code
stringlengths
5
1.03M
repo_name
stringlengths
5
90
path
stringlengths
4
158
license
stringclasses
15 values
size
int64
5
1.03M
n_ast_errors
int64
0
53.9k
ast_max_depth
int64
2
4.17k
n_whitespaces
int64
0
365k
n_ast_nodes
int64
3
317k
n_ast_terminals
int64
1
171k
n_ast_nonterminals
int64
1
146k
loc
int64
-1
37.3k
cycloplexity
int64
-1
1.31k
{-# OPTIONS_GHC -Wall #-} module Reporting.Error.Type where import qualified Data.Map as Map import qualified Data.Maybe as Maybe import Text.PrettyPrint.ANSI.Leijen ( Doc, (<>), (<+>), colon, dullyellow , fillSep, hang, indent, text, underline, vcat ) import qualified AST.Type as Type import qualified AST.Variable as Var import qualified Reporting.Error.Helpers as Help import qualified Reporting.Region as Region import qualified Reporting.Render.Type as RenderType import qualified Reporting.Report as Report -- ERRORS data Error = Mismatch Mismatch | BadMain Type.Canonical | InfiniteType String Type.Canonical data Mismatch = MismatchInfo { _hint :: Hint , _leftType :: Type.Canonical , _rightType :: Type.Canonical , _reason :: Maybe Reason } data Reason = MessyFields [String] [String] | IntFloat | TooLongComparableTuple Int | BadVar (Maybe VarType) (Maybe VarType) data VarType = Number | Comparable | Appendable | CompAppend | Rigid (Maybe String) data Hint = CaseBranch Int Region.Region | Case | IfCondition | IfBranches | MultiIfBranch Int Region.Region | If | List | ListElement Int Region.Region | BinopLeft Var.Canonical Region.Region | BinopRight Var.Canonical Region.Region | Binop Var.Canonical | Function (Maybe Var.Canonical) | UnexpectedArg (Maybe Var.Canonical) Int Int Region.Region | FunctionArity (Maybe Var.Canonical) Int Int Region.Region | BadTypeAnnotation String | Instance String | Literal String | Pattern Pattern | Shader | Range | Lambda | Record data Pattern = PVar String | PAlias String | PData String | PRecord -- TO REPORT toReport :: RenderType.Localizer -> Error -> Report.Report toReport localizer err = case err of Mismatch info -> mismatchToReport localizer info InfiniteType name overallType -> infiniteTypeToReport localizer name overallType BadMain tipe -> Report.report "BAD MAIN TYPE" Nothing "The 'main' value has an unsupported type." ( Help.stack [ Help.reflowParagraph $ "I need an Element, Html, (Signal Element), or (Signal Html) so I can render it\ \ on screen, but you gave me:" , indent 4 (RenderType.toDoc localizer tipe) ] ) -- TYPE MISMATCHES mismatchToReport :: RenderType.Localizer -> Mismatch -> Report.Report mismatchToReport localizer (MismatchInfo hint leftType rightType maybeReason) = let report = Report.report "TYPE MISMATCH" cmpHint leftWords rightWords extraHints = comparisonHint localizer leftType rightType leftWords rightWords ( Maybe.maybeToList (reasonToString =<< maybeReason) ++ map toHint extraHints ) in case hint of CaseBranch branchNumber region -> report (Just region) ( "The " ++ ordinalPair branchNumber ++ " branches of this `case` produce different types of values." ) ( cmpHint ("The " ++ Help.ordinalize (branchNumber -1) ++ " branch has this type:") ("But the " ++ Help.ordinalize branchNumber ++ " is:") [ "All branches in a `case` must have the same type. So no matter\ \ which one we take, we always get back the same type of value." ] ) Case -> report Nothing ( "All the branches of this case-expression are consistent, but the overall\n" ++ "type does not match how it is used elsewhere." ) ( cmpHint "The `case` evaluates to something of type:" "Which is fine, but the surrounding context wants it to be:" [] ) IfCondition -> report Nothing "This condition does not evaluate to a boolean value, True or False." ( cmpHint "You have given me a condition with this type:" "But I need it to be:" [ "Elm does not have \"truthiness\" such that ints and strings and lists\ \ are automatically converted to booleans. Do that conversion explicitly." ] ) IfBranches -> report Nothing "The branches of this `if` produce different types of values." ( cmpHint "The `then` branch has type:" "But the `else` branch is:" [ "These need to match so that no matter which branch we take, we\ \ always get back the same type of value." ] ) MultiIfBranch branchNumber region -> report (Just region) ( "The " ++ ordinalPair branchNumber ++ " branches of this `if` produce different types of values." ) ( cmpHint ("The " ++ Help.ordinalize (branchNumber - 1) ++ " branch has this type:") ("But the "++ Help.ordinalize branchNumber ++ " is:") [ "All the branches of an `if` need to match so that no matter which\ \ one we take, we get back the same type of value overall." ] ) If -> report Nothing "All the branches of this `if` are consistent, but the overall\ \ type does not match how it is used elsewhere." ( cmpHint "The `if` evaluates to something of type:" "Which is fine, but the surrounding context wants it to be:" [] ) ListElement elementNumber region -> report (Just region) ("The " ++ ordinalPair elementNumber ++ " elements are different types of values.") ( cmpHint ("The " ++ Help.ordinalize (elementNumber - 1) ++ " element has this type:") ("But the "++ Help.ordinalize elementNumber ++ " is:") [ "All elements should be the same type of value so that we can\ \ iterate through the list without running into unexpected values." ] ) List -> report Nothing ( "All the elements in this list are the same type, but the overall\n" ++ "type does not match how it is used elsewhere." ) ( cmpHint "The list has type:" "Which is fine, but the surrounding context wants it to be:" [] ) BinopLeft op region -> report (Just region) ("The left argument of " ++ prettyName op ++ " is causing a type mismatch.") ( cmpHint (prettyName op ++ " is expecting the left argument to be a:") "But the left argument is:" (binopHint op leftType rightType) ) BinopRight op region -> report (Just region) ("The right argument of " ++ prettyName op ++ " is causing a type mismatch.") ( cmpHint (prettyName op ++ " is expecting the right argument to be a:") "But the right argument is:" ( binopHint op leftType rightType ++ [ "I always figure out the type of the left argument first and if it is\ \ acceptable on its own, I assume it is \"correct\" in subsequent checks.\ \ So the problem may actually be in how the left and right arguments interact." ] ) ) Binop op -> report Nothing ( "The two arguments to " ++ prettyName op ++ " are fine, but the overall type of this expression\ \ does not match how it is used elsewhere." ) ( cmpHint "The result of this binary operation is:" "Which is fine, but the surrounding context wants it to be:" [] ) Function maybeName -> report Nothing ( "The return type of " ++ funcName maybeName ++ " is being used in unexpected ways." ) ( cmpHint "The function results in this type of value:" "Which is fine, but the surrounding context wants it to be:" [] ) UnexpectedArg maybeName 1 1 region -> report (Just region) ("The argument to " ++ funcName maybeName ++ " is causing a mismatch.") ( cmpHint (Help.capitalize (funcName maybeName) ++ " is expecting the argument to be:") "But it is:" [] ) UnexpectedArg maybeName index _totalArgs region -> report (Just region) ( "The " ++ Help.ordinalize index ++ " argument to " ++ funcName maybeName ++ " is causing a mismatch." ) ( cmpHint ( Help.capitalize (funcName maybeName) ++ " is expecting the " ++ Help.ordinalize index ++ " argument to be:" ) "But it is:" ( if index == 1 then [] else [ "I always figure out the type of arguments from left to right. If an argument\ \ is acceptable when I check it, I assume it is \"correct\" in subsequent checks.\ \ So the problem may actually be in how previous arguments interact with the " ++ Help.ordinalize index ++ "." ] ) ) FunctionArity maybeName 0 actual region -> let arg = if actual == 1 then "an argument" else show actual ++ " arguments" preHint = case maybeName of Nothing -> "You are giving " ++ arg ++ " to something that is not a function!" Just name -> prettyName name ++ " is not a function, but you are giving it " ++ arg ++ "!" in report (Just region) preHint (text "Maybe you forgot some parentheses? Or a comma?") FunctionArity maybeName expected actual region -> let s = if expected == 1 then "" else "s" in report (Just region) ( Help.capitalize (funcName maybeName) ++ " is expecting " ++ show expected ++ " argument" ++ s ++ ", but was given " ++ show actual ++ "." ) (text "Maybe you forgot some parentheses? Or a comma?") BadTypeAnnotation name -> report Nothing ("The type annotation for " ++ Help.functionName name ++ " does not match its definition.") ( cmpHint "The type annotation is saying:" "But I am inferring that the definition has this type:" [] ) Instance name -> report Nothing (Help.functionName name ++ " is being used in an unexpected way.") ( cmpHint ("Based on its definition, " ++ Help.functionName name ++ " has this type:") "But you are trying to use it as:" [] ) Literal name -> report Nothing ( "This " ++ name ++ " value is being used as if it is some other type of value." ) ( cmpHint ("The " ++ name ++ " definitely has this type:") ("But it is being used as:") [] ) Pattern patErr -> let thing = case patErr of PVar name -> "variable `" ++ name ++ "`" PAlias name -> "alias `" ++ name ++ "`" PData name -> "tag `" ++ name ++ "`" PRecord -> "a record" in report Nothing ( Help.capitalize thing ++ " is causing problems in this pattern match." ) ( cmpHint "This pattern matches things of type:" "But the values it will actually be trying to match are:" [] ) Shader -> report Nothing "There is some problem with this GLSL shader." ( cmpHint "The shader block has this type:" "Which is fine, but the surrounding context wants it to be:" [] ) Range -> report Nothing "The low and high members of this list range are not the same type of value." ( cmpHint "The low end of the range has type:" "But the high end is:" [] ) Lambda -> report Nothing "This anonymous function is being used in an unexpected way." ( cmpHint "The anonymous function has type:" "But you are trying to use it as:" [] ) Record -> report Nothing "This record is being used in an unexpected way." ( cmpHint "The record has type:" "But you are trying to use it as:" [] ) comparisonHint :: RenderType.Localizer -> Type.Canonical -> Type.Canonical -> String -> String -> [Doc] -> Doc comparisonHint localizer leftType rightType leftWords rightWords finalHints = let (leftDoc, rightDoc) = RenderType.diffToDocs localizer leftType rightType in Help.stack $ [ Help.reflowParagraph leftWords , indent 4 leftDoc , Help.reflowParagraph rightWords , indent 4 rightDoc ] ++ finalHints -- BINOP HINTS binopHint :: Var.Canonical -> Type.Canonical -> Type.Canonical -> [String] binopHint op leftType rightType = let leftString = show (RenderType.toDoc Map.empty leftType) rightString = show (RenderType.toDoc Map.empty rightType) in if Var.is ["Basics"] "+" op && elem "String" [leftString, rightString] then [ "To append strings in Elm, you need to use the (++) operator, not (+). " ++ "<http://package.elm-lang.org/packages/elm-lang/core/latest/Basics#++>" ] else if Var.is ["Basics"] "/" op && elem "Int" [leftString, rightString] then [ "The (/) operator is specifically for floating point division, and (//) is\ \ for integer division. You may need to do some conversions between ints and\ \ floats to get both arguments matching the division operator you want." ] else [] -- MISMATCH HELPERS ordinalPair :: Int -> String ordinalPair number = Help.ordinalize (number -1 ) ++ " and " ++ Help.ordinalize number prettyName :: Var.Canonical -> String prettyName (Var.Canonical _ opName) = Help.functionName opName funcName :: Maybe Var.Canonical -> String funcName maybeVar = case maybeVar of Nothing -> "this function" Just var -> "function " ++ prettyName var -- MISMTACH REASONS flipReason :: Reason -> Reason flipReason reason = case reason of MessyFields leftOnly rightOnly -> MessyFields rightOnly leftOnly IntFloat -> IntFloat TooLongComparableTuple len -> TooLongComparableTuple len BadVar left right -> BadVar right left reasonToString :: Reason -> Maybe Doc reasonToString reason = let go msg = Just (toHint msg) in case reason of MessyFields leftOnly rightOnly -> do let typos = Help.findPotentialTypos leftOnly rightOnly _ <- Help.vetTypos typos misspellingMessage typos IntFloat -> go "Elm does not automatically convert between Ints and Floats. Use\ \ `toFloat` and `round` to do specific conversions.\ \ <http://package.elm-lang.org/packages/elm-lang/core/latest/Basics#toFloat>" TooLongComparableTuple len -> go $ "Although tuples are comparable, this is currently only supported\ \ for tuples with 6 or fewer entries, not " ++ show len ++ "." BadVar (Just Comparable) _ -> go "Only ints, floats, chars, strings, lists, and tuples are comparable." BadVar (Just Appendable) _ -> go "Only strings, text, and lists are appendable." BadVar (Just CompAppend) _ -> go "Only strings and lists are both comparable and appendable." BadVar (Just (Rigid _)) (Just (Rigid _)) -> go doubleRigidError BadVar (Just (Rigid _)) _ -> go singleRigidError BadVar _ (Just (Rigid _)) -> go singleRigidError BadVar _ _ -> Nothing singleRigidError :: String singleRigidError = "A type annotation is too generic. You can probably just switch to the\ \ type I inferred. These issues can be subtle though, so read more about it. " ++ Help.hintLink "type-annotations" doubleRigidError :: String doubleRigidError = "A type annotation is clashing with itself or with a sub-annotation.\ \ This can be particularly tricky, so read more about it. " ++ Help.hintLink "type-annotations" hintDoc :: Doc hintDoc = underline (text "Hint") <> colon toHint :: String -> Doc toHint str = fillSep (hintDoc : map text (words str)) misspellingMessage :: [(String,String)] -> Maybe Doc misspellingMessage typos = if null typos then Nothing else let maxLen = maximum (map (length . fst) typos) in Just $ hang 4 $ vcat $ toHint "I compared the record fields and found some potential typos." : text "" : map (pad maxLen) typos pad :: Int -> (String, String) -> Doc pad maxLen (leftField, rightField) = text (replicate (maxLen - length leftField) ' ') <> dullyellow (text leftField) <+> text "<->" <+> dullyellow (text rightField) -- INFINITE TYPES infiniteTypeToReport :: RenderType.Localizer -> String -> Type.Canonical -> Report.Report infiniteTypeToReport localizer name overallType = Report.report "INFINITE TYPE" Nothing ( "I am inferring a weird self-referential type for " ++ Help.functionName name ) ( Help.stack [ Help.reflowParagraph $ "Here is my best effort at writing down the type. You will see ? and ∞ for\ \ parts of the type that repeat something already printed out infinitely." , indent 4 (RenderType.toDoc localizer overallType) , Help.reflowParagraph $ "Usually staring at the type is not so helpful in these cases, so definitely\ \ read the debugging hints for ideas on how to figure this out: " ++ Help.hintLink "infinite-type" ] )
laszlopandy/elm-compiler
src/Reporting/Error/Type.hs
bsd-3-clause
18,809
0
23
6,691
3,273
1,664
1,609
439
31
{-# LANGUAGE OverloadedStrings #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | Filter operators for JSON values added to PostgreSQL 9.4 module Database.Persist.Postgresql.JSON ( (@>.) , (<@.) , (?.) , (?|.) , (?&.) , Value() ) where import Data.Aeson (FromJSON, ToJSON, Value, encode, eitherDecodeStrict) import qualified Data.ByteString.Lazy as BSL import Data.Proxy (Proxy) import Data.Text (Text) import qualified Data.Text as T import Data.Text.Encoding as TE (encodeUtf8) import Database.Persist (EntityField, Filter(..), PersistValue(..), PersistField(..), PersistFilter(..)) import Database.Persist.Sql (PersistFieldSql(..), SqlType(..)) import Database.Persist.Types (FilterValue(..)) infix 4 @>., <@., ?., ?|., ?&. -- | This operator checks inclusion of the JSON value -- on the right hand side in the JSON value on the left -- hand side. -- -- === __Objects__ -- -- An empty Object matches any object -- -- @ -- {} \@> {} == True -- {"a":1,"b":false} \@> {} == True -- @ -- -- Any key-value will be matched top-level -- -- @ -- {"a":1,"b":{"c":true"}} \@> {"a":1} == True -- {"a":1,"b":{"c":true"}} \@> {"b":1} == False -- {"a":1,"b":{"c":true"}} \@> {"b":{}} == True -- {"a":1,"b":{"c":true"}} \@> {"c":true} == False -- {"a":1,"b":{"c":true"}} \@> {"b":{c":true}} == True -- @ -- -- === __Arrays__ -- -- An empty Array matches any array -- -- @ -- [] \@> [] == True -- [1,2,"hi",false,null] \@> [] == True -- @ -- -- Any array has to be a sub-set. -- Any object or array will also be compared as being a subset of. -- -- @ -- [1,2,"hi",false,null] \@> [1] == True -- [1,2,"hi",false,null] \@> [null,"hi"] == True -- [1,2,"hi",false,null] \@> ["hi",true] == False -- [1,2,"hi",false,null] \@> ["hi",2,null,false,1] == True -- [1,2,"hi",false,null] \@> [1,2,"hi",false,null,{}] == False -- @ -- -- Arrays and objects inside arrays match the same way they'd -- be matched as being on their own. -- -- @ -- [1,"hi",[false,3],{"a":[null]}] \@> [{}] == True -- [1,"hi",[false,3],{"a":[null]}] \@> [{"a":[]}] == True -- [1,"hi",[false,3],{"a":[null]}] \@> [{"b":[null]}] == False -- [1,"hi",[false,3],{"a":[null]}] \@> [[]] == True -- [1,"hi",[false,3],{"a":[null]}] \@> [[3]] == True -- [1,"hi",[false,3],{"a":[null]}] \@> [[true,3]] == False -- @ -- -- A regular value has to be a member -- -- @ -- [1,2,"hi",false,null] \@> 1 == True -- [1,2,"hi",false,null] \@> 5 == False -- [1,2,"hi",false,null] \@> "hi" == True -- [1,2,"hi",false,null] \@> false == True -- [1,2,"hi",false,null] \@> "2" == False -- @ -- -- An object will never match with an array -- -- @ -- [1,2,"hi",[false,3],{"a":null}] \@> {} == False -- [1,2,"hi",[false,3],{"a":null}] \@> {"a":null} == False -- @ -- -- === __Other values__ -- -- For any other JSON values the `(\@>.)` operator -- functions like an equivalence operator. -- -- @ -- "hello" \@> "hello" == True -- "hello" \@> \"Hello" == False -- "hello" \@> "h" == False -- "hello" \@> {"hello":1} == False -- "hello" \@> ["hello"] == False -- -- 5 \@> 5 == True -- 5 \@> 5.00 == True -- 5 \@> 1 == False -- 5 \@> 7 == False -- 12345 \@> 1234 == False -- 12345 \@> 2345 == False -- 12345 \@> "12345" == False -- 12345 \@> [1,2,3,4,5] == False -- -- true \@> true == True -- true \@> false == False -- false \@> true == False -- true \@> "true" == False -- -- null \@> null == True -- null \@> 23 == False -- null \@> "null" == False -- null \@> {} == False -- @ -- -- @since 2.8.2 (@>.) :: EntityField record Value -> Value -> Filter record (@>.) field val = Filter field (FilterValue val) $ BackendSpecificFilter " @> " -- | Same as '@>.' except the inclusion check is reversed. -- i.e. is the JSON value on the left hand side included -- in the JSON value of the right hand side. -- -- @since 2.8.2 (<@.) :: EntityField record Value -> Value -> Filter record (<@.) field val = Filter field (FilterValue val) $ BackendSpecificFilter " <@ " -- | This operator takes a column and a string to find a -- top-level key/field in an object. -- -- @column ?. string@ -- -- N.B. This operator might have some unexpected interactions -- with non-object values. Please reference the examples. -- -- === __Objects__ -- -- @ -- {"a":null} ? "a" == True -- {"test":false,"a":500} ? "a" == True -- {"b":{"a":[]}} ? "a" == False -- {} ? "a" == False -- {} ? "{}" == False -- {} ? "" == False -- {"":9001} ? "" == True -- @ -- -- === __Arrays__ -- -- This operator will match an array if the string to be matched -- is an element of that array, but nothing else. -- -- @ -- ["a"] ? "a" == True -- [["a"]] ? "a" == False -- [9,false,"1",null] ? "1" == True -- [] ? "[]" == False -- [{"a":true}] ? "a" == False -- @ -- -- === __Other values__ -- -- This operator functions like an equivalence operator on strings only. -- Any other value does not match. -- -- @ -- "a" ? "a" == True -- "1" ? "1" == True -- "ab" ? "a" == False -- 1 ? "1" == False -- null ? "null" == False -- true ? "true" == False -- 1.5 ? "1.5" == False -- @ -- -- @since 2.10.0 (?.) :: EntityField record Value -> Text -> Filter record (?.) = jsonFilter " ?? " -- | This operator takes a column and a list of strings to -- test whether ANY of the elements of the list are top -- level fields in an object. -- -- @column ?|. list@ -- -- /N.B. An empty list __will never match anything__. Also, this/ -- /operator might have some unexpected interactions with/ -- /non-object values. Please reference the examples./ -- -- === __Objects__ -- -- @ -- {"a":null} ?| ["a","b","c"] == True -- {"test":false,"a":500} ?| ["a","b","c"] == True -- {} ?| ["a","{}"] == False -- {"b":{"a":[]}} ?| ["a","c"] == False -- {"b":{"a":[]},"test":null} ?| [] == False -- @ -- -- === __Arrays__ -- -- This operator will match an array if __any__ of the elements -- of the list are matching string elements of the array. -- -- @ -- ["a"] ?| ["a","b","c"] == True -- [["a"]] ?| ["a","b","c"] == False -- [9,false,"1",null] ?| ["a","false"] == False -- [] ?| ["a","b","c"] == False -- [] ?| [] == False -- [{"a":true}] ?| ["a","b","c"] == False -- [null,4,"b",[]] ?| ["a","b","c"] == True -- @ -- -- === __Other values__ -- -- This operator functions much like an equivalence operator -- on strings only. If a string matches with __any__ element of -- the given list, the comparison matches. No other values match. -- -- @ -- "a" ?| ["a","b","c"] == True -- "1" ?| ["a","b","1"] == True -- "ab" ?| ["a","b","c"] == False -- 1 ?| ["a","1"] == False -- null ?| ["a","null"] == False -- true ?| ["a","true"] == False -- "a" ?| [] == False -- @ -- -- @since 2.10.0 (?|.) :: EntityField record Value -> [Text] -> Filter record (?|.) field = jsonFilter " ??| " field . PostgresArray -- | This operator takes a column and a list of strings to -- test whether ALL of the elements of the list are top -- level fields in an object. -- -- @column ?&. list@ -- -- /N.B. An empty list __will match anything__. Also, this/ -- /operator might have some unexpected interactions with/ -- /non-object values. Please reference the examples./ -- -- === __Objects__ -- -- @ -- {"a":null} ?& ["a"] == True -- {"a":null} ?& ["a","a"] == True -- {"test":false,"a":500} ?& ["a"] == True -- {"test":false,"a":500} ?& ["a","b"] == False -- {} ?& ["{}"] == False -- {"b":{"a":[]}} ?& ["a"] == False -- {"b":{"a":[]},"c":false} ?& ["a","c"] == False -- {"a":1,"b":2,"c":3,"d":4} ?& ["b","d"] == True -- {} ?& [] == True -- {"b":{"a":[]},"test":null} ?& [] == True -- @ -- -- === __Arrays__ -- -- This operator will match an array if __all__ of the elements -- of the list are matching string elements of the array. -- -- @ -- ["a"] ?& ["a"] == True -- ["a"] ?& ["a","a"] == True -- [["a"]] ?& ["a"] == False -- ["a","b","c"] ?& ["a","b","d"] == False -- [9,"false","1",null] ?& ["1","false"] == True -- [] ?& ["a","b"] == False -- [{"a":true}] ?& ["a"] == False -- ["a","b","c","d"] ?& ["b","c","d"] == True -- [null,4,{"test":false}] ?& [] == True -- [] ?& [] == True -- @ -- -- === __Other values__ -- -- This operator functions much like an equivalence operator -- on strings only. If a string matches with all elements of -- the given list, the comparison matches. -- -- @ -- "a" ?& ["a"] == True -- "1" ?& ["a","1"] == False -- "b" ?& ["b","b"] == True -- "ab" ?& ["a","b"] == False -- 1 ?& ["1"] == False -- null ?& ["null"] == False -- true ?& ["true"] == False -- 31337 ?& [] == True -- true ?& [] == True -- null ?& [] == True -- @ -- -- @since 2.10.0 (?&.) :: EntityField record Value -> [Text] -> Filter record (?&.) field = jsonFilter " ??& " field . PostgresArray jsonFilter :: PersistField a => Text -> EntityField record Value -> a -> Filter record jsonFilter op field a = Filter field (UnsafeValue a) $ BackendSpecificFilter op ----------------- -- AESON VALUE -- ----------------- instance PersistField Value where toPersistValue = toPersistValueJsonB fromPersistValue = fromPersistValueJsonB instance PersistFieldSql Value where sqlType = sqlTypeJsonB -- FIXME: PersistText might be a bit more efficient, -- but needs testing/profiling before changing it. -- (When entering into the DB the type isn't as important as fromPersistValue) toPersistValueJsonB :: ToJSON a => a -> PersistValue toPersistValueJsonB = PersistDbSpecific . BSL.toStrict . encode fromPersistValueJsonB :: FromJSON a => PersistValue -> Either Text a fromPersistValueJsonB (PersistText t) = case eitherDecodeStrict $ TE.encodeUtf8 t of Left str -> Left $ fromPersistValueParseError "FromJSON" t $ T.pack str Right v -> Right v fromPersistValueJsonB (PersistByteString bs) = case eitherDecodeStrict bs of Left str -> Left $ fromPersistValueParseError "FromJSON" bs $ T.pack str Right v -> Right v fromPersistValueJsonB x = Left $ fromPersistValueError "FromJSON" "string or bytea" x -- Constraints on the type might not be necessary, -- but better to leave them in. sqlTypeJsonB :: (ToJSON a, FromJSON a) => Proxy a -> SqlType sqlTypeJsonB _ = SqlOther "JSONB" fromPersistValueError :: Text -- ^ Haskell type, should match Haskell name exactly, e.g. "Int64" -> Text -- ^ Database type(s), should appear different from Haskell name, e.g. "integer" or "INT", not "Int". -> PersistValue -- ^ Incorrect value -> Text -- ^ Error message fromPersistValueError haskellType databaseType received = T.concat [ "Failed to parse Haskell type `" , haskellType , "`; expected " , databaseType , " from database, but received: " , T.pack (show received) , ". Potential solution: Check that your database schema matches your Persistent model definitions." ] fromPersistValueParseError :: (Show a) => Text -- ^ Haskell type, should match Haskell name exactly, e.g. "Int64" -> a -- ^ Received value -> Text -- ^ Additional error -> Text -- ^ Error message fromPersistValueParseError haskellType received err = T.concat [ "Failed to parse Haskell type `" , haskellType , "`, but received " , T.pack (show received) , " | with error: " , err ] newtype PostgresArray a = PostgresArray [a] instance PersistField a => PersistField (PostgresArray a) where toPersistValue (PostgresArray ts) = PersistArray $ toPersistValue <$> ts fromPersistValue (PersistArray as) = PostgresArray <$> traverse fromPersistValue as fromPersistValue wat = Left $ fromPersistValueError "PostgresArray" "array" wat
naushadh/persistent
persistent-postgresql/Database/Persist/Postgresql/JSON.hs
mit
12,559
0
10
3,289
1,290
835
455
82
3
folder f a xs = foldM f a xs >> return ()
mpickering/hlint-refactor
tests/examples/Monad18.hs
bsd-3-clause
41
0
7
11
29
13
16
1
1
{-# LANGUAGE OverloadedStrings #-} {- A simple HTTP server that serves static source and data files for tests, and additionally supports some dynamic responses: -} module Server (startServer) where import Control.Concurrent import qualified Control.Exception as E import Control.Monad import qualified Network.HTTP.Types as HTTP import qualified Network.Wai import qualified Network.Wai as W import qualified Network.Wai.Application.Static as Static import qualified Network.Wai.Handler.Warp as Warp import qualified Network.Wai.Handler.WebSockets as WaiWS import qualified Network.Wai.Parse as NWP import Network.Socket import qualified Network.WebSockets as WS import Data.Maybe import Data.Text (Text) import qualified Data.Text as T import qualified Data.Text.Lazy as TL import qualified Data.Text.Encoding as TE import qualified Data.Text.Encoding.Error as TE import qualified Data.Text.Lazy.Encoding as TLE import Data.ByteString (ByteString) import qualified Data.ByteString as B import qualified Data.ByteString.Builder as B import qualified Data.ByteString.Lazy as BL import Data.Int import Text.Read import Prelude hiding (FilePath) import Filesystem.Path {- Start the test server with static file root path on the next available port number. Returns the port number -} startServer :: FilePath -> IO Int startServer path = do s <- socket AF_INET Stream defaultProtocol bind s (SockAddrInet aNY_PORT iNADDR_ANY) listen s 4 forkIO $ Warp.runSettingsSocket Warp.defaultSettings s (WaiWS.websocketsOr WS.defaultConnectionOptions handleWebSocket (handleReq path)) fromIntegral <$> socketPort s handleReq :: FilePath -> Network.Wai.Application handleReq path req resp | ["empty.html"] <- pi = handleEmpty req resp -- | ("runmain.js":_) <- rpi = handleRunMain runMain req resp | ("pong":_) <- pi = handlePong req resp | ("status":_) <- pi = handleStatus req resp | ("close":_) <- pi = handleClose req resp | ("truncate":_) <- pi = handleTruncate req resp | ("stream":_) <- pi = handleStream req resp | otherwise = handleStatic path req resp where rpi = reverse pi pi = Network.Wai.pathInfo req handleStatic :: FilePath -> Network.Wai.Application handleStatic path = Static.staticApp (Static.defaultFileServerSettings path) handleEmpty :: Network.Wai.Application handleEmpty req resp = let d = "<html><head></head><body></body></html>" l = BL.toStrict . B.toLazyByteString . B.int64Dec . BL.length $ d in resp $ W.responseLBS HTTP.status200 [ ("Content-Type" , "text/html") , ("Content-Length", l) ] d -- /**/runmain.js -- serve a customized webdriver runner {- handleRunMain :: BL.ByteString -> Network.Wai.Application handleRunMain runMain req resp = resp $ W.responseLBS HTTP.status200 [ ("Content-Type", "application/javascript") , ("Content-Length", BL.toStrict . B.toLazyByteString . B.int64Dec . BL.length $ runMain) ] runMain -} -- /pong: respond with same data as GET or POST data argument handlePong :: Network.Wai.Application handlePong req resp | W.requestMethod req == HTTP.methodGet = f (queryString' req) | W.requestMethod req == HTTP.methodPost = NWP.parseRequestBody NWP.lbsBackEnd req >>= f . fst | otherwise = invalidMethod resp where f q = let d = maybe "pong" BL.fromStrict (lookup "data" q) in respondWith resp HTTP.status200 q (BL.length d) d -- /status/CODE: respond with status code, reply with POST body -- or data argument, default body if none handleStatus :: Network.Wai.Application handleStatus req resp | W.requestMethod req == HTTP.methodGet = f (queryString' req) | W.requestMethod req == HTTP.methodPost = NWP.parseRequestBody NWP.lbsBackEnd req >>= f . fst | otherwise = invalidMethod resp where s | (_:code:_) <- Network.Wai.pathInfo req , Just c0 <- readMaybeT code = HTTP.mkStatus c0 "Status" | otherwise = HTTP.status200 f q = let d = maybe "pong" BL.fromStrict (lookup "data" q) in respondWith resp s q (BL.length d) d -- /close/DELAY: close the connection without a response after DELAY ms handleClose :: Network.Wai.Application handleClose req respond | (_:delay:_) <- W.pathInfo req , Just ms <- readMaybeT delay = f ms | otherwise = f 0 where f d = do threadDelay (d*1000) -- fixme check that this closes the connection respond $ W.responseLBS (error "no status") [] "" -- /truncate/BYTES: claims to reply with 2*BYTES response, but -- closes the connection after sending BYTES bytes -- default value: 32kiB with 64kiB content length handleTruncate :: Network.Wai.Application handleTruncate req resp | W.requestMethod req == HTTP.methodGet = f (queryString' req) | W.requestMethod req == HTTP.methodPost = NWP.parseRequestBody NWP.lbsBackEnd req >>= f . fst | otherwise = invalidMethod resp where l | (_:bytes:_) <- W.pathInfo req , Just c0 <- readMaybeT bytes = c0 | otherwise = 32768 d = "abcdefghijklmnopqrstuvwxyz1234567890" f q = respondWith resp HTTP.status200 q (2*l) (BL.take l $ BL.cycle d) -- /stream/CHUNKSIZE: sends an infinite stream of chunks of size -- CHUNKSIZE, use delay (ms) for the delay -- between chunks handleStream :: Network.Wai.Application handleStream req resp | W.requestMethod req == HTTP.methodGet = f (queryString' req) | W.requestMethod req == HTTP.methodPost = NWP.parseRequestBody NWP.lbsBackEnd req >>= f . fst | otherwise = invalidMethod resp where chunkSize | (_:cs0:_) <- W.pathInfo req , Just cs <- readMaybeT cs0 = cs | otherwise = 32678 d = B.lazyByteString $ BL.take chunkSize (BL.cycle "abcdefghijklmnopqrstuvwxyz1234567890") hdrs = [("Content-Type", "text/plain")] f q = do let delay = maybe (return ()) threadDelay (readMaybeB =<< lookup "delay" q) resp $ W.responseStream HTTP.status200 hdrs $ \write flush -> forever (write d >> flush >> delay) handleWebSocket :: WS.ServerApp handleWebSocket pending = do putStrLn "accepting WebSocket request" conn <- WS.acceptRequest pending let handleMessages = forever $ do d <- WS.receiveDataMessage conn case d of WS.Text t -> do putStrLn "received text message" case reads . TL.unpack . TLE.decodeUtf8 $ t of [(i, [])] -> case i of 0 -> do putStrLn "closing connection" WS.sendClose conn (""::T.Text) _ | i < 0 -> replicateM_ (negate i) $ WS.sendDataMessage conn (WS.Text "TestTextMessage") _ -> replicateM_ i $ WS.sendDataMessage conn (WS.Binary "TestBinaryMessage") _ -> putStrLn "received non-numeric message" WS.Binary bs -> putStrLn "received binary message" handleConnectionException :: WS.ConnectionException -> IO () handleConnectionException = print handleMessages `E.catch` handleConnectionException ---- respondWith :: (W.Response -> IO W.ResponseReceived) -> HTTP.Status -> [(ByteString, ByteString)] -> Int64 -> BL.ByteString -> IO W.ResponseReceived respondWith respond status query contentLength content = do maybe (return ()) threadDelay (readMaybeB =<< lookup "delay" query) let ct = fromMaybe "text/plain" (lookup "content-type" query) hdrs = [ ("Content-Type", ct) , ("Content-Length", BL.toStrict . B.toLazyByteString . B.int64Dec $ contentLength) ] respond (W.responseLBS status hdrs content) queryString' :: W.Request -> [(ByteString, ByteString)] queryString' = mapMaybe sequence . W.queryString readMaybeB :: Read a => ByteString -> Maybe a readMaybeB = readMaybeT . TE.decodeUtf8With TE.lenientDecode readMaybeT :: Read a => Text -> Maybe a readMaybeT = readMaybe . T.unpack invalidMethod :: (W.Response -> IO W.ResponseReceived) -> IO W.ResponseReceived invalidMethod respond = respond $ W.responseLBS HTTP.methodNotAllowed405 [] "Method not allowed"
ryantrinkle/ghcjs
test/Server.hs
mit
8,755
0
29
2,369
2,257
1,151
1,106
156
5
----------------------------------------------------------------------------- -- | -- Module : XMonad.Util.Themes -- Copyright : (C) 2007 Andrea Rossato -- License : BSD3 -- -- Maintainer : [email protected] -- Stability : unstable -- Portability : unportable -- -- A (hopefully) growing collection of themes for decorated layouts. -- ----------------------------------------------------------------------------- module XMonad.Util.Themes ( -- * Usage -- $usage listOfThemes , ppThemeInfo , xmonadTheme , smallClean , robertTheme , deiflTheme , oxymor00nTheme , donaldTheme , wfarrTheme , kavonForestTheme , kavonLakeTheme , kavonPeacockTheme , kavonVioGreenTheme , kavonBluesTheme , kavonAutumnTheme , kavonFireTheme , kavonChristmasTheme , ThemeInfo (..) ) where import XMonad.Layout.Decoration -- $usage -- This module stores some user contributed themes which can be used -- with decorated layouts (such as Tabbed). (Note that these themes -- only apply to decorated layouts, such as those found in -- "XMonad.Layout.Tabbed" and "XMonad.Layout.DecorationMadness"; they -- do not apply to xmonad as a whole.) -- -- If you want to use one of them with one of your decorated layouts, -- you need to substitute defaultTheme with, for instance, (theme -- smallClean). -- -- Here is an example: -- -- > import XMonad -- > import XMonad.Util.Themes -- > import XMonad.Layout.Tabbed -- > -- > myLayout = tabbed shrinkText (theme smallClean) -- > -- > main = xmonad defaultConfig {layoutHook = myLayout} -- -- If you have a theme you would like to share, adding it to this -- module is very easy. -- -- You can use 'xmonadTheme' or 'smallClean' as a template. -- -- At the present time only the 'themeName' field is used. But please -- provide all the other information, which will be used at a later -- time. -- -- Please, remember to add your theme to the list of exported -- functions, and to the 'listOfThemes'. -- -- Thanks for your contribution! data ThemeInfo = TI { themeName :: String , themeAuthor :: String , themeDescription :: String , theme :: Theme } newTheme :: ThemeInfo newTheme = TI "" "" "" defaultTheme ppThemeInfo :: ThemeInfo -> String ppThemeInfo t = themeName t <> themeDescription t <> "by" <> themeAuthor t where "" <> x = x x <> y = x ++ " - " ++ y listOfThemes :: [ThemeInfo] listOfThemes = [ xmonadTheme , smallClean , deiflTheme , oxymor00nTheme , robertTheme , donaldTheme , wfarrTheme , kavonForestTheme , kavonLakeTheme , kavonPeacockTheme , kavonVioGreenTheme , kavonBluesTheme , kavonAutumnTheme , kavonFireTheme , kavonChristmasTheme ] -- | The default xmonad theme, by David Roundy. xmonadTheme :: ThemeInfo xmonadTheme = newTheme { themeName = "xmonadTheme" , themeAuthor = "David Roundy" , themeDescription = "The default xmonad theme" , theme = defaultTheme } -- | Small decorations with a Ion3 remembrance, by Andrea Rossato. smallClean :: ThemeInfo smallClean = newTheme { themeName = "smallClean" , themeAuthor = "Andrea Rossato" , themeDescription = "Small decorations with a Ion3 remembrance" , theme = defaultTheme { activeColor = "#8a999e" , inactiveColor = "#545d75" , activeBorderColor = "white" , inactiveBorderColor = "grey" , activeTextColor = "white" , inactiveTextColor = "grey" , decoHeight = 14 } } -- | Don's preferred colors - from DynamicLog...;) donaldTheme :: ThemeInfo donaldTheme = newTheme { themeName = "donaldTheme" , themeAuthor = "Andrea Rossato" , themeDescription = "Don's preferred colors - from DynamicLog...;)" , theme = defaultTheme { activeColor = "#2b4f98" , inactiveColor = "#cccccc" , activeBorderColor = "#2b4f98" , inactiveBorderColor = "#cccccc" , activeTextColor = "white" , inactiveTextColor = "black" , decoHeight = 16 } } -- | Ffrom Robert Manea's prompt theme. robertTheme :: ThemeInfo robertTheme = newTheme { themeName = "robertTheme" , themeAuthor = "Andrea Rossato" , themeDescription = "From Robert Manea's prompt theme" , theme = defaultTheme { activeColor = "#aecf96" , inactiveColor = "#111111" , activeBorderColor = "#aecf96" , inactiveBorderColor = "#111111" , activeTextColor = "black" , inactiveTextColor = "#d5d3a7" , fontName = "-*-profont-*-*-*-*-11-*-*-*-*-*-iso8859" , decoHeight = 16 } } -- | deifl\'s Theme, by deifl. deiflTheme :: ThemeInfo deiflTheme = newTheme { themeName = "deiflTheme" , themeAuthor = "deifl" , themeDescription = "deifl's Theme" , theme = defaultTheme { inactiveBorderColor = "#708090" , activeBorderColor = "#5f9ea0" , activeColor = "#000000" , inactiveColor = "#333333" , inactiveTextColor = "#888888" , activeTextColor = "#87cefa" , fontName = "-xos4-terminus-*-*-*-*-12-*-*-*-*-*-*-*" , decoHeight = 15 } } -- | oxymor00n\'s theme, by Tom Rauchenwald. oxymor00nTheme :: ThemeInfo oxymor00nTheme = newTheme { themeName = "oxymor00nTheme" , themeAuthor = "Tom Rauchenwald" , themeDescription = "oxymor00n's theme" , theme = defaultTheme { inactiveBorderColor = "#000" , activeBorderColor = "aquamarine3" , activeColor = "aquamarine3" , inactiveColor = "DarkSlateGray4" , inactiveTextColor = "#222" , activeTextColor = "#222" -- This font can be found in the package ttf-alee -- on debian-systems , fontName = "-*-Bandal-*-*-*-*-12-*-*-*-*-*-*-*" , decoHeight = 15 , urgentColor = "#000" , urgentTextColor = "#63b8ff" } } wfarrTheme :: ThemeInfo wfarrTheme = newTheme { themeName = "wfarrTheme" , themeAuthor = "Will Farrington" , themeDescription = "A nice blue/black theme." , theme = defaultTheme { activeColor = "#4c7899" , inactiveColor = "#333333" , activeBorderColor = "#285577" , inactiveBorderColor = "#222222" , activeTextColor = "#ffffff" , inactiveTextColor = "#888888" , fontName = "-*-fixed-medium-r-*--10-*-*-*-*-*-iso8859-1" , decoHeight = 12 } } -- | Forest colours, by Kathryn Andersen kavonForestTheme :: ThemeInfo kavonForestTheme = newTheme { themeName = "kavonForestTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Forest colours" , theme = defaultTheme { activeColor = "#115422" , activeBorderColor = "#1a8033" , activeTextColor = "white" , inactiveColor = "#543211" , inactiveBorderColor = "#804c19" , inactiveTextColor = "#ffcc33" } } -- | Lake (blue/green) colours, by Kathryn Andersen kavonLakeTheme :: ThemeInfo kavonLakeTheme = newTheme { themeName = "kavonLakeTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Lake (blue/green) colours" , theme = defaultTheme { activeColor = "#001166" , activeBorderColor = "#1f3999" , activeTextColor = "white" , inactiveColor = "#09592a" , inactiveBorderColor = "#198044" , inactiveTextColor = "#73e6a3" } } -- | Peacock colours, by Kathryn Andersen kavonPeacockTheme :: ThemeInfo kavonPeacockTheme = newTheme { themeName = "kavonPeacockTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Peacock colours" , theme = defaultTheme { activeColor = "#190f4c" , activeBorderColor = "#2b1980" , activeTextColor = "white" , inactiveColor = "#225173" , inactiveBorderColor = "#2a638c" , inactiveTextColor = "#8fb2cc" } } -- | Violet-Green colours, by Kathryn Andersen kavonVioGreenTheme :: ThemeInfo kavonVioGreenTheme = newTheme { themeName = "kavonVioGreenTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Violet-Green colours" , theme = defaultTheme { activeColor = "#37174c" , activeBorderColor = "#333399" , activeTextColor = "white" , inactiveColor = "#174c17" , inactiveBorderColor = "#336633" , inactiveTextColor = "#aaccaa" } } -- | Blue colours, by Kathryn Andersen kavonBluesTheme :: ThemeInfo kavonBluesTheme = newTheme { themeName = "kavonBluesTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Blue colours" , theme = defaultTheme { activeColor = "#000066" , activeBorderColor = "#111199" , activeTextColor = "white" , inactiveColor = "#9999ee" , inactiveBorderColor = "#6666cc" , inactiveTextColor = "black" } } -- | Christmas colours, by Kathryn Andersen kavonChristmasTheme :: ThemeInfo kavonChristmasTheme = newTheme { themeName = "kavonChristmasTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Christmas (green + red) colours" , theme = defaultTheme { activeColor = "#660000" , activeBorderColor = "#990000" , activeTextColor = "white" , inactiveColor = "#006600" , inactiveBorderColor = "#003300" , inactiveTextColor = "#99bb99" } } -- | Autumn colours, by Kathryn Andersen kavonAutumnTheme :: ThemeInfo kavonAutumnTheme = newTheme { themeName = "kavonAutumnTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Autumn (brown + red) colours" , theme = defaultTheme { activeColor = "#660000" , activeBorderColor = "#990000" , activeTextColor = "white" , inactiveColor = "#542d11" , inactiveBorderColor = "#804d1A" , inactiveTextColor = "#ffcc33" } } -- | Fire colours, by Kathryn Andersen kavonFireTheme :: ThemeInfo kavonFireTheme = newTheme { themeName = "kavonFireTheme" , themeAuthor = "Kathryn Andersen" , themeDescription = "Fire (orange + red) colours" , theme = defaultTheme { activeColor = "#660000" , activeBorderColor = "#990000" , activeTextColor = "white" , inactiveColor = "#ff8000" , inactiveBorderColor = "#d9b162" , inactiveTextColor = "black" } }
adinapoli/xmonad-contrib
XMonad/Util/Themes.hs
bsd-3-clause
15,650
0
8
7,897
1,462
959
503
220
2
import System.Environment main :: IO () main = do [arg] <- getArgs env <- getEnvironment putStrLn "Running Background App." putStrLn $ " Args: " ++ show arg putStrLn $ "Environment: " ++ show env putStrLn "Stopping Background App."
