite(e) validateDestroyed(e) }) } private def setRefContent(snapshot: RefSnapshot) = { val ref = snapshot.ref val refContent = ref.refContent var value: Option[Any] = None var destroyedFlag = false if (snapshot.isWrite) { value = snapshot.value destroyedFlag = snapshot.destroyedFlag } else { value = refContent.value destroyedFlag = refContent.destroyedFlag } val read = readTimestamp(snapshot.isRead, refContent) val write = writeTimestamp(snapshot.isWrite, refContent) require(((ref.creationTransactionId != transactionId || write != 0) && write != Long.MaxValue) || transient) ref.setRefContent(value, read, write, destroyedFlag) } private def readTimestamp(isRefRead: Boolean, refContent: RefContent[_]) = if (isRefRead && refContent.readTimestamp < startTimestamp && !shadow) startTimestamp else refContent.readTimestamp private def writeTimestamp(isRefWrite: Boolean, refContent: RefContent[_]) = if (isRefWrite && refContent.writeTimestamp < startTimestamp && !shadow) endTimestamp else refContent.writeTimestamp def prepareRollback = { val refsWrote = if (refsWrite != null) refsWrite else new ListBuffer[Ref[Any]]() val refsCreated = refsWrote.filter(_.creationTransactionId == transactionId) clear for (ref <- refsCreated) destroy(ref) updateReadsAndWrites } def rollback() = { updateReadsAndWrites prepareRollback commit(rollback = true) } private[transaction] def clear = { refsRead = null refsWrite = null clearSnapshots clearStopWatch } } object Transaction { private val lastId = new AtomicLong(0) def nextId = lastId.incrementAndGet }
fwbrasil/radon-stm
src/main/scala/net/fwbrasil/radon/transaction/Transaction.scala
Scala
lgpl-2.1
8,697
import com.weez.mercury.common._ import com.weez.mercury.product._ import com.github.nscala_time.time.Imports._
weeztech/weez-mercury
main/src/main/scala/com/weez/mercury/stock/Stocks.scala
Scala
apache-2.0
111
package ch.bsisa.hyperbird.dao.xqs import ch.bsisa.hyperbird.dao.{Queries,DbConfig} import play.api.Logger import ch.bsisa.hyperbird.CollectionsConfig /** * Implements Queries trait accessing database using XQS/XQJ drivers. * * @author Patrick Refondini */ object XQSQueries extends Queries { /** * Implements Queries */ def allHbCollectionsQuery(implicit conf: DbConfig): String = { //TODO: The response produced by xmldb:get-child-collections('${conf.databaseName}') // does not produce valid XML but a list of strings. // Review this query. // val query = s"""xmldb:get-child-collections('${conf.databaseName}')""" // TODO: We could Queries trait could enforce Option[String] as return type // allowing for clean Not implemented messages from the API. val query = s""""NOT IMPLEMENTED"""" Logger.debug("allHbCollectionsQuery: " + query) query } /** * Implements Queries */ def filteredCollectionQuery(collectionId: String, xpath: String = "//ELFIN")(implicit conf: DbConfig): String = { val query = s"""collection('${conf.databaseName}/${collectionId}')${xpath}""" Logger.debug("fileteredCollectionQuery: " + query) query } /** * Implements Queries */ def elfinQuery(collectionId: String, elfinId: String)(implicit conf: DbConfig): String = { val query = s"""collection('${conf.databaseName}/${collectionId}')//ELFIN[@Id='${elfinId}']""" Logger.debug("elfin: " + query) query } /** * Implements Queries */ def elfinQuery(elfinId: String)(implicit conf: DbConfig): String = { val query = s"""collection('${conf.databaseName}')//ELFIN[@Id='${elfinId}']""" Logger.debug("elfin: " + query) query } /** * Returns a query to access a single ELFIN of CLASSE USER identified by the given email. * TODO: Not implemented yet. */ def elfinUserPerEmailQuery(email: String)(implicit dbConf: DbConfig, collectionsConf: CollectionsConfig): String = { val query = s""""NOT IMPLEMENTED"""" Logger.debug("elfinUserPerEmailQuery: " + query) query } }
bsisa/hb-api
app/ch/bsisa/hyperbird/dao/xqs/XQSQueries.scala
Scala
gpl-2.0
2,122
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2014 Adobe Systems Incorporated. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////////// package com.adobe package queries // Spark. import org.apache.spark.{SparkConf,SparkContext} import org.apache.spark.SparkContext._ import org.apache.spark.storage.StorageLevel import org.apache.spark.rdd.RDD import scala.math // Analytics Thrift objects. import thrift.AnalyticsData object TopReferringDomains extends Query { def colsNeeded = Seq("visit_referrer", "post_visid_high", "post_visid_low", "visit_num") def run(c: QueryConf) = { val allData = c.sc.union(c.data).cache() val numAllRows = c.dailyRows.reduce(_+_) val numPartitions = math.max((numAllRows/c.targetPartitionSize).toInt, 1) val topReferrers = allData.collect{ case (root) if !root.visit_referrer.isEmpty => (BigInt(root.post_visid_high + root.post_visid_low + root.visit_num), QueryMeta.getDomainFromReferrer(root.visit_referrer)) } .distinct(numPartitions){ Ordering.by((entry: (BigInt,String)) => entry._1) } .collect{ case (visit_id, ref) if !ref.isEmpty() => (ref, 1) } .reduceByKey(_+_,numPartitions) .top(5) { Ordering.by((entry: ((String, Int))) => entry._2) }.toSeq allData.unpersist() if (c.profile) "[" + topReferrers.map("\\"" + _.toString + "\\"").mkString(", ") + "]" else { html.TopReferringDomains("TopReferringDomains", c.daysInRange, topReferrers).toString } } }
alexanderfield/spindle
src/main/scala/queries/TopReferringDomains.scala
Scala
apache-2.0
2,204
/* * Copyright (c) 2014 Contributor. All rights reserved. */ package org.scalaide.debug.internal.expression.proxies.primitives.operations.bitwise import org.junit.Test import org.scalaide.debug.internal.expression.Names.Java import org.scalaide.debug.internal.expression.BaseIntegrationTest import org.scalaide.debug.internal.expression.BaseIntegrationTestCompanion import org.scalaide.debug.internal.expression.TestValues class BitwiseOrTest extends BaseIntegrationTest(BitwiseOrTest) { import TestValues.ValuesTestCase._ @Test def `byte | sth`(): Unit = { eval("byte | byte2", byte | byte2, Java.primitives.int) eval("byte | short2", byte | short2, Java.primitives.int) eval("byte | char2", byte | char2, Java.primitives.int) eval("byte | int2", byte | int2, Java.primitives.int) eval("byte | long2", byte | long2, Java.primitives.long) expectReflectiveCompilationError("byte | float") expectReflectiveCompilationError("byte | double") } @Test def `short | sth`(): Unit = { eval("short | byte2", short | byte2, Java.primitives.int) eval("short | short2", short | short2, Java.primitives.int) eval("short | char2", short | char2, Java.primitives.int) eval("short | int2", short | int2, Java.primitives.int) eval("short | long2", short | long2, Java.primitives.long) expectReflectiveCompilationError("short | float") expectReflectiveCompilationError("short | double") } @Test def `char | sth`(): Unit = { eval("char | byte2", char | byte2, Java.primitives.int) eval("char | short2", char | short2, Java.primitives.int) eval("char | char2", char | char2, Java.primitives.int) eval("char | int2", char | int2, Java.primitives.int) eval("char | long2", char | long2, Java.primitives.long) expectReflectiveCompilationError("char | float") expectReflectiveCompilationError("char | double") } @Test def `int | sth`(): Unit = { eval("int | byte2", int | byte2, Java.primitives.int) eval("int | short2", int | short2, Java.primitives.int) eval("int | char", int | char, Java.primitives.int) eval("int | int2", int | int2, Java.primitives.int) eval("int | long2", int | long2, Java.primitives.long) expectReflectiveCompilationError("int | float") expectReflectiveCompilationError("int | double") } @Test def `long | sth`(): Unit = { eval("long | byte2", long | byte2, Java.primitives.long) eval("long | short2", long | short2, Java.primitives.long) eval("long | char", long | char, Java.primitives.long) eval("long | int2", long | int2, Java.primitives.long) eval("long | long2", long | long2, Java.primitives.long) expectReflectiveCompilationError("long | float") expectReflectiveCompilationError("long | double") } @Test def `float | byte`(): Unit = { expectReflectiveCompilationError("float | byte2") expectReflectiveCompilationError("float | short2") expectReflectiveCompilationError("float | char") expectReflectiveCompilationError("float | int2") expectReflectiveCompilationError("float | long2") expectReflectiveCompilationError("float | float2") expectReflectiveCompilationError("float | double") } @Test def `double | sth`(): Unit = { expectReflectiveCompilationError("double | byte2") expectReflectiveCompilationError("double | short2") expectReflectiveCompilationError("double | char") expectReflectiveCompilationError("double | int2") expectReflectiveCompilationError("double | long2") expectReflectiveCompilationError("double | float") expectReflectiveCompilationError("double | double2") } } object BitwiseOrTest extends BaseIntegrationTestCompanion
Kwestor/scala-ide
org.scala-ide.sdt.debug.expression.tests/src/org/scalaide/debug/internal/expression/proxies/primitives/operations/bitwise/BitwiseOrTest.scala
Scala
bsd-3-clause
3,708
/* Copyright 2012 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.scalding import cascading.tuple.Fields import org.scalatest.WordSpec import scala.collection.JavaConverters._ import org.apache.hadoop.mapred.JobConf class ReplTest extends WordSpec { import ReplImplicits._ import ReplImplicitContext._ val tutorialData = "../tutorial/data" val helloPath = tutorialData + "/hello.txt" def test() = { val suffix = mode match { case _: CascadingLocal => "local" case _: HadoopMode => "hadoop" } val testPath = "/tmp/scalding-repl/test/" + suffix + "/" val helloRef = List("Hello world", "Goodbye world") "save -- TypedPipe[String]" in { val hello = TypedPipe.from(TextLine(helloPath)) val out = TypedTsv[String](testPath + "output0.txt") hello.save(out) val output = out.toIterator.toList assert(output === helloRef) } "snapshot" should { "only -- TypedPipe[String]" in { val hello = TypedPipe.from(TextLine(helloPath)) val s: TypedPipe[String] = hello.snapshot // shallow verification that the snapshot was created correctly without // actually running a new flow to check the contents (just check that // it's a TypedPipe from a MemorySink or SequenceFile) assert(s.toString.contains("IterablePipe") || s.toString.contains("TypedPipeFactory")) val pipeName = mode match { case m: HadoopMode => m.jobConf.get("hadoop.tmp.dir") case _ => "IterableSource" } assert(s.toPipe(Fields.ALL).toString.contains(pipeName)) } "can be mapped and saved -- TypedPipe[String]" in { val s = TypedPipe.from(TextLine(helloPath)) .flatMap(_.split("\\\\s+")) .snapshot val out = TypedTsv[String](testPath + "output1.txt") // can call 'map' and 'save' on snapshot s.map(_.toLowerCase).save(out) val output = out.toIterator.toList assert(output === helloRef.flatMap(_.split("\\\\s+")).map(_.toLowerCase)) } "tuples -- TypedPipe[(String,Int)]" in { val s = TypedPipe.from(TextLine(helloPath)) .flatMap(_.split("\\\\s+")) .map(w => (w.toLowerCase, w.length)) .snapshot val output = s.toList assert(output === helloRef.flatMap(_.split("\\\\s+")).map(w => (w.toLowerCase, w.length))) } "grouped -- Grouped[String,String]" which { val grp = TypedPipe.from(TextLine(helloPath)) .groupBy(_.toLowerCase) val correct = helloRef.map(l => (l.toLowerCase, l)) "is explicit" in { (grp.snapshot.toList === correct) } // Note: Must explicitly to toIterator because `grp.toList` resolves to `KeyedList.toList` "is implicit" in { assert(grp.toIterator.toList === correct) } } "joined -- CoGrouped[String, Long]" which { val linesByWord = TypedPipe.from(TextLine(helloPath)) .flatMap(_.split("\\\\s+")) .groupBy(_.toLowerCase) val wordScores = TypedPipe.from(TypedTsv[(String, Double)](tutorialData + "/word_scores.tsv")).group val grp = linesByWord.join(wordScores) .mapValues { case (text, score) => score } .sum val correct = Map("hello" -> 1.0, "goodbye" -> 3.0, "world" -> 4.0) "is explicit" in { val s = grp.snapshot assert(s.toIterator.toMap === correct) } "is implicit" in { assert(grp.toIterator.toMap === correct) } } "support toOption on ValuePipe" in { val hello = TypedPipe.from(TextLine(helloPath)) val res = hello.map(_.length).sum val correct = helloRef.map(_.length).sum assert(res.toOption === Some(correct)) } } "reset flow" in { resetFlowDef() assert(flowDef.getSources.asScala.isEmpty) } "run entire flow" in { resetFlowDef() val hello = TypedPipe.from(TextLine(helloPath)) .flatMap(_.split("\\\\s+")) .map(_.toLowerCase) .distinct val out = TypedTsv[String](testPath + "words.tsv") hello.write(out) ReplImplicits.run val words = out.toIterator.toSet assert(words === Set("hello", "world", "goodbye")) } "TypedPipe of a TextLine" should { val hello = TypedPipe.from(TextLine(helloPath)) "support toIterator" in { hello.toIterator.foreach { line: String => assert(line.contains("Hello world") || line.contains("Goodbye world")) } } "support toList" in { assert(hello.toList === helloRef) } } "toIterator should generate a snapshot for TypedPipe with" should { val hello = TypedPipe.from(TextLine(helloPath)) "flatMap" in { val out = hello.flatMap(_.split("\\\\s+")).toList assert(out === helloRef.flatMap(_.split("\\\\s+"))) } "tuple" in { assert(hello.map(l => (l, l.length)).toList === helloRef.map(l => (l, l.length))) } } } "REPL in Local mode" should { ReplImplicits.mode = Local(strictSources = true) test() } "REPL in Hadoop mode" should { ReplImplicits.mode = Hdfs(strict = true, new JobConf) test() } }
MansurAshraf/scalding
scalding-repl/src/test/scala/com/twitter/scalding/ReplTest.scala
Scala
apache-2.0
5,794
package com.blogspot.ramannanda.scala.algorithms.cp3.adhoc.anagrams import scala.collection.mutable import scala.collection.mutable.ListBuffer import scala.io.StdIn //uva 00454 object FindAnagrams { def anagramPairs(words: Seq[String]): Unit = { val anaMap = mutable.LinkedHashMap[String, Seq[String]]() for (word <- words) { val wordStripped = word.replaceAll("\\\\s+", "").sorted if (anaMap.contains(wordStripped)) { anaMap.put(wordStripped, anaMap(wordStripped) :+ word) } else { anaMap.put(wordStripped, Seq(word)) } } anaMap.foreach(kv => { val kvSet = kv._2.toSet for (i <- 0 until kvSet.size) { for (j <- i + 1 until kvSet.size) { println(s"${kv._2(i)} = ${kv._2(j)}") } } }) } def main(args: Array[String]): Unit = { var lb = ListBuffer[String]() val cases = StdIn.readLine().trim.toInt var i = 0 while (i < cases) { val word = StdIn.readLine() if (word.isEmpty) { anagramPairs(lb) i += 1 } lb += word } } }
ramannanda9/algorithms-in-scala
src/main/scala/com/blogspot/ramannanda/scala/algorithms/cp3/adhoc/anagrams/FindAnagrams.scala
Scala
gpl-3.0
1,096
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.plan.nodes.datastream import java.lang.{Byte => JByte} import java.util.{List => JList} import org.apache.calcite.plan.{RelOptCluster, RelTraitSet} import org.apache.calcite.rel.RelFieldCollation.Direction.ASCENDING import org.apache.calcite.rel.`type`.RelDataType import org.apache.calcite.rel.core.Window.Group import org.apache.calcite.rel.core.{AggregateCall, Window} import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel} import org.apache.calcite.rex.RexLiteral import org.apache.flink.api.java.functions.NullByteKeySelector import org.apache.flink.streaming.api.datastream.DataStream import org.apache.flink.streaming.api.functions.KeyedProcessFunction import org.apache.flink.table.api.{StreamQueryConfig, StreamTableEnvironment, TableConfig, TableException} import org.apache.flink.table.calcite.FlinkTypeFactory import org.apache.flink.table.codegen.AggregationCodeGenerator import org.apache.flink.table.plan.nodes.OverAggregate import org.apache.flink.table.plan.rules.datastream.DataStreamRetractionRules import org.apache.flink.table.plan.schema.RowSchema import org.apache.flink.table.runtime.CRowKeySelector import org.apache.flink.table.runtime.aggregate.AggregateUtil.CalcitePair import org.apache.flink.table.runtime.aggregate._ import org.apache.flink.table.runtime.types.{CRow, CRowTypeInfo} import org.apache.flink.table.util.Logging import org.apache.flink.types.Row import scala.collection.JavaConverters._ class DataStreamOverAggregate( logicWindow: Window, cluster: RelOptCluster, traitSet: RelTraitSet, inputNode: RelNode, schema: RowSchema, inputSchema: RowSchema) extends SingleRel(cluster, traitSet, inputNode) with OverAggregate with DataStreamRel with Logging { override def deriveRowType(): RelDataType = schema.relDataType override def needsUpdatesAsRetraction = true override def consumesRetractions = true override def copy(traitSet: RelTraitSet, inputs: JList[RelNode]): RelNode = { new DataStreamOverAggregate( logicWindow, cluster, traitSet, inputs.get(0), schema, inputSchema) } override def toString: String = { s"OverAggregate($aggOpName)" } override def explainTerms(pw: RelWriter): RelWriter = { val overWindow: Group = logicWindow.groups.get(0) val constants: Seq[RexLiteral] = logicWindow.constants.asScala val partitionKeys: Array[Int] = overWindow.keys.toArray val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = generateNamedAggregates super.explainTerms(pw) .itemIf("partitionBy", partitionToString(schema.relDataType, partitionKeys), partitionKeys.nonEmpty) .item("orderBy", orderingToString(schema.relDataType, overWindow.orderKeys.getFieldCollations)) .itemIf("rows", windowRange(logicWindow, overWindow, inputNode), overWindow.isRows) .itemIf("range", windowRange(logicWindow, overWindow, inputNode), !overWindow.isRows) .item( "select", aggregationToString( inputSchema.relDataType, constants, schema.relDataType, namedAggregates)) } override def translateToPlan( tableEnv: StreamTableEnvironment, queryConfig: StreamQueryConfig): DataStream[CRow] = { if (logicWindow.groups.size > 1) { throw new TableException( "Unsupported use of OVER windows. All aggregates must be computed on the same window.") } val overWindow: org.apache.calcite.rel.core.Window.Group = logicWindow.groups.get(0) val orderKeys = overWindow.orderKeys.getFieldCollations if (orderKeys.size() != 1) { throw new TableException( "Unsupported use of OVER windows. The window can only be ordered by a single time column.") } val orderKey = orderKeys.get(0) if (!orderKey.direction.equals(ASCENDING)) { throw new TableException( "Unsupported use of OVER windows. The window can only be ordered in ASCENDING mode.") } val inputDS = input.asInstanceOf[DataStreamRel].translateToPlan(tableEnv, queryConfig) val inputIsAccRetract = DataStreamRetractionRules.isAccRetract(input) if (inputIsAccRetract) { throw new TableException( "Retraction on Over window aggregation is not supported yet. " + "Note: Over window aggregation should not follow a non-windowed GroupBy aggregation.") } if (!logicWindow.groups.get(0).keys.isEmpty && queryConfig.getMinIdleStateRetentionTime < 0) { LOG.warn( "No state retention interval configured for a query which accumulates state. " + "Please provide a query configuration with valid retention interval to prevent " + "excessive state size. You may specify a retention time of 0 to not clean up the state.") } val constants: Seq[RexLiteral] = logicWindow.constants.asScala val generator = new AggregationCodeGenerator( tableEnv.getConfig, false, inputSchema.typeInfo, Some(constants)) val constantTypes = constants.map(_.getType) val fieldTypes = input.getRowType.getFieldList.asScala.map(_.getType) val aggInTypes = fieldTypes ++ constantTypes val aggInNames = aggInTypes.indices.map("f" + _) val aggregateInputType = getCluster.getTypeFactory.createStructType(aggInTypes.asJava, aggInNames.asJava) val timeType = schema.relDataType .getFieldList .get(orderKey.getFieldIndex) .getType // identify window rowtime attribute val rowTimeIdx: Option[Int] = if (FlinkTypeFactory.isRowtimeIndicatorType(timeType)) { Some(orderKey.getFieldIndex) } else if (FlinkTypeFactory.isProctimeIndicatorType(timeType)) { None } else { throw new TableException(s"OVER windows can only be applied on time attributes.") } if (overWindow.lowerBound.isPreceding && overWindow.lowerBound.isUnbounded && overWindow.upperBound.isCurrentRow) { // unbounded OVER window createUnboundedAndCurrentRowOverWindow( queryConfig, tableEnv.getConfig, generator, inputDS, rowTimeIdx, aggregateInputType, isRowsClause = overWindow.isRows) } else if ( overWindow.lowerBound.isPreceding && !overWindow.lowerBound.isUnbounded && overWindow.upperBound.isCurrentRow) { // bounded OVER window createBoundedAndCurrentRowOverWindow( queryConfig, generator, inputDS, rowTimeIdx, aggregateInputType, isRowsClause = overWindow.isRows, tableEnv.getConfig) } else { throw new TableException("OVER RANGE FOLLOWING windows are not supported yet.") } } def createUnboundedAndCurrentRowOverWindow( queryConfig: StreamQueryConfig, tableConfig: TableConfig, generator: AggregationCodeGenerator, inputDS: DataStream[CRow], rowTimeIdx: Option[Int], aggregateInputType: RelDataType, isRowsClause: Boolean): DataStream[CRow] = { val overWindow: Group = logicWindow.groups.get(0) val partitionKeys: Array[Int] = overWindow.keys.toArray val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = generateNamedAggregates // get the output types val returnTypeInfo = CRowTypeInfo(schema.typeInfo) def createKeyedProcessFunction[K]: KeyedProcessFunction[K, CRow, CRow] = { AggregateUtil.createUnboundedOverProcessFunction[K]( generator, namedAggregates, aggregateInputType, inputSchema.relDataType, inputSchema.typeInfo, inputSchema.fieldTypeInfos, queryConfig, tableConfig, rowTimeIdx, partitionKeys.nonEmpty, isRowsClause) } val result: DataStream[CRow] = // partitioned aggregation if (partitionKeys.nonEmpty) { inputDS .keyBy(new CRowKeySelector(partitionKeys, inputSchema.projectedTypeInfo(partitionKeys))) .process(createKeyedProcessFunction[Row]) .returns(returnTypeInfo) .name(aggOpName) .asInstanceOf[DataStream[CRow]] } // non-partitioned aggregation else { inputDS.keyBy(new NullByteKeySelector[CRow]) .process(createKeyedProcessFunction[JByte]).setParallelism(1).setMaxParallelism(1) .returns(returnTypeInfo) .name(aggOpName) } result } def createBoundedAndCurrentRowOverWindow( queryConfig: StreamQueryConfig, generator: AggregationCodeGenerator, inputDS: DataStream[CRow], rowTimeIdx: Option[Int], aggregateInputType: RelDataType, isRowsClause: Boolean, tableConfig: TableConfig): DataStream[CRow] = { val overWindow: Group = logicWindow.groups.get(0) val partitionKeys: Array[Int] = overWindow.keys.toArray val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = generateNamedAggregates val precedingOffset = getLowerBoundary(logicWindow, overWindow, getInput()) + (if (isRowsClause) 1 else 0) // get the output types val returnTypeInfo = CRowTypeInfo(schema.typeInfo) def createKeyedProcessFunction[K]: KeyedProcessFunction[K, CRow, CRow] = { AggregateUtil.createBoundedOverProcessFunction[K]( generator, namedAggregates, aggregateInputType, inputSchema.relDataType, inputSchema.typeInfo, inputSchema.fieldTypeInfos, precedingOffset, queryConfig, tableConfig, isRowsClause, rowTimeIdx ) } val result: DataStream[CRow] = // partitioned aggregation if (partitionKeys.nonEmpty) { inputDS .keyBy(new CRowKeySelector(partitionKeys, inputSchema.projectedTypeInfo(partitionKeys))) .process(createKeyedProcessFunction[Row]) .returns(returnTypeInfo) .name(aggOpName) } // non-partitioned aggregation else { inputDS .keyBy(new NullByteKeySelector[CRow]) .process(createKeyedProcessFunction[JByte]).setParallelism(1).setMaxParallelism(1) .returns(returnTypeInfo) .name(aggOpName) } result } private def generateNamedAggregates: Seq[CalcitePair[AggregateCall, String]] = { val overWindow: Group = logicWindow.groups.get(0) val aggregateCalls = overWindow.getAggregateCalls(logicWindow) for (i <- 0 until aggregateCalls.size()) yield new CalcitePair[AggregateCall, String](aggregateCalls.get(i), "w0$o" + i) } private def aggOpName = { val overWindow: Group = logicWindow.groups.get(0) val constants: Seq[RexLiteral] = logicWindow.constants.asScala val partitionKeys: Array[Int] = overWindow.keys.toArray val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = generateNamedAggregates s"over: (${ if (!partitionKeys.isEmpty) { s"PARTITION BY: ${partitionToString(inputSchema.relDataType, partitionKeys)}, " } else { "" } }ORDER BY: ${orderingToString(inputSchema.relDataType, overWindow.orderKeys.getFieldCollations)}, " + s"${if (overWindow.isRows) "ROWS" else "RANGE"}" + s"${windowRange(logicWindow, overWindow, inputNode)}, " + s"select: (${ aggregationToString( inputSchema.relDataType, constants, schema.relDataType, namedAggregates) }))" } }
ueshin/apache-flink
flink-table/flink-table-planner/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
Scala
apache-2.0
12,203
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.shuffle.remote import org.apache.spark._ import org.apache.spark.internal.{Logging, config} import org.apache.spark.io.CompressionCodec import org.apache.spark.serializer.SerializerManager import org.apache.spark.shuffle.{BaseShuffleHandle, ShuffleReadMetricsReporter, ShuffleReader} import org.apache.spark.storage.{BlockId, BlockManagerId} import org.apache.spark.util.CompletionIterator import org.apache.spark.util.collection.RemoteSorter /** * Fetches and reads the partitions in range [startPartition, endPartition) from a shuffle by * requesting them from other nodes' block stores. */ private[spark] class RemoteShuffleReader[K, C]( handle: BaseShuffleHandle[K, _, C], resolver: RemoteShuffleBlockResolver, blocksByAddress: Iterator[(BlockManagerId, Seq[(BlockId, Long, Int)])], context: TaskContext, readMetrics: ShuffleReadMetricsReporter, serializerManager: SerializerManager = SparkEnv.get.serializerManager, mapOutputTracker: MapOutputTracker = SparkEnv.get.mapOutputTracker, shouldBatchFetch: Boolean = false) extends ShuffleReader[K, C] with Logging { private val dep = handle.dependency private def fetchContinuousBlocksInBatch: Boolean = { val conf = SparkEnv.get.conf val serializerRelocatable = dep.serializer.supportsRelocationOfSerializedObjects val compressed = conf.get(config.SHUFFLE_COMPRESS) val codecConcatenation = if (compressed) { CompressionCodec.supportsConcatenationOfSerializedStreams(CompressionCodec.createCodec(conf)) } else { true } val useOldFetchProtocol = conf.get(config.SHUFFLE_USE_OLD_FETCH_PROTOCOL) val doBatchFetch = shouldBatchFetch && serializerRelocatable && (!compressed || codecConcatenation) && !useOldFetchProtocol if (shouldBatchFetch && !doBatchFetch) { logDebug("The feature tag of continuous shuffle block fetching is set to true, but " + "we can not enable the feature because other conditions are not satisfied. " + s"Shuffle compress: $compressed, serializer relocatable: $serializerRelocatable, " + s"codec concatenation: $codecConcatenation, use old shuffle fetch protocol: " + s"$useOldFetchProtocol.") } doBatchFetch } /** Read the combined key-values for this reduce task */ override def read(): Iterator[Product2[K, C]] = { val wrappedStreams = new RemoteShuffleBlockIterator( context, resolver.remoteShuffleTransferService, resolver, blocksByAddress, serializerManager.wrapStream, // Note: we use getSizeAsMb when no suffix is provided for backwards compatibility SparkEnv.get.conf.get(config.REDUCER_MAX_SIZE_IN_FLIGHT) * 1024 * 1024, SparkEnv.get.conf.get(config.REDUCER_MAX_REQS_IN_FLIGHT), SparkEnv.get.conf.get(config.REDUCER_MAX_BLOCKS_IN_FLIGHT_PER_ADDRESS), SparkEnv.get.conf.get(config.SHUFFLE_DETECT_CORRUPT), SparkEnv.get.conf.get(config.SHUFFLE_DETECT_CORRUPT_MEMORY), readMetrics, fetchContinuousBlocksInBatch).toCompletionIterator val serializerInstance = dep.serializer.newInstance() // Create a key/value iterator for each stream val recordIter = wrappedStreams.flatMap { case (blockId, wrappedStream) => // Note: the asKeyValueIterator below wraps a key/value iterator inside of a // NextIterator. The NextIterator makes sure that close() is called on the // underlying InputStream when all records have been read. serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator } // Update the context task metrics for each record read. val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]]( recordIter.map { record => readMetrics.incRecordsRead(1) record }, context.taskMetrics().mergeShuffleReadMetrics()) // An interruptible iterator must be used here in order to support task cancellation val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter) val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) { val remoteAggregator = dep.aggregator.map(new RemoteAggregator(_, resolver)) if (dep.mapSideCombine) { // We are reading values that are already combined val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]] remoteAggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context) } else { // We don't know the value type, but also don't care -- the dependency *should* // have made sure its compatible w/ this aggregator, which will convert the value // type to the combined type C val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]] remoteAggregator.get.combineValuesByKey(keyValuesIterator, context) } } else { interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]] } // Sort the output if there is a sort ordering defined. val resultIter = dep.keyOrdering match { case Some(keyOrd: Ordering[K]) => // Create an ExternalSorter to sort the data. val sorter = new RemoteSorter[K, C, C]( context, resolver, ordering = Some(keyOrd), serializer = dep.serializer) sorter.insertAll(aggregatedIter) context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled) context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled) context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes) // Use completion callback to stop sorter if task was finished/cancelled. context.addTaskCompletionListener[Unit](_ => { sorter.stop() }) CompletionIterator[Product2[K, C], Iterator[Product2[K, C]]](sorter.iterator, sorter.stop()) case None => aggregatedIter } resultIter match { case _: InterruptibleIterator[Product2[K, C]] => resultIter case _ => // Use another interruptible iterator here to support task cancellation as aggregator // or(and) sorter may have consumed previous interruptible iterator. new InterruptibleIterator[Product2[K, C]](context, resultIter) } } }
Intel-bigdata/OAP
oap-shuffle/remote-shuffle/src/main/scala/org/apache/spark/shuffle/remote/RemoteShuffleReader.scala
Scala
apache-2.0
7,050
package models import play.api.db.slick.Config.driver.simple._ case class TSVFileSampleLink(id: Option[Int], tsvFileId: Int, sampleId: Int, created: java.sql.Timestamp) class TSVFileSampleLinkTable(tag: Tag) extends Table[TSVFileSampleLink](tag, "tsv_file_sample_link") { val tsvFiles = TableQuery[TSVFileTable] val samples = TableQuery[SampleTable] def id = column[Int]("id", O.PrimaryKey, O.AutoInc) def tsvFileId = column[Int]("tsv_file_id", O.NotNull) def sampleId = column[Int]("sample_id", O.NotNull) def created = column[java.sql.Timestamp]("created_tstmp", O.NotNull) def * = (id.?, tsvFileId, sampleId, created) <> (TSVFileSampleLink.tupled, TSVFileSampleLink.unapply) def tsvFile = foreignKey("TSV_FILE_FK", tsvFileId, tsvFiles)(_.id) def sample = foreignKey("SAMPLE_FK", sampleId, samples)(_.id) }
seqprodbio/restoule
app/models/TSVFileSampleLink.scala
Scala
gpl-3.0
844