telser/keter
incoming/foo1_0/worker.hs
mit
265
0
8
71
78
35
43
9
1
{-# LANGUAGE ApplicativeDo #-} f :: Int -> IO Int f x = do y <- return (x + 1) return (y * 2)
sdiehl/ghc
testsuite/tests/ghci.debugger/scripts/break029.hs
bsd-3-clause
99
0
10
29
52
25
27
5
1
module T4007 where f :: IO () f = sequence_ (replicate 10 (putStrLn "yes"))
urbanslug/ghc
testsuite/tests/perf/compiler/T4007.hs
bsd-3-clause
78
0
9
16
36
19
17
3
1
-- Test for trac #1042 import Control.Exception import Data.Int main :: IO () main = do print ((minBound :: Int) `div` (-1)) `myCatch` print print ((minBound :: Int8) `div` (-1)) `myCatch` print print ((minBound :: Int16) `div` (-1)) `myCatch` print print ((minBound :: Int32) `div` (-1)) `myCatch` print print ((minBound :: Int64) `div` (-1)) `myCatch` print myCatch :: IO a -> (ArithException -> IO a) -> IO a myCatch = catch
urbanslug/ghc
testsuite/tests/numeric/should_run/numrun013.hs
bsd-3-clause
476
0
12
118
221
127
94
10
1
-- | Gearman specific stuff {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} module Vaultaire.Collector.Nagios.Perfdata.Gearman where import Vaultaire.Collector.Nagios.Perfdata.Process import Vaultaire.Collector.Nagios.Perfdata.Types import Control.Concurrent import Control.Monad import Control.Monad.IO.Class import Control.Monad.Reader import Control.Monad.State import Crypto.Cipher.AES import qualified Data.ByteString as S import qualified Data.ByteString.Base64 as B64 import qualified Data.ByteString.Lazy.Char8 as L import System.Log.Logger import Data.Nagios.Perfdata import System.Gearman.Connection import System.Gearman.Worker import Vaultaire.Collector.Common.Process import Vaultaire.Collector.Common.Types gearmanProcessDatum :: CollectorOpts NagiosOptions -> CollectorState NagiosState -> WorkerFunc gearmanProcessDatum o@(_, NagiosOptions{..}) s@(_, NagiosState{..}) Job{..} = case clearBytes collectorAES jobData of Left e -> liftIO $ do errorM "Gearman.gearmanProcessDatum" $ concat ["error decoding: ", show e, " data: ", show jobData] return $ Left . Just $ L.pack e Right checkResult -> do liftIO $ debugM "Gearman.gearmanProcessDatum" $ "Null trimmed data: " ++ (show . trimNulls) checkResult case perfdataFromGearmanResult checkResult of Left err -> liftIO $ do errorM "Gearman.gearmanProcessDatum" $ "Error parsing check result: " ++ err return $ Left $ Just (L.pack err) Right datum -> do liftIO $ debugM "Gearman.gearmanProcessDatum" $ "Got datum: " ++ show datum _ <- runCollector' o s (return ()) $ processDatum datum return $ Right "done" where clearBytes k d = decodeJob k $ L.toStrict d trimNulls :: S.ByteString -> S.ByteString trimNulls = S.reverse . S.dropWhile (0 ==) . S.reverse -- | Decodes a job's data packet using Base 64 decodeJob :: Maybe AES -> S.ByteString -> Either String S.ByteString decodeJob k d = case B64.decode d of Right d' -> Right $ maybeDecrypt k d' Left e -> Left e -- | Possible decrypts payload (based on whether key is given) maybeDecrypt :: Maybe AES -> S.ByteString -> S.ByteString maybeDecrypt aes ciphertext = case aes of Nothing -> ciphertext -- Nothing to do, we assume the input is already in cleartext. Just k -> decryptECB k ciphertext -- | Sets up the gearman worker daemon and runs a work loop setupGearman :: Nagios () setupGearman = do o <- ask s@(_, NagiosState{..}) <- get let workFunc = gearmanProcessDatum o s (CommonOpts{..}, opts@NagiosOptions{..}) <- ask disconnectErrorBox <- liftIO newEmptyMVar setupConnection disconnectErrorBox workFunc opts liftIO $ forever $ do err <- liftIO $ takeMVar disconnectErrorBox warningM "Gearman.setupGearman" $ concat ["Worker thread disconnected from gearmanServer with: ", err, " starting new connection"] setupConnection disconnectErrorBox workFunc opts where setupConnection box workFunc NagiosOptions{..} = liftIO $ forkIO $ runGearman optGearmanHost optGearmanPort $ do err <- work [(L.pack optFunctionName, workFunc, Nothing)] liftIO $ putMVar box err
anchor/vaultaire-collector-nagios
lib/Vaultaire/Collector/Nagios/Perfdata/Gearman.hs
mit
3,503
0
20
905
867
446
421
62
3
module Main where sum' :: (Num a) => [a] -> a sum' xs = foldl (\acc x -> acc + x) 0 xs sum2 :: (Num a) => [a] -> a sum2 = foldl (+) 0
rglew/lyah
foldl.hs
mit
137
0
8
39
87
49
38
5
1
{-# LANGUAGE OverloadedStrings #-} -- | This module handles all of the scans requested by the user module Scans (attachScanEvents, initScanState, scanShape, ScanState(step,rotations,top,bottom,offset,choice), scansReady, populateTable,dropScan,updateTitle,toFile,MouseState) where import Data.IORef import Data.List (delete,intercalate) import Haste import Haste.DOM import Haste.JSON import Haste.Events import Haste.Graphics.Canvas import Control.Monad (forM,forM_,(>=>)) import Text.Printf import Prelude hiding (head, tail, init, last, read,(!!)) import Safe (headMay,atMay) import JSON data Scan = Scan {start :: Point, stop :: Point, title :: String} deriving (Show, Eq) instance JSONable Scan where toJSON s = Dict [("title",Str . toJSString$ title s), ("points",Arr . map toJSON $ [start s,stop s])] fromJSON d@(Dict _) = Scan <$> (getJArr d "points" >>= headMay >>= fromJSON)<*>(getJArr d "points" >>= flip atMay 1 >>= fromJSON) <*> ((d ~> "title") >>= fromJSONStr) fromJSON _ = Nothing fromJSONStr :: JSON -> Maybe String fromJSONStr (Str x) = Just (toString x) fromJSONStr _ = Nothing getJArr :: JSON -> JSString -> Maybe [JSON] getJArr d k = case d ~> k of Nothing -> Nothing Just (Arr x) -> Just x Just _ -> Nothing -- | Whether the user is currently performing a drag or leaving the mouse free data MouseState = Free | Dragging deriving (Show,Eq) instance JSONable MouseState where toJSON = Str . toJSString . show fromJSON (Str x) = case fromJSStr x of "Dragging" -> Just Dragging "Free" -> Just Free _ -> Nothing fromJSON _ = Nothing data Frame = Top | Bottom deriving (Eq, Show, Read) instance JSONable Frame where toJSON =Str . toJSString .show fromJSON (Str x) = case fromJSStr x of "Top" -> Just Top "Bottom" -> Just Bottom _ -> Nothing fromJSON _ = Nothing -- | The complete state of the user's scanning selections data ScanState = ScanState {mouse :: MouseState, -- ^ whether a new -- scan is currently -- being created. scans :: [Scan], -- ^ The scans that the -- user has requested. top :: Double, -- ^ The Y offset of the -- upper frame bottom :: Double, -- ^ The Y offset of the -- lower frame offset :: Double, -- ^ The X offset of the -- frames choice :: Frame, -- ^ Which frame position -- holds the sample. step :: Double, -- ^ The Scan step size in mm rotations :: [Double]} -- ^ The rotation -- angles that we -- wish to measure deriving (Eq,Show) instance JSONable ScanState where toJSON s = Dict . zip ["mouse","scans","top","bottom","offset","choice","step","rotations"] $ [toJSON $ mouse s,toJSON $ scans s, toJSON $ top s, toJSON $ bottom s, toJSON $ offset s, toJSON $ choice s, toJSON $ step s, toJSON $ rotations s] fromJSON d = ScanState <$> (d ~~> "mouse") <*> (d ~~> "scans") <*> ((d ~> "top") >>= fromJSON) <*> ((d ~> "bottom") >>= fromJSON) <*> ((d ~> "offset") >>= fromJSON) <*> ((d ~> "choice") >>= fromJSON) <*> defaultStep d <*> ((d ~> "rotations") >>= fromJSON) defaultStep :: JSON -> Maybe Double defaultStep d = case d ~> "step" of Just x -> fromJSON x Nothing -> Just 0.1 -- Default step size from V0.1 defaultScanState :: ScanState defaultScanState = ScanState Free [] 0 50 0 Top 0.5 (map (*(pi/180)) [0,5..50]) -- | Creates a reference to a set of scans initScanState :: IO (IORef ScanState) initScanState = newIORef defaultScanState makeFree :: ScanState -> ScanState makeFree st = st{mouse=Free} -- | Registers actions on the scan canvas attachScanEvents :: IORef ScanState -- ^ A reference to the global -- state of the scan -> Canvas -- ^ The canvas being registered -> IO () -- ^ A generic update to perform after any event -> IO () attachScanEvents scanState can action = do _ <- onEvent can MouseDown $ mouseDown action scanState _ <- onEvent can MouseUp $ mouseUp action scanState _ <- onEvent can MouseMove $ mouseMove action scanState return () mouseUp :: IO () -> IORef ScanState -> MouseData -> IO () mouseUp action state m = do modifyIORef' state $ makeFree . updateHead m action mouseMove :: IO () -> IORef ScanState -> MouseData -> IO () mouseMove action state m = do modifyIORef' state $ updateHead m action updateHead :: MouseData -> ScanState -> ScanState updateHead m st | mouse st == Free = st | null (scans st) = st | otherwise = let s:ss = scans st in st{scans= axisScan (start s) (floatPair $ mouseCoords m):ss} axisScan :: Point -> Point -> Scan axisScan p p2 = Scan p (ending p p2) "" where ending (xa,ya) (xb,yb) = if abs (yb - ya) > abs (xb - xa) then (xa, yb) else (xb, ya) mouseDown :: IO () -> IORef ScanState -> MouseData -> IO () mouseDown action state m = do modifyIORef' state $ \x -> let p = floatPair (mouseCoords m) in startDrag p x action startDrag :: Point -> ScanState -> ScanState startDrag p st = st{mouse=Dragging,scans=Scan p p "":scans st} -- | Returns a picture with the scans coloured Magenta scanShape :: ScanState -> Picture () scanShape st = lineWidth 1 . color (RGB 255 0 255) . stroke $ forM_ (scans st) (\(Scan a b _) -> line a b) floatPair :: (Int, Int) -> Point floatPair (x,y) = (fromIntegral x, fromIntegral y) type Killer = Scan -> IO () type Changer = Elem -> Scan -> IO () -- | Add a table to the HTML document which contains the scans populateTable :: Changer -- ^ An action which updates the a scan title -- in the global state with the value in an -- element -> Killer -- ^ An action which removes a scan from the -- global state -> ScanState -- ^ The current state of the scan -> Elem -- ^ where to place the table -> IO () populateTable c k st e = do clearChildren e header <- makeTableHeader appendChild e header _ <- forM (reverse $ scans st) (makeScanRow c k st >=> appendChild e) return () makeTableHeader :: IO Elem makeTableHeader = do hs <- mapM makeTableHeader' ["x1","y1","x2","y2","frames","time (minutes)","title","Delete"] newElem "tr" `with` [children hs] makeTableHeader' :: String -> IO Elem makeTableHeader' x = do txt <- newTextElem x newElem "th" `with` [children [txt]] makeTableRow :: (Show a) => [a] -> IO Elem makeTableRow xs = do texts <- mapM makeTableCell xs let cell tx = with (newElem "td") [children [tx]] cells <- mapM cell texts with (newElem "tr") [children cells] makeTableCell :: Show a => a -> IO Elem makeTableCell x = do txt <- newTextElem $ show x with (newElem "td") [children [txt]] makeScanRow :: Changer -> Killer -> ScanState -> Scan -> IO Elem makeScanRow c k st sc@(Scan (xa, ya) (xb, yb) t) = do let toReal = (/900) . (*25) row <- makeTableRow [toReal xa, toReal ya, toReal xb, toReal yb, fromIntegral $ getFrameCount (step st) sc, fromIntegral . round . (*(fromIntegral . length $ rotations st)) . (*(3.5/60)) . fromIntegral . getFrameCount (step st) $ sc] titleLabel <- makeTitleLabel t deleteButton <- makeDeleteButton appendChild row =<< inCell titleLabel appendChild row deleteButton _ <- onEvent deleteButton Click $ const (k sc) _ <- onEvent titleLabel Change $ const (c titleLabel sc) return row inCell :: Elem -> IO Elem inCell t = newElem "td" `with` [children [t]] makeTitleLabel :: String -> IO Elem makeTitleLabel s = newElem "input" `with` [attr "type" =: "text", attr "value" =: s] makeDeleteButton :: IO Elem makeDeleteButton = do icon <- newElem "span" `with` [attr "class" =: "glyphicon glyphicon-remove"] newElem "button" `with` [attr "class" =: "btn btn-danger", children [icon]] -- | Given a generic continuation action and a reference to the global -- scan state, creates a function which will remove a given scan from -- the state and perform the update continuation. dropScan :: IO () -> IORef ScanState -> Killer dropScan action scanState s = do modifyIORef' scanState (\x -> x{scans = delete s $scans x}) action -- | Given a generic continuation action and a reference to the global -- scan state, creates a function which will update any chosen scan -- with the value of a form element updateTitle :: IO () -> IORef ScanState -> Changer updateTitle action scanState label scan = do l <- getProp label "value" modifyIORef' scanState (fixScanState scan (\x -> x{title=l})) action when :: (a -> Bool) -> (a->a) -> [a] -> [a] when _ _ [] = [] when test f (x:xs) = if test x then f x:when test f xs else x:when test f xs fixScanState :: Scan -> (Scan->Scan) -> ScanState -> ScanState fixScanState scan f s = let ss = scans s in s{scans=when (==scan) f ss} newline :: String newline = "\r\n" -- | Turns a ScanState into a script macro for SPEC toFile :: ScanState -> String toFile s = intercalate (newline ++ newline) (map (scanRot s) (rotations s)) scanRot :: ScanState -> Double -> String scanRot s angle = "umv sar " ++ show (round $ angle*180/pi) ++ newline ++ (intercalate newline . map (fileLineScan s angle) . reverse . scans $ s) data ScanDir = Horizontal | Vertical fileLineScan :: ScanState -> Double -> Scan -> String fileLineScan s angle sc@(Scan (xa, _) (xb, _) _) | xa == xb = scanCommand Vertical s sc angle | otherwise = scanCommand Horizontal s sc angle getFrameCount :: Double -> Scan -> Int getFrameCount stepSize (Scan (xa, ya) (xb, yb) _) | xa == xb = getSteps stepSize ya yb | otherwise = getSteps stepSize xa xb getSteps :: Double -> Double -> Double -> Int getSteps stepSize begin end = round (abs (toMM (end-begin)) / stepSize ) :: Int -- | Convert pixel coordinates to real ones toMM :: Double -> Double toMM x = x*frameSize/imageSize where frameSize = 25 -- The size of the frame in mm imageSize = 900 -- The size of the image in pixels -- | Number of seconds to sleep between runs in a scan sleep :: Double sleep = 0 -- | Number of dark runs to perform on each scan. ndark :: Int ndark = 1 -- | Exposure time time :: Double time = 0.04 x1 :: ScanState -> Scan -> Double -> Double x1 s (Scan (x,_) _ _) angle = offset s + 12.5 + (toMM x-12.5)* cos angle x2 :: ScanState -> Scan -> Double -> Double x2 s (Scan _ (x,_) _) angle = offset s + 12.5 + (toMM x-12.5)* cos angle y1 :: ScanState -> Scan -> Double y1 s (Scan (_,y) _ _) = case choice s of Top -> top s + toMM y Bottom -> bottom s + toMM y y2 :: ScanState -> Scan -> Double y2 s (Scan _ (_,y) _) =case choice s of Top -> top s + toMM y Bottom -> bottom s + toMM y z1 :: ScanState -> Scan -> Double -> Double z1 _ (Scan (x,_) _ _) angle = (toMM x-12.5)* sin angle z2 :: ScanState -> Scan -> Double -> Double z2 _ (Scan _ (x,_) _) angle = (toMM x-12.5)* sin angle showDouble :: Double -> String showDouble = printf "%.3f" scanCommand :: ScanDir -> ScanState -> Scan -> Double -> String scanCommand Vertical s scan angle = let moveString = "umv sah " ++ showDouble (x1 s scan angle) ++ " tmp2 " ++ showDouble (z1 s scan angle) scanString = unwords ["ccdtrans sav", showDouble $ y1 s scan, showDouble $ y2 s scan, show $ getFrameCount (step s) scan, show time, show sleep, "\"" ++ title scan ++ "\"", show ndark, "1"] in moveString ++ newline ++ scanString scanCommand Horizontal s scan angle = let moveString = "umv sav " ++ showDouble (y1 s scan) begin = x1 s scan angle end = x2 s scan angle zbegin = z1 s scan angle zend = z2 s scan angle n = getFrameCount (step s) scan scanString = "for(i=0;i<=" ++ show n ++ ";i+=1)" ++ newline ++ "{" ++ newline ++ " y = " ++ showDouble begin ++ "+i*" ++ showDouble ((end-begin)/fromIntegral n) ++ newline ++ " x = " ++ showDouble zbegin ++ "+i*" ++ showDouble ((zend-zbegin)/fromIntegral n) ++ newline ++ " umv sah y" ++ newline ++ " umv tmp2 x" ++ newline ++ unwords [" ccdacq_nodark",show time,"\"" ++ title scan ++ "\""] ++ newline ++ "}" ++ newline in moveString ++ newline ++ scanString -- | Determines whether the user has provided enough information to write the script file. scansReady :: ScanState -> Bool scansReady s | null (scans s) = False | any invalidTitle . map title . scans $ s = False | null (rotations s) = False | otherwise = True invalidTitle :: String -> Bool invalidTitle "" = True invalidTitle t = ' ' `elem` t
rprospero/PhotoAlign
Scans.hs
mit
14,033
1
32
4,415
4,596
2,368
2,228
279
3
module Functors where import Control.Lens -- items from chapter 12 of Programming in Haskell 2nd Ed by Graham Hutton inc :: [Int] -> [Int] inc [] = [] inc (n:ns) = n+1 : inc ns sqr :: [Int] -> [Int] sqr [] = [] sqr (n:ns) = n^2 : sqr ns map' :: (a -> b) -> [a] -> [b] map' f [] = [] map' f (x:xs) = f x : map f xs inc' = map' (+1) --class Functor f where -- fmap :: (a -> b) -> f a -> f b --instance Functor [] where -- fmap = map data Maybe' a = Nothing_ | Just_ a deriving Show instance Functor Maybe' where fmap _ Nothing_ = Nothing_ fmap g (Just_ x) = Just_ (g x) data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show instance Functor Tree where fmap g (Leaf x) = Leaf (g x) fmap g (Node l r) = Node (fmap g l) (fmap g r) --instance Functor IO where -- -- fmap (a -> b) -> f a -> f b -- -- fmap (a -> b) -> IO a -> IO b -- fmap g mx = do { x <- mx; return (g x)} inc'' :: Functor f => f Int -> f Int inc'' = fmap (+1) --class Functor f => Applicative f where -- pure :: a -> f a -- (<*>) :: f (a -> b) -> f a -> f b --instance Applicative Maybe where -- -- pure :: a -> fa -- pure = Just -- Nothing <*> _ = Nothing -- (Just g) <*> mx = fmap g mx prods :: [Int] -> [Int] -> [Int] prods xs ys = [ x * y | x <- xs, y <- ys] prods2 :: [Int] -> [Int] -> [Int] prods2 xs ys = pure (*) <*> xs <*> ys
brodyberg/LearnHaskell
CaesarCypher.hsproj/Functors.hs
mit
1,404
0
8
421
510
278
232
29
1
module Main where import Control.Applicative import Control.Concurrent.MVar import Control.Concurrent import Data.Time import System.Environment main = do mv <- newEmptyMVar start <- getCurrentTime loop mv =<< read . head <$> getArgs end <- getCurrentTime putStrLn $ "creation time: " ++ show (diffUTCTime end start) putMVar mv 0 v <- takeMVar mv fin <- getCurrentTime putStrLn $ "Var Value: " ++ (show v) ++ " Message time: " ++ show (diffUTCTime fin end) loop :: MVar Int -> Int -> IO () loop mv n | n <= 0 = return () | otherwise = do forkIO $ do m <- takeMVar mv putMVar mv $! m+1 loop mv (n-1)
nlim/haskell-playground
src/Threads.hs
mit
717
0
13
226
258
121
137
22
1
module Example where import Data.Monoid import Control.Monad import Types import Drum import Play import Dseq beat1 = mconcat [ sequence_ [hi, hi, hi, hi], sequence_ [bd, sn, bd, sn] ] wassup = n2 bd >> n8 bd >> n4 sn >> n2 bd >> n8 bd >> n4 bd >> n2 sn -- Trap Beat -- Tempo: 210 h8 = replicateM_ 8 (n8 hi) h12 = replicateM_ 12 (n8 hi) trill = replicateM_ 8 (n16 hi) hats = h8 >> trill >> h12 >> trill >> n4 hi >> n4 hi trap = hats <> (n1 bd >> n1 sn >> n1 bd >> n1 sn) -- Today Was A Good Day - Ice Cube -- Tempo: 160 icecube :: Song icecube = dseq BassDrum1 8 "7... .... 7... .... 7... .... 7.77 .7.." <> dseq BassDrum2 8 ".... 7... .... 7... .... 7... .... 7..." <> dseq SnareDrum2 8 ".... 4... .... 4... .... 4... .... 4..." <> dseq ClosedHihat 8 "7.7. 7.77 .77. 7.77 7.7. 7.77 .77. ...." <> dseq OpenHihat 8 ".... .... .... .... .... .... .... .7.." -- House Beat -- Tempo: 260 house = dseq MidTom1 8 "9... .9.. 9... 9..." <> dseq Claves 8 ".9.. .... .9.. ...." <> dseq ClosedHihat 8 "9... 9... 9... 9..." <> dseq BassDrum1 8 "..9. .... 9.9. ...." hMoreHats = house <> dseq ClosedHihat 8 "..9. ..9. ..9. ..9." hAllHats = hMoreHats <> dseq ClosedHihat 8 ".9.9 .9.9 .9.9 .9.9" houseSong = sequence_ $ replicate 4 house ++ replicate 4 hMoreHats ++ replicate 4 hAllHats ++ replicate 4 house -- Amen Brother -- Tempo: 210 amen = dseq RideCymbal1 8 "7.7. 7.7. 7.7. 7.7." <> dseq SnareDrum1 8 ".... 7..7 .7.. 7..7" <> dseq BassDrum1 8 "7.7. .... ..77 ...." -- The Funky Drummer -- Tempo: 210 funky = dseq OpenHihat 8 ".... ...7 .... .7.." <> dseq ClosedHihat 8 "7777 777. 7777 7.77" <> dseq SnareDrum1 8 ".... 7..7 .7.7 7..7" <> dseq BassDrum1 8 "7.7. ..7. ..7. .7.." -- Impeach The President -- Tempo: 210 impeach = dseq OpenHihat 8 ".... .... ..7. ...." <> dseq ClosedHihat 8 "7.7. 7.77 7... 7.7." <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7... ...7 7... ..7." -- When The Levee Breaks -- Tempo: 210 levee = dseq OpenHihat 8 "7.7. 7.7. 7.7. 7.7." <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "77.. ...7 ..77 ...." -- Cold Sweat -- Tempo: 210 sweat = dseq RideCymbal1 8 "7.7. 7.7. 7.7. 7.7." <> dseq SnareDrum1 8 ".... 7..7 .... 7..7" <> dseq BassDrum1 8 "7... .... 7.7. ...." -- Billie Jean -- Tempo: 240 billie = dseq ClosedHihat 8 "7.7. 7.7. 7.7. 7.7." <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7... .... 7... ...." -- Walk This Way -- Tempo: 210 walk = dseq ClosedHihat 8 "..7. 7.7. 7.7. 7.7." <> dseq OpenHihat 8 "7... .... .... ...." <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7... ...7 7.7. ...." -- Ashley's Roachclip -- Tempo: 210 ashley = dseq ClosedHihat 8 "7.7. 7.7. 7... 7.7." <> dseq OpenHihat 8 ".... .... ..7. ...." <> dseq Tambourine 8 "7.7. 7.7. 7.7. 7.7." <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7.7. ..7. .77. ...." -- Energy -- Tempo: 180 energy = dseq ClosedHihat 8 "7777 7777 7777 7777" <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq OpenHihat 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7..7 ..77 ..7. .7.." energyFlare = (dseq ClosedHihat 8 "7777 7777 7777 77" >> dseq ClosedHihat 16 "777") <> dseq SnareDrum1 8 ".... 7... .... 7..." <> dseq OpenHihat 8 ".... 7... .... 7..." <> dseq BassDrum1 8 "7..7 ..77 ..7. .7.." energySong = replicateM_ 3 energy >> energyFlare
reedrosenbluth/Djembe
src/Example.hs
mit
3,677
0
11
1,011
883
439
444
69
1
module GHCJS.DOM.SQLTransactionCallback ( ) where
manyoo/ghcjs-dom
ghcjs-dom-webkit/src/GHCJS/DOM/SQLTransactionCallback.hs
mit
52
0
3
7
10
7
3
1
0
{-# LANGUAGE PatternSynonyms #-} -- For HasCallStack compatibility {-# LANGUAGE ImplicitParams, ConstraintKinds, KindSignatures #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} module JSDOM.Generated.SVGAElement (getTarget, SVGAElement(..), gTypeSVGAElement) where import Prelude ((.), (==), (>>=), return, IO, Int, Float, Double, Bool(..), Maybe, maybe, fromIntegral, round, realToFrac, fmap, Show, Read, Eq, Ord, Maybe(..)) import qualified Prelude (error) import Data.Typeable (Typeable) import Data.Traversable (mapM) import Language.Javascript.JSaddle (JSM(..), JSVal(..), JSString, strictEqual, toJSVal, valToStr, valToNumber, valToBool, js, jss, jsf, jsg, function, asyncFunction, new, array, jsUndefined, (!), (!!)) import Data.Int (Int64) import Data.Word (Word, Word64) import JSDOM.Types import Control.Applicative ((<$>)) import Control.Monad (void) import Control.Lens.Operators ((^.)) import JSDOM.EventTargetClosures (EventName, unsafeEventName, unsafeEventNameAsync) import JSDOM.Enums -- | <https://developer.mozilla.org/en-US/docs/Web/API/SVGAElement.target Mozilla SVGAElement.target documentation> getTarget :: (MonadDOM m) => SVGAElement -> m SVGAnimatedString getTarget self = liftDOM ((self ^. js "target") >>= fromJSValUnchecked)
ghcjs/jsaddle-dom
src/JSDOM/Generated/SVGAElement.hs
mit
1,265
0
10
138
345
224
121
21
1
{-| Module : Text.LParse.TokenStream Description : Underlying data structure for sequential parsing Copyright : (c) Marcus Völker, 2017-2018 License : MIT Maintainer : [email protected] This module contains the `TokenStream` class, an abstraction of lists, similar to `Traversable`, but geared for use with LParse -} module Text.LParse.TokenStream where import Data.Either import Data.Maybe import Data.Traversable import Prelude hiding (filter,zip,zipWith,drop) -- | `TokenStream` abstracts a list, i.e., something that has a next element to process and a rest afterwards class (Functor t, Foldable t) => TokenStream t where -- | `top` gives the next element to process. Similar to `head` top :: t a -> a -- | `rest` gives what is left after processing `top`. Similar to `tail` rest :: t a -> t a -- | `nil` gives the empty `TokenStream`. Similar to `[]` nil :: t a -- | `cons` prepends an element to the `TokenStream`. Similar to `(:)` cons :: a -> t a -> t a instance TokenStream [] where top = head rest = tail nil = [] cons = (:) instance TokenStream Maybe where top = fromJust rest = const Nothing nil = Nothing cons a _ = Just a instance TokenStream (Either a) where top = head . rights . return rest x = if isLeft x then x else nil nil = Left undefined cons a _ = Right a -- | `TokenStream` version of `drop` drop :: (TokenStream s) => Int -> s a -> s a drop 0 x = x drop n x = rest $ drop (n-1) x -- | `TokenStream` version of `zip` zip :: (TokenStream s) => s a -> s b -> s (a,b) zip = zipWith (,) -- | `TokenStream` version of `zipWith` zipWith :: (TokenStream s) => (a -> b -> c) -> s a -> s b -> s c zipWith f l r | null l || null r = nil | otherwise = f (top l) (top r) `cons` zipWith f (rest l) (rest r) -- | `TokenStream` version of `filter` filter :: (TokenStream s) => (a -> Bool) -> s a -> s a filter c x | null x = nil | c (top x) = top x `cons` filter c (rest x) | otherwise = filter c (rest x)
MarcusVoelker/LParse
src/Text/LParse/TokenStream.hs
mit
2,078
0
10
529
617
318
299
37
1
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-} module BinaryTree2 where -- an experiment to make a Binary tree where the values are stored at the leafs not the nodes. -- trouble is it makes insertion problematic as I can't tell where to insert values in the tree. -- so experiment aborted data BinaryTree2 a = Leaf a | Node (BinaryTree2 a) (BinaryTree2 a) deriving (Eq, Ord, Show) --insert' :: Ord a => a -> BinaryTree2 a -> BinaryTree2 a --insert' b (Leaf a) -- | b == a = Leaf a -- | b < a = Node (insert' b left) a right -- | b > a = Node left a (insert' b right) -- --Node Leaf b Leaf --insert' b (Node left a right) -- | b == a = Node left a right -- | b < a = Node (insert' b left) a right -- | b > a = Node left a (insert' b right)
NickAger/LearningHaskell
HaskellProgrammingFromFirstPrinciples/Chapter11.hsproj/BinaryTree2.hs
mit
764
0
8
182
63
42
21
6
0
{-# LANGUAGE CPP #-} module GHCJS.DOM.HTMLTableSectionElement ( #if (defined(ghcjs_HOST_OS) && defined(USE_JAVASCRIPTFFI)) || !defined(USE_WEBKIT) module GHCJS.DOM.JSFFI.Generated.HTMLTableSectionElement #else module Graphics.UI.Gtk.WebKit.DOM.HTMLTableSectionElement #endif ) where #if (defined(ghcjs_HOST_OS) && defined(USE_JAVASCRIPTFFI)) || !defined(USE_WEBKIT) import GHCJS.DOM.JSFFI.Generated.HTMLTableSectionElement #else import Graphics.UI.Gtk.WebKit.DOM.HTMLTableSectionElement #endif
plow-technologies/ghcjs-dom
src/GHCJS/DOM/HTMLTableSectionElement.hs
mit
500
0
5
39
33
26
7
4
0
import System.Environment import Data.List main = do args <- getArgs progName <- getProgName putStrLn "The arguments are:" mapM putStrLn args putStrLn "The program name is:" putStrLn progName
fabriceleal/learn-you-a-haskell
09/args.hs
mit
223
0
7
58
56
24
32
9
1
-- Note: we should only depend on libraries that ship with GHC for this. No -- external dependencies! import Control.Monad (when) import Data.List (concat, isPrefixOf) import Data.Version (Version, parseVersion) import Prelude (Bool (..), FilePath, elem, error, filter, fmap, getLine, lines, mapM_, null, putStr, putStrLn, return, show, snd, unwords, ($), (++), (.), (/=), (<), (==), (>>=)) import System.Directory (doesFileExist, getAppUserDataDirectory, getDirectoryContents, removeFile) import System.Environment (getArgs, getExecutablePath) import System.Exit (ExitCode (ExitSuccess)) import System.FilePath (splitExtension, takeDirectory, takeExtension, takeFileName, (</>)) import System.IO (IO, hFlush, stdout) import System.Process (rawSystem, readProcess) import Text.ParserCombinators.ReadP (readP_to_S) main :: IO () main = do args <- getArgs putStrLn $ show args binPath <- fmap takeDirectory getExecutablePath let sevenz = binPath </> "7z.exe" getDirectoryContents binPath >>= mapM_ (un7z binPath sevenz . (binPath </>)) mapM_ (handleArg sevenz) args removeOldCabal (binPath </> "cabal.exe") handleArg :: FilePath -- ^ 7z.exe -> FilePath -- ^ command line argument -> IO () handleArg sevenz arg = do putStrLn $ show (sevenz, arg, base, ext) case ext of ".7z" -> un7z base sevenz arg ".xz" -> do un7z (takeDirectory base) sevenz arg handleArg sevenz base ".tar" -> un7z (takeDirectory base) sevenz arg _ -> error $ "handleArg: " ++ show (sevenz, arg, base, ext) where (base, ext) = splitExtension arg un7z :: FilePath -- ^ dest path -> FilePath -- ^ 7z.exe -> FilePath -- ^ to be unpacked -> IO () un7z destPath sevenz = go where exts = [".7z", ".xz", ".tar", ".zip"] go fp = when (ext `elem` exts) $ do putStrLn $ "Decompressing " ++ fp ++ " to " ++ destPath ec <- rawSystem sevenz (concat [ [ "x" , "-o" ++ destPath , "-y" , fp ] , [ "stack.exe" | "stack-" `isPrefixOf` (takeFileName fp) ]]) removeFile fp when (ec /= ExitSuccess) $ error $ "Could not decompress: " ++ fp where ext = takeExtension fp removeOldCabal :: FilePath -- ^ new cabal -> IO () removeOldCabal newCabal = do cabalDir <- getAppUserDataDirectory "cabal" let oldCabal = cabalDir </> "bin/cabal.exe" exists <- doesFileExist oldCabal when exists $ do oldVersion <- getCabalVersion oldCabal newVersion <- getCabalVersion newCabal when (oldVersion < newVersion) $ do putStrLn "You have an older version of cabal-install at:" putStrLn oldCabal putStr "It is recommended that you remove it. Shall I do that for you now? (y/n) " hFlush stdout let loop = do s <- getLine case s of "y" -> return True "n" -> return False _ -> do putStr "Invalid response, please enter y or n: " hFlush stdout loop toDelete <- loop when toDelete $ removeFile oldCabal getCabalVersion :: FilePath -> IO Version getCabalVersion fp = do str <- fmap (unwords . lines) $ readProcess fp ["--numeric-version"] "" case filter (null . snd) $ readP_to_S parseVersion str of [(v, "")] -> return v _ -> error $ "Incorrect version: " ++ show (fp, str)
fpco/minghc
minghc-post-install.hs
mit
4,306
0
23
1,779
1,045
548
497
93
4
module E10 where data MyType = TypeOne String | TypeTwo String definition :: TypeOne -> Bool definition (TypeOne aString) = True {- -}
pascal-knodel/haskell-craft
Examples/· Errors/E10.hs
mit
173
0
7
61
42
24
18
5
1
{-# OPTIONS -fallow-overlapping-instances #-} {- arch-tag: Object tests main file Copyright (C) 2005 John Goerzen <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -} module Objectstest(tests) where import Test.HUnit import Python.Objects import Foreign.C.Types import Python.Types import Data.List import Python.Interpreter f msg inp code exp = TestLabel msg $ TestCase $ do pyo <- toPyObject inp r <- code pyo exp @=? r test_base = [ f "showPyObject" (5::CInt) showPyObject "<type 'int'>: 5" ] test_lists = [ f "empty" ([]::[CInt]) fromPyObject ([]::[CInt]) ,f "repr empty" ([]::[CInt]) reprOf "[]" ,f "some cints" [1::CInt, 2, 3] fromPyObject [1::CInt, 2, 3] ,f "some cints repr" [1::CInt, 2, 3] reprOf "[1, 2, 3]" ,f "strings" ["foo", "bar"] fromPyObject ["foo", "bar"] ,f "strings repr" ["foo", "bar"] reprOf "['foo', 'bar']" ] test_al = [ f "emptypyo" ([]::[(PyObject, PyObject)]) fromPyObject ([]::[(PyObject, PyObject)]) ,f "cint to cint" [(1::CInt, 2::CInt), (3, 4)] (\x -> fromPyObject x >>= return . sort) [(1::CInt, 2::CInt), (3, 4)] ] test_functions = [ f "typestr" (5::CInt) (\x -> typeOf x >>= strOf) "<type 'int'>" ,f "repr" ["foo", "bar"] reprOf "['foo', 'bar']" ] test_strings = [ f "empty" ([]::String) fromPyObject ([]::String) ,f "basic" "foo" fromPyObject "foo" ,f "dquotes" "foo\"" fromPyObject "foo\"" ,f "squotes" "foo'" fromPyObject "foo'" ,f "embedded null" "foo\0bar" fromPyObject "foo\0bar" ,f "null only" "\0" fromPyObject "\0" ,f "quotes" "\"'\"" fromPyObject "\"'\"" ] test_ints = [ f "0L" (0::CLong) fromPyObject (0::CLong) ,f "-5L" (-5::CLong) fromPyObject (-5::CLong) ,f "5L" (5::CLong) fromPyObject (5::CLong) ,f "max long" (maxBound::CLong) fromPyObject (maxBound::CLong) ,f "min long" (minBound::CLong) fromPyObject (minBound::CLong) ,f "0i" (0::CInt) fromPyObject (0::CInt) ,f "-5i" (-5::CInt) fromPyObject (-5::CInt) ,f "5i" (5::CInt) fromPyObject (5::CInt) ,f "min int" (minBound::CInt) fromPyObject (minBound::CInt) ,f "max int" (maxBound::CInt) fromPyObject (maxBound::CInt) ,f "long/int" (12345::CLong) fromPyObject (12345::CInt) ,f "int/long" (12354::CInt) fromPyObject (12354::CInt) ,f "repr max" (maxBound::CLong) reprOf (show (maxBound::CLong)) ,f "str min" (minBound::CLong) strOf (show (minBound::CLong)) ] test_longs = [ f "0" (0::Integer) fromPyObject (0::Integer) ,f "-5" (-5::Integer) fromPyObject (-5::Integer) ,f "5" (5::Integer) fromPyObject (5::Integer) ,f "2^384" ((2 ^ 384)::Integer) fromPyObject ((2 ^ 384)::Integer) ,f "2^384*-1" (( 2 ^ 384 * (-1))::Integer) fromPyObject ((2 ^ 384 * (-1))::Integer) ,f "str 2^384" ((2 ^ 384)::Integer) strOf (show ((2 ^ 384)::Integer)) ] test_doubles = [ f "0" (0::CDouble) fromPyObject (0::CDouble) ,f "-5" (-5::CDouble) fromPyObject (-5::CDouble) ,f "5.1234" (5.1234::CDouble) fromPyObject (5.1234::CDouble) ,f "str 5.1234" (5.1234::CDouble) strOf "5.1234" ,f "2^384" ((2^384)::CDouble) fromPyObject ((2^384)::CDouble) ,f "2^384*-1" ((2^384 * (-1)::CDouble)) fromPyObject ((2^384 * (-1)::CDouble)) ,f "1/(2^384)" ((1 / (2 ^ 384))::CDouble) fromPyObject ((1 / (2 ^ 384))::CDouble) ] test_dicts = [ f "empty" ([]::[(String, String)]) fromPyObject ([]::[(String, String)]) ,f "one s" [("foo", "bar")] fromPyObject [("foo", "bar")] ,f "mult s" [("foo", "bar"), ("quux", "baz")] (\x -> fromPyObject x >>= return . sort) [("foo", "bar"), ("quux", "baz")] ,f "s2i" [("foo", 1::CLong), ("quux", 2)] (\x -> fromPyObject x >>= return . sort) [("foo", 1::CLong), ("quux", 2)] ] test_call = [ TestCase $ do func <- pyRun_String "repr" Py_eval_input [] r <- pyObject_CallHs func [5::Integer] ([]::[(String, String)]) "5L" @=? r ] test_dir = [ TestCase $ do dv <- toPyObject ([]::String) >>= dirPyObject assertBool "replace" $ "replace" `elem` dv assertBool "rindex" $ "rindex" `elem` dv ] test_attr = [ TestCase $ do pyImport "md5" md5 <- pyRun_String "md5.md5()" Py_eval_input [] fupdate <- getattr md5 "update" fhexdigest <- getattr md5 "hexdigest" pyObject_RunHs fupdate ["hi"] noKwParms pyObject_RunHs fupdate ["there"] noKwParms r <- pyObject_CallHs fhexdigest noParms noKwParms "a8b767bb9cf0938dc7f40603f33987e5" @=? r ,TestCase $ do pyImport "md5" md5 <- pyRun_String "md5.md5()" Py_eval_input [] runMethodHs md5 "update" ["hi"] noKwParms runMethodHs md5 "update" ["there"] noKwParms r <- callMethodHs md5 "hexdigest" noParms noKwParms "a8b767bb9cf0938dc7f40603f33987e5" @=? r ] tests = TestList [TestLabel "base" (TestList test_base), TestLabel "lists/tuples" (TestList test_lists), TestLabel "al" (TestList test_al), TestLabel "functions" (TestList test_functions), TestLabel "strings" (TestList test_strings), TestLabel "ints" (TestList test_ints), TestLabel "longs" (TestList test_longs), TestLabel "doubles" (TestList test_doubles), TestLabel "dir" (TestList test_dir), TestLabel "call" (TestList test_call), TestLabel "attr" (TestList test_attr), TestLabel "dict" (TestList test_dicts) ]
jgoerzen/missingpy
testsrc/Objectstest.hs
gpl-2.0
6,618
0
13
1,827
2,119
1,177
942
124
1
-- DivideVencerasOrdRapida.hs -- Divide y vencerás: ordenación rápida. -- José A. Alonso Jiménez https://jaalonso.github.com -- ===================================================================== module Tema_23.DivideVencerasOrdRapida where -- Hay que elegir una implementación import Tema_23.DivideVenceras -- import I1M.DivideVenceras -- (ordenaRapida xs) es la lista obtenida ordenando xs por el -- procedimiento de ordenación rápida. Por ejemplo, -- λ> ordenaRapida [3,1,4,1,5,9,2,8] -- [1,1,2,3,4,5,8,9] ordenaRapida :: Ord a => [a] -> [a] ordenaRapida = divideVenceras ind id divide combina where ind xs = length xs <= 1 divide (x:xs) = [[ y | y<-xs, y<=x], [ y | y<-xs, y>x] ] divide [] = [] combina (x:_) [l1,l2] = l1 ++ [x] ++ l2 combina _ _ = error "Imposible"
jaalonso/I1M-Cod-Temas
src/Tema_23/DivideVencerasOrdRapida.hs
gpl-2.0
887
0
10
215
192
107
85
10
3
module Tema_23c_BEE_Reinas_Spec (main, spec) where import Tema_23.BEE_Reinas import Test.Hspec main :: IO () main = hspec spec spec :: Spec spec = do describe "valida" $ do it "e1" $ valida [(1,1)] (2,2) `shouldBe` False it "e2" $ valida [(1,1)] (2,3) `shouldBe` True describe "sucesoresNR" $ it "e1" $ sucesoresNR (1,4,[]) `shouldBe` [(2,4,[(1,1)]),(2,4,[(1,2)]),(2,4,[(1,3)]),(2,4,[(1,4)])] describe "buscaEE_NR 8" $ it "e1" $ buscaEE_NR 8 `shouldBe` [(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)] describe "nSolucionesNR" $ it "e1" $ nSolucionesNR 8 `shouldBe` 92
jaalonso/I1M-Cod-Temas
test/Tema_23c_BEE_Reinas_Spec.hs
gpl-2.0
654
0
14
158
377
220
157
23
1
import Multiple main :: IO () main = readLn >>= print . solve solve :: Integer -> Integer solve p = f 3 + f 5 - f 15 where f = multiples_under p
NorfairKing/project-euler
001/haskell/solution.hs
gpl-2.0
159
1
7
48
75
35
40
6
1
-- -*- mode: haskell -*- {-# LANGUAGE TemplateHaskell #-} module NPDA.Property where import NPDA.Type import Condition import Autolib.Reporter import Autolib.Reporter.Type import Autolib.ToDoc import Autolib.Reader import Data.Typeable data Property = Det | Sane | Accept_by Acceptance_Mode deriving ( Eq, Ord, Typeable ) data Acceptance_Mode = Empty_Stack | Final_States deriving ( Eq, Ord, Typeable ) $(derives [makeReader, makeToDoc] [''Property]) $(derives [makeReader, makeToDoc] [''Acceptance_Mode])
florianpilz/autotool
src/NPDA/Property.hs
gpl-2.0
556
0
9
111
143
82
61
18
0
module Main where { import Salsa20; import qualified Data.ByteString.Lazy as Lazy; main :: IO(); -- sadly normal String putStr fails here due to unicode. main = do { fi <- Lazy.getContents; let { (key, salt) = Lazy.splitAt 32 fi }; {-^ We expact exactly 32 + 24 bytes of input -} Lazy.putStr $ Lazy.pack $ xsalsa (Lazy.unpack key) (Lazy.unpack salt); -- Approximately 310 million years to consume all 2^64 blocks until -- the block counter overflows. }; -- 1200 times slower than the C version. }
kenta2/yescrypt
Xsalsa.hs
gpl-3.0
498
0
11
87
117
70
47
8
1
-- grid is a game written in Haskell -- Copyright (C) 2018 [email protected] -- -- This file is part of grid. -- -- grid is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 3 of the License, or -- (at your option) any later version. -- -- grid is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with grid. If not, see <http://www.gnu.org/licenses/>. -- {-# LANGUAGE EmptyDataDecls, MultiParamTypeClasses #-} module LevelTools.EditType ( EditType (..), ) where import MyPrelude import Game import Game.LevelPuzzleMode.LevelPuzzleWorld import LevelTools.SemiContent import LevelTools.SemiRoom data EditType = TypeEmpty | TypeDotPlain | TypeDotBonus | TypeDotTele | TypeDotFinish | TypeWall deriving Show
karamellpelle/grid
designer/source/LevelTools/EditType.hs
gpl-3.0
1,155
0
5
231
82
60
22
17
0
-- This is the alternate command line argument parser frontend. It takes -- arguments compatible with the reference parser for COP5555. It is compatible -- with class requirements. If you're actually looking to use the program, I'd -- recommend the GNU-style frontend. It's better. module Main (main) where import System.Environment import Control.Monad import OptionHandler optUsageInfo :: String optUsageInfo = unlines [ "Usage: hs-rpal [OPTION...] FILE" , " -version: Shows the version number" , " -l: Print the raw program to stdout" , " -ast: Print the Abstract Syntax Tree to stdout" , " -st: Print the partially standardized AST to stdout" , " -fst: Print the fully standardized AST to stdout" , " -lex: Print all the tokens to stdout" , " -control: Print all the control structures to stdout" , " -noout: Skip evaluation (useful with -ast, -lex, etc)" ] -- Processes arguments prefixed with a dash optParseArg :: Opt -> String -> Opt optParseArg o "version" = o { optVersion = True } optParseArg o "l" = o { optListing = True } optParseArg o "ast" = o { optAst = True } optParseArg o "st" = o { optPartialSt = True } optParseArg o "fst" = o { optFullSt = True } optParseArg o "lex" = o { optLex = True } optParseArg o "control" = o { optControl = True } optParseArg o "noout" = o { optQuiet = True } optParseArg _ arg = error $ "Unrecognized option: '-" ++ arg ++ "'\n" ++ optUsageInfo optParse :: Opt -> [String] -> Opt optParse o (argHead : argTail) = case argHead :: String of '-' : a -> optParse (optParseArg o a) argTail a -> optParse (o {optFile = Just a }) argTail optParse o [] = o main :: IO () main = (liftM $ optParse optDefaults) getArgs >>= optProcess
bgw/hs-rpal
src/hsRpalCompat.hs
gpl-3.0
1,965
0
12
597
382
212
170
34
2
{-# LANGUAGE TemplateHaskell #-} module THVersion where import Language.Haskell.TH
jplLloyd/pointwise-composition
src/Data/THVersion.hs
gpl-3.0
86
0
4
12
11
8
3
3
0
module Engine.Graphics.Assets.ImageLoader(loadImage) where import Codec.Picture import Codec.Picture.Types import System.Exit (exitFailure) loadImage :: FilePath -> IO (Image PixelRGBA8) loadImage fp = do res <- readPng fp case res of Left err -> do putStrLn $ "error loading image: " ++ fp print err exitFailure Right rawImg -> return $ convertImg rawImg convertImg :: DynamicImage -> Image PixelRGBA8 convertImg (ImageRGBA8 img) = img convertImg (ImageY8 img) = promoteImage img convertImg (ImageYA8 img) = promoteImage img convertImg (ImageRGB8 img) = promoteImage img convertImg _ = error "Wrong filetype, use PNG with RGBA8"
halvorgb/AO2D
src/Engine/Graphics/Assets/ImageLoader.hs
gpl-3.0
752
0
13
211
210
103
107
19
2
module Core.Square ( square ) where square :: Int -> Int square x = x * x
adarqui/ToyBox
haskell/Core/src/Core/Square.hs
gpl-3.0
76
0
5
19
32
18
14
4
1
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -fno-warn-duplicate-exports #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- | -- Module : Network.Google.Resource.MapsEngine.Layers.UnPublish -- Copyright : (c) 2015-2016 Brendan Hay -- License : Mozilla Public License, v. 2.0. -- Maintainer : Brendan Hay <[email protected]> -- Stability : auto-generated -- Portability : non-portable (GHC extensions) -- -- Unpublish a layer asset. -- -- /See:/ <https://developers.google.com/maps-engine/ Google Maps Engine API Reference> for @mapsengine.layers.unpublish@. module Network.Google.Resource.MapsEngine.Layers.UnPublish ( -- * REST Resource LayersUnPublishResource -- * Creating a Request , layersUnPublish , LayersUnPublish -- * Request Lenses , lupId ) where import Network.Google.MapsEngine.Types import Network.Google.Prelude -- | A resource alias for @mapsengine.layers.unpublish@ method which the -- 'LayersUnPublish' request conforms to. type LayersUnPublishResource = "mapsengine" :> "v1" :> "layers" :> Capture "id" Text :> "unpublish" :> QueryParam "alt" AltJSON :> Post '[JSON] PublishResponse -- | Unpublish a layer asset. -- -- /See:/ 'layersUnPublish' smart constructor. newtype LayersUnPublish = LayersUnPublish' { _lupId :: Text } deriving (Eq,Show,Data,Typeable,Generic) -- | Creates a value of 'LayersUnPublish' with the minimum fields required to make a request. -- -- Use one of the following lenses to modify other fields as desired: -- -- * 'lupId' layersUnPublish :: Text -- ^ 'lupId' -> LayersUnPublish layersUnPublish pLupId_ = LayersUnPublish' { _lupId = pLupId_ } -- | The ID of the layer. lupId :: Lens' LayersUnPublish Text lupId = lens _lupId (\ s a -> s{_lupId = a}) instance GoogleRequest LayersUnPublish where type Rs LayersUnPublish = PublishResponse type Scopes LayersUnPublish = '["https://www.googleapis.com/auth/mapsengine"] requestClient LayersUnPublish'{..} = go _lupId (Just AltJSON) mapsEngineService where go = buildClient (Proxy :: Proxy LayersUnPublishResource) mempty
rueshyna/gogol
gogol-maps-engine/gen/Network/Google/Resource/MapsEngine/Layers/UnPublish.hs
mpl-2.0
2,670
0
13
641
303
186
117
49
1
{- passman Copyright (C) 2018-2021 Jonathan Lamothe <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. -} module Spec.PWHasService (tests) where import qualified Data.Map as M import System.Random (mkStdGen, StdGen) import Test.HUnit (Test (..), (~?=)) import Password tests :: Test tests = TestLabel "pwHasService" $ TestList $ map test' [ ( "empty database", "foo", newPWDatabase, False ) , ( "in database", "foo", database, True ) , ( "not found", "quux", database, False ) ] test' :: (String, String, PWDatabase, Bool) -> Test test' (label, x, db, expect) = TestLabel label $ pwHasService x db ~?= expect database :: M.Map String PWData database = M.fromList [ ( "foo", foo ) , ( "bar", bar ) , ( "baz", baz ) ] foo :: PWData g' :: StdGen (foo, g') = newPWData g bar :: PWData g'' :: StdGen (bar, g'') = newPWData g' baz :: PWData (baz, _) = newPWData g'' g :: StdGen g = mkStdGen 1 --jl
jlamothe/passman
test/Spec/PWHasService.hs
lgpl-3.0
1,553
0
8
310
316
188
128
28
1
{-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE PackageImports #-} {- Copyright 2018 The CodeWorld Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module Internal.Text ( Text , fromString , toString , fromCWText , toCWText , (<>) , numberOfCharacters , numberOfWords , numberOfLines , lines , unlines , words , unwords , characters , printed , joined , joinedWith , lowercase , uppercase , startsWith , endsWith , substitution , substitutions ) where import Data.List (foldl') import Data.Maybe import Numeric import qualified "base" Prelude as P import "base" Prelude (Bool, String, (.), length, map, show) import qualified Data.JSString as J import qualified Data.JSString.Text as J import qualified Data.Text as T import Internal.Num import Internal.Truth newtype Text = T { unT :: J.JSString } deriving (P.Eq) {-# RULES "equality/text" forall (x :: Text) . (==) x = (P.==) x #-} fromString :: String -> Text fromString = T . J.pack toString :: Text -> String toString = J.unpack . unT fromCWText :: Text -> T.Text fromCWText = J.textFromJSString . unT toCWText :: T.Text -> Text toCWText = T . J.textToJSString infixr 6 <> (<>) :: Text -> Text -> Text T a <> T b = T (J.append a b) numberOfCharacters :: Text -> Number numberOfCharacters = fromInt . J.length . unT numberOfWords :: Text -> Number numberOfWords = fromInt . length . J.words . unT numberOfLines :: Text -> Number numberOfLines = fromInt . length . J.lines . unT lines :: Text -> [Text] lines = map T . J.lines . unT unlines :: [Text] -> Text unlines = T . J.unlines . map unT words :: Text -> [Text] words = map T . J.words . unT unwords :: [Text] -> Text unwords = T . J.unwords . map unT characters :: Text -> [Text] characters = map (T . J.singleton) . J.unpack . unT printed :: Number -> Text printed = T . J.pack . show joined :: [Text] -> Text joined = T . J.concat . map unT joinedWith :: ([Text], Text) -> Text joinedWith (ts, T sep) = T (J.intercalate sep (map unT ts)) lowercase :: Text -> Text lowercase = T . J.toLower . unT uppercase :: Text -> Text uppercase = T . J.toUpper . unT startsWith :: (Text, Text) -> Truth startsWith (T a, T b) = J.isPrefixOf b a endsWith :: (Text, Text) -> Truth endsWith (T a, T b) = J.isSuffixOf b a -- | Gives the result of replacing one piece of text with another. -- -- For example, @substitution("How do you do?", "do", "be")@ is equal to -- @"How be you be?"@. substitution :: (Text, Text, Text) -> Text substitution (T text, T from, T to) = T (J.replace from to text) -- | Gives the result of performing many substitutions in a piece of -- text. This is commonly used to build text to show in a program, -- as in this example: -- -- substitutions("Lives: [lives] of 3 Score: [score]", -- [("[lives]", printed(lives)), -- ("[score]", printed(score))]) substitutions :: (Text, [(Text, Text)]) -> Text substitutions (T text, replacements) = T (foldl' (\a (T b, T c) -> J.replace b c a) text replacements)
tgdavies/codeworld
codeworld-base/src/Internal/Text.hs
apache-2.0
3,631
0
11
804
963
548
415
87
1
-- | read-write lock specialized for using LMDB with MDB_NOLOCK option -- module Database.VCache.RWLock ( RWLock , newRWLock , withRWLock , withRdOnlyLock ) where import Control.Monad import Control.Exception import Control.Concurrent.MVar import Data.IORef import Data.IntSet (IntSet) import qualified Data.IntSet as IntSet -- | RWLock -- -- VCache uses LMDB with the MDB_NOLOCK option, mostly because I don't -- want to deal with the whole issue of OS bound threads or a limit on -- number of concurrent readers. Without locks, we essentially have one -- valid snapshot. The writer can begin dismantling earlier snapshots -- as needed to allocate pages. -- -- RWLock essentially enforces this sort of frame-buffer concurrency. data RWLock = RWLock { rwlock_frames :: !(MVar FB) , rwlock_writer :: !(MVar ()) -- enforce single writer } data FB = FB !F !F type F = IORef Frame data Frame = Frame { frame_reader_next :: {-# UNPACK #-} !Int , frame_readers :: !IntSet , frame_onClear :: ![IO ()] -- actions to perform } frame0 :: Frame frame0 = Frame 1 IntSet.empty [] newRWLock :: IO RWLock newRWLock = liftM2 RWLock (newMVar =<< newF2) newEmptyMVar where newF2 :: IO FB newF2 = liftM2 FB newF newF newF :: IO F newF = newIORef frame0 withWriterMutex :: RWLock -> IO a -> IO a withWriterMutex l = bracket_ getLock dropLock where getLock = putMVar (rwlock_writer l) () dropLock = takeMVar (rwlock_writer l) {-# INLINE withWriterMutex #-} -- | Grab the current read-write lock for the duration of -- an underlying action. This may wait on older readers. withRWLock :: RWLock -> IO a -> IO a withRWLock l action = withWriterMutex l $ do oldFrame <- rotateReaderFrames l mvWait <- newEmptyMVar onFrameCleared oldFrame (putMVar mvWait ()) takeMVar mvWait action -- rotate a fresh reader frame, and grab the oldest. -- Thus should only be performed while holding the writer lock. rotateReaderFrames :: RWLock -> IO F rotateReaderFrames l = mask_ $ do let var = rwlock_frames l f0 <- newF (FB f1 f2) <- takeMVar var putMVar var (FB f0 f1) return f2 -- -- NOTE: Each of these 'frames' actually contains readers of two -- transactions. Alignment between LMDB transactions and VCache -- RWLock isn't exact. -- -- Each write lock will rotate reader frames just once: -- -- (f1,f2) → (f0,f1) returning f2 -- -- Writer is working on LMDB frame N. -- -- f0 will have readers for frame N-1 and (after commit) for N. -- f1 will have readers for frame N-2 and some for N-1. -- f2 will have readers for frame N-3 and some for N-2. -- -- LMDB guarantees that the data pages for frames N-1 and N-2 are -- intact. However, frame N-3 will be dismantled while building -- frame N. Thus, we must wait for f2 readers to finish before we -- begin the writer N transaction. -- -- If we assume short-running readers and long-running writers, it -- is rare that the writer ever needs to wait on readers. Readers -- never need to wait on the writer. This assumption is achieved by -- batching writes in VCache. -- -- perform some action when a frame is cleared -- performs immediately, if possible. onFrameCleared :: F -> IO () -> IO () onFrameCleared f action = atomicModifyIORef f addAction >>= id where addAction frame = let bAlreadyClear = IntSet.null (frame_readers frame) in if bAlreadyClear then (frame0,action) else let onClear' = action : frame_onClear frame in let frame' = frame { frame_onClear = onClear' } in (frame', return ()) -- | Grab a read-only lock for the duration of some IO action. -- -- Readers never need to wait on the writer. withRdOnlyLock :: RWLock -> IO a -> IO a withRdOnlyLock l = bracket (newReader l) releaseReader . const newtype Reader = Reader { releaseReader :: IO () } -- obtains a reader handle; returns function to release reader. newReader :: RWLock -> IO Reader newReader l = mask_ $ do let var = rwlock_frames l fb@(FB f _) <- takeMVar var r <- atomicModifyIORef f addReader putMVar var fb return (Reader (delReader f r)) addReader :: Frame -> (Frame, Int) addReader f = let r = frame_reader_next f in let rdrs' = IntSet.insert r (frame_readers f) in let f' = f { frame_reader_next = (r + 1) , frame_readers = rdrs' } in (f', r) delReader :: F -> Int -> IO () delReader f r = atomicModifyIORef f del >>= sequence_ where del frm = let rdrs' = IntSet.delete r (frame_readers frm) in if IntSet.null rdrs' then (frame0, frame_onClear frm) else let frm' = frm { frame_readers = rdrs' } in (frm', [])
bitemyapp/haskell-vcache
hsrc_lib/Database/VCache/RWLock.hs
bsd-2-clause
4,694
0
17
1,057
1,033
545
488
91
2
-- | This module exports the templates for automatic instance deriving of "Transformation.Shallow" type classes. The most -- common way to use it would be -- -- > import qualified Transformation.Shallow.TH -- > data MyDataType f' f = ... -- > $(Transformation.Shallow.TH.deriveFunctor ''MyDataType) -- {-# Language CPP, TemplateHaskell #-} -- Adapted from https://wiki.haskell.org/A_practical_Template_Haskell_Tutorial module Transformation.Shallow.TH (deriveAll, deriveFunctor, deriveFoldable, deriveTraversable) where import Control.Applicative (liftA2) import Control.Monad (replicateM) import Data.Functor.Compose (Compose(getCompose)) import Data.Functor.Const (Const(getConst)) import Data.Maybe (fromMaybe) import Data.Monoid (Monoid, (<>)) import Language.Haskell.TH import Language.Haskell.TH.Syntax (BangType, VarBangType, getQ, putQ) import qualified Transformation import qualified Transformation.Shallow data Deriving = Deriving { _constructor :: Name, _variable :: Name } deriveAll :: Name -> Q [Dec] deriveAll ty = foldr f (pure []) [deriveFunctor, deriveFoldable, deriveTraversable] where f derive rest = (<>) <$> derive ty <*> rest deriveFunctor :: Name -> Q [Dec] deriveFunctor typeName = do t <- varT <$> newName "t" (instanceType, cs) <- reifyConstructors typeName let shallowConstraint ty = conT ''Transformation.Shallow.Functor `appT` t `appT` ty baseConstraint ty = conT ''Transformation.At `appT` t `appT` ty (constraints, dec) <- genShallowmap shallowConstraint baseConstraint instanceType cs sequence [instanceD (cxt $ appT (conT ''Transformation.Transformation) t : map pure constraints) (shallowConstraint instanceType) [pure dec]] deriveFoldable :: Name -> Q [Dec] deriveFoldable typeName = do t <- varT <$> newName "t" m <- varT <$> newName "m" (instanceType, cs) <- reifyConstructors typeName let shallowConstraint ty = conT ''Transformation.Shallow.Foldable `appT` t `appT` ty baseConstraint ty = conT ''Transformation.At `appT` t `appT` ty (constraints, dec) <- genFoldMap shallowConstraint baseConstraint instanceType cs sequence [instanceD (cxt (appT (conT ''Transformation.Transformation) t : appT (appT equalityT (conT ''Transformation.Codomain `appT` t)) (conT ''Const `appT` m) : appT (conT ''Monoid) m : map pure constraints)) (shallowConstraint instanceType) [pure dec]] deriveTraversable :: Name -> Q [Dec] deriveTraversable typeName = do t <- varT <$> newName "t" m <- varT <$> newName "m" f <- varT <$> newName "f" (instanceType, cs) <- reifyConstructors typeName let shallowConstraint ty = conT ''Transformation.Shallow.Traversable `appT` t `appT` ty baseConstraint ty = conT ''Transformation.At `appT` t `appT` ty (constraints, dec) <- genTraverse shallowConstraint baseConstraint instanceType cs sequence [instanceD (cxt (appT (conT ''Transformation.Transformation) t : appT (appT equalityT (conT ''Transformation.Codomain `appT` t)) (conT ''Compose `appT` m `appT` f) : appT (conT ''Applicative) m : map pure constraints)) (shallowConstraint instanceType) [pure dec]] substitute :: Type -> Q Type -> Q Type -> Q Type substitute resultType = liftA2 substitute' where substitute' instanceType argumentType = substituteVars (substitutions resultType instanceType) argumentType substitutions (AppT t1 (VarT name1)) (AppT t2 (VarT name2)) = (name1, name2) : substitutions t1 t2 substitutions _t1 _t2 = [] substituteVars subs (VarT name) = VarT (fromMaybe name $ lookup name subs) substituteVars subs (AppT t1 t2) = AppT (substituteVars subs t1) (substituteVars subs t2) substituteVars _ t = t reifyConstructors :: Name -> Q (TypeQ, [Con]) reifyConstructors ty = do (TyConI tyCon) <- reify ty (tyConName, tyVars, _kind, cs) <- case tyCon of DataD _ nm tyVars kind cs _ -> return (nm, tyVars, kind, cs) NewtypeD _ nm tyVars kind c _ -> return (nm, tyVars, kind, [c]) _ -> fail "deriveApply: tyCon may not be a type synonym." #if MIN_VERSION_template_haskell(2,17,0) let (KindedTV tyVar _ (AppT (AppT ArrowT StarT) StarT) : _) = reverse tyVars instanceType = foldl apply (conT tyConName) (reverse $ drop 1 $ reverse tyVars) apply t (PlainTV name _) = appT t (varT name) apply t (KindedTV name _ _) = appT t (varT name) #else let (KindedTV tyVar (AppT (AppT ArrowT StarT) StarT) : _) = reverse tyVars instanceType = foldl apply (conT tyConName) (reverse $ drop 1 $ reverse tyVars) apply t (PlainTV name) = appT t (varT name) apply t (KindedTV name _) = appT t (varT name) #endif putQ (Deriving tyConName tyVar) return (instanceType, cs) genShallowmap :: (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> [Con] -> Q ([Type], Dec) genShallowmap shallowConstraint baseConstraint instanceType cs = do (constraints, clauses) <- unzip <$> mapM (genShallowmapClause shallowConstraint baseConstraint instanceType) cs return (concat constraints, FunD '(Transformation.Shallow.<$>) clauses) genFoldMap :: (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> [Con] -> Q ([Type], Dec) genFoldMap shallowConstraint baseConstraint instanceType cs = do (constraints, clauses) <- unzip <$> mapM (genFoldMapClause shallowConstraint baseConstraint instanceType) cs return (concat constraints, FunD 'Transformation.Shallow.foldMap clauses) genTraverse :: (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> [Con] -> Q ([Type], Dec) genTraverse shallowConstraint baseConstraint instanceType cs = do (constraints, clauses) <- unzip <$> mapM (genTraverseClause genTraverseField shallowConstraint baseConstraint instanceType) cs return (concat constraints, FunD 'Transformation.Shallow.traverse clauses) genShallowmapClause :: (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> Con -> Q ([Type], Clause) genShallowmapClause shallowConstraint baseConstraint _instanceType (NormalC name fieldTypes) = do t <- newName "t" fieldNames <- replicateM (length fieldTypes) (newName "x") let pats = [varP t, parensP (conP name $ map varP fieldNames)] constraintsAndFields = zipWith newField fieldNames fieldTypes newFields = map (snd <$>) constraintsAndFields body = normalB $ appsE $ conE name : newFields newField :: Name -> BangType -> Q ([Type], Exp) newField x (_, fieldType) = genShallowmapField (varE t) fieldType shallowConstraint baseConstraint (varE x) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause pats body [] genShallowmapClause shallowConstraint baseConstraint _instanceType (RecC name fields) = do t <- newName "t" x <- newName "x" let body = normalB $ recConE name $ (snd <$>) <$> constraintsAndFields constraintsAndFields = map newNamedField fields newNamedField :: VarBangType -> Q ([Type], (Name, Exp)) newNamedField (fieldName, _, fieldType) = ((,) fieldName <$>) <$> genShallowmapField (varE t) fieldType shallowConstraint baseConstraint (appE (varE fieldName) (varE x)) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause [varP t, x `asP` recP name []] body [] genShallowmapClause shallowConstraint baseConstraint instanceType (GadtC [name] fieldTypes (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genShallowmapClause (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (NormalC name fieldTypes) genShallowmapClause shallowConstraint baseConstraint instanceType (RecGadtC [name] fields (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genShallowmapClause (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (RecC name fields) genShallowmapClause shallowConstraint baseConstraint instanceType (ForallC _vars _cxt con) = genShallowmapClause shallowConstraint baseConstraint instanceType con genFoldMapClause :: (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> Con -> Q ([Type], Clause) genFoldMapClause shallowConstraint baseConstraint _instanceType (NormalC name fieldTypes) = do t <- newName "t" fieldNames <- replicateM (length fieldTypes) (newName "x") let pats = [varP t, conP name (map varP fieldNames)] constraintsAndFields = zipWith newField fieldNames fieldTypes body | null fieldNames = [| mempty |] | otherwise = foldr1 append $ (snd <$>) <$> constraintsAndFields append a b = [| $(a) <> $(b) |] newField :: Name -> BangType -> Q ([Type], Exp) newField x (_, fieldType) = genFoldMapField (varE t) fieldType shallowConstraint baseConstraint (varE x) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause pats (normalB body) [] genFoldMapClause shallowConstraint baseConstraint _instanceType (RecC name fields) = do t <- newName "t" x <- newName "x" let body | null fields = [| mempty |] | otherwise = foldr1 append $ (snd <$>) <$> constraintsAndFields constraintsAndFields = map newField fields append a b = [| $(a) <> $(b) |] newField :: VarBangType -> Q ([Type], Exp) newField (fieldName, _, fieldType) = genFoldMapField (varE t) fieldType shallowConstraint baseConstraint (appE (varE fieldName) (varE x)) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause [varP t, x `asP` recP name []] (normalB body) [] genFoldMapClause shallowConstraint baseConstraint instanceType (GadtC [name] fieldTypes (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genFoldMapClause (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (NormalC name fieldTypes) genFoldMapClause shallowConstraint baseConstraint instanceType (RecGadtC [name] fields (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genFoldMapClause (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (RecC name fields) genFoldMapClause shallowConstraint baseConstraint instanceType (ForallC _vars _cxt con) = genFoldMapClause shallowConstraint baseConstraint instanceType con type GenTraverseFieldType = Q Exp -> Type -> (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Exp -> (Q Exp -> Q Exp) -> Q ([Type], Exp) genTraverseClause :: GenTraverseFieldType -> (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Type -> Con -> Q ([Type], Clause) genTraverseClause genField shallowConstraint baseConstraint _instanceType (NormalC name fieldTypes) = do t <- newName "t" fieldNames <- replicateM (length fieldTypes) (newName "x") let pats = [varP t, parensP (conP name $ map varP fieldNames)] constraintsAndFields = zipWith newField fieldNames fieldTypes newFields = map (snd <$>) constraintsAndFields body | null fieldTypes = [| pure $(conE name) |] | otherwise = fst $ foldl apply (conE name, False) newFields apply (a, False) b = ([| $(a) <$> $(b) |], True) apply (a, True) b = ([| $(a) <*> $(b) |], True) newField :: Name -> BangType -> Q ([Type], Exp) newField x (_, fieldType) = genField (varE t) fieldType shallowConstraint baseConstraint (varE x) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause pats (normalB body) [] genTraverseClause genField shallowConstraint baseConstraint _instanceType (RecC name fields) = do f <- newName "f" x <- newName "x" let constraintsAndFields = map newNamedField fields body | null fields = [| pure $(conE name) |] | otherwise = fst (foldl apply (conE name, False) $ map (snd . snd <$>) constraintsAndFields) apply (a, False) b = ([| $(a) <$> $(b) |], True) apply (a, True) b = ([| $(a) <*> $(b) |], True) newNamedField :: VarBangType -> Q ([Type], (Name, Exp)) newNamedField (fieldName, _, fieldType) = ((,) fieldName <$>) <$> genField (varE f) fieldType shallowConstraint baseConstraint (appE (varE fieldName) (varE x)) id constraints <- (concat . (fst <$>)) <$> sequence constraintsAndFields (,) constraints <$> clause [varP f, x `asP` recP name []] (normalB body) [] genTraverseClause genField shallowConstraint baseConstraint instanceType (GadtC [name] fieldTypes (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genTraverseClause genField (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (NormalC name fieldTypes) genTraverseClause genField shallowConstraint baseConstraint instanceType (RecGadtC [name] fields (AppT resultType (VarT tyVar))) = do Just (Deriving tyConName _tyVar) <- getQ putQ (Deriving tyConName tyVar) genTraverseClause genField (shallowConstraint . substitute resultType instanceType) (baseConstraint . substitute resultType instanceType) instanceType (RecC name fields) genTraverseClause genField shallowConstraint baseConstraint instanceType (ForallC _vars _cxt con) = genTraverseClause genField shallowConstraint baseConstraint instanceType con genShallowmapField :: Q Exp -> Type -> (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Exp -> (Q Exp -> Q Exp) -> Q ([Type], Exp) genShallowmapField trans fieldType shallowConstraint baseConstraint fieldAccess wrap = do Just (Deriving _ typeVar) <- getQ case fieldType of AppT ty a | ty == VarT typeVar -> (,) <$> ((:[]) <$> baseConstraint (pure a)) <*> (wrap (varE '(Transformation.$) `appE` trans) `appE` fieldAccess) AppT t1 t2 | t2 == VarT typeVar -> (,) <$> traverse shallowConstraint [pure t1] <*> appE (wrap [| ($trans Transformation.Shallow.<$>) |]) fieldAccess AppT t1 t2 | t1 /= VarT typeVar -> genShallowmapField trans t2 shallowConstraint baseConstraint fieldAccess (wrap . appE (varE '(<$>))) SigT ty _kind -> genShallowmapField trans ty shallowConstraint baseConstraint fieldAccess wrap ParensT ty -> genShallowmapField trans ty shallowConstraint baseConstraint fieldAccess wrap _ -> (,) [] <$> fieldAccess genFoldMapField :: Q Exp -> Type -> (Q Type -> Q Type) -> (Q Type -> Q Type) -> Q Exp -> (Q Exp -> Q Exp) -> Q ([Type], Exp) genFoldMapField trans fieldType shallowConstraint baseConstraint fieldAccess wrap = do Just (Deriving _ typeVar) <- getQ case fieldType of AppT ty a | ty == VarT typeVar -> (,) <$> ((:[]) <$> baseConstraint (pure a)) <*> (wrap (varE '(.) `appE` varE 'getConst `appE` (varE '(Transformation.$) `appE` trans)) `appE` fieldAccess) AppT t1 t2 | t2 == VarT typeVar -> (,) <$> traverse shallowConstraint [pure t1] <*> appE (wrap [| (Transformation.Shallow.foldMap $trans) |]) fieldAccess AppT t1 t2 | t1 /= VarT typeVar -> genFoldMapField trans t2 shallowConstraint baseConstraint fieldAccess (wrap . appE (varE 'foldMap)) SigT ty _kind -> genFoldMapField trans ty shallowConstraint baseConstraint fieldAccess wrap ParensT ty -> genFoldMapField trans ty shallowConstraint baseConstraint fieldAccess wrap _ -> (,) [] <$> [| mempty |] genTraverseField :: GenTraverseFieldType genTraverseField trans fieldType shallowConstraint baseConstraint fieldAccess wrap = do Just (Deriving _ typeVar) <- getQ case fieldType of AppT ty a | ty == VarT typeVar -> (,) <$> ((:[]) <$> baseConstraint (pure a)) <*> (wrap (varE '(.) `appE` varE 'getCompose `appE` (varE '(Transformation.$) `appE` trans)) `appE` fieldAccess) AppT t1 t2 | t2 == VarT typeVar -> (,) <$> traverse shallowConstraint [pure t1] <*> appE (wrap [| (Transformation.Shallow.traverse $trans) |]) fieldAccess AppT t1 t2 | t1 /= VarT typeVar -> genTraverseField trans t2 shallowConstraint baseConstraint fieldAccess (wrap . appE (varE 'traverse)) SigT ty _kind -> genTraverseField trans ty shallowConstraint baseConstraint fieldAccess wrap ParensT ty -> genTraverseField trans ty shallowConstraint baseConstraint fieldAccess wrap _ -> (,) [] <$> [| pure $fieldAccess |]
blamario/grampa
deep-transformations/src/Transformation/Shallow/TH.hs
bsd-2-clause
17,642
0
23
4,150
5,883
2,977
2,906
266
6
{-# OPTIONS -fglasgow-exts #-} ----------------------------------------------------------------------------- {-| Module : QPainterPath.hs Copyright : (c) David Harley 2010 Project : qtHaskell Version : 1.1.4 Modified : 2010-09-02 17:02:35 Warning : this file is machine generated - do not modify. --} ----------------------------------------------------------------------------- module Qtc.Enums.Gui.QPainterPath ( ElementType, eMoveToElement, eLineToElement, eCurveToElement, eCurveToDataElement ) where import Foreign.C.Types import Qtc.Classes.Base import Qtc.ClassTypes.Core (QObject, TQObject, qObjectFromPtr) import Qtc.Core.Base (Qcs, connectSlot, qtc_connectSlot_int, wrapSlotHandler_int) import Qtc.Enums.Base import Qtc.Enums.Classes.Core data CElementType a = CElementType a type ElementType = QEnum(CElementType Int) ieElementType :: Int -> ElementType ieElementType x = QEnum (CElementType x) instance QEnumC (CElementType Int) where qEnum_toInt (QEnum (CElementType x)) = x qEnum_fromInt x = QEnum (CElementType x) withQEnumResult x = do ti <- x return $ qEnum_fromInt $ fromIntegral ti withQEnumListResult x = do til <- x return $ map qEnum_fromInt til instance Qcs (QObject c -> ElementType -> IO ()) where connectSlot _qsig_obj _qsig_nam _qslt_obj _qslt_nam _handler = do funptr <- wrapSlotHandler_int slotHandlerWrapper_int stptr <- newStablePtr (Wrap _handler) withObjectPtr _qsig_obj $ \cobj_sig -> withCWString _qsig_nam $ \cstr_sig -> withObjectPtr _qslt_obj $ \cobj_slt -> withCWString _qslt_nam $ \cstr_slt -> qtc_connectSlot_int cobj_sig cstr_sig cobj_slt cstr_slt (toCFunPtr funptr) (castStablePtrToPtr stptr) return () where slotHandlerWrapper_int :: Ptr fun -> Ptr () -> Ptr (TQObject c) -> CInt -> IO () slotHandlerWrapper_int funptr stptr qobjptr cint = do qobj <- qObjectFromPtr qobjptr let hint = fromCInt cint if (objectIsNull qobj) then do when (stptr/=ptrNull) (freeStablePtr (castPtrToStablePtr stptr)) when (funptr/=ptrNull) (freeHaskellFunPtr (castPtrToFunPtr funptr)) else _handler qobj (qEnum_fromInt hint) return () eMoveToElement :: ElementType eMoveToElement = ieElementType $ 0 eLineToElement :: ElementType eLineToElement = ieElementType $ 1 eCurveToElement :: ElementType eCurveToElement = ieElementType $ 2 eCurveToDataElement :: ElementType eCurveToDataElement = ieElementType $ 3
keera-studios/hsQt
Qtc/Enums/Gui/QPainterPath.hs
bsd-2-clause
2,596
0
18
543
629
323
306
58
1
module Main (main) where import Test.Framework (defaultMain) import qualified Database.Redis.Tags.Test.Tags main :: IO () main = defaultMain [ Database.Redis.Tags.Test.Tags.tests ]
akaspin/hedis-tags
test/Main.hs
bsd-2-clause
206
0
7
44
55
35
20
6
1
module UniversalSyntax( VarName, DataConName, Literal, Type, var, dataCon, intLit, floatLit, charLit, getVarName, getDataConName) where -- This is a module for syntax elements that are the same across all intermediate -- representations, from the core syntax to the imperative representation data Type = TypeCon String Type Type | TypeVar String | Integer | Floating | Character deriving (Eq, Ord, Show) data Literal = IntLit Int | FloatLit Double | CharLit Char deriving (Eq, Ord, Show) intLit = IntLit floatLit = FloatLit charLit = CharLit data VarName = VarName String deriving (Eq, Ord, Show) var = VarName getVarName (VarName n) = n data DataConName = DataConName String deriving (Eq, Ord, Show) dataCon = DataConName getDataConName (DataConName n) = n
dillonhuff/AFL
src/UniversalSyntax.hs
bsd-3-clause
832
0
7
191
218
126
92
28
1
{-# LANGUAGE TypeOperators, CPP #-} #include "macros.h" LANGUAGE_UNSAFE module Type.Eq.Higher.Unsafe (module Type.Eq.Unsafe, module Type.Eq.Higher.Unsafe) where import Type.Eq.Unsafe import {-# SOURCE #-} Type.Eq.Higher import Unsafe.Coerce -- | Very unsafe! The same rules apply as for 'unsafeCoerce'. unsafeCoercion1 :: f ::~:: g unsafeCoercion1 = unsafeCoerce Eq1 -- | Very unsafe! The same rules apply as for 'unsafeCoerce'. unsafeCoercion2 :: m :::~::: n unsafeCoercion2 = unsafeCoerce Eq2 -- | Very unsafe! unsafeOuterEq1 :: OuterEq1 m f unsafeOuterEq1 = unsafeCoerce OuterEq1 -- | Very unsafe! unsafeInnerEq1 :: InnerEq1 a f unsafeInnerEq1 = unsafeCoerce InnerEq1
glaebhoerl/type-eq
Type/Eq/Higher/Unsafe.hs
bsd-3-clause
679
0
8
98
131
73
58
-1
-1
{-# LANGUAGE RankNTypes #-} {-| An ST Monad based interface to the CUDD BDD library This is a straightforward wrapper around the C library. See <http://vlsi.colorado.edu/~fabio/CUDD/> for documentation. Exampe usage: > import Control.Monad.ST > import Cudd.Imperative > > main = do > res <- stToIO $ withManagerDefaults $ \manager -> do > v1 <- ithVar manager 0 > v2 <- ithVar manager 1 > conj <- bAnd manager v1 v2 > implies <- lEq manager conj v1 > deref manager conj > return implies > print res -} module Cudd.Imperative ( DDManager(..), DDNode(..), cuddInit, cuddInitDefaults, withManager, withManagerDefaults, withManagerIO, withManagerIODefaults, shuffleHeap, bZero, bOne, ithVar, bAnd, bOr, bNand, bNor, bXor, bXnor, bNot, bIte, bExists, bForall, deref, setVarMap, varMap, lEq, swapVariables, ref, largestCube, makePrime, support, supportIndices, indicesToCube, computeCube, nodesToCube, readSize, bddToCubeArray, compose, andAbstract, xorExistAbstract, leqUnless, equivDC, xEqY, debugCheck, checkKeys, pickOneMinterm, toInt, checkZeroRef, readInvPerm, readPerm, dagSize, readNodeCount, readPeakNodeCount, regular, readMaxCache, readMaxCacheHard, setMaxCacheHard, readCacheSlots, readCacheUsedSlots, cudd_unique_slots, cudd_cache_slots, andLimit, readTree, newVarAtLevel, liCompaction, squeeze, minimize, newVar, vectorCompose, quit, readIndex, printMinterm, countMintermExact, checkCube, Cube, Prime, DDGen(..), genFree, isGenEmpty, firstCube, nextCube, firstPrime, nextPrime, firstNode, nextNode, module Cudd.Common ) where import Foreign hiding (void) import Foreign.Ptr import Foreign.C.Types import Control.Monad.ST import Control.Monad.ST.Unsafe import Control.Monad import Control.Monad.IO.Class import Data.List import System.IO.Unsafe import Cudd.C import Cudd.MTR import Cudd.Common newtype DDManager s u = DDManager {unDDManager :: Ptr CDDManager} newtype DDNode s u = DDNode {unDDNode :: Ptr CDDNode} deriving (Ord, Eq, Show) cuddInit :: Int -> Int -> Int -> Int -> Int -> ST s (DDManager s u) cuddInit numVars numVarsZ numSlots cacheSize maxMemory = unsafeIOToST $ do cm <- c_cuddInit (fromIntegral numVars) (fromIntegral numVarsZ) (fromIntegral numSlots) (fromIntegral cacheSize) (fromIntegral maxMemory) return $ DDManager cm cuddInitDefaults :: ST s (DDManager s u) cuddInitDefaults = cuddInit 0 0 cudd_unique_slots cudd_cache_slots 0 withManager :: Int -> Int -> Int -> Int -> Int -> (forall u. DDManager s u -> ST s a) -> ST s a withManager numVars numVarsZ numSlots cacheSize maxMemory f = do res <- cuddInit numVars numVarsZ numSlots cacheSize maxMemory f res withManagerDefaults :: (forall u. DDManager s u -> ST s a) -> ST s a withManagerDefaults f = do res <- cuddInitDefaults f res withManagerIO :: MonadIO m => Int -> Int -> Int -> Int -> Int -> (forall u. DDManager RealWorld u -> m a) -> m a withManagerIO numVars numVarsZ numSlots cacheSize maxMemory f = do res <- liftIO $ stToIO $ cuddInit numVars numVarsZ numSlots cacheSize maxMemory f res withManagerIODefaults :: MonadIO m => (forall u. DDManager RealWorld u -> m a) -> m a withManagerIODefaults f = do res <- liftIO $ stToIO cuddInitDefaults f res shuffleHeap :: DDManager s u -> [Int] -> ST s () shuffleHeap (DDManager m) order = unsafeIOToST $ withArrayLen (map fromIntegral order) $ \size ptr -> do when (sort order /= [0..size-1]) (error "shuffleHeap: order does not contain each variable once") res1 <- c_cuddBddIthVar m (fromIntegral (size - 1)) when (res1 == nullPtr) (error "shuffleHeap: Failed to resize table") res2 <- c_cuddShuffleHeap m ptr when (fromIntegral res2 /= 1) (error "shuffleHeap: Cudd_ShuffleHeap failed") return () toInt :: DDNode s u -> Int toInt (DDNode n) = fromIntegral $ ptrToIntPtr n arg0 :: (Ptr CDDManager -> IO (Ptr CDDNode)) -> DDManager s u -> ST s (DDNode s u) arg0 f (DDManager m) = liftM DDNode $ unsafeIOToST $ f m arg1 :: (Ptr CDDManager -> Ptr CDDNode -> IO (Ptr CDDNode)) -> DDManager s u -> DDNode s u -> ST s (DDNode s u) arg1 f (DDManager m) (DDNode x) = liftM DDNode $ unsafeIOToST $ f m x arg2 :: (Ptr CDDManager -> Ptr CDDNode -> Ptr CDDNode -> IO (Ptr CDDNode)) -> DDManager s u -> DDNode s u -> DDNode s u -> ST s (DDNode s u) arg2 f (DDManager m) (DDNode x) (DDNode y) = liftM DDNode $ unsafeIOToST $ f m x y arg3 :: (Ptr CDDManager -> Ptr CDDNode -> Ptr CDDNode -> Ptr CDDNode -> IO (Ptr CDDNode)) -> DDManager s u -> DDNode s u -> DDNode s u -> DDNode s u -> ST s (DDNode s u) arg3 f (DDManager m) (DDNode x) (DDNode y) (DDNode z) = liftM DDNode $ unsafeIOToST $ f m x y z bZero, bOne :: DDManager s u -> DDNode s u bZero (DDManager m) = DDNode $ unsafePerformIO $ c_cuddReadLogicZero m bOne (DDManager m) = DDNode $ unsafePerformIO $ c_cuddReadOne m bAnd = arg2 c_cuddBddAnd bOr = arg2 c_cuddBddOr bNand = arg2 c_cuddBddNand bNor = arg2 c_cuddBddNor bXor = arg2 c_cuddBddXor bXnor = arg2 c_cuddBddXnor bIte = arg3 c_cuddBddIte bExists = arg2 c_cuddBddExistAbstract bForall = arg2 c_cuddBddUnivAbstract andAbstract = arg3 c_cuddBddAndAbstract xorExistAbstract = arg3 c_cuddBddXorExistAbstract bNot :: DDNode s u -> DDNode s u bNot (DDNode x) = DDNode $ unsafePerformIO $ c_cuddNotNoRef x ithVar :: DDManager s u -> Int -> ST s (DDNode s u) ithVar (DDManager m) i = liftM DDNode $ unsafeIOToST $ c_cuddBddIthVar m (fromIntegral i) deref :: DDManager s u -> DDNode s u -> ST s () deref (DDManager m) (DDNode x) = unsafeIOToST $ c_cuddIterDerefBdd m x setVarMap :: DDManager s u -> [DDNode s u] -> [DDNode s u] -> ST s () setVarMap (DDManager m) xs ys = unsafeIOToST $ withArrayLen (map unDDNode xs) $ \xl xp -> withArrayLen (map unDDNode ys) $ \yl yp -> do when (xl /= yl) (error "setVarMap: lengths not equal") void $ c_cuddSetVarMap m xp yp (fromIntegral xl) varMap :: DDManager s u -> DDNode s u -> ST s (DDNode s u) varMap (DDManager m) (DDNode x) = liftM DDNode $ unsafeIOToST $ c_cuddBddVarMap m x lEq :: DDManager s u -> DDNode s u -> DDNode s u -> ST s Bool lEq (DDManager m) (DDNode x) (DDNode y) = liftM (==1) $ unsafeIOToST $ c_cuddBddLeq m x y swapVariables :: DDManager s u -> [DDNode s u] -> [DDNode s u] -> DDNode s u -> ST s (DDNode s u) swapVariables (DDManager m) nodesx nodesy (DDNode x) = unsafeIOToST $ withArrayLen (map unDDNode nodesx) $ \lx xp -> withArrayLen (map unDDNode nodesy) $ \ly yp -> do when (lx /= ly) $ error "CuddExplicitDeref: shift: lengths not equal" res <- c_cuddBddSwapVariables m x xp yp (fromIntegral lx) return $ DDNode res ref :: DDNode s u -> ST s () ref (DDNode x) = unsafeIOToST $ cuddRef x largestCube :: DDManager s u -> DDNode s u -> ST s (DDNode s u, Int) largestCube (DDManager m) (DDNode x) = unsafeIOToST $ alloca $ \lp -> do res <- c_cuddLargestCube m x lp l <- peek lp return (DDNode res, fromIntegral l) makePrime :: DDManager s u -> DDNode s u -> DDNode s u -> ST s (DDNode s u) makePrime = arg2 c_cuddBddMakePrime support :: DDManager s u -> DDNode s u -> ST s (DDNode s u) support = arg1 c_cuddSupport supportIndices :: DDManager s u -> DDNode s u -> ST s [Int] supportIndices (DDManager m) (DDNode x) = unsafeIOToST $ alloca $ \arrp -> do sz <- c_cuddSupportIndices m x arrp aaddr <- peek arrp res <- peekArray (fromIntegral sz) aaddr return $ map fromIntegral res indicesToCube :: DDManager s u -> [Int] -> ST s (DDNode s u) indicesToCube (DDManager m) indices = unsafeIOToST $ withArrayLen (map fromIntegral indices) $ \sz pt -> do res <- c_cuddIndicesToCube m pt (fromIntegral sz) return $ DDNode res computeCube :: DDManager s u -> [DDNode s u] -> [Bool] -> ST s (DDNode s u) computeCube (DDManager m) nodes phases = unsafeIOToST $ withArrayLen (map unDDNode nodes) $ \szn ptn -> withArrayLen (map (fromIntegral . fromBool) phases) $ \szp ptp -> do when (szn /= szp) $ error "computeCube: lists are different lengths" res <- c_cuddBddComputeCube m ptn ptp (fromIntegral szn) return $ DDNode res nodesToCube :: DDManager s u -> [DDNode s u] -> ST s (DDNode s u) nodesToCube (DDManager m) nodes = unsafeIOToST $ withArrayLen (map unDDNode nodes) $ \sz pt -> do res <- c_cuddBddComputeCube m pt nullPtr (fromIntegral sz) return $ DDNode res readSize :: DDManager s u -> ST s Int readSize (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadSize m bddToCubeArray :: DDManager s u -> DDNode s u -> ST s [SatBit] bddToCubeArray ma@(DDManager m) (DDNode x) = unsafeIOToST $ do size <- liftM fromIntegral $ c_cuddReadSize m allocaArray size $ \resptr -> do c_cuddBddToCubeArray m x resptr res <- peekArray size resptr return $ map (toSatBit . fromIntegral) res compose :: DDManager s u -> DDNode s u -> DDNode s u -> Int -> ST s (DDNode s u) compose (DDManager m) (DDNode f) (DDNode g) v = liftM DDNode $ unsafeIOToST $ c_cuddBddCompose m f g (fromIntegral v) arg3Bool :: (Ptr CDDManager -> Ptr CDDNode -> Ptr CDDNode -> Ptr CDDNode -> IO CInt) -> DDManager s u -> DDNode s u -> DDNode s u -> DDNode s u -> ST s Bool arg3Bool f (DDManager m) (DDNode x) (DDNode y) (DDNode z) = liftM (==1) $ unsafeIOToST $ f m x y z leqUnless, equivDC :: DDManager s u -> DDNode s u -> DDNode s u -> DDNode s u -> ST s Bool leqUnless = arg3Bool c_cuddBddLeqUnless equivDC = arg3Bool c_cuddEquivDC xEqY :: DDManager s u -> [DDNode