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.scalatest.matchers.dsl import org.scalatest.matchers._ import org.scalactic._ import scala.util.matching.Regex import org.scalatest.Resources import org.scalatest.UnquotedString import org.scalatest.matchers.MatchersHelper.startWithRegexWithGroups /** * This class is part of the ScalaTest matchers DSL. Please see the documentation for <a href="../Matchers.html"><code>Matchers</code></a> for an overview of * the matchers DSL. * * @author Bill Venners */ final class StartWithWord { /** * This method enables the following syntax: * * <pre class="stHighlight"> * "1.7b" should (startWith ("1.7") and startWith ("1.7b")) * ^ * </pre> */ def apply(right: String): Matcher[String] = new Matcher[String] { def apply(left: String): MatchResult = MatchResult( left startsWith right, Resources.rawDidNotStartWith, Resources.rawStartedWith, Vector(left, right) ) override def toString: String = "startWith (" + Prettifier.default(right) + ")" } /** * This method enables the following syntax: * * <pre class="stHighlight"> * val decimal = """(-)?(\d+)(\.\d*)?""" * "1.7b" should (startWith regex (decimal) and startWith regex (decimal)) * ^ * </pre> */ def regex[T <: String](right: T): Matcher[T] = regex(right.r) /** * This method enables the following syntax: * * <pre class="stHighlight"> * string should not { startWith regex ("a(b*)c" withGroup "bb") } * ^ * </pre> */ def regex(regexWithGroups: RegexWithGroups) = new Matcher[String] { def apply(left: String): MatchResult = startWithRegexWithGroups(left, regexWithGroups.regex, regexWithGroups.groups) override def toString: String = "startWith regex " + Prettifier.default(regexWithGroups) } /** * This method enables the following syntax: * * <pre class="stHighlight"> * val decimalRegex = """(-)?(\d+)(\.\d*)?""".r * "1.7" should (startWith regex (decimalRegex) and startWith regex (decimalRegex)) * ^ * </pre> */ def regex(rightRegex: Regex): Matcher[String] = new Matcher[String] { def apply(left: String): MatchResult = MatchResult( rightRegex.pattern.matcher(left).lookingAt, Resources.rawDidNotStartWithRegex, Resources.rawStartedWithRegex, Vector(left, UnquotedString(rightRegex.toString)) ) override def toString: String = "startWith regex " + Prettifier.default(rightRegex) } /** * Overrides toString to return "startWith" */ override def toString: String = "startWith" }
dotty-staging/scalatest
scalatest/src/main/scala/org/scalatest/matchers/dsl/StartWithWord.scala
Scala
apache-2.0
3,368
package sttp.client3.httpclient.fs2 import cats.effect.IO import cats.implicits._ import fs2.Pipe import sttp.capabilities.fs2.Fs2Streams import sttp.client3.impl.fs2.Fs2WebSockets import sttp.client3.testing.websocket.{WebSocketConcurrentTest, WebSocketStreamingTest, WebSocketTest} import sttp.ws.WebSocketFrame class HttpClientFs2WebSocketTest extends WebSocketTest[IO] with WebSocketStreamingTest[IO, Fs2Streams[IO]] with WebSocketConcurrentTest[IO] with HttpClientFs2TestBase { override val streams: Fs2Streams[IO] = new Fs2Streams[IO] {} override def functionToPipe( f: WebSocketFrame.Data[_] => Option[WebSocketFrame] ): fs2.Pipe[IO, WebSocketFrame.Data[_], WebSocketFrame] = in => in.mapFilter(f) override def fromTextPipe( function: String => WebSocketFrame ): Pipe[IO, WebSocketFrame.Data[_], WebSocketFrame] = Fs2WebSockets.fromTextPipe[IO](function) override def prepend( item: WebSocketFrame.Text )(to: Pipe[IO, WebSocketFrame.Data[_], WebSocketFrame]): Pipe[IO, WebSocketFrame.Data[_], WebSocketFrame] = { to.andThen(rest => fs2.Stream.eval(item.pure[IO]) ++ rest) } override def concurrently[T](fs: List[() => IO[T]]): IO[List[T]] = fs.map(_()).parSequence }
softwaremill/sttp
httpclient-backend/fs2/src/test/scala/sttp/client3/httpclient/fs2/HttpClientFs2WebSocketTest.scala
Scala
apache-2.0
1,240
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.mllib.classification import scala.util.Random import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV, Vector => BV} import breeze.stats.distributions.{Multinomial => BrzMultinomial} import org.scalatest.exceptions.TestFailedException import org.apache.spark.{SparkException, SparkFunSuite} import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.{LocalClusterSparkContext, MLlibTestSparkContext} import org.apache.spark.mllib.util.TestingUtils._ import org.apache.spark.util.Utils object NaiveBayesSuite { import NaiveBayes.{Multinomial, Bernoulli} private def calcLabel(p: Double, pi: Array[Double]): Int = { var sum = 0.0 for (j <- 0 until pi.length) { sum += pi(j) if (p < sum) return j } -1 } // Generate input of the form Y = (theta * x).argmax() def generateNaiveBayesInput( pi: Array[Double], // 1XC theta: Array[Array[Double]], // CXD nPoints: Int, seed: Int, modelType: String = Multinomial, sample: Int = 10): Seq[LabeledPoint] = { val D = theta(0).length val rnd = new Random(seed) val _pi = pi.map(math.pow(math.E, _)) val _theta = theta.map(row => row.map(math.pow(math.E, _))) for (i <- 0 until nPoints) yield { val y = calcLabel(rnd.nextDouble(), _pi) val xi = modelType match { case Bernoulli => Array.tabulate[Double] (D) { j => if (rnd.nextDouble () < _theta(y)(j) ) 1 else 0 } case Multinomial => val mult = BrzMultinomial(BDV(_theta(y))) val emptyMap = (0 until D).map(x => (x, 0.0)).toMap val counts = emptyMap ++ mult.sample(sample).groupBy(x => x).map { case (index, reps) => (index, reps.size.toDouble) } counts.toArray.sortBy(_._1).map(_._2) case _ => // This should never happen. throw new UnknownError(s"Invalid modelType: $modelType.") } LabeledPoint(y, Vectors.dense(xi)) } } /** Bernoulli NaiveBayes with binary labels, 3 features */ private val binaryBernoulliModel = new NaiveBayesModel(labels = Array(0.0, 1.0), pi = Array(0.2, 0.8), theta = Array(Array(0.1, 0.3, 0.6), Array(0.2, 0.4, 0.4)), Bernoulli) /** Multinomial NaiveBayes with binary labels, 3 features */ private val binaryMultinomialModel = new NaiveBayesModel(labels = Array(0.0, 1.0), pi = Array(0.2, 0.8), theta = Array(Array(0.1, 0.3, 0.6), Array(0.2, 0.4, 0.4)), Multinomial) } class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext { import NaiveBayes.{Multinomial, Bernoulli} def validatePrediction(predictions: Seq[Double], input: Seq[LabeledPoint]) { val numOfPredictions = predictions.zip(input).count { case (prediction, expected) => prediction != expected.label } // At least 80% of the predictions should be on. assert(numOfPredictions < input.length / 5) } def validateModelFit( piData: Array[Double], thetaData: Array[Array[Double]], model: NaiveBayesModel): Unit = { val modelIndex = piData.indices.zip(model.labels.map(_.toInt)) try { for (i <- modelIndex) { assert(math.exp(piData(i._2)) ~== math.exp(model.pi(i._1)) absTol 0.05) for (j <- thetaData(i._2).indices) { assert(math.exp(thetaData(i._2)(j)) ~== math.exp(model.theta(i._1)(j)) absTol 0.05) } } } catch { case e: TestFailedException => def arr2str(a: Array[Double]): String = a.mkString("[", ", ", "]") def msg(orig: String): String = orig + "\\nvalidateModelFit:\\n" + " piData: " + arr2str(piData) + "\\n" + " thetaData: " + thetaData.map(arr2str).mkString("\\n") + "\\n" + " model.labels: " + arr2str(model.labels) + "\\n" + " model.pi: " + arr2str(model.pi) + "\\n" + " model.theta: " + model.theta.map(arr2str).mkString("\\n") throw e.modifyMessage(_.map(msg)) } } test("model types") { assert(Multinomial === "multinomial") assert(Bernoulli === "bernoulli") } test("get, set params") { val nb = new NaiveBayes() nb.setLambda(2.0) assert(nb.getLambda === 2.0) nb.setLambda(3.0) assert(nb.getLambda === 3.0) } test("Naive Bayes Multinomial") { val nPoints = 1000 val pi = Array(0.5, 0.1, 0.4).map(math.log) val theta = Array( Array(0.70, 0.10, 0.10, 0.10), // label 0 Array(0.10, 0.70, 0.10, 0.10), // label 1 Array(0.10, 0.10, 0.70, 0.10) // label 2 ).map(_.map(math.log)) val testData = NaiveBayesSuite.generateNaiveBayesInput(pi, theta, nPoints, 42, Multinomial) val testRDD = sc.parallelize(testData, 2) testRDD.cache() val model = NaiveBayes.train(testRDD, 1.0, Multinomial) validateModelFit(pi, theta, model) val validationData = NaiveBayesSuite.generateNaiveBayesInput( pi, theta, nPoints, 17, Multinomial) val validationRDD = sc.parallelize(validationData, 2) // Test prediction on RDD. validatePrediction(model.predict(validationRDD.map(_.features)).collect(), validationData) // Test prediction on Array. validatePrediction(validationData.map(row => model.predict(row.features)), validationData) // Test posteriors validationData.map(_.features).foreach { features => val predicted = model.predictProbabilities(features).toArray assert(predicted.sum ~== 1.0 relTol 1.0e-10) val expected = expectedMultinomialProbabilities(model, features) expected.zip(predicted).foreach { case (e, p) => assert(e ~== p relTol 1.0e-10) } } } /** * @param model Multinomial Naive Bayes model * @param testData input to compute posterior probabilities for * @return posterior class probabilities (in order of labels) for input */ private def expectedMultinomialProbabilities(model: NaiveBayesModel, testData: Vector) = { val piVector = new BDV(model.pi) // model.theta is row-major; treat it as col-major representation of transpose, and transpose: val thetaMatrix = new BDM(model.theta(0).length, model.theta.length, model.theta.flatten).t val logClassProbs: BV[Double] = piVector + (thetaMatrix * testData.asBreeze) val classProbs = logClassProbs.toArray.map(math.exp) val classProbsSum = classProbs.sum classProbs.map(_ / classProbsSum) } test("Naive Bayes Bernoulli") { val nPoints = 10000 val pi = Array(0.5, 0.3, 0.2).map(math.log) val theta = Array( Array(0.50, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.40), // label 0 Array(0.02, 0.70, 0.10, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02), // label 1 Array(0.02, 0.02, 0.60, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.30) // label 2 ).map(_.map(math.log)) val testData = NaiveBayesSuite.generateNaiveBayesInput( pi, theta, nPoints, 45, Bernoulli) val testRDD = sc.parallelize(testData, 2) testRDD.cache() val model = NaiveBayes.train(testRDD, 1.0, Bernoulli) validateModelFit(pi, theta, model) val validationData = NaiveBayesSuite.generateNaiveBayesInput( pi, theta, nPoints, 20, Bernoulli) val validationRDD = sc.parallelize(validationData, 2) // Test prediction on RDD. validatePrediction(model.predict(validationRDD.map(_.features)).collect(), validationData) // Test prediction on Array. validatePrediction(validationData.map(row => model.predict(row.features)), validationData) // Test posteriors validationData.map(_.features).foreach { features => val predicted = model.predictProbabilities(features).toArray assert(predicted.sum ~== 1.0 relTol 1.0e-10) val expected = expectedBernoulliProbabilities(model, features) expected.zip(predicted).foreach { case (e, p) => assert(e ~== p relTol 1.0e-10) } } } /** * @param model Bernoulli Naive Bayes model * @param testData input to compute posterior probabilities for * @return posterior class probabilities (in order of labels) for input */ private def expectedBernoulliProbabilities(model: NaiveBayesModel, testData: Vector) = { val piVector = new BDV(model.pi) val thetaMatrix = new BDM(model.theta(0).length, model.theta.length, model.theta.flatten).t val negThetaMatrix = new BDM(model.theta(0).length, model.theta.length, model.theta.flatten.map(v => math.log(1.0 - math.exp(v)))).t val testBreeze = testData.asBreeze val negTestBreeze = new BDV(Array.fill(testBreeze.size)(1.0)) - testBreeze val piTheta: BV[Double] = piVector + (thetaMatrix * testBreeze) val logClassProbs: BV[Double] = piTheta + (negThetaMatrix * negTestBreeze) val classProbs = logClassProbs.toArray.map(math.exp) val classProbsSum = classProbs.sum classProbs.map(_ / classProbsSum) } test("detect negative values") { val dense = Seq( LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(0.0, Vectors.dense(-1.0)), LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(1.0, Vectors.dense(0.0))) intercept[SparkException] { NaiveBayes.train(sc.makeRDD(dense, 2)) } val sparse = Seq( LabeledPoint(1.0, Vectors.sparse(1, Array(0), Array(1.0))), LabeledPoint(0.0, Vectors.sparse(1, Array(0), Array(-1.0))), LabeledPoint(1.0, Vectors.sparse(1, Array(0), Array(1.0))), LabeledPoint(1.0, Vectors.sparse(1, Array.empty, Array.empty))) intercept[SparkException] { NaiveBayes.train(sc.makeRDD(sparse, 2)) } val nan = Seq( LabeledPoint(1.0, Vectors.sparse(1, Array(0), Array(1.0))), LabeledPoint(0.0, Vectors.sparse(1, Array(0), Array(Double.NaN))), LabeledPoint(1.0, Vectors.sparse(1, Array(0), Array(1.0))), LabeledPoint(1.0, Vectors.sparse(1, Array.empty, Array.empty))) intercept[SparkException] { NaiveBayes.train(sc.makeRDD(nan, 2)) } } test("detect non zero or one values in Bernoulli") { val badTrain = Seq( LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(0.0, Vectors.dense(2.0)), LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(1.0, Vectors.dense(0.0))) intercept[SparkException] { NaiveBayes.train(sc.makeRDD(badTrain, 2), 1.0, Bernoulli) } val okTrain = Seq( LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(0.0, Vectors.dense(0.0)), LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(0.0, Vectors.dense(0.0)), LabeledPoint(1.0, Vectors.dense(1.0)), LabeledPoint(1.0, Vectors.dense(1.0)) ) val badPredict = Seq( Vectors.dense(1.0), Vectors.dense(2.0), Vectors.dense(1.0), Vectors.dense(0.0)) val model = NaiveBayes.train(sc.makeRDD(okTrain, 2), 1.0, Bernoulli) intercept[SparkException] { model.predict(sc.makeRDD(badPredict, 2)).collect() } } test("model save/load: 2.0 to 2.0") { val tempDir = Utils.createTempDir() val path = tempDir.toURI.toString Seq(NaiveBayesSuite.binaryBernoulliModel, NaiveBayesSuite.binaryMultinomialModel).map { model => // Save model, load it back, and compare. try { model.save(sc, path) val sameModel = NaiveBayesModel.load(sc, path) assert(model.labels === sameModel.labels) assert(model.pi === sameModel.pi) assert(model.theta === sameModel.theta) assert(model.modelType === sameModel.modelType) } finally { Utils.deleteRecursively(tempDir) } } } test("model save/load: 1.0 to 2.0") { val model = NaiveBayesSuite.binaryMultinomialModel val tempDir = Utils.createTempDir() val path = tempDir.toURI.toString // Save model as version 1.0, load it back, and compare. try { val data = NaiveBayesModel.SaveLoadV1_0.Data(model.labels, model.pi, model.theta) NaiveBayesModel.SaveLoadV1_0.save(sc, path, data) val sameModel = NaiveBayesModel.load(sc, path) assert(model.labels === sameModel.labels) assert(model.pi === sameModel.pi) assert(model.theta === sameModel.theta) assert(model.modelType === Multinomial) } finally { Utils.deleteRecursively(tempDir) } } } class NaiveBayesClusterSuite extends SparkFunSuite with LocalClusterSparkContext { test("task size should be small in both training and prediction") { val m = 10 val n = 200000 val examples = sc.parallelize(0 until m, 2).mapPartitionsWithIndex { (idx, iter) => val random = new Random(idx) iter.map { i => LabeledPoint(random.nextInt(2), Vectors.dense(Array.fill(n)(random.nextDouble()))) } } // If we serialize data directly in the task closure, the size of the serialized task // would be greater than 1MB and hence Spark would throw an error. val model = NaiveBayes.train(examples) val predictions = model.predict(examples.map(_.features)) } }
gioenn/xSpark
mllib/src/test/scala/org/apache/spark/mllib/classification/NaiveBayesSuite.scala
Scala
apache-2.0
13,858
/* * Copyright 2014–2017 SlamData Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package quasar.std trait StdLib extends Library { val math = MathLib val structural = StructuralLib val agg = AggLib val identity = IdentityLib val relations = RelationsLib val set = SetLib val array = ArrayLib val string = StringLib val date = DateLib } object StdLib extends StdLib
drostron/quasar
frontend/src/main/scala/quasar/std/std.scala
Scala
apache-2.0
916
package edu.rice.habanero.benchmarks.concsll import edu.rice.habanero.actors.{ScalazActor, ScalazActorState, ScalazPool} import edu.rice.habanero.benchmarks.concsll.SortedListConfig.{DoWorkMessage, EndWorkMessage} import edu.rice.habanero.benchmarks.{Benchmark, BenchmarkRunner, PseudoRandom} /** * * @author <a href="http://shams.web.rice.edu/">Shams Imam</a> ([email protected]) */ object SortedListScalazActorBenchmark { def main(args: Array[String]) { BenchmarkRunner.runBenchmark(args, new SortedListScalazActorBenchmark) } private final class SortedListScalazActorBenchmark extends Benchmark { def initialize(args: Array[String]) { SortedListConfig.parseArgs(args) } def printArgInfo() { SortedListConfig.printArgs() } def runIteration() { val numWorkers: Int = SortedListConfig.NUM_ENTITIES val numMessagesPerWorker: Int = SortedListConfig.NUM_MSGS_PER_WORKER val master = new Master(numWorkers, numMessagesPerWorker) master.start() ScalazActorState.awaitTermination() } def cleanupIteration(lastIteration: Boolean, execTimeMillis: Double) { if (lastIteration) { ScalazPool.shutdown() } } } private class Master(numWorkers: Int, numMessagesPerWorker: Int) extends ScalazActor[AnyRef] { private final val workers = new Array[ScalazActor[AnyRef]](numWorkers) private final val sortedList = new SortedList() private var numWorkersTerminated: Int = 0 override def onPostStart() { sortedList.start() var i: Int = 0 while (i < numWorkers) { workers(i) = new Worker(this, sortedList, i, numMessagesPerWorker) workers(i).start() workers(i).send(DoWorkMessage.ONLY) i += 1 } } override def process(msg: AnyRef) { if (msg.isInstanceOf[SortedListConfig.EndWorkMessage]) { numWorkersTerminated += 1 if (numWorkersTerminated == numWorkers) { sortedList.send(EndWorkMessage.ONLY) exit() } } } } private class Worker(master: Master, sortedList: SortedList, id: Int, numMessagesPerWorker: Int) extends ScalazActor[AnyRef] { private final val writePercent = SortedListConfig.WRITE_PERCENTAGE private final val sizePercent = SortedListConfig.SIZE_PERCENTAGE private var messageCount: Int = 0 private final val random = new PseudoRandom(id + numMessagesPerWorker + writePercent + sizePercent) override def process(msg: AnyRef) { messageCount += 1 if (messageCount <= numMessagesPerWorker) { val anInt: Int = random.nextInt(100) if (anInt < sizePercent) { sortedList.send(new SortedListConfig.SizeMessage(this)) } else if (anInt < (sizePercent + writePercent)) { sortedList.send(new SortedListConfig.WriteMessage(this, random.nextInt)) } else { sortedList.send(new SortedListConfig.ContainsMessage(this, random.nextInt)) } } else { master.send(EndWorkMessage.ONLY) exit() } } } private class SortedList extends ScalazActor[AnyRef] { private[concsll] final val dataList = new SortedLinkedList[Integer] override def process(msg: AnyRef) { msg match { case writeMessage: SortedListConfig.WriteMessage => val value: Int = writeMessage.value dataList.add(value) val sender = writeMessage.sender.asInstanceOf[ScalazActor[AnyRef]] sender.send(new SortedListConfig.ResultMessage(this, value)) case containsMessage: SortedListConfig.ContainsMessage => val value: Int = containsMessage.value val result: Int = if (dataList.contains(value)) 1 else 0 val sender = containsMessage.sender.asInstanceOf[ScalazActor[AnyRef]] sender.send(new SortedListConfig.ResultMessage(this, result)) case readMessage: SortedListConfig.SizeMessage => val value: Int = dataList.size val sender = readMessage.sender.asInstanceOf[ScalazActor[AnyRef]] sender.send(new SortedListConfig.ResultMessage(this, value)) case _: SortedListConfig.EndWorkMessage => printf(BenchmarkRunner.argOutputFormat, "List Size", dataList.size) exit() case _ => System.err.println("Unsupported message: " + msg) } } } }
shamsmahmood/savina
src/main/scala/edu/rice/habanero/benchmarks/concsll/SortedListScalazActorBenchmark.scala
Scala
gpl-2.0
4,369
package rewriting.rules import ir._ import ir.ast._ import lift.arithmetic.SizeVar import opencl.executor.{Execute, TestWithExecutor} import opencl.ir._ import org.junit.Assert._ import org.junit.Test import rewriting.{Lower, Rewrite} import scala.util.Random object TestRemoveDuplicateZipArg extends TestWithExecutor class TestRemoveDuplicateZipArg { private val N = SizeVar("N") private val arrayType = ArrayType(Float, N) private val inputSize = 128 private val x = Array.tabulate(inputSize)(_ => Random.nextFloat()) private val y = Array.tabulate(inputSize)(_ => Random.nextFloat()) private def lowerExecuteAndCompare(original: Lambda, result: Lambda, args: Any*): Unit = { val originalType = TypeChecker(original) val resultType =TypeChecker(result) assertEquals(originalType, resultType) val loweredOriginal = Lower.sequential(original) val loweredResult = Lower.sequential(result) val (outputOriginal, _) = Execute()[Array[Float]](loweredOriginal, args:_*) val (outputResult, _) = Execute()[Array[Float]](loweredResult, args:_*) assertArrayEquals(outputOriginal, outputResult, 0.001f) } @Test def zipResultEscapes0(): Unit = { val f = \(arrayType, in => Map(Id()) $ Zip(in, in) ) TypeChecker(f) assertFalse(SimplificationRules.removeDuplicateZipArg.isDefinedAt(f.body)) } @Test def zipResultEscapes1(): Unit = { val f = \(arrayType, in => Map(\(x => x)) $ Zip(in, in) ) TypeChecker(f) assertFalse(SimplificationRules.removeDuplicateZipArg.isDefinedAt(f.body)) } @Test def nothingShared(): Unit = { val f = \(arrayType, arrayType, (a, b) => Map(Id()) $ Zip(a, b) ) TypeChecker(f) assertFalse(SimplificationRules.removeDuplicateZipArg.isDefinedAt(f.body)) } @Test def noZipAfterRemovingDuplicate(): Unit = { val f = \(arrayType, in => Map(\(x => add(x._0, x._1))) $ Zip(in, in) ) val result = Rewrite.applyRuleAtId(f, 0, SimplificationRules.removeDuplicateZipArg) assertFalse(result.body.contains({ case FunCall(Zip(_), _*) => })) lowerExecuteAndCompare(f, result, x) } @Test def smallerZipAfterRemovingDuplicate(): Unit = { val f = \(arrayType, arrayType, (a, b) => Map(\(x => add(x._0, mult(x._1, x._2)))) $ Zip(a, b, a) ) val result = Rewrite.applyRuleAtId(f, 0, SimplificationRules.removeDuplicateZipArg) assertFalse(result.body.contains({ case FunCall(Zip(3), _*) => })) assertTrue(result.body.contains({ case FunCall(Zip(2), _*) => })) lowerExecuteAndCompare(f, result, x, y) } @Test def moreComplicatedDuplicationAllowed(): Unit = { val f = \(arrayType, in => Map(\(x => Map(\(x => add(x._0, x._1) )) $ Zip(x._0, x._1) )) $ Zip(Split(64) $ in, Split(64) $ in) ) val result = Rewrite.applyRuleUntilCannot(f, SimplificationRules.removeDuplicateZipArg) assertFalse(result.body.contains({ case FunCall(Zip(_), _*) => })) lowerExecuteAndCompare(f, result, x) } @Test def moreComplicatedDuplicationCantTell(): Unit = { // TODO: No equality checking for arbitrary Lambdas/Expr. // TODO: Need to check usage of Params and whatnot val f = \(arrayType, in => Map(\(x => add(x._0, x._1))) $ Zip(Map(plusOne) $ in, Map(plusOne) $ in) ) TypeChecker(f) assertFalse(SimplificationRules.removeDuplicateZipArg.isDefinedAt(f.body)) } @Test def moreComplicatedNoDuplication(): Unit = { val f = \(arrayType, Float, (a, b) => Map(\(x => add(x._0, x._1) )) $ Zip(Map(\(_ => plusOne(b))) $ a, Map(plusOne) $ a) ) TypeChecker(f) assertFalse(SimplificationRules.removeDuplicateZipArg.isDefinedAt(f.body)) } }
lift-project/lift
src/test/rewriting/rules/TestRemoveDuplicateZipArg.scala
Scala
mit
3,771
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.api.java import scala.collection.JavaConverters._ import scala.reflect.ClassTag import org.apache.hadoop.mapreduce.InputSplit import org.apache.spark.annotation.DeveloperApi import org.apache.spark.api.java.JavaSparkContext._ import org.apache.spark.api.java.function.{Function2 => JFunction2} import org.apache.spark.rdd.NewHadoopRDD @DeveloperApi class JavaNewHadoopRDD[K, V](rdd: NewHadoopRDD[K, V]) (implicit override val kClassTag: ClassTag[K], implicit override val vClassTag: ClassTag[V]) extends JavaPairRDD[K, V](rdd) { /** Maps over a partition, providing the InputSplit that was used as the base of the partition. */ @DeveloperApi def mapPartitionsWithInputSplit[R]( f: JFunction2[InputSplit, java.util.Iterator[(K, V)], java.util.Iterator[R]], preservesPartitioning: Boolean = false): JavaRDD[R] = { new JavaRDD(rdd.mapPartitionsWithInputSplit((a, b) => f.call(a, b.asJava).asScala, preservesPartitioning)(fakeClassTag))(fakeClassTag) } }
aokolnychyi/spark
core/src/main/scala/org/apache/spark/api/java/JavaNewHadoopRDD.scala
Scala
apache-2.0
1,819
package games.utils import games.Quoridor import scala.collection.mutable.ArrayBuffer import algorithms._ import scala.math._ import java.util.Random object QuoridorUtils { /** * Get children nodes for a new node */ def getchildNodes(board:Quoridor, player:Int): ArrayBuffer[(String, Int, Int)] = { getSimulationMoves(board, player) } def get_moves(board:Quoridor, player:Int): ArrayBuffer[(String, Int, Int)] = { getSimulationMoves(board, player) } def getSimulationMoves(board:Quoridor, player:Int):ArrayBuffer[(String, Int, Int)] = { val opponent:Int = (player + 1) % 2 var path = QuoridorUtils.doBFSMoves(board, opponent) // get path of opponents var mypath = QuoridorUtils.doBFSMoves(board, player) // my path var moves: ArrayBuffer[(String, Int, Int)] = new ArrayBuffer[(String, Int, Int)]() // check if BFS exists for both path //println("Get simulation moves - Pawn Start") if (path != null && mypath != null) { var way:ArrayBuffer[(Int, Int)] = new ArrayBuffer[(Int, Int)]() var myway:ArrayBuffer[(Int, Int)] = new ArrayBuffer[(Int, Int)]() while (path != null) { way += ((path.id._1, path.id._2)) path = path.previous } way = way.reverse while (mypath != null) { myway += ((mypath.id._1, mypath.id._2)) mypath = mypath.previous } myway = myway.reverse if (myway.length > 1) { moves += (("P", myway(1)._1, myway(1)._2)) } // consider walls considerWallMoves(way, myway.length, board, player).foreach(f => { moves += f}) //considerWallMovesAroundPawnOnly(board, player).foreach(f => { moves += f}) } else board.getLegalPawnMoves(player).foreach(f => { moves += f }) //print(moves.length + " ") //println("Get simulation moves - End") moves } def considerWallMoves(oppway:ArrayBuffer[(Int, Int)], myway:Int, board:Quoridor, player:Int):ArrayBuffer[(String, Int, Int)] = { var moves: ArrayBuffer[(String, Int, Int)] = new ArrayBuffer[(String, Int, Int)]() var limit:Int = oppway.length if (oppway.length > 1) limit = 1 // along the path of opponent for (i <- 0 until limit) { val x:Int = oppway(i)._1 val y:Int = oppway(i)._2 // defines positions val positions:Array[(Int, Int)] = Array( //(x - 2, y - 2), //(x - 2, y - 1), //(x - 2, y), //(x - 2, y + 1), (x - 1, y - 2), (x - 1, y - 1), (x - 1, y), (x - 1, y + 1), (x, y - 2), (x, y - 1), (x, y), (x, y + 1), (x + 1, y - 2), (x + 1, y - 1), (x + 1, y), (x + 1, y + 1) //(x + 2, y - 2), //(x + 2, y - 1), //(x + 2, y), //(x + 2, y + 1) ) // if player still has walls left if (board.nbWalls(player) > 0) { for (item <- positions) { // if still inside the ground if (item._1 >= 0 && item._1 < board.size - 1 && item._2 >= 0 && item._2 < board.size - 1) { // horizon if (!moves.exists(_ == (("WH", item._1, item._2)))) { if (board.isWallPossibleHere((item._1, item._2), true)) moves.append(("WH", item._1, item._2)) } // vertical if (!moves.exists(_ == (("WV", item._1, item._2)))) { if (board.isWallPossibleHere((item._1, item._2), false)) moves.append(("WV", item._1, item._2)) } } } } } moves } def considerWallMovesAroundPawnOnly(board:Quoridor, player:Int):ArrayBuffer[(String, Int, Int)] = { var moves: ArrayBuffer[(String, Int, Int)] = new ArrayBuffer[(String, Int, Int)]() // along the path of opponent val x:Int = board.pawns((player + 1) % 2)._1 val y:Int = board.pawns((player + 1) % 2)._2 // defines positions val positions:Array[(Int, Int)] = Array( (x - 2, y - 2), (x - 2, y - 1), (x - 2, y), (x - 2, y + 1), (x - 1, y - 2), (x - 1, y - 1), (x - 1, y), (x - 1, y + 1), (x, y - 2), (x, y - 1), (x, y), (x, y + 1), (x + 1, y - 2), (x + 1, y - 1), (x + 1, y), (x + 1, y + 1), (x + 2, y - 2), (x + 2, y - 1), (x + 2, y), (x + 2, y + 1) ) // if player still has walls left if (board.nbWalls(player) > 0) { for (item <- positions) { // if still inside the ground if (item._1 >= 0 && item._1 < board.size - 1 && item._2 >= 0 && item._2 < board.size - 1) { // horizon if (!moves.exists(_ == (("WH", item._1, item._2)))) { if (board.isWallPossibleHere((item._1, item._2), true)) moves.append(("WH", item._1, item._2)) } // vertical if (!moves.exists(_ == (("WV", item._1, item._2)))) { if (board.isWallPossibleHere((item._1, item._2), false)) moves.append(("WV", item._1, item._2)) } } } } moves } def isMoveBetter(opppath:Int, mypath:Int, newBoard:Quoridor):Boolean = { false } def doBFSMoves(board:Quoridor, player:Int):Vertex = { var start:Vertex = new Vertex(board.pawns(player), 1) var visited:ArrayBuffer[(Int, Int)] = new ArrayBuffer[(Int, Int)]() var queue = new Queue queue.push(start) while (!queue.isEmpty) { var node:Vertex = queue.pop // check for termination if (node.id._1 == board.goals(player)) return node // add to visited coordinates visited += Pair(node.id._1, node.id._2) // get all surrounding moves var moves:ArrayBuffer[(Int, Int)] = board.getLegalMovesFromPoint(node.id, player) moves.foreach(item => { // if not visited if (visited.find(_ == item) == None) { // add to queue var newVertex = new Vertex(item, 1) newVertex.previous = node queue.push(newVertex) } }) } //println("NULL BFS!") null } /** * This method gets: * - One random wall placement * - All the legal pawn moves */ def getRandomActions(board:Quoridor, player:Int):ArrayBuffer[(String, Int, Int)] = { /** * val rand = new Random(System.currentTimeMillis()) var random_index = rand.nextInt(rollmove.length) */ // flag to stop until a correct random move is found var isFoundAMove:Boolean = false // a move to be returned var move:(String, Int, Int) = ("P", -1, -1) // array of moves var moves:ArrayBuffer[(String, Int, Int)] = new ArrayBuffer[(String, Int, Int)]() // pawns var myway:ArrayBuffer[(Int, Int)] = new ArrayBuffer[(Int, Int)]() var mypath = QuoridorUtils.doBFSMoves(board, player) // my path if (mypath != null) { while (mypath != null) { myway += ((mypath.id._1, mypath.id._2)) mypath = mypath.previous } myway = myway.reverse if (myway.length > 1) moves += (("P", myway(1)._1, myway(1)._2)) } else { board.getLegalPawnMoves(player).foreach(f => {moves += f}) } // board.getLegalPawnMoves(player).foreach(f => {moves += f}) //println("Get random moves! Start wall placement") // wall placement var counter:Int = 0 // a counter to make sure the loop will not run forever while (isFoundAMove == false && board.nbWalls(player) > 0 && counter < 100) { // random seed var rand = new Random(System.currentTimeMillis()) // random variables var random_wall_type = rand.nextInt(2) var random_x = rand.nextInt(9) var random_y = rand.nextInt(9) var random_wall_string:String = "WH" var random_wall_isHorizon:Boolean = true if (random_wall_type != 1) { random_wall_string = "WV" random_wall_isHorizon = false } // forming the move move = (random_wall_string, random_x, random_y) //println("Trying " + counter + ":" + move) // check wall possible here if (board.isWallPossibleHere( (random_x, random_y), random_wall_isHorizon)) { // stop finding isFoundAMove = true } counter += 1 } // if the isFoundAMove still be false, meaning it can't find a wall placement by random, // we will use get all legal wall moves if (isFoundAMove == false) { board.getLegalWallMoves(player).foreach(wall => {moves += wall}) } //println("Get random moves! Wall placement done!") moves } }
minhprg/mcts_in_quoridor
src/main/scala/games/utils/QuoridorUtils.scala
Scala
gpl-2.0
8,626
package de.hska.wifl1011.seminararbeit import scala.concurrent.{ future, Future } import scala.concurrent.ExecutionContext.Implicits.global import scala.util.{ Failure, Success } import scala.util.Random object Main { def main(args: Array[String]) { val rateDollar: Future[Double] = Helper.getExchangeRateByFuture("US-Dollar") val rateFranc: Future[Double] = Helper.getExchangeRateByFuture("Swiss franc") val selectedRate = rateDollar.fallbackTo(rateFranc) val bookAccommodation = selectedRate.map { rate => { println("Got exchange-rate. It is " + rate) if (Helper.isExchangeRateAcceptable(rate)) { println("Book accommodation") Helper.bookAccommodationOnline() } else { throw new Exception("Rate not acceptable") } } } val bookFlight = bookAccommodation.map { successful => { println("Book flight") Helper.bookFlightOnline() } } bookFlight.onComplete { case Success(_) => println("Flight booked") case Failure(ex) => println(ex.getMessage) } // do some unrelated work Helper.packSuitcase() // keep the jvm running Thread.sleep(3000) } }
fwilhe/hska-seminararbeit
code/holiday/Main.scala
Scala
mit
1,257
package basic._03.stmt_for import org.junit.Test import org.junit.Assert._ import org.hamcrest.core.Is._ import scala.collection.JavaConversions._ /** * Scalaの for文は、以下の処理機構を持っている。 * - フィルタ処理 * - 変換処理 (変数への束縛) * - リスト変換 */ class For_Test_S { /** * [Javaとの対比] * for文 (index指定) * * シナリオ: 国名が複数格納された Listを CSV形式の文字列に変換する。 * 着眼点: get(i)部分で indexによる指定を行っている。自由度が高い記述法のためバグを生む余地がある。 */ @Test def testForIndex(): Unit = { val sb = new StringBuilder(); val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); for (i <- 0 until countryList.size) { val country = countryList(i); sb.append(country); if (i != countryList.size -1) { sb.append(", "); } } assertThat(sb.toString(), is("Japan, UnitedStates, UnitedKingdom, France, China, Geraman")); } /** * [Javaとの対比] * for文 (Iterator指定-whileにて代替) * * シナリオ: 国名が複数格納された Listを CSV形式の文字列に変換する。 * 着眼点: forループ内にJavaのそれの様な(定義;判定;後処理)の区画が無い為、Iteratorを上手く利用することが出来ない。 */ @Test def testForInterator(): Unit = { val sb = new StringBuilder(); val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); val ite = countryList.iterator // for文での記述は不可のため while文を利用 while (ite.hasNext) { val country = ite.next(); sb.append(country); if (ite.hasNext) { sb.append(", "); } } assertThat(sb.toString(), is("Japan, UnitedStates, UnitedKingdom, France, China, Geraman")); } /** * [Javaとの対比] * for文 (拡張 for文) * * シナリオ: 国名が複数格納された Listを CSV形式の文字列に変換する。 * 着眼点: 構文レベルで Iteratorを隠蔽している。 尚、要素の位置は判定出来ない。 */ @Test def testForIterable(): Unit = { val SEP = ", "; val sb = new StringBuilder(); val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); for (country <- countryList) { sb.append(country); sb.append(SEP); } // 最後に", "を削る処理が必要 sb.delete(sb.lastIndexOf(SEP), sb.length()); assertThat(sb.toString(), is("Japan, UnitedStates, UnitedKingdom, France, China, Geraman")); } /** * [Javaとの対比] * for文 (for文と同等の処理を Java8(JoinAPI)にて実現) * * シナリオ: 国名が複数格納された Listを CSV形式の文字列に変換する。 * 着眼点: 用途に適合したライブラリの利用により最適化 */ @Test def testForStream(): Unit = { val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); val countryCSV = String.join(", ", countryList); assertThat(countryCSV, is("Japan, UnitedStates, UnitedKingdom, France, China, Geraman")); } /** * [Javaとの対比] * フィルタリング処理 (for文) * * シナリオ: 国名が複数格納された Listを元に、Uから始まる国名のリストを生成する。 * 着眼点: for文による表現だが、Scalaには次の特徴があるので簡易的な表現が可能。 * - forの文の内部にif条件を組み込める * - yieldにより式として扱うことができる */ @Test def testForFilteredByScalasFor(): Unit = { val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); val countryStartWithU = for (country <- countryList; if country.startsWith("U")) yield country assertThat(countryStartWithU, is(List("UnitedStates", "UnitedKingdom"))); } /** * [Javaとの対比] * フィルタリング処理 (for文からの脱却) * * シナリオ: 国名が複数格納された Listを元に、Uから始まる国名のリストを生成する。 * 着眼点: 関数を利用することで、表現したい意味に近いコードとなっている。 * Javaと異なり、stream()宣言、collect(x)処理は不要。 */ @Test def testForFilteredByFilter(): Unit = { val countryList = List("Japan", "UnitedStates", "UnitedKingdom", "France", "China", "Geraman"); val countryStartWithU = countryList.filter { country => country.startsWith("U") } assertThat(countryStartWithU, is(List("UnitedStates", "UnitedKingdom"))); } }
koooyooo/scala-java-comparison
scala-java-comparison/src/basic/_03/stmt_for/For_Test_S.scala
Scala
apache-2.0
5,001
package sbt package std import language.experimental.macros import scala.reflect._ import reflect.macros._ import reflect.internal.annotations.compileTimeOnly import Def.{ Initialize, ScopedKey } import appmacro.ContextUtil import complete.Parser /** Implementation detail. The wrap methods temporarily hold inputs (as a Tree, at compile time) until a task or setting macro processes it. */ object InputWrapper { /* The names of the wrapper methods should be obscure. * Wrapper checking is based solely on this name, so it must not conflict with a user method name. * The user should never see this method because it is compile-time only and only used internally by the task macro system.*/ private[std] final val WrapTaskName = "wrapTask_\\u2603\\u2603" private[std] final val WrapInitName = "wrapInit_\\u2603\\u2603" private[std] final val WrapInitTaskName = "wrapInitTask_\\u2603\\u2603" private[std] final val WrapInitInputName = "wrapInitInputTask_\\u2603\\u2603" private[std] final val WrapInputName = "wrapInputTask_\\u2603\\u2603" private[std] final val WrapPreviousName = "wrapPrevious_\\u2603\\u2603" @compileTimeOnly("`value` can only be called on a task within a task definition macro, such as :=, +=, ++=, or Def.task.") def wrapTask_\\u2603\\u2603[T](in: Any): T = implDetailError @compileTimeOnly("`value` can only be used within a task or setting macro, such as :=, +=, ++=, Def.task, or Def.setting.") def wrapInit_\\u2603\\u2603[T](in: Any): T = implDetailError @compileTimeOnly("`value` can only be called on a task within a task definition macro, such as :=, +=, ++=, or Def.task.") def wrapInitTask_\\u2603\\u2603[T](in: Any): T = implDetailError @compileTimeOnly("`value` can only be called on an input task within a task definition macro, such as := or Def.inputTask.") def wrapInputTask_\\u2603\\u2603[T](in: Any): T = implDetailError @compileTimeOnly("`value` can only be called on an input task within a task definition macro, such as := or Def.inputTask.") def wrapInitInputTask_\\u2603\\u2603[T](in: Any): T = implDetailError @compileTimeOnly("`previous` can only be called on a task within a task or input task definition macro, such as :=, +=, ++=, Def.task, or Def.inputTask.") def wrapPrevious_\\u2603\\u2603[T](in: Any): T = implDetailError private[this] def implDetailError = sys.error("This method is an implementation detail and should not be referenced.") private[std] def wrapTask[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = wrapImpl[T, InputWrapper.type](c, InputWrapper, WrapTaskName)(ts, pos) private[std] def wrapInit[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = wrapImpl[T, InputWrapper.type](c, InputWrapper, WrapInitName)(ts, pos) private[std] def wrapInitTask[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = wrapImpl[T, InputWrapper.type](c, InputWrapper, WrapInitTaskName)(ts, pos) private[std] def wrapInitInputTask[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = wrapImpl[T, InputWrapper.type](c, InputWrapper, WrapInitInputName)(ts, pos) private[std] def wrapInputTask[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = wrapImpl[T, InputWrapper.type](c, InputWrapper, WrapInputName)(ts, pos) private[std] def wrapPrevious[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[Option[T]] = wrapImpl[Option[T], InputWrapper.type](c, InputWrapper, WrapPreviousName)(ts, pos) // TODO 2.11 Remove this after dropping 2.10.x support. private object HasCompat { val compat = ??? }; import HasCompat._ /** * Wraps an arbitrary Tree in a call to the `<s>.<wrapName>` method of this module for later processing by an enclosing macro. * The resulting Tree is the manually constructed version of: * * `c.universe.reify { <s>.<wrapName>[T](ts.splice) }` */ def wrapImpl[T: c.WeakTypeTag, S <: AnyRef with Singleton](c: Context, s: S, wrapName: String)(ts: c.Expr[Any], pos: c.Position)(implicit it: c.TypeTag[s.type]): c.Expr[T] = { import c.universe.{ Apply => ApplyTree, _ } import compat._ val util = new ContextUtil[c.type](c) val iw = util.singleton(s) val tpe = c.weakTypeOf[T] val nme = newTermName(wrapName).encoded val sel = Select(Ident(iw), nme) sel.setPos(pos) // need to set the position on Select, because that is where the compileTimeOnly check looks val tree = ApplyTree(TypeApply(sel, TypeTree(tpe) :: Nil), ts.tree :: Nil) tree.setPos(ts.tree.pos) // JZ: I'm not sure why we need to do this. Presumably a caller is wrapping this tree in a // typed tree *before* handing the whole thing back to the macro engine. One must never splice // untyped trees under typed trees, as the type checker doesn't descend if `tree.tpe == null`. // // #1031 The previous attempt to fix this just set the type on `tree`, which worked in cases when the // call to `.value` was inside a the task macro and eliminated before the end of the typer phase. // But, if a "naked" call to `.value` left the typer, the superaccessors phase would freak out when // if hit the untyped trees, before we could get to refchecks and the desired @compileTimeOnly warning. val typedTree = c.typeCheck(tree) c.Expr[T](typedTree) } def valueMacroImpl[T: c.WeakTypeTag](c: Context): c.Expr[T] = ContextUtil.selectMacroImpl[T](c) { (ts, pos) => val tpe = ts.tree.tpe if (tpe <:< c.weakTypeOf[Initialize[Task[T]]]) InputWrapper.wrapInitTask[T](c)(ts, pos) else if (tpe <:< c.weakTypeOf[Initialize[T]]) InputWrapper.wrapInit[T](c)(ts, pos) else if (tpe <:< c.weakTypeOf[Task[T]]) InputWrapper.wrapTask[T](c)(ts, pos) else if (tpe <:< c.weakTypeOf[InputTask[T]]) InputWrapper.wrapInputTask[T](c)(ts, pos) else if (tpe <:< c.weakTypeOf[Initialize[InputTask[T]]]) InputWrapper.wrapInitInputTask[T](c)(ts, pos) else c.abort(pos, s"Internal sbt error. Unexpected type ${tpe.widen}") } def taskValueMacroImpl[T: c.WeakTypeTag](c: Context): c.Expr[Task[T]] = ContextUtil.selectMacroImpl[Task[T]](c) { (ts, pos) => val tpe = ts.tree.tpe if (tpe <:< c.weakTypeOf[Initialize[Task[T]]]) InputWrapper.wrapInit[Task[T]](c)(ts, pos) else c.abort(pos, s"Internal sbt error. Unexpected type ${tpe.widen}") } /** Translates <task: TaskKey[T]>.previous(format) to Previous.runtime(<task>)(format).value*/ def previousMacroImpl[T: c.WeakTypeTag](c: Context)(format: c.Expr[sbinary.Format[T]]): c.Expr[Option[T]] = { import c.universe._ c.macroApplication match { case a @ Apply(Select(Apply(_, t :: Nil), tp), fmt) => if (t.tpe <:< c.weakTypeOf[TaskKey[T]]) { val tsTyped = c.Expr[TaskKey[T]](t) val newTree = c.universe.reify { Previous.runtime[T](tsTyped.splice)(format.splice) } wrapPrevious[T](c)(newTree, a.pos) } else c.abort(a.pos, s"Internal sbt error. Unexpected type ${t.tpe.widen}") case x => ContextUtil.unexpectedTree(x) } } } sealed abstract class MacroTaskValue[T] { @compileTimeOnly("`taskValue` can only be used within a setting macro, such as :=, +=, ++=, or Def.setting.") def taskValue: Task[T] = macro InputWrapper.taskValueMacroImpl[T] } sealed abstract class MacroValue[T] { @compileTimeOnly("`value` can only be used within a task or setting macro, such as :=, +=, ++=, Def.task, or Def.setting.") def value: T = macro InputWrapper.valueMacroImpl[T] } sealed abstract class ParserInput[T] { @compileTimeOnly("`parsed` can only be used within an input task macro, such as := or Def.inputTask.") def parsed: T = macro ParserInput.parsedMacroImpl[T] } sealed abstract class InputEvaluated[T] { @compileTimeOnly("`evaluated` can only be used within an input task macro, such as := or Def.inputTask.") def evaluated: T = macro InputWrapper.valueMacroImpl[T] } sealed abstract class ParserInputTask[T] { @compileTimeOnly("`parsed` can only be used within an input task macro, such as := or Def.inputTask.") def parsed: Task[T] = macro ParserInput.parsedInputMacroImpl[T] } sealed abstract class MacroPrevious[T] { @compileTimeOnly("`previous` can only be used within a task macro, such as :=, +=, ++=, or Def.task.") def previous(implicit format: sbinary.Format[T]): Option[T] = macro InputWrapper.previousMacroImpl[T] } /** Implementation detail. The wrap method temporarily holds the input parser (as a Tree, at compile time) until the input task macro processes it. */ object ParserInput { /* The name of the wrapper method should be obscure. * Wrapper checking is based solely on this name, so it must not conflict with a user method name. * The user should never see this method because it is compile-time only and only used internally by the task macros.*/ private[std] val WrapName = "parser_\\u2603\\u2603" private[std] val WrapInitName = "initParser_\\u2603\\u2603" @compileTimeOnly("`parsed` can only be used within an input task macro, such as := or Def.inputTask.") def parser_\\u2603\\u2603[T](i: Any): T = sys.error("This method is an implementation detail and should not be referenced.") @compileTimeOnly("`parsed` can only be used within an input task macro, such as := or Def.inputTask.") def initParser_\\u2603\\u2603[T](i: Any): T = sys.error("This method is an implementation detail and should not be referenced.") private[std] def wrap[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = InputWrapper.wrapImpl[T, ParserInput.type](c, ParserInput, WrapName)(ts, pos) private[std] def wrapInit[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any], pos: c.Position): c.Expr[T] = InputWrapper.wrapImpl[T, ParserInput.type](c, ParserInput, WrapInitName)(ts, pos) private[std] def inputParser[T: c.WeakTypeTag](c: Context)(t: c.Expr[InputTask[T]]): c.Expr[State => Parser[Task[T]]] = c.universe.reify(t.splice.parser) def parsedInputMacroImpl[T: c.WeakTypeTag](c: Context): c.Expr[Task[T]] = ContextUtil.selectMacroImpl[Task[T]](c) { (p, pos) => import c.universe.reify val tpe = p.tree.tpe if (tpe <:< c.weakTypeOf[InputTask[T]]) { val e = c.Expr[InputTask[T]](p.tree) wrap[Task[T]](c)(inputParser(c)(e), pos) } else if (tpe <:< c.weakTypeOf[Initialize[InputTask[T]]]) { val e = c.Expr[Initialize[InputTask[T]]](p.tree) wrapInit[Task[T]](c)(reify { Def.toIParser(e.splice) }, pos) } else c.abort(pos, s"Internal sbt error. Unexpected type ${tpe.normalize} in parsedInputMacroImpl.") } /** Implements `Parser[T].parsed` by wrapping the Parser with the ParserInput wrapper.*/ def parsedMacroImpl[T: c.WeakTypeTag](c: Context): c.Expr[T] = ContextUtil.selectMacroImpl[T](c) { (p, pos) => import c.universe.reify val tpe = p.tree.tpe if (tpe <:< c.weakTypeOf[Parser[T]]) { val e = c.Expr[Parser[T]](p.tree) wrap[T](c)(reify { Def.toSParser(e.splice) }, pos) } else if (tpe <:< c.weakTypeOf[State => Parser[T]]) wrap[T](c)(p, pos) else if (tpe <:< c.weakTypeOf[Initialize[Parser[T]]]) { val e = c.Expr[Initialize[Parser[T]]](p.tree) val es = reify { Def.toISParser(e.splice) } wrapInit[T](c)(es, pos) } else if (tpe <:< c.weakTypeOf[Initialize[State => Parser[T]]]) wrapInit[T](c)(p, pos) else c.abort(pos, s"Internal sbt error. Unexpected type ${tpe.normalize} in parsedMacroImpl") } }
pdalpra/sbt
main/settings/src/main/scala/sbt/std/InputWrapper.scala
Scala
bsd-3-clause
11,752
package org.scaladebugger.api.profiles.swappable.requests.threads import org.scaladebugger.api.lowlevel.JDIArgument import org.scaladebugger.api.lowlevel.threads.ThreadStartRequestInfo import org.scaladebugger.api.pipelines.Pipeline.IdentityPipeline import org.scaladebugger.api.profiles.swappable.SwappableDebugProfileManagement import org.scaladebugger.api.profiles.traits.requests.threads.ThreadStartRequest import scala.util.Try /** * Represents a swappable profile for thread start events that redirects the * invocation to another profile. */ trait SwappableThreadStartRequest extends ThreadStartRequest { this: SwappableDebugProfileManagement => override def tryGetOrCreateThreadStartRequestWithData( extraArguments: JDIArgument* ): Try[IdentityPipeline[ThreadStartEventAndData]] = { withCurrentProfile.tryGetOrCreateThreadStartRequestWithData(extraArguments: _*) } override def isThreadStartRequestWithArgsPending( extraArguments: JDIArgument* ): Boolean = { withCurrentProfile.isThreadStartRequestWithArgsPending(extraArguments: _*) } override def removeThreadStartRequestWithArgs( extraArguments: JDIArgument* ): Option[ThreadStartRequestInfo] = { withCurrentProfile.removeThreadStartRequestWithArgs(extraArguments: _*) } override def removeAllThreadStartRequests(): Seq[ThreadStartRequestInfo] = { withCurrentProfile.removeAllThreadStartRequests() } override def threadStartRequests: Seq[ThreadStartRequestInfo] = { withCurrentProfile.threadStartRequests } }
chipsenkbeil/scala-debugger
scala-debugger-api/src/main/scala/org/scaladebugger/api/profiles/swappable/requests/threads/SwappableThreadStartRequest.scala
Scala
apache-2.0
1,541
import sbt._ object Library { // Versions val akkaVersion = "2.2.1" val sprayVersion = "1.2-20131004" // Libraries // Akka related val akkaActor = "com.typesafe.akka" %% "akka-actor" % akkaVersion // Spray related val sprayRouting = "io.spray" % "spray-routing" % sprayVersion val sprayCan = "io.spray" % "spray-can" % sprayVersion val sprayHttp = "io.spray" % "spray-http" % sprayVersion val sprayHttpX = "io.spray" % "spray-httpx" % sprayVersion val sprayIO = "io.spray" % "spray-io" % sprayVersion val sprayUtil = "io.spray" % "spray-util" % sprayVersion val sprayJson = "io.spray" %% "spray-json" % "1.2.5" // slf4j // val slf4j = "org.slf4j" % "slf4j-simple" % "1.7.5", val akkaSlf4j = "com.typesafe.akka" %% "akka-slf4j" % akkaVersion lazy val logback = "ch.qos.logback" % "logback-classic" % "1.0.7" // Databases val mongoDb = "org.mongodb" %% "casbah" % "2.6.3" val salat = "com.novus" %% "salat" % "1.9.2" // Tests val specs2 = "org.specs2" %% "specs2" % "2.2.3" % "test" val scalaCheck = "org.scalacheck" %% "scalacheck" % "1.10.1" % "test" val mockito = "org.mockito" % "mockito-all" % "1.9.5" val akkaTestKit = "com.typesafe.akka" %% "akka-testkit" % akkaVersion val sprayTestKit = "io.spray" % "spray-testkit" % sprayVersion % "test" } object Dependencies { import Library._ val add = List ( akkaActor, sprayRouting, sprayCan, sprayHttp, sprayHttpX, sprayIO, sprayUtil, sprayJson, // slf4j, akkaSlf4j, logback, mongoDb, salat, specs2, scalaCheck, mockito, akkaTestKit, sprayTestKit ) }
skaphe/math-micro-services
add/project/Dependencies.scala
Scala
mit
1,641
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.spark.testsuite.dataload import org.scalatest.BeforeAndAfterAll import org.apache.spark.sql.test.util.QueryTest import org.apache.carbondata.processing.exception.DataLoadingException class TestLoadDataUseAllDictionary extends QueryTest with BeforeAndAfterAll{ override def beforeAll { sql("DROP TABLE IF EXISTS t3") sql(""" CREATE TABLE IF NOT EXISTS t3 (ID Int, date Timestamp, country String, name String, phonetype String, serialname String, salary Int) STORED BY 'carbondata' TBLPROPERTIES('dictionary_include'='country,name,phonetype,serialname') """) } test("test load data use all dictionary, and given wrong format dictionary values") { try { sql(s""" LOAD DATA LOCAL INPATH '$resourcesPath/source_without_header.csv' into table t3 options('FILEHEADER'='id,date,country,name,phonetype,serialname,salary', 'All_DICTIONARY_PATH'='$resourcesPath/dict.txt','single_pass'='true') """) assert(false) } catch { case e: DataLoadingException => assert(e.getMessage.equals("Data Loading failure, dictionary values are " + "not in correct format!")) } } override def afterAll { sql("DROP TABLE IF EXISTS t3") } }
sgururajshetty/carbondata
integration/spark-common-test/src/test/scala/org/apache/carbondata/spark/testsuite/dataload/TestLoadDataUseAllDictionary.scala
Scala
apache-2.0
2,129
import sbt._ import Keys._ import com.typesafe.sbt.pgp.PgpKeys._ object PublishSettings { type Sett = Project.Setting[_] lazy val all = Seq[Sett]( pom , publish , publishMavenStyle := true , publishArtifact in Test := false , pomIncludeRepository := { _ => false } , licenses := Seq("BSD-3-Clause" -> url("http://www.opensource.org/licenses/BSD-3-Clause")) , homepage := Some(url("https://github.com/NICTA/trackfunction")) , useGpg := true ) lazy val pom: Sett = pomExtra := ( <scm> <url>[email protected]:NICTA/trackfunction.git</url> <connection>scm:[email protected]:NICTA/trackfunction.git</connection> </scm> <developers> <developer> <id>tonymorris</id> <name>Tony Morris</name> <url>http://tmorris.net</url> </developer> </developers> ) lazy val publish: Sett = publishTo <<= version.apply(v => { val nexus = "https://oss.sonatype.org/" if (v.trim.endsWith("SNAPSHOT")) Some("snapshots" at nexus + "content/repositories/snapshots") else Some("releases" at nexus + "service/local/staging/deploy/maven2") }) }
NICTA/trackfunction
project/PublishSettings.scala
Scala
bsd-3-clause
1,177
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark import org.scalatest.concurrent.{Signaler, ThreadSignaler, TimeLimits} import org.scalatest.time.{Millis, Span} class UnpersistSuite extends SparkFunSuite with LocalSparkContext with TimeLimits { // Necessary to make ScalaTest 3.x interrupt a thread on the JVM like ScalaTest 2.2.x implicit val defaultSignaler: Signaler = ThreadSignaler test("unpersist RDD") { sc = new SparkContext("local", "test") val rdd = sc.makeRDD(Array(1, 2, 3, 4), 2).cache() rdd.count assert(sc.persistentRdds.isEmpty === false) rdd.unpersist(blocking = true) assert(sc.persistentRdds.isEmpty === true) failAfter(Span(3000, Millis)) { try { while (! sc.getRDDStorageInfo.isEmpty) { Thread.sleep(200) } } catch { case _: Throwable => Thread.sleep(10) // Do nothing. We might see exceptions because block manager // is racing this thread to remove entries from the driver. } } assert(sc.getRDDStorageInfo.isEmpty === true) } }
WindCanDie/spark
core/src/test/scala/org/apache/spark/UnpersistSuite.scala
Scala
apache-2.0
1,850
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.integration.spark.testsuite.dataload import org.apache.spark.sql.Row import org.apache.spark.sql.test.util.QueryTest import org.scalatest.BeforeAndAfterAll import org.apache.carbondata.core.constants.CarbonCommonConstants import org.apache.carbondata.core.util.CarbonProperties /** * Test Class for data loading when there are null measures in data * */ class TestLoadDataWithEmptyArrayColumns extends QueryTest with BeforeAndAfterAll { override def beforeAll { sql("drop table if exists nest13") sql(""" CREATE TABLE nest13 (imei string,age int, productdate timestamp,gamePointId double, reserved6 array<string>,mobile struct<poc:string, imsi:int>) STORED AS carbondata """) } test("test carbon table data loading when there are empty array columns in data") { CarbonProperties.getInstance() .addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, CarbonCommonConstants.CARBON_TIMESTAMP_DEFAULT_FORMAT ) sql( s""" LOAD DATA inpath '$resourcesPath/arrayColumnEmpty.csv' into table nest13 options ('DELIMITER'=',', 'complex_delimiter_level_1'='/') """ ) checkAnswer( sql(""" SELECT count(*) from nest13 """), Seq(Row(20))) } override def afterAll { CarbonProperties.getInstance() .addProperty(CarbonCommonConstants.CARBON_TIMESTAMP_FORMAT, CarbonCommonConstants.CARBON_TIMESTAMP_DEFAULT_FORMAT) sql("drop table nest13") } }
zzcclp/carbondata
integration/spark/src/test/scala/org/apache/carbondata/integration/spark/testsuite/dataload/TestLoadDataWithEmptyArrayColumns.scala
Scala
apache-2.0
2,371
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.table.planner.plan.metadata import org.apache.flink.table.api.{TableConfig, TableException} import org.apache.flink.table.catalog.{CatalogManager, FunctionCatalog} import org.apache.flink.table.data.RowData import org.apache.flink.table.expressions.ApiExpressionUtils.intervalOfMillis import org.apache.flink.table.expressions._ import org.apache.flink.table.functions.{FunctionIdentifier, UserDefinedFunctionHelper} import org.apache.flink.table.module.ModuleManager import org.apache.flink.table.operations.TableSourceQueryOperation import org.apache.flink.table.planner.calcite.FlinkRelBuilder.PlannerNamedWindowProperty import org.apache.flink.table.planner.calcite.{FlinkRelBuilder, FlinkTypeFactory} import org.apache.flink.table.planner.delegation.PlannerContext import org.apache.flink.table.planner.expressions.{PlannerProctimeAttribute, PlannerRowtimeAttribute, PlannerWindowReference, PlannerWindowStart} import org.apache.flink.table.planner.functions.aggfunctions.SumAggFunction.DoubleSumAggFunction import org.apache.flink.table.planner.functions.aggfunctions.{DenseRankAggFunction, RankAggFunction, RowNumberAggFunction} import org.apache.flink.table.planner.functions.sql.FlinkSqlOperatorTable import org.apache.flink.table.planner.functions.utils.AggSqlFunction import org.apache.flink.table.planner.plan.PartialFinalType import org.apache.flink.table.planner.plan.`trait`.{FlinkRelDistribution, FlinkRelDistributionTraitDef} import org.apache.flink.table.planner.plan.logical.{LogicalWindow, TumblingGroupWindow} import org.apache.flink.table.planner.plan.nodes.FlinkConventions import org.apache.flink.table.planner.plan.nodes.calcite._ import org.apache.flink.table.planner.plan.nodes.logical._ import org.apache.flink.table.planner.plan.nodes.physical.batch._ import org.apache.flink.table.planner.plan.nodes.physical.stream._ import org.apache.flink.table.planner.plan.schema.FlinkPreparingTableBase import org.apache.flink.table.planner.plan.stream.sql.join.TestTemporalTable import org.apache.flink.table.planner.plan.utils.AggregateUtil.transformToStreamAggregateInfoList import org.apache.flink.table.planner.plan.utils._ import org.apache.flink.table.planner.utils.{CountAggFunction, Top3} import org.apache.flink.table.runtime.operators.rank.{ConstantRankRange, RankType, VariableRankRange} import org.apache.flink.table.types.AtomicDataType import org.apache.flink.table.types.logical._ import org.apache.flink.table.types.utils.TypeConversions import org.apache.flink.table.utils.CatalogManagerMocks import com.google.common.collect.{ImmutableList, Lists} import org.apache.calcite.jdbc.CalciteSchema import org.apache.calcite.plan._ import org.apache.calcite.prepare.CalciteCatalogReader import org.apache.calcite.rel._ import org.apache.calcite.rel.`type`.{RelDataType, RelDataTypeFieldImpl} import org.apache.calcite.rel.core._ import org.apache.calcite.rel.logical._ import org.apache.calcite.rel.metadata.{JaninoRelMetadataProvider, RelMetadataQuery, RelMetadataQueryBase} import org.apache.calcite.rex._ import org.apache.calcite.schema.SchemaPlus import org.apache.calcite.sql.SqlWindow import org.apache.calcite.sql.`type`.SqlTypeName._ import org.apache.calcite.sql.`type`.{BasicSqlType, SqlTypeName} import org.apache.calcite.sql.fun.SqlStdOperatorTable._ import org.apache.calcite.sql.fun.{SqlCountAggFunction, SqlStdOperatorTable} import org.apache.calcite.sql.parser.SqlParserPos import org.apache.calcite.util._ import org.junit.