s u] -> [DDNode s u] -> ST s (DDNode s u) xEqY (DDManager m) xs ys = unsafeIOToST $ withArrayLen (map unDDNode xs) $ \xl xp -> withArrayLen (map unDDNode ys) $ \yl yp -> do when (xl /= yl) (error "xeqy: lengths not equal") res <- c_cuddXeqy m (fromIntegral xl) xp yp return $ DDNode res debugCheck :: DDManager s u -> ST s Int debugCheck (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddDebugCheck m checkKeys :: DDManager s u -> ST s Int checkKeys (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddCheckKeys m pickOneMinterm :: DDManager s u -> DDNode s u -> [DDNode s u] -> ST s (DDNode s u) pickOneMinterm (DDManager m) (DDNode d) vars = unsafeIOToST $ withArrayLen (map unDDNode vars) $ \vl vp -> do res <- c_cuddBddPickOneMinterm m d vp (fromIntegral vl) return $ DDNode res checkZeroRef :: DDManager s u -> ST s Int checkZeroRef (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddCheckZeroRef m readInvPerm :: DDManager s u -> Int -> ST s Int readInvPerm (DDManager m) offs = liftM fromIntegral $ unsafeIOToST $ c_cuddReadInvPerm m (fromIntegral offs) readPerm :: DDManager s u -> Int -> ST s Int readPerm (DDManager m) offs = liftM fromIntegral $ unsafeIOToST $ c_cuddReadPerm m (fromIntegral offs) dagSize :: DDNode s u -> ST s Int dagSize (DDNode d) = liftM fromIntegral $ unsafeIOToST $ c_cuddDagSize d readNodeCount :: DDManager s u -> ST s Integer readNodeCount (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadNodeCount m readPeakNodeCount :: DDManager s u -> ST s Integer readPeakNodeCount (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadPeakNodeCount m regular :: DDNode s u -> DDNode s u regular (DDNode x) = DDNode $ unsafePerformIO $ c_wrappedRegular x readMaxCache :: DDManager s u -> ST s Int readMaxCache (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadMaxCache m readMaxCacheHard :: DDManager s u -> ST s Int readMaxCacheHard (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadMaxCacheHard m setMaxCacheHard :: DDManager s u -> Int -> ST s () setMaxCacheHard (DDManager m) x = unsafeIOToST $ c_cuddSetMaxCacheHard m (fromIntegral x) readCacheSlots :: DDManager s u -> ST s Int readCacheSlots (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadCacheSlots m readCacheUsedSlots :: DDManager s u -> ST s Int readCacheUsedSlots (DDManager m) = liftM fromIntegral $ unsafeIOToST $ c_cuddReadCacheUsedSlots m andLimit :: DDManager s u -> DDNode s u -> DDNode s u -> Int -> ST s (Maybe (DDNode s u)) andLimit (DDManager m) (DDNode x) (DDNode y) lim = unsafeIOToST $ do res <- c_cuddBddAndLimit m x y (fromIntegral lim) if res==nullPtr then return Nothing else do cuddRef res return $ Just $ DDNode res readTree :: DDManager s u -> ST s (MtrNode s) readTree (DDManager m) = liftM MtrNode $ unsafeIOToST $ c_cuddReadTree m newVarAtLevel :: DDManager s u -> Int -> ST s (DDNode s u) newVarAtLevel (DDManager m) level = liftM DDNode $ unsafeIOToST $ c_cuddBddNewVarAtLevel m (fromIntegral level) liCompaction = arg2 c_cuddBddLICompaction squeeze = arg2 c_cuddBddSqueeze minimize = arg2 c_cuddBddMinimize newVar :: DDManager s u -> ST s (DDNode s u) newVar (DDManager m) = liftM DDNode $ unsafeIOToST $ c_cuddBddNewVar m vectorCompose :: DDManager s u -> DDNode s u -> [DDNode s u] -> ST s (DDNode s u) vectorCompose (DDManager m) (DDNode f) nodes = liftM DDNode $ unsafeIOToST $ withArrayLen (map unDDNode nodes) $ \len ptr -> do sz <- c_cuddReadSize m when (fromIntegral sz /= len) (error "vectorCompose: not one entry for each variable in manager") c_cuddBddVectorCompose m f ptr quit :: DDManager s u -> ST s () quit (DDManager m) = unsafeIOToST $ c_cuddQuit m readIndex :: DDNode s u -> ST s Int readIndex (DDNode x) = liftM fromIntegral $ unsafeIOToST $ c_cuddNodeReadIndex x printMinterm :: DDManager s u -> DDNode s u -> ST s () printMinterm (DDManager m) (DDNode x) = unsafeIOToST $ c_cuddPrintMinterm m x countMintermExact :: DDManager s u -> DDNode s u -> Int -> ST s Integer countMintermExact (DDManager m) (DDNode x) n = unsafeIOToST $ alloca $ \ sizep -> do apa <- c_cuddApaCountMinterm m x (fromIntegral n) sizep size <- fromIntegral <$> peek sizep digits <- peekArray size apa c_cuddFreeApaNumber apa return $ foldl ( \ a d -> a * 2^32 + fromIntegral d ) 0 digits checkCube :: DDManager s u -> DDNode s u -> ST s Bool checkCube (DDManager m) (DDNode x) = liftM (==1) $ unsafeIOToST $ c_cuddCheckCube m x data Cube data Prime data Node data DDGen s u t = DDGen (Ptr CDDGen) genFree :: DDGen s u t -> ST s () genFree (DDGen g) = void $ unsafeIOToST $ c_cuddGenFree g isGenEmpty :: DDGen s u t -> ST s Bool isGenEmpty (DDGen g) = liftM (==1) $ unsafeIOToST $ c_cuddIsGenEmpty g firstCube :: DDManager s u -> DDNode s u -> ST s (Maybe ([SatBit], DDGen s u Cube)) firstCube (DDManager m) (DDNode n) = unsafeIOToST $ do sz <- c_cuddReadSize m alloca $ \cubePP -> alloca $ \valP -> do gen <- c_cuddFirstCube m n cubePP valP empty <- c_cuddIsGenEmpty gen if empty == 1 then do c_cuddGenFree gen return Nothing else do cubeP <- peek cubePP cube <- peekArray (fromIntegral sz) cubeP return $ Just (map (toSatBit . fromIntegral) cube, DDGen gen) nextCube :: DDManager s u -> DDGen s u Cube -> ST s (Maybe [SatBit]) nextCube (DDManager m) (DDGen g) = unsafeIOToST $ do sz <- c_cuddReadSize m alloca $ \cubePP -> alloca $ \valP -> do c_cuddNextCube g cubePP valP empty <- c_cuddIsGenEmpty g if empty == 1 then do c_cuddGenFree g return Nothing else do cubeP <- peek cubePP cube <- peekArray (fromIntegral sz) cubeP return $ Just $ map (toSatBit . fromIntegral) cube firstPrime :: DDManager s u -> DDNode s u -> DDNode s u -> ST s (Maybe ([SatBit], DDGen s u Prime)) firstPrime (DDManager m) (DDNode x) (DDNode y) = unsafeIOToST $ do sz <- c_cuddReadSize m alloca $ \cubePP -> do gen <- c_cuddFirstPrime m x y cubePP empty <- c_cuddIsGenEmpty gen if empty == 1 then do c_cuddGenFree gen return Nothing else do cubeP <- peek cubePP cube <- peekArray (fromIntegral sz) cubeP return $ Just (map (toSatBit . fromIntegral) cube, DDGen gen) nextPrime :: DDManager s u -> DDGen s u Prime -> ST s (Maybe [SatBit]) nextPrime (DDManager m) (DDGen g) = unsafeIOToST $ do sz <- c_cuddReadSize m alloca $ \cubePP -> do c_cuddNextPrime g cubePP empty <- c_cuddIsGenEmpty g if empty == 1 then do c_cuddGenFree g return Nothing else do cubeP <- peek cubePP cube <- peekArray (fromIntegral sz) cubeP return $ Just $ map (toSatBit . fromIntegral) cube firstNode :: DDManager s u -> DDNode s u -> ST s (Maybe (DDNode s u, DDGen s u Node)) firstNode (DDManager m) (DDNode x) = unsafeIOToST $ do alloca $ \nodePP -> do gen <- c_cuddFirstNode m x nodePP empty <- c_cuddIsGenEmpty gen if empty == 1 then do c_cuddGenFree gen return Nothing else do nodeP <- peek nodePP return $ Just (DDNode nodeP, DDGen gen) nextNode :: DDManager s u -> DDGen s u Node -> ST s (Maybe (DDNode s u)) nextNode (DDManager m) (DDGen g) = unsafeIOToST $ do alloca $ \nodePP -> do c_cuddNextNode g nodePP empty <- c_cuddIsGenEmpty g if empty == 1 then do c_cuddGenFree g return Nothing else do nodeP <- peek nodePP return $ Just $ DDNode nodeP
adamwalker/haskell_cudd
Cudd/Imperative.hs
bsd-3-clause
17,777
0
22
4,358
6,842
3,323
3,519
-1
-1
module Linear.Cassowary.ClSimplexSolver where -- addConstraint :: ClSimplexSolver -> ClConstraint -> IO () -- removeConstraint :: ClSimplexSolver -> ClConstraint -> IO () -- addEditVar :: ClSimplexSolver -> ClVariable -> ClStrength -> IO () -- removeEditVar :: ClSimplexSolver -> ClVariable -> IO () -- beginEdit :: ClSimplexSolver -> IO () -- suggestValue :: ClSimplexSolver -> ClVariable -> Double -> IO () -- endEdit :: ClSimplexSolver -> IO () -- resolve :: ClSimplexSolver -> IO () -- -- addPointStays :: ClSimplexSolver -> [(ClVariable, ClVariable)] -> IO () ? -- setAutoSolve :: ClSimplexSolver -> Boolean -> IO () -- isAutoSolving :: ClSimplexSolver -> IO Boolean -- solve :: ClSimplexSolver -> IO () -- reset :: ClSimplexSolver -> IO ()
athanclark/cassowary-haskell
src/Linear/Cassowary/ClSimplexSolver.hs
bsd-3-clause
761
0
3
130
20
18
2
1
0
module Util.Sort (quicksort) where quicksort :: (Ord a) => [a] -> [a] quicksort [] = [] quicksort (x:xs) = quicksort left ++ [x] ++ quicksort right where left = [ y | y <- xs, y <= x ] right = [ y | y <- xs, x < y ]
masateruk/haskell-dev-env
Util/Sort.hs
bsd-3-clause
232
0
9
67
129
70
59
6
1
{-# LANGUAGE OverloadedStrings #-} {- | Description: low-level SMTP communciation. -} module Network.Mail.SMTP.SMTPRaw ( SMTPRaw(..) , smtpConnect , smtpSendCommand , smtpSendCommandAndWait , smtpSendRaw , smtpGetReplyLines , smtpDisconnect ) where import qualified Data.ByteString as B import Data.ByteString.Char8 (pack, unpack) import Network import Network.Socket import Data.Attoparsec.ByteString.Char8 import System.IO import Network.Mail.SMTP.ReplyLine import Network.Mail.SMTP.Types -- | An SMTPRaw has arbitrary push/pull/close methods, and ALWAYS a Handle, -- but that Handle is not assumed to be the direct means by which we push -- pull or close. This is for STARTTLS support. data SMTPRaw = SMTPRaw { smtpPush :: B.ByteString -> IO () , smtpPull :: IO B.ByteString , smtpClose :: IO () , smtpHandle :: Handle } -- | Try to open an SMTPRaw, taking the server greeting as well. -- No exception handling is performed. smtpConnect :: String -> Int -> IO (SMTPRaw, Maybe Greeting) smtpConnect host port = do handle <- connectTo host (PortNumber $ fromIntegral port) greet <- parseWith (B.hGetSome handle 2048) greeting "" let push = B.hPut handle let pull = B.hGetSome handle 2048 let close = hClose handle return $ (SMTPRaw push pull close handle, maybeResult greet) -- | Send an SMTP command and wait for the reply. -- You get Nothing in case the reply does not parse. -- No exception handling is performed. smtpSendCommandAndWait :: SMTPRaw -> Command -> IO (Maybe [ReplyLine]) smtpSendCommandAndWait smtpraw cmd = do smtpSendCommand smtpraw cmd smtpGetReplyLines smtpraw -- | Send an SMTP command. -- No exception handling is performed. smtpSendCommand :: SMTPRaw -> Command -> IO () smtpSendCommand smtpraw cmd = do smtpSendRaw smtpraw (toByteString cmd) smtpSendRaw smtpraw (pack "\r\n") -- | Send a raw byte string. Use with care. No exception handling is performed. smtpSendRaw :: SMTPRaw -> B.ByteString -> IO () smtpSendRaw = smtpPush -- | Try to read ReplyLines from the SMTPRaw. -- No exception handling is performed. smtpGetReplyLines :: SMTPRaw -> IO (Maybe [ReplyLine]) smtpGetReplyLines smtpraw = do replies <- parseWith (smtpPull smtpraw) replyLines "" return $ maybeResult replies -- | Close an SMTPRaw handle -- Be sure not to use the SMTPHandle after this. smtpDisconnect :: SMTPRaw -> IO () smtpDisconnect = smtpClose
avieth/smtp-mail-ng
Network/Mail/SMTP/SMTPRaw.hs
bsd-3-clause
2,500
0
11
509
518
278
240
46
1
{-# LANGUAGE CPP, QuasiQuotes, TemplateHaskell #-} -- | -- Template Haskell to generate defaultMain with a list of "Test" from -- \"doc_test\", \"case_\<somthing\>\", and \"prop_\<somthing\>\". -- -- An example of source code (Data/MySet.hs): -- -- > {-| Creating a set from a list. O(N log N) -- > -- > >>> empty == fromList [] -- > True -- > >>> singleton 'a' == fromList ['a'] -- > True -- > >>> fromList [5,3,5] == fromList [5,3] -- > True -- > -} -- > -- > fromList :: Ord a => [a] -> RBTree a -- > fromList = foldl' (flip insert) empty -- -- An example of test code in the src directory (test/Test.hs): -- -- > {-# LANGUAGE TemplateHaskell #-} -- > module Main where -- > -- > import Test.Framework.TH.Prime -- > import Test.Framework.Providers.DocTest -- > import Test.Framework.Providers.HUnit -- > import Test.Framework.Providers.QuickCheck2 -- > import Test.QuickCheck2 -- > import Test.HUnit -- > -- > import Data.MySet -- > -- > main :: IO () -- > main = $(defaultMainGenerator) -- > -- > doc_test :: DocTests -- > doc_test = docTest ["../Data/MySet.hs"] ["-i.."] -- > -- > prop_toList :: [Int] -> Bool -- > prop_toList xs = ordered ys -- > where -- > ys = toList . fromList $ xs -- > ordered (x:y:xys) = x <= y && ordered (y:xys) -- > ordered _ = True -- > -- > case_ticket4242 :: Assertion -- > case_ticket4242 = (valid $ deleteMin $ deleteMin $ fromList [0,2,5,1,6,4,8,9,7,11,10,3]) @?= True -- -- And run: -- -- > test% runghc -i.. Test.hs -- -- "defaultMainGenerator" generates the following: -- -- > main = do -- > TestGroup _ doctests <- docTest ["../Data/MySet.hs"] ["-i.."] -- > defaultMain [ -- > testGroup "Doc tests" doctests -- > , testGroup "Unit tests" [ -- > testCase "case_ticket4242" case_ticket4242 -- > ] -- > , testGroup "Property tests" [ -- > testProperty "prop_toList" prop_toList -- > ] -- > ] -- -- Note: examples in haddock document is only used as unit tests at this -- moment. I hope that properties of QuickCheck2 can also be specified in -- haddock document in the future. I guess it's Haskell way of Behavior -- Driven Development. module Test.Framework.TH.Prime ( defaultMainGenerator , DocTests ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Language.Haskell.TH hiding (Match) import Language.Haskell.TH.Syntax hiding (Match) import Test.Framework (defaultMain) import Test.Framework.Providers.API import Test.Framework.TH.Prime.Parser ---------------------------------------------------------------- -- | Type for \"doc_test\". type DocTests = IO Test ---------------------------------------------------------------- {-| Generating defaultMain with a list of "Test" from \"doc_test\", \"case_\<somthing\>\", and \"prop_\<somthing\>\". -} defaultMainGenerator :: ExpQ defaultMainGenerator = do defined <- isDefined docTestKeyword if defined then [| do TestGroup _ doctests <- $(docTests) let (unittests, proptests) = $(unitPropTests) defaultMain [ testGroup "Doc tests" doctests , testGroup "Unit tests" unittests , testGroup "Property tests" proptests ] |] else [| do let (unittests, proptests) = $(unitPropTests) defaultMain [ testGroup "Unit tests" unittests , testGroup "Property tests" proptests ] |] ---------------------------------------------------------------- -- code from Hiromi Ishii isDefined :: String -> Q Bool isDefined n = return False `recover` do #if MIN_VERSION_template_haskell(2, 11, 0) VarI (Name _ flavour) _ _ <- reify (mkName n) #else VarI (Name _ flavour) _ _ _ <- reify (mkName n) #endif modul <- loc_module <$> location case flavour of NameG ns _ mdl -> return (ns == VarName && modString mdl == modul) _ -> return False ---------------------------------------------------------------- docTestKeyword :: String docTestKeyword = "doc_test" docTests :: ExpQ docTests = return $ symbol docTestKeyword
kazu-yamamoto/test-framework-th-prime
Test/Framework/TH/Prime.hs
bsd-3-clause
4,160
0
15
934
349
231
118
35
2
module AI.MathTmp where import Data.List -- Math functions copied from Math.Statistics because the whole thing wouldn't compile mean :: Floating a => [a] -> a mean x = fst $ foldl' (\(m, n) x -> (m+(x-m)/(n+1),n+1)) (0,0) x -- mean x = fst $ foldl' (\(!m, !n) x -> (m+(x-m)/(n+1),n+1)) (0,0) x -- |Arbitrary quantile q of an unsorted list. The quantile /q/ of /N/ -- |data points is the point whose (zero-based) index in the sorted -- |data set is closest to /q(N-1)/. quantile :: (Fractional b, Ord b) => Double -> [b] -> b quantile q = quantileAsc q . sort -- |As 'quantile' specialized for sorted data quantileAsc :: (Fractional b, Ord b) => Double -> [b] -> b quantileAsc _ [] = error "quantile on empty list" quantileAsc q xs | q < 0 || q > 1 = error "quantile out of range" | otherwise = xs !! (quantIndex (length xs) q) where quantIndex :: Int -> Double -> Int quantIndex len q = case round $ q * (fromIntegral len - 1) of idx | idx < 0 -> error "Quantile index too small" | idx >= len -> error "Quantile index too large" | otherwise -> idx -- |Standard deviation of sample stddev :: (Floating a) => [a] -> a stddev xs = sqrt $ var xs -- |Sample variance var xs = (var' 0 0 0 xs) / (fromIntegral $ length xs - 1) where var' _ _ s [] = s var' m n s (x:xs) = var' nm (n + 1) (s + delta * (x - nm)) xs where delta = x - m nm = m + delta/(fromIntegral $ n + 1)
mikeizbicki/Classification
src/AI/MathTmp.hs
bsd-3-clause
1,562
0
13
482
534
279
255
23
2
{-# LANGUAGE MultiParamTypeClasses , TemplateHaskell , ScopedTypeVariables , FlexibleInstances , FlexibleContexts , UndecidableInstances #-} module Spire.Canonical.Checker where import Control.Monad.Except import Unbound.LocallyNameless hiding ( Spine ) import Spire.Canonical.Types import Spire.Canonical.Evaluator import Spire.Surface.PrettyPrinter import Spire.Canonical.InitialEnv ---------------------------------------------------------------------- recheckProg :: VProg -> SpireM () recheckProg [] = return () recheckProg (VDef _ a _A : xs) = do checkV _A VType checkV a _A recheckProg xs return () ---------------------------------------------------------------------- checkV :: Value -> Type -> SpireM () checkV VTT VUnit = return () checkV VTT _ = throwError "Ill-typed!" checkV VTrue VBool = return () checkV VTrue _ = throwError "Ill-typed!" checkV VFalse VBool = return () checkV VFalse _ = throwError "Ill-typed!" checkV (VQuotes _) VString = return () checkV (VQuotes _) _ = throwError "Ill-typed!" checkV VNil VEnum = return () checkV VNil _ = throwError "Ill-typed!" checkV VUnit VType = return () checkV VUnit _ = throwError "Ill-typed!" checkV VBool VType = return () checkV VBool _ = throwError "Ill-typed!" checkV VString VType = return () checkV VString _ = throwError "Ill-typed!" checkV VEnum VType = return () checkV VEnum _ = throwError "Ill-typed!" checkV VTel VType = return () checkV VTel _ = throwError "Ill-typed!" checkV VType VType = return () checkV VType _ = throwError "Ill-typed!" checkV (VDesc _I) VType = checkV _I VType checkV (VDesc _I) _ = throwError "Ill-typed!" checkV (VTag _E) VType = checkV _E VEnum checkV (VTag _E) _ = throwError "Ill-typed!" checkV VHere (VTag (VCons l _E)) = return () checkV VHere _ = throwError "Ill-typed!" checkV (VThere t) (VTag (VCons l _E)) = checkV t (VTag _E) checkV (VThere _) _ = throwError "Ill-typed!" checkV (VEq _A a _B b) VType = do checkV _A VType checkV a _A checkV _B VType checkV b _B checkV (VEq _ _ _ _) _ = throwError "Ill-typed!" checkV (VSg _A _B) VType = do checkV _A VType checkVExtend _A _B VType checkV (VSg _A _B) _ = throwError "Ill-typed!" checkV (VPi _A _B) VType = do checkV _A VType checkVExtend _A _B VType checkV (VPi _A _B) _ = throwError "Ill-typed!" checkV (VFix l _P _I _D p i) VType = do checkV l VString checkV _P VType checkV _I VType checkV _D $ VDesc _I checkV p _P checkV i _I checkV (VFix l _P _I _D p i) _ = throwError "Ill-typed!" checkV (VCons x xs) VEnum = do checkV x VString checkV xs VEnum checkV (VCons x xs) _ = throwError "Ill-typed!" checkV (VLam bnd_b) (VPi _A bnd_B) = do (nm_a , b) <- unbind bnd_b _B <- bnd_B `sub` vVar nm_a extendCtx nm_a _A $ checkV b _B checkV (VLam _) _ = throwError "Ill-typed!" checkV (VPair a b) (VSg _A _B) = do checkV a _A checkV b =<< _B `sub` a checkV (VPair _ _) _ = throwError "Ill-typed!" checkV VRefl (VEq _A a _B b) = do unless (_A == _B) $ throwError "Ill-typed!" unless (a == b) $ throwError "Ill-typed!" checkV VRefl _ = throwError "Ill-typed!" checkV VEmp VTel = return () checkV VEmp _ = throwError "Ill-typed!" checkV (VExt _A _B) VTel = do checkV _A VType checkVExtend _A _B VTel checkV (VExt _A _B) _ = throwError "Ill-typed!" checkV (VEnd i) (VDesc _I) = do checkV i _I checkV (VEnd i) _ = throwError "Ill-typed!" checkV (VRec i _D) (VDesc _I) = do checkV i _I checkV _D (VDesc _I) checkV (VRec i _D) _ = throwError "Ill-typed!" checkV (VArg _A _B) (VDesc _I) = do checkV _A VType checkVExtend _A _B (VDesc _I) checkV (VArg _A _B) _ = throwError "Ill-typed!" checkV (VInit xs) (VFix l _P _I _D p i) = do let _X = vBind "i" (\j -> VFix l _P _I _D p j) checkV xs =<< _D `elim` EFunc _I _X i checkV (VInit xs) _ = throwError "Ill-typed!" checkV x@(VNeut nm fs) _A = do _A' <- inferN nm fs unless (_A == _A') $ throwError $ "Ill-typed, checked type not equal to inferred type!\n\n" ++ "Checked type:\n" ++ prettyPrint _A ++ "\nInferred type:\n" ++ prettyPrint _A' ++ "\nValue:\n" ++ prettyPrint x ---------------------------------------------------------------------- inferN :: Nom -> Spine -> SpireM Type inferN nm Id = lookupType nm inferN nm (Pipe fs (EApp a)) = do _AB <- inferN nm fs case _AB of VPi _A _B -> do checkV a _A _B `sub` a _ -> throwError "Ill-typed!" inferN nm (Pipe fs (EElimUnit _P ptt)) = do checkVExtend VUnit _P VType let u = VNeut nm fs checkV u VUnit _P `sub` u inferN nm (Pipe fs (EElimBool _P ptrue pfalse)) = do checkVExtend VBool _P VType checkV ptrue =<< _P `sub` VTrue checkV pfalse =<< _P `sub` VFalse let b = VNeut nm fs checkV b VBool _P `sub` b inferN nm (Pipe fs (EElimEq _A x _P prefl y)) = do checkV _A VType checkV x _A checkVP _A x _P checkV prefl =<< _P `sub2` (x , VRefl) checkV y _A let q = VNeut nm fs checkV q (VEq _A x _A y) _P `sub2` (y , q) where checkVP :: Type -> Value -> Bind Nom2 Value -> SpireM () checkVP _A x bnd_P = do ((y , q) , _P) <- unbind bnd_P extendCtx y _A $ extendCtx q (VEq _A x _A (vVar y)) $ checkV _P VType inferN nm (Pipe fs (EElimPair _A _B _P ppair)) = do checkV _A VType checkVExtend _A _B VType checkVExtend (VSg _A _B) _P VType checkVppair _A _B _P ppair let ab = VNeut nm fs checkV ab (VSg _A _B) _P `sub` ab where checkVppair :: Type -> Bind Nom Type -> Bind Nom Type -> Bind Nom2 Value -> SpireM () checkVppair _A _B _P bnd_ppair = do ((a , b) , ppair) <- unbind bnd_ppair _Ba <- _B `sub` vVar a _Ppair <- _P `sub` VPair (vVar a) (vVar b) extendCtx a _A $ extendCtx b _Ba $ checkV ppair _Ppair inferN nm (Pipe fs (EElimEnum _P pnil pcons)) = do let xs = VNeut nm fs checkV xs VEnum checkVExtend VEnum _P VType checkV pnil =<< _P `sub` VNil checkVpcons _P pcons _P `sub` xs where checkVpcons :: Bind Nom Type -> Bind Nom3 Value -> SpireM () checkVpcons _P bnd_pcons = do ((nm_x , nm_xs , nm_pxs) , pcons) <- unbind bnd_pcons _Pxs <- _P `sub` vVar nm_xs _Pcons <- _P `sub` VCons (vVar nm_x) (vVar nm_xs) extendCtx nm_x VString $ extendCtx nm_xs VEnum $ extendCtx nm_pxs _Pxs $ checkV pcons _Pcons inferN nm (Pipe fs (EElimTel _P pemp pext)) = do checkVExtend VTel _P VType checkV pemp =<< _P `sub` VEmp checkVpext _P pext let _T = VNeut nm fs checkV _T VTel _P `sub` _T where checkVpext :: Bind Nom Type -> Bind Nom3 Value -> SpireM () checkVpext _P bnd_pext = do ((_A , _B , pb) , pext) <- unbind bnd_pext let nm_a = "a" _Ba <- _P `sub` vApp' _B (var nm_a) let _PB = VPi (vVar _A) (sbind nm_a _Ba) _PExt <- _P `sub` VExt (vVar _A) (fbind' _B nm_a) extendCtx _A VType $ extendCtx _B (vVar _A `vArr` VTel) $ extendCtx pb _PB $ checkV pext _PExt inferN nm (Pipe fs (EElimDesc _I _P pend prec parg)) = do let _D = VNeut nm fs checkV _I VType checkV _D (VDesc _I) checkVExtend (VDesc _I) _P VType checkVpend _I _P pend checkVprec _I _P prec checkVparg _I _P parg _P `sub` _D where checkVpend :: Value -> Bind Nom Type -> Bind Nom Value -> SpireM () checkVpend _I _P bnd_pend = do (i , pend) <- unbind bnd_pend _Pi <- _P `sub` VEnd (vVar i) extendCtx i _I $ checkV pend _Pi checkVprec :: Value -> Bind Nom Type -> Bind Nom3 Value -> SpireM () checkVprec _I _P bnd_prec = do ((i , _D , pd) , prec) <- unbind bnd_prec _PD <- _P `sub` (vVar _D) _PRec <- _P `sub` VRec (vVar i) (vVar _D) extendCtx i _I $ extendCtx _D (VDesc _I) $ extendCtx pd _PD $ checkV prec _PRec checkVparg :: Value -> Bind Nom Type -> Bind Nom3 Value -> SpireM () checkVparg _I _P bnd_parg = do ((_A , _B , pb) , parg) <- unbind bnd_parg let nm_a = "a" _Ba <- _P `sub` vApp' _B (var nm_a) let _PB = VPi (vVar _A) (sbind nm_a _Ba) _PArg <- _P `sub` VArg (vVar _A) (fbind' _B nm_a) extendCtx _A VType $ extendCtx _B (vVar _A `vArr` VDesc _I) $ extendCtx pb _PB $ checkV parg _PArg inferN nm (Pipe fs (EFunc _I _X i)) = do checkV _I VType let _D = VNeut nm fs checkV _D (VDesc _I) checkVExtend _I _X VType checkV i _I return VType inferN nm (Pipe fs (EHyps _I _X _M i xs)) = do checkV _I VType let _D = VNeut nm fs checkV _D (VDesc _I) checkVExtend _I _X VType checkVM _I _X _M checkV i _I checkV xs =<< _D `elim` EFunc _I _X i return VType inferN nm (Pipe fs (EProve _I _X _M m i xs)) = do checkV _I VType let _D = VNeut nm fs checkV _D (VDesc _I) checkVExtend _I _X VType checkVM _I _X _M checkVm _I _X _M m checkV i _I checkV xs =<< _D `elim` EFunc _I _X i _D `elim` EHyps _I _X _M i xs where checkVm :: Type -> Bind Nom Type -> Bind Nom2 Type -> Bind Nom2 Type -> SpireM () checkVm _I _X _M bnd_m = do ((i , x) , m) <- unbind bnd_m _Xi <- _X `sub` vVar i _Mix <- _M `sub2` (vVar i , vVar x) extendCtx i _I $ extendCtx x _Xi $ checkV m _Mix inferN nm (Pipe fs (EInd l _P _I _D p _M m i)) = do checkV l VString checkV _P VType checkV _I VType checkV _D (VDesc _I) checkV p _P checkVM l _P _I _D p i _M checkVm l _P _I _D p i _M m checkV i _I let x = VNeut nm fs checkV x (VFix l _P _I _D p i) _M `sub2` (i , x) where checkVM :: Value -> Type -> Type -> Value -> Value -> Value -> Bind Nom2 Type -> SpireM () checkVM l _P _I _D p i bnd_M = do ((i , x) , _M) <- unbind bnd_M let _X = VFix l _P _I _D p (vVar i) extendCtx i _I $ extendCtx x _X $ checkV _M VType checkVm :: Value -> Type -> Type -> Value -> Value -> Value -> Bind Nom2 Type -> Bind Nom3 Type -> SpireM () checkVm l _P _I _D p i _M bnd_m = do ((i , xs , ihs) , m) <- unbind bnd_m let _X = vBind "i" (\j -> VFix l _P _I _D p j) _Xs <- _D `elim` EFunc _I _X (vVar i) _IHs <- _D `elim` EHyps _I _X _M (vVar i) (vVar xs) _Mix <- _M `sub2` (vVar i , VInit (vVar xs)) extendCtx i _I $ extendCtx xs _Xs $ extendCtx ihs _IHs $ checkV m _Mix inferN nm (Pipe fs (EBranches _P)) = do let _E = VNeut nm fs checkV _E VEnum checkVExtend (VTag _E) _P VType return VType inferN nm (Pipe fs (ECase _E _P cs)) = do let t = VNeut nm fs checkV _E VEnum checkV t (VTag _E) checkVExtend (VTag _E) _P VType checkV cs =<< _E `elim` EBranches _P _P `sub` t ---------------------------------------------------------------------- checkVM :: Type -> Bind Nom Type -> Bind Nom2 Type -> SpireM () checkVM _I _X bnd_M = do ((i , x) , _M) <- unbind bnd_M _Xi <- _X `sub` vVar i extendCtx i _I $ extendCtx x _Xi $ checkV _M VType ---------------------------------------------------------------------- checkVExtend :: Type -> Bind Nom Value -> Type -> SpireM () checkVExtend _A bnd_b _B = do (x , b) <- unbind bnd_b extendCtx x _A $ checkV b _B ----------------------------------------------------------------------
spire/spire
src/Spire/Canonical/Checker.hs
bsd-3-clause
11,060
0
17
2,804
5,091
2,404
2,687
316
2
module Parser where import Control.Applicative import Control.Monad import Data.Char newtype Parser a = Parser (String -> [(a, String)]) apply :: Parser a -> String -> [(a, String)] apply (Parser f) s = f s parse :: Parser a -> String -> a parse m s = one [x | (x, t) <- apply m s, t== ""] where one [] = error "no parse" one [x] = x one xs | length xs > 1 = error "ambiguous parse" instance Functor Parser where fmap = liftM instance Applicative Parser where pure = return (<*>) = ap instance Monad Parser where return x = Parser (\s->[(x,s)]) m >>= k = Parser( \s-> [ (y, u) | (x, t) <-apply m s, (y, u) <-apply (k x) t ]) instance Alternative Parser where empty = mzero (<|>) = mplus instance MonadPlus Parser where mzero = Parser (\s-> []) mplus m n = Parser (\s -> apply m s ++ apply n s) char :: Parser Char char = Parser$ \s -> case s of [] -> mzero (x:xs) -> return (x,xs) --Parser.apply char "aaa" spot::(Char -> Bool) -> Parser Char spot f = char >>= \c -> guard (f c) >>= \_->return c --Parser.apply (spot isDigit) "123" parseDigit :: Parser Char parseDigit = spot isDigit token:: Char -> Parser Char token c = spot (==c) --Parser.apply (token 'a') "123" addsth :: Parser String --addsth = spot isDigit >>= \a->return (a:[]) addsth = spot isDigit >>= \a->token '+'>>= \b->spot isDigit >>= \c-> return $show a ++ "+" ++ show c --Parser.apply addsth "1+2ddd" matchEx2 :: String -> Parser String matchEx2 (x:xs) = do y <- token x ys <- match xs return $y : ys matchEx :: String -> Parser String matchEx s = sequence (map token s) -- Parser.apply (matchEx "aa") "aa123" match :: String -> Parser String match = mapM token -- Parser.apply (matchEx2 "aa") "aa123" test :: Parser [String] test = return [] --Parser.apply test "123" star :: Parser a -> Parser [a] star p = plusEx p `mplus` return [] -- Parser.apply (star $ spot isDigit) "123" plus :: Parser a -> Parser[a] plus p = p >>= \x -> star p >>= \xs -> return $ x : xs -- Parser.apply (plus $ spot isDigit) "123" -- parse (plus $ spot isDigit) "123" plusEx :: Parser a -> Parser [a] plusEx a = do x <- a xs <- star a return $ x:xs -- Parser.apply (plusEx $ spot isDigit) "123" --Parser.apply (star $ token 'a' `mplus` token 'b') "a1234" parseNat :: Parser Int parseNat = plus parseDigit >>= \s-> return $ read s --Parser.apply parseNat "1234" parseNeg :: Parser Int parseNeg = token '-' >> parseNat >>= \n -> return $ -n --Parser.apply parseNat "1234" parseInt :: Parser Int parseInt = parseNat `mplus` parseNeg --Parser.apply parseInt "-1234" --Parser.apply parseInt "1234"
bzhkl/MonadTry
LibParser/Parser.hs
bsd-3-clause
2,792
0
14
727
1,026
536
490
70
3
{-# LANGUAGE BangPatterns #-} module Network.DNS.Cache.Cache ( CacheRef , newCacheRef , lookupCacheRef , insertCacheRef , pruneCacheRef ) where import Control.Applicative ((<$>)) import Data.IORef (newIORef, readIORef, atomicModifyIORef', IORef) import Data.OrdPSQ (OrdPSQ) import qualified Data.OrdPSQ as PSQ import Network.DNS.Cache.Types type PSQ = OrdPSQ newtype CacheRef = CacheRef (IORef (PSQ Key Prio Entry)) newCacheRef :: IO CacheRef newCacheRef = CacheRef <$> newIORef PSQ.empty lookupCacheRef :: Key -> CacheRef -> IO (Maybe (Prio, Entry)) lookupCacheRef key (CacheRef ref) = PSQ.lookup key <$> readIORef ref insertCacheRef :: Key -> Prio -> Entry -> CacheRef -> IO () insertCacheRef key tim ent (CacheRef ref) = atomicModifyIORef' ref $ \q -> (PSQ.insert key tim ent q, ()) pruneCacheRef :: Prio -> CacheRef -> IO () pruneCacheRef tim (CacheRef ref) = atomicModifyIORef' ref $ \p -> (snd (PSQ.atMostView tim p), ())
kazu-yamamoto/concurrent-dns-cache
Network/DNS/Cache/Cache.hs
bsd-3-clause
957
0
11
162
334
184
150
24
1
-- generated by derive.hs module Prose.Internal.GraphemeBreakTest where graphemebreaktest = [ [" "," "], [" \776"," "], [" ","\r"], [" \776","\r"], [" ","\n"], [" \776","\n"], [" ","\SOH"], [" \776","\SOH"], [" \768"], [" \776\768"], [" \2307"], [" \776\2307"], [" ","\4352"], [" \776","\4352"], [" ","\4448"], [" \776","\4448"], [" ","\4520"], [" \776","\4520"], [" ","\44032"], [" \776","\44032"], [" ","\44033"], [" \776","\44033"], [" ","\127462"], [" \776","\127462"], [" ","\888"], [" \776","\888"], [" ","\55296"], [" \776","\55296"], ["\r"," "], ["\r","\776"," "], ["\r","\r"], ["\r","\776","\r"], ["\r\n"], ["\r","\776","\n"], ["\r","\SOH"], ["\r","\776","\SOH"], ["\r","\768"], ["\r","\776\768"], ["\r","\2307"], ["\r","\776\2307"], ["\r","\4352"], ["\r","\776","\4352"], ["\r","\4448"], ["\r","\776","\4448"], ["\r","\4520"], ["\r","\776","\4520"], ["\r","\44032"], ["\r","\776","\44032"], ["\r","\44033"], ["\r","\776","\44033"], ["\r","\127462"], ["\r","\776","\127462"], ["\r","\888"], ["\r","\776","\888"], ["\r","\55296"], ["\r","\776","\55296"], ["\n"," "], ["\n","\776"," "], ["\n","\r"], ["\n","\776","\r"], ["\n","\n"], ["\n","\776","\n"], ["\n","\SOH"], ["\n","\776","\SOH"], ["\n","\768"], ["\n","\776\768"], ["\n","\2307"], ["\n","\776\2307"], ["\n","\4352"], ["\n","\776","\4352"], ["\n","\4448"], ["\n","\776","\4448"], ["\n","\4520"], ["\n","\776","\4520"], ["\n","\44032"], ["\n","\776","\44032"], ["\n","\44033"], ["\n","\776","\44033"], ["\n","\127462"], ["\n","\776","\127462"], ["\n","\888"], ["\n","\776","\888"], ["\n","\55296"], ["\n","\776","\55296"], ["\SOH"," "], ["\SOH","\776"," "], ["\SOH","\r"], ["\SOH","\776","\r"], ["\SOH","\n"], ["\SOH","\776","\n"], ["\SOH","\SOH"], ["\SOH","\776","\SOH"], ["\SOH","\768"], ["\SOH","\776\768"], ["\SOH","\2307"], ["\SOH","\776\2307"], ["\SOH","\4352"], ["\SOH","\776","\4352"], ["\SOH","\4448"], ["\SOH","\776","\4448"], ["\SOH","\4520"], ["\SOH","\776","\4520"], ["\SOH","\44032"], ["\SOH","\776","\44032"], ["\SOH","\44033"], ["\SOH","\776","\44033"], ["\SOH","\127462"], ["\SOH","\776","\127462"], ["\SOH","\888"], ["\SOH","\776","\888"], ["\SOH","\55296"], ["\SOH","\776","\55296"], ["\768"," "], ["\768\776"," "], ["\768","\r"], ["\768\776","\r"], ["\768","\n"], ["\768\776","\n"], ["\768","\SOH"], ["\768\776","\SOH"], ["\768\768"], ["\768\776\768"], ["\768\2307"], ["\768\776\2307"], ["\768","\4352"], ["\768\776","\4352"], ["\768","\4448"], ["\768\776","\4448"], ["\768","\4520"], ["\768\776","\4520"], ["\768","\44032"], ["\768\776","\44032"], ["\768","\44033"], ["\768\776","\44033"], ["\768","\127462"], ["\768\776","\127462"], ["\768","\888"], ["\768\776","\888"], ["\768","\55296"], ["\768\776","\55296"], ["\2307"," "], ["\2307\776"," "], ["\2307","\r"], ["\2307\776","\r"], ["\2307","\n"], ["\2307\776","\n"], ["\2307","\SOH"], ["\2307\776","\SOH"], ["\2307\768"], ["\2307\776\768"], ["\2307\2307"], ["\2307\776\2307"], ["\2307","\4352"], ["\2307\776","\4352"], ["\2307","\4448"], ["\2307\776","\4448"], ["\2307","\4520"], ["\2307\776","\4520"], ["\2307","\44032"], ["\2307\776","\44032"], ["\2307","\44033"], ["\2307\776","\44033"], ["\2307","\127462"], ["\2307\776","\127462"], ["\2307","\888"], ["\2307\776","\888"], ["\2307","\55296"], ["\2307\776","\55296"], ["\4352"," "], ["\4352\776"," "], ["\4352","\r"], ["\4352\776","\r"], ["\4352","\n"], ["\4352\776","\n"], ["\4352","\SOH"], ["\4352\776","\SOH"], ["\4352\768"], ["\4352\776\768"], ["\4352\2307"], ["\4352\776\2307"], ["\4352\4352"], ["\4352\776","\4352"], ["\4352\4448"], ["\4352\776","\4448"], ["\4352","\4520"], ["\4352\776","\4520"], ["\4352\44032"], ["\4352\776","\44032"], ["\4352\44033"], ["\4352\776","\44033"], ["\4352","\127462"], ["\4352\776","\127462"], ["\4352","\888"], ["\4352\776","\888"], ["\4352","\55296"], ["\4352\776","\55296"], ["\4448"," "], ["\4448\776"," "], ["\4448","\r"], ["\4448\776","\r"], ["\4448","\n"], ["\4448\776","\n"], ["\4448","\SOH"], ["\4448\776","\SOH"], ["\4448\768"], ["\4448\776\768"], ["\4448\2307"], ["\4448\776\2307"], ["\4448","\4352"], ["\4448\776","\4352"], ["\4448\4448"], ["\4448\776","\4448"], ["\4448\4520"], ["\4448\776","\4520"], ["\4448","\44032"], ["\4448\776","\44032"], ["\4448","\44033"], ["\4448\776","\44033"], ["\4448","\127462"], ["\4448\776","\127462"], ["\4448","\888"], ["\4448\776","\888"], ["\4448","\55296"], ["\4448\776","\55296"], ["\4520"," "], ["\4520\776"," "], ["\4520","\r"], ["\4520\776","\r"], ["\4520","\n"], ["\4520\776","\n"], ["\4520","\SOH"], ["\4520\776","\SOH"], ["\4520\768"], ["\4520\776\768"], ["\4520\2307"], ["\4520\776\2307"], ["\4520","\4352"], ["\4520\776","\4352"], ["\4520","\4448"], ["\4520\776","\4448"], ["\4520\4520"], ["\4520\776","\4520"], ["\4520","\44032"], ["\4520\776","\44032"], ["\4520","\44033"], ["\4520\776","\44033"], ["\4520","\127462"], ["\4520\776","\127462"], ["\4520","\888"], ["\4520\776","\888"], ["\4520","\55296"], ["\4520\776","\55296"], ["\44032"," "], ["\44032\776"," "], ["\44032","\r"], ["\44032\776","\r"], ["\44032","\n"], ["\44032\776","\n"], ["\44032","\SOH"], ["\44032\776","\SOH"], ["\44032\768"], ["\44032\776\768"], ["\44032\2307"], ["\44032\776\2307"], ["\44032","\4352"], ["\44032\776","\4352"], ["\44032\4448"], ["\44032\776","\4448"], ["\44032\4520"], ["\44032\776","\4520"], ["\44032","\44032"], ["\44032\776","\44032"], ["\44032","\44033"], ["\44032\776","\44033"], ["\44032","\127462"], ["\44032\776","\127462"], ["\44032","\888"], ["\44032\776","\888"], ["\44032","\55296"], ["\44032\776","\55296"], ["\44033"," "], ["\44033\776"," "], ["\44033","\r"], ["\44033\776","\r"], ["\44033","\n"], ["\44033\776","\n"], ["\44033","\SOH"], ["\44033\776","\SOH"], ["\44033\768"], ["\44033\776\768"], ["\44033\2307"], ["\44033\776\2307"], ["\44033","\4352"], ["\44033\776","\4352"], ["\44033","\4448"], ["\44033\776","\4448"], ["\44033\4520"], ["\44033\776","\4520"], ["\44033","\44032"], ["\44033\776","\44032"], ["\44033","\44033"], ["\44033\776","\44033"], ["\44033","\127462"], ["\44033\776","\127462"], ["\44033","\888"], ["\44033\776","\888"], ["\44033","\55296"], ["\44033\776","\55296"], ["\127462"," "], ["\127462\776"," "], ["\127462","\r"], ["\127462\776","\r"], ["\127462","\n"], ["\127462\776","\n"], ["\127462","\SOH"], ["\127462\776","\SOH"], ["\127462\768"], ["\127462\776\768"], ["\127462\2307"], ["\127462\776\2307"], ["\127462","\4352"], ["\127462\776","\4352"], ["\127462","\4448"], ["\127462\776","\4448"], ["\127462","\4520"], ["\127462\776","\4520"], ["\127462","\44032"], ["\127462\776","\44032"], ["\127462","\44033"], ["\127462\776","\44033"], ["\127462\127462"], ["\127462\776","\127462"], ["\127462","\888"], ["\127462\776","\888"], ["\127462","\55296"], ["\127462\776","\55296"], ["\888"," "], ["\888\776"," "], ["\888","\r"], ["\888\776","\r"], ["\888","\n"], ["\888\776","\n"], ["\888","\SOH"], ["\888\776","\SOH"], ["\888\768"], ["\888\776\768"], ["\888\2307"], ["\888\776\2307"], ["\888","\4352"], ["\888\776","\4352"], ["\888","\4448"], ["\888\776","\4448"], ["\888","\4520"], ["\888\776","\4520"], ["\888","\44032"], ["\888\776","\44032"], ["\888","\44033"], ["\888\776","\44033"], ["\888","\127462"], ["\888\776","\127462"], ["\888","\888"], ["\888\776","\888"], ["\888","\55296"], ["\888\776","\55296"], ["\55296"," "], ["\55296","\776"," "], ["\55296","\r"], ["\55296","\776","\r"], ["\55296","\n"], ["\55296","\776","\n"], ["\55296","\SOH"], ["\55296","\776","\SOH"], ["\55296","\768"], ["\55296","\776\768"], ["\55296","\2307"], ["\55296","\776\2307"], ["\55296","\4352"], ["\55296","\776","\4352"], ["\55296","\4448"], ["\55296","\776","\4448"], ["\55296","\4520"], ["\55296","\776","\4520"], ["\55296","\44032"], ["\55296","\776","\44032"], ["\55296","\44033"], ["\55296","\776","\44033"], ["\55296","\127462"], ["\55296","\776","\127462"], ["\55296","\888"], ["\55296","\776","\888"], ["\55296","\55296"], ["\55296","\776","\55296"], ["a","\127462","b"], ["\127479\127482"], ["\127479\127482\127480"], ["\127479\127482\127480\127466"], ["\127479\127482","\8203","\127480\127466"], ["\127462\127463\127464"], ["\127462\8205","\127463\127464"], ["\127462\127463\8205","\127464"], [" \8205","\1606"], ["\1606\8205"," "] ]
llelf/prose
Prose/Internal/GraphemeBreakTest.hs
bsd-3-clause
9,759
0
6
2,079
3,613
2,409
1,204
404
1
-- ----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 2011 -- -- Generate code to initialise cost centres -- -- ----------------------------------------------------------------------------- module ProfInit (profilingInitCode) where import GhcPrelude import GHC.Cmm.CLabel import CostCentre import DynFlags import Outputable import Module -- ----------------------------------------------------------------------------- -- Initialising cost centres -- We must produce declarations for the cost-centres defined in this -- module; profilingInitCode :: Module -> CollectedCCs -> SDoc profilingInitCode this_mod (local_CCs, singleton_CCSs) = sdocWithDynFlags $ \dflags -> if not (gopt Opt_SccProfilingOn dflags) then empty else vcat $ map emit_cc_decl local_CCs ++ map emit_ccs_decl singleton_CCSs ++ [emit_cc_list local_CCs] ++ [emit_ccs_list singleton_CCSs] ++ [ text "static void prof_init_" <> ppr this_mod <> text "(void) __attribute__((constructor));" , text "static void prof_init_" <> ppr this_mod <> text "(void)" , braces (vcat [ text "registerCcList" <> parens local_cc_list_label <> semi , text "registerCcsList" <> parens singleton_cc_list_label <> semi ]) ] where emit_cc_decl cc = text "extern CostCentre" <+> cc_lbl <> text "[];" where cc_lbl = ppr (mkCCLabel cc) local_cc_list_label = text "local_cc_" <> ppr this_mod emit_cc_list ccs = text "static CostCentre *" <> local_cc_list_label <> text "[] =" <+> braces (vcat $ [ ppr (mkCCLabel cc) <> comma | cc <- ccs ] ++ [text "NULL"]) <> semi emit_ccs_decl ccs = text "extern CostCentreStack" <+> ccs_lbl <> text "[];" where ccs_lbl = ppr (mkCCSLabel ccs) singleton_cc_list_label = text "singleton_cc_" <> ppr this_mod emit_ccs_list ccs = text "static CostCentreStack *" <> singleton_cc_list_label <> text "[] =" <+> braces (vcat $ [ ppr (mkCCSLabel cc) <> comma | cc <- ccs ] ++ [text "NULL"]) <> semi
sdiehl/ghc
compiler/profiling/ProfInit.hs