{Before, BeforeClass} import java.math.BigDecimal import java.util import scala.collection.JavaConversions._ class FlinkRelMdHandlerTestBase { val tableConfig = new TableConfig() val rootSchema: SchemaPlus = MetadataTestUtil.initRootSchema() val catalogManager: CatalogManager = CatalogManagerMocks.createEmptyCatalogManager() val moduleManager = new ModuleManager // TODO batch RelNode and stream RelNode should have different PlannerContext // and RelOptCluster due to they have different trait definitions. val plannerContext: PlannerContext = new PlannerContext( tableConfig, new FunctionCatalog(tableConfig, catalogManager, moduleManager), catalogManager, CalciteSchema.from(rootSchema), util.Arrays.asList( ConventionTraitDef.INSTANCE, FlinkRelDistributionTraitDef.INSTANCE, RelCollationTraitDef.INSTANCE ) ) val typeFactory: FlinkTypeFactory = plannerContext.getTypeFactory val mq: FlinkRelMetadataQuery = FlinkRelMetadataQuery.instance() var relBuilder: FlinkRelBuilder = _ var rexBuilder: RexBuilder = _ var cluster: RelOptCluster = _ var logicalTraits: RelTraitSet = _ var flinkLogicalTraits: RelTraitSet = _ var batchPhysicalTraits: RelTraitSet = _ var streamPhysicalTraits: RelTraitSet = _ @Before def setUp(): Unit = { relBuilder = plannerContext.createRelBuilder("default_catalog", "default_database") rexBuilder = relBuilder.getRexBuilder cluster = relBuilder.getCluster logicalTraits = cluster.traitSetOf(Convention.NONE) flinkLogicalTraits = cluster.traitSetOf(FlinkConventions.LOGICAL) batchPhysicalTraits = cluster.traitSetOf(FlinkConventions.BATCH_PHYSICAL) streamPhysicalTraits = cluster.traitSetOf(FlinkConventions.STREAM_PHYSICAL) } protected val intType: RelDataType = typeFactory.createFieldTypeFromLogicalType( new IntType(false)) protected val doubleType: RelDataType = typeFactory.createFieldTypeFromLogicalType( new DoubleType(false)) protected val longType: RelDataType = typeFactory.createFieldTypeFromLogicalType( new BigIntType(false)) protected val stringType: RelDataType = typeFactory.createFieldTypeFromLogicalType( new VarCharType(false, VarCharType.MAX_LENGTH)) protected lazy val testRel = new TestRel( cluster, logicalTraits, createDataStreamScan(ImmutableList.of("student"), logicalTraits)) protected lazy val studentLogicalScan: LogicalTableScan = createDataStreamScan(ImmutableList.of("student"), logicalTraits) protected lazy val studentFlinkLogicalScan: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("student"), flinkLogicalTraits) protected lazy val studentBatchScan: BatchExecBoundedStreamScan = createDataStreamScan(ImmutableList.of("student"), batchPhysicalTraits) protected lazy val studentStreamScan: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("student"), streamPhysicalTraits) protected lazy val empLogicalScan: LogicalTableScan = createDataStreamScan(ImmutableList.of("emp"), logicalTraits) protected lazy val empFlinkLogicalScan: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("emp"), flinkLogicalTraits) protected lazy val empBatchScan: BatchExecBoundedStreamScan = createDataStreamScan(ImmutableList.of("emp"), batchPhysicalTraits) protected lazy val empStreamScan: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("emp"), streamPhysicalTraits) private lazy val valuesType = relBuilder.getTypeFactory .builder() .add("a", SqlTypeName.BIGINT) .add("b", SqlTypeName.BOOLEAN) .add("c", SqlTypeName.DATE) .add("d", SqlTypeName.TIME) .add("e", SqlTypeName.TIMESTAMP) .add("f", SqlTypeName.DOUBLE) .add("g", SqlTypeName.FLOAT) .add("h", SqlTypeName.VARCHAR) .build() protected lazy val emptyValues: LogicalValues = { relBuilder.values(valuesType) relBuilder.build().asInstanceOf[LogicalValues] } protected lazy val logicalValues: LogicalValues = { val tupleList = List( List("1", "true", "2017-10-01", "10:00:00", "2017-10-01 00:00:00", "2.12", null, "abc"), List(null, "false", "2017-09-01", "10:00:01", null, "3.12", null, null), List("3", "true", null, "10:00:02", "2017-10-01 01:00:00", "3.0", null, "xyz"), List("2", "true", "2017-10-02", "09:59:59", "2017-07-01 01:00:00", "-1", null, "F") ).map(createLiteralList(valuesType, _)) relBuilder.values(tupleList, valuesType) relBuilder.build().asInstanceOf[LogicalValues] } // select id, name, score + 0.2, age - 1, height * 1.1 as h1, height / 0.9 as h2, height, // case sex = 'M' then 1 else 2, true, 2.1, 2, cast(score as double not null) as s from student protected lazy val logicalProject: LogicalProject = { relBuilder.push(studentLogicalScan) val projects = List( // id relBuilder.field(0), // name relBuilder.field(1), // score + 0.1 relBuilder.call(PLUS, relBuilder.field(2), relBuilder.literal(0.2)), // age - 1 relBuilder.call(MINUS, relBuilder.field(3), relBuilder.literal(1)), // height * 1.1 as h1 relBuilder.alias(relBuilder.call(MULTIPLY, relBuilder.field(4), relBuilder.literal(1.1)), "h1"), // height / 0.9 as h2 relBuilder.alias(relBuilder.call(DIVIDE, relBuilder.field(4), relBuilder.literal(0.9)), "h2"), // height relBuilder.field(4), // case sex = 'M' then 1 else 2 relBuilder.call(CASE, relBuilder.call(EQUALS, relBuilder.field(5), relBuilder.literal("M")), relBuilder.literal(1), relBuilder.literal(2)), // true relBuilder.literal(true), // 2.1 rexBuilder.makeLiteral(2.1D, doubleType, true), // 2 rexBuilder.makeLiteral(2L, longType, true), // cast(score as double not null) as s rexBuilder.makeCast(doubleType, relBuilder.field(2)) ) relBuilder.project(projects).build().asInstanceOf[LogicalProject] } // filter: id < 10 // calc = filter (id < 10) + logicalProject protected lazy val (logicalFilter, logicalCalc) = { relBuilder.push(studentLogicalScan) // id < 10 val expr = relBuilder.call(LESS_THAN, relBuilder.field(0), relBuilder.literal(10)) val filter = relBuilder.filter(expr).build val calc = createLogicalCalc( studentLogicalScan, logicalProject.getRowType, logicalProject.getProjects, List(expr)) (filter, calc) } // id, name, score, age, height, sex, class, 1 // id, null, score, age, height, sex, class, 4 // id, null, score, age, height, null, class, 5 protected lazy val (logicalExpand, flinkLogicalExpand, batchExpand, streamExpand) = { val cluster = studentLogicalScan.getCluster val expandOutputType = ExpandUtil.buildExpandRowType( cluster.getTypeFactory, studentLogicalScan.getRowType, Array.empty[Integer]) val expandProjects = ExpandUtil.createExpandProjects( studentLogicalScan.getCluster.getRexBuilder, studentLogicalScan.getRowType, expandOutputType, ImmutableBitSet.of(1, 3, 5), ImmutableList.of( ImmutableBitSet.of(1, 3, 5), ImmutableBitSet.of(3, 5), ImmutableBitSet.of(3)), Array.empty[Integer]) val logicalExpand = new LogicalExpand(cluster, studentLogicalScan.getTraitSet, studentLogicalScan, expandOutputType, expandProjects, 7) val flinkLogicalExpand = new FlinkLogicalExpand(cluster, flinkLogicalTraits, studentFlinkLogicalScan, expandOutputType, expandProjects, 7) val batchExpand = new BatchExecExpand(cluster, batchPhysicalTraits, studentBatchScan, expandOutputType, expandProjects, 7) val streamExecExpand = new StreamExecExpand(cluster, streamPhysicalTraits, studentStreamScan, expandOutputType, expandProjects, 7) (logicalExpand, flinkLogicalExpand, batchExpand, streamExecExpand) } // hash exchange on class protected lazy val (batchExchange, streamExchange) = { val hash6 = FlinkRelDistribution.hash(Array(6), requireStrict = true) val batchExchange = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash6), studentBatchScan, hash6 ) val streamExchange = new StreamExecExchange( cluster, streamPhysicalTraits.replace(hash6), studentStreamScan, hash6 ) (batchExchange, streamExchange) } // equivalent SQL is // select * from student order by class asc, score desc protected lazy val (logicalSort, flinkLogicalSort, batchSort, streamSort) = { val logicalSort = relBuilder.scan("student").sort( relBuilder.field("class"), relBuilder.desc(relBuilder.field("score"))) .build.asInstanceOf[LogicalSort] val collation = logicalSort.getCollation val flinkLogicalSort = new FlinkLogicalSort(cluster, flinkLogicalTraits.replace(collation), studentFlinkLogicalScan, collation, null, null) val batchSort = new BatchExecSort(cluster, batchPhysicalTraits.replace(collation).replace(FlinkRelDistribution.SINGLETON), studentBatchScan, collation) val streamSort = new StreamExecSort(cluster, streamPhysicalTraits.replace(collation).replace(FlinkRelDistribution.SINGLETON), studentStreamScan, collation) (logicalSort, flinkLogicalSort, batchSort, streamSort) } // equivalent SQL is // select * from student limit 20 offset 10 protected lazy val ( logicalLimit, flinkLogicalLimit, batchLimit, batchLocalLimit, batchGlobalLimit, streamLimit) = { val logicalSort = relBuilder.scan("student").limit(10, 20) .build.asInstanceOf[LogicalSort] val collation = logicalSort.getCollation val flinkLogicalSort = new FlinkLogicalSort( cluster, flinkLogicalTraits.replace(collation), studentFlinkLogicalScan, collation, logicalSort.offset, logicalSort.fetch) val batchSort = new BatchExecLimit(cluster, batchPhysicalTraits.replace(collation), new BatchExecExchange( cluster, batchPhysicalTraits.replace(FlinkRelDistribution.SINGLETON), studentBatchScan, FlinkRelDistribution.SINGLETON), logicalSort.offset, logicalSort.fetch, true) val batchSortLocal = new BatchExecLimit(cluster, batchPhysicalTraits.replace(collation), studentBatchScan, relBuilder.literal(0), relBuilder.literal(SortUtil.getLimitEnd(logicalSort.offset, logicalSort.fetch)), false) val batchSortGlobal = new BatchExecLimit(cluster, batchPhysicalTraits.replace(collation), new BatchExecExchange( cluster, batchPhysicalTraits.replace(FlinkRelDistribution.SINGLETON), batchSortLocal, FlinkRelDistribution.SINGLETON), logicalSort.offset, logicalSort.fetch, true) val streamSort = new StreamExecLimit(cluster, streamPhysicalTraits.replace(collation), studentStreamScan, logicalSort.offset, logicalSort.fetch) (logicalSort, flinkLogicalSort, batchSort, batchSortLocal, batchSortGlobal, streamSort) } // equivalent SQL is // select * from student order by class asc, score desc limit 20 offset 10 protected lazy val ( logicalSortLimit, flinkLogicalSortLimit, batchSortLimit, batchLocalSortLimit, batchGlobalSortLimit, streamSortLimit) = { val logicalSortLimit = relBuilder.scan("student").sort( relBuilder.field("class"), relBuilder.desc(relBuilder.field("score"))) .limit(10, 20).build.asInstanceOf[LogicalSort] val collection = logicalSortLimit.collation val offset = logicalSortLimit.offset val fetch = logicalSortLimit.fetch val flinkLogicalSortLimit = new FlinkLogicalSort(cluster, flinkLogicalTraits.replace(collection), studentFlinkLogicalScan, collection, offset, fetch) val batchSortLimit = new BatchExecSortLimit(cluster, batchPhysicalTraits.replace(collection), new BatchExecExchange( cluster, batchPhysicalTraits.replace(FlinkRelDistribution.SINGLETON), studentBatchScan, FlinkRelDistribution.SINGLETON), collection, offset, fetch, true) val batchSortLocalLimit = new BatchExecSortLimit(cluster, batchPhysicalTraits.replace(collection), studentBatchScan, collection, relBuilder.literal(0), relBuilder.literal(SortUtil.getLimitEnd(offset, fetch)), false) val batchSortGlobal = new BatchExecSortLimit(cluster, batchPhysicalTraits.replace(collection), new BatchExecExchange( cluster, batchPhysicalTraits.replace(FlinkRelDistribution.SINGLETON), batchSortLocalLimit, FlinkRelDistribution.SINGLETON), collection, offset, fetch, true) val streamSort = new StreamExecSortLimit(cluster, streamPhysicalTraits.replace(collection), studentStreamScan, collection, offset, fetch, UndefinedStrategy) (logicalSortLimit, flinkLogicalSortLimit, batchSortLimit, batchSortLocalLimit, batchSortGlobal, streamSort) } // equivalent SQL is // select * from ( // select id, name, score, age, height, sex, class, // RANK() over (partition by class order by score) rk from student // ) t where rk <= 5 protected lazy val ( logicalRank, flinkLogicalRank, batchLocalRank, batchGlobalRank, streamRank) = { val logicalRank = new LogicalRank( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val flinkLogicalRank = new FlinkLogicalRank( cluster, flinkLogicalTraits, studentFlinkLogicalScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val batchLocalRank = new BatchExecRank( cluster, batchPhysicalTraits, studentBatchScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = false, isGlobal = false ) val hash6 = FlinkRelDistribution.hash(Array(6), requireStrict = true) val batchExchange = new BatchExecExchange( cluster, batchLocalRank.getTraitSet.replace(hash6), batchLocalRank, hash6) val batchGlobalRank = new BatchExecRank( cluster, batchPhysicalTraits, batchExchange, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true, isGlobal = true ) val streamExchange = new BatchExecExchange(cluster, studentStreamScan.getTraitSet.replace(hash6), studentStreamScan, hash6) val streamRank = new StreamExecRank( cluster, streamPhysicalTraits, streamExchange, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true, UndefinedStrategy ) (logicalRank, flinkLogicalRank, batchLocalRank, batchGlobalRank, streamRank) } // equivalent SQL is // select * from ( // select id, name, score, age, height, sex, class, // RANK() over (partition by age order by score) rk from student // ) t where rk <= 5 and rk >= 3 protected lazy val ( logicalRank2, flinkLogicalRank2, batchLocalRank2, batchGlobalRank2, streamRank2) = { val logicalRank = new LogicalRank( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(3), RelCollations.of(2), RankType.RANK, new ConstantRankRange(3, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val flinkLogicalRank = new FlinkLogicalRank( cluster, flinkLogicalTraits, studentFlinkLogicalScan, ImmutableBitSet.of(3), RelCollations.of(2), RankType.RANK, new ConstantRankRange(3, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val batchLocalRank = new BatchExecRank( cluster, batchPhysicalTraits, studentBatchScan, ImmutableBitSet.of(3), RelCollations.of(2), RankType.RANK, new ConstantRankRange(1, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = false, isGlobal = false ) val hash6 = FlinkRelDistribution.hash(Array(6), requireStrict = true) val batchExchange = new BatchExecExchange( cluster, batchLocalRank.getTraitSet.replace(hash6), batchLocalRank, hash6) val batchGlobalRank = new BatchExecRank( cluster, batchPhysicalTraits, batchExchange, ImmutableBitSet.of(3), RelCollations.of(2), RankType.RANK, new ConstantRankRange(3, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true, isGlobal = true ) val streamExchange = new BatchExecExchange(cluster, studentStreamScan.getTraitSet.replace(hash6), studentStreamScan, hash6) val streamRank = new StreamExecRank( cluster, streamPhysicalTraits, streamExchange, ImmutableBitSet.of(3), RelCollations.of(2), RankType.RANK, new ConstantRankRange(3, 5), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true, UndefinedStrategy ) (logicalRank, flinkLogicalRank, batchLocalRank, batchGlobalRank, streamRank) } // equivalent SQL is // select * from ( // select id, name, score, age, height, sex, class, // ROW_NUMBER() over (order by height) rn from student // ) t where rk > 2 and rk < 7 protected lazy val (logicalRowNumber, flinkLogicalRowNumber, streamRowNumber) = { val logicalRowNumber = new LogicalRank( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(), RelCollations.of(4), RankType.ROW_NUMBER, new ConstantRankRange(3, 6), new RelDataTypeFieldImpl("rn", 7, longType), outputRankNumber = true ) val flinkLogicalRowNumber = new FlinkLogicalRank( cluster, flinkLogicalTraits, studentFlinkLogicalScan, ImmutableBitSet.of(), RelCollations.of(4), RankType.ROW_NUMBER, new ConstantRankRange(3, 6), new RelDataTypeFieldImpl("rn", 7, longType), outputRankNumber = true ) val singleton = FlinkRelDistribution.SINGLETON val streamExchange = new BatchExecExchange(cluster, studentStreamScan.getTraitSet.replace(singleton), studentStreamScan, singleton) val streamRowNumber = new StreamExecRank( cluster, streamPhysicalTraits, streamExchange, ImmutableBitSet.of(), RelCollations.of(4), RankType.ROW_NUMBER, new ConstantRankRange(3, 6), new RelDataTypeFieldImpl("rn", 7, longType), outputRankNumber = true, UndefinedStrategy ) (logicalRowNumber, flinkLogicalRowNumber, streamRowNumber) } // equivalent SQL is // select a, b, c from ( // select a, b, c, proctime // ROW_NUMBER() over (partition by b order by proctime) rn from TemporalTable3 // ) t where rn <= 1 // // select a, b, c from ( // select a, b, c, proctime // ROW_NUMBER() over (partition by b, c order by proctime desc) rn from TemporalTable3 // ) t where rn <= 1 protected lazy val (streamDeduplicateFirstRow, streamDeduplicateLastRow) = { val scan: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable3"), streamPhysicalTraits) val hash1 = FlinkRelDistribution.hash(Array(1), requireStrict = true) val streamExchange1 = new StreamExecExchange( cluster, scan.getTraitSet.replace(hash1), scan, hash1) val firstRow = new StreamExecDeduplicate( cluster, streamPhysicalTraits, streamExchange1, Array(1), keepLastRow = false ) val builder = typeFactory.builder() firstRow.getRowType.getFieldList.dropRight(2).foreach(builder.add) val projectProgram = RexProgram.create( firstRow.getRowType, Array(0, 1, 2).map(i => RexInputRef.of(i, firstRow.getRowType)).toList, null, builder.build(), rexBuilder ) val calcOfFirstRow = new StreamExecCalc( cluster, streamPhysicalTraits, firstRow, projectProgram, projectProgram.getOutputRowType ) val hash12 = FlinkRelDistribution.hash(Array(1, 2), requireStrict = true) val streamExchange2 = new BatchExecExchange(cluster, scan.getTraitSet.replace(hash12), scan, hash12) val lastRow = new StreamExecDeduplicate( cluster, streamPhysicalTraits, streamExchange2, Array(1, 2), keepLastRow = true ) val calcOfLastRow = new StreamExecCalc( cluster, streamPhysicalTraits, lastRow, projectProgram, projectProgram.getOutputRowType ) (calcOfFirstRow, calcOfLastRow) } // equivalent SQL is // select * from ( // select id, name, score, age, height, sex, class, // RANK() over (partition by class order by score) rk from student // ) t where rk <= age protected lazy val ( logicalRankWithVariableRange, flinkLogicalRankWithVariableRange, streamRankWithVariableRange) = { val logicalRankWithVariableRange = new LogicalRank( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new VariableRankRange(3), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val flinkLogicalRankWithVariableRange = new FlinkLogicalRank( cluster, logicalTraits, studentFlinkLogicalScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new VariableRankRange(3), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true ) val streamRankWithVariableRange = new StreamExecRank( cluster, logicalTraits, studentStreamScan, ImmutableBitSet.of(6), RelCollations.of(2), RankType.RANK, new VariableRankRange(3), new RelDataTypeFieldImpl("rk", 7, longType), outputRankNumber = true, UndefinedStrategy ) (logicalRankWithVariableRange, flinkLogicalRankWithVariableRange, streamRankWithVariableRange) } protected lazy val tableAggCall = { val top3 = new Top3 val resultTypeInfo = UserDefinedFunctionHelper.getReturnTypeOfAggregateFunction(top3) val accTypeInfo = UserDefinedFunctionHelper.getAccumulatorTypeOfAggregateFunction(top3) val resultDataType = TypeConversions.fromLegacyInfoToDataType(resultTypeInfo) val accDataType = TypeConversions.fromLegacyInfoToDataType(accTypeInfo) val builder = typeFactory.builder() builder.add("f0", new BasicSqlType(typeFactory.getTypeSystem, SqlTypeName.INTEGER)) builder.add("f1", new BasicSqlType(typeFactory.getTypeSystem, SqlTypeName.INTEGER)) val relDataType = builder.build() AggregateCall.create( AggSqlFunction( FunctionIdentifier.of("top3"), "top3", new Top3, resultDataType, accDataType, typeFactory, false), false, false, false, Seq(Integer.valueOf(0)).toList, -1, RelCollationImpl.of(), relDataType, "" ) } protected lazy val (logicalTableAgg, flinkLogicalTableAgg, streamExecTableAgg) = { val logicalTableAgg = new LogicalTableAggregate( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(0), null, Seq(tableAggCall)) val flinkLogicalTableAgg = new FlinkLogicalTableAggregate( cluster, logicalTraits, studentLogicalScan, ImmutableBitSet.of(0), null, Seq(tableAggCall) ) val builder = typeFactory.builder() builder.add("key", new BasicSqlType(typeFactory.getTypeSystem, SqlTypeName.BIGINT)) builder.add("f0", new BasicSqlType(typeFactory.getTypeSystem, SqlTypeName.INTEGER)) builder.add("f1", new BasicSqlType(typeFactory.getTypeSystem, SqlTypeName.INTEGER)) val relDataType = builder.build() val streamExecTableAgg = new StreamExecGroupTableAggregate( cluster, logicalTraits, studentLogicalScan, relDataType, Array(0), Seq(tableAggCall) ) (logicalTableAgg, flinkLogicalTableAgg, streamExecTableAgg) } // equivalent Table API is // tEnv.scan("TemporalTable1") // .select("c, a, b, rowtime") // .window(Tumble.over("15.minutes").on("rowtime").as("w")) // .groupBy("a, w") // .flatAggregate("top3(c)") // .select("a, f0, f1, w.start, w.end, w.rowtime, w.proctime") protected lazy val ( logicalWindowTableAgg, flinkLogicalWindowTableAgg, streamWindowTableAgg) = { relBuilder.scan("TemporalTable1") val ts = relBuilder.peek() val project = relBuilder.project(relBuilder.fields(Seq[Integer](2, 0, 1, 4).toList)) .build().asInstanceOf[Project] val program = RexProgram.create( ts.getRowType, project.getProjects, null, project.getRowType, rexBuilder) val aggCallOfWindowAgg = Lists.newArrayList(tableAggCall) val logicalWindowAgg = new LogicalWindowTableAggregate( ts.getCluster, ts.getTraitSet, project, ImmutableBitSet.of(1), ImmutableList.of(ImmutableBitSet.of(1)), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val flinkLogicalTs: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), flinkLogicalTraits) val flinkLogicalWindowAgg = new FlinkLogicalWindowTableAggregate( ts.getCluster, logicalTraits, new FlinkLogicalCalc(ts.getCluster, flinkLogicalTraits, flinkLogicalTs, program), ImmutableBitSet.of(1), ImmutableList.of(ImmutableBitSet.of(1)), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val hash01 = FlinkRelDistribution.hash(Array(1), requireStrict = true) val streamTs: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), streamPhysicalTraits) val streamCalc = new BatchExecCalc( cluster, streamPhysicalTraits, streamTs, program, program.getOutputRowType) val streamExchange = new StreamExecExchange( cluster, streamPhysicalTraits.replace(hash01), streamCalc, hash01) val emitStrategy = WindowEmitStrategy(tableConfig, tumblingGroupWindow) val streamWindowAgg = new StreamExecGroupWindowTableAggregate( cluster, streamPhysicalTraits, streamExchange, flinkLogicalWindowAgg.getRowType, streamExchange.getRowType, Array(1), flinkLogicalWindowAgg.getAggCallList, tumblingGroupWindow, namedPropertiesOfWindowAgg, inputTimeFieldIndex = 2, emitStrategy ) (logicalWindowAgg, flinkLogicalWindowAgg, streamWindowAgg) } // equivalent SQL is // select age, // avg(score) as avg_score, // sum(score) as sum_score, // max(height) as max_height, // min(height) as min_height, // count(id) as cnt // from student group by age protected lazy val ( logicalAgg, flinkLogicalAgg, batchLocalAgg, batchGlobalAggWithLocal, batchGlobalAggWithoutLocal, streamLocalAgg, streamGlobalAggWithLocal, streamGlobalAggWithoutLocal) = { val logicalAgg = relBuilder.push(studentLogicalScan).aggregate( relBuilder.groupKey(relBuilder.field(3)), relBuilder.avg(false, "avg_score", relBuilder.field(2)), relBuilder.sum(false, "sum_score", relBuilder.field(2)), relBuilder.max("max_height", relBuilder.field(4)), relBuilder.min("min_height", relBuilder.field(4)), relBuilder.count(false, "cnt", relBuilder.field(0)) ).build().asInstanceOf[LogicalAggregate] val flinkLogicalAgg = new FlinkLogicalAggregate( cluster, flinkLogicalTraits, studentFlinkLogicalScan, logicalAgg.getGroupSet, logicalAgg.getGroupSets, logicalAgg.getAggCallList ) val aggCalls = logicalAgg.getAggCallList val aggFunctionFactory = new AggFunctionFactory( studentBatchScan.getRowType, Array.empty[Int], Array.fill(aggCalls.size())(false)) val aggCallToAggFunction = aggCalls.zipWithIndex.map { case (call, index) => (call, aggFunctionFactory.createAggFunction(call, index)) } val rowTypeOfLocalAgg = typeFactory.builder .add("age", intType) .add("sum$0", doubleType) .add("count$1", longType) .add("sum_score", doubleType) .add("max_height", doubleType) .add("min_height", doubleType) .add("cnt", longType).build() val rowTypeOfGlobalAgg = typeFactory.builder .add("age", intType) .add("avg_score", doubleType) .add("sum_score", doubleType) .add("max_height", doubleType) .add("min_height", doubleType) .add("cnt", longType).build() val hash0 = FlinkRelDistribution.hash(Array(0), requireStrict = true) val hash3 = FlinkRelDistribution.hash(Array(3), requireStrict = true) val batchLocalAgg = new BatchExecLocalHashAggregate( cluster, relBuilder, batchPhysicalTraits, studentBatchScan, rowTypeOfLocalAgg, studentBatchScan.getRowType, Array(3), auxGrouping = Array(), aggCallToAggFunction) val batchExchange1 = new BatchExecExchange( cluster, batchLocalAgg.getTraitSet.replace(hash0), batchLocalAgg, hash0) val batchGlobalAgg = new BatchExecHashAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange1, rowTypeOfGlobalAgg, batchExchange1.getRowType, batchLocalAgg.getInput.getRowType, Array(0), auxGrouping = Array(), aggCallToAggFunction, isMerge = true) val batchExchange2 = new BatchExecExchange(cluster, studentBatchScan.getTraitSet.replace(hash3), studentBatchScan, hash3) val batchGlobalAggWithoutLocal = new BatchExecHashAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange2, rowTypeOfGlobalAgg, batchExchange2.getRowType, batchExchange2.getRowType, Array(3), auxGrouping = Array(), aggCallToAggFunction, isMerge = false) val needRetractionArray = AggregateUtil.getNeedRetractions( 1, needRetraction = false, null, aggCalls) val localAggInfoList = transformToStreamAggregateInfoList( aggCalls, studentStreamScan.getRowType, needRetractionArray, needInputCount = false, isStateBackendDataViews = false) val streamLocalAgg = new StreamExecLocalGroupAggregate( cluster, streamPhysicalTraits, studentStreamScan, rowTypeOfLocalAgg, Array(3), aggCalls, localAggInfoList, PartialFinalType.NONE) val streamExchange1 = new StreamExecExchange( cluster, streamLocalAgg.getTraitSet.replace(hash0), streamLocalAgg, hash0) val globalAggInfoList = transformToStreamAggregateInfoList( aggCalls, streamExchange1.getRowType, needRetractionArray, needInputCount = false, isStateBackendDataViews = true) val streamGlobalAgg = new StreamExecGlobalGroupAggregate( cluster, streamPhysicalTraits, streamExchange1, streamExchange1.getRowType, rowTypeOfGlobalAgg, Array(0), localAggInfoList, globalAggInfoList, PartialFinalType.NONE) val streamExchange2 = new StreamExecExchange(cluster, studentStreamScan.getTraitSet.replace(hash3), studentStreamScan, hash3) val streamGlobalAggWithoutLocal = new StreamExecGroupAggregate( cluster, streamPhysicalTraits, streamExchange2, rowTypeOfGlobalAgg, Array(3), aggCalls) (logicalAgg, flinkLogicalAgg, batchLocalAgg, batchGlobalAgg, batchGlobalAggWithoutLocal, streamLocalAgg, streamGlobalAgg, streamGlobalAggWithoutLocal) } // equivalent SQL is // select avg(score) as avg_score, // sum(score) as sum_score, // count(id) as cnt // from student group by id, name, height protected lazy val ( logicalAggWithAuxGroup, flinkLogicalAggWithAuxGroup, batchLocalAggWithAuxGroup, batchGlobalAggWithLocalWithAuxGroup, batchGlobalAggWithoutLocalWithAuxGroup) = { val logicalAggWithAuxGroup = relBuilder.push(studentLogicalScan).aggregate( relBuilder.groupKey(relBuilder.field(0)), relBuilder.aggregateCall(FlinkSqlOperatorTable.AUXILIARY_GROUP, relBuilder.field(1)), relBuilder.aggregateCall(FlinkSqlOperatorTable.AUXILIARY_GROUP, relBuilder.field(4)), relBuilder.avg(false, "avg_score", relBuilder.field(2)), relBuilder.sum(false, "sum_score", relBuilder.field(2)), relBuilder.count(false, "cnt", relBuilder.field(0)) ).build().asInstanceOf[LogicalAggregate] val flinkLogicalAggWithAuxGroup = new FlinkLogicalAggregate( cluster, flinkLogicalTraits, studentFlinkLogicalScan, logicalAggWithAuxGroup.getGroupSet, logicalAggWithAuxGroup.getGroupSets, logicalAggWithAuxGroup.getAggCallList ) val aggCalls = logicalAggWithAuxGroup.getAggCallList.filter { call => call.getAggregation != FlinkSqlOperatorTable.AUXILIARY_GROUP } val aggFunctionFactory = new AggFunctionFactory( studentBatchScan.getRowType, Array.empty[Int], Array.fill(aggCalls.size())(false)) val aggCallToAggFunction = aggCalls.zipWithIndex.map { case (call, index) => (call, aggFunctionFactory.createAggFunction(call, index)) } val rowTypeOfLocalAgg = typeFactory.builder .add("id", intType) .add("name", stringType) .add("height", doubleType) .add("sum$0", doubleType) .add("count$1", longType) .add("sum_score", doubleType) .add("cnt", longType).build() val batchLocalAggWithAuxGroup = new BatchExecLocalHashAggregate( cluster, relBuilder, batchPhysicalTraits, studentBatchScan, rowTypeOfLocalAgg, studentBatchScan.getRowType, Array(0), auxGrouping = Array(1, 4), aggCallToAggFunction) val hash0 = FlinkRelDistribution.hash(Array(0), requireStrict = true) val batchExchange = new BatchExecExchange(cluster, batchLocalAggWithAuxGroup.getTraitSet.replace(hash0), batchLocalAggWithAuxGroup, hash0) val rowTypeOfGlobalAgg = typeFactory.builder .add("id", intType) .add("name", stringType) .add("height", doubleType) .add("avg_score", doubleType) .add("sum_score", doubleType) .add("cnt", longType).build() val batchGlobalAggWithAuxGroup = new BatchExecHashAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange, rowTypeOfGlobalAgg, batchExchange.getRowType, batchLocalAggWithAuxGroup.getInput.getRowType, Array(0), auxGrouping = Array(1, 2), aggCallToAggFunction, isMerge = true) val batchExchange2 = new BatchExecExchange(cluster, studentBatchScan.getTraitSet.replace(hash0), studentBatchScan, hash0) val batchGlobalAggWithoutLocalWithAuxGroup = new BatchExecHashAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange2, rowTypeOfGlobalAgg, batchExchange2.getRowType, batchExchange2.getRowType, Array(0), auxGrouping = Array(1, 4), aggCallToAggFunction, isMerge = false) (logicalAggWithAuxGroup, flinkLogicalAggWithAuxGroup, batchLocalAggWithAuxGroup, batchGlobalAggWithAuxGroup, batchGlobalAggWithoutLocalWithAuxGroup) } // For window start/end/proc_time the windowAttribute inferred type is a hard code val, // only for row_time we distinguish by batch row time, for what we hard code DataTypes.TIMESTAMP, // which is ok here for testing. private lazy val windowRef: PlannerWindowReference = PlannerWindowReference.apply("w$", Some(new TimestampType(3))) protected lazy val tumblingGroupWindow: LogicalWindow = TumblingGroupWindow( windowRef, new FieldReferenceExpression( "rowtime", new AtomicDataType(new TimestampType(true, TimestampKind.ROWTIME, 3)), 0, 4), intervalOfMillis(900000) ) protected lazy val namedPropertiesOfWindowAgg: Seq[PlannerNamedWindowProperty] = Seq(PlannerNamedWindowProperty("w$start", PlannerWindowStart(windowRef)), PlannerNamedWindowProperty("w$end", PlannerWindowStart(windowRef)), PlannerNamedWindowProperty("w$rowtime", PlannerRowtimeAttribute(windowRef)), PlannerNamedWindowProperty("w$proctime", PlannerProctimeAttribute(windowRef))) // equivalent SQL is // select a, b, count(c) as s, // TUMBLE_START(rowtime, INTERVAL '15' MINUTE) as w$start, // TUMBLE_END(rowtime, INTERVAL '15' MINUTE) as w$end, // TUMBLE_ROWTIME(rowtime, INTERVAL '15' MINUTE) as w$rowtime, // TUMBLE_PROCTIME(rowtime, INTERVAL '15' MINUTE) as w$proctime // from TemporalTable1 group by a, b, TUMBLE(rowtime, INTERVAL '15' MINUTE) protected lazy val ( logicalWindowAgg, flinkLogicalWindowAgg, batchLocalWindowAgg, batchGlobalWindowAggWithLocalAgg, batchGlobalWindowAggWithoutLocalAgg, streamWindowAgg) = { relBuilder.scan("TemporalTable1") val ts = relBuilder.peek() val project = relBuilder.project(relBuilder.fields(Seq[Integer](0, 1, 4, 2).toList)) .build().asInstanceOf[Project] val program = RexProgram.create( ts.getRowType, project.getProjects, null, project.getRowType, rexBuilder) val aggCallOfWindowAgg = Lists.newArrayList(AggregateCall.create( new SqlCountAggFunction("COUNT"), false, false, List[Integer](3), -1, 2, project, null, "s")) // TUMBLE(rowtime, INTERVAL '15' MINUTE)) val logicalWindowAgg = new LogicalWindowAggregate( ts.getCluster, ts.getTraitSet, project, ImmutableBitSet.of(0, 1), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val flinkLogicalTs: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), flinkLogicalTraits) val flinkLogicalWindowAgg = new FlinkLogicalWindowAggregate( ts.getCluster, logicalTraits, new FlinkLogicalCalc(ts.getCluster, flinkLogicalTraits, flinkLogicalTs, program), ImmutableBitSet.of(0, 1), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val batchTs: BatchExecBoundedStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), batchPhysicalTraits) val batchCalc = new BatchExecCalc( cluster, batchPhysicalTraits, batchTs, program, program.getOutputRowType) val hash01 = FlinkRelDistribution.hash(Array(0, 1), requireStrict = true) val batchExchange1 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash01), batchCalc, hash01) val (_, _, aggregates) = AggregateUtil.transformToBatchAggregateFunctions( flinkLogicalWindowAgg.getAggCallList, batchExchange1.getRowType) val aggCallToAggFunction = flinkLogicalWindowAgg.getAggCallList.zip(aggregates) val localWindowAggTypes = (Array(0, 1).map(batchCalc.getRowType.getFieldList.get(_).getType) ++ // grouping Array(longType) ++ // assignTs aggCallOfWindowAgg.map(_.getType)).toList // agg calls val localWindowAggNames = (Array(0, 1).map(batchCalc.getRowType.getFieldNames.get(_)) ++ // grouping Array("assignedWindow$") ++ // assignTs Array("count$0")).toList // agg calls val localWindowAggRowType = typeFactory.createStructType( localWindowAggTypes, localWindowAggNames) val batchLocalWindowAgg = new BatchExecLocalHashWindowAggregate( batchCalc.getCluster, relBuilder, batchPhysicalTraits, batchCalc, localWindowAggRowType, batchCalc.getRowType, Array(0, 1), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false) val batchExchange2 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash01), batchLocalWindowAgg, hash01) val batchWindowAggWithLocal = new BatchExecHashWindowAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange2, flinkLogicalWindowAgg.getRowType, batchExchange2.getRowType, batchCalc.getRowType, Array(0, 1), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = true ) val batchWindowAggWithoutLocal = new BatchExecHashWindowAggregate( batchExchange1.getCluster, relBuilder, batchPhysicalTraits, batchExchange1, flinkLogicalWindowAgg.getRowType, batchExchange1.getRowType, batchExchange1.getRowType, Array(0, 1), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = false ) val streamTs: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), streamPhysicalTraits) val streamCalc = new BatchExecCalc( cluster, streamPhysicalTraits, streamTs, program, program.getOutputRowType) val streamExchange = new StreamExecExchange( cluster, streamPhysicalTraits.replace(hash01), streamCalc, hash01) val emitStrategy = WindowEmitStrategy(tableConfig, tumblingGroupWindow) val streamWindowAgg = new StreamExecGroupWindowAggregate( cluster, streamPhysicalTraits, streamExchange, flinkLogicalWindowAgg.getRowType, streamExchange.getRowType, Array(0, 1), flinkLogicalWindowAgg.getAggCallList, tumblingGroupWindow, namedPropertiesOfWindowAgg, inputTimeFieldIndex = 2, emitStrategy ) (logicalWindowAgg, flinkLogicalWindowAgg, batchLocalWindowAgg, batchWindowAggWithLocal, batchWindowAggWithoutLocal, streamWindowAgg) } // equivalent SQL is // select b, count(a) as s, // TUMBLE_START(rowtime, INTERVAL '15' MINUTE) as w$start, // TUMBLE_END(rowtime, INTERVAL '15' MINUTE) as w$end, // TUMBLE_ROWTIME(rowtime, INTERVAL '15' MINUTE) as w$rowtime, // TUMBLE_PROCTIME(rowtime, INTERVAL '15' MINUTE) as w$proctime // from TemporalTable1 group by b, TUMBLE(rowtime, INTERVAL '15' MINUTE) protected lazy val ( logicalWindowAgg2, flinkLogicalWindowAgg2, batchLocalWindowAgg2, batchGlobalWindowAggWithLocalAgg2, batchGlobalWindowAggWithoutLocalAgg2, streamWindowAgg2) = { relBuilder.scan("TemporalTable1") val ts = relBuilder.peek() val project = relBuilder.project(relBuilder.fields(Seq[Integer](0, 1, 4).toList)) .build().asInstanceOf[Project] val program = RexProgram.create( ts.getRowType, project.getProjects, null, project.getRowType, rexBuilder) val aggCallOfWindowAgg = Lists.newArrayList(AggregateCall.create( new SqlCountAggFunction("COUNT"), false, false, List[Integer](0), -1, 1, project, null, "s")) // TUMBLE(rowtime, INTERVAL '15' MINUTE)) val logicalWindowAgg = new LogicalWindowAggregate( ts.getCluster, ts.getTraitSet, project, ImmutableBitSet.of(1), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val flinkLogicalTs: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), flinkLogicalTraits) val flinkLogicalWindowAgg = new FlinkLogicalWindowAggregate( ts.getCluster, logicalTraits, new FlinkLogicalCalc(ts.getCluster, flinkLogicalTraits, flinkLogicalTs, program), ImmutableBitSet.of(1), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val batchTs: BatchExecBoundedStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), batchPhysicalTraits) val batchCalc = new BatchExecCalc( cluster, batchPhysicalTraits, batchTs, program, program.getOutputRowType) val hash1 = FlinkRelDistribution.hash(Array(1), requireStrict = true) val batchExchange1 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash1), batchCalc, hash1) val (_, _, aggregates) = AggregateUtil.transformToBatchAggregateFunctions( flinkLogicalWindowAgg.getAggCallList, batchExchange1.getRowType) val aggCallToAggFunction = flinkLogicalWindowAgg.getAggCallList.zip(aggregates) val localWindowAggTypes = (Array(batchCalc.getRowType.getFieldList.get(1).getType) ++ // grouping Array(longType) ++ // assignTs aggCallOfWindowAgg.map(_.getType)).toList // agg calls val localWindowAggNames = (Array(batchCalc.getRowType.getFieldNames.get(1)) ++ // grouping Array("assignedWindow$") ++ // assignTs Array("count$0")).toList // agg calls val localWindowAggRowType = typeFactory.createStructType( localWindowAggTypes, localWindowAggNames) val batchLocalWindowAgg = new BatchExecLocalHashWindowAggregate( batchCalc.getCluster, relBuilder, batchPhysicalTraits, batchCalc, localWindowAggRowType, batchCalc.getRowType, Array(1), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false) val batchExchange2 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash1), batchLocalWindowAgg, hash1) val batchWindowAggWithLocal = new BatchExecHashWindowAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange2, flinkLogicalWindowAgg.getRowType, batchExchange2.getRowType, batchCalc.getRowType, Array(0), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = true ) val batchWindowAggWithoutLocal = new BatchExecHashWindowAggregate( batchExchange1.getCluster, relBuilder, batchPhysicalTraits, batchExchange1, flinkLogicalWindowAgg.getRowType, batchExchange1.getRowType, batchExchange1.getRowType, Array(1), Array.empty, aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = false ) val streamTs: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable1"), streamPhysicalTraits) val streamCalc = new BatchExecCalc( cluster, streamPhysicalTraits, streamTs, program, program.getOutputRowType) val streamExchange = new StreamExecExchange( cluster, streamPhysicalTraits.replace(hash1), streamCalc, hash1) val emitStrategy = WindowEmitStrategy(tableConfig, tumblingGroupWindow) val streamWindowAgg = new StreamExecGroupWindowAggregate( cluster, streamPhysicalTraits, streamExchange, flinkLogicalWindowAgg.getRowType, streamExchange.getRowType, Array(1), flinkLogicalWindowAgg.getAggCallList, tumblingGroupWindow, namedPropertiesOfWindowAgg, inputTimeFieldIndex = 2, emitStrategy ) (logicalWindowAgg, flinkLogicalWindowAgg, batchLocalWindowAgg, batchWindowAggWithLocal, batchWindowAggWithoutLocal, streamWindowAgg) } // equivalent SQL is // select a, c, count(b) as s, // TUMBLE_START(rowtime, INTERVAL '15' MINUTE) as w$start, // TUMBLE_END(rowtime, INTERVAL '15' MINUTE) as w$end, // TUMBLE_ROWTIME(rowtime, INTERVAL '15' MINUTE) as w$rowtime, // TUMBLE_PROCTIME(rowtime, INTERVAL '15' MINUTE) as w$proctime // from TemporalTable2 group by a, c, TUMBLE(rowtime, INTERVAL '15' MINUTE) protected lazy val ( logicalWindowAggWithAuxGroup, flinkLogicalWindowAggWithAuxGroup, batchLocalWindowAggWithAuxGroup, batchGlobalWindowAggWithLocalAggWithAuxGroup, batchGlobalWindowAggWithoutLocalAggWithAuxGroup) = { relBuilder.scan("TemporalTable2") val ts = relBuilder.peek() val project = relBuilder.project(relBuilder.fields(Seq[Integer](0, 2, 4, 1).toList)) .build().asInstanceOf[Project] val program = RexProgram.create( ts.getRowType, project.getProjects, null, project.getRowType, rexBuilder) val aggCallOfWindowAgg = Lists.newArrayList( AggregateCall.create(FlinkSqlOperatorTable.AUXILIARY_GROUP, false, false, List[Integer](1), -1, 1, project, null, "c"), AggregateCall.create(new SqlCountAggFunction("COUNT"), false, false, List[Integer](3), -1, 2, project, null, "s")) // TUMBLE(rowtime, INTERVAL '15' MINUTE)) val logicalWindowAggWithAuxGroup = new LogicalWindowAggregate( ts.getCluster, ts.getTraitSet, project, ImmutableBitSet.of(0), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val flinkLogicalTs: FlinkLogicalDataStreamTableScan = createDataStreamScan(ImmutableList.of("TemporalTable2"), flinkLogicalTraits) val flinkLogicalWindowAggWithAuxGroup = new FlinkLogicalWindowAggregate( ts.getCluster, logicalTraits, new FlinkLogicalCalc(ts.getCluster, flinkLogicalTraits, flinkLogicalTs, program), ImmutableBitSet.of(0), aggCallOfWindowAgg, tumblingGroupWindow, namedPropertiesOfWindowAgg) val batchTs: BatchExecBoundedStreamScan = createDataStreamScan(ImmutableList.of("TemporalTable2"), batchPhysicalTraits) val batchCalc = new BatchExecCalc( cluster, batchPhysicalTraits, batchTs, program, program.getOutputRowType) val hash0 = FlinkRelDistribution.hash(Array(0), requireStrict = true) val batchExchange1 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash0), batchCalc, hash0) val aggCallsWithoutAuxGroup = flinkLogicalWindowAggWithAuxGroup.getAggCallList.drop(1) val (_, _, aggregates) = AggregateUtil.transformToBatchAggregateFunctions( aggCallsWithoutAuxGroup, batchExchange1.getRowType) val aggCallToAggFunction = aggCallsWithoutAuxGroup.zip(aggregates) val localWindowAggTypes = (Array(batchCalc.getRowType.getFieldList.get(0).getType) ++ // grouping Array(longType) ++ // assignTs Array(batchCalc.getRowType.getFieldList.get(1).getType) ++ // auxGrouping aggCallsWithoutAuxGroup.map(_.getType)).toList // agg calls val localWindowAggNames = (Array(batchCalc.getRowType.getFieldNames.get(0)) ++ // grouping Array("assignedWindow$") ++ // assignTs Array(batchCalc.getRowType.getFieldNames.get(1)) ++ // auxGrouping Array("count$0")).toList // agg calls val localWindowAggRowType = typeFactory.createStructType( localWindowAggTypes, localWindowAggNames) val batchLocalWindowAggWithAuxGroup = new BatchExecLocalHashWindowAggregate( batchCalc.getCluster, relBuilder, batchPhysicalTraits, batchCalc, localWindowAggRowType, batchCalc.getRowType, Array(0), Array(1), aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false) val batchExchange2 = new BatchExecExchange( cluster, batchPhysicalTraits.replace(hash0), batchLocalWindowAggWithAuxGroup, hash0) val batchWindowAggWithLocalWithAuxGroup = new BatchExecHashWindowAggregate( cluster, relBuilder, batchPhysicalTraits, batchExchange2, flinkLogicalWindowAggWithAuxGroup.getRowType, batchExchange2.getRowType, batchCalc.getRowType, Array(0), Array(2), // local output grouping keys: grouping + assignTs + auxGrouping aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = true ) val batchWindowAggWithoutLocalWithAuxGroup = new BatchExecHashWindowAggregate( batchExchange1.getCluster, relBuilder, batchPhysicalTraits, batchExchange1, flinkLogicalWindowAggWithAuxGroup.getRowType, batchExchange1.getRowType, batchExchange1.getRowType, Array(0), Array(1), aggCallToAggFunction, tumblingGroupWindow, inputTimeFieldIndex = 2, inputTimeIsDate = false, namedPropertiesOfWindowAgg, enableAssignPane = false, isMerge = false ) (logicalWindowAggWithAuxGroup, flinkLogicalWindowAggWithAuxGroup, batchLocalWindowAggWithAuxGroup, batchWindowAggWithLocalWithAuxGroup, batchWindowAggWithoutLocalWithAuxGroup) } // equivalent SQL is // select id, name, score, age, class, // row_number() over(partition by class order by name) as rn, // rank() over (partition by class order by score) as rk, // dense_rank() over (partition by class order by score) as drk, // avg(score) over (partition by class order by score) as avg_score, // max(score) over (partition by age) as max_score, // count(id) over (partition by age) as cnt // from student protected lazy val (flinkLogicalOverAgg, batchOverAgg) = { val types = Map( "id" -> longType, "name" -> stringType, "score" -> doubleType, "age" -> intType, "class" -> intType, "rn" -> longType, "rk" -> longType, "drk" -> longType, "avg_score" -> doubleType, "count$0_score" -> longType, "sum$0_score" -> doubleType, "max_score" -> doubleType, "cnt" -> longType ) def createRowType(selectFields: String*): RelDataType = { val builder = typeFactory.builder selectFields.foreach { f => builder.add(f, types.getOrElse(f, throw new IllegalArgumentException(s"$f does not exist"))) } builder.build() } val rowTypeOfCalc = createRowType("id", "name", "score", "age", "class") val rexProgram = RexProgram.create( studentFlinkLogicalScan.getRowType, Array(0, 1, 2, 3, 6).map(i => RexInputRef.of(i, studentFlinkLogicalScan.getRowType)).toList, null, rowTypeOfCalc, rexBuilder ) val rowTypeOfWindowAgg = createRowType( "id", "name", "score", "age", "class", "rn", "rk", "drk", "count$0_score", "sum$0_score", "max_score", "cnt") val flinkLogicalOverAgg = new FlinkLogicalOverAggregate( cluster, flinkLogicalTraits, new FlinkLogicalCalc(cluster, flinkLogicalTraits, studentFlinkLogicalScan, rexProgram), ImmutableList.of(), rowTypeOfWindowAgg, overAggGroups ) val rowTypeOfWindowAggOutput = createRowType( "id", "name", "score", "age", "class", "rn", "rk", "drk", "avg_score", "max_score", "cnt") val projectProgram = RexProgram.create( flinkLogicalOverAgg.getRowType, (0 until flinkLogicalOverAgg.getRowType.getFieldCount).flatMap { i => if (i < 8 || i >= 10) { Array[RexNode](RexInputRef.of(i, flinkLogicalOverAgg.getRowType)) } else if (i == 8) { Array[RexNode](rexBuilder.makeCall(SqlStdOperatorTable.DIVIDE, RexInputRef.of(8, flinkLogicalOverAgg.getRowType), RexInputRef.of(9, flinkLogicalOverAgg.getRowType))) } else { Array.empty[RexNode] } }.toList, null, rowTypeOfWindowAggOutput, rexBuilder ) val flinkLogicalOverAggOutput = new FlinkLogicalCalc( cluster, flinkLogicalTraits, flinkLogicalOverAgg, projectProgram ) val calc = new BatchExecCalc( cluster, batchPhysicalTraits, studentBatchScan, rexProgram, rowTypeOfCalc) val hash4 = FlinkRelDistribution.hash(Array(4), requireStrict = true) val exchange1 = new BatchExecExchange(cluster, calc.getTraitSet.replace(hash4), calc, hash4) // sort class, name val collection1 = RelCollations.of( FlinkRelOptUtil.ofRelFieldCollation(4), FlinkRelOptUtil.ofRelFieldCollation(1)) val newSortTrait1 = exchange1.getTraitSet.replace(collection1) val sort1 = new BatchExecSort(cluster, newSortTrait1, exchange1, newSortTrait1.getTrait(RelCollationTraitDef.INSTANCE)) val outputRowType1 = createRowType("id", "name", "score", "age", "class", "rn") val innerWindowAgg1 = new BatchExecOverAggregate( cluster, relBuilder, batchPhysicalTraits, sort1, outputRowType1, sort1.getRowType, Array(4), Array(1), Array(true), Array(false), Seq((overAggGroups(0), Seq( (AggregateCall.create(SqlStdOperatorTable.ROW_NUMBER, false, ImmutableList.of(), -1, longType, "rn"), new RowNumberAggFunction())))), flinkLogicalOverAgg ) // sort class, score val collation2 = RelCollations.of( FlinkRelOptUtil.ofRelFieldCollation(4), FlinkRelOptUtil.ofRelFieldCollation(2)) val newSortTrait2 = innerWindowAgg1.getTraitSet.replace(collation2) val sort2 = new BatchExecSort(cluster, newSortTrait2, innerWindowAgg1, newSortTrait2.getTrait(RelCollationTraitDef.INSTANCE)) val outputRowType2 = createRowType( "id", "name", "score", "age", "class", "rn", "rk", "drk", "count$0_score", "sum$0_score") val innerWindowAgg2 = new BatchExecOverAggregate( cluster, relBuilder, batchPhysicalTraits, sort2, outputRowType2, sort2.getRowType, Array(4), Array(2), Array(true), Array(false), Seq((overAggGroups(1), Seq( (AggregateCall.create(SqlStdOperatorTable.RANK, false, ImmutableList.of(), -1, longType, "rk"), new RankAggFunction(Array(new VarCharType(VarCharType.MAX_LENGTH)))), (AggregateCall.create(SqlStdOperatorTable.DENSE_RANK, false, ImmutableList.of(), -1, longType, "drk"), new DenseRankAggFunction(Array(new VarCharType(VarCharType.MAX_LENGTH)))), (AggregateCall.create(SqlStdOperatorTable.COUNT, false, ImmutableList.of(Integer.valueOf(2)), -1, longType, "count$0_socre"), new CountAggFunction()), (AggregateCall.create(SqlStdOperatorTable.SUM, false, ImmutableList.of(Integer.valueOf(2)), -1, doubleType, "sum$0_score"), new DoubleSumAggFunction()) ))), flinkLogicalOverAgg ) val hash3 = FlinkRelDistribution.hash(Array(3), requireStrict = true) val exchange2 = new BatchExecExchange( cluster, innerWindowAgg2.getTraitSet.replace(hash3), innerWindowAgg2, hash3) val outputRowType3 = createRowType( "id", "name", "score", "age", "class", "rn", "rk", "drk", "count$0_score", "sum$0_score", "max_score", "cnt") val batchWindowAgg = new BatchExecOverAggregate( cluster, relBuilder, batchPhysicalTraits, exchange2, outputRowType3, exchange2.getRowType, Array(3), Array.empty, Array.empty, Array.empty, Seq((overAggGroups(2), Seq( (AggregateCall.create(SqlStdOperatorTable.MAX, false, ImmutableList.of(Integer.valueOf(2)), -1, longType, "max_score"), new CountAggFunction()), (AggregateCall.create(SqlStdOperatorTable.COUNT, false, ImmutableList.of(Integer.valueOf(0)), -1, doubleType, "cnt"), new DoubleSumAggFunction()) ))), flinkLogicalOverAgg ) val batchWindowAggOutput = new BatchExecCalc( cluster, batchPhysicalTraits, batchWindowAgg, projectProgram, projectProgram.getOutputRowType ) (flinkLogicalOverAggOutput, batchWindowAggOutput) } // equivalent SQL is // select id, name, score, age, class, // rank() over (partition by class order by score) as rk, // dense_rank() over (partition by class order by score) as drk, // avg(score) over (partition by class order by score) as avg_score // from student protected lazy val streamOverAgg: StreamPhysicalRel = { val types = Map( "id" -> longType, "name" -> stringType, "score" -> doubleType, "age" -> intType, "class" -> intType, "rk" -> longType, "drk" -> longType, "avg_score" -> doubleType, "count$0_score" -> longType, "sum$0_score" -> doubleType ) def createRowType(selectFields: String*): RelDataType = { val builder = typeFactory.builder selectFields.foreach { f => builder.add(f, types.getOrElse(f, throw new IllegalArgumentException(s"$f does not exist"))) } builder.build() } val rowTypeOfCalc = createRowType("id", "name", "score", "age", "class") val rexProgram = RexProgram.create( studentFlinkLogicalScan.getRowType, Array(0, 1, 2, 3, 6).map(i => RexInputRef.of(i, studentFlinkLogicalScan.getRowType)).toList, null, rowTypeOfCalc, rexBuilder ) val rowTypeOfWindowAgg = createRowType( "id", "name", "score", "age", "class", "rk", "drk", "count$0_score", "sum$0_score") val flinkLogicalOverAgg = new FlinkLogicalOverAggregate( cluster, flinkLogicalTraits, new FlinkLogicalCalc(cluster, flinkLogicalTraits, studentFlinkLogicalScan, rexProgram), ImmutableList.of(), rowTypeOfWindowAgg, util.Arrays.asList(overAggGroups.get(1)) ) val streamScan: StreamExecDataStreamScan = createDataStreamScan(ImmutableList.of("student"), streamPhysicalTraits) val calc = new StreamExecCalc( cluster, streamPhysicalTraits, streamScan, rexProgram, rowTypeOfCalc) val hash4 = FlinkRelDistribution.hash(Array(4), requireStrict = true) val exchange = new StreamExecExchange(cluster, calc.getTraitSet.replace(hash4), calc, hash4) val windowAgg = new StreamExecOverAggregate( cluster, streamPhysicalTraits, exchange, rowTypeOfWindowAgg, exchange.getRowType, flinkLogicalOverAgg ) val rowTypeOfWindowAggOutput = createRowType( "id", "name", "score", "age", "class", "rk", "drk", "avg_score") val projectProgram = RexProgram.create( flinkLogicalOverAgg.getRowType, (0 until flinkLogicalOverAgg.getRowType.getFieldCount).flatMap { i => if (i < 7) { Array[RexNode](RexInputRef.of(i, flinkLogicalOverAgg.getRowType)) } else if (i == 7) { Array[RexNode](rexBuilder.makeCall(SqlStdOperatorTable.DIVIDE, RexInputRef.of(7, flinkLogicalOverAgg.getRowType), RexInputRef.of(8, flinkLogicalOverAgg.getRowType))) } else { Array.empty[RexNode] } }.toList, null, rowTypeOfWindowAggOutput, rexBuilder ) val streamWindowAggOutput = new StreamExecCalc( cluster, streamPhysicalTraits, windowAgg, projectProgram, projectProgram.getOutputRowType ) streamWindowAggOutput } // row_number() over(partition by class order by name) as rn, // rank() over (partition by class order by score) as rk, // dense_rank() over (partition by class order by score) as drk, // avg(score) over (partition by class order by score) as avg_score, // max(score) over (partition by age) as max_score, // count(id) over (partition by age) as cnt private lazy val overAggGroups = { ImmutableList.of( new Window.Group( ImmutableBitSet.of(5), true, RexWindowBound.create(SqlWindow.createUnboundedPreceding(new SqlParserPos(0, 0)), null), RexWindowBound.create(SqlWindow.createCurrentRow(new SqlParserPos(0, 0)), null), RelCollationImpl.of(new RelFieldCollation( 1, RelFieldCollation.Direction.ASCENDING, RelFieldCollation.NullDirection.FIRST)), ImmutableList.of( new Window.RexWinAggCall( SqlStdOperatorTable.ROW_NUMBER, longType, ImmutableList.of[RexNode](), 0, false ) ) ), new Window.Group( ImmutableBitSet.of(5), false, RexWindowBound.create(SqlWindow.createUnboundedPreceding(new SqlParserPos(4, 15)), null), RexWindowBound.create(SqlWindow.createCurrentRow(new SqlParserPos(0, 0)), null), RelCollationImpl.of(new RelFieldCollation( 2, RelFieldCollation.Direction.ASCENDING, RelFieldCollation.NullDirection.FIRST)), ImmutableList.of( new Window.RexWinAggCall( SqlStdOperatorTable.RANK, longType, ImmutableList.of[RexNode](), 1, false ), new Window.RexWinAggCall( SqlStdOperatorTable.DENSE_RANK, longType, ImmutableList.of[RexNode](), 2, false ), new Window.RexWinAggCall( SqlStdOperatorTable.COUNT, longType, util.Arrays.asList(new RexInputRef(2, longType)), 3, false ), new Window.RexWinAggCall( SqlStdOperatorTable.SUM, doubleType, util.Arrays.asList(new RexInputRef(2, doubleType)), 4, false ) ) ), new Window.Group( ImmutableBitSet.of(), false, RexWindowBound.create(SqlWindow.createUnboundedPreceding(new SqlParserPos(7, 19)), null), RexWindowBound.create(SqlWindow.createUnboundedFollowing(new SqlParserPos(0, 0)), null), RelCollations.EMPTY, ImmutableList.of( new Window.RexWinAggCall( SqlStdOperatorTable.MAX, doubleType, util.Arrays.asList(new RexInputRef(2, doubleType)), 5, false ), new Window.RexWinAggCall( SqlStdOperatorTable.COUNT, longType, util.Arrays.asList(new RexInputRef(0, longType)), 6, false ) ) ) ) } protected lazy val flinkLogicalSnapshot: FlinkLogicalSnapshot = { new FlinkLogicalSnapshot( cluster, flinkLogicalTraits, studentFlinkLogicalScan, relBuilder.call(FlinkSqlOperatorTable.PROCTIME)) } // SELECT * FROM student AS T JOIN TemporalTable // FOR SYSTEM_TIME AS OF T.proctime AS D ON T.a = D.id protected lazy val (batchLookupJoin, streamLookupJoin) = { val temporalTableSource = new TestTemporalTable val batchSourceOp = new TableSourceQueryOperation[RowData](temporalTableSource, true) val batchScan = relBuilder.queryOperation(batchSourceOp).build().asInstanceOf[TableScan] val batchLookupJoin = new BatchExecLookupJoin( cluster, batchPhysicalTraits, studentBatchScan, batchScan.getTable, None, JoinInfo.of(ImmutableIntList.of(0), ImmutableIntList.of(0)), JoinRelType.INNER ) val streamSourceOp = new TableSourceQueryOperation[RowData](temporalTableSource, false) val streamScan = relBuilder.queryOperation(streamSourceOp).build().asInstanceOf[TableScan] val streamLookupJoin = new StreamExecLookupJoin( cluster, streamPhysicalTraits, studentBatchScan, streamScan.getTable, None, JoinInfo.of(ImmutableIntList.of(0), ImmutableIntList.of(0)), JoinRelType.INNER ) (batchLookupJoin, streamLookupJoin) } // select * from MyTable1 join MyTable4 on MyTable1.b = MyTable4.a protected lazy val logicalInnerJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.INNER, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 join MyTable2 on MyTable1.a = MyTable2.a protected lazy val logicalInnerJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.INNER, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 join MyTable2 on MyTable1.b = MyTable2.b protected lazy val logicalInnerJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.INNER, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable2 join MyTable1 on MyTable2.b = MyTable1.b protected lazy val logicalInnerJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.INNER, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable1 join MyTable2 on MyTable1.b = MyTable2.b and MyTable1.a > MyTable2.a protected lazy val logicalInnerJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.INNER, relBuilder.call(AND, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 join MyTable2 on MyTable1.a > MyTable2.a protected lazy val logicalInnerJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.INNER, relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 join MyTable2 on MyTable1.e = MyTable2.e protected lazy val logicalInnerJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.INNER, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // select * from MyTable1 left join MyTable4 on MyTable1.b = MyTable4.a protected lazy val logicalLeftJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.LEFT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 left join MyTable2 on MyTable1.a = MyTable2.a protected lazy val logicalLeftJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.LEFT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 left join MyTable2 on MyTable1.b = MyTable2.b protected lazy val logicalLeftJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.LEFT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable2 left join MyTable1 on MyTable2.b = MyTable1.b protected lazy val logicalLeftJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.LEFT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable1 left join MyTable2 on // MyTable1.b = MyTable2.b and MyTable1.a > MyTable2.a protected lazy val logicalLeftJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.LEFT, relBuilder.call(AND, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 left join MyTable2 on MyTable1.a > MyTable2.a protected lazy val logicalLeftJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.LEFT, relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 left join MyTable2 on MyTable1.e = MyTable2.e protected lazy val logicalLeftJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.LEFT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // select * from MyTable1 right join MyTable4 on MyTable1.b = MyTable4.a protected lazy val logicalRightJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.RIGHT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 right join MyTable2 on MyTable1.a = MyTable2.a protected lazy val logicalRightJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.RIGHT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 right join MyTable2 on MyTable1.b = MyTable2.b protected lazy val logicalRightJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.RIGHT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable2 right join MyTable1 on MyTable2.b = MyTable1.b protected lazy val logicalRightJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.RIGHT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable1 right join MyTable2 on // MyTable1.b = MyTable2.b and MyTable1.a > MyTable2.a protected lazy val logicalRightJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.RIGHT, relBuilder.call(AND, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 right join MyTable2 on MyTable1.a > MyTable2.a protected lazy val logicalRightJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.RIGHT, relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 right join MyTable2 on MyTable1.e = MyTable2.e protected lazy val logicalRightJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.RIGHT, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // select * from MyTable1 full join MyTable4 on MyTable1.b = MyTable4.a protected lazy val logicalFullJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.FULL, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 full join MyTable2 on MyTable1.a = MyTable2.a protected lazy val logicalFullJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 full join MyTable2 on MyTable1.b = MyTable2.b protected lazy val logicalFullJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable2 full join MyTable1 on MyTable2.b = MyTable1.b protected lazy val logicalFullJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.FULL, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build // select * from MyTable1 full join MyTable2 on MyTable1.b = MyTable2.b and MyTable1.a > // MyTable2.a protected lazy val logicalFullJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.call(AND, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 full join MyTable2 on MyTable1.a > MyTable2.a protected lazy val logicalFullJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build // select * from MyTable1 full join MyTable2 on MyTable1.e = MyTable2.e protected lazy val logicalFullJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // select * from MyTable1 full join MyTable2 on true protected lazy val logicalFullJoinWithoutCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.FULL, relBuilder.literal(true)) .build // select * from MyTable1 b in (select a from MyTable4) protected lazy val logicalSemiJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.SEMI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build() // select * from MyTable1 a in (select a from MyTable2) protected lazy val logicalSemiJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.SEMI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build() // select * from MyTable1 b in (select b from MyTable2) protected lazy val logicalSemiJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.SEMI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build() // select * from MyTable2 a in (select b from MyTable1) protected lazy val logicalSemiJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.SEMI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build() // select * from MyTable1 b in (select b from MyTable2 where MyTable1.a > MyTable2.a) protected lazy val logicalSemiJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.SEMI, relBuilder.call(AND, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 exists (select * from MyTable2 where MyTable1.a > MyTable2.a) protected lazy val logicalSemiJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.SEMI, relBuilder.call(GREATER_THAN, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build() // select * from MyTable1 where e in (select e from MyTable2) protected lazy val logicalSemiJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.SEMI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // select * from MyTable1 not exists (select * from MyTable4 where MyTable1.b = MyTable4.a) protected lazy val logicalAntiJoinOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable4") .join(JoinRelType.ANTI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 0))) .build() // select * from MyTable1 not exists (select * from MyTable2 where MyTable1.a = MyTable2.a) protected lazy val logicalAntiJoinNotOnUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.ANTI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0))) .build() // select * from MyTable1 not exists (select * from MyTable2 where MyTable1.b = MyTable2.b) protected lazy val logicalAntiJoinOnLHSUniqueKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.ANTI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build() // select * from MyTable2 not exists (select * from MyTable1 where MyTable1.b = MyTable2.b) protected lazy val logicalAntiJoinOnRHSUniqueKeys: RelNode = relBuilder .scan("MyTable2") .scan("MyTable1") .join(JoinRelType.ANTI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))) .build() // select * from MyTable1 b not in (select b from MyTable2 where MyTable1.a = MyTable2.a) // notes: the nullable of b is true protected lazy val logicalAntiJoinWithEquiAndNonEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.ANTI, relBuilder.call(AND, relBuilder.call(OR, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.isNull( relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)))), relBuilder.call(EQUALS, relBuilder.field(2, 0, 0), relBuilder.field(2, 1, 0)))) .build // select * from MyTable1 b not in (select b from MyTable2) // notes: the nullable of b is true protected lazy val logicalAntiJoinWithoutEquiCond: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.ANTI, relBuilder.call(OR, relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1)), relBuilder.isNull( relBuilder.call(EQUALS, relBuilder.field(2, 0, 1), relBuilder.field(2, 1, 1))))) .build // select * from MyTable1 where not exists (select e from MyTable2 where MyTable1.e = MyTable2.e) protected lazy val logicalAntiJoinOnDisjointKeys: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .join(JoinRelType.ANTI, relBuilder.call(EQUALS, relBuilder.field(2, 0, 4), relBuilder.field(2, 1, 4))) .build // SELECT * FROM MyTable1 UNION ALL SELECT * MyTable2 protected lazy val logicalUnionAll: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .union(true).build() // SELECT * FROM MyTable1 UNION ALL SELECT * MyTable2 protected lazy val logicalUnion: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .union(false).build() // SELECT * FROM MyTable1 INTERSECT ALL SELECT * MyTable2 protected lazy val logicalIntersectAll: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .intersect(true).build() // SELECT * FROM MyTable1 INTERSECT SELECT * MyTable2 protected lazy val logicalIntersect: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .intersect(false).build() // SELECT * FROM MyTable1 MINUS ALL SELECT * MyTable2 protected lazy val logicalMinusAll: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .minus(true).build() // SELECT * FROM MyTable1 MINUS SELECT * MyTable2 protected lazy val logicalMinus: RelNode = relBuilder .scan("MyTable1") .scan("MyTable2") .minus(false).build() protected def createDataStreamScan[T]( tableNames: util.List[String], traitSet: RelTraitSet): T = { val table = relBuilder .getRelOptSchema .asInstanceOf[CalciteCatalogReader] .getTable(tableNames) .asInstanceOf[FlinkPreparingTableBase] val conventionTrait = traitSet.getTrait(ConventionTraitDef.INSTANCE) val scan = conventionTrait match { case Convention.NONE => relBuilder.clear() val scan = relBuilder.scan(tableNames).build() scan.copy(traitSet, scan.getInputs) case FlinkConventions.LOGICAL => new FlinkLogicalDataStreamTableScan(cluster, traitSet, table) case FlinkConventions.BATCH_PHYSICAL => new BatchExecBoundedStreamScan(cluster, traitSet, table, table.getRowType) case FlinkConventions.STREAM_PHYSICAL => new StreamExecDataStreamScan(cluster, traitSet, table, table.getRowType) case _ => throw new TableException(s"Unsupported convention trait: $conventionTrait") } scan.asInstanceOf[T] } protected def createLiteralList( rowType: RelDataType, literalValues: Seq[String]): util.List[RexLiteral] = { require(literalValues.length == rowType.getFieldCount) val rexBuilder = relBuilder.getRexBuilder literalValues.zipWithIndex.map { case (v, index) => val fieldType = rowType.getFieldList.get(index).getType if (v == null) { rexBuilder.makeNullLiteral(fieldType) } else { fieldType.getSqlTypeName match { case BIGINT => rexBuilder.makeLiteral(v.toLong, fieldType, true) case INTEGER => rexBuilder.makeLiteral(v.toInt, fieldType, true) case BOOLEAN => rexBuilder.makeLiteral(v.toBoolean) case DATE => rexBuilder.makeDateLiteral(new DateString(v)) case TIME => rexBuilder.makeTimeLiteral(new TimeString(v), 0) case TIMESTAMP => rexBuilder.makeTimestampLiteral(new TimestampString(v), 0) case DOUBLE => rexBuilder.makeApproxLiteral(BigDecimal.valueOf(v.toDouble)) case FLOAT => rexBuilder.makeApproxLiteral(BigDecimal.valueOf(v.toFloat)) case VARCHAR => rexBuilder.makeLiteral(v) case _ => throw new TableException(s"${fieldType.getSqlTypeName} is not supported!") } }.asInstanceOf[RexLiteral] }.toList } protected def createLogicalCalc( input: RelNode, outputRowType: RelDataType, projects: util.List[RexNode], conditions: util.List[RexNode]): Calc = { val predicate: RexNode = if (conditions == null || conditions.isEmpty) { null } else { RexUtil.composeConjunction(rexBuilder, conditions, true) } val program = RexProgram.create( input.getRowType, projects, predicate, outputRowType, rexBuilder) FlinkLogicalCalc.create(input, program) } protected def makeLiteral( value: Any, internalType: LogicalType, isNullable: Boolean = false, allowCast: Boolean = true): RexNode = { rexBuilder.makeLiteral( value, typeFactory.createFieldTypeFromLogicalType(internalType.copy(isNullable)), allowCast ) } } class TestRel( cluster: RelOptCluster, traits: RelTraitSet, input: RelNode) extends SingleRel(cluster, traits, input) { override def computeSelfCost(planner: RelOptPlanner, mq: RelMetadataQuery): RelOptCost = { planner.getCostFactory.makeCost(1.0, 1.0, 1.0) } } object FlinkRelMdHandlerTestBase { @BeforeClass def beforeAll(): Unit = { RelMetadataQueryBase .THREAD_PROVIDERS .set(JaninoRelMetadataProvider.of(FlinkDefaultRelMetadataProvider.INSTANCE)) } }