bsd-3-clause
2,228
0
17
556
482
245
237
43
2
module Graphics.Volume.MarchingCubes where import Graphics.Volume.MarchingCubesTables import Numeric.ScalarField import Control.Lens import Data.Bits import qualified Data.Vector as V import Linear -- | Calculates the isosurface of a scalar field in three dimensional euclidian space. marchingCubes :: (Enum a, Ord a, Epsilon a, Floating a, ScalarField s (V3 a) (V3 a) a) => s -- ^ the isosurface -> a -- ^ iso level -> V3 a -- ^ region origin -> V3 Int -- ^ number of cubes in each direction -> a -- ^ cube size -> [[(V3 a, V3 a)]] -- ^ a list of triangle vertices consisting of position and normal marchingCubes field isoLevel (V3 x0 y0 z0) (V3 nx ny nz) cubeSize = map handleCube positions where -- positions of all cubes in the specified region positions = [V3 (x0 + cubeSize * realToFrac x) (y0 + cubeSize * realToFrac y) (z0 + cubeSize * realToFrac z) | x <- [0..nx-1] , y <- [0..ny-1] , z <- [0..nz-1] ] -- returns gradient and density in the scalar field as 4 dimensional vector valueAndGradientAt pos = case gradientAt field pos of V3 x y z -> V4 x y z (valueAt field pos) -- calculate corners and values of cube handleCube pos = let corners = cubeCorners cubeSize pos values = V.map valueAndGradientAt corners in generateMesh isoLevel corners values -- | Calculates the cornes of a cube cubeCorners :: (Num a) => a -> V3 a -> V.Vector (V3 a) cubeCorners width (V3 x y z) = V.fromList [ V3 x y z , V3 (x+width) y z , V3 (x+width) y (z+width) , V3 x y (z+width) , V3 x (y+width) z , V3 (x+width) (y+width) z , V3 (x+width) (y+width) (z+width) , V3 x (y+width) (z+width) ] -- | Calculates the intersection of an edge with the iso-surface -- and the corresponding normal vector. interpolate :: (Floating a, Epsilon a) => a -- ^ isoLevel -> V3 a -- ^ start point of edge -> V3 a -- ^ end point of edge -> V4 a -- ^ start value of edge -> V4 a -- ^ end value of edge -> (V3 a, V3 a) -- ^ point of intersection and normal vector interpolate isoLevel v0 v1 val0 val1 | nearZero $ val0 ^. _w - isoLevel = (v0, val1 ^. _xyz) | nearZero $ val1 ^. _w - isoLevel = (v1, val1 ^. _xyz) | nearZero $ val1 ^. _w - val0 ^. _w = (v0, val0 ^. _xyz) | otherwise = ( v0 ^+^ mu *^ (v1 ^-^ v0) , normalize $ (val0 ^+^ mu *^ (val1 ^-^ val0)) ^. _xyz ) where mu = (isoLevel - val0 ^. _w) / (val1 ^. _w - val0 ^. _w) -- | Generates the mesh for one cube. generateMesh :: (Ord a, Floating a, Epsilon a) => a -- ^ iso level -> V.Vector (V3 a) -- ^ cube corner positions -> V.Vector (V4 a) -- ^ cube corner values (gradient + density) -> [(V3 a, V3 a)] -- ^ list of triangle vertices with corresponding normal vectors generateMesh isoLevel corners values = concatMap (vectorToList . fmap (intersections V.!)) triangles where -- index of cube in the lookup tables cubeIndex = V.ifoldl' (\idx i v -> if v ^. _w >= isoLevel then idx .|. (1 `shiftL` i) else idx) 0 values triangles = mcTriangles V.! cubeIndex -- indices of corners participating in the respective edges edges = [(0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7), (7,4), (0,4), (1,5), (2,6), (3,7)] -- lazy vector of interpolated intersections intersections = V.fromList [ interpolate isoLevel (corners V.! i) (corners V.! j) (values V.! i) (values V.! j) | (i,j) <- edges ] -- | returns the elements of the vector as list vectorToList :: V3 a -> [a] vectorToList (V3 x y z) = [x,y,z]
fatho/volume
src/Graphics/Volume/MarchingCubes.hs
bsd-3-clause
3,878
0
14
1,190
1,305
710
595
-1
-1
module IA.GA ( GenoType , GenoTypes , PhenoType , Population , Select , CrossOver , Mutate , Fitness , FitnessType(..) , mkFitness , mkSelect , mkCrossOver , mkMutate , binaryTournament , runGA , randomRSt , randomSt , GeneBits(..) , mutateBits , crossOverBits , mutateSeq , crossOverSeq ) where import Control.Monad.State import Data.Bits ((.&.), (.|.)) import Data.Ord (comparing) import Data.Sequence ((|>),(><),ViewL(..)) import Data.Traversable as T import System.Random import qualified Control.Exception as E import qualified Data.Bits as B import qualified Data.Sequence as S type GenoType a = a type GenoTypes a = S.Seq (GenoType a) type PhenoType a b = (GenoType a, b) type Population a b = S.Seq (PhenoType a b) data Select a b g = Select Int (Population a b -> State g (GenoTypes a)) newtype CrossOver a g = CrossOver (GenoTypes a -> State g (GenoTypes a)) data Mutate a g = Mutate Double (GenoType a -> State g (GenoType a)) data FitnessType = FitnessMaximize | FitnessMinimize data Fitness a b = Fitness FitnessType (GenoType a -> b) nextGen :: (RandomGen g, Ord b) => Population a b -> Fitness a b -> Select a b g -> CrossOver a g -> Mutate a g -> State g (Population a b) nextGen pop fitness@(Fitness fitnessType _) (Select eliteCount selectFun) (CrossOver crossOverFun) (Mutate mutateRate mutateFun) = (sortPop fitnessType . (elitePop ><)) `fmap` newPop where elitePop = S.take eliteCount pop popLength = S.length pop takeBestPop = S.take $ E.assert (popLength > eliteCount) (popLength - eliteCount) newGenes = selectFun pop >>= crossOverFun >>= traverse mutate newPop = (takeBestPop . toPop fitness) `fmap` newGenes mutate g = do i <- randomRSt (0, 1) if i <= mutateRate then mutateFun g else return g sortPop :: Ord b => FitnessType -> Population a b -> Population a b sortPop fitnessType = S.sortBy cmp where cmp = case fitnessType of FitnessMaximize -> flip $ comparing snd FitnessMinimize -> comparing snd toPop :: Ord b => Fitness a b -> GenoTypes a -> Population a b toPop (Fitness fitnessType fitnessFun) = sortPop fitnessType . fmap (\x -> (x, fitnessFun x)) runGA :: (RandomGen g, Ord b) => g -> Int -> GenoTypes a -> Fitness a b -> Select a b g -> CrossOver a g -> Mutate a g -> GenoType a runGA rgen iterNb initialGenes fitness select crossOver mutate = let initialPop = toPop fitness initialGenes runNextGen p = nextGen p fitness select crossOver mutate finalGenoType = (fst . headSeq) `fmap` iterM iterNb runNextGen initialPop in evalState finalGenoType rgen iterM :: (Monad m) => Int -> (a -> m a) -> a -> m a iterM 0 _ a = return a iterM n f a = f a >>= iterM (n - 1) f headSeq :: S.Seq a -> a headSeq s = h where (h :< _) = S.viewl s tailSeq :: S.Seq a -> S.Seq a tailSeq s = t where (_ :< t) = S.viewl s randomSt :: (RandomGen g, Random a) => State g a randomSt = state random randomRSt :: (RandomGen g, Random a) => (a, a) -> State g a randomRSt a = state $ randomR a binaryTournament :: (RandomGen g, Ord b) => Population a b -> State g (GenoType a) binaryTournament pop = do let l = S.length pop l' = E.assert (l > 0) (l - 1) i <- randomRSt (0, l') j <- randomRSt (0, l') let (gi, si) = S.index pop i (gj, sj) = S.index pop j return $ if si > sj then gi else gj mkSelect :: Int -> (Population a b -> State g (GenoType a)) -> Select a b g mkSelect eliteCount f = Select eliteCount (\pop -> T.sequence . fmap (const $ f pop) $ pop) mkCrossOver ::(GenoType a -> GenoType a -> State g (GenoType a)) -> CrossOver a g mkCrossOver f = CrossOver go where go genoTypes = T.sequence . fmap (uncurry f) $ couples where g = genoTypes |> headSeq genoTypes couples = S.zip g $ tailSeq g mkMutate :: Double -> (GenoType a -> State g (GenoType a)) -> Mutate a g mkMutate = Mutate mkFitness :: FitnessType -> (a -> b) -> Fitness a b mkFitness = Fitness data GeneBits a = GeneBits !a !Int deriving (Show, Eq) mutateBits :: (RandomGen g, B.Bits a) => GeneBits a -> State g (GeneBits a) mutateBits (GeneBits bits len) = do i <- randomRSt (0, E.assert (len > 0) (len - 1)) return $ GeneBits (B.complementBit bits i) len crossOverBits :: (RandomGen g, B.Bits a) => GeneBits a -> GeneBits a -> State g (GeneBits a) crossOverBits g@(GeneBits _ len) g'@(GeneBits _ len') = do i <- randomRSt (0, E.assert (len == len' && len > 0) (len - 1)) return $ mergeGeneBits g g' i mergeGeneBits :: B.Bits a => GeneBits a -> GeneBits a -> Int -> GeneBits a mergeGeneBits (GeneBits bits len) (GeneBits bits' len') i = GeneBits (mergeBits (bits .&. mask) (bits' .&. mask) i) len where mask = B.complement $ B.shift oneBits $ E.assert (len == len') len mergeBits :: B.Bits a => a -> a -> Int -> a mergeBits b b' i = b .&. leftMask .|. b' .&. rightMask where rightMask = B.shift oneBits i leftMask = B.complement rightMask oneBits :: B.Bits a => a oneBits = B.complement B.zeroBits mutateSeq :: (RandomGen g, Random a) => S.Seq a -> State g (S.Seq a) mutateSeq xs = do let l = S.length xs i <- randomRSt (0, E.assert (l > 0) (l - 1)) newVal <- randomSt return $ S.update i newVal xs crossOverSeq :: (RandomGen g) => S.Seq a -> S.Seq a -> State g (S.Seq a) crossOverSeq g g' = do let l = E.assert (S.length g == S.length g') (S.length g) i <- randomRSt (0, E.assert (l > 0) (l - 1)) return $ S.take i g >< S.drop i g'
dlgd/GA
src/IA/GA.hs
bsd-3-clause
5,977
0
14
1,741
2,478
1,274
1,204
169
2
{-# LANGUAGE CPP #-} module Distribution.Simple.UUAGC.UUAGC(uuagcUserHook, uuagcUserHook', uuagc, uuagcLibUserHook, uuagcFromString ) where import Distribution.Simple.BuildPaths (autogenModulesDir) import Debug.Trace import Distribution.Simple import Distribution.Simple.PreProcess import Distribution.Simple.LocalBuildInfo import Distribution.Simple.Utils import Distribution.Simple.Setup import Distribution.PackageDescription hiding (Flag) import Distribution.Simple.UUAGC.AbsSyn( AGFileOption(..) , AGFileOptions , AGOptionsClass(..) , lookupFileOptions , fileClasses ) import Distribution.Simple.UUAGC.Parser import Options hiding (verbose) import Distribution.Verbosity import System.Process( CreateProcess(..), createProcess, CmdSpec(..) , StdStream(..), runProcess, waitForProcess , shell) import System.Directory(getModificationTime ,doesFileExist ,removeFile) import System.FilePath(pathSeparators, (</>), takeFileName, normalise, joinPath, dropFileName, addExtension, dropExtension, replaceExtension, splitDirectories) import System.Exit (ExitCode(..)) import System.IO( openFile, IOMode(..), hFileSize, hSetFileSize, hClose, hGetContents, hFlush, Handle(..), stderr, hPutStr, hPutStrLn) import System.Exit(exitFailure) import Control.Exception (throwIO) import Control.Monad (liftM, when, guard, forM_, forM) import Control.Arrow ((&&&), second) import Data.Maybe (maybeToList) import Data.Either (partitionEithers) import Data.List (nub,intersperse) import Data.Map (Map) import qualified Data.Map as Map {-# DEPRECATED uuagcUserHook, uuagcUserHook', uuagc "Use uuagcLibUserHook instead" #-} -- | 'uuagc' returns the name of the uuagc compiler uuagcn = "uuagc" -- | 'defUUAGCOptions' returns the default names of the uuagc options defUUAGCOptions :: String defUUAGCOptions = "uuagc_options" -- | File used to store de classes defined in the cabal file. agClassesFile :: String agClassesFile = "ag_file_options" -- | The prefix used for the cabal file optionsw agModule :: String agModule = "x-agmodule" -- | The prefix used for the cabal file options used for defining classes agClass :: String agClass = "x-agclass" -- | Deprecated userhook uuagcUserHook :: UserHooks uuagcUserHook = uuagcUserHook' uuagcn -- | Deprecated userhook uuagcUserHook' :: String -> UserHooks uuagcUserHook' uuagcPath = uuagcLibUserHook (uuagcFromString uuagcPath) -- | Create uuagc function using shell (old method) uuagcFromString :: String -> [String] -> FilePath -> IO (ExitCode, [FilePath]) uuagcFromString uuagcPath args file = do let argline = uuagcPath ++ concatMap (' ':) (args ++ [file]) (_, Just ppOutput, Just ppError, ph) <- createProcess (shell argline) { std_in = Inherit , std_out = CreatePipe , std_err = CreatePipe } ec <- waitForProcess ph case ec of ExitSuccess -> do putErrorInfo ppError fls <- processContent ppOutput return (ExitSuccess, fls) (ExitFailure exc) -> do hPutStrLn stderr (uuagcPath ++ ": " ++ show exc) putErrorInfo ppOutput putErrorInfo ppError return (ExitFailure exc, []) -- | Main hook, argument should be uuagc function uuagcLibUserHook :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> UserHooks uuagcLibUserHook uuagc = hooks where hooks = simpleUserHooks { hookedPreProcessors = ("ag", ag):("lag",ag):knownSuffixHandlers , buildHook = uuagcBuildHook uuagc , sDistHook = uuagcSDistHook uuagc } ag = uuagc' uuagc originalPreBuild = preBuild simpleUserHooks originalBuildHook = buildHook simpleUserHooks originalSDistHook = sDistHook simpleUserHooks processContent :: Handle -> IO [String] processContent = liftM words . hGetContents putErrorInfo :: Handle -> IO () putErrorInfo h = hGetContents h >>= hPutStr stderr -- | 'updateAGFile' search into the uuagc options file for a list of all -- AG Files and theirs file dependencies in order to see if the latters -- are more updated that the formers, and if this is the case to -- update the AG File updateAGFile :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> Map FilePath (Options, Maybe (FilePath, [String])) -> (FilePath, (Options, Maybe (FilePath, [String]))) -> IO () updateAGFile _ _ (_,(_,Nothing)) = return () updateAGFile uuagc newOptions (file,(opts,Just (gen,sp))) = do hasGen <- doesFileExist gen when hasGen $ do (ec, files) <- uuagc (optionsToString $ opts { genFileDeps = True, searchPath = sp }) file case ec of ExitSuccess -> do let newOpts :: Options newOpts = maybe noOptions fst $ Map.lookup file newOptions optRebuild = optionsToString newOpts /= optionsToString opts modRebuild <- if null files then return False else do flsmt <- mapM getModificationTime files let maxModified = maximum flsmt fmt <- getModificationTime gen return $ maxModified > fmt -- When some dependency is newer or options have changed, we should regenerate when (optRebuild || modRebuild) $ removeFile gen ex@(ExitFailure _) -> throwIO ex getAGFileOptions :: [(String, String)] -> IO AGFileOptions getAGFileOptions extra = do cabalOpts <- mapM (parseOptionAG . snd) $ filter ((== agModule) . fst) extra usesOptionsFile <- doesFileExist defUUAGCOptions if usesOptionsFile then do r <- parserAG' defUUAGCOptions case r of Left e -> die (show e) Right a -> return $ cabalOpts ++ a else return cabalOpts getAGClasses :: [(String, String)] -> IO [AGOptionsClass] getAGClasses = mapM (parseClassAG . snd) . filter ((== agClass) . fst) writeFileOptions :: FilePath -> Map FilePath (Options, Maybe (FilePath,[String])) -> IO () writeFileOptions classesPath opts = do hClasses <- openFile classesPath WriteMode hPutStr hClasses $ show $ Map.map (\(opt,gen) -> (optionsToString opt, gen)) opts hFlush hClasses hClose hClasses readFileOptions :: FilePath -> IO (Map FilePath (Options, Maybe (FilePath,[String]))) readFileOptions classesPath = do isFile <- doesFileExist classesPath if isFile then do hClasses <- openFile classesPath ReadMode sClasses <- hGetContents hClasses classes <- readIO sClasses :: IO (Map FilePath ([String], Maybe (FilePath,[String]))) hClose hClasses return $ Map.map (\(opt,gen) -> let (opt',_,_) = getOptions opt in (opt', gen)) classes else return Map.empty getOptionsFromClass :: [(String, Options)] -> AGFileOption -> ([String], Options) getOptionsFromClass classes fOpt = second (foldl combineOptions (opts fOpt)) . partitionEithers $ do fClass <- fileClasses fOpt case fClass `lookup` classes of Just x -> return $ Right x Nothing -> return $ Left $ "Warning: The class " ++ show fClass ++ " is not defined." uuagcSDistHook :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> PackageDescription -> Maybe LocalBuildInfo -> UserHooks -> SDistFlags -> IO () uuagcSDistHook uuagc pd mbLbi uh df = do {- case mbLbi of Nothing -> warn normal "sdist: the local buildinfo was not present. Skipping AG initialization. Dist may fail." Just lbi -> let classesPath = buildDir lbi </> agClassesFile in commonHook uuagc classesPath pd lbi (sDistVerbosity df) originalSDistHook pd mbLbi uh df -} originalSDistHook pd mbLbi (uh { hookedPreProcessors = ("ag", nouuagc):("lag",nouuagc):knownSuffixHandlers }) df -- bypass preprocessors uuagcBuildHook :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> PackageDescription -> LocalBuildInfo -> UserHooks -> BuildFlags -> IO () uuagcBuildHook uuagc pd lbi uh bf = do let classesPath = buildDir lbi </> agClassesFile commonHook uuagc classesPath pd lbi (buildVerbosity bf) originalBuildHook pd lbi uh bf commonHook :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> FilePath -> PackageDescription -> LocalBuildInfo -> Flag Verbosity -> IO () commonHook uuagc classesPath pd lbi fl = do let verbosity = fromFlagOrDefault normal fl info verbosity $ "commonHook: Assuming AG classesPath: " ++ classesPath createDirectoryIfMissingVerbose verbosity True (buildDir lbi) -- Read already existing options -- Map FilePath (Options, Maybe (FilePath,[String])) oldOptions <- readFileOptions classesPath -- Read options from cabal and settings file let lib = library pd exes = executables pd bis = map libBuildInfo (maybeToList lib) ++ map buildInfo exes classes <- map (className &&& opts') `fmap` (getAGClasses . customFieldsPD $ pd) configOptions <- getAGFileOptions (bis >>= customFieldsBI) -- Construct new options map newOptionsL <- forM configOptions (\ opt -> let (notFound, opts) = getOptionsFromClass classes $ opt file = normalise $ filename opt gen = maybe Nothing snd $ Map.lookup file oldOptions in do info verbosity $ "options for " ++ file ++ ": " ++ unwords (optionsToString opts) forM_ notFound (hPutStrLn stderr) return (file, (opts, gen))) let newOptions = Map.fromList newOptionsL writeFileOptions classesPath newOptions -- Check if files should be regenerated mapM_ (updateAGFile uuagc newOptions) $ Map.toList oldOptions getAGFileList :: AGFileOptions -> [FilePath] getAGFileList = map (normalise . filename) uuagc :: BuildInfo -> LocalBuildInfo -> PreProcessor uuagc = uuagc' (uuagcFromString uuagcn) uuagc' :: ([String] -> FilePath -> IO (ExitCode, [FilePath])) -> BuildInfo -> LocalBuildInfo -> PreProcessor uuagc' uuagc build lbi = PreProcessor { platformIndependent = True, runPreProcessor = mkSimplePreProcessor $ \ inFile outFile verbosity -> do notice verbosity $ "[UUAGC] processing: " ++ inFile ++ " generating: " ++ outFile let classesPath = buildDir lbi </> agClassesFile info verbosity $ "uuagc-preprocessor: Assuming AG classesPath: " ++ classesPath fileOpts <- readFileOptions classesPath opts <- case Map.lookup inFile fileOpts of Nothing -> do warn verbosity $ "No options found for " ++ inFile return noOptions Just (opt,gen) -> return opt let search = dropFileName inFile options = opts { searchPath = search : hsSourceDirs build ++ searchPath opts , outputFiles = outFile : (outputFiles opts) } (eCode,_) <- uuagc (optionsToString options) inFile case eCode of ExitSuccess -> writeFileOptions classesPath (Map.insert inFile (opts, Just (outFile, searchPath options)) fileOpts) ex@(ExitFailure _) -> throwIO ex } nouuagc :: BuildInfo -> LocalBuildInfo -> PreProcessor nouuagc build lbi = PreProcessor { platformIndependent = True, runPreProcessor = mkSimplePreProcessor $ \inFile outFile verbosity -> do info verbosity ("skipping: " ++ outFile) }
norm2782/uuagc
cabal-plugin/src/Distribution/Simple/UUAGC/UUAGC.hs
bsd-3-clause
12,604
0
22
3,846
3,085
1,630
1,455
240
3
module TestFactorial where import Factorial import TestUtil ff :: Int --ff = 2 ^ 27 ff = 6 run :: IO () run = do putStrLn ("factorial1 " ++ show ff ++ " = " ++ show (factorial1 ff)) putStrLn ("factorial2 " ++ show ff ++ " = " ++ show (factorial2 ff))
pmilne/algebra
test/TestFactorial.hs
bsd-3-clause
275
0
12
77
102
52
50
9
1
{- Copyright James d'Arcy 2010 All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of James d'Arcy nor the names of other contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} module Data.Dicom.Tag where import Data.Word (Word32) type DicomTag = Word32 -- | Group 0x0002 - Metadata tRANSFER_SYNTAX_UID :: DicomTag tRANSFER_SYNTAX_UID = 0x00020010 -- | Group 0x0008 sOP_CLASS_UID :: DicomTag sOP_CLASS_UID = 0x00080016 sOP_INSTANCE_UID :: DicomTag sOP_INSTANCE_UID = 0x00080018 sTUDY_DATE :: DicomTag sTUDY_DATE = 0x00080020 sERIES_DATE :: DicomTag sERIES_DATE = 0x00080021 mODALITY :: DicomTag mODALITY = 0x00080060 sTUDY_DESCRIPTION :: DicomTag sTUDY_DESCRIPTION = 0x00081030 sERIES_DESCRIPTION :: DicomTag sERIES_DESCRIPTION = 0x0008103e -- | Group 0x0010 pATIENT_NAME :: DicomTag pATIENT_NAME = 0x00100010 -- | Group 0x0020 sTUDY_INSTANCE_UID :: DicomTag sTUDY_INSTANCE_UID = 0x0020000d sERIES_INSTANCE_UID :: DicomTag sERIES_INSTANCE_UID = 0x0020000e sTUDY_ID :: DicomTag sTUDY_ID = 0x00200010 sERIES_NUMBER :: DicomTag sERIES_NUMBER = 0x00200011 -- | Group 0x0028 nUMBER_OF_FRAMES :: DicomTag nUMBER_OF_FRAMES = 0x00280008 rOWS :: DicomTag rOWS = 0x00280010 cOLUMNS :: DicomTag cOLUMNS = 0x00280011 -- | Group 0x7fe0 pIXEL_DATA :: DicomTag pIXEL_DATA = 0x7fe00010
jamesdarcy/DicomH
src/Data/Dicom/Tag.hs
bsd-3-clause
2,638
0
5
438
200
124
76
37
1
{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Error-checking and other utilities for @deriving@ clauses or declarations. -} {-# LANGUAGE TypeFamilies #-} module TcDerivUtils ( DerivM, DerivEnv(..), DerivSpec(..), pprDerivSpec, DerivSpecMechanism(..), isDerivSpecStock, isDerivSpecNewtype, isDerivSpecAnyClass, DerivContext, DerivStatus(..), PredOrigin(..), ThetaOrigin(..), mkPredOrigin, mkThetaOrigin, mkThetaOriginFromPreds, substPredOrigin, checkSideConditions, hasStockDeriving, canDeriveAnyClass, std_class_via_coercible, non_coercible_class, newDerivClsInst, extendLocalInstEnv ) where import GhcPrelude import Bag import BasicTypes import Class import DataCon import DynFlags import ErrUtils import HscTypes (lookupFixity, mi_fix) import HsSyn import Inst import InstEnv import LoadIface (loadInterfaceForName) import Module (getModule) import Name import Outputable import PrelNames import SrcLoc import TcGenDeriv import TcGenFunctor import TcGenGenerics import TcRnMonad import TcType import THNames (liftClassKey) import TyCon import Type import Util import VarSet import Control.Monad.Trans.Reader import qualified GHC.LanguageExtensions as LangExt import ListSetOps (assocMaybe) -- | To avoid having to manually plumb everything in 'DerivEnv' throughout -- various functions in @TcDeriv@ and @TcDerivInfer@, we use 'DerivM', which -- is a simple reader around 'TcRn'. type DerivM = ReaderT DerivEnv TcRn -- | Contains all of the information known about a derived instance when -- determining what its @EarlyDerivSpec@ should be. data DerivEnv = DerivEnv { denv_overlap_mode :: Maybe OverlapMode -- ^ Is this an overlapping instance? , denv_tvs :: [TyVar] -- ^ Universally quantified type variables in the instance , denv_cls :: Class -- ^ Class for which we need to derive an instance , denv_cls_tys :: [Type] -- ^ Other arguments to the class except the last , denv_tc :: TyCon -- ^ Type constructor for which the instance is requested -- (last arguments to the type class) , denv_tc_args :: [Type] -- ^ Arguments to the type constructor , denv_rep_tc :: TyCon -- ^ The representation tycon for 'denv_tc' -- (for data family instances) , denv_rep_tc_args :: [Type] -- ^ The representation types for 'denv_tc_args' -- (for data family instances) , denv_mtheta :: DerivContext -- ^ 'Just' the context of the instance, for standalone deriving. -- 'Nothing' for @deriving@ clauses. , denv_strat :: Maybe DerivStrategy -- ^ 'Just' if user requests a particular deriving strategy. -- Otherwise, 'Nothing'. } instance Outputable DerivEnv where ppr (DerivEnv { denv_overlap_mode = overlap_mode , denv_tvs = tvs , denv_cls = cls , denv_cls_tys = cls_tys , denv_tc = tc , denv_tc_args = tc_args , denv_rep_tc = rep_tc , denv_rep_tc_args = rep_tc_args , denv_mtheta = mtheta , denv_strat = mb_strat }) = hang (text "DerivEnv") 2 (vcat [ text "denv_overlap_mode" <+> ppr overlap_mode , text "denv_tvs" <+> ppr tvs , text "denv_cls" <+> ppr cls , text "denv_cls_tys" <+> ppr cls_tys , text "denv_tc" <+> ppr tc , text "denv_tc_args" <+> ppr tc_args , text "denv_rep_tc" <+> ppr rep_tc , text "denv_rep_tc_args" <+> ppr rep_tc_args , text "denv_mtheta" <+> ppr mtheta , text "denv_strat" <+> ppr mb_strat ]) data DerivSpec theta = DS { ds_loc :: SrcSpan , ds_name :: Name -- DFun name , ds_tvs :: [TyVar] , ds_theta :: theta , ds_cls :: Class , ds_tys :: [Type] , ds_tc :: TyCon , ds_overlap :: Maybe OverlapMode , ds_mechanism :: DerivSpecMechanism } -- This spec implies a dfun declaration of the form -- df :: forall tvs. theta => C tys -- The Name is the name for the DFun we'll build -- The tyvars bind all the variables in the theta -- For type families, the tycon in -- in ds_tys is the *family* tycon -- in ds_tc is the *representation* type -- For non-family tycons, both are the same -- the theta is either the given and final theta, in standalone deriving, -- or the not-yet-simplified list of constraints together with their origin -- ds_mechanism specifies the means by which GHC derives the instance. -- See Note [Deriving strategies] in TcDeriv {- Example: newtype instance T [a] = MkT (Tree a) deriving( C s ) ==> axiom T [a] = :RTList a axiom :RTList a = Tree a DS { ds_tvs = [a,s], ds_cls = C, ds_tys = [s, T [a]] , ds_tc = :RTList, ds_mechanism = DerivSpecNewtype (Tree a) } -} pprDerivSpec :: Outputable theta => DerivSpec theta -> SDoc pprDerivSpec (DS { ds_loc = l, ds_name = n, ds_tvs = tvs, ds_cls = c, ds_tys = tys, ds_theta = rhs, ds_mechanism = mech }) = hang (text "DerivSpec") 2 (vcat [ text "ds_loc =" <+> ppr l , text "ds_name =" <+> ppr n , text "ds_tvs =" <+> ppr tvs , text "ds_cls =" <+> ppr c , text "ds_tys =" <+> ppr tys , text "ds_theta =" <+> ppr rhs , text "ds_mechanism =" <+> ppr mech ]) instance Outputable theta => Outputable (DerivSpec theta) where ppr = pprDerivSpec -- What action to take in order to derive a class instance. -- See Note [Deriving strategies] in TcDeriv data DerivSpecMechanism = DerivSpecStock -- "Standard" classes (SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff, [Name])) -- This function returns three things: -- -- 1. @LHsBinds GhcPs@: The derived instance's function bindings -- (e.g., @compare (T x) (T y) = compare x y@) -- 2. @BagDerivStuff@: Auxiliary bindings needed to support the derived -- instance. As examples, derived 'Generic' instances require -- associated type family instances, and derived 'Eq' and 'Ord' -- instances require top-level @con2tag@ functions. -- See Note [Auxiliary binders] in TcGenDeriv. -- 3. @[Name]@: A list of Names for which @-Wunused-binds@ should be -- suppressed. This is used to suppress unused warnings for record -- selectors when deriving 'Read', 'Show', or 'Generic'. -- See Note [Deriving and unused record selectors]. | DerivSpecNewtype -- -XGeneralizedNewtypeDeriving Type -- The newtype rep type | DerivSpecAnyClass -- -XDeriveAnyClass isDerivSpecStock, isDerivSpecNewtype, isDerivSpecAnyClass :: DerivSpecMechanism -> Bool isDerivSpecStock (DerivSpecStock{}) = True isDerivSpecStock _ = False isDerivSpecNewtype (DerivSpecNewtype{}) = True isDerivSpecNewtype _ = False isDerivSpecAnyClass (DerivSpecAnyClass{}) = True isDerivSpecAnyClass _ = False -- A DerivSpecMechanism can be losslessly converted to a DerivStrategy. mechanismToStrategy :: DerivSpecMechanism -> DerivStrategy mechanismToStrategy (DerivSpecStock{}) = StockStrategy mechanismToStrategy (DerivSpecNewtype{}) = NewtypeStrategy mechanismToStrategy (DerivSpecAnyClass{}) = AnyclassStrategy instance Outputable DerivSpecMechanism where ppr = ppr . mechanismToStrategy type DerivContext = Maybe ThetaType -- Nothing <=> Vanilla deriving; infer the context of the instance decl -- Just theta <=> Standalone deriving: context supplied by programmer data DerivStatus = CanDerive -- Stock class, can derive | DerivableClassError SDoc -- Stock class, but can't do it | DerivableViaInstance -- See Note [Deriving any class] | NonDerivableClass SDoc -- Non-stock class -- A stock class is one either defined in the Haskell report or for which GHC -- otherwise knows how to generate code for (possibly requiring the use of a -- language extension), such as Eq, Ord, Ix, Data, Generic, etc. -- | A 'PredType' annotated with the origin of the constraint 'CtOrigin', -- and whether or the constraint deals in types or kinds. data PredOrigin = PredOrigin PredType CtOrigin TypeOrKind -- | A list of wanted 'PredOrigin' constraints ('to_wanted_origins') alongside -- any corresponding given constraints ('to_givens') and locally quantified -- type variables ('to_tvs'). -- -- In most cases, 'to_givens' will be empty, as most deriving mechanisms (e.g., -- stock and newtype deriving) do not require given constraints. The exception -- is @DeriveAnyClass@, which can involve given constraints. For example, -- if you tried to derive an instance for the following class using -- @DeriveAnyClass@: -- -- @ -- class Foo a where -- bar :: a -> b -> String -- default bar :: (Show a, Ix b) => a -> b -> String -- bar = show -- -- baz :: Eq a => a -> a -> Bool -- default baz :: Ord a => a -> a -> Bool -- baz x y = compare x y == EQ -- @ -- -- Then it would generate two 'ThetaOrigin's, one for each method: -- -- @ -- [ ThetaOrigin { to_tvs = [b] -- , to_givens = [] -- , to_wanted_origins = [Show a, Ix b] } -- , ThetaOrigin { to_tvs = [] -- , to_givens = [Eq a] -- , to_wanted_origins = [Ord a] } -- ] -- @ data ThetaOrigin = ThetaOrigin { to_tvs :: [TyVar] , to_givens :: ThetaType , to_wanted_origins :: [PredOrigin] } instance Outputable PredOrigin where ppr (PredOrigin ty _ _) = ppr ty -- The origin is not so interesting when debugging instance Outputable ThetaOrigin where ppr (ThetaOrigin { to_tvs = tvs , to_givens = givens , to_wanted_origins = wanted_origins }) = hang (text "ThetaOrigin") 2 (vcat [ text "to_tvs =" <+> ppr tvs , text "to_givens =" <+> ppr givens , text "to_wanted_origins =" <+> ppr wanted_origins ]) mkPredOrigin :: CtOrigin -> TypeOrKind -> PredType -> PredOrigin mkPredOrigin origin t_or_k pred = PredOrigin pred origin t_or_k mkThetaOrigin :: CtOrigin -> TypeOrKind -> [TyVar] -> ThetaType -> ThetaType -> ThetaOrigin mkThetaOrigin origin t_or_k tvs givens = ThetaOrigin tvs givens . map (mkPredOrigin origin t_or_k) -- A common case where the ThetaOrigin only contains wanted constraints, with -- no givens or locally scoped type variables. mkThetaOriginFromPreds :: [PredOrigin] -> ThetaOrigin mkThetaOriginFromPreds = ThetaOrigin [] [] substPredOrigin :: HasCallStack => TCvSubst -> PredOrigin -> PredOrigin substPredOrigin subst (PredOrigin pred origin t_or_k) = PredOrigin (substTy subst pred) origin t_or_k {- ************************************************************************ * * Class deriving diagnostics * * ************************************************************************ Only certain blessed classes can be used in a deriving clause (without the assistance of GeneralizedNewtypeDeriving or DeriveAnyClass). These classes are listed below in the definition of hasStockDeriving. The sideConditions function determines the criteria that needs to be met in order for a particular class to be able to be derived successfully. A class might be able to be used in a deriving clause if -XDeriveAnyClass is willing to support it. The canDeriveAnyClass function checks if this is the case. -} hasStockDeriving :: Class -> Maybe (SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff, [Name])) hasStockDeriving clas = assocMaybe gen_list (getUnique clas) where gen_list :: [(Unique, SrcSpan -> TyCon -> [Type] -> TcM (LHsBinds GhcPs, BagDerivStuff, [Name]))] gen_list = [ (eqClassKey, simpleM gen_Eq_binds) , (ordClassKey, simpleM gen_Ord_binds) , (enumClassKey, simpleM gen_Enum_binds) , (boundedClassKey, simple gen_Bounded_binds) , (ixClassKey, simpleM gen_Ix_binds) , (showClassKey, read_or_show gen_Show_binds) , (readClassKey, read_or_show gen_Read_binds) , (dataClassKey, simpleM gen_Data_binds) , (functorClassKey, simple gen_Functor_binds) , (foldableClassKey, simple gen_Foldable_binds) , (traversableClassKey, simple gen_Traversable_binds) , (liftClassKey, simple gen_Lift_binds) , (genClassKey, generic (gen_Generic_binds Gen0)) , (gen1ClassKey, generic (gen_Generic_binds Gen1)) ] simple gen_fn loc tc _ = let (binds, deriv_stuff) = gen_fn loc tc in return (binds, deriv_stuff, []) simpleM gen_fn loc tc _ = do { (binds, deriv_stuff) <- gen_fn loc tc ; return (binds, deriv_stuff, []) } read_or_show gen_fn loc tc _ = do { fix_env <- getDataConFixityFun tc ; let (binds, deriv_stuff) = gen_fn fix_env loc tc field_names = all_field_names tc ; return (binds, deriv_stuff, field_names) } generic gen_fn _ tc inst_tys = do { (binds, faminst) <- gen_fn tc inst_tys ; let field_names = all_field_names tc ; return (binds, unitBag (DerivFamInst faminst), field_names) } -- See Note [Deriving and unused record selectors] all_field_names = map flSelector . concatMap dataConFieldLabels . tyConDataCons {- Note [Deriving and unused record selectors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this (see Trac #13919): module Main (main) where data Foo = MkFoo {bar :: String} deriving Show main :: IO () main = print (Foo "hello") Strictly speaking, the record selector `bar` is unused in this module, since neither `main` nor the derived `Show` instance for `Foo` mention `bar`. However, the behavior of `main` is affected by the presence of `bar`, since it will print different output depending on whether `MkFoo` is defined using record selectors or not. Therefore, we do not to issue a "Defined but not used: ‘bar’" warning for this module, since removing `bar` changes the program's behavior. This is the reason behind the [Name] part of the return type of `hasStockDeriving`—it tracks all of the record selector `Name`s for which -Wunused-binds should be suppressed. Currently, the only three stock derived classes that require this are Read, Show, and Generic, as their derived code all depend on the record selectors of the derived data type's constructors. See also Note [Newtype deriving and unused constructors] in TcDeriv for another example of a similar trick. -} getDataConFixityFun :: TyCon -> TcM (Name -> Fixity) -- If the TyCon is locally defined, we want the local fixity env; -- but if it is imported (which happens for standalone deriving) -- we need to get the fixity env from the interface file -- c.f. RnEnv.lookupFixity, and Trac #9830 getDataConFixityFun tc = do { this_mod <- getModule ; if nameIsLocalOrFrom this_mod name then do { fix_env <- getFixityEnv ; return (lookupFixity fix_env) } else do { iface <- loadInterfaceForName doc name -- Should already be loaded! ; return (mi_fix iface . nameOccName) } } where name = tyConName tc doc = text "Data con fixities for" <+> ppr name ------------------------------------------------------------------ -- Check side conditions that dis-allow derivability for particular classes -- This is *apart* from the newtype-deriving mechanism -- -- Here we get the representation tycon in case of family instances as it has -- the data constructors - but we need to be careful to fall back to the -- family tycon (with indexes) in error messages. checkSideConditions :: DynFlags -> DerivContext -> Class -> [TcType] -> TyCon -> TyCon -> DerivStatus checkSideConditions dflags mtheta cls cls_tys tc rep_tc | Just cond <- sideConditions mtheta cls = case (cond dflags tc rep_tc) of NotValid err -> DerivableClassError err -- Class-specific error IsValid | null (filterOutInvisibleTypes (classTyCon cls) cls_tys) -> CanDerive -- All stock derivable classes are unary in the sense that -- there should be not types in cls_tys (i.e., no type args -- other than last). Note that cls_types can contain -- invisible types as well (e.g., for Generic1, which is -- poly-kinded), so make sure those are not counted. | otherwise -> DerivableClassError (classArgsErr cls cls_tys) -- e.g. deriving( Eq s ) | NotValid err <- canDeriveAnyClass dflags = NonDerivableClass err -- DeriveAnyClass does not work | otherwise = DerivableViaInstance -- DeriveAnyClass should work classArgsErr :: Class -> [Type] -> SDoc classArgsErr cls cls_tys = quotes (ppr (mkClassPred cls cls_tys)) <+> text "is not a class" -- Side conditions (whether the datatype must have at least one constructor, -- required language extensions, etc.) for using GHC's stock deriving -- mechanism on certain classes (as opposed to classes that require -- GeneralizedNewtypeDeriving or DeriveAnyClass). Returns Nothing for a -- class for which stock deriving isn't possible. sideConditions :: DerivContext -> Class -> Maybe Condition sideConditions mtheta cls | cls_key == eqClassKey = Just (cond_std `andCond` cond_args cls) | cls_key == ordClassKey = Just (cond_std `andCond` cond_args cls) | cls_key == showClassKey = Just (cond_std `andCond` cond_args cls) | cls_key == readClassKey = Just (cond_std `andCond` cond_args cls) | cls_key == enumClassKey = Just (cond_std `andCond` cond_isEnumeration) | cls_key == ixClassKey = Just (cond_std `andCond` cond_enumOrProduct cls) | cls_key == boundedClassKey = Just (cond_std `andCond` cond_enumOrProduct cls) | cls_key == dataClassKey = Just (checkFlag LangExt.DeriveDataTypeable `andCond` cond_vanilla `andCond` cond_args cls) | cls_key == functorClassKey = Just (checkFlag LangExt.DeriveFunctor `andCond` cond_vanilla `andCond` cond_functorOK True False) | cls_key == foldableClassKey = Just (checkFlag LangExt.DeriveFoldable `andCond` cond_vanilla `andCond` cond_functorOK False True) -- Functor/Fold/Trav works ok -- for rank-n types | cls_key == traversableClassKey = Just (checkFlag LangExt.DeriveTraversable `andCond` cond_vanilla `andCond` cond_functorOK False False) | cls_key == genClassKey = Just (checkFlag LangExt.DeriveGeneric `andCond` cond_vanilla `andCond` cond_RepresentableOk) | cls_key == gen1ClassKey = Just (checkFlag LangExt.DeriveGeneric `andCond` cond_vanilla `andCond` cond_Representable1Ok) | cls_key == liftClassKey = Just (checkFlag LangExt.DeriveLift `andCond` cond_vanilla `andCond` cond_args cls) | otherwise = Nothing where cls_key = getUnique cls cond_std = cond_stdOK mtheta False -- Vanilla data constructors, at least one, -- and monotype arguments cond_vanilla = cond_stdOK mtheta True -- Vanilla data constructors but -- allow no data cons or polytype arguments canDeriveAnyClass :: DynFlags -> Validity -- IsValid: we can (try to) derive it via an empty instance declaration -- NotValid s: we can't, reason s canDeriveAnyClass dflags | not (xopt LangExt.DeriveAnyClass dflags) = NotValid (text "Try enabling DeriveAnyClass") | otherwise = IsValid -- OK! type Condition = DynFlags -> TyCon -- ^ The data type's 'TyCon'. For data families, this is the -- family 'TyCon'. -> TyCon -- ^ For data families, this is the representation 'TyCon'. -- Otherwise, this is the same as the other 'TyCon' argument. -> Validity -- ^ 'IsValid' if deriving an instance for this 'TyCon' is -- possible. Otherwise, it's @'NotValid' err@, where @err@ -- explains what went wrong. orCond :: Condition -> Condition -> Condition orCond c1 c2 dflags tc rep_tc = case (c1 dflags tc rep_tc, c2 dflags tc rep_tc) of (IsValid, _) -> IsValid -- c1 succeeds (_, IsValid) -> IsValid -- c21 succeeds (NotValid x, NotValid y) -> NotValid (x $$ text " or" $$ y) -- Both fail andCond :: Condition -> Condition -> Condition andCond c1 c2 dflags tc rep_tc = c1 dflags tc rep_tc `andValid` c2 dflags tc rep_tc -- | Some common validity checks shared among stock derivable classes. One -- check that absolutely must hold is that if an instance @C (T a)@ is being -- derived, then @T@ must be a tycon for a data type or a newtype. The -- remaining checks are only performed if using a @deriving@ clause (i.e., -- they're ignored if using @StandaloneDeriving@): -- -- 1. The data type must have at least one constructor (this check is ignored -- if using @EmptyDataDeriving@). -- -- 2. The data type cannot have any GADT constructors. -- -- 3. The data type cannot have any constructors with existentially quantified -- type variables. -- -- 4. The data type cannot have a context (e.g., @data Foo a = Eq a => MkFoo@). -- -- 5. The data type cannot have fields with higher-rank types. cond_stdOK :: DerivContext -- ^ 'Just' if this is standalone deriving, 'Nothing' if not. -- If it is standalone, we relax some of the validity checks -- we would otherwise perform (i.e., "just go for it"). -> Bool -- ^ 'True' <=> allow higher rank arguments and empty data -- types (with no data constructors) even in the absence of -- the -XEmptyDataDeriving