hequn8128/flink
flink-table/flink-table-planner-blink/src/test/scala/org/apache/flink/table/planner/plan/metadata/FlinkRelMdHandlerTestBase.scala
Scala
apache-2.0
92,020
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ package org.apache.toree.kernel.protocol.v5.content import org.scalatest.{Matchers, FunSpec} import play.api.libs.json._ class ErrorContentSpec extends FunSpec with Matchers { val errorJson: JsValue = Json.parse(""" { "ename": "<STRING>", "evalue": "<STRING>", "traceback": ["<STRING>"] } """) val error = ErrorContent("<STRING>", "<STRING>", List("<STRING>")) describe("ErrorContent") { describe("#toTypeString") { it("should return correct type") { ErrorContent.toTypeString should be ("error") } } describe("implicit conversions") { it("should implicitly convert from valid json to a ErrorContent instance") { // This is the least safe way to convert as an error is thrown if it fails errorJson.as[ErrorContent] should be (error) } it("should also work with asOpt") { // This is safer, but we lose the error information as it returns // None if the conversion fails val newCompleteRequest = errorJson.asOpt[ErrorContent] newCompleteRequest.get should be (error) } it("should also work with validate") { // This is the safest as it collects all error information (not just first error) and reports it val CompleteRequestResults = errorJson.validate[ErrorContent] CompleteRequestResults.fold( (invalid: Seq[(JsPath, Seq[JsonValidationError])]) => println("Failed!"), (valid: ErrorContent) => valid ) should be (error) } it("should implicitly convert from a ErrorContent instance to valid json") { Json.toJson(error) should be (errorJson) } } } }
lresende/incubator-toree
protocol/src/test/scala/org/apache/toree/kernel/protocol/v5/content/ErrorContentSpec.scala
Scala
apache-2.0
2,492
/* * RichVector2iSpec.scala * * Copyright (c) 2013 Lonnie Pryor III * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package fulcrum.math import org.scalatest.FunSpec import org.scalatest.matchers.ShouldMatchers /** * Test case for [[fulcrum.math.RichVector2i]]. * * @author Lonnie Pryor III ([email protected]) */ @org.junit.runner.RunWith(classOf[org.scalatest.junit.JUnitRunner]) class RichVector2iSpec extends FunSpec with ShouldMatchers { describe("RichVector2i") { it("should support unary operators from Int") { val v = Vector2(1, 2) ~v should equal(Vector2(~1, ~2)) +v should equal(Vector2(+1, +2)) -v should equal(Vector2(-1, -2)) } it("should support shift operators from Int") { val v = Vector2(2, 4) v << 1 should equal(Vector2(4, 8)) v << Vector2(1, 1) should equal(Vector2(4, 8)) v >> 1 should equal(Vector2(1, 2)) v >> Vector2(1, 1) should equal(Vector2(1, 2)) v >>> 1 should equal(Vector2(1, 2)) v >>> Vector2(1, 1) should equal(Vector2(1, 2)) } it("should support comparison operators from Int") { import Vector2._ val v = Vector2(1, 2) v === 1 should equal(Vector2(true, false)) v === Vector2(1, 2) should equal(Vector2(true, true)) v === 2 should equal(Vector2(false, true)) v === Vector2(2, 1) should equal(Vector2(false, false)) v =!= 1 should equal(Vector2(false, true)) v =!= Vector2(1, 2) should equal(Vector2(false, false)) v =!= 2 should equal(Vector2(true, false)) v =!= Vector2(2, 1) should equal(Vector2(true, true)) v < 1 should equal(Vector2(false, false)) v < Vector2(1, 2) should equal(Vector2(false, false)) v < 3 should equal(Vector2(true, true)) v < Vector2(3, 4) should equal(Vector2(true, true)) v <= 1 should equal(Vector2(true, false)) v <= Vector2(1, 2) should equal(Vector2(true, true)) v <= 3 should equal(Vector2(true, true)) v <= Vector2(3, 4) should equal(Vector2(true, true)) v > 1 should equal(Vector2(false, true)) v > Vector2(1, 2) should equal(Vector2(false, false)) v > 0 should equal(Vector2(true, true)) v > Vector2(0, 1) should equal(Vector2(true, true)) v >= 1 should equal(Vector2(true, true)) v >= Vector2(1, 2) should equal(Vector2(true, true)) v >= 3 should equal(Vector2(false, false)) v >= Vector2(3, 4) should equal(Vector2(false, false)) } it("should support bitwise operators from Int") { val v = Vector2(0x0F, 0xF0) v | 0xF0 should equal(Vector2(0xFF, 0xF0)) v | Vector2(0xF0, 0x0F) should equal(Vector2(0xFF, 0xFF)) v & 0xF0 should equal(Vector2(0x00, 0xF0)) v & Vector2(0xF0, 0x0F) should equal(Vector2(0x00, 0x00)) v ^ 0xF0 should equal(Vector2(0xFF, 0x00)) v ^ Vector2(0xF0, 0x0F) should equal(Vector2(0xFF, 0xFF)) } it("should support arithemetic operators from Int") { import Vector2._ val v1 = Vector2(1, 2) val v2 = Vector2(3, 4) v1 + 1 should equal(Vector2(2, 3)) v1 + v2 should equal(Vector2(4, 6)) v1 :+ 1 should equal(Vector2(2, 3)) v1 :+ v2 should equal(Vector2(4, 6)) v2 - 1 should equal(Vector2(2, 3)) v2 - v1 should equal(Vector2(2, 2)) v1 * 2 should equal(Vector2(2, 4)) v1 * v2 should equal(Vector2(3, 8)) v2 / 2 should equal(Vector2(1, 2)) v2 / v1 should equal(Vector2(3, 2)) v2 % 2 should equal(Vector2(1, 0)) v2 % v1 should equal(Vector2(0, 0)) } it("should create immutable copies by converting elements") { val v = Vector2(1, 0) v.toVector2b should equal(immutable.Vector2(true, false)) v.toVector2f should equal(immutable.Vector2(1f, 0f)) } } }
lpryor/fulcrum
math/src/test/scala/fulcrum/math/RichVector2iSpec.scala
Scala
apache-2.0
4,292
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.expressions import org.apache.spark.SparkFunSuite import org.apache.spark.sql.catalyst.InternalRow import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, ExprCode} import org.apache.spark.sql.types.{DataType, IntegerType} /** * A test suite for testing [[ExpressionEvalHelper]]. * * Yes, we should write test cases for test harnesses, in case * they have behaviors that are easy to break. */ class ExpressionEvalHelperSuite extends SparkFunSuite with ExpressionEvalHelper { test("SPARK-16489 checkEvaluation should fail if expression reuses variable names") { val e = intercept[RuntimeException] { checkEvaluation(BadCodegenExpression(), 10) } assert(e.getMessage.contains("some_variable")) } } /** * An expression that generates bad code (variable name "some_variable" is not unique across * instances of the expression. */ case class BadCodegenExpression() extends LeafExpression { override def nullable: Boolean = false override def eval(input: InternalRow): Any = 10 override protected def doGenCode(ctx: CodegenContext, ev: ExprCode): ExprCode = { ev.copy(code = s""" |int some_variable = 11; |int ${ev.value} = 10; """.stripMargin) } override def dataType: DataType = IntegerType }
Panos-Bletsos/spark-cost-model-optimizer
sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvalHelperSuite.scala
Scala
apache-2.0
2,113
package github.keylity import org.specs2.mutable._ class MutableOnceSpec extends Specification { "MutableOnce behavior" should { "Create, mute once and twice like" in { val id = new MutableOnce(0) id() must_== 0 id.set(1) id() must_== 1 id.set(2) must throwA[IllegalStateException] } } }
sorra/keylity
src/test/scala/github/keylity/MutableOnceSpec.scala
Scala
mit
334
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.catalyst.plans.logical /** * Estimates of various statistics. The default estimation logic simply lazily multiplies the * corresponding statistic produced by the children. To override this behavior, override * `statistics` and assign it an overridden version of `Statistics`. * * 各种统计数据的估计,默认的估计逻辑只是懒洋洋地乘以孩子们产生的相应统计量,要覆盖此行为, * 请覆盖`statistics`并为其分配一个重写的`Statistics`版本 * * '''NOTE''': concrete and/or overridden versions of statistics fields should pay attention to the * performance of the implementations. The reason is that estimations might get triggered in * performance-critical processes, such as query plan planning. * * Note that we are using a BigInt here since it is easy to overflow a 64-bit integer in * cardinality estimation (e.g. cartesian joins). * * @param sizeInBytes Physical size in bytes. For leaf operators this defaults to 1, otherwise it * defaults to the product of children's `sizeInBytes`. */ private[sql] case class Statistics(sizeInBytes: BigInt)
tophua/spark1.52
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/Statistics.scala
Scala
apache-2.0
1,961
package jsonslim import org.scalatest.FunSpec import org.json4s.JsonDSL._ import org.json4s.{JArray, JValue} class SrcTest extends FunSpec { describe("Src") { it ("should apply to strings") { assert(Src("[]") == Some(JArray(Nil))) } it ("should apply to jvalues") { val value: JValue = ("foo" -> 1) ~ ("bar" -> "boom") assert(Src(value) == Some(value)) } } }
meetup/json-slim
src/test/scala/SrcTest.scala
Scala
mit
399
package com.regblanc.sgl.board package core import sgl._ import geometry._ import scene._ import scene.ui._ import util._ trait ScreensComponent { this: GraphicsProvider with InputProvider with SystemProvider with WindowProvider with GameStateComponent with LoggingProvider with ViewportComponent => private implicit val LogTag = Logger.Tag("main-screen") class BoardScreen extends GameScreen { override def name: String = "board-screen" val BoardSize: Int = 1 val WorldHeight: Int = 10 val WorldWidth: Float = Window.width*(WorldHeight/Window.height.toFloat) val viewport = new Viewport(Window.width, Window.height) viewport.setCamera(0, 0, WorldWidth, WorldHeight) viewport.scalingStrategy = Viewport.Fit val p = (0f, 0f) def handleEvent(e: Input.InputEvent): Unit = e match { case Input.KeyDownEvent(Input.Keys.Down) => viewport.translateCamera(0, 0.5f) case Input.KeyDownEvent(Input.Keys.Up) => viewport.translateCamera(0, -0.5f) case Input.KeyDownEvent(Input.Keys.Left) => viewport.translateCamera(-0.5f, 0) case Input.KeyDownEvent(Input.Keys.Right) => viewport.translateCamera(0.5f, 0) case _ => } Input.setEventProcessor(handleEvent) override def update(dt: Long): Unit = { } override def render(canvas: Graphics.Canvas): Unit = { canvas.drawColor(Graphics.Color.Red) viewport.withViewport(canvas) { for(i <- 0 until 100) { for(j <- 0 until 100) { val color = if((i+j) % 2 == 0) Graphics.Color.White else Graphics.Color.Black canvas.drawRect(j, i, 1f, 1f, Graphics.defaultPaint.withColor(color)) } } canvas.drawCircle(p._1 + 0.5f, p._2 + 0.5f, 0.5f, Graphics.defaultPaint.withColor(Graphics.Color.Green)) } } } }
regb/scala-game-library
examples/board/core/src/main/scala/MainScreen.scala
Scala
mit
1,806
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.server import java.lang.{Byte => JByte} import java.util.Properties import kafka.network.SocketServer import kafka.security.authorizer.AclEntry import org.apache.kafka.common.message.{DescribeClusterRequestData, DescribeClusterResponseData} import org.apache.kafka.common.protocol.ApiKeys import org.apache.kafka.common.requests.{DescribeClusterRequest, DescribeClusterResponse} import org.apache.kafka.common.resource.ResourceType import org.apache.kafka.common.utils.Utils import org.junit.jupiter.api.Assertions.assertEquals import org.junit.jupiter.api.{BeforeEach, Test} import scala.jdk.CollectionConverters._ class DescribeClusterRequestTest extends BaseRequestTest { override def brokerPropertyOverrides(properties: Properties): Unit = { properties.setProperty(KafkaConfig.OffsetsTopicPartitionsProp, "1") properties.setProperty(KafkaConfig.DefaultReplicationFactorProp, "2") properties.setProperty(KafkaConfig.RackProp, s"rack/${properties.getProperty(KafkaConfig.BrokerIdProp)}") } @BeforeEach override def setUp(): Unit = { doSetup(createOffsetsTopic = false) } @Test def testDescribeClusterRequestIncludingClusterAuthorizedOperations(): Unit = { testDescribeClusterRequest(true) } @Test def testDescribeClusterRequestExcludingClusterAuthorizedOperations(): Unit = { testDescribeClusterRequest(false) } def testDescribeClusterRequest(includeClusterAuthorizedOperations: Boolean): Unit = { val expectedBrokers = servers.map { server => new DescribeClusterResponseData.DescribeClusterBroker() .setBrokerId(server.config.brokerId) .setHost("localhost") .setPort(server.socketServer.boundPort(listenerName)) .setRack(server.config.rack.orNull) }.toSet val expectedControllerId = servers.filter(_.kafkaController.isActive).last.config.brokerId val expectedClusterId = servers.last.clusterId val expectedClusterAuthorizedOperations = if (includeClusterAuthorizedOperations) { Utils.to32BitField( AclEntry.supportedOperations(ResourceType.CLUSTER) .map(_.code.asInstanceOf[JByte]).asJava) } else { Int.MinValue } for (version <- ApiKeys.DESCRIBE_CLUSTER.oldestVersion to ApiKeys.DESCRIBE_CLUSTER.latestVersion) { val describeClusterRequest = new DescribeClusterRequest.Builder(new DescribeClusterRequestData() .setIncludeClusterAuthorizedOperations(includeClusterAuthorizedOperations)) .build(version.toShort) val describeClusterResponse = sentDescribeClusterRequest(describeClusterRequest) assertEquals(expectedControllerId, describeClusterResponse.data.controllerId) assertEquals(expectedClusterId, describeClusterResponse.data.clusterId) assertEquals(expectedClusterAuthorizedOperations, describeClusterResponse.data.clusterAuthorizedOperations) assertEquals(expectedBrokers, describeClusterResponse.data.brokers.asScala.toSet) } } private def sentDescribeClusterRequest(request: DescribeClusterRequest, destination: Option[SocketServer] = None): DescribeClusterResponse = { connectAndReceive[DescribeClusterResponse](request, destination = destination.getOrElse(anySocketServer)) } }
guozhangwang/kafka
core/src/test/scala/unit/kafka/server/DescribeClusterRequestTest.scala
Scala
apache-2.0
4,035
package ru.zconstz.shortener.service import akka.actor.{ActorRef, Props} import ru.zconstz.shortener.Boot trait ServiceRefs { lazy val tokenActor: ActorRef = Boot.system.actorOf(Props[TokenActor]) lazy val linkActor: ActorRef = Boot.system.actorOf(Props[LinkActor]) lazy val clickActor: ActorRef = Boot.system.actorOf(Props[ClickActor]) lazy val folderActor: ActorRef = Boot.system.actorOf(Props[FolderActor]) }
konstantin-zlobin/url-shortener
src/main/scala/ru/zconstz/shortener/service/ServiceRefs.scala
Scala
apache-2.0
423
class SimpleClass { def foo = 239 }
scala/scala
test/files/scalap/simpleClass.scala
Scala
apache-2.0
38
/* * Copyright 2016 Carlo Micieli * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.hascalator package control import Prelude._ import scala.annotation.implicitNotFound /** @tparam F * @author Carlo Micieli * @since 0.0.1 */ @implicitNotFound("The type ${F} was not made instance of the Applicative type class") trait Applicative[F[_]] extends Functor[F] { self => /** Lifts a value * @param x * @tparam A * @return */ def pure[A](x: A): F[A] /** Sequential application. * * @param x * @param f * @tparam A * @tparam B * @return */ def <*>[A, B](x: F[A])(f: F[A => B]): F[B] def *>[A, B](fa: F[A])(fb: F[B]): F[B] = fb def <*[A, B](fa: F[A])(fb: F[B]): F[A] = fa trait ApplicativeLaws { def identity[A](v: A): Boolean = { false } } } object Applicative { def apply[F[_]](implicit ev: Applicative[F]): Applicative[F] = ev }
CarloMicieli/hascalator
core/src/main/scala/io/hascalator/control/Applicative.scala
Scala
apache-2.0
1,438
package varys.util /** * Created by franklab on 15-4-3. */ import java.net.{DatagramPacket, InetAddress, DatagramSocket} import akka.actor.{ActorRef, Props, Actor} import varys.Logging import scala.sys.process._ import varys.framework._ class DNBD ( val p: Int, val eth: String) extends Actor with Logging{ val port = p val interface = eth var isStart = false var bandwidth: Int = 0 class sendTask(sender: ActorRef, host: String) extends Runnable { val sender_ = sender val host_ = host override def run: Unit = { val bn = send(host) sender_ ! bn } } class getRemainningBWTask(sender: ActorRef, isTx: Boolean) extends Runnable { val sender_ = sender override def run: Unit = { val bd = new Bandwidth(interface) if (isTx) { val transRate = bd.readTx() sender_ ! bandwidth - transRate } else { val transRate = bd.readRx() sender_ ! bandwidth - transRate } } } override def receive = { case GetBottleNeck(host) => //never block in actor !!! val start = new Thread(new sendTask(sender, host)) start.run() case GetRemainingTX => val start = new Thread(new getRemainningBWTask(sender, true)) start.run() case GetRemainingRX => val start = new Thread(new getRemainningBWTask(sender, false)) start.run() case StartServer => if (!isStart) { val start = new Thread(new Runnable { override def run(): Unit = { bind(port) } }) start.start() isStart = true } case _ => logError("DNBD receive something wrong !!!") } override def preStart(): Unit = { val bd = new Bandwidth(interface) bandwidth = bd.getBW() logInfo("DNBD bandwidth of host is: %d bps".format(bandwidth)) } def send(host: String): Int = { try { val s = new DatagramSocket() val addr = InetAddress.getByName(host) //get remaining bw of this end host val bd = new Bandwidth(interface) val transRate = bd.readTx() val data = (bandwidth - transRate).toString.getBytes logInfo("DNBD TX bandwidth of Source: %d".format(bandwidth - transRate)) //println("client:") //data.foreach(print) val packet = new DatagramPacket(data, data.length, addr, port) s.send(packet) //wait for the return val recvData = new Array[Byte](1024) val recvPacket = new DatagramPacket(recvData, recvData.length) s.receive(recvPacket) val buf = new String(recvPacket.getData) val bwPattern = "[0-9]+".r //convert to int val size = bwPattern.findFirstIn(buf).getOrElse(0).toString.toInt logInfo("DNBD bottleneck of Network: %d bps".format(size)) return size } catch { case e: Exception => e.printStackTrace() return 0 } } def bind(port: Int): Boolean = { logInfo("DNBD Server is listening at %s : %d".format(interface, port)) val serverSock = new DatagramSocket(port) val recvBuff = new Array[Byte](1024) while (true) { for (i <- 0 until recvBuff.length) recvBuff(i) = 0 val recvPacket = new DatagramPacket(recvBuff, recvBuff.length) serverSock.receive(recvPacket) val buf = new String(recvPacket.getData) val bwPattern = "[0-9]+".r var size = bwPattern.findFirstIn(buf).getOrElse(0).toString.toInt logInfo("DNBD destination receive bandwidth: %d".format(size)) val bd = new Bandwidth(interface) val recvRate = bd.readRx(); val rxRate = bandwidth - recvRate; logInfo("DNBD RX bandwidth of destination: %d".format(rxRate)) if (size > rxRate) size = rxRate //TODO it's better to add ip info in log logInfo("DNBD the bottleneck of the link: %d".format(size)) //send the bottleneck back to the client val clientAddr = recvPacket.getAddress; val clientPort = recvPacket.getPort; val sendPacket = new DatagramPacket(size.toString.getBytes, size.toString.getBytes.length, clientAddr, clientPort) serverSock.send(sendPacket) } true } class Bandwidth(val interface: String) { val eth = interface def readRx(): Int = { var rx: Int = 0 val rx0Str = ("cat /sys/class/net/%s/statistics/rx_bytes".format(interface) !!) val pattern = "[0-9]+".r //TODO it's may not safe here val rx0 = pattern.findFirstIn(rx0Str).getOrElse(0).toString //println(rx0) //rx0Str.foreach(println) Thread.sleep(100) val rx1Str = ("cat /sys/class/net/%s/statistics/rx_bytes".format(interface) !!) //TODO it's may not safe here val rx1 = pattern.findFirstIn(rx1Str).getOrElse(0).toString //println(rx1Str) rx = stringMinus(rx1, rx0) * 10 //println(rx) return rx * 8 } def readTx(): Int = { var tx: Int = 0 val tx0Str = ("cat /sys/class/net/%s/statistics/tx_bytes".format(interface) !!) val pattern = "[0-9]+".r //TODO it's may not safe here val tx0 = pattern.findFirstIn(tx0Str).getOrElse(0).toString Thread.sleep(100) val tx1Str = ("cat /sys/class/net/%s/statistics/tx_bytes".format(interface) !!) //TODO it's may not safe here val tx1 = pattern.findFirstIn(tx1Str).getOrElse(0).toString //println(rx1Str) tx = stringMinus(tx1, tx0) * 10 //println(tx) return tx * 8 } def getBW(): Int = { //val res = "echo 05806056966" #| "sudo -S ethtool eth0" #| "grep Speed" ! val buffer = new StringBuffer() val cmd = Seq("ethtool", eth) val lines = cmd lines_! ProcessLogger(buffer append _) //println(lines) var bwStr = "" for (s <- lines if s.contains("Speed")) bwStr = s val bwPattern = "[0-9]+".r val bw = bwPattern.findFirstIn(bwStr).getOrElse(0).toString.toInt val ret = bw * 1024 * 1024 //println(ret) ret } def stringMinus(l: String, r: String): Int = { var res = 0 var size = l.size if (r.size < size) size = r.size for (x <- size -1 to 0 by -1) { res = res + (l.charAt(x) - r.charAt(x)) * (scala.math.pow(10, (size - 1 - x)).toInt) } res } } }
frankfzw/varys
core/src/main/scala/varys/util/DNBD.scala
Scala
apache-2.0
6,283
package uk.gov.gds.common.testutil import uk.gov.gds.common.logging.Logging import java.lang.ProcessBuilder import collection.JavaConversions._ import sys.process.Process trait PlayRunner extends LazyStop with Logging { override protected def definitionOfSoonInSeconds = 10 val playAppName: String val playAppPort: String def projectRoot = "./" def startCommand = List(projectRoot + "playctl.sh", playAppName, "start", playAppPort) def stopCommand = List(projectRoot + "playctl.sh", playAppName, "stop") override def doStart = { val builder = new ProcessBuilder logger.info("Running " + startCommand) builder.command(startCommand) val p = builder.start() p.waitFor() } override def doStop = { logger.info("Running " + projectRoot + "playctl.sh " + playAppName + " stop ") Process(stopCommand).! } }
alphagov/gds-scala-common
scala-utils/src/main/scala/uk/gov/gds/common/testutil/PlayRunner.scala
Scala
mit
858
package be.studiocredo import be.studiocredo.aws.DownloadService import be.studiocredo.account._ import be.studiocredo.reservations.ReservationEngineMonitorService import com.google.inject.{AbstractModule, Singleton} import net.codingwell.scalaguice.{ScalaModule, ScalaMultibinder} import play.api.Play object Modules { class BaseModule extends AbstractModule with ScalaModule { def configure() { binder().disableCircularProxies() bind[EventService].in[Singleton] bind[UserService].in[Singleton] bind[VenueService].in[Singleton] bind[ShowService].in[Singleton] bind[OrderService].in[Singleton] bind[PreReservationService].in[Singleton] bind[NotificationService].in[Singleton] bind[PaymentService].in[Singleton] bind[TicketService].in[Singleton] bind[ReservationEngineMonitorService].asEagerSingleton() bind[DownloadService].asEagerSingleton() val accountStatementImportServiceUploadType = Play.current.configuration.getString(AccountStatementImportConfigurationKeys.uploadType) if (accountStatementImportServiceUploadType.isDefined) { accountStatementImportServiceUploadType match { case Some("axa") => bind[TransactionImporter].to[AXATransactionImporter].asEagerSingleton() case _ => bind[TransactionImporter].to[NullTransactionImporter].asEagerSingleton() } bind[AccountStatementImportService].to[UploadAccountStatementImportService].asEagerSingleton() } else if (Play.current.configuration.getString(AccountStatementImportConfigurationKeys.codaboxClient).isDefined) { bind[AccountStatementImportService].to[CodaboxAccountStatementImportService].asEagerSingleton() bind[CodaboxSyncService].asEagerSingleton() } else { bind[AccountStatementImportService].to[NullAccountStatementImportService].asEagerSingleton() } bind[controllers.Application].in[Singleton] bind[controllers.admin.EventDetails].in[Singleton] bind[controllers.admin.Events].in[Singleton] bind[controllers.admin.UserDetails].in[Singleton] bind[controllers.admin.Venues].in[Singleton] bind[controllers.admin.Orders].in[Singleton] bind[controllers.Orders].in[Singleton] bind[controllers.Events].in[Singleton] } } class AuthModule extends AbstractModule with ScalaModule { def configure() { import be.studiocredo.auth._ binder().disableCircularProxies() bind[AuthenticatorService].in[Singleton] // bind[AuthTokenStore].to[CacheAuthTokenStore].in[Singleton] bind[AuthTokenStore].to[DbAuthTokenStore].in[Singleton] bind[IdentityService].in[Singleton] bind[AuthTokenExpireService].asEagerSingleton() // todo replace with method that doesn't suck val multi = ScalaMultibinder.newSetBinder[Service](binder) multi.addBinding().to[AuthTokenExpireService] multi.addBinding().to[ReservationEngineMonitorService] multi.addBinding().to[DownloadService] multi.addBinding().to[AccountStatementImportService] if (Play.current.configuration.getString(AccountStatementImportConfigurationKeys.codaboxClient).isDefined) { multi.addBinding().to[CodaboxSyncService] } bind[controllers.auth.Auth].in[Singleton] bind[controllers.auth.LoginPage].in[Singleton] bind[controllers.auth.PasswordChange].in[Singleton] bind[controllers.auth.SignUp].in[Singleton] bind[controllers.auth.PasswordReset].in[Singleton] } } }
studiocredo/ticket-reservation
app/be/studiocredo/Modules.scala
Scala
apache-2.0
3,538
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.secondaryindex.command import java.util import scala.collection.JavaConverters._ import org.apache.log4j.Logger import org.apache.spark.sql.{CarbonEnv, Row, SparkSession} import org.apache.spark.sql.catalyst.analysis.NoSuchTableException import org.apache.spark.sql.execution.command.{AlterTableModel, AtomicRunnableCommand} import org.apache.spark.sql.hive.CarbonRelation import org.apache.spark.sql.secondaryindex.events.{LoadTableSIPostExecutionEvent, LoadTableSIPreExecutionEvent} import org.apache.spark.sql.secondaryindex.load.CarbonInternalLoaderUtil import org.apache.spark.sql.secondaryindex.util.{CarbonInternalScalaUtil, SecondaryIndexUtil} import org.apache.spark.sql.util.CarbonException import org.apache.carbondata.common.exceptions.sql.MalformedCarbonCommandException import org.apache.carbondata.common.logging.LogServiceFactory import org.apache.carbondata.core.locks.{CarbonLockFactory, LockUsage} import org.apache.carbondata.core.metadata.{CarbonTableIdentifier, ColumnarFormatVersion} import org.apache.carbondata.core.metadata.schema.table.{CarbonTable, TableInfo} import org.apache.carbondata.core.statusmanager.{LoadMetadataDetails, SegmentStatus, SegmentStatusManager} import org.apache.carbondata.core.util.CarbonUtil import org.apache.carbondata.events.{OperationContext, OperationListenerBus} case class SIRebuildSegmentCommand( alterTableModel: AlterTableModel, tableInfoOp: Option[TableInfo] = None, operationContext: OperationContext = new OperationContext) extends AtomicRunnableCommand { val LOGGER: Logger = LogServiceFactory.getLogService(this.getClass.getName) var indexTable: CarbonTable = _ override def processMetadata(sparkSession: SparkSession): Seq[Row] = { val tableName = alterTableModel.tableName.toLowerCase val dbName = alterTableModel.dbName.getOrElse(sparkSession.catalog.currentDatabase) indexTable = if (tableInfoOp.isDefined) { CarbonTable.buildFromTableInfo(tableInfoOp.get) } else { val relation = CarbonEnv.getInstance(sparkSession).carbonMetaStore .lookupRelation(Option(dbName), tableName)(sparkSession).asInstanceOf[CarbonRelation] relation.carbonTable } setAuditTable(indexTable) if (!indexTable.getTableInfo.isTransactionalTable) { throw new MalformedCarbonCommandException("Unsupported operation on non transactional table") } if (!indexTable.isIndexTable) { throw new UnsupportedOperationException("Unsupported operation on carbon table") } val version = CarbonUtil.getFormatVersion(indexTable) val isOlderVersion = version == ColumnarFormatVersion.V1 || version == ColumnarFormatVersion.V2 if (isOlderVersion) { throw new MalformedCarbonCommandException( "Unsupported rebuild operation on carbon table: Merge data files is not supported on V1 " + "V2 store segments") } // check if the list of given segments in the command are valid val segmentIds: List[String] = { if (alterTableModel.customSegmentIds.isDefined) { alterTableModel.customSegmentIds.get } else { List.empty } } if (segmentIds.nonEmpty) { val segmentStatusManager = new SegmentStatusManager(indexTable.getAbsoluteTableIdentifier) val validSegments = segmentStatusManager.getValidAndInvalidSegments.getValidSegments.asScala .map(_.getSegmentNo) segmentIds.foreach(segmentId => if (!validSegments.contains(segmentId)) { throw new RuntimeException(s"Rebuild index by segment id is failed. " + s"Invalid ID: $segmentId") } ) } Seq.empty } override def processData(sparkSession: SparkSession): Seq[Row] = { LOGGER.info( s"SI segment compaction request received for table " + s"${ indexTable.getDatabaseName}.${indexTable.getTableName}") val metaStore = CarbonEnv.getInstance(sparkSession) .carbonMetaStore val mainTable = metaStore .lookupRelation(Some(indexTable.getDatabaseName), CarbonInternalScalaUtil.getParentTableName(indexTable))(sparkSession) .asInstanceOf[CarbonRelation] .carbonTable val lock = CarbonLockFactory.getCarbonLockObj( mainTable.getAbsoluteTableIdentifier, LockUsage.COMPACTION_LOCK) var segmentList: List[String] = null val segmentFileNameMap: java.util.Map[String, String] = new util.HashMap[String, String]() var segmentIdToLoadStartTimeMapping: scala.collection.mutable.Map[String, java.lang.Long] = scala.collection.mutable.Map() var loadMetadataDetails: Array[LoadMetadataDetails] = null try { if (lock.lockWithRetries()) { LOGGER.info("Acquired the compaction lock for table" + s" ${mainTable.getDatabaseName}.${mainTable.getTableName}") val operationContext = new OperationContext val loadTableSIPreExecutionEvent: LoadTableSIPreExecutionEvent = LoadTableSIPreExecutionEvent(sparkSession, new CarbonTableIdentifier(indexTable.getDatabaseName, indexTable.getTableName, ""), null, indexTable) OperationListenerBus.getInstance .fireEvent(loadTableSIPreExecutionEvent, operationContext) if (alterTableModel.customSegmentIds.isDefined) { segmentList = alterTableModel.customSegmentIds.get } SegmentStatusManager.readLoadMetadata(mainTable.getMetadataPath) collect { case loadDetails if null == segmentList || segmentList.contains(loadDetails.getLoadName) => segmentFileNameMap .put(loadDetails.getLoadName, String.valueOf(loadDetails.getLoadStartTime)) } loadMetadataDetails = SegmentStatusManager .readLoadMetadata(indexTable.getMetadataPath) .filter(loadMetadataDetail => (null == segmentList || segmentList.contains(loadMetadataDetail.getLoadName)) && (loadMetadataDetail.getSegmentStatus == SegmentStatus.SUCCESS || loadMetadataDetail.getSegmentStatus == SegmentStatus.LOAD_PARTIAL_SUCCESS)) segmentIdToLoadStartTimeMapping = CarbonInternalLoaderUtil .getSegmentToLoadStartTimeMapping(loadMetadataDetails) .asScala val carbonLoadModelForMergeDataFiles = SecondaryIndexUtil .getCarbonLoadModel(indexTable, loadMetadataDetails.toList.asJava, System.currentTimeMillis(), CarbonInternalScalaUtil .getCompressorForIndexTable(indexTable.getDatabaseName, indexTable.getTableName, mainTable.getTableName)(sparkSession)) SecondaryIndexUtil.mergeDataFilesSISegments(segmentIdToLoadStartTimeMapping, indexTable, loadMetadataDetails.toList.asJava, carbonLoadModelForMergeDataFiles, isRebuildCommand = true)(sparkSession.sqlContext) val loadTableSIPostExecutionEvent: LoadTableSIPostExecutionEvent = LoadTableSIPostExecutionEvent(sparkSession, indexTable.getCarbonTableIdentifier, null, indexTable) OperationListenerBus.getInstance .fireEvent(loadTableSIPostExecutionEvent, operationContext) LOGGER.info(s"SI segment compaction request completed for table " + s"${indexTable.getDatabaseName}.${indexTable.getTableName}") } else { LOGGER.error(s"Not able to acquire the compaction lock for table" + s" ${indexTable.getDatabaseName}.${indexTable.getTableName}") CarbonException.analysisException( "Table is already locked for compaction. Please try after some time.") } } catch { case ex: Exception => LOGGER.error(s"SI segment compaction request failed for table " + s"${indexTable.getDatabaseName}.${indexTable.getTableName}") case ex: NoSuchTableException => throw ex } finally { lock.unlock() } Seq.empty } override protected def opName: String = "SI Compact/Rebuild within segment" }