extension. -> Condition cond_stdOK mtheta permissive dflags tc rep_tc = valid_ADT `andValid` valid_misc where valid_ADT, valid_misc :: Validity valid_ADT | isAlgTyCon tc || isDataFamilyTyCon tc = IsValid | otherwise -- Complain about functions, primitive types, and other tycons that -- stock deriving can't handle. = NotValid $ text "The last argument of the instance must be a" <+> text "data or newtype application" valid_misc = case mtheta of Just _ -> IsValid -- Don't check these conservative conditions for -- standalone deriving; just generate the code -- and let the typechecker handle the result Nothing | null data_cons -- 1. , not permissive -> checkFlag LangExt.EmptyDataDeriving dflags tc rep_tc `orValid` NotValid (no_cons_why rep_tc $$ empty_data_suggestion) | not (null con_whys) -> NotValid (vcat con_whys $$ standalone_suggestion) | otherwise -> IsValid empty_data_suggestion = text "Use EmptyDataDeriving to enable deriving for empty data types" standalone_suggestion = text "Possible fix: use a standalone deriving declaration instead" data_cons = tyConDataCons rep_tc con_whys = getInvalids (map check_con data_cons) check_con :: DataCon -> Validity check_con con | not (null eq_spec) -- 2. = bad "is a GADT" | not (null ex_tvs) -- 3. = bad "has existential type variables in its type" | not (null theta) -- 4. = bad "has constraints in its type" | not (permissive || all isTauTy (dataConOrigArgTys con)) -- 5. = bad "has a higher-rank type" | otherwise = IsValid where (_, ex_tvs, eq_spec, theta, _, _) = dataConFullSig con bad msg = NotValid (badCon con (text msg)) no_cons_why :: TyCon -> SDoc no_cons_why rep_tc = quotes (pprSourceTyCon rep_tc) <+> text "must have at least one data constructor" cond_RepresentableOk :: Condition cond_RepresentableOk _ _ rep_tc = canDoGenerics rep_tc cond_Representable1Ok :: Condition cond_Representable1Ok _ _ rep_tc = canDoGenerics1 rep_tc cond_enumOrProduct :: Class -> Condition cond_enumOrProduct cls = cond_isEnumeration `orCond` (cond_isProduct `andCond` cond_args cls) cond_args :: Class -> Condition -- For some classes (eg Eq, Ord) we allow unlifted arg types -- by generating specialised code. For others (eg Data) we don't. cond_args cls _ _ rep_tc = case bad_args of [] -> IsValid (ty:_) -> NotValid (hang (text "Don't know how to derive" <+> quotes (ppr cls)) 2 (text "for type" <+> quotes (ppr ty))) where bad_args = [ arg_ty | con <- tyConDataCons rep_tc , arg_ty <- dataConOrigArgTys con , isUnliftedType arg_ty , not (ok_ty arg_ty) ] cls_key = classKey cls ok_ty arg_ty | cls_key == eqClassKey = check_in arg_ty ordOpTbl | cls_key == ordClassKey = check_in arg_ty ordOpTbl | cls_key == showClassKey = check_in arg_ty boxConTbl | cls_key == liftClassKey = check_in arg_ty litConTbl | otherwise = False -- Read, Ix etc check_in :: Type -> [(Type,a)] -> Bool check_in arg_ty tbl = any (eqType arg_ty . fst) tbl cond_isEnumeration :: Condition cond_isEnumeration _ _ rep_tc | isEnumerationTyCon rep_tc = IsValid | otherwise = NotValid why where why = sep [ quotes (pprSourceTyCon rep_tc) <+> text "must be an enumeration type" , text "(an enumeration consists of one or more nullary, non-GADT constructors)" ] -- See Note [Enumeration types] in TyCon cond_isProduct :: Condition cond_isProduct _ _ rep_tc | isProductTyCon rep_tc = IsValid | otherwise = NotValid why where why = quotes (pprSourceTyCon rep_tc) <+> text "must have precisely one constructor" cond_functorOK :: Bool -> Bool -> Condition -- OK for Functor/Foldable/Traversable class -- Currently: (a) at least one argument -- (b) don't use argument contravariantly -- (c) don't use argument in the wrong place, e.g. data T a = T (X a a) -- (d) optionally: don't use function types -- (e) no "stupid context" on data type cond_functorOK allowFunctions allowExQuantifiedLastTyVar _ _ rep_tc | null tc_tvs = NotValid (text "Data type" <+> quotes (ppr rep_tc) <+> text "must have some type parameters") | not (null bad_stupid_theta) = NotValid (text "Data type" <+> quotes (ppr rep_tc) <+> text "must not have a class context:" <+> pprTheta bad_stupid_theta) | otherwise = allValid (map check_con data_cons) where tc_tvs = tyConTyVars rep_tc Just (_, last_tv) = snocView tc_tvs bad_stupid_theta = filter is_bad (tyConStupidTheta rep_tc) is_bad pred = last_tv `elemVarSet` exactTyCoVarsOfType pred -- See Note [Check that the type variable is truly universal] data_cons = tyConDataCons rep_tc check_con con = allValid (check_universal con : foldDataConArgs (ft_check con) con) check_universal :: DataCon -> Validity check_universal con | allowExQuantifiedLastTyVar = IsValid -- See Note [DeriveFoldable with ExistentialQuantification] -- in TcGenFunctor | Just tv <- getTyVar_maybe (last (tyConAppArgs (dataConOrigResTy con))) , tv `elem` dataConUnivTyVars con , not (tv `elemVarSet` exactTyCoVarsOfTypes (dataConTheta con)) = IsValid -- See Note [Check that the type variable is truly universal] | otherwise = NotValid (badCon con existential) ft_check :: DataCon -> FFoldType Validity ft_check con = FT { ft_triv = IsValid, ft_var = IsValid , ft_co_var = NotValid (badCon con covariant) , ft_fun = \x y -> if allowFunctions then x `andValid` y else NotValid (badCon con functions) , ft_tup = \_ xs -> allValid xs , ft_ty_app = \_ x -> x , ft_bad_app = NotValid (badCon con wrong_arg) , ft_forall = \_ x -> x } existential = text "must be truly polymorphic in the last argument of the data type" covariant = text "must not use the type variable in a function argument" functions = text "must not contain function types" wrong_arg = text "must use the type variable only as the last argument of a data type" checkFlag :: LangExt.Extension -> Condition checkFlag flag dflags _ _ | xopt flag dflags = IsValid | otherwise = NotValid why where why = text "You need " <> text flag_str <+> text "to derive an instance for this class" flag_str = case [ flagSpecName f | f <- xFlags , flagSpecFlag f == flag ] of [s] -> s other -> pprPanic "checkFlag" (ppr other) std_class_via_coercible :: Class -> Bool -- These standard classes can be derived for a newtype -- using the coercible trick *even if no -XGeneralizedNewtypeDeriving -- because giving so gives the same results as generating the boilerplate std_class_via_coercible clas = classKey clas `elem` [eqClassKey, ordClassKey, ixClassKey, boundedClassKey] -- Not Read/Show because they respect the type -- Not Enum, because newtypes are never in Enum non_coercible_class :: Class -> Bool -- *Never* derive Read, Show, Typeable, Data, Generic, Generic1, Lift -- by Coercible, even with -XGeneralizedNewtypeDeriving -- Also, avoid Traversable, as the Coercible-derived instance and the "normal"-derived -- instance behave differently if there's a non-lawful Applicative out there. -- Besides, with roles, Coercible-deriving Traversable is ill-roled. non_coercible_class cls = classKey cls `elem` ([ readClassKey, showClassKey, dataClassKey , genClassKey, gen1ClassKey, typeableClassKey , traversableClassKey, liftClassKey ]) badCon :: DataCon -> SDoc -> SDoc badCon con msg = text "Constructor" <+> quotes (ppr con) <+> msg ------------------------------------------------------------------ newDerivClsInst :: ThetaType -> DerivSpec theta -> TcM ClsInst newDerivClsInst theta (DS { ds_name = dfun_name, ds_overlap = overlap_mode , ds_tvs = tvs, ds_cls = clas, ds_tys = tys }) = newClsInst overlap_mode dfun_name tvs theta clas tys extendLocalInstEnv :: [ClsInst] -> TcM a -> TcM a -- Add new locally-defined instances; don't bother to check -- for functional dependency errors -- that'll happen in TcInstDcls extendLocalInstEnv dfuns thing_inside = do { env <- getGblEnv ; let inst_env' = extendInstEnvList (tcg_inst_env env) dfuns env' = env { tcg_inst_env = inst_env' } ; setGblEnv env' thing_inside } {- Note [Deriving any class] ~~~~~~~~~~~~~~~~~~~~~~~~~ Classic uses of a deriving clause, or a standalone-deriving declaration, are for: * a stock class like Eq or Show, for which GHC knows how to generate the instance code * a newtype, via the mechanism enabled by GeneralizedNewtypeDeriving The DeriveAnyClass extension adds a third way to derive instances, based on empty instance declarations. The canonical use case is in combination with GHC.Generics and default method signatures. These allow us to have instance declarations being empty, but still useful, e.g. data T a = ...blah..blah... deriving( Generic ) instance C a => C (T a) -- No 'where' clause where C is some "random" user-defined class. This boilerplate code can be replaced by the more compact data T a = ...blah..blah... deriving( Generic, C ) if DeriveAnyClass is enabled. This is not restricted to Generics; any class can be derived, simply giving rise to an empty instance. Unfortunately, it is not clear how to determine the context (when using a deriving clause; in standalone deriving, the user provides the context). GHC uses the same heuristic for figuring out the class context that it uses for Eq in the case of *-kinded classes, and for Functor in the case of * -> *-kinded classes. That may not be optimal or even wrong. But in such cases, standalone deriving can still be used. Note [Check that the type variable is truly universal] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For Functor and Traversable instances, we must check that the *last argument* of the type constructor is used truly universally quantified. Example data T a b where T1 :: a -> b -> T a b -- Fine! Vanilla H-98 T2 :: b -> c -> T a b -- Fine! Existential c, but we can still map over 'b' T3 :: b -> T Int b -- Fine! Constraint 'a', but 'b' is still polymorphic T4 :: Ord b => b -> T a b -- No! 'b' is constrained T5 :: b -> T b b -- No! 'b' is constrained T6 :: T a (b,b) -- No! 'b' is constrained Notice that only the first of these constructors is vanilla H-98. We only need to take care about the last argument (b in this case). See Trac #8678. Eg. for T1-T3 we can write fmap f (T1 a b) = T1 a (f b) fmap f (T2 b c) = T2 (f b) c fmap f (T3 x) = T3 (f x) We need not perform these checks for Foldable instances, however, since functions in Foldable can only consume existentially quantified type variables, rather than produce them (as is the case in Functor and Traversable functions.) As a result, T can have a derived Foldable instance: foldr f z (T1 a b) = f b z foldr f z (T2 b c) = f b z foldr f z (T3 x) = f x z foldr f z (T4 x) = f x z foldr f z (T5 x) = f x z foldr _ z T6 = z See Note [DeriveFoldable with ExistentialQuantification] in TcGenFunctor. For Functor and Traversable, we must take care not to let type synonyms unfairly reject a type for not being truly universally quantified. An example of this is: type C (a :: Constraint) b = a data T a b = C (Show a) b => MkT b Here, the existential context (C (Show a) b) does technically mention the last type variable b. But this is OK, because expanding the type synonym C would give us the context (Show a), which doesn't mention b. Therefore, we must make sure to expand type synonyms before performing this check. Not doing so led to Trac #13813. -}
shlevy/ghc
compiler/typecheck/TcDerivUtils.hs
bsd-3-clause
36,389
0
17
10,504
5,233
2,826
2,407
-1
-1
{-# LANGUAGE PatternSynonyms #-} module QueryArrow.FileSystem.Builtin where import QueryArrow.Syntax.Term import QueryArrow.Syntax.Type import QueryArrow.Syntax.Utils pattern FilePathPredName ns = QPredName ns [] "FILE_PATH" pattern DirPathPredName ns = QPredName ns [] "DIR_PATH" pattern FileIdPredName ns = QPredName ns [] "FILE_ID" pattern DirIdPredName ns = QPredName ns [] "DIR_ID" pattern FileModePredName ns = QPredName ns [] "FILE_MODE" pattern DirModePredName ns = QPredName ns [] "DIR_MODE" pattern FileNamePredName ns = QPredName ns [] "FILE_NAME" pattern DirNamePredName ns = QPredName ns [] "DIR_NAME" pattern FileHostPredName ns = QPredName ns [] "FILE_HOST" pattern DirHostPredName ns = QPredName ns [] "DIR_HOST" pattern FileSizePredName ns = QPredName ns [] "FILE_SIZE" -- pattern FileCreateTimePredName ns = QPredName ns [] "FILE_CREATE_TIME" -- pattern DirCreateTimePredName ns = QPredName ns [] "DIR_CREATE_TIME" pattern FileModifyTimePredName ns = QPredName ns [] "FILE_MODIFY_TIME" pattern DirModifyTimePredName ns = QPredName ns [] "DIR_MODIFY_TIME" pattern FileObjectPredName ns = QPredName ns [] "FILE_OBJ" pattern DirObjectPredName ns = QPredName ns [] "DIR_OBJ" pattern FileContentPredName ns = QPredName ns [] "FILE_CONTENT" pattern DirContentPredName ns = QPredName ns [] "DIR_CONTENT" pattern FileDirPredName ns = QPredName ns [] "FILE_DIR" pattern DirDirPredName ns = QPredName ns [] "DIR_DIR" pattern NewFileObjectPredName ns = QPredName ns [] "NEW_FILE_OBJ" pattern NewDirObjectPredName ns = QPredName ns [] "NEW_DIR_OBJ" pattern FileContentRangePredName ns = QPredName ns [] "FILE_CONTENT_RANGE" pattern FilePathPred ns = Pred (FilePathPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO TextType]) pattern DirPathPred ns = Pred (DirPathPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO TextType]) pattern FileIdPred ns = Pred (FileIdPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO Int64Type]) pattern DirIdPred ns = Pred (DirIdPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO Int64Type]) pattern FileModePred ns = Pred (FileModePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO Int64Type]) pattern DirModePred ns = Pred (DirModePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO Int64Type]) pattern FileNamePred ns = Pred (FileNamePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO TextType]) pattern DirNamePred ns = Pred (DirNamePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO TextType]) pattern FileHostPred ns = Pred (FileNamePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO TextType]) pattern DirHostPred ns = Pred (DirNamePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO TextType]) pattern FileSizePred ns = Pred (FileSizePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO Int64Type]) -- pattern FileCreateTimePred ns = Pred (FileCreateTimePredName ns) (PredType PropertyPred [PTKeyI (TypeCons "FileObject"), PTPropIO Int64Type]) -- pattern DirCreateTimePred ns = Pred (DirCreateTimePredName ns) (PredType PropertyPred [PTKeyI (TypeCons "DirObject"), PTPropIO Int64Type]) pattern FileModifyTimePred ns = Pred (FileModifyTimePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO Int64Type]) pattern DirModifyTimePred ns = Pred (DirModifyTimePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO Int64Type]) pattern FileObjectPred ns = Pred (FileObjectPredName ns) (PredType ObjectPred [PTKeyIO (TypeCons "FileObject")]) pattern DirObjectPred ns = Pred (DirObjectPredName ns) (PredType ObjectPred [PTKeyIO (TypeCons "DirObject")]) pattern NewFileObjectPred ns = Pred (NewFileObjectPredName ns) (PredType PropertyPred [PTKeyI TextType, PTPropO (TypeCons "FileObject")]) pattern NewDirObjectPred ns = Pred (NewDirObjectPredName ns) (PredType PropertyPred [PTKeyI TextType, PTPropO (TypeCons "DirObject")]) pattern FileContentPred ns = Pred (FileContentPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileObject"), PTPropIO (TypeCons "FileContent")]) pattern DirContentPred ns = Pred (DirContentPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTKeyIO (TypeCons "DirContent")]) pattern DirDirPred ns = Pred (DirDirPredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "DirObject"), PTPropIO (TypeCons "DirObject")]) pattern FileDirPred ns = Pred (FileDirPredName ns) (PredType PropertyPred [PTPropIO (TypeCons "FileObject"), PTPropIO (TypeCons "DirObject")]) pattern FileContentRangePred ns = Pred (FileContentRangePredName ns) (PredType PropertyPred [PTKeyIO (TypeCons "FileContent"), PTPropIO Int64Type, PTPropIO Int64Type, PTPropIO ByteStringType])
xu-hao/QueryArrow
QueryArrow-db-filesystem/src/QueryArrow/FileSystem/Builtin.hs
bsd-3-clause
5,033
0
12
700
1,550
738
812
49
0
module ML ( module ML.Num , module ML.V2 , module ML.V3 , module ML.V4 , module ML.M2 , module ML.M3 , module ML.M4 , module ML.Q ) where import ML.Num import ML.V2 import ML.V3 import ML.V4 import ML.M2 import ML.M3 import ML.M4 import ML.Q
jxv/ml-hs
src/ML.hs
bsd-3-clause
280
0
5
82
94
60
34
17
0
module LeapYearKata.Day2 (isLeapYear) where isLeapYear :: Int -> Bool isLeapYear year = (isDivisibleByFour $ div year 100) && isDivisibleByFour year where isDivisibleByFour :: Int -> Bool isDivisibleByFour num = num `mod` 4 == 0
Alex-Diez/haskell-tdd-kata
old-katas/src/LeapYearKata/Day2.hs
bsd-3-clause
270
0
8
75
76
41
35
5
1
{-# LANGUAGE TupleSections #-} module Language.Haskell.Liquid.Bare.RTEnv ( makeRTEnv ) where import Prelude hiding (error) import Data.Graph hiding (Graph) import Data.Maybe import qualified Control.Exception as Ex import qualified Data.HashMap.Strict as M import qualified Data.List as L import Language.Fixpoint.Misc (fst3) import Language.Fixpoint.Types (Expr(..), Symbol) import Language.Haskell.Liquid.GHC.Misc (sourcePosSrcSpan) import Language.Haskell.Liquid.Types.RefType (symbolRTyVar) import Language.Haskell.Liquid.Types import qualified Language.Haskell.Liquid.Measure as Ms import Language.Haskell.Liquid.Bare.Env import Language.Haskell.Liquid.Bare.Expand import Language.Haskell.Liquid.Bare.OfType import Language.Haskell.Liquid.Bare.Resolve -------------------------------------------------------------------------------- makeRTEnv specs = do makeREAliases ets makeRTAliases rts where rts = (concat [(m,) <$> Ms.aliases s | (m, s) <- specs]) ets = (concat [(m,) <$> Ms.ealiases s | (m, s) <- specs]) makeRTAliases = graphExpand buildTypeEdges expBody where expBody (mod, xt) = inModule mod $ do let l = rtPos xt let l' = rtPosE xt body <- withVArgs l l' (rtVArgs xt) $ ofBareType l $ rtBody xt setRTAlias (rtName xt) $ mapRTAVars symbolRTyVar $ xt { rtBody = body} makeREAliases = graphExpand buildExprEdges expBody where expBody (mod, xt) = inModule mod $ do let l = rtPos xt let l' = rtPosE xt body <- withVArgs l l' (rtVArgs xt) $ resolve l =<< (expandExpr $ rtBody xt) setREAlias (rtName xt) $ xt { rtBody = body } graphExpand buildEdges expBody xts = do let table = buildAliasTable xts graph = buildAliasGraph (buildEdges table) (map snd xts) checkCyclicAliases table graph mapM_ expBody $ genExpandOrder table graph -------------------------------------------------------------------------------- type AliasTable t = M.HashMap Symbol (ModName, RTAlias Symbol t) buildAliasTable :: [(ModName, RTAlias Symbol t)] -> AliasTable t buildAliasTable = M.fromList . map (\(mod, rta) -> (rtName rta, (mod, rta))) fromAliasSymbol :: AliasTable t -> Symbol -> (ModName, RTAlias Symbol t) fromAliasSymbol table sym = fromMaybe err $ M.lookup sym table where err = panic Nothing $ "fromAliasSymbol: Dangling alias symbol: " ++ show sym type Graph t = [Node t] type Node t = (t, t, [t]) buildAliasGraph :: (t -> [Symbol]) -> [RTAlias Symbol t] -> Graph Symbol buildAliasGraph buildEdges = map (buildAliasNode buildEdges) buildAliasNode :: (t -> [Symbol]) -> RTAlias Symbol t -> Node Symbol buildAliasNode buildEdges alias = (rtName alias, rtName alias, buildEdges $ rtBody alias) checkCyclicAliases :: AliasTable t -> Graph Symbol -> BareM () checkCyclicAliases table graph = case mapMaybe go $ stronglyConnComp graph of [] -> return () sccs -> Ex.throw $ map err sccs where go (AcyclicSCC _) = Nothing go (CyclicSCC vs) = Just vs err :: [Symbol] -> Error err scc@(rta:_) = ErrAliasCycle { pos = fst $ locate rta , acycle = map locate scc } err [] = panic Nothing "Bare.RTEnv.checkCyclicAliases: No type aliases in reported cycle" locate sym = ( sourcePosSrcSpan $ rtPos $ snd $ fromAliasSymbol table sym , pprint sym ) genExpandOrder :: AliasTable t -> Graph Symbol -> [(ModName, RTAlias Symbol t)] genExpandOrder table graph = map (fromAliasSymbol table) symOrder where (digraph, lookupVertex, _) = graphFromEdges graph symOrder = map (fst3 . lookupVertex) $ reverse $ topSort digraph -------------------------------------------------------------------------------- ordNub :: Ord a => [a] -> [a] ordNub = map head . L.group . L.sort buildTypeEdges :: AliasTable BareType -> BareType -> [Symbol] buildTypeEdges table = ordNub . go where go :: BareType -> [Symbol] go (RApp c ts rs _) = go_alias (val c) ++ concatMap go ts ++ concatMap go (mapMaybe go_ref rs) go (RFun _ t1 t2 _) = go t1 ++ go t2 go (RAppTy t1 t2 _) = go t1 ++ go t2 go (RAllE _ t1 t2) = go t1 ++ go t2 go (REx _ t1 t2) = go t1 ++ go t2 go (RAllT _ t) = go t go (RAllP _ t) = go t go (RAllS _ t) = go t go (RVar _ _) = [] go (RExprArg _) = [] go (RHole _) = [] go (RRTy env _ _ t) = concatMap (go . snd) env ++ go t go_alias c = [c | M.member c table] -- case M.lookup c table of -- Just _ -> [c] -- Nothing -> [ ] go_ref (RProp _ (RHole _)) = Nothing go_ref (RProp _ t) = Just t buildExprEdges table = ordNub . go where go :: Expr -> [Symbol] go (EApp e1 e2) = go e1 ++ go e2 go (ENeg e) = go e go (EBin _ e1 e2) = go e1 ++ go e2 go (EIte _ e1 e2) = go e1 ++ go e2 go (ECst e _) = go e go (ESym _) = [] go (ECon _) = [] go (EVar v) = go_alias v go (PAnd ps) = concatMap go ps go (POr ps) = concatMap go ps go (PNot p) = go p go (PImp p q) = go p ++ go q go (PIff p q) = go p ++ go q go (PAll _ p) = go p go (ELam _ e) = go e go (PAtom _ e1 e2) = go e1 ++ go e2 go (ETApp e _) = go e go (ETAbs e _) = go e go (PKVar _ _) = [] go (PExist _ e) = go e go PGrad = [] go_alias f = [f | M.member f table ]
ssaavedra/liquidhaskell
src/Language/Haskell/Liquid/Bare/RTEnv.hs
bsd-3-clause
5,742
0
15
1,716
2,160
1,106
1,054
132
21
{-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE OverloadedStrings #-} module React.Flux.Mui.DropDownMenu where import Protolude import Data.Aeson import Data.Aeson.Casing import Data.String (String) import React.Flux import React.Flux.Mui.Util data DropDownMenu = DropDownMenu { dropDownMenuAnimated :: !(Maybe Bool) , dropDownMenuAutoWidth :: !(Maybe Bool) , dropDownMenuClassName :: !(Maybe Text) , dropDownMenuDisabled :: !(Maybe Bool) , dropDownMenuMaxHeight :: !(Maybe Integer) , dropDownMenuOpenImmediately :: !(Maybe Bool) } deriving (Generic, Show) instance ToJSON DropDownMenu where toJSON = genericToJSON $ aesonDrop (length ("DropDownMenu" :: String)) camelCase defDropDownMenu :: DropDownMenu defDropDownMenu = DropDownMenu { dropDownMenuAnimated = Just True , dropDownMenuAutoWidth = Just True , dropDownMenuClassName = Nothing , dropDownMenuDisabled = Just False , dropDownMenuMaxHeight = Just 500 , dropDownMenuOpenImmediately = Just False } dropDownMenu_ :: DropDownMenu -> [PropertyOrHandler handler] -> ReactElementM handler () -> ReactElementM handler () dropDownMenu_ args props = foreign_ "DropDownMenu" (fromMaybe [] (toProps args) ++ props)
pbogdan/react-flux-mui
react-flux-mui/src/React/Flux/Mui/DropDownMenu.hs
bsd-3-clause
1,216
0
11
194
313
173
140
48
1
{-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleContexts #-} module Data.PList.Binary ( PList(..) , _PBool , _PInt , _PReal , _PDate , _PData , _PASCII , _PUTF16 , _PUID , _PArray , _PDict , decodePList , encodePList ) where import Prelude as P hiding (mapM) import qualified Data.HashMap.Strict as H import qualified Data.Vector as V hiding (replicateM) import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as BL import Data.Binary import Data.Binary.Get import Data.Binary.Put import Data.Binary.IEEE754 import Data.Bits import Data.Int import GHC.Float import Data.Time.Clock.POSIX import qualified Data.Text as T import Data.Text.Encoding as TE import Control.Monad as M hiding (mapM) import Control.Monad.Except hiding (mapM) import Control.Monad.Identity hiding (mapM) import qualified Control.Monad.State as S import Data.Bifunctor import Control.Lens import Data.Traversable -- see http://opensource.apple.com/source/CF/CF-744.18/CFBinaryPList.c for reference -- | A property list. Used by OS X and iOS data PList = PBool Bool -- ^ boolean | PInt Int64 -- ^ signed integer | PReal Double -- ^ floating point | PDate POSIXTime -- ^ date | PData B.ByteString -- ^ binary data | PASCII B.ByteString -- ^ ascii string | PUTF16 T.Text -- ^ utf-16 string | PUID Word64 -- ^ unsigned integer | PArray (V.Vector PList) -- ^ array | PDict (H.HashMap B.ByteString PList) -- ^ dictionary deriving (Show, Eq) makePrisms ''PList -- Intemediate plist data structure -- TODO: dont use intermediate data structure data ImPList = IBool Bool | IInt Int64 | IReal Double | IDate POSIXTime | IData B.ByteString | IASCII B.ByteString | IUTF16 T.Text | IUID Word64 | IArray [Int] -- an array of references to other objects | IDict [(Int, Int)] -- an dictionary of references deriving (Show) fromIntermediate :: [ImPList] -> [PList] fromIntermediate xs = converted where converted = P.map convert xs convert (IBool x) = PBool x convert (IInt x) = PInt x convert (IReal x) = PReal x convert (IDate x) = PDate x convert (IData x) = PData x convert (IASCII x) = PASCII x convert (IUTF16 x) = PUTF16 x convert (IUID x) = PUID x convert (IArray x) = PArray $ V.fromList (P.map (converted !!) x) convert (IDict x) = PDict $ H.fromList (P.map (\(a,b) -> (unwrap (xs !! a), converted !! b)) x) unwrap (IASCII x) = x data Trailer = Trailer { unused1 :: Word8 , unused2 :: Word32 , shortVersion :: Word8 , offsetIntSize :: Word8 , objectRefSize :: Word8 , numObjects :: Word64 , topObject :: Word64 , offsetTableOffset :: Word64 } deriving (Show) instance Binary Trailer where get = Trailer <$> getWord8 <*> getWord32be <*> getWord8 <*> getWord8 <*> getWord8 <*> getWord64be <*> getWord64be <*> getWord64be put t = do putWord8 0 putWord32be 0 putWord8 $ shortVersion t putWord8 $ offsetIntSize t putWord8 $ objectRefSize t putWord64be $ numObjects t putWord64be $ topObject t putWord64be $ offsetTableOffset t trailerSize :: Int64 trailerSize = 32 decodePList :: BL.ByteString -> Either String PList decodePList s = runExcept $ do unless (BL.take 8 s == "bplist00") $ throwError "invalid file format, must be bplist00" -- decode the trailer to figure out where offsets are trailer <- decodeBinary (BL.drop (BL.length s - trailerSize) s) get -- decode all the offsets offsets <- decodeBinary (BL.drop (fromIntegral $ offsetTableOffset trailer) s) (replicateM (fromIntegral $ numObjects trailer) $ getWordbe $ fromIntegral $ offsetIntSize trailer) -- transform each offset into an object objects <- mapM (\off -> decodeBinary (BL.drop (fromIntegral off) s) (getObject (fromIntegral $ objectRefSize trailer))) offsets return $ fromIntermediate objects !! fromIntegral (topObject trailer) where thrd (_, _, c) = c decodeBinary :: BL.ByteString -> Get a -> Except String a decodeBinary str g = ExceptT $ Identity $ bimap thrd thrd $ runGetOrFail g str getWordbe :: Int -> Get Int getWordbe size = do bytes <- replicateM size getWord8 return $ P.foldl (\b a -> shiftL b 8 .|. fromIntegral a) 0 bytes getObject refSize = do let getRef = getWordbe refSize -- items are prefixed by type and size w <- getWord8 let l = w .&. 0xf -- lower bytes are length i = shiftR w 4 -- high bytes are type len <- fromIntegral <$> case l of 15 | i /= 0 && i /= 1 && i /= 2 && i /= 3 -> do -- if size if 0xf, then the actualy size is encoded as a plist integer following this byte plint <- getObject refSize :: Get ImPList case plint of IInt int -> return int _ -> fail "Expected integer for extended length" _ -> return $ fromIntegral l case i of 0x0 -> case l of -- bool is encoded in length as 0b1001 for true and 0b1000 for false 8 -> return $ IBool False 9 -> return $ IBool True _ -> fail $ "unexpected bool constant " ++ show l 0x1 -> IInt <$> case l of -- 2^i = byte length of integer TODO: support arbitrary lengths 0 -> fromIntegral <$> (get :: Get Int8) 1 -> fromIntegral <$> (get :: Get Int16) 2 -> fromIntegral <$> (get :: Get Int32) 3 -> fromIntegral <$> (get :: Get Int64) x -> fail $ "invalid integer length: " P.++ show x 0x2 -> IReal <$> case l of -- similar encoding to integer 2 -> float2Double <$> getFloat32be 3 -> getFloat64be _ -> fail "invalid float size" 0x3 -> IDate <$> realToFrac <$> getFloat64be 0x4 -> IData <$> getByteString len 0x5 -> IASCII <$> getByteString len 0x6 -> IUTF16 <$> (decodeUtf16BE <$> getByteString (len * 2)) 0x8 -> IUID <$> case l of 0 -> fromIntegral <$> (get :: Get Word8) 1 -> fromIntegral <$> (get :: Get Word16) 2 -> fromIntegral <$> (get :: Get Word32) 3 -> fromIntegral <$> (get :: Get Word64) _ -> fail "invalid UID length" -- arrays and dictionaries contain references to other elements 0xa -> IArray <$> replicateM len getRef -- temp store as ints 0xd -> do keys <- replicateM len getRef vals <- replicateM len getRef return $ IDict $ zip keys vals x -> fail $ "Unexpected type: " P.++ show x -- types as defined by apple typeId :: PList -> Word8 typeId (PBool _) = 0x0 typeId (PInt _) = 0x1 typeId (PReal _) = 0x2 typeId (PDate _) = 0x3 typeId (PData _) = 0x4 typeId (PASCII _) = 0x5 typeId (PUTF16 _) = 0x6 typeId (PUID _) = 0x8 typeId (PArray _) = 0xa typeId (PDict _) = 0xd -- TODO: pack ints and words based on size -- | How many bytes an elcoded object occupies elemLen :: PList -> Int elemLen (PBool _) = 0 elemLen (PInt _) = 3 elemLen (PReal _) = 3 elemLen (PDate _) = 3 elemLen (PData x) = B.length x elemLen (PASCII x) = B.length x elemLen (PUTF16 x) = T.length x elemLen (PUID _) = 3 elemLen (PArray x) = V.length x elemLen (PDict x) = H.size x data PState = PState { _refNum :: Int , _offset :: Int , _objOffsets :: [Int] } deriving (Show) makeLenses ''PState type PutState = S.StateT PState PutM () -- | binary encode a PList encodePList :: PList -> BL.ByteString encodePList plist = runPut $ do (r,s) <- S.runStateT (do putByteString' "bplist00" putObjectOffset plist ) PState { _refNum = 1, _offset = 0, _objOffsets = [] } let trailer = Trailer { unused1 = 0 , unused2 = 0 , shortVersion = 0 , offsetIntSize = fromIntegral $ bytesToEncode $ fromIntegral $ length $ s ^. objOffsets , objectRefSize = fromIntegral $ bytesToEncode $ fromIntegral numRefs , numObjects = fromIntegral numRefs , topObject = 0 , offsetTableOffset = fromIntegral $ s ^. offset } S.evalStateT (mapM_ (putWordbe (offsetIntSize trailer)) (s ^. objOffsets)) PState { _refNum = 1, _offset = 0, _objOffsets = [] } put trailer return r where numRefs :: Int numRefs = numRefs' plist + 1 numRefs' (PArray x) = V.length x + V.sum (V.map numRefs' x) numRefs' (PDict x) = H.size x * 2 + sum (map numRefs' (H.elems x)) numRefs' _ = 0 bytesToEncode :: Int -> Int bytesToEncode numThings = let go 0 i = i go x i = go (shiftR x 8) (i+1) in go numThings 0 putRef :: Int -> PutState putRef x = do refNum += 1 putWordbe (bytesToEncode numRefs) x putWordbe maxSize x | maxSize <= 1 = putWord8' $ fromIntegral x putWordbe maxSize x | maxSize <= 2 = putWord16be' $ fromIntegral x putWordbe maxSize x | maxSize <= 4 = putWord32be' $ fromIntegral x putWordbe maxSize x | maxSize <= 8 = putWord64be' $ fromIntegral x putObjectLen :: PList -> PutState putObjectLen (PBool True) = putWord8' 9 putObjectLen (PBool False) = putWord8' 8 putObjectLen x | elemLen x < 15 = putWord8' $ shiftL (typeId x) 4 .|. fromIntegral (elemLen x) putObjectLen x = putWord8' (shiftL (typeId x) 4 .|. 0xf) >> putObject (PInt $ fromIntegral $ elemLen x) putObjectOffset :: PList -> PutState putObjectOffset x = do curOffset <- use offset objOffsets <>= [curOffset] putObject x putObject :: PList -> PutState putObject x = putObjectLen x >> putObject' x putObject' :: PList -> PutState putObject' (PBool _) = return () -- bool is encoded with size of type putObject' (PInt x) = putInt64' x putObject' (PReal x) = putDouble' x putObject' (PDate x) = putDouble' $ fromRational $ toRational x putObject' (PData x) = putByteString' x putObject' (PASCII x) = putByteString' x putObject' (PUTF16 x) = putByteString' $ TE.encodeUtf16BE x putObject' (PUID x) = putWord64' x putObject' (PArray x) = do ind <- use refNum mapM_ putRef $ getRefs ind $ V.toList x V.mapM_ putObjectOffset x putObject' (PDict x) = do ind <- use refNum mapM_ putRef [ind.. ind + H.size x - 1] mapM_ putRef $ getRefs (ind + H.size x - 1) $ H.elems x mapM_ (putObjectOffset . PASCII) $ H.keys x mapM_ putObjectOffset $ H.elems x getRefs _ [] = [] getRefs ind (x:xs) = ind : getRefs (ind + numRefs' x + 1) xs putInt64' x = do lift $ put x offset += 8 putWord64' x = do lift $ put x offset += 8 putDouble' x = do lift $ putFloat64be x offset += 8 putByteString' x = do lift $ putByteString x offset += B.length x putWord8' x = do lift $ putWord8 x offset += 1 putWord16be' x = do lift $ putWord16be x offset += 2 putWord32be' x = do lift $ putWord32be x offset += 4 putWord64be' x = do lift $ putWord64be x offset += 8
tkonolige/haskell-bplist
src/Data/PList/Binary.hs
bsd-3-clause
12,833
0
23
4,684
3,699
1,877
1,822
278
25
module System.Mesos.Raw.MasterInfo where import System.Mesos.Internal type MasterInfoPtr = Ptr MasterInfo foreign import ccall unsafe "ext/types.h toMasterInfo" c_toMasterInfo :: Ptr CChar -- infoID -> CInt -- infoIDLen -> CUInt -- infoIP -> Ptr CUInt -- infoPort -> Ptr CChar -- pid -> CInt -- pidLen -> Ptr CChar -- hostname -> CInt -- hostnameLen -> Ptr CChar -- version -> CInt -- versionLen -> IO MasterInfoPtr foreign import ccall unsafe "ext/types.h fromMasterInfo" c_fromMasterInfo :: MasterInfoPtr -- info -> Ptr (Ptr CChar) -- infoId -> Ptr CInt -- infoIdlen -> Ptr CUInt -- infoIP -> Ptr CUInt -- infoPort -> Ptr (Ptr CChar) -- pid -> Ptr CInt -- pidLen -> Ptr (Ptr CChar) -- hostname -> Ptr CInt -- hostnameLen -> Ptr (Ptr CChar) -- version -> Ptr CInt -- versionLen -> IO () foreign import ccall unsafe "ext/types.h destroyMasterInfo" c_destroyMasterInfo :: MasterInfoPtr -> IO () instance CPPValue MasterInfo where marshal i = do (idp, idl) <- cstring $ masterInfoId' i (pidp, pidl) <- maybeCString $ masterInfoPid i (hnp, hnl) <- maybeCString $ masterInfoHostname i (verp, verl) <- maybeCString $ masterInfoVersion i prt <- allocMaybe $ fmap CUInt $ masterInfoPort i liftIO $ c_toMasterInfo idp (fromIntegral idl) (CUInt $ masterInfoIp i) prt pidp (fromIntegral pidl) hnp (fromIntegral hnl) verp (fromIntegral verl) unmarshal i = do (idpP, idlP) <- arrayPair ipP <- alloc portP <- alloc (pidpP, pidlP) <- arrayPair (hnpP, hnlP) <- arrayPair (verpP, verlP) <- arrayPair poke pidpP nullPtr poke hnpP nullPtr poke verpP nullPtr liftIO $ c_fromMasterInfo i idpP idlP ipP portP pidpP pidlP hnpP hnlP verpP verlP mID <- peekCString (idpP, idlP) (CUInt ip) <- peek ipP (CUInt port) <- peek portP pid <- peekMaybeBS pidpP pidlP hn <- peekMaybeBS hnpP hnlP version <- peekMaybeBS verpP verlP return $ MasterInfo mID ip (Just port) pid hn version destroy = c_destroyMasterInfo equalExceptDefaults (MasterInfo mID ip p pid hn ver) (MasterInfo mID' ip' p' pid' hn' ver') = mID == mID' && ip == ip' && defEq 5050 p p' && pid == pid' && hn == hn' && ver == ver'
Atidot/hs-mesos
src/System/Mesos/Raw/MasterInfo.hs
mit
2,231
0
18
510
767
380
387
59
0
{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TemplateHaskell #-} module Rackspace.MailGun ( Message (..) , sendMessage , sendWith ) where import Control.Monad.Catch import Control.Monad.IO.Class import Control.Monad.Trans.Control import qualified Data.ByteString.Char8 as BS import qualified Data.ByteString.Lazy.Char8 as LBS import Data.Text import Data.Text.Encoding import Network.HTTP.Client.MultipartFormData import Network.HTTP.Conduit baseUrl :: String baseUrl = "https://api.mailgun.net/v2" data Message = TextMessage { from :: Text , to :: Text , cc :: Maybe Text , bcc :: Maybe Text , subject :: Maybe Text , text :: Text } | HtmlMessage { from :: Text , to :: Text , cc :: Maybe Text , bcc :: Maybe Text , subject :: Maybe Text , html :: Text } deriving (Eq, Show) partText :: Text -> Text -> [Part] partText name value = [ partBS name (encodeUtf8 value) ] partMaybeText :: Text -> Maybe Text -> [Part] partMaybeText name value = case value of Just val -> [ partBS name (encodeUtf8 val) ] Nothing -> [] buildTail :: Message -> [Part] buildTail TextMessage{..} = partText "text" text buildTail HtmlMessage{..} = partText "html" html buildBase :: Message -> [Part] buildBase msg = partText "from" (from msg) ++ partText "to" (to msg) ++ partMaybeText "cc" (cc msg) ++ partMaybeText "bcc" (bcc msg) ++ partMaybeText "subject" (subject msg) ++ buildTail msg sendMessage :: (MonadIO m, MonadBaseControl IO m, MonadThrow m) => String -> String -> Message -> m (Response LBS.ByteString) sendMessage domain apiKey message = do withManager $ \manager -> do sendWith manager domain apiKey message sendWith :: (MonadIO m, MonadBaseControl IO m, MonadThrow m) => Manager -> String -> String -> Message -> m (Response LBS.ByteString) sendWith manager domain apiKey message = do initReq <- parseUrl $ baseUrl ++ "/" ++ domain ++ "/messages" let authReq = applyBasicAuth "api" (BS.pack apiKey) initReq postReq = authReq { method = "POST" } res <- flip httpLbs manager =<< (formDataBody (buildBase message) postReq) return res
AndrewRademacher/mailgun
src/Rackspace/MailGun.hs
mit
2,765
0
13
958
718
387
331
65
2
{-# LANGUAGE BangPatterns #-} {-| Implementation of the Ganeti Query2 server. -} {- Copyright (C) 2012, 2013 Google Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. -} module Ganeti.Query.Server ( ConfigReader , prepQueryD , runQueryD ) where import Control.Applicative import Control.Concurrent import Control.Exception import Data.Bits (bitSize) import Data.Maybe import qualified Network.Socket as S import qualified Text.JSON as J import Text.JSON (showJSON, JSValue(..)) import System.Info (arch) import qualified Ganeti.Constants as C import Ganeti.Errors import qualified Ganeti.Path as Path import Ganeti.Daemon import Ganeti.Objects import qualified Ganeti.Config as Config import Ganeti.BasicTypes import Ganeti.Logging import Ganeti.Luxi import Ganeti.OpCodes (TagObject(..)) import qualified Ganeti.Query.Language as Qlang import Ganeti.Query.Query import Ganeti.Query.Filter (FilterConstructor, makeSimpleFilter , makeHostnameFilter) -- | A type for functions that can return the configuration when -- executed. type ConfigReader = IO (Result ConfigData) -- | Helper for classic queries. handleClassicQuery :: ConfigData -- ^ Cluster config -> Qlang.ItemType -- ^ Query type -> [Either String Integer] -- ^ Requested names -- (empty means all) -> [String] -- ^ Requested fields -> Maybe FilterConstructor -- ^ the filter algorithm -- to be used, defaults to -- makeSimpleFilter -> Bool -- ^ Whether to do sync queries or not -> IO (GenericResult GanetiException JSValue) handleClassicQuery _ _ _ _ _ True = return . Bad $ OpPrereqError "Sync queries are not allowed" ECodeInval handleClassicQuery cfg qkind names fields filterconstr _ = do let fltcon = fromMaybe makeSimpleFilter filterconstr flt = fltcon (nameField qkind) names qr <- query cfg True (Qlang.Query qkind fields flt) return $ showJSON <$> (qr >>= queryCompat) -- | Minimal wrapper to handle the missing config case. handleCallWrapper :: Result ConfigData -> LuxiOp -> IO (ErrorResult JSValue) handleCallWrapper (Bad msg) _ = return . Bad . ConfigurationError $ "I do not have access to a valid configuration, cannot\ \ process queries: " ++ msg handleCallWrapper (Ok config) op = handleCall config op -- | Actual luxi operation handler. handleCall :: ConfigData -> LuxiOp -> IO (ErrorResult JSValue) handleCall cdata QueryClusterInfo = let cluster = configCluster cdata hypervisors = clusterEnabledHypervisors cluster def_hv = case hypervisors of x:_ -> showJSON x [] -> JSNull bits = show (bitSize (0::Int)) ++ "bits" arch_tuple = [bits, arch] obj = [ ("software_version", showJSON C.releaseVersion) , ("protocol_version", showJSON C.protocolVersion) , ("config_version", showJSON C.configVersion) , ("os_api_version", showJSON $ maximum C.osApiVersions) , ("export_version", showJSON C.exportVersion) , ("architecture", showJSON arch_tuple) , ("name", showJSON $ clusterClusterName cluster) , ("master", showJSON $ clusterMasterNode cluster) , ("default_hypervisor", def_hv) , ("enabled_hypervisors", showJSON hypervisors) , ("hvparams", showJSON $ clusterHvparams cluster) , ("os_hvp", showJSON $ clusterOsHvp cluster) , ("beparams", showJSON $ clusterBeparams cluster) , ("osparams", showJSON $ clusterOsparams cluster) , ("ipolicy", showJSON $ clusterIpolicy cluster) , ("nicparams", showJSON $ clusterNicparams cluster) , ("ndparams", showJSON $ clusterNdparams cluster) , ("diskparams", showJSON $ clusterDiskparams cluster) , ("candidate_pool_size", showJSON $ clusterCandidatePoolSize cluster) , ("master_netdev", showJSON $ clusterMasterNetdev cluster) , ("master_netmask", showJSON $ clusterMasterNetmask cluster) , ("use_external_mip_script", showJSON $ clusterUseExternalMipScript cluster) , ("volume_group_name", maybe JSNull showJSON (clusterVolumeGroupName cluster)) , ("drbd_usermode_helper", maybe JSNull showJSON (clusterDrbdUsermodeHelper cluster)) , ("file_storage_dir", showJSON $ clusterFileStorageDir cluster) , ("shared_file_storage_dir", showJSON $ clusterSharedFileStorageDir cluster) , ("maintain_node_health", showJSON $ clusterMaintainNodeHealth cluster) , ("ctime", showJSON $ clusterCtime cluster) , ("mtime", showJSON $ clusterMtime cluster) , ("uuid", showJSON $ clusterUuid cluster) , ("tags", showJSON $ clusterTags cluster) , ("uid_pool", showJSON $ clusterUidPool cluster) , ("default_iallocator", showJSON $ clusterDefaultIallocator cluster) , ("reserved_lvs", showJSON $ clusterReservedLvs cluster) , ("primary_ip_version", showJSON . ipFamilyToVersion $ clusterPrimaryIpFamily cluster) , ("prealloc_wipe_disks", showJSON $ clusterPreallocWipeDisks cluster) , ("hidden_os", showJSON $ clusterHiddenOs cluster) , ("blacklisted_os", showJSON $ clusterBlacklistedOs cluster) ] in return . Ok . J.makeObj $ obj handleCall cfg (QueryTags kind) = let tags = case kind of TagCluster -> Ok . clusterTags $ configCluster cfg TagGroup name -> groupTags <$> Config.getGroup cfg name TagNode name -> nodeTags <$> Config.getNode cfg name TagInstance name -> instTags <$> Config.getInstance cfg name in return (J.showJSON <$> tags) handleCall cfg (Query qkind qfields qfilter) = do result <- query cfg True (Qlang.Query qkind qfields qfilter) return $ J.showJSON <$> result handleCall _ (QueryFields qkind qfields) = do let result = queryFields (Qlang.QueryFields qkind qfields) return $ J.showJSON <$> result handleCall cfg (QueryNodes names fields lock) = handleClassicQuery cfg (Qlang.ItemTypeOpCode Qlang.QRNode) (map Left names) fields (Just makeHostnameFilter) lock handleCall cfg (QueryGroups names fields lock) = handleClassicQuery cfg (Qlang.ItemTypeOpCode Qlang.QRGroup) (map Left names) fields Nothing lock handleCall cfg (QueryJobs names fields) = handleClassicQuery cfg (Qlang.ItemTypeLuxi Qlang.QRJob) (map (Right . fromIntegral . fromJobId) names) fields Nothing False handleCall _ op = return . Bad $ GenericError ("Luxi call '" ++ strOfOp op ++ "' not implemented") -- | Given a decoded luxi request, executes it and sends the luxi -- response back to the client. handleClientMsg :: Client -> ConfigReader -> LuxiOp -> IO Bool handleClientMsg client creader args = do cfg <- creader logDebug $ "Request: " ++ show args call_result <- handleCallWrapper cfg args (!status, !rval) <- case call_result of Bad err -> do logWarning $ "Failed to execute request " ++ show args ++ ": " ++ show err return (False, showJSON err) Ok result -> do -- only log the first 2,000 chars of the result logDebug $ "Result (truncated): " ++ take 2000 (J.encode result) logInfo $ "Successfully handled " ++ strOfOp args return (True, result) sendMsg client $ buildResponse status rval return True -- | Handles one iteration of the client protocol: receives message, -- checks it for validity and decodes it, returns response. handleClient :: Client -> ConfigReader -> IO Bool handleClient client creader = do !msg <- recvMsgExt client case msg of RecvConnClosed -> logDebug "Connection closed" >> return False RecvError err -> logWarning ("Error during message receiving: " ++ err) >> return False RecvOk payload -> case validateCall payload >>= decodeCall of Bad err -> do let errmsg = "Failed to parse request: " ++ err logWarning errmsg sendMsg client $ buildResponse False (showJSON errmsg) return False Ok args -> handleClientMsg client creader args -- | Main client loop: runs one loop of 'handleClient', and if that -- doesn't repot a finished (closed) connection, restarts itself. clientLoop :: Client -> ConfigReader -> IO () clientLoop client creader = do result <- handleClient client creader if result then clientLoop client creader else closeClient client -- | Main loop: accepts clients, forks an I/O thread to handle that -- client, and then restarts. mainLoop :: ConfigReader -> S.Socket -> IO () mainLoop creader socket = do client <- acceptClient socket _ <- forkIO $ clientLoop client creader mainLoop creader socket -- | Function that prepares the server socket. prepQueryD :: Maybe FilePath -> IO (FilePath, S.Socket) prepQueryD fpath = do def_socket <- Path.defaultQuerySocket let socket_path = fromMaybe def_socket fpath cleanupSocket socket_path s <- describeError "binding to the Luxi socket" Nothing (Just socket_path) $ getServer socket_path return (socket_path, s) -- | Main function that runs the query endpoint. runQueryD :: (FilePath, S.Socket) -> ConfigReader -> IO () runQueryD (socket_path, server) creader = finally (mainLoop creader server) (closeServer socket_path server)
dblia/nosql-ganeti
src/Ganeti/Query/Server.hs
gpl-2.0
10,460
0
18
2,672
2,342
1,217
1,125
187
5
module Main where import qualified Api.Server as S main :: IO () main = S.main
Geeroar/ut-haskell
src/Main.hs
apache-2.0
81
0
6
17
29
18
11
4
1
{-| Module : Models.TimedAutomaton Description : A (simplified) type for Timed Automata (TA) extended as in the UPPAAL tool (and XTA format). Copyright : (c) 2017 Pascal Poizat License : Apache-2.0 (see the file LICENSE) Maintainer : [email protected] Stability : experimental Portability : unknown -} {-# LANGUAGE FlexibleInstances #-} module Models.TimedAutomaton ( -- * constructors Clock(..) , VariableType(..) , VariableName(..) , VariableTyping(..) , Bounds(..) , Expression(..) , VariableAssignment(..) , Location(..) , ClockOperator(..) , ClockConstraint(..) , ClockReset(..) , Edge(..) , TimedAutomaton(..) , TimedAutomataNetwork(..) , ToXta -- * validity checking , isValidTA -- * get/set , isCommitted , isUrgent , setCommitted , setUrgent -- * modifications , name , rename , prefixBy , suffixBy , relabel , rename' , addObservers -- * model to text transformations , asXta) where import Data.List (delete) import Data.Map as M (Map (..), fromList, keys, member, (!)) import Data.Monoid (Any (..), getAny, (<>)) import Data.Set as S (fromList) import Helpers (allIn, removeDuplicates) import Models.TCommunication (TCommunication (..)) import Models.Events (CTIOEvent (..), TIOEvent (..)) import Models.Internal (Internal (..)) import Models.Name (Name (..), isValidName) import Models.Named (Named (..)) import Numeric.Natural import Transformations.ModelToText (foldMapToString, foldMapToString') import Transformations.Substitution (Substitution, apply) {-| A clock. -} newtype Clock = Clock String deriving (Eq, Ord, Show) {-| A location. -} newtype Location b = Location b deriving (Eq, Ord, Show) {-| A variable type, used for variables. -} data VariableType = IntType Bounds | BoolType deriving (Eq, Show) {-| Boundaries for the integer type. This is a simplified version of the UPPAAL model (no constants). -} data Bounds = NoBounds | Bounds { lowerBound :: Int , higherBound :: Int} deriving (Eq, Show) {-| Variable names are names over String. -} type VariableName = Name String {-| Variables are given as a name, a type and possibly an initialization. -} data VariableTyping = VariableTyping { varname :: VariableName , vartype :: VariableType , varinit :: Maybe Expression} deriving (Eq, Show) {-| An expression used in assignments. The expression is abstracted as a String. We suppose this String is correct (type and use of variables). -} newtype Expression = Expression String deriving (Eq, Ord, Show) {-| An assignment for a variable. -} data VariableAssignment = VariableAssignment { variable :: VariableName , value :: Expression} deriving (Eq, Ord, Show) {-| A clock comparison operator. -} data ClockOperator = LT | GT | LE | GE | EQ deriving (Eq, Ord, Show) {-| A clock constraint. -} data ClockConstraint = ClockConstraint { ccclock :: Clock -- ^ clock , ccoperator :: ClockOperator -- ^ comparison operator , ccvalue :: Natural -- ^ value to compare to } deriving (Eq, Ord, Show) {-| A clock reset (resets a clock to 0). -} newtype ClockReset = ClockReset { rclock :: Clock } deriving (Eq, Ord, Show) {-| An edge with actions of type a between locations of type b. -} data Edge a b = Edge { source :: Location b -- ^ source location , action :: a -- ^ action , guard :: [ClockConstraint] -- ^ guard , resets :: [ClockReset] -- ^ set of clocks to reset , assignments :: [VariableAssignment] -- ^ sequence of assignmentd , target :: Location b -- ^ target location } deriving (Ord, Show) {-| Instance of Eq for edges. Two edges are == up tp reordering in guard and resets. -} instance (Eq a, Eq b) => Eq (Edge a b) where (Edge s a gs rs as t) == (Edge s' a' gs' rs' as' t') = (s == s') && (a == a') && (S.fromList gs == S.fromList gs') && (S.fromList rs == S.fromList rs') && (S.fromList as == S.fromList as') && (t == t') {-| A timed automaton (TA). A TA is generic on a, the the type of actions on edges, and on b, the type of locations. -} data TimedAutomaton a b = TimedAutomaton { mid :: Name String -- ^ id of the model , locations :: [Location b] -- ^ locations , initialLocation :: Location b -- ^ initial location , committedLocations :: [Location b] -- ^ committed locations , urgentLocations :: [Location b] -- ^ urgent locations , clocks :: [Clock] -- ^ clocks , variables :: Map VariableName VariableTyping -- ^ variables , actions :: [a] -- ^ actions , edges :: [Edge a b] -- ^ edges , invariants :: [(Location b, [ClockConstraint])] -- ^ invariants } {-| Network of TAs. -} newtype TimedAutomataNetwork a b = TimedAutomataNetwork [TimedAutomaton a b] deriving (Show) {-| Instance of Show for TAs. -} instance (Ord a, Ord b, ToXta a, ToXta b, TCommunication a) => Show (TimedAutomaton a b) where show = asXta {-| Instance of Eq for TAs. TODO: add treatment for invariants -} instance (Ord a, Ord b) => Eq (TimedAutomaton a b) where (TimedAutomaton i ls l0 cls uls cs vs as es _) == (TimedAutomaton i' ls' l0' cls' uls' cs' vs' as' es' _) = and [ i == i' , ls == ls' , l0 == l0' , cls == cls' , uls == uls' , cs == cs' , vs == vs' , as == as' , es == es' ] {-| Instance of Named for TAs. -} instance Named (TimedAutomaton a b) where name = mid rename n (TimedAutomaton _ ls l0 cls uls cs vs as es is) = TimedAutomaton n ls l0 cls uls cs vs as es is {-| Check the validity of a TA. A TA is valid iff: - the model id is not empty - the set of actions is not empty - the set of locations is not empty - the sets of urgent and committed locations are disjoint - the union of the urgent and committed locations is included in the locationd - the initial location is in the set of locations - the source location of each edge is in the set of locations - the label of each transition is in the alphabet - the target location of each edge is in the set of locations - the resets of each edge are in the set of clocks - the assignments of each edge are over the variables - TODO: the keyset of the invariants is equal to the set of locations -} isValidTA :: (Eq a, Eq b) => TimedAutomaton a b -> Bool isValidTA (TimedAutomaton i ls l0 cls uls cs vs as es _) = and [ isValidName i , not . null $ as , not . null $ ls , l0 `elem` ls , not . getAny $ foldMap (Any . elem' uls) cls , cls `allIn` ls , uls `allIn` ls , (source <$> es) `allIn` ls , (action <$> es) `allIn` as , (target <$> es) `allIn` ls , (rclock <$> foldMap resets es) `allIn` cs , (variable <$> foldMap assignments es) `allIn` keys vs ] where xs `elem'` x = x `elem` xs {-| Relabel actions in a TA. -} relabel :: (Ord a) => Substitution a -> TimedAutomaton a b -> TimedAutomaton a b relabel sigma (TimedAutomaton i ls l0 cls uls cs vs as es is) = TimedAutomaton i ls l0 cls uls cs vs (apply sigma <$> as) (relabelE sigma <$> es) is where relabelE sig (Edge s a gs rs as' s') = Edge s (apply sig a) gs rs as' s' {-| Check if a location is committed. -} isCommitted :: Eq b => TimedAutomaton a b -> Location b -> Bool isCommitted (TimedAutomaton i ls l0 cls uls cs vs as es is) l = l `elem` ls && l `elem` cls {-| Check if a location is urgent. -} isUrgent :: Eq b => TimedAutomaton a b -> Location b -> Bool isUrgent (TimedAutomaton i ls l0 cls uls cs vs as es is) l = l `elem` ls && l `elem` uls {-| Set a location to be committed. Supposes the timed automaton is valid. -} setCommitted :: Eq b => TimedAutomaton a b -> Location b -> TimedAutomaton a b setCommitted t@(TimedAutomaton i ls l0 cls uls cs vs as es is) l | l `notElem` ls = t | isCommitted t l = t | not (isUrgent t l) = TimedAutomaton i ls l0 cls' uls cs vs as es is | otherwise = TimedAutomaton i ls l0 cls' uls' cs vs as es is where cls' = l : cls uls' = delete l uls {-| Set a location to be urgent. Supposes the timed automaton is valid. -} setUrgent :: Eq b => TimedAutomaton a b -> Location b -> TimedAutomaton a b setUrgent t@(TimedAutomaton i ls l0 cls uls cs vs as es is) l | l `notElem` ls = t | isUrgent t l = t | not (isCommitted t l) = TimedAutomaton i ls l0 cls uls' cs vs as es is | otherwise = TimedAutomaton i ls l0 cls' uls' cs vs as es is where cls' = delete l cls uls' = l : uls {-| Rename the TA (using a substitution). -} rename' :: Substitution (Name String) -> TimedAutomaton a b -> TimedAutomaton a b rename' sigma t = rename (apply sigma $ name t) t {-| Add observers for actions. This means: - adding a local integer variable "done", initialized at 0 - defining a mapping m between actions as and identifiers (integers [1..|as|] - setting done=m(a) for each edge with action a on it -} addObservers :: Ord a => TimedAutomaton a b -> TimedAutomaton a b addObservers (TimedAutomaton i ls l0 cls uls cs vs as es is) = TimedAutomaton i ls l0 cls uls cs vs' as es' is where vs' = M.fromList [(varname, var)] es' = addObserver <$> es -- varname = Name ["done"] var = VariableTyping varname (IntType bounds) (Just $ Expression "0") bounds = Bounds 0 (length as) m = M.fromList $ zip as (show <$> [1 .. (length as)]) -- addObserver (Edge s a gs rs as t) = Edge s a gs rs as' t where as' = if member a m then VariableAssignment varname (Expression (m ! a)):as else as {-| Get the invariant for a location. -} getInvariantForLocation :: Ord b => [(Location b, [ClockConstraint])] -> Location b -> [ClockConstraint] getInvariantForLocation is l = foldMap snd . filter ((== l) . fst) $ is {-| Class for what can be exported in the XTA format. -} class Show t => ToXta t where asXta :: t -> String {-# MINIMAL asXta #-} {-| Symbol in the XTA format for reception. -} xtaREC :: String xtaREC = "?" {-| Symbol in the XTA format for emission. -} xtaSEND :: String xtaSEND = "!" {-| ToXta instance for names. -} instance ToXta (Name String) where asXta (Name []) = "_" asXta (Name ns) = foldMapToString' "_" id ns {-| ToXta instance for Natural. -} instance ToXta Natural where asXta = show {-| ToXta instance for Int. -} instance ToXta Int where asXta = show {-| ToXta instance for [Char]. -} instance ToXta [Char] where asXta = id {-| ToXta instance for expressions. -} instance ToXta Expression where asXta (Expression e) = asXta e {-| ToXta instance for bounds. -} instance ToXta Bounds where asXta NoBounds = "" asXta (Bounds b1 b2) = "[" ++ asXta b1 ++ "," ++ asXta b2 ++ "]" {-| ToXta instance for variable types. -} instance ToXta VariableType where asXta (IntType b) = "int" ++ asXta b asXta BoolType = "bool" {-| ToXta instance for variable typings. -} instance ToXta VariableTyping where asXta (VariableTyping v t (Just e)) = asXta t ++ " " ++ asXta v ++ " = " ++ asXta e ++ ";" asXta (VariableTyping v t Nothing) = asXta t ++ " " ++ asXta v ++ ";" {-| ToXta instance for variable assignments. -} instance ToXta VariableAssignment where asXta (VariableAssignment v e) = asXta v ++ " = " ++ asXta e {-| ToXta instance for clocks. -} instance ToXta Clock where asXta (Clock c) = "c_" ++ asXta c {-| ToXta instance for clock resets. -} instance ToXta ClockReset where asXta (ClockReset c) = asXta c ++ " = 0" {-| ToXta instance for clock constraints. -} instance ToXta ClockConstraint where asXta (ClockConstraint c op v) = asXta c <> " " <> asXta op <> " " <> asXta v {-| ToXta instance for clock operators. -} instance ToXta ClockOperator where asXta Models.TimedAutomaton.LT = "<" asXta Models.TimedAutomaton.LE = "<=" asXta Models.TimedAutomaton.EQ = "==" asXta Models.TimedAutomaton.GE = ">=" asXta Models.TimedAutomaton.GT = ">" {-| ToXta instance for locations. -} instance (ToXta a) => ToXta (Location a) where asXta (Location l) = "l_" ++ asXta l {-| ToXta instance for IO events. -} instance (ToXta a) => ToXta (TIOEvent a) where asXta TTau = "" asXta (TReceive a) = asXta a asXta (TSend a) = asXta a {-| ToXta instance for CIO events. -} instance (ToXta a) => ToXta (CTIOEvent a) where asXta CTTau = "" asXta (CTReceive a) = asXta a ++ reqSuffix asXta (CTInvoke a) = asXta a ++ reqSuffix asXta (CTReply a) = asXta a ++ resSuffix asXta (CTResult a) = asXta a ++ resSuffix reqSuffix :: String reqSuffix = "_req" resSuffix :: String resSuffix = "_res" {-| ToXta instance for edges. -} instance (ToXta a, ToXta b, TCommunication a) => ToXta (Edge a b) where asXta (Edge s a gs rs as s') = concat [ replicate 4 ' ' , asXta s , " -> " , asXta s' , " { " , foldMapToString "guard " " && " "; " asXta gs , asXta' a , foldMapToString "assign " ", " "; " id ((asXta <$> as) <> (asXta <$> rs)) , "}" ] where asXta' e = case () of _ | isOutput e -> "sync " ++ asXta e ++ xtaSEND ++ "; " | isInput e -> "sync " ++ asXta e ++ xtaREC ++ "; " | otherwise -> "" {-| ToXta instance for a TA network. -} instance (Ord a, Ord b, ToXta a, ToXta b, TCommunication a) => ToXta (TimedAutomataNetwork a b) where asXta (TimedAutomataNetwork tas) = unlines $ [schannels] <> stas <> sinstances <> [sprocess] where -- define the channels schannels = foldMapToString "chan " ", " ";" id iochannels iochannels = removeDuplicates $ asXta <$> foldMap (removeInternals . actions) tas removeInternals = filter (not . isInternal) -- define the TAs stas = asXta <$> tas -- get all TA ids pids = mid <$> tas -- create an instance for each TA sinstances = finstancedecl <$> pids finstancedecl pid = finstancename pid <> " = " <> asXta pid <> "();" finstancename pid = "Process_" <> asXta pid -- put all the instances in the system sprocess = foldMapToString "system " ", " ";" finstancename pids {-| ToXta instance for TAs. Can be used to transform a TA into the XTA format. Given a TA t, the channels and instance parts of the XTA files are obtained by using @ToXta (TimedAutomataNetwork [t])@ instead of @ToXta t@. -} instance (Ord a, Ord b, ToXta a, ToXta b, TCommunication a) => ToXta (TimedAutomaton a b) where asXta (TimedAutomaton i ls l0 cls uls cs vs as es is) = unlines $ filter (not . null) [ sheader , sclocks , svariables , sstates , scstates , sustates , sinitialization , sedges , sfooter ] where sheader = "process " <> asXta i <> "(){" sclocks = foldMapToString "clock " ", " ";" asXta cs svariables = foldMapToString' "\n" asXta vs sstates = foldMapToString "state " ", " ";" (asXtaWithInvariants is) ls scstates = foldMapToString "commit " ", " ";" asXta cls sustates = foldMapToString "urgent " ", " ";" asXta uls sinitialization = "init " <> asXta l0 <> ";" sedges = foldMapToString "trans\n" ",\n" ";" asXta es sfooter = "}" asXtaWithInvariants is' l = asXta l <> foldMapToString " { " " && " " }" asXta (getInvariantForLocation is' l)
pascalpoizat/veca-haskell
src/Models/TimedAutomaton.hs
apache-2.0
15,955
0
15
4,389
4,347
2,344
2,003
333
2
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="fil-PH"> <title>Ang Port Scan | ZAP Extension</title> <maps> <homeID>top</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Mga Nilalaman</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Indeks</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Paghahanap</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Mga paborito</label> <type>javax.help.FavoritesView</type> </view> </helpset>
veggiespam/zap-extensions
addOns/scripts/src/main/javahelp/org/zaproxy/zap/extension/scripts/resources/help_fil_PH/helpset_fil_PH.hs
apache-2.0
989
85
52
163
406
213
193
-1
-1
{-# LANGUAGE PatternGuards, ViewPatterns, TypeSynonymInstances, FlexibleInstances, Rank2Types #-} module Core.Syntax where import Core.Data (DataCon) import Name import Utilities import StaticFlags type Var = Name data PrimOp = Add | Subtract | Multiply | Divide | Modulo | Equal | LessThan | LessThanEqual deriving (Eq, Ord, Show) data AltCon = DataAlt DataCon [Var] | LiteralAlt Literal | DefaultAlt (Maybe Var) deriving (Eq, Show) -- Note [Case wildcards] -- ~~~~~~~~~~~~~~~~~~~~~ -- -- Simon thought that I should use the variable in the DefaultAlt to agressively rewrite occurences of a scrutinised variable. -- The motivation is that this lets us do more inlining above the case. For example, take this code fragment from foldl': -- -- let n' = c n y -- in case n' of wild -> foldl' c n' ys -- -- If we rewrite, n' becomes linear: -- -- let n' = c n y -- in case n' of wild -> foldl c wild ys -- -- This lets us potentially inline n' directly into the scrutinee position (operationally, this prevent creation of a thunk for n'). -- However, I don't think that this particular form of improving linearity helps the supercompiler. We only want to inline n' in -- somewhere if it meets some interesting context, with which it can cancel. But if we are creating an update frame for n' at all, -- it is *probably* because we had no information about what it evaluated to. -- -- An interesting exception is when n' binds a case expression: -- -- let n' = case unk of T -> F; F -> T -- in case (case n' of T -> F; F -> T) of -- wild -> e[n'] -- -- You might think that we want n' to be linear so we can inline it into the case on it. However, the splitter will save us and produce: -- -- case unk of -- T -> let n' = F -- in case (case n' of T -> F; F -> T) of wild -> e[n'] -- F -> let n' = T -- in case (case n' of T -> F; F -> T) of wild -> e[n'] -- -- Since we now know the form of n', everything works out nicely. -- -- Conclusion: I don't think rewriting to use the case wildcard buys us anything at all. data Literal = Int Integer | Char Char deriving (Eq, Show) type Term = Identity (TermF Identity) type TaggedTerm = Tagged (TermF Tagged) type CountedTerm = Counted (TermF Counted) data TermF ann = Var Var | Value (ValueF ann) | App (ann (TermF ann)) Var | PrimOp PrimOp [ann (TermF ann)] | Case (ann (TermF ann)) [AltF ann] | LetRec [(Var, ann (TermF ann))] (ann (TermF ann)) deriving (Eq, Show) type Alt = AltF Identity type TaggedAlt = AltF Tagged type CountedAlt = AltF Counted type AltF ann = (AltCon, ann (TermF ann)) type Value = ValueF Identity type TaggedValue = ValueF Tagged type CountedValue = ValueF Counted data ValueF ann = Indirect Var | Lambda Var (ann (TermF ann)) | Data DataCon [Var] | Literal Literal -- TODO: add PAPs as well? Would avoid duplicating function bodies too eagerly. deriving (Eq, Show) instance NFData PrimOp instance NFData AltCon where rnf (DataAlt a b) = rnf a `seq` rnf b rnf (LiteralAlt a) = rnf a rnf (DefaultAlt a) = rnf a instance NFData Literal where rnf (Int a) = rnf a rnf (Char a) = rnf a instance NFData1 ann => NFData (TermF ann) where rnf (Var a) = rnf a rnf (Value a) = rnf a rnf (App a b) = rnf a `seq` rnf b rnf (PrimOp a b) = rnf a `seq` rnf b rnf (Case a b) = rnf a `seq` rnf b rnf (LetRec a b) = rnf a `seq` rnf b instance NFData1 ann => NFData (ValueF ann) where rnf (Indirect a) = rnf a rnf (Lambda a b) = rnf a `seq` rnf b rnf (Data a b) = rnf a `seq` rnf b rnf (Literal a) = rnf a instance Pretty PrimOp where pPrint Add = text "(+)" pPrint Subtract = text "(-)" pPrint Multiply = text "(*)" pPrint Divide = text "div" pPrint Modulo = text "mod" pPrint Equal = text "(==)" pPrint LessThan = text "(<)" pPrint LessThanEqual = text "(<=)" instance Pretty AltCon where pPrintPrec level prec altcon = case altcon of DataAlt dc xs -> prettyParen (prec >= appPrec) $ text dc <+> hsep (map (pPrintPrec level appPrec) xs) LiteralAlt l -> pPrint l DefaultAlt mb_x -> maybe (text "_") (pPrintPrec level prec) mb_x instance Pretty Literal where pPrintPrec level prec (Int i) | level == haskellLevel = prettyParen (prec >= appPrec) $ pPrintPrec level appPrec i <+> text ":: Int" | otherwise = pPrintPrec level prec i pPrintPrec _ _ (Char c) = text $ show c instance Pretty1 ann => Pretty (TermF ann) where pPrintPrec level prec e = case e of LetRec xes e -> pPrintPrecLetRec level prec xes e Var x -> pPrintPrec level prec x Value v -> pPrintPrec level prec v App e1 x2 -> pPrintPrecApp level prec e1 x2 PrimOp pop xs -> pPrintPrecPrimOp level prec pop xs Case e alts | level == haskellLevel, null alts -> pPrintPrecSeq level prec e (text "undefined") | level == haskellLevel, [(DefaultAlt Nothing, e_alt)] <- alts -> pPrintPrecSeq level prec e e_alt | level == haskellLevel, [(DefaultAlt (Just x), e_alt)] <- alts -> pPrintPrecLetRec level prec [(x, e)] (pPrintPrecSeq level prec x e_alt) | otherwise -> pPrintPrecCase level prec e alts pPrintPrecSeq :: (Pretty a, Pretty b) => PrettyLevel -> Rational -> a -> b -> Doc pPrintPrecSeq level prec e1 e2 = pPrintPrecApp level prec (PrettyFunction $ \level prec -> pPrintPrecApp level prec (name "seq") e1) e2 pPrintPrecApp :: (Pretty a, Pretty b) => PrettyLevel -> Rational -> a -> b -> Doc pPrintPrecApp level prec e1 e2 = prettyParen (prec >= appPrec) $ pPrintPrec level opPrec e1 <+> pPrintPrec level appPrec e2 pPrintPrecPrimOp :: (Pretty a, Pretty b) => PrettyLevel -> Rational -> a -> [b] -> Doc pPrintPrecPrimOp level prec pop xs = pPrintPrecApps level prec pop xs pPrintPrecCase :: (Pretty a, Pretty b, Pretty c) => PrettyLevel -> Rational -> a -> [(b, c)] -> Doc pPrintPrecCase level prec e alts = prettyParen (prec > noPrec) $ hang (text "case" <+> pPrintPrec level noPrec e <+> text "of") 2 $ vcat (map (pPrintPrecAlt level noPrec) alts) pPrintPrecAlt :: (Pretty a, Pretty b) => PrettyLevel -> Rational -> (a, b) -> Doc pPrintPrecAlt level _ (alt_con, alt_e) = hang (pPrintPrec level noPrec alt_con <+> text "->") 2 (pPrintPrec level noPrec alt_e) pPrintPrecLetRec :: (Pretty a, Pretty b, Pretty c) => PrettyLevel -> Rational -> [(a, b)] -> c -> Doc pPrintPrecLetRec level prec xes e_body | [] <- xes = pPrintPrec level prec e_body | otherwise = prettyParen (prec > noPrec) $ hang (if level == haskellLevel then text "let" else text "letrec") 2 (vcat [pPrintPrec level noPrec x <+> text "=" <+> pPrintPrec level noPrec e | (x, e) <- xes]) $$ text "in" <+> pPrintPrec level noPrec e_body instance Pretty1 ann => Pretty (ValueF ann) where pPrintPrec level prec v = case v of Indirect x -> pPrintPrec level prec x -- Unfortunately, this nicer pretty-printing doesn't work for general (TermF ann): --Lambda x e -> pPrintPrecLam level prec (x:xs) e' -- where (xs, e') = collectLambdas e Lambda x e -> pPrintPrecLam level prec [x] e Data dc xs -> pPrintPrecApps level prec (PrettyFunction $ \_ _ -> text dc) xs Literal l -> pPrintPrec level prec l pPrintPrecLam :: Pretty a => PrettyLevel -> Rational -> [Var] -> a -> Doc pPrintPrecLam level prec xs e = prettyParen (prec > noPrec) $ text "\\" <> hsep [pPrintPrec level appPrec y | y <- xs] <+> text "->" <+> pPrintPrec level noPrec e pPrintPrecApps :: (Pretty a, Pretty b) => PrettyLevel -> Rational -> a -> [b] -> Doc pPrintPrecApps level prec e1 es2 = prettyParen (not (null es2) && prec >= appPrec) $ pPrintPrec level opPrec e1 <+> hsep (map (pPrintPrec level appPrec) es2) altConBinders :: AltCon -> [Var] altConBinders (DataAlt _ xs) = xs altConBinders (LiteralAlt _) = [] altConBinders (DefaultAlt mb_x) = maybeToList mb_x termToValue :: Copointed ann => ann (TermF ann) -> Maybe (ann (ValueF ann)) termToValue e = case extract e of Value v -> Just (fmap (const v) e); _ -> Nothing termIsValue :: Copointed ann => ann (TermF ann) -> Bool termIsValue = isValue . extract isValue :: TermF ann -> Bool isValue (Value _) = True isValue _ = False termIsCheap :: Copointed ann => ann (TermF ann) -> Bool termIsCheap = isCheap . extract isCheap :: Copointed ann => TermF ann -> Bool isCheap (Var _) = True isCheap (Value _) = True isCheap (Case e []) = isCheap (extract e) -- NB: important for pushing down let-bound applications of ``error'' isCheap _ = False termToVar :: Copointed ann => ann (TermF ann) -> Maybe Var termToVar e = case extract e of Value (Indirect x) -> Just x Var x -> Just x _ -> Nothing class Symantics ann where var :: Var -> ann (TermF ann) value :: ValueF ann -> ann (TermF ann) app :: ann (TermF ann) -> Var -> ann (TermF ann) primOp :: PrimOp -> [ann (TermF ann)] -> ann (TermF ann) case_ :: ann (TermF ann) -> [AltF ann] -> ann (TermF ann) letRec :: [(Var, ann (TermF ann))] -> ann (TermF ann) -> ann (TermF ann) instance Symantics Identity where var = I . Var value = I . Value app e = I . App e primOp pop es = I (PrimOp pop es) case_ e = I . Case e letRec xes e = I $ LetRec xes e reify :: (forall ann. Symantics ann => ann (TermF ann)) -> Term reify x = x reflect :: Term -> (forall ann. Symantics ann => ann (TermF ann)) reflect (I e) = case e of Var x -> var x Value (Indirect x) -> value (Indirect x) Value (Lambda x e) -> value (Lambda x (reflect e)) Value (Data dc xs) -> value (Data dc xs) Value (Literal l) -> value (Literal l) App e1 x2 -> app (reflect e1) x2 PrimOp pop es -> primOp pop (map reflect es) Case e alts -> case_ (reflect e) (map (second reflect) alts) LetRec xes e -> letRec (map (second reflect) xes) (reflect e) literal :: Symantics ann => Literal -> ann (TermF ann) literal = value . Literal lambda :: Symantics ann => Var -> ann (TermF ann) -> ann (TermF ann) lambda x = value . Lambda x lambdas :: Symantics ann => [Var] -> ann (TermF ann) -> ann (TermF ann) lambdas = flip $ foldr lambda data_ :: Symantics ann => DataCon -> [Var] -> ann (TermF ann) data_ dc = value . Data dc apps :: Symantics ann => ann (TermF ann) -> [Var] -> ann (TermF ann) apps = foldl app varApps :: Symantics ann => Var -> [Var] -> ann (TermF ann) varApps h xs = var h `apps` xs letRecSmart :: Symantics ann => [(Var, ann (TermF ann))] -> ann (TermF ann) -> ann (TermF ann) letRecSmart [] = id letRecSmart xes = letRec xes strictLet :: Symantics ann => Var -> ann (TermF ann) -> ann (TermF ann) -> ann (TermF ann) strictLet x e1 e2 = case_ e1 [(DefaultAlt (Just x), e2)] collectLambdas :: Term -> ([Var], Term) collectLambdas (I (Value (Lambda x e))) = first (x:) $ collectLambdas e collectLambdas e = ([], e) freshFloatVar :: IdSupply -> String -> Term -> (IdSupply, Maybe (Name, Term), Name) freshFloatVar ids _ (I (Var x)) = (ids, Nothing, x) freshFloatVar ids s e = (ids', Just (y, e), y) where (ids', y) = freshName ids s freshFloatVars :: IdSupply -> String -> [Term] -> (IdSupply, [(Name, Term)], [Name]) freshFloatVars ids s es = reassociate $ mapAccumL (\ids -> associate . freshFloatVar ids s) ids es where reassociate (ids, unzip -> (mb_floats, xs)) = (ids, catMaybes mb_floats, xs) associate (ids, mb_float, x) = (ids, (mb_float, x))
batterseapower/mini-ghc
Core/Syntax.hs
bsd-3-clause
11,795
0
17
2,991
4,334
2,191
2,143
178
9
{-# LANGUAGE RecordWildCards #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE OverloadedStrings #-} import SDL.Pal import Graphics.GL.Pal import Halive.Utils import Control.Monad.Reader import Data.Time import Data.Foldable -- import System.Random data Uniforms = Uniforms { uMVP :: UniformLocation (M44 GLfloat) } deriving Data randomPositions :: GLsizei -> GLfloat -> IO [V3 GLfloat] randomPositions instanceCount t = forM [0..instanceCount-1] $ \i -> do let x = fromIntegral $ (i `div` 100) - 50 y = fromIntegral $ (i `mod` 100) - 50 return (V3 x (y + sin (t + fromIntegral i)) 0) main :: IO () main = do win <- reacquire 0 $ createGLWindow "Geometry Test" shader <- createShaderProgram "test/geoInstanced.vert" "test/geo.frag" cubeGeo <- cubeGeometry 0.5 1 cubeShape <- makeShape cubeGeo shader let numInstances = 1000 initialOffsets <- randomPositions numInstances 0 positionsBuffer <- bufferData GL_DYNAMIC_DRAW (concatMap toList initialOffsets) --iBuffer <- bufferData GL_DYNAMIC_DRAW (replicate (fromIntegral numInstances) 5 :: [GLint]) withShape cubeShape $ do withArrayBuffer positionsBuffer $ assignFloatAttributeInstanced shader "aInstancePosition" GL_FLOAT 3 --withArrayBuffer iBuffer $ -- assignIntegerAttributeInstanced shader "aInstancePosI" GL_INT 1 glEnable GL_DEPTH_TEST glClearColor 0.0 0.0 0.1 1 whileWindow win $ \events -> do projection <- getWindowProjection win 45 0.1 1000 (x,y,w,h) <- getWindowViewport win glViewport x y w h glClear (GL_COLOR_BUFFER_BIT .|. GL_DEPTH_BUFFER_BIT) let view = viewMatrix (V3 0 0 100) (axisAngle (V3 0 1 0) 0) t <- (*10) . realToFrac . utctDayTime <$> getCurrentTime newOffsets <- randomPositions numInstances t bufferSubData positionsBuffer (concatMap toList newOffsets) --bufferSubData iBuffer (replicate (fromIntegral numInstances) 0 :: [GLint]) let model = mkTransformation (axisAngle (V3 1 1 0) 1) (V3 0 1 0) withShape cubeShape $ do Uniforms{..} <- asks sUniforms uniformM44 uMVP (projection !*! view !*! model) drawShapeInstanced numInstances glSwapWindow win
lukexi/gl-pal
test/TestInstanced.hs
bsd-3-clause
2,380
3
18
625
636
306
330
46
1
{-# LANGUAGE CPP, FlexibleInstances, IncoherentInstances, NamedFieldPuns, NoImplicitPrelude, OverlappingInstances, TemplateHaskell, UndecidableInstances #-} {-| Module: Data.Aeson.TH Copyright: (c) 2011-2015 Bryan O'Sullivan (c) 2011 MailRank, Inc. License: Apache Stability: experimental Portability: portable Functions to mechanically derive 'ToJSON' and 'FromJSON' instances. Note that you need to enable the @TemplateHaskell@ language extension in order to use this module. An example shows how instances are generated for arbitrary data types. First we define a data type: @ data D a = Nullary | Unary Int | Product String Char a | Record { testOne :: Double , testTwo :: Bool , testThree :: D a } deriving Eq @ Next we derive the necessary instances. Note that we make use of the feature to change record field names. In this case we drop the first 4 characters of every field name. We also modify constructor names by lower-casing them: @ $('deriveJSON' 'defaultOptions'{'fieldLabelModifier' = 'drop' 4, 'constructorTagModifier' = map toLower} ''D) @ Now we can use the newly created instances. @ d :: D 'Int' d = Record { testOne = 3.14159 , testTwo = 'True' , testThree = Product \"test\" \'A\' 123 } @ >>> fromJSON (toJSON d) == Success d > True Please note that you can derive instances for tuples using the following syntax: @ -- FromJSON and ToJSON instances for 4-tuples. $('deriveJSON' 'defaultOptions' ''(,,,)) @ -} module Data.Aeson.TH ( -- * Encoding configuration Options(..), SumEncoding(..), defaultOptions, defaultTaggedObject -- * FromJSON and ToJSON derivation , deriveJSON , deriveToJSON , deriveFromJSON , mkToJSON , mkToEncoding , mkParseJSON ) where -------------------------------------------------------------------------------- -- Imports -------------------------------------------------------------------------------- -- from aeson: import Data.Aeson ( toJSON, Object, (.=), (.:), (.:?) , ToJSON, toEncoding, toJSON , FromJSON, parseJSON ) import Data.Aeson.Types ( Value(..), Parser , Options(..) , SumEncoding(..) , defaultOptions , defaultTaggedObject ) import Data.Aeson.Types.Internal (Encoding(..)) import qualified Data.Aeson.Encode.Builder as E import qualified Data.Aeson.Encode.Functions as E import qualified Data.Aeson as A -- from base: import Control.Applicative ( pure, (<$>), (<*>) ) import Control.Monad ( return, mapM, liftM2, fail ) import Data.Bool ( Bool(False, True), otherwise, (&&) , not) import Data.Eq ( (==) ) import Data.Function ( ($), (.) ) import Data.Functor ( fmap ) import Data.Int ( Int ) import Data.Either ( Either(Left, Right) ) import Data.List ( (++), foldl, foldl', intercalate, intersperse , length, map, zip, genericLength, all, partition ) import Data.Maybe ( Maybe(Nothing, Just), catMaybes ) import Data.Monoid ( (<>), mconcat ) import Prelude ( String, (-), Integer, error, foldr1, fromIntegral ) import Text.Printf ( printf ) import Text.Show ( show ) -- from unordered-containers: import qualified Data.HashMap.Strict as H ( lookup, toList ) -- from template-haskell: import Language.Haskell.TH import Language.Haskell.TH.Syntax ( VarStrictType ) -- from text: import qualified Data.Text as T ( Text, pack, unpack ) -- from vector: import qualified Data.Vector as V ( unsafeIndex, null, length, create, fromList ) import qualified Data.Vector.Mutable as VM ( unsafeNew, unsafeWrite ) -------------------------------------------------------------------------------- -- Convenience -------------------------------------------------------------------------------- -- | Generates both 'ToJSON' and 'FromJSON' instance declarations for the given -- data type. -- -- This is a convienience function which is equivalent to calling both -- 'deriveToJSON' and 'deriveFromJSON'. deriveJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate 'ToJSON' and 'FromJSON' -- instances. -> Q [Dec] deriveJSON opts name = liftM2 (++) (deriveToJSON opts name) (deriveFromJSON opts name) -------------------------------------------------------------------------------- -- ToJSON -------------------------------------------------------------------------------- {- TODO: Don't constrain phantom type variables. data Foo a = Foo Int instance (ToJSON a) ⇒ ToJSON Foo where ... The above (ToJSON a) constraint is not necessary and perhaps undesirable. -} -- | Generates a 'ToJSON' instance declaration for the given data type. deriveToJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'ToJSON' instance -- declaration. -> Q [Dec] deriveToJSON opts name = withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons where fromCons :: [TyVarBndr] -> [Con] -> Q Dec fromCons tvbs cons = instanceD (applyCon ''ToJSON typeNames) (classType `appT` instanceType) [ funD 'toJSON [ clause [] (normalB $ consToValue opts cons) [] ] , funD 'toEncoding [ clause [] (normalB $ consToEncoding opts cons) [] ] ] where classType = conT ''ToJSON typeNames = map tvbName tvbs instanceType = foldl' appT (conT name) $ map varT typeNames -- | Generates a lambda expression which encodes the given data type as a -- 'Value'. mkToJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkToJSON opts name = withType name (\_ cons -> consToValue opts cons) -- | Generates a lambda expression which encodes the given data type -- as a JSON string. mkToEncoding :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkToEncoding opts name = withType name (\_ cons -> consToEncoding opts cons) -- | Helper function used by both 'deriveToJSON' and 'mkToJSON'. Generates -- code to generate a 'Value' of a number of constructors. All constructors -- must be from the same type. consToValue :: Options -- ^ Encoding options. -> [Con] -- ^ Constructors for which to generate JSON generating code. -> Q Exp consToValue _ [] = error $ "Data.Aeson.TH.consToValue: " ++ "Not a single constructor given!" -- A single constructor is directly encoded. The constructor itself may be -- forgotten. consToValue opts [con] = do value <- newName "value" lam1E (varP value) $ caseE (varE value) [argsToValue opts False con] consToValue opts cons = do value <- newName "value" lam1E (varP value) $ caseE (varE value) matches where matches | allNullaryToStringTag opts && all isNullary cons = [ match (conP conName []) (normalB $ conStr opts conName) [] | con <- cons , let conName = getConName con ] | otherwise = [argsToValue opts True con | con <- cons] conStr :: Options -> Name -> Q Exp conStr opts = appE [|String|] . conTxt opts conTxt :: Options -> Name -> Q Exp conTxt opts = appE [|T.pack|] . conStringE opts conStringE :: Options -> Name -> Q Exp conStringE opts = stringE . constructorTagModifier opts . nameBase -- | Helper function used by both 'deriveToJSON' and 'mkToEncoding'. Generates -- code to write out a value for a number of constructors. All constructors -- must be from the same type. consToEncoding :: Options -- ^ Encoding options. -> [Con] -- ^ Constructors for which to generate JSON generating code. -> Q Exp consToEncoding _ [] = error $ "Data.Aeson.TH.consToEncoding: " ++ "Not a single constructor given!" -- A single constructor is directly encoded. The constructor itself may be -- forgotten. consToEncoding opts [con] = do value <- newName "value" lam1E (varP value) $ caseE (varE value) [argsToEncoding opts False con] -- Encode just the name of the constructor of a sum type iff all the -- constructors are nullary. consToEncoding opts cons = do value <- newName "value" lam1E (varP value) $ caseE (varE value) matches where matches | allNullaryToStringTag opts && all isNullary cons = [ match (conP conName []) (normalB $ [|Encoding|] `appE` encStr opts conName) [] | con <- cons , let conName = getConName con ] | otherwise = [argsToEncoding opts True con | con <- cons] encStr :: Options -> Name -> Q Exp encStr opts = appE [|E.text|] . conTxt opts -- | If constructor is nullary. isNullary :: Con -> Bool isNullary (NormalC _ []) = True isNullary _ = False sumToValue :: Options -> Bool -> Name -> Q Exp -> Q Exp sumToValue opts multiCons conName exp | multiCons = case sumEncoding opts of TwoElemArray -> [|Array|] `appE` ([|V.fromList|] `appE` listE [conStr opts conName, exp]) TaggedObject{tagFieldName, contentsFieldName} -> [|A.object|] `appE` listE [ infixApp [|T.pack tagFieldName|] [|(.