jackylk/incubator-carbondata
integration/spark/src/main/scala/org/apache/spark/sql/secondaryindex/command/SIRebuildSegmentCommand.scala
Scala
apache-2.0
8,991
/* * Copyright (c) 2021. StulSoft */ package com.stulsoft.areas /** * @author Yuriy Stul */ object ShapeArea { def areaOf[A](a: A)(implicit shape: Area[A]): Double = shape.area(a) }
ysden123/poc
cats-examples/first-steps/src/main/scala/com/stulsoft/areas/ShapeArea.scala
Scala
mit
190
package com.outr.arango.api import com.outr.arango.api.model._ import io.youi.client.HttpClient import io.youi.http.HttpMethod import io.youi.net._ import io.circe.Json import scala.concurrent.{ExecutionContext, Future} object APIQueryProperties { def get(client: HttpClient)(implicit ec: ExecutionContext): Future[Json] = client .method(HttpMethod.Get) .path(path"/_api/query/properties", append = true) .call[Json] def put(client: HttpClient, body: PutApiQueryProperties)(implicit ec: ExecutionContext): Future[Json] = client .method(HttpMethod.Put) .path(path"/_api/query/properties", append = true) .restful[PutApiQueryProperties, Json](body) }
outr/arangodb-scala
api/src/main/scala/com/outr/arango/api/APIQueryProperties.scala
Scala
mit
689
/** * Copyright (C) 2014 Stratio (http://stratio.com) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.stratio.streaming.api.messaging import com.stratio.streaming.commons.constants.ColumnType class ColumnNameType(var columnName: String, var columnType: ColumnType)
b-cuts/streaming-cep-engine
api/src/main/scala/com/stratio/streaming/api/messaging/ColumnNameType.scala
Scala
apache-2.0
798
/* ************************************************************************************* * Copyright 2011 Normation SAS ************************************************************************************* * * This file is part of Rudder. * * Rudder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * In accordance with the terms of section 7 (7. Additional Terms.) of * the GNU General Public License version 3, the copyright holders add * the following Additional permissions: * Notwithstanding to the terms of section 5 (5. Conveying Modified Source * Versions) and 6 (6. Conveying Non-Source Forms.) of the GNU General * Public License version 3, when you create a Related Module, this * Related Module is not considered as a part of the work and may be * distributed under the license agreement of your choice. * A "Related Module" means a set of sources files including their * documentation that, without modification of the Source Code, enables * supplementary functions or services in addition to those offered by * the Software. * * Rudder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Rudder. If not, see <http://www.gnu.org/licenses/>. * ************************************************************************************* */ package com.normation.rudder.web.snippet.administration import net.liftweb._ import http._ import common._ import util.Helpers._ import js._ import JsCmds._ import JE._ import scala.xml.NodeSeq import collection.mutable.Buffer import com.normation.utils.NetUtils.isValidNetwork import com.normation.rudder.domain.Constants import com.normation.rudder.web.model.CurrentUser import com.normation.rudder.services.servers.PolicyServerManagementService import com.normation.rudder.batch.AsyncDeploymentAgent import com.normation.rudder.domain.eventlog.UpdatePolicyServer import com.normation.eventlog.EventLogDetails import com.normation.rudder.batch.AutomaticStartDeployment import com.normation.rudder.domain.eventlog.AuthorizedNetworkModification import com.normation.rudder.repository.EventLogRepository import com.normation.utils.StringUuidGenerator import com.normation.eventlog.ModificationId import bootstrap.liftweb.RudderConfig import com.normation.inventory.domain.NodeId class EditPolicyServerAllowedNetwork extends DispatchSnippet with Loggable { private[this] val psService = RudderConfig.policyServerManagementService private[this] val eventLogService = RudderConfig.eventLogRepository private[this] val asyncDeploymentAgent = RudderConfig.asyncDeploymentAgent private[this] val uuidGen = RudderConfig.stringUuidGenerator private[this] val nodeInfoService = RudderConfig.nodeInfoService /* * We are forced to use that class to deals with multiple request * not processed in order (ex: one request add an item, the second remove * item at index 0, the third remove item at index 0. Now, any order for * these requests have to be considered and lead to the same result. */ private[this] case class VH(id:Long = nextNum, var net : String = "") { override def hashCode = id.hashCode override def equals(x:Any) = x match { case VH(i, _) => id == i case _ => false } } private[this] val policyServers = nodeInfoService.getAllSystemNodeIds() // we need to store that out of the form, so that the changes are persisted at redraw private[this] val allowedNetworksMap = scala.collection.mutable.Map[NodeId, Buffer[VH]]() def dispatch = { case "render" => policyServers match { case e:EmptyBox => errorMessage(e) case Full(seq) => // we need to order the seq to have root first val sortedSeq = Constants.ROOT_POLICY_SERVER_ID +: seq.filter(x => x != Constants.ROOT_POLICY_SERVER_ID) xml:NodeSeq => { sortedSeq.foldLeft(NodeSeq.Empty)((result, id) => result++renderForm(id).apply(xml)) } } } def errorMessage(b:EmptyBox) = { val error = b ?~! "Error when processing allowed network" logger.debug(error.messageChain, b) "#allowedNetworksForm *" #> { (x:NodeSeq) => <div class="error"> <p>An error occured when trying to get the list of existing allowed networks</p> { b match { case Failure(m,_,_) => <p>Error message was: {m}</p> case _ => <p>No error message was left</p> } } </div> } } def renderForm(policyServerId: NodeId) : IdMemoizeTransform = SHtml.idMemoize { outerXml => val allowedNetworksFormId = "allowedNetworksForm" + policyServerId.value val currentNets = psService.getAuthorizedNetworks(policyServerId) val policyServerName = nodeInfoService.getNodeInfo(policyServerId) match { case Full(Some(nodeInfo)) => <span>{nodeInfo.hostname}</span> case eb: EmptyBox => val e = eb ?~! s"Could not get details for Policy Server ID ${policyServerId.value}" logger.error(e.messageChain) <span class="error">Unknown hostname</span> case Full(None) => logger.error(s"Could not get details for Policy Server ID ${policyServerId.value}, the details were not found for that ID") <span class="error">Unknown hostname</span> } val allowedNetworks = allowedNetworksMap.getOrElseUpdate(policyServerId, Buffer() ++ currentNets.getOrElse(Nil).map(n => VH(net = n))) // our process method returns a // JsCmd which will be sent back to the browser // as part of the response def process(): JsCmd = { //clear errors S.clearCurrentNotices val goodNets = Buffer[String]() allowedNetworks.foreach { case v@VH(i,net) => val netWithoutSpaces = net.replaceAll("""\\s""", "") if(netWithoutSpaces.length != 0) { if(!isValidNetwork(netWithoutSpaces)) { S.error("errornetwork_"+ i, "Bad format for given network") } else { goodNets += netWithoutSpaces } } } //if no errors, actually save if(S.errors.isEmpty) { val modId = ModificationId(uuidGen.newUuid) (for { currentNetworks <- psService.getAuthorizedNetworks(policyServerId) ?~! s"Error when getting the list of current authorized networks for policy server ${policyServerId.value}" changeNetwork <- psService.setAuthorizedNetworks(policyServerId, goodNets, modId, CurrentUser.getActor) ?~! "Error when saving new allowed networks for policy server ${policyServerId.value}" modifications = UpdatePolicyServer.buildDetails(AuthorizedNetworkModification(currentNetworks, goodNets)) eventSaved <- eventLogService.saveEventLog(modId, UpdatePolicyServer(EventLogDetails( modificationId = None , principal = CurrentUser.getActor , details = modifications , reason = None))) ?~! "Unable to save the user event log for modification on authorized networks for policy server ${policyServerId.value}" } yield { }) match { case Full(_) => asyncDeploymentAgent ! AutomaticStartDeployment(modId, CurrentUser.getActor) Replace(allowedNetworksFormId, outerXml.applyAgain) & successPopup case e:EmptyBox => SetHtml(allowedNetworksFormId,errorMessage(e)(outerXml.applyAgain)) } } else Noop } def delete(i:Long) : JsCmd = { allowedNetworks -= VH(i) allowedNetworksMap.put(policyServerId, allowedNetworks) Replace(allowedNetworksFormId, outerXml.applyAgain) } def add() : JsCmd = { allowedNetworks.append(VH()) allowedNetworksMap.put(policyServerId, allowedNetworks) Replace(allowedNetworksFormId, outerXml.applyAgain) } //process the list of networks "#allowedNetworksForm [id]" #> allowedNetworksFormId andThen "#policyServerDetails" #> <h3>{"Allowed networks for policy server "}{policyServerName} {s"(Rudder ID: ${policyServerId.value})"}</h3> & "#allowNetworkFields *" #> { (xml:NodeSeq) => allowedNetworks.flatMap { case VH(i,net) => val id = "network_"+ i ( ".deleteNetwork" #> SHtml.ajaxSubmit("-", () => delete(i)) & "#errorNetworkField" #> <td id="errorNetworkField"><span class={"lift:Msg?errorClass=bs-text-danger;id=errornetwork_"+i}>[error]</span></td> & ".networkField [name]" #> id andThen ".networkField" #> SHtml.text(net, {x => allowedNetworks.find { case VH(y,_) => y==i }.foreach{ v => v.net = x } }, "id" -> id) )(xml) } } & "#addNetworkButton" #> SHtml.ajaxSubmit("Add a network", add _) & "#submitAllowedNetwork" #> { SHtml.ajaxSubmit("Save changes", process _,("id","submitAllowedNetwork"), ("class","btn btn-default")) ++ Script( OnLoad ( JsRaw("""$(".networkField").keydown( function(event) { processKey(event , 'submitAllowedNetwork') } ); """) ) ) } } ///////////// success pop-up /////////////// private[this] def successPopup : JsCmd = { JsRaw(""" callPopupWithTimeout(200, "successConfirmationDialog")""") } }
armeniaca/rudder
rudder-web/src/main/scala/com/normation/rudder/web/snippet/administration/EditPolicyServerAllowedNetwork.scala
Scala
gpl-3.0
9,760
package models import slick.session.Database import play.api.db.DB import play.api.Application import slick.driver.ExtendedProfile trait SlickDriven { val SLICK_DRIVER = "slick.db.driver" val DEFAULT_SLICK_DRIVER = "scala.slick.driver.H2Driver" var isSql = false /** * Loads the proper database driver based on play configuration */ def getDal(implicit app: Application): DAL = { val driverClass = app.configuration.getString(SLICK_DRIVER).getOrElse(DEFAULT_SLICK_DRIVER) val driver = singleton[ExtendedProfile](driverClass) isSql = driverClass contains "SQL" new DAL(driver) } def getDb(implicit app: Application) = { Database.forDataSource(DB.getDataSource()) } private def singleton[T](name: String)(implicit man: Manifest[T]): T = Class.forName(name + "$").getField("MODULE$").get(man.runtimeClass).asInstanceOf[T] }
soupytwist/knit
app/models/SlickDriven.scala
Scala
gpl-3.0
875
package me.eax.examples.thrift.tests import java.io.{ByteArrayInputStream, ByteArrayOutputStream} import java.nio.charset.StandardCharsets import me.eax.examples.thrift.game._ import me.eax.examples.thrift.tests.gen._ import org.apache.thrift.protocol._ import org.apache.thrift.transport._ import org.scalatest._ import org.scalatest.prop._ class JSONProtocol extends FunSpec with Matchers with GeneratorDrivenPropertyChecks { describe("Thrift") { it("serializes and deserializes using TJSONProtocol") { forAll { (data1: Hero) => val str = { val out = new ByteArrayOutputStream() data1.write(new TJSONProtocol(new TIOStreamTransport(out))) new String(out.toByteArray, StandardCharsets.UTF_8) } val data2 = { val stream = new ByteArrayInputStream(str.getBytes(StandardCharsets.UTF_8)) Hero.decode(new TJSONProtocol(new TIOStreamTransport(stream))) } data1 shouldBe data2 } } } }
afiskon/scala-thrift-example
src/test/scala/me/eax/examples/thrift/tests/JSONProtocol.scala
Scala
mit
997
/*********************************************************************** * Copyright (c) 2013-2019 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.process.query import org.geotools.data.Query import org.geotools.data.simple.SimpleFeatureCollection import org.geotools.feature.DefaultFeatureCollection import org.geotools.filter.text.ecql.ECQL import org.junit.runner.RunWith import org.locationtech.geomesa.accumulo.TestWithDataStore import org.locationtech.geomesa.features.ScalaSimpleFeature import org.locationtech.geomesa.utils.collection.SelfClosingIterator import org.locationtech.geomesa.utils.geohash.VincentyModel import org.locationtech.geomesa.utils.geotools.Conversions._ import org.locationtech.geomesa.utils.geotools.SimpleFeatureTypes import org.opengis.feature.simple.SimpleFeature import org.specs2.runner.JUnitRunner import scala.util.Random @RunWith(classOf[JUnitRunner]) class KNearestNeighborSearchProcessTest extends TestWithDataStore { sequential override val spec: String = "label:String,*geom:Point:srid=4326" override val dtgField: Option[String] = None val knn = new KNearestNeighborSearchProcess() val rng = new Random(0) val centerLat = 38.149894 val centerLon = -79.073639 val width = 0.30 val uvaLawn = Seq( ScalaSimpleFeature.create(sft, "rotunda", "cville", "POINT( -78.503547 38.035475 )"), ScalaSimpleFeature.create(sft, "pavilion I", "cville", "POINT( -78.503923 38.035536 )"), ScalaSimpleFeature.create(sft, "pavilion II", "cville", "POINT( -78.503109 38.035278 )"), ScalaSimpleFeature.create(sft, "pavilion III", "cville", "POINT( -78.504059 38.035308 )"), ScalaSimpleFeature.create(sft, "pavilion IV", "cville", "POINT( -78.503180 38.035039 )"), ScalaSimpleFeature.create(sft, "pavilion V", "cville", "POINT( -78.504276 38.034971 )"), ScalaSimpleFeature.create(sft, "pavilion VI", "cville", "POINT( -78.503424 38.034721 )"), ScalaSimpleFeature.create(sft, "pavilion VII", "cville", "POINT( -78.504424 38.034628 )"), ScalaSimpleFeature.create(sft, "pavilion VIII", "cville", "POINT( -78.503601 38.034343 )"), ScalaSimpleFeature.create(sft, "pavilion IX", "cville", "POINT( -78.504617 38.034208 )"), ScalaSimpleFeature.create(sft, "pavilion X", "cville", "POINT( -78.503833 38.033938 )"), ScalaSimpleFeature.create(sft, "cabell", "cville", "POINT( -78.505152 38.032704 )"), ScalaSimpleFeature.create(sft, "beams", "cville", "POINT( -78.510295 38.034283 )"), ScalaSimpleFeature.create(sft, "mccormick", "cville", "POINT( -78.522288 38.032844 )"), ScalaSimpleFeature.create(sft, "hep", "cville", "POINT( -78.520019 38.034511 )") ) // random points about a central point // note that these points will be uniform in cartesian space only val distributedPoints = Seq.tabulate(1000) { i => val lon = centerLon + width * (rng.nextDouble() - 0.5) val lat = centerLat + width * (rng.nextDouble() - 0.5) ScalaSimpleFeature.create(sft, (100000 + i).toString, "cville", s"POINT($lon $lat)") } val diagonalFeatures = Seq.tabulate[SimpleFeature](90) { lat => ScalaSimpleFeature.create(sft, s"$lat", "diagonal", f"POINT($lat%d $lat%d)") } val polarFeatures = Seq.range(-180, 181).map { lon => ScalaSimpleFeature.create(sft, s"$lon", "polar", f"POINT($lon%d 89.9)") } step { addFeatures(uvaLawn) addFeatures(distributedPoints) addFeatures(diagonalFeatures) addFeatures(polarFeatures) } def collection(features: SimpleFeature*): SimpleFeatureCollection = { val fc = new DefaultFeatureCollection() features.foreach(fc.add) fc } // generates a single SimpleFeature def queryFeature(label: String, lon: Double, lat: Double): SimpleFeature = ScalaSimpleFeature.create(sft, label, label, f"POINT($lon $lat)") // generates a very loose query def wideQuery: Query = { val lat = 38.0 val lon = -78.50 val siteSize = 5.0 val filter = s"BBOX(geom, ${lon - siteSize}, ${lat - siteSize}, ${lon + siteSize}, ${lat + siteSize})" new Query(sftName, ECQL.toFilter(filter)) } "GeoMesaKNearestNeighborSearch" should { "handle an empty query point collection" in { val inputFeatures = collection() val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 100, 500d, 5000d).features()).toList res must beEmpty } "handle non-point geometries in inputFeatures by ignoring them" in { val sft = SimpleFeatureTypes.createType("lineStringKnn", "geom:LineString:srid=4326") val inputFeatures = collection(ScalaSimpleFeature.create(sft, "route 29", "LINESTRING(-78.491 38.062, -78.474 38.082)")) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 100, 500d, 5000d)).toList res must beEmpty } "find nothing within 10km of a single query point " in { val inputFeatures = collection(queryFeature("fan mountain", -78.692649, 37.878219)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 5, 1000d, 10000d)).toList res must beEmpty } "find 11 points within 400m of a point when k is set to 15 " in { val inputFeatures = collection(queryFeature("madison", -78.502720, 38.036871)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 15, 100d, 400d)).toList res must containTheSameElementsAs(uvaLawn.take(11)) } "find nearest features around Charlottesville" in { val inputFeatures = collection(queryFeature("madison", -78.502720, 38.036871)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures(wideQuery) val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 15, 500d, 2500d)).toList res must containTheSameElementsAs(uvaLawn) } "find nearest features around Staunton" in { val k = 10 val referenceFeature = queryFeature("blackfriars", -79.070569, 38.149185) val inputFeatures = collection(referenceFeature) val dataFeatures = ds.getFeatureSource(sftName).getFeatures(wideQuery) val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 5000d, 50000d)).toList val directFeatures = SelfClosingIterator(ds.getFeatureSource(sftName).getFeatures().features).toList.sortBy { f => VincentyModel.getDistanceBetweenTwoPoints(referenceFeature.point, f.point).getDistanceInMeters } res must containTheSameElementsAs(directFeatures.take(k)) } "handle three query points, one of which will return nothing" in { val inputFeatures = collection( queryFeature("madison", -78.502720, 38.036871), queryFeature("fan mountain", -78.692649, 37.878219), queryFeature("blackfriars", -79.070569, 38.149185) ) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, 5, 500d, 5000d)).toList res must haveLength(10) res must containAllOf(uvaLawn.take(5)) val directFeatures = collection(uvaLawn ++ distributedPoints: _*) val direct = SelfClosingIterator(knn.execute(inputFeatures, directFeatures, 5, 500d, 5000d)).toList res must containTheSameElementsAs(direct) } "find features close to the equator" in { val k = 10 val inputFeatures = collection(queryFeature("", 0.1, 0.2)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 1000000d, 2000000d)).toList res.map(_.getID) must containTheSameElementsAs((0 until k).map(_.toString)) } "find features close to Southwest Russia" in { val k = 10 val inputFeatures = collection(queryFeature("", 45.1, 45.1)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 500000d, 1000000d)).toList res.map(_.getID) must containTheSameElementsAs((41 to 50).map(_.toString)) } "find features close to the North Pole" in { val k = 10 val inputFeatures = collection(queryFeature("", 89.9, 89.9)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures(new Query(sftName, ECQL.toFilter("label = 'diagonal'"))) val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 700000d, 2000000d)).toList res.map(_.getID) must containTheSameElementsAs((80 to 89).map(_.toString)) } "find northern features close to the North Pole" in { val k = 10 val inputFeatures = collection(queryFeature("", 89.9, 89.9)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures(new Query(sftName, ECQL.toFilter("label = 'polar'"))) val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 100000d, 1000000d)).toList res.map(_.getID) must containTheSameElementsAs((85 to 94).map(_.toString)) } "find more things near the north polar region" in { val k = 10 val inputFeatures = collection(queryFeature("", 0.0001, 89.9)) val dataFeatures = ds.getFeatureSource(sftName).getFeatures() val res = SelfClosingIterator(knn.execute(inputFeatures, dataFeatures, k, 100000d, 1000000d)).toList res.map(_.getID) must containTheSameElementsAs((-4 to 5).map(_.toString)) } } }
elahrvivaz/geomesa
geomesa-accumulo/geomesa-accumulo-datastore/src/test/scala/org/locationtech/geomesa/process/query/KNearestNeighborSearchProcessTest.scala
Scala
apache-2.0
9,951
package com.moolileo.meetup.websocket import com.moolileo.meetup.model.MeetupRsvp import org.apache.spark.Logging import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.receiver.Receiver import org.json4s._ import org.json4s.jackson.JsonMethods._ import scalawebsocket.WebSocket class WebSocketReader(url: String, storageLevel: StorageLevel) extends Receiver[MeetupRsvp](storageLevel) with Logging { @volatile private var webSocket: WebSocket = _ def onStart() { try{ logInfo("Connecting to WebSocket: " + url) val newWebSocket = WebSocket().open(url).onTextMessage({ msg: String => parseJson(msg) }) setWebSocket(newWebSocket) logInfo("Connected to: WebSocket" + url) } catch { case e: Exception => restart("Error starting WebSocket stream", e) } } def onStop() { setWebSocket(null) logInfo("WebSocket receiver stopped") } private def setWebSocket(newWebSocket: WebSocket) = synchronized { if (webSocket != null) { webSocket.shutdown() } webSocket = newWebSocket } private def parseJson(jsonStr: String): Unit = { implicit lazy val formats = DefaultFormats try { var json = parse(jsonStr) val rsvp = json.extract[MeetupRsvp] store(rsvp) } catch { case e: MappingException => logError("Unable to map JSON message to MeetupRsvp object:" + e.msg) case e: Exception => logError("Unable to map JSON message to MeetupRsvp object") } } }
oscarruesga/utad-pebd-proyecto
src/main/scala/com/moolileo/meetup/websocket/WebSocketReader.scala
Scala
gpl-3.0
1,505
package edu.gemini.model.p1.immutable import edu.gemini.model.p1.{mutable => M} import scala.collection.JavaConverters._ object NiciBlueprintCoronagraphic { def apply(m: M.NiciBlueprintCoronagraphic): NiciBlueprintCoronagraphic = new NiciBlueprintCoronagraphic(m) } case class NiciBlueprintCoronagraphic(fpm: NiciFpm, dichroic: NiciDichroic, redFilters: List[NiciRedFilter], blueFilters: List[NiciBlueFilter]) extends NiciBlueprintBase { def name: String = "NICI Coronagraphic %s %s%s".format(fpm.value, dichroic.value, formatFilters) def this(m: M.NiciBlueprintCoronagraphic) = this( m.getFpm, m.getDichroic, m.getRedFilter.asScala.toList, m.getBlueFilter.asScala.toList ) def mutable(n: Namer) = { val m = Factory.createNiciBlueprintCoronagraphic m.setId(n.nameOf(this)) m.setName(name) m.setFpm(fpm) m.setDichroic(dichroic) m.getRedFilter.addAll(redFilters.asJava) m.getBlueFilter.addAll(blueFilters.asJava) m } def toChoice(n: Namer) = { val m = Factory.createNiciBlueprintChoice m.setCoronagraphic(mutable(n)) m } }
arturog8m/ocs
bundle/edu.gemini.model.p1/src/main/scala/edu/gemini/model/p1/immutable/NiciBlueprintCoronagraphic.scala
Scala
bsd-3-clause
1,106
package infcalcs import Tree._ import Orderings._ import scala.util.Random.nextInt /** * Structure for input-output (dose-response) data. * * Both the signal and response points are entered into Vectors whose * elements are themselves Vectors of length N, where N is the number * of distinct signal or response types of the system (i.e. given a * channel which simultaneously takes signal A and signal B, the input * Vector would have elements of length 2.) * * @param sig 2D vector of signal values * @param resp 2D vector of response values */ class DRData(calcConfig: CalcConfig) (val sig: Vector[NTuple[Double]], val resp: Vector[NTuple[Double]]) { val numObs = sig.length require(numObs == resp.length, "each signal must have a corresponding response") require(checkSize(sig) == 1 && checkSize(resp) == 1, "all signals and responses must have consistent dimensionality") val zippedVals: Vector[Pair[NTuple[Double]]] = (sig, resp).zipped.toVector lazy val sigVals = calcConfig.srParameters("signalValues") lazy val respVals = calcConfig.srParameters("responseValues") lazy val numUniqueSigVals = sigVals match { case None => sig.toSet.size case Some(x) => x.size } lazy val numUniqueRespVals = respVals match { case None => resp.toSet.size case Some(x) => x.size } val sigDim = dim(sig) val respDim = dim(resp) lazy val isEmpty: Boolean = numObs == 0 /** List of fractions for subsampling the data set */ val fracs = genSubFracs() val repsPerFrac = 0 until calcConfig.numParameters("repsPerFraction").toInt val fracList = (repsPerFrac.toList map (_ => 1.0)) ++ (for { f <- fracs x <- repsPerFrac } yield f) /** * Generates fractions for subsampling the data which are uniformly distributed * in inverse sample space */ private def genSubFracs() = { val numFracs = calcConfig.numParameters("numFractions").toInt val maxInvSample = 1.0 / (calcConfig.numParameters("lowFraction") * numObs) val minInvSample = 1.0 / numObs val incr = (maxInvSample - minInvSample) / numFracs.toDouble val invs = (1 to numFracs) map (x => (x * incr) + minInvSample) invs.toVector map (x => 1.0 / (numObs * x)) } /** * Confirms that each data point has the same dimensionality * * @param d Vector of n-tuple data points * @return number of different dimensioned points (should be 1) */ private def checkSize(d: Vector[NTuple[Double]]): Int = (d map (_.length)).toSet.size /** * Checks the dimensionality of the data assuming each point has * the same number of dimensions (see [[checkSize]]) * * @param d Vector of n-tuple data points * @return number of dimensions */ private def dim(d: Vector[NTuple[Double]]): Int = d.head.length /** * Returns binary tree giving the values delimiting the bounds of each bin. * * @param v The list of doubles to be partitioned. * @param numBins The number of bins to divide the list into. * @return Binary tree of [[Bin]] instances. */ private def getBinDelims(v: Vector[Double], numBins: Int): Tree[Bin] = { val delimList = CTBuild.partitionList(v, numBins) buildTree(buildOrderedNodeList(delimList)) } /** * Calculates bin delimiters for arbitrary dimensioned data points * * @param values determines if explicit value sets are present for data * @param data data points * @param numBins number of bins per dimension * @return Vector of trees ([[Tree]]) */ private def delims( values: Option[Vector[NTuple[Double]]], data: Vector[NTuple[Double]], numBins: NTuple[Int]): NTuple[Tree[Bin]] = values match { case None => { val dt = data.transpose ((0 until dim(data)) map (x => getBinDelims(dt(x), numBins(x)))).toVector } case Some(v) => { val valsByDim = v.transpose map (_.toSet.toVector.sorted) val bins = valsByDim map (x => x.indices.toList map (y => Bin(y, List(x(y)), if (y == 0) Double.NegativeInfinity else x(y - 1)))) def toTree: List[Bin] => Tree[Bin] = buildOrderedNodeList[Bin] _ andThen buildTree[Bin] _ bins map toTree } } /** * Calculates key for vector of bin-delimiting trees * * @param trees vector of partition trees (corresponding to ordered pair data * points) * @return vector of bin index vectors * */ private def keys( trees: NTuple[Tree[Bin]]): Map[NTuple[Int], Int] = { val dimLengths = trees map (_.toList.length) val vtups = CTBuild.keyFromDimLengths(dimLengths) (vtups.indices map (x => (vtups(x), x))).toMap } /** * Generates a new [[DRData]] instance by resampling values with replacement * @return [[DRData]] */ private def resample_with_replacement(): DRData = { val (rsig, rresp) = ((0 until numObs) map (x => zippedVals(nextInt(numObs)))).toVector.unzip new DRData(calcConfig)(rsig, rresp) } /** * Delimiters for signal space * * @param numBins n-dimensional vector of bin numbers * @return n-dimensional vector of bin-delimiting [[Tree]]s */ def sigDelims(numBins: NTuple[Int]): NTuple[Tree[Bin]] = delims(sigVals, sig, numBins) /** * Delimiters for response space * * @param numBins n-dimensional vector of bin numbers * @return n-dimensional vector of bin-delimiting [[Tree]]s */ def respDelims(numBins: NTuple[Int]): NTuple[Tree[Bin]] = delims(respVals, resp, numBins) /** * Index key for signal space * * @param numBins n-dimensional vector of bin numbers * @return mapping of n-dimensional indices to 1-dimensional indices */ def sigKey(numBins: NTuple[Int]): Map[NTuple[Int], Int] = keys(sigDelims(numBins)) /** * Index key for response space * * @param numBins n-dimensional vector of bin numbers * @return mapping of n-dimensional indices to 1-dimensional indices */ def respKey(numBins: NTuple[Int]): Map[NTuple[Int], Int] = keys(respDelims(numBins)) /** * Writes data to stdout */ override def toString() = ((0 until sig.length) map { x => s"${sig(x)}\\t${resp(x)}\\n" }).mkString /** * Writes data to file * * @param f file name */ def toFile(f: String) = { val writer = new java.io.BufferedWriter(new java.io.FileWriter(new java.io.File(f))) for (i <- (0 until sig.length).toList) { writer.write(s"${sig(i).mkString(" ")}\\t${resp(i).mkString(" ")}") writer.newLine() } writer.flush() writer.close() } /** * Generate a bootstrap sample from a data set. Sample size is defined as a * command line argument * * @return vector of [[DRData]] instances */ def bootstrap_sample(): Vector[DRData] = ((0 until calcConfig.numParameters("numForBootstrap").toInt) map (x => resample_with_replacement())).toVector }
ryants/EstCC
src/main/scala/infcalcs/DRData.scala
Scala
mit
6,918
/* * Copyright 2011 javaBin * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package no.java.submitit.ems import no.java.ems._ import no.java.ems.domain.{Event,Session,Person,Speaker => EmsSpeaker,EmailAddress,Binary => EmsBinary,ByteArrayBinary} import _root_.java.io.InputStream import scala.collection.JavaConversions._ import no.java.submitit.common.Implicits._ import no.java.submitit.common.{IOUtils, LoggHandling} import no.java.submitit.model._ import no.java.submitit.common.IOUtils._ import org.joda.time.Interval import org.joda.time.format.DateTimeFormat import scala.xml.XML class EmsConverter extends LoggHandling { private def getStatus(state: Session.State) = state match { case Session.State.Approved => Status.Approved case Session.State.Pending => Status.Pending case Session.State.Rejected => Status.NotApproved case l => unknownEnumValue(l, Status.Pending) } def toPerson(speaker: Speaker): Person = { val person = new Person(speaker.name) person.setDescription(speaker.bio) person.setEmailAddresses(new EmailAddress(speaker.email) :: Nil) person } def updateSession(presentation: Presentation, session: Session) { session.setTitle(presentation.title) session.setLead(presentation.summary) session.setBody(presentation.abstr) session.setOutline(presentation.outline) session.setEquipment(presentation.equipment) session.setExpectedAudience(presentation.expectedAudience) session.setFeedback(presentation.feedback) session.setKeywords(presentation.keywords) session.setSpeakers(presentation.speakers.map(speaker => toEmsSpeaker(speaker))) val language = presentation.language match { case Language.Norwegian => new domain.Language("no") case Language.English => new domain.Language("en") case l => unknownEnumValue(l, new domain.Language("no")) } val level = presentation.level match { case Level.Beginner => Session.Level.Introductory case Level.Intermediate => Session.Level.Intermediate case Level.Advanced => Session.Level.Intermediate_Advanced case Level.Hardcore => Session.Level.Advanced case l => unknownEnumValue(l, Session.Level.Introductory) } val format = presentation.format match { case PresentationFormat.Presentation => Session.Format.Presentation case PresentationFormat.LightningTalk => Session.Format.Quickie case l => unknownEnumValue(l, Session.Format.Presentation) } session.setLanguage(language) session.setLevel(level) session.setFormat(format) val attachments = presentation.slideset.toList ::: presentation.pdfSlideset.toList session.setAttachements(attachments.map(toEmsBinary)) } def toPresentation(session: Session): Presentation = { val pres = new Presentation() pres.sessionId = session.getId pres.title = session.getTitle pres.abstr = session.getBody pres.speakers = session.getSpeakers.toList.map(speaker => fromEmsSpeaker(speaker)) pres.summary = session.getLead pres.outline = session.getOutline pres.equipment = session.getEquipment pres.expectedAudience = session.getExpectedAudience pres.feedback = session.getFeedback pres.keywords = session.getKeywords.toList pres.room = if (session.getRoom != null) session.getRoom.getName else null pres.timeslot = if (session.getTimeslot != null) formatInterval(session.getTimeslot) else null def formatInterval(interval: Interval) = { val dateFormatter = DateTimeFormat.shortDate(); val timeFormatter = DateTimeFormat.shortTime(); dateFormatter.print(interval.getStart()) + " " + timeFormatter.print(interval.getStart()) + " - " + timeFormatter.print(interval.getEnd()); } pres.language = session.getLanguage.getIsoCode match { case "no" => Language.Norwegian case "en" => Language.English case l => unknownEnumValue(l, Language.Norwegian) } pres.level = session.getLevel match { case Session.Level.Introductory => Level.Beginner case Session.Level.Intermediate => Level.Intermediate case Session.Level.Intermediate_Advanced => Level.Advanced case Session.Level.Advanced => Level.Hardcore case l => unknownEnumValue(l, Level.Intermediate) } pres.format = session.getFormat match { case Session.Format.Presentation => PresentationFormat.Presentation case Session.Format.Quickie => PresentationFormat.LightningTalk case l => unknownEnumValue(l, PresentationFormat.Presentation) } pres.status = getStatus(session.getState) val attachments = session.getAttachements.toList.map(toBinary(_, false)) attachments.foreach(_ match { case Some(b) if b.name.toLowerCase.endsWith(".pdf") => pres.pdfSlideset = Some(b) case Some(b) => pres.slideset = Some(b) case None => }) pres } def toEmsSpeaker(speaker: Speaker): EmsSpeaker = { val result = new EmsSpeaker(speaker.personId, speaker.name) result.setDescription(speaker.bio) if (speaker.picture.isDefined) result.setPhoto(toEmsBinary(speaker.picture.get)) result } def fromEmsSpeaker(speaker: EmsSpeaker): Speaker = { val result = new Speaker result.personId = speaker.getPersonId result.name = speaker.getName result.bio = speaker.getDescription result.picture = toBinary(speaker.getPhoto, true) result } def toEmsBinary(binary: Binary): EmsBinary = { // EMS requires a non-empty array here. val content = if(binary.isNew) binary.content else new Array[Byte](0) new ByteArrayBinary(binary.id, binary.name, binary.contentType, content) } def toBinary(binary: EmsBinary, fetchData: Boolean): Option[Binary] = { if (binary != null) { var content: Option[(InputStream)] = None if(fetchData) { content = Some(binary.getDataStream) } Some(Binary(binary.getId, binary.getFileName, binary.getMimeType, content)) } else { None } } private def unknownEnumValue[T](v: Any, r: T): T = { logger.error("Unknown enum value '" + v + "', defaulting to '" + r + "'") r } }
javaBin/submitit
submitit-ems-client/src/main/scala/no/java/submitit/ems/EmsConverter.scala
Scala
mit
6,737
import sbt._ import Keys._ object Common { val localMavenPath = Path.userHome.absolutePath + "/.m2/repository" val versions = Map[String, String]( "java" -> "1.8", "akka" -> "2.3.3", "config" -> "1.2.1", "grizzled" -> "1.0.2", "logback" -> "1.1.2", "suiryc-scala" -> "0.0.2-SNAPSHOT", "maven-compiler-plugin" -> "3.1", "maven-surefire-plugin" -> "2.17", "scala-maven-plugin" -> "3.1.6" ) val settings: Seq[Setting[_]] = org.scalastyle.sbt.ScalastylePlugin.Settings ++ Seq( organization := "suiryc", version := versions("suiryc-scala"), scalaVersion := "2.11.1", scalacOptions ++= Seq("-deprecation", "-feature", "-optimize", "-unchecked", "-Yinline-warnings"), scalacOptions in (Compile, doc) ++= Seq("-diagrams", "-implicits"), org.scalastyle.sbt.PluginKeys.config := file("project/scalastyle-config.xml"), resolvers += "Local Maven Repository" at "file://" + localMavenPath, publishMavenStyle := true, publishTo := Some(Resolver.file("file", new File(localMavenPath))) ) val pomExtra = ( <properties> <encoding>UTF-8</encoding> </properties> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>{ versions("scala-maven-plugin") }</version> <configuration> <args> <arg>-deprecation</arg> <arg>-feature</arg> <arg>-Yinline-warnings</arg> <arg>-optimize</arg> <arg>-unchecked</arg> </args> </configuration> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>{ versions("maven-compiler-plugin") }</version> <configuration> <source>{ versions("java") }</source> <target>{ versions("java") }</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>{ versions("maven-surefire-plugin") }</version> <configuration> <includes> <include>**/*Suite.class</include> </includes> </configuration> </plugin> </plugins> </build> ) }
swhgoon/suiryc-scala
project/Common.scala
Scala
gpl-3.0
2,686
/* * Copyright (C) FuseSource, Inc. * http://fusesource.com * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.fusesource.fabric.api.monitor import org.fusesource.fabric.service.JmxTemplateSupport /** * <p> * </p> * * @author <a href="http://hiramchirino.com">Hiram Chirino</a> */ trait Monitor { /** * Updates the monitor's configuration with the data sources that need * to be monitored. */ def configure( value:Traversable[MonitoredSetDTO] ):Unit def close:Unit def fetch( fetch:FetchMonitoredViewDTO ):Option[MonitoredViewDTO] def list: Array[MonitoredSetDTO] var poller_factories:Seq[PollerFactory] }
Jitendrakry/fuse
fabric/fabric-core/src/main/scala/org/fusesource/fabric/api/monitor/Monitor.scala
Scala
apache-2.0
1,163
package io.flow.build case class Application( organization: String, application: String, version: String ) { val isLatest: Boolean = version == Application.Latest val applicationVersionLabel: String = if (isLatest) { s"$application:latest" } else { s"$application:$version" } val label: String = s"$organization/$applicationVersionLabel" } object Application { val Latest = "latest" def latest(organization: String, application: String): Application = { Application( organization = organization, application = application, version = Latest ) } def parse(value: String): Option[Application] = { value.split("/").map(_.trim).toList match { case org :: app :: Nil => { app.split(":").map(_.trim).toList match { case Nil => { None } case name :: Nil => { Some(Application(org, name, Latest)) } case name :: version :: Nil => { Some(Application(org, name, version)) } case _ => { None } } } case _ => { None } } } }
flowcommerce/api-build
src/main/scala/io/flow/build/Application.scala
Scala
mit
1,167
package fi.jori.slick.db import scala.slick.driver.H2Driver.simple._ import java.sql.Date object TaskExample extends App { case class User( name: String, email: String ) case class Task( id: Int, topic: String, description: String, started: Date, finished: Option[Date], user: String) class Users(tag: Tag) extends Table[User](tag, "user") { def name = column[String]("name") def email = column[String]("email", O.PrimaryKey) def * = (name,email) <> (User.tupled, User.unapply _) } val users = TableQuery[Users] class Tasks(tag: Tag) extends Table[Task](tag, "task") { def id = column[Int]("id", O.PrimaryKey) def topic = column[String]("topic") def description = column[String]("description") def started = column[Date]("started") def finished = column[Option[Date]]("finished", O.Nullable) def user = column[String]("user") def userEmail = foreignKey("user", user, users)(_.email) def * = (id,topic,description,started,finished,user) <> (Task.tupled, Task.unapply _) } val tasks = TableQuery[Tasks] Database.forURL("jdbc:h2:mem:test1", driver = "org.h2.Driver") withSession { implicit session => (tasks.ddl ++ users.ddl).create tasks.ddl.createStatements foreach(println) users.ddl.createStatements foreach(println) users += User("jori","[email protected]") users += User("jori2","[email protected]") tasks += Task(1,"otsikko","selostus",new Date(System.currentTimeMillis()),None,"[email protected]") tasks += Task(2,"otsikko","selostus",new Date(System.currentTimeMillis()),None,"[email protected]") tasks += Task(3,"otsikko","selostus",new Date(System.currentTimeMillis()-5000),Some(new Date(System.currentTimeMillis())),"[email protected]") println("all tasks") println(tasks.selectStatement) tasks.foreach(println) def finishTask(id: Int) = tasks filter(t => t.id === id) map (t => t.finished) update (Some(new Date(System.currentTimeMillis()))) val unfinished = tasks filter (t => t.finished.isNull) val finished = tasks filter (t => t.finished.isNotNull) val byUser = for { u <- users if u.name === "jori2" t <- tasks filter (t => t.user === u.email) } yield t println("unfinished tasks") println(unfinished.selectStatement) unfinished.foreach(println) println("finished tasks") println(finished.selectStatement) finished.foreach(println) println("by user jori2") println(byUser.selectStatement) byUser.foreach(println) tasks += Task(4,"otsikko","selostus",new Date(System.currentTimeMillis()-25000),Some(new Date(System.currentTimeMillis())),"[email protected]") println("two finished tasks") println(finished.selectStatement) finished.foreach(println) finishTask(1) println(tasks filter(t => t.id === 1) map (t => t.finished) updateStatement) println("all but one tasks finished") println(finished.selectStatement) finished.foreach(println) } }
jorilytter/slick-test
src/main/scala/fi/jori/slick/db/TaskExample.scala
Scala
mit
3,169
package org.jetbrains.plugins.scala package codeInsight.generation import com.intellij.openapi.editor.{Editor, ScrollType} import com.intellij.openapi.project.Project import com.intellij.psi.codeStyle.CodeStyleManager import com.intellij.psi.{PsiDocumentManager, PsiFile} import org.jetbrains.plugins.scala.codeInsight.generation.GenerationUtil.classOrTraitAtCaret import org.jetbrains.plugins.scala.lang.psi.ScalaPsiUtil.getCompanionModule import org.jetbrains.plugins.scala.lang.psi.api.toplevel.typedef.{ScObject, ScTypeDefinition} import org.jetbrains.plugins.scala.lang.psi.impl.ScalaPsiElementFactory.{createNewLine, createObjectWithContext} /** * Nikolay.Tropin * 8/17/13 */ class ScalaGenerateCompanionObjectAction extends ScalaBaseGenerateAction(new ScalaGenerateCompanionObjectHandler) class ScalaGenerateCompanionObjectHandler extends ScalaCodeInsightActionHandler { import ScalaGenerateCompanionObjectHandler._ override def isValidFor(editor: Editor, file: PsiFile): Boolean = super.isValidFor(editor, file) && classOrTraitAtCaret(editor, file).exists(canAddCompanionObject) def invoke(project: Project, editor: Editor, file: PsiFile): Unit = { for (clazz <- classOrTraitAtCaret(editor, file)) { val obj = createCompanionObject(clazz) val parent = clazz.getParent val addedObj = parent.addAfter(obj, clazz) parent.addAfter(createNewLine()(clazz.getManager), clazz) val document = editor.getDocument PsiDocumentManager.getInstance(project).doPostponedOperationsAndUnblockDocument(document) val offset = addedObj.getTextRange.getStartOffset val lineInside = document.getLineNumber(offset) + 1 CodeStyleManager.getInstance(project).adjustLineIndent(document, document.getLineStartOffset(lineInside)) editor.getCaretModel.moveToOffset(document.getLineEndOffset(lineInside)) editor.getScrollingModel.scrollToCaret(ScrollType.MAKE_VISIBLE) } } } object ScalaGenerateCompanionObjectHandler { private def canAddCompanionObject(clazz: ScTypeDefinition): Boolean = getCompanionModule(clazz).isEmpty private def createCompanionObject(clazz: ScTypeDefinition): ScObject = { if (canAddCompanionObject(clazz)) { createObjectWithContext(s"object ${clazz.name} {\\n \\n}", clazz.getContext, clazz) } else throw new IllegalArgumentException("Cannot create companion object") } }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/codeInsight/generation/ScalaGenerateCompanionObjectAction.scala
Scala
apache-2.0
2,410
/* ___ _ ___ _ _ *\\ ** / __| |/ (_) | | The SKilL Generator ** ** \\__ \\ ' <| | | |__ (c) 2013-16 University of Stuttgart ** ** |___/_|\\_\\_|_|____| see LICENSE ** \\* */ package de.ust.skill.generator.c.model import de.ust.skill.generator.c.GeneralOutputMaker /** * @author Fabian Harth, Timm Felden * @todo rename skill state to skill file * @todo ensure 80 characters margin */ trait TypeDeclarationHeaderMaker extends GeneralOutputMaker { abstract override def make { super.make val out = files.open(s"model/${prefix}type_declaration.h") val prefixCapital = packagePrefix.toUpperCase out.write(s"""#ifndef ${prefixCapital}TYPE_DECLARATION_H_ #define ${prefixCapital}TYPE_DECLARATION_H_ #include <glib.h> #include "../model/${prefix}types.h" struct ${prefix}type_declaration_struct; typedef struct ${prefix}type_declaration_struct *${prefix}type_declaration; /** * Instances are not deleted directly, but just get their skill-id set to 0. * Therefore, we need a cleanup function to set references deleted instances to * null. */ typedef void ${prefix}cleanup_function(${prefix}skill_type instance); /** * This stores information about a user-defined type. There is no order defined * on the fields here, as the order may vary between different binary files. * Also, a binary file may add additional fields, which are not known by the * binding. */ typedef struct ${prefix}type_declaration_struct { char *name; ${prefix}cleanup_function *remove_null_references; //! The super-type, if it has one. ${prefix}type_declaration super_type; //! This is a mapping field-name -> field_information for all its fields. GHashTable *fields; //! The number of bytes of one instance of this type in memory. int64_t size; } ${prefix}type_declaration_struct; ${prefix}type_declaration ${prefix}type_declaration_new(); void ${prefix}type_declaration_destroy(${prefix}type_declaration instance); #endif /* TYPE_DECLARATION_H */ """) out.close() } }
skill-lang/skill
src/main/scala/de/ust/skill/generator/c/model/TypeDeclarationHeaderMaker.scala
Scala
bsd-3-clause
2,251
package play.api.db.evolutions import javax.inject.{Inject, Singleton} import play.api.{Configuration, Environment} @Singleton class SubFolderEvolutionsReader @Inject() (env: Environment, config: Configuration) extends EnvironmentEvolutionsReader(env) { override def evolutions(db: String): Seq[Evolution] = { config.getOptional[Seq[String]](s"evolutions.$db.folders") .getOrElse(Nil) .flatMap(folder => super.evolutions(s"$db/$folder")) .zipWithIndex .map { case (ev, index) => ev.copy(revision = index) } } }
giabao/subfolder-evolutions
module/src/main/scala/play/api/db/evolutions/SubFolderEvolutionsReader.scala
Scala
apache-2.0
559
/* * GESeq.scala * (FScape) * * Copyright (c) 2001-2022 Hanns Holger Rutz. All rights reserved. * * This software is published under the GNU Affero General Public License v3+ * * * For further information, please contact Hanns Holger Rutz at * [email protected] */ package de.sciss.fscape package graph package impl import de.sciss.fscape.Graph.{ProductReader, RefMapIn} import scala.collection.immutable.{IndexedSeq => Vec} object GESeq extends ProductReader[GESeq] { override def read(in: RefMapIn, key: String, arity: Int): GESeq = { require (arity == 1) val _in = in.readVec(in.readGE()) new GESeq(_in) } } final case class GESeq(elems: Vec[GE]) extends GE { private[fscape] def expand(implicit b: UGenGraph.Builder): UGenInLike = UGenInGroup(elems.map(_.expand)) override def toString: String = elems.mkString("GESeq(", ",", ")") }
Sciss/FScape-next
core/shared/src/main/scala/de/sciss/fscape/graph/impl/GESeq.scala
Scala
agpl-3.0
881
package slick.jdbc import scala.concurrent.ExecutionContext import slick.SlickException import slick.ast._ import slick.ast.TypeUtil._ import slick.basic.Capability import slick.dbio._ import slick.compiler.{Phase, CompilerState} import slick.jdbc.meta.MTable import slick.lifted._ import slick.relational.RelationalCapabilities import slick.sql.SqlCapabilities import slick.util.MacroSupport.macroSupportInterpolation /** Slick profile for Derby/JavaDB. * * This profile implements [[slick.jdbc.JdbcProfile]] * ''without'' the following capabilities: * * <ul> * <li>[[slick.relational.RelationalCapabilities.functionDatabase]]: * <code>Functions.database</code> is not available in Derby. Slick * will return an empty string instead.</li> * <li>[[slick.relational.RelationalCapabilities.replace]], * [[slick.relational.RelationalCapabilities.reverse]]: * These String functions are not available in Derby.</li> * <li>[[slick.relational.RelationalCapabilities.pagingNested]]: * See <a href="https://issues.apache.org/jira/browse/DERBY-5911" * target="_parent">DERBY-5911</a>.</li> * <li>[[slick.jdbc.JdbcCapabilities.returnInsertOther]]: * When returning columns from an INSERT operation, only a single column * may be specified which must be the table's AutoInc column.</li> * <li>[[slick.sql.SqlCapabilities.sequenceCurr]]: * <code>Sequence.curr</code> to get the current value of a sequence is * not supported by Derby. Trying to generate SQL code which uses this * feature throws a SlickException.</li> * <li>[[slick.sql.SqlCapabilities.sequenceCycle]]: * Sequence cycling is supported but does not conform to SQL:2008 * semantics. Derby cycles back to the START value instead of MINVALUE or * MAXVALUE.</li> * <li>[[slick.relational.RelationalCapabilities.zip]]: * Ordered sub-queries and window functions with orderings are currently * not supported by Derby. These are required by <code>zip</code> and * <code>zipWithIndex</code>. Trying to generate SQL code which uses this * feature causes the DB to throw an exception. We do not prevent these * queries from being generated because we expect future Derby versions to * support them with the standard SQL:2003 syntax (see * <a href="http://wiki.apache.org/db-derby/OLAPRowNumber" target="_parent" * >http://wiki.apache.org/db-derby/OLAPRowNumber</a>).</li> * <li>[[slick.relational.RelationalCapabilities.joinFull]]: * Full outer joins are emulated because there is not native support * for them.</li> * <li>[[slick.jdbc.JdbcCapabilities.insertOrUpdate]]: * InsertOrUpdate operations are emulated on the client side because there * is no native support for them (but there is work in progress: see * <a href="https://issues.apache.org/jira/browse/DERBY-3155" * target="_parent" >DERBY-3155</a>).</li> * <li>[[slick.jdbc.JdbcCapabilities.booleanMetaData]]: * Derby <= 10.6 doesn't have booleans, so Slick maps to SMALLINT instead. * Other jdbc drivers like MySQL map TINYINT(1) back to a Scala * Boolean. Derby maps SMALLINT to an Integer and that's how it shows * up in the jdbc meta data, thus the original type is lost.</li> * <li>[[slick.jdbc.JdbcCapabilities.supportsByte]]: * Derby doesn't have a corresponding type for Byte. * SMALLINT is used instead and mapped to Short in the Slick model.</li> * <li>[[slick.relational.RelationalCapabilities.repeat]]: * There's not builtin string function repeat in Derby. * <a href="https://db.apache.org/derby/docs/10.10/ref/rrefsqlj29026.html" target="_parent" * >https://db.apache.org/derby/docs/10.10/ref/rrefsqlj29026.html</a></li> * </ul> */ trait DerbyProfile extends JdbcProfile { override protected def computeCapabilities: Set[Capability] = (super.computeCapabilities - RelationalCapabilities.functionDatabase - RelationalCapabilities.pagingNested - JdbcCapabilities.returnInsertOther - SqlCapabilities.sequenceCurr // Cycling is broken in Derby. It cycles to the start value instead of min or max - SqlCapabilities.sequenceCycle - RelationalCapabilities.zip - RelationalCapabilities.joinFull - JdbcCapabilities.insertOrUpdate - RelationalCapabilities.replace - RelationalCapabilities.reverse - JdbcCapabilities.booleanMetaData - JdbcCapabilities.supportsByte - RelationalCapabilities.repeat ) class ModelBuilder(mTables: Seq[MTable], ignoreInvalidDefaults: Boolean)(implicit ec: ExecutionContext) extends JdbcModelBuilder(mTables, ignoreInvalidDefaults) { override def createTableNamer(mTable: MTable): TableNamer = new TableNamer(mTable) { override def schema = super.schema.filter(_ != "APP") // remove default schema } } override def createModelBuilder(tables: Seq[MTable], ignoreInvalidDefaults: Boolean)(implicit ec: ExecutionContext): JdbcModelBuilder = new ModelBuilder(tables, ignoreInvalidDefaults) override def defaultTables(implicit ec: ExecutionContext): DBIO[Seq[MTable]] = MTable.getTables(None, None, None, Some(Seq("TABLE"))) override protected def computeQueryCompiler = super.computeQueryCompiler + Phase.rewriteBooleans + Phase.specializeParameters override val columnTypes = new JdbcTypes override def createQueryBuilder(n: Node, state: CompilerState): QueryBuilder = new QueryBuilder(n, state) override def createTableDDLBuilder(table: Table[_]): TableDDLBuilder = new TableDDLBuilder(table) override def createColumnDDLBuilder(column: FieldSymbol, table: Table[_]): ColumnDDLBuilder = new ColumnDDLBuilder(column) override def createSequenceDDLBuilder(seq: Sequence[_]): SequenceDDLBuilder[_] = new SequenceDDLBuilder(seq) override def defaultSqlTypeName(tmd: JdbcType[_], sym: Option[FieldSymbol]): String = tmd.sqlType match { case java.sql.Types.BOOLEAN => "SMALLINT" /* Derby does not have a TINYINT type, so we use SMALLINT instead. */ case java.sql.Types.TINYINT => "SMALLINT" case _ => super.defaultSqlTypeName(tmd, sym) } override val scalarFrom = Some("sysibm.sysdummy1") class QueryBuilder(tree: Node, state: CompilerState) extends super.QueryBuilder(tree, state) { override protected val concatOperator = Some("||") override protected val supportsTuples = false override protected val supportsLiteralGroupBy = true override protected val quotedJdbcFns = Some(Vector(Library.User)) override protected def buildForUpdateClause(forUpdate: Boolean) = { super.buildForUpdateClause(forUpdate) if (forUpdate) { b" with RS " } } override def expr(c: Node, skipParens: Boolean = false): Unit = c match { case Library.Cast(ch @ _*) => /* Work around DERBY-2072 by casting numeric values first to CHAR and * then to VARCHAR. */ val (toVarchar, tn) = { val tn = (if(ch.length == 2) ch(1).asInstanceOf[LiteralNode].value.asInstanceOf[String] else jdbcTypeFor(c.nodeType).sqlTypeName(None)).toLowerCase if(tn == "varchar") (true, columnTypes.stringJdbcType.sqlTypeName(None)) else if(tn.startsWith("varchar")) (true, tn) else (false, tn) } if(toVarchar && jdbcTypeFor(ch(0).nodeType).isInstanceOf[NumericTypedType]) b"trim(cast(cast(${ch(0)} as char(30)) as $tn))" else b"cast(${ch(0)} as $tn)" case Library.IfNull(l, r) => /* Derby does not support IFNULL so we use COALESCE instead, * and it requires NULLs to be casted to a suitable type */ b"coalesce(cast($l as ${jdbcTypeFor(c.nodeType).sqlTypeName(None)}),!$r)" case Library.SilentCast(LiteralNode(None)) :@ JdbcType(ti, _) if currentPart == SelectPart => // Cast NULL to the correct type b"cast(null as ${ti.sqlTypeName(None)})" case LiteralNode(None) :@ JdbcType(ti, _) if currentPart == SelectPart => // Cast NULL to the correct type b"cast(null as ${ti.sqlTypeName(None)})" case (c @ LiteralNode(v)) :@ JdbcType(ti, option) if currentPart == SelectPart => /* The Derby embedded driver has a bug (DERBY-4671) which results in a * NullPointerException when using bind variables in a SELECT clause. * This should be fixed in Derby 10.6.1.1. The workaround is to add an * explicit type annotation (in the form of a CAST expression). */ if(c.volatileHint || !ti.hasLiteralForm) { b"cast(" b +?= { (p, idx, param) => if(option) ti.setOption(v.asInstanceOf[Option[Any]], p, idx) else ti.setValue(v, p, idx) } b" as ${ti.sqlTypeName(None)})" } else super.expr(c, skipParens) case Library.NextValue(SequenceNode(name)) => b"(next value for `$name)" case Library.CurrentValue(_*) => throw new SlickException("Derby does not support CURRVAL") case Union(left, right, all) => b"\{" buildFrom(left, None, true) if(all) b"\nunion all " else b"\nunion " b"\[" buildFrom(right, None, true) b"\]" b"\}" case _ => super.expr(c, skipParens) } } class TableDDLBuilder(table: Table[_]) extends super.TableDDLBuilder(table) { override protected def createIndex(idx: Index) = { if(idx.unique) { /* Create a UNIQUE CONSTRAINT (with an automatically generated backing * index) because Derby does not allow a FOREIGN KEY CONSTRAINT to * reference columns which have a UNIQUE INDEX but not a nominal UNIQUE * CONSTRAINT. */ val sb = new StringBuilder append "ALTER TABLE " append quoteIdentifier(table.tableName) append " ADD " sb append "CONSTRAINT " append quoteIdentifier(idx.name) append " UNIQUE(" addIndexColumnList(idx.on, sb, idx.table.tableName) sb append ")" sb.toString } else super.createIndex(idx) } } class ColumnDDLBuilder(column: FieldSymbol) extends super.ColumnDDLBuilder(column) { override protected def appendOptions(sb: StringBuilder) { if(defaultLiteral ne null) sb append " DEFAULT " append defaultLiteral if(notNull) sb append " NOT NULL" if(primaryKey) sb append " PRIMARY KEY" if(autoIncrement) sb append " GENERATED BY DEFAULT AS IDENTITY" if( unique ) sb append " UNIQUE" } } class SequenceDDLBuilder[T](seq: Sequence[T]) extends super.SequenceDDLBuilder(seq) { override def buildDDL: DDL = { import seq.integral._ val increment = seq._increment.getOrElse(one) val desc = increment < zero val b = new StringBuilder append "CREATE SEQUENCE " append quoteIdentifier(seq.name) /* Set the START value explicitly because it defaults to the data type's * min/max value instead of the more conventional 1/-1. */ b append " START WITH " append seq._start.getOrElse(if(desc) -1 else 1) seq._increment.foreach { b append " INCREMENT BY " append _ } seq._maxValue.foreach { b append " MAXVALUE " append _ } seq._minValue.foreach { b append " MINVALUE " append _ } /* Cycling is supported but does not conform to SQL:2008 semantics. Derby * cycles back to the START value instead of MINVALUE or MAXVALUE. No good * workaround available AFAICT. */ if(seq._cycle) b append " CYCLE" DDL(b.toString, "DROP SEQUENCE " + quoteIdentifier(seq.name)) } } class JdbcTypes extends super.JdbcTypes { override val booleanJdbcType = new BooleanJdbcType override val uuidJdbcType = new UUIDJdbcType /* Derby does not have a proper BOOLEAN type. The suggested workaround is * SMALLINT with constants 1 and 0 for TRUE and FALSE. */ class BooleanJdbcType extends super.BooleanJdbcType { override def valueToSQLLiteral(value: Boolean) = if(value) "1" else "0" } class UUIDJdbcType extends super.UUIDJdbcType { override def sqlType = java.sql.Types.BINARY override def sqlTypeName(sym: Option[FieldSymbol]) = "CHAR(16) FOR BIT DATA" } } } object DerbyProfile extends DerbyProfile
Asamsig/slick
slick/src/main/scala/slick/jdbc/DerbyProfile.scala
Scala
bsd-2-clause
12,204
package com.ubirch.avatar.model.rest.device import org.joda.time.DateTime import org.json4s.JValue /** * we might use this draft in the future */ case class DeviceDraft(id: String, name: Option[String], hwType: Option[String], hwId: Option[String], syncState: Option[Int], // 0 = out of sync, 1 = in sync, 100 = unknown tags: Option[Set[String]], properties: Option[JValue], subscriptions: Option[Set[String]], config: Option[JValue], avatar: Option[AvatarDraft], created: Option[DateTime], updated: Option[DateTime], lastActive: Option[DateTime] )
ubirch/ubirch-avatar-service
model-rest/src/main/scala/com/ubirch/avatar/model/rest/device/DeviceDraft.scala
Scala
apache-2.0
853
package scodec package protocols package mpeg package transport import scodec.Codec import scodec.codecs.uint case class Pid(value: Int) { require(value >= Pid.MinValue && value <= Pid.MaxValue) } object Pid { val MinValue = 0 val MaxValue = 8191 implicit val codec: Codec[Pid] = uint(13).as[Pid] } case class PidStamped[+A](pid: Pid, value: A) { def map[B](f: A => B): PidStamped[B] = copy(value = f(value)) } object PidStamped { /** * Combinator that converts a `Transform[I, O]` in to a `Transform[PidStamped[I], PidStamped[O]]` such that * pidstamps are preserved on elements that flow through the stream. */ def preserve[I, O](t: Transform[I, O]): Transform.Aux[t.S, PidStamped[I], PidStamped[O]] = t.lens(_.value, (psi, o) => psi.copy(value = o)) }
scodec/scodec-protocols
src/main/scala/scodec/protocols/mpeg/transport/Pid.scala
Scala
bsd-3-clause
789