=)|] (conStr opts conName) , infixApp [|T.pack contentsFieldName|] [|(.=)|] exp ] ObjectWithSingleField -> [|A.object|] `appE` listE [ infixApp (conTxt opts conName) [|(.=)|] exp ] | otherwise = exp -- | Generates code to generate the JSON encoding of a single constructor. argsToValue :: Options -> Bool -> Con -> Q Match -- Nullary constructors. Generates code that explicitly matches against the -- constructor even though it doesn't contain data. This is useful to prevent -- type errors. argsToValue opts multiCons (NormalC conName []) = match (conP conName []) (normalB (sumToValue opts multiCons conName [e|toJSON ([] :: [()])|])) [] -- Polyadic constructors with special case for unary constructors. argsToValue opts multiCons (NormalC conName ts) = do let len = length ts args <- mapM newName ["arg" ++ show n | n <- [1..len]] js <- case [[|toJSON|] `appE` varE arg | arg <- args] of -- Single argument is directly converted. [e] -> return e -- Multiple arguments are converted to a JSON array. es -> do mv <- newName "mv" let newMV = bindS (varP mv) ([|VM.unsafeNew|] `appE` litE (integerL $ fromIntegral len)) stmts = [ noBindS $ [|VM.unsafeWrite|] `appE` (varE mv) `appE` litE (integerL ix) `appE` e | (ix, e) <- zip [(0::Integer)..] es ] ret = noBindS $ [|return|] `appE` varE mv return $ [|Array|] `appE` (varE 'V.create `appE` doE (newMV:stmts++[ret])) match (conP conName $ map varP args) (normalB $ sumToValue opts multiCons conName js) [] -- Records. argsToValue opts multiCons (RecC conName ts) = case (unwrapUnaryRecords opts, not multiCons, ts) of (True,True,[(_,st,ty)]) -> argsToValue opts multiCons (NormalC conName [(st,ty)]) _ -> do args <- mapM newName ["arg" ++ show n | (_, n) <- zip ts [1 :: Integer ..]] let exp = [|A.object|] `appE` pairs pairs | omitNothingFields opts = infixApp maybeFields [|(++)|] restFields | otherwise = listE $ map toPair argCons argCons = zip args ts maybeFields = [|catMaybes|] `appE` listE (map maybeToPair maybes) restFields = listE $ map toPair rest (maybes, rest) = partition isMaybe argCons maybeToPair (arg, (field, _, _)) = infixApp (infixE (Just $ toFieldName field) [|(.=)|] Nothing) [|(<$>)|] (varE arg) toPair (arg, (field, _, _)) = infixApp (toFieldName field) [|(.=)|] (varE arg) toFieldName field = [|T.pack|] `appE` fieldLabelExp opts field match (conP conName $ map varP args) ( normalB $ if multiCons then case sumEncoding opts of TwoElemArray -> [|toJSON|] `appE` tupE [conStr opts conName, exp] TaggedObject{tagFieldName} -> [|A.object|] `appE` -- TODO: Maybe throw an error in case -- tagFieldName overwrites a field in pairs. infixApp (infixApp [|T.pack tagFieldName|] [|(.=)|] (conStr opts conName)) [|(:)|] pairs ObjectWithSingleField -> [|A.object|] `appE` listE [ infixApp (conTxt opts conName) [|(.=)|] exp ] else exp ) [] -- Infix constructors. argsToValue opts multiCons (InfixC _ conName _) = do al <- newName "argL" ar <- newName "argR" match (infixP (varP al) conName (varP ar)) ( normalB $ sumToValue opts multiCons conName $ [|toJSON|] `appE` listE [ [|toJSON|] `appE` varE a | a <- [al,ar] ] ) [] -- Existentially quantified constructors. argsToValue opts multiCons (ForallC _ _ con) = argsToValue opts multiCons con isMaybe :: (a, (b, c, Type)) -> Bool isMaybe (_, (_, _, AppT (ConT t) _)) = t == ''Maybe isMaybe _ = False (<^>) :: ExpQ -> ExpQ -> ExpQ (<^>) a b = infixApp a [|(<>)|] b infixr 6 <^> (<:>) :: ExpQ -> ExpQ -> ExpQ (<:>) a b = a <^> [|E.char7 ':'|] <^> b infixr 5 <:> (<%>) :: ExpQ -> ExpQ -> ExpQ (<%>) a b = a <^> [|E.char7 ','|] <^> b infixr 4 <%> array :: ExpQ -> ExpQ array exp = [|Encoding|] `appE` ([|E.char7 '['|] <^> exp <^> [|E.char7 ']'|]) object :: ExpQ -> ExpQ object exp = [|Encoding|] `appE` ([|E.char7 '{'|] <^> exp <^> [|E.char7 '}'|]) sumToEncoding :: Options -> Bool -> Name -> Q Exp -> Q Exp sumToEncoding opts multiCons conName exp | multiCons = let fexp = [|fromEncoding|] `appE` exp in case sumEncoding opts of TwoElemArray -> array (encStr opts conName <%> fexp) TaggedObject{tagFieldName, contentsFieldName} -> object $ ([|E.text (T.pack tagFieldName)|] <:> encStr opts conName) <%> ([|E.text (T.pack contentsFieldName)|] <:> fexp) ObjectWithSingleField -> object (encStr opts conName <:> fexp) | otherwise = exp -- | Generates code to generate the JSON encoding of a single constructor. argsToEncoding :: Options -> Bool -> Con -> Q Match -- Nullary constructors. Generates code that explicitly matches against the -- constructor even though it doesn't contain data. This is useful to prevent -- type errors. argsToEncoding opts multiCons (NormalC conName []) = match (conP conName []) (normalB (sumToEncoding opts multiCons conName [e|toEncoding ([] :: [()])|])) [] -- Polyadic constructors with special case for unary constructors. argsToEncoding opts multiCons (NormalC conName ts) = do let len = length ts args <- mapM newName ["arg" ++ show n | n <- [1..len]] js <- case args of -- Single argument is directly converted. [e] -> return ([|toEncoding|] `appE` varE e) -- Multiple arguments are converted to a JSON array. es -> return (array (foldr1 (<%>) [[|E.builder|] `appE` varE x | x <- es])) match (conP conName $ map varP args) (normalB $ sumToEncoding opts multiCons conName js) [] -- Records. argsToEncoding opts multiCons (RecC conName ts) = case (unwrapUnaryRecords opts, not multiCons, ts) of (True,True,[(_,st,ty)]) -> argsToEncoding opts multiCons (NormalC conName [(st,ty)]) _ -> do args <- mapM newName ["arg" ++ show n | (_, n) <- zip ts [1 :: Integer ..]] let exp = object objBody objBody = [|mconcat|] `appE` ([|intersperse (E.char7 ',')|] `appE` pairs) pairs | omitNothingFields opts = infixApp maybeFields [|(<>)|] restFields | otherwise = listE (map toPair argCons) argCons = zip args ts maybeFields = [|catMaybes|] `appE` listE (map maybeToPair maybes) restFields = listE (map toPair rest) (maybes, rest) = partition isMaybe argCons maybeToPair (arg, (field, _, _)) = infixApp (infixE (Just $ toFieldName field) [|(.=)|] Nothing) [|(<$>)|] (varE arg) toPair (arg, (field, _, _)) = toFieldName field <:> [|E.builder|] `appE` varE arg toFieldName field = [|E.text|] `appE` ([|T.pack|] `appE` fieldLabelExp opts field) match (conP conName $ map varP args) ( normalB $ if multiCons then case sumEncoding opts of TwoElemArray -> array $ encStr opts conName <%> [|fromEncoding|] `appE` exp TaggedObject{tagFieldName} -> object $ ([|E.text (T.pack tagFieldName)|] <:> encStr opts conName) <%> objBody ObjectWithSingleField -> object $ encStr opts conName <:> [|fromEncoding|] `appE` exp else exp ) [] -- Infix constructors. argsToEncoding opts multiCons (InfixC _ conName _) = do al <- newName "argL" ar <- newName "argR" match (infixP (varP al) conName (varP ar)) ( normalB $ sumToEncoding opts multiCons conName $ [|toEncoding|] `appE` listE [ [|toJSON|] `appE` varE a | a <- [al,ar] ] ) [] -- Existentially quantified constructors. argsToEncoding opts multiCons (ForallC _ _ con) = argsToEncoding opts multiCons con -------------------------------------------------------------------------------- -- FromJSON -------------------------------------------------------------------------------- -- | Generates a 'FromJSON' instance declaration for the given data type. deriveFromJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'FromJSON' instance -- declaration. -> Q [Dec] deriveFromJSON opts name = withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons where fromCons :: [TyVarBndr] -> [Con] -> Q Dec fromCons tvbs cons = instanceD (applyCon ''FromJSON typeNames) (classType `appT` instanceType) [ funD 'parseJSON [ clause [] (normalB $ consFromJSON name opts cons) [] ] ] where classType = conT ''FromJSON typeNames = map tvbName tvbs instanceType = foldl' appT (conT name) $ map varT typeNames -- | Generates a lambda expression which parses the JSON encoding of the given -- data type. mkParseJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkParseJSON opts name = withType name (\_ cons -> consFromJSON name opts cons) -- | Helper function used by both 'deriveFromJSON' and 'mkParseJSON'. Generates -- code to parse the JSON encoding of a number of constructors. All constructors -- must be from the same type. consFromJSON :: Name -- ^ Name of the type to which the constructors belong. -> Options -- ^ Encoding options -> [Con] -- ^ Constructors for which to generate JSON parsing code. -> Q Exp consFromJSON _ _ [] = error $ "Data.Aeson.TH.consFromJSON: " ++ "Not a single constructor given!" consFromJSON tName opts [con] = do value <- newName "value" lam1E (varP value) (parseArgs tName opts con (Right value)) consFromJSON tName opts cons = do value <- newName "value" lam1E (varP value) $ caseE (varE value) $ if allNullaryToStringTag opts && all isNullary cons then allNullaryMatches else mixedMatches where allNullaryMatches = [ do txt <- newName "txt" match (conP 'String [varP txt]) (guardedB $ [ liftM2 (,) (normalG $ infixApp (varE txt) [|(==)|] ([|T.pack|] `appE` conStringE opts conName) ) ([|pure|] `appE` conE conName) | con <- cons , let conName = getConName con ] ++ [ liftM2 (,) (normalG [|otherwise|]) ( [|noMatchFail|] `appE` (litE $ stringL $ show tName) `appE` ([|T.unpack|] `appE` varE txt) ) ] ) [] , do other <- newName "other" match (varP other) (normalB $ [|noStringFail|] `appE` (litE $ stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] mixedMatches = case sumEncoding opts of TaggedObject {tagFieldName, contentsFieldName} -> parseObject $ parseTaggedObject tagFieldName contentsFieldName ObjectWithSingleField -> parseObject $ parseObjectWithSingleField TwoElemArray -> [ do arr <- newName "array" match (conP 'Array [varP arr]) (guardedB $ [ liftM2 (,) (normalG $ infixApp ([|V.length|] `appE` varE arr) [|(==)|] (litE $ integerL 2)) (parse2ElemArray arr) , liftM2 (,) (normalG [|otherwise|]) (([|not2ElemArray|] `appE` (litE $ stringL $ show tName) `appE` ([|V.length|] `appE` varE arr))) ] ) [] , do other <- newName "other" match (varP other) ( normalB $ [|noArrayFail|] `appE` (litE $ stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] parseObject f = [ do obj <- newName "obj" match (conP 'Object [varP obj]) (normalB $ f obj) [] , do other <- newName "other" match (varP other) ( normalB $ [|noObjectFail|] `appE` (litE $ stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] parseTaggedObject typFieldName valFieldName obj = do conKey <- newName "conKey" doE [ bindS (varP conKey) (infixApp (varE obj) [|(.:)|] ([|T.pack|] `appE` stringE typFieldName)) , noBindS $ parseContents conKey (Left (valFieldName, obj)) 'conNotFoundFailTaggedObject ] parse2ElemArray arr = do conKey <- newName "conKey" conVal <- newName "conVal" let letIx n ix = valD (varP n) (normalB ([|V.unsafeIndex|] `appE` varE arr `appE` litE (integerL ix))) [] letE [ letIx conKey 0 , letIx conVal 1 ] (caseE (varE conKey) [ do txt <- newName "txt" match (conP 'String [varP txt]) (normalB $ parseContents txt (Right conVal) 'conNotFoundFail2ElemArray ) [] , do other <- newName "other" match (varP other) ( normalB $ [|firstElemNoStringFail|] `appE` (litE $ stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] ) parseObjectWithSingleField obj = do conKey <- newName "conKey" conVal <- newName "conVal" caseE ([e|H.toList|] `appE` varE obj) [ match (listP [tupP [varP conKey, varP conVal]]) (normalB $ parseContents conKey (Right conVal) 'conNotFoundFailObjectSingleField) [] , do other <- newName "other" match (varP other) (normalB $ [|wrongPairCountFail|] `appE` (litE $ stringL $ show tName) `appE` ([|show . length|] `appE` varE other) ) [] ] parseContents conKey contents errorFun = caseE (varE conKey) [ match wildP ( guardedB $ [ do g <- normalG $ infixApp (varE conKey) [|(==)|] ([|T.pack|] `appE` conNameExp opts con) e <- parseArgs tName opts con contents return (g, e) | con <- cons ] ++ [ liftM2 (,) (normalG [e|otherwise|]) ( varE errorFun `appE` (litE $ stringL $ show tName) `appE` listE (map ( litE . stringL . constructorTagModifier opts . nameBase . getConName ) cons ) `appE` ([|T.unpack|] `appE` varE conKey) ) ] ) [] ] parseNullaryMatches :: Name -> Name -> [Q Match] parseNullaryMatches tName conName = [ do arr <- newName "arr" match (conP 'Array [varP arr]) (guardedB $ [ liftM2 (,) (normalG $ [|V.null|] `appE` varE arr) ([|pure|] `appE` conE conName) , liftM2 (,) (normalG [|otherwise|]) (parseTypeMismatch tName conName (litE $ stringL "an empty Array") (infixApp (litE $ stringL $ "Array of length ") [|(++)|] ([|show . V.length|] `appE` varE arr) ) ) ] ) [] , matchFailed tName conName "Array" ] parseUnaryMatches :: Name -> [Q Match] parseUnaryMatches conName = [ do arg <- newName "arg" match (varP arg) ( normalB $ infixApp (conE conName) [|(<$>)|] ([|parseJSON|] `appE` varE arg) ) [] ] parseRecord :: Options -> Name -> Name -> [VarStrictType] -> Name -> ExpQ parseRecord opts tName conName ts obj = foldl' (\a b -> infixApp a [|(<*>)|] b) (infixApp (conE conName) [|(<$>)|] x) xs where x:xs = [ [|lookupField|] `appE` (litE $ stringL $ show tName) `appE` (litE $ stringL $ constructorTagModifier opts $ nameBase conName) `appE` (varE obj) `appE` ( [|T.pack|] `appE` fieldLabelExp opts field ) | (field, _, _) <- ts ] getValField :: Name -> String -> [MatchQ] -> Q Exp getValField obj valFieldName matches = do val <- newName "val" doE [ bindS (varP val) $ infixApp (varE obj) [|(.:)|] ([|T.pack|] `appE` (litE $ stringL valFieldName)) , noBindS $ caseE (varE val) matches ] -- | Generates code to parse the JSON encoding of a single constructor. parseArgs :: Name -- ^ Name of the type to which the constructor belongs. -> Options -- ^ Encoding options. -> Con -- ^ Constructor for which to generate JSON parsing code. -> Either (String, Name) Name -- ^ Left (valFieldName, objName) or -- Right valName -> Q Exp -- Nullary constructors. parseArgs tName _ (NormalC conName []) (Left (valFieldName, obj)) = getValField obj valFieldName $ parseNullaryMatches tName conName parseArgs tName _ (NormalC conName []) (Right valName) = caseE (varE valName) $ parseNullaryMatches tName conName -- Unary constructors. parseArgs _ _ (NormalC conName [_]) (Left (valFieldName, obj)) = getValField obj valFieldName $ parseUnaryMatches conName parseArgs _ _ (NormalC conName [_]) (Right valName) = caseE (varE valName) $ parseUnaryMatches conName -- Polyadic constructors. parseArgs tName _ (NormalC conName ts) (Left (valFieldName, obj)) = getValField obj valFieldName $ parseProduct tName conName $ genericLength ts parseArgs tName _ (NormalC conName ts) (Right valName) = caseE (varE valName) $ parseProduct tName conName $ genericLength ts -- Records. parseArgs tName opts (RecC conName ts) (Left (_, obj)) = parseRecord opts tName conName ts obj parseArgs tName opts (RecC conName ts) (Right valName) = case (unwrapUnaryRecords opts,ts) of (True,[(_,st,ty)])-> parseArgs tName opts (NormalC conName [(st,ty)]) (Right valName) _ -> do obj <- newName "recObj" caseE (varE valName) [ match (conP 'Object [varP obj]) (normalB $ parseRecord opts tName conName ts obj) [] , matchFailed tName conName "Object" ] -- Infix constructors. Apart from syntax these are the same as -- polyadic constructors. parseArgs tName _ (InfixC _ conName _) (Left (valFieldName, obj)) = getValField obj valFieldName $ parseProduct tName conName 2 parseArgs tName _ (InfixC _ conName _) (Right valName) = caseE (varE valName) $ parseProduct tName conName 2 -- Existentially quantified constructors. We ignore the quantifiers -- and proceed with the contained constructor. parseArgs tName opts (ForallC _ _ con) contents = parseArgs tName opts con contents -- | Generates code to parse the JSON encoding of an n-ary -- constructor. parseProduct :: Name -- ^ Name of the type to which the constructor belongs. -> Name -- ^ 'Con'structor name. -> Integer -- ^ 'Con'structor arity. -> [Q Match] parseProduct tName conName numArgs = [ do arr <- newName "arr" -- List of: "parseJSON (arr `V.unsafeIndex` <IX>)" let x:xs = [ [|parseJSON|] `appE` infixApp (varE arr) [|V.unsafeIndex|] (litE $ integerL ix) | ix <- [0 .. numArgs - 1] ] match (conP 'Array [varP arr]) (normalB $ condE ( infixApp ([|V.length|] `appE` varE arr) [|(==)|] (litE $ integerL numArgs) ) ( foldl' (\a b -> infixApp a [|(<*>)|] b) (infixApp (conE conName) [|(<$>)|] x) xs ) ( parseTypeMismatch tName conName (litE $ stringL $ "Array of length " ++ show numArgs) ( infixApp (litE $ stringL $ "Array of length ") [|(++)|] ([|show . V.length|] `appE` varE arr) ) ) ) [] , matchFailed tName conName "Array" ] -------------------------------------------------------------------------------- -- Parsing errors -------------------------------------------------------------------------------- matchFailed :: Name -> Name -> String -> MatchQ matchFailed tName conName expected = do other <- newName "other" match (varP other) ( normalB $ parseTypeMismatch tName conName (litE $ stringL expected) ([|valueConName|] `appE` varE other) ) [] parseTypeMismatch :: Name -> Name -> ExpQ -> ExpQ -> ExpQ parseTypeMismatch tName conName expected actual = foldl appE [|parseTypeMismatch'|] [ litE $ stringL $ nameBase conName , litE $ stringL $ show tName , expected , actual ] class (FromJSON a) => LookupField a where lookupField :: String -> String -> Object -> T.Text -> Parser a instance (FromJSON a) => LookupField a where lookupField tName rec obj key = case H.lookup key obj of Nothing -> unknownFieldFail tName rec (T.unpack key) Just v -> parseJSON v instance (FromJSON a) => LookupField (Maybe a) where lookupField _ _ = (.:?) unknownFieldFail :: String -> String -> String -> Parser fail unknownFieldFail tName rec key = fail $ printf "When parsing the record %s of type %s the key %s was not present." rec tName key noArrayFail :: String -> String -> Parser fail noArrayFail t o = fail $ printf "When parsing %s expected Array but got %s." t o noObjectFail :: String -> String -> Parser fail noObjectFail t o = fail $ printf "When parsing %s expected Object but got %s." t o firstElemNoStringFail :: String -> String -> Parser fail firstElemNoStringFail t o = fail $ printf "When parsing %s expected an Array of 2 elements where the first element is a String but got %s at the first element." t o wrongPairCountFail :: String -> String -> Parser fail wrongPairCountFail t n = fail $ printf "When parsing %s expected an Object with a single tag/contents pair but got %s pairs." t n noStringFail :: String -> String -> Parser fail noStringFail t o = fail $ printf "When parsing %s expected String but got %s." t o noMatchFail :: String -> String -> Parser fail noMatchFail t o = fail $ printf "When parsing %s expected a String with the tag of a constructor but got %s." t o not2ElemArray :: String -> Int -> Parser fail not2ElemArray t i = fail $ printf "When parsing %s expected an Array of 2 elements but got %i elements" t i conNotFoundFail2ElemArray :: String -> [String] -> String -> Parser fail conNotFoundFail2ElemArray t cs o = fail $ printf "When parsing %s expected a 2-element Array with a tag and contents element where the tag is one of [%s], but got %s." t (intercalate ", " cs) o conNotFoundFailObjectSingleField :: String -> [String] -> String -> Parser fail conNotFoundFailObjectSingleField t cs o = fail $ printf "When parsing %s expected an Object with a single tag/contents pair where the tag is one of [%s], but got %s." t (intercalate ", " cs) o conNotFoundFailTaggedObject :: String -> [String] -> String -> Parser fail conNotFoundFailTaggedObject t cs o = fail $ printf "When parsing %s expected an Object with a tag field where the value is one of [%s], but got %s." t (intercalate ", " cs) o parseTypeMismatch' :: String -> String -> String -> String -> Parser fail parseTypeMismatch' conName tName expected actual = fail $ printf "When parsing the constructor %s of type %s expected %s but got %s." conName tName expected actual -------------------------------------------------------------------------------- -- Utility functions -------------------------------------------------------------------------------- -- | Boilerplate for top level splices. -- -- The given 'Name' must be from a type constructor. Furthermore, the -- type constructor must be either a data type or a newtype. Any other -- value will result in an exception. withType :: Name -> ([TyVarBndr] -> [Con] -> Q a) -- ^ Function that generates the actual code. Will be applied -- to the type variable binders and constructors extracted -- from the given 'Name'. -> Q a -- ^ Resulting value in the 'Q'uasi monad. withType name f = do info <- reify name case info of TyConI dec -> case dec of DataD _ _ tvbs cons _ -> f tvbs cons NewtypeD _ _ tvbs con _ -> f tvbs [con] other -> error $ "Data.Aeson.TH.withType: Unsupported type: " ++ show other _ -> error "Data.Aeson.TH.withType: I need the name of a type." -- | Extracts the name from a constructor. getConName :: Con -> Name getConName (NormalC name _) = name getConName (RecC name _) = name getConName (InfixC _ name _) = name getConName (ForallC _ _ con) = getConName con -- | Extracts the name from a type variable binder. tvbName :: TyVarBndr -> Name tvbName (PlainTV name ) = name tvbName (KindedTV name _) = name -- | Makes a string literal expression from a constructor's name. conNameExp :: Options -> Con -> Q Exp conNameExp opts = litE . stringL . constructorTagModifier opts . nameBase . getConName -- | Creates a string literal expression from a record field label. fieldLabelExp :: Options -- ^ Encoding options -> Name -> Q Exp fieldLabelExp opts = litE . stringL . fieldLabelModifier opts . nameBase -- | The name of the outermost 'Value' constructor. valueConName :: Value -> String valueConName (Object _) = "Object" valueConName (Array _) = "Array" valueConName (String _) = "String" valueConName (Number _) = "Number" valueConName (Bool _) = "Boolean" valueConName Null = "Null" applyCon :: Name -> [Name] -> Q [Pred] applyCon con typeNames = return (map apply typeNames) where apply t = #if MIN_VERSION_template_haskell(2,10,0) AppT (ConT con) (VarT t) #else ClassP con [VarT t] #endif
abbradar/aeson
Data/Aeson/TH.hs
bsd-3-clause
41,015
0
24
15,314
9,613
5,206
4,407
-1
-1
{-# LANGUAGE CPP #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE ScopedTypeVariables #-} module Language.Haskell.Liquid.GhcInterface ( -- * extract all information needed for verification getGhcInfo ) where import IdInfo import InstEnv import Bag (bagToList) import ErrUtils import GHC hiding (Target, desugarModule) import DriverPhases (Phase(..)) import DriverPipeline (compileFile) import Text.PrettyPrint.HughesPJ import HscTypes hiding (Target) import CoreSyn import Class import Var import CoreMonad (liftIO) import DataCon import qualified Control.Exception as Ex import GHC.Paths (libdir) import System.FilePath ( replaceExtension, normalise) import DynFlags import Control.Monad (filterM, foldM, when, forM, forM_, liftM) import Control.Applicative hiding (empty) import Data.Monoid hiding ((<>)) import Data.List (find, nub) import Data.Maybe (catMaybes, maybeToList) import qualified Data.HashSet as S import System.Console.CmdArgs.Verbosity (whenLoud) import System.Directory (removeFile, createDirectoryIfMissing, doesFileExist) import Language.Fixpoint.Types hiding (Result, Expr) import Language.Fixpoint.Misc import Language.Haskell.Liquid.Types import Language.Haskell.Liquid.Errors import Language.Haskell.Liquid.ANFTransform import Language.Haskell.Liquid.Bare import Language.Haskell.Liquid.GhcMisc import Language.Haskell.Liquid.Misc import Language.Haskell.Liquid.PrettyPrint import Language.Haskell.Liquid.Visitors import Language.Haskell.Liquid.CmdLine (withCabal, withPragmas) import Language.Haskell.Liquid.Parse import qualified Language.Haskell.Liquid.Measure as Ms import Language.Fixpoint.Names import Language.Fixpoint.Files -------------------------------------------------------------------- getGhcInfo :: Config -> FilePath -> IO (Either ErrorResult GhcInfo) -------------------------------------------------------------------- getGhcInfo cfg target = (Right <$> getGhcInfo' cfg target) `Ex.catch` (\(e :: SourceError) -> handle e) `Ex.catch` (\(e :: Error) -> handle e) `Ex.catch` (\(e :: [Error]) -> handle e) where handle = return . Left . result getGhcInfo' cfg0 target = runGhc (Just libdir) $ do liftIO $ cleanFiles target addTarget =<< guessTarget target Nothing (name,tgtSpec) <- liftIO $ parseSpec target cfg <- liftIO $ withPragmas cfg0 target $ Ms.pragmas tgtSpec cfg <- liftIO $ withCabal cfg let paths = idirs cfg updateDynFlags cfg liftIO $ whenLoud $ putStrLn ("paths = " ++ show paths) let name' = ModName Target (getModName name) impNames <- allDepNames <$> depanal [] False impSpecs <- getSpecs (real cfg) (totality cfg) target paths impNames [Spec, Hs, LHs] compileCFiles =<< liftIO (foldM (\c (f,_,s) -> withPragmas c f (Ms.pragmas s)) cfg impSpecs) impSpecs' <- forM impSpecs $ \(f,n,s) -> do when (not $ isSpecImport n) $ addTarget =<< guessTarget f Nothing return (n,s) load LoadAllTargets modguts <- getGhcModGuts1 target hscEnv <- getSession coreBinds <- liftIO $ anormalize (not $ nocaseexpand cfg) hscEnv modguts let datacons = [ dataConWorkId dc | tc <- mgi_tcs modguts , dc <- tyConDataCons tc ] let impVs = importVars coreBinds ++ classCons (mgi_cls_inst modguts) let defVs = definedVars coreBinds let useVs = readVars coreBinds let letVs = letVars coreBinds let derVs = derivedVars coreBinds $ fmap (fmap is_dfun) $ mgi_cls_inst modguts logicmap <- liftIO makeLogicMap (spec, imps, incs) <- moduleSpec cfg coreBinds (impVs ++ defVs) letVs name' modguts tgtSpec logicmap impSpecs' liftIO $ whenLoud $ putStrLn $ "Module Imports: " ++ show imps hqualFiles <- moduleHquals modguts paths target imps incs return $ GI hscEnv coreBinds derVs impVs (letVs ++ datacons) useVs hqualFiles imps incs spec makeLogicMap = do lg <- getCoreToLogicPath lspec <- readFile lg return $ parseSymbolToLogic lg lspec classCons :: Maybe [ClsInst] -> [Id] classCons Nothing = [] classCons (Just cs) = concatMap (dataConImplicitIds . head . tyConDataCons . classTyCon . is_cls) cs derivedVars :: CoreProgram -> Maybe [DFunId] -> [Id] derivedVars cbs (Just fds) = concatMap (derivedVs cbs) fds derivedVars _ Nothing = [] derivedVs :: CoreProgram -> DFunId -> [Id] derivedVs cbs fd = concatMap bindersOf cbf ++ deps where cbf = filter f cbs f (NonRec x _) = eqFd x f (Rec xes ) = any eqFd (fst <$> xes) eqFd x = varName x == varName fd deps :: [Id] deps = concatMap dep $ (unfoldingInfo . idInfo <$> concatMap bindersOf cbf) dep (DFunUnfolding _ _ e) = concatMap grapDep e dep (CoreUnfolding {uf_tmpl = e}) = grapDep e dep _ = [] grapDep :: CoreExpr -> [Id] grapDep e = freeVars S.empty e updateDynFlags cfg = do df <- getSessionDynFlags let df' = df { importPaths = idirs cfg ++ importPaths df , libraryPaths = idirs cfg ++ libraryPaths df , includePaths = idirs cfg ++ includePaths df , profAuto = ProfAutoCalls , ghcLink = LinkInMemory --FIXME: this *should* be HscNothing, but that prevents us from -- looking up *unexported* names in another source module.. , hscTarget = HscInterpreted -- HscNothing , ghcMode = CompManager -- prevent GHC from printing anything , log_action = \_ _ _ _ _ -> return () -- , verbosity = 3 } `xopt_set` Opt_MagicHash -- `gopt_set` Opt_Hpc `gopt_set` Opt_ImplicitImportQualified `gopt_set` Opt_PIC #if __GLASGOW_HASKELL__ >= 710 `gopt_set` Opt_Debug #endif (df'',_,_) <- parseDynamicFlags df' (map noLoc $ ghcOptions cfg) setSessionDynFlags $ df'' -- {profAuto = ProfAutoAll} compileCFiles cfg = do df <- getSessionDynFlags setSessionDynFlags $ df { includePaths = nub $ idirs cfg ++ includePaths df , importPaths = nub $ idirs cfg ++ importPaths df , libraryPaths = nub $ idirs cfg ++ libraryPaths df } hsc <- getSession os <- mapM (\x -> liftIO $ compileFile hsc StopLn (x,Nothing)) (nub $ cFiles cfg) df <- getSessionDynFlags setSessionDynFlags $ df { ldInputs = map (FileOption "") os ++ ldInputs df } mgi_namestring = moduleNameString . moduleName . mgi_module importVars = freeVars S.empty definedVars = concatMap defs where defs (NonRec x _) = [x] defs (Rec xes) = map fst xes ------------------------------------------------------------------ -- | Extracting CoreBindings From File --------------------------- ------------------------------------------------------------------ getGhcModGuts1 :: FilePath -> Ghc MGIModGuts getGhcModGuts1 fn = do modGraph <- getModuleGraph case find ((== fn) . msHsFilePath) modGraph of Just modSummary -> do -- mod_guts <- modSummaryModGuts modSummary mod_p <- parseModule modSummary mod_guts <- coreModule <$> (desugarModule =<< typecheckModule (ignoreInline mod_p)) let deriv = getDerivedDictionaries mod_guts return $! (miModGuts (Just deriv) mod_guts) Nothing -> exitWithPanic "Ghc Interface: Unable to get GhcModGuts" getDerivedDictionaries cm = instEnvElts $ mg_inst_env cm cleanFiles :: FilePath -> IO () cleanFiles fn = do forM_ bins (tryIgnore "delete binaries" . removeFileIfExists) tryIgnore "create temp directory" $ createDirectoryIfMissing False dir where bins = replaceExtension fn <$> ["hi", "o"] dir = tempDirectory fn removeFileIfExists f = doesFileExist f >>= (`when` removeFile f) -------------------------------------------------------------------------------- -- | Desugaring (Taken from GHC, modified to hold onto Loc in Ticks) ----------- -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -- | Extracting Qualifiers ----------------------------------------------------- -------------------------------------------------------------------------------- moduleHquals mg paths target imps incs = do hqs <- specIncludes Hquals paths incs hqs' <- moduleImports [Hquals] paths (mgi_namestring mg : imps) hqs'' <- liftIO $ filterM doesFileExist [extFileName Hquals target] let rv = sortNub $ hqs'' ++ hqs ++ (snd <$> hqs') liftIO $ whenLoud $ putStrLn $ "Reading Qualifiers From: " ++ show rv return rv -------------------------------------------------------------------------------- -- | Extracting Specifications (Measures + Assumptions) ------------------------ -------------------------------------------------------------------------------- moduleSpec cfg cbs vars defVars target mg tgtSpec logicmap impSpecs = do addImports impSpecs addContext $ IIModule $ moduleName $ mgi_module mg env <- getSession let specs = (target,tgtSpec):impSpecs let imps = sortNub $ impNames ++ [ symbolString x | (_,spec) <- specs , x <- Ms.imports spec ] ghcSpec <- liftIO $ makeGhcSpec cfg target cbs vars defVars exports env logicmap specs return (ghcSpec, imps, Ms.includes tgtSpec) where exports = mgi_exports mg impNames = map (getModString.fst) impSpecs addImports = mapM (addContext . IIDecl . qualImportDecl . getModName . fst) allDepNames = concatMap (map declNameString . ms_textual_imps) declNameString = moduleNameString . unLoc . ideclName . unLoc patErrorName = "PatErr" realSpecName = "Real" notRealSpecName = "NotReal" getSpecs rflag tflag target paths names exts = do fs' <- sortNub <$> moduleImports exts paths names patSpec <- getPatSpec paths tflag rlSpec <- getRealSpec paths rflag let fs = patSpec ++ rlSpec ++ fs' liftIO $ whenLoud $ putStrLn ("getSpecs: " ++ show fs) transParseSpecs exts paths (S.singleton target) mempty (map snd fs) getPatSpec paths totalitycheck | totalitycheck = (map (patErrorName, )) . maybeToList <$> moduleFile paths patErrorName Spec | otherwise = return [] getRealSpec paths freal | freal = (map (realSpecName, )) . maybeToList <$> moduleFile paths realSpecName Spec | otherwise = (map (notRealSpecName, )) . maybeToList <$> moduleFile paths notRealSpecName Spec transParseSpecs _ _ _ specs [] = return specs transParseSpecs exts paths seenFiles specs newFiles = do newSpecs <- liftIO $ mapM (\f -> addFst3 f <$> parseSpec f) newFiles impFiles <- moduleImports exts paths $ specsImports newSpecs let seenFiles' = seenFiles `S.union` (S.fromList newFiles) let specs' = specs ++ map (third noTerm) newSpecs let newFiles' = [f | (_,f) <- impFiles, not (f `S.member` seenFiles')] transParseSpecs exts paths seenFiles' specs' newFiles' where specsImports ss = nub $ concatMap (map symbolString . Ms.imports . thd3) ss noTerm spec = spec { Ms.decr=mempty, Ms.lazy=mempty, Ms.termexprs=mempty } third f (a,b,c) = (a,b,f c) parseSpec :: FilePath -> IO (ModName, Ms.BareSpec) parseSpec file = do whenLoud $ putStrLn $ "parseSpec: " ++ file either Ex.throw return . specParser file =<< readFile file specParser file str | isExtFile Spec file = specSpecificationP file str | isExtFile Hs file = hsSpecificationP file str | isExtFile LHs file = lhsSpecificationP file str | otherwise = exitWithPanic $ "SpecParser: Cannot Parse File " ++ file moduleImports :: GhcMonad m => [Ext] -> [FilePath] -> [String] -> m [(String, FilePath)] moduleImports exts paths names = liftM concat $ forM names $ \name -> do map (name,) . catMaybes <$> mapM (moduleFile paths name) exts moduleFile :: GhcMonad m => [FilePath] -> String -> Ext -> m (Maybe FilePath) moduleFile paths name ext | ext `elem` [Hs, LHs] = do mg <- getModuleGraph case find ((==name) . moduleNameString . ms_mod_name) mg of Nothing -> liftIO $ getFileInDirs (extModuleName name ext) paths Just ms -> return $ normalise <$> ml_hs_file (ms_location ms) | otherwise = liftIO $ getFileInDirs (extModuleName name ext) paths specIncludes :: GhcMonad m => Ext -> [FilePath] -> [FilePath] -> m [FilePath] specIncludes ext paths reqs = do let libFile = extFileNameR ext $ symbolString preludeName let incFiles = catMaybes $ reqFile ext <$> reqs liftIO $ forM (libFile : incFiles) $ \f -> do mfile <- getFileInDirs f paths case mfile of Just file -> return file Nothing -> errorstar $ "cannot find " ++ f ++ " in " ++ show paths reqFile ext s | isExtFile ext s = Just s | otherwise = Nothing instance PPrint GhcSpec where pprint spec = (text "******* Target Variables ********************") $$ (pprint $ tgtVars spec) $$ (text "******* Type Signatures *********************") $$ (pprintLongList $ tySigs spec) $$ (text "******* Assumed Type Signatures *************") $$ (pprintLongList $ asmSigs spec) $$ (text "******* DataCon Specifications (Measure) ****") $$ (pprintLongList $ ctors spec) $$ (text "******* Measure Specifications **************") $$ (pprintLongList $ meas spec) instance PPrint GhcInfo where pprint info = (text "*************** Imports *********************") $+$ (intersperse comma $ text <$> imports info) $+$ (text "*************** Includes ********************") $+$ (intersperse comma $ text <$> includes info) $+$ (text "*************** Imported Variables **********") $+$ (pprDoc $ impVars info) $+$ (text "*************** Defined Variables ***********") $+$ (pprDoc $ defVars info) $+$ (text "*************** Specification ***************") $+$ (pprint $ spec info) $+$ (text "*************** Core Bindings ***************") $+$ (pprint $ cbs info) instance Show GhcInfo where show = showpp instance PPrint [CoreBind] where pprint = pprDoc . tidyCBs instance PPrint TargetVars where pprint AllVars = text "All Variables" pprint (Only vs) = text "Only Variables: " <+> pprint vs ------------------------------------------------------------------------ -- Dealing With Errors ------------------------------------------------- ------------------------------------------------------------------------ -- | Convert a GHC error into one of ours instance Result SourceError where result = (`Crash` "Invalid Source") . concatMap errMsgErrors . bagToList . srcErrorMessages errMsgErrors e = [ ErrGhc (errMsgSpan e) (pprint e)]
mightymoose/liquidhaskell
src/Language/Haskell/Liquid/GhcInterface.hs
bsd-3-clause
15,977
0
20
4,263
4,325
2,204
2,121
287
4
module GoToSymbolFunction_SymbolOnDeclaration where test :: Int test = let s<caret>even = 7 in seven + 1
charleso/intellij-haskforce
tests/gold/codeInsight/GoToSymbolFunction_SymbolOnDeclaration.hs
apache-2.0
112
2
9
23
38
19
19
-1
-1
{-| Some utility functions, based on the Confd client, providing data in a ready-to-use way. -} {- Copyright (C) 2013 Google Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} module Ganeti.Confd.ClientFunctions ( getInstances , getInstanceDisks ) where import Control.Monad (liftM) import qualified Text.JSON as J import Ganeti.BasicTypes as BT import Ganeti.Confd.Types import Ganeti.Confd.Client import Ganeti.Objects -- | Get the list of instances the given node is ([primary], [secondary]) for. -- The server address and the server port parameters are mainly intended -- for testing purposes. If they are Nothing, the default values will be used. getInstances :: String -> Maybe String -> Maybe Int -> BT.ResultT String IO ([Ganeti.Objects.Instance], [Ganeti.Objects.Instance]) getInstances node srvAddr srvPort = do client <- liftIO $ getConfdClient srvAddr srvPort reply <- liftIO . query client ReqNodeInstances $ PlainQuery node case fmap (J.readJSON . confdReplyAnswer) reply of Just (J.Ok instances) -> return instances Just (J.Error msg) -> fail msg Nothing -> fail "No answer from the Confd server" -- | Get the list of disks that belong to a given instance -- The server address and the server port parameters are mainly intended -- for testing purposes. If they are Nothing, the default values will be used. getDisks :: Ganeti.Objects.Instance -> Maybe String -> Maybe Int -> BT.ResultT String IO [Ganeti.Objects.Disk] getDisks inst srvAddr srvPort = do client <- liftIO $ getConfdClient srvAddr srvPort reply <- liftIO . query client ReqInstanceDisks . PlainQuery . uuidOf $ inst case fmap (J.readJSON . confdReplyAnswer) reply of Just (J.Ok disks) -> return disks Just (J.Error msg) -> fail msg Nothing -> fail "No answer from the Confd server" -- | Get the list of instances on the given node along with their disks -- The server address and the server port parameters are mainly intended -- for testing purposes. If they are Nothing, the default values will be used. getInstanceDisks :: String -> Maybe String -> Maybe Int -> BT.ResultT String IO [(Ganeti.Objects.Instance, [Ganeti.Objects.Disk])] getInstanceDisks node srvAddr srvPort = liftM (uncurry (++)) (getInstances node srvAddr srvPort) >>= mapM (\i -> liftM ((,) i) (getDisks i srvAddr srvPort))
yiannist/ganeti
src/Ganeti/Confd/ClientFunctions.hs
bsd-2-clause
3,572
0
13
616
530
275
255
41
3
{-# LANGUAGE CPP #-} {- | Module : $Header$ Description : cpp choice between "GUI.ProofManagement" and "GUI.GtkProverGUI" Copyright : (c) C. Maeder, Uni Bremen 2002-2005 License : GPLv2 or higher, see LICENSE.txt Maintainer : [email protected] Stability : provisional Portability : non-portable (cpp) cpp choice between "GUI.ProofManagement" and "GUI.GtkProverGUI" -} module GUI.ProverGUI ( proverGUI ) where import Logic.Comorphism import Static.GTheory import Common.Result as Result import Proofs.AbstractState import qualified Comorphisms.KnownProvers as KnownProvers #ifdef GTKGLADE import GUI.GtkProverGUI #elif defined UNI_PACKAGE import Control.Concurrent import GUI.HTkProverGUI #endif proverGUI :: ProofActions -- ^ record of possible GUI actions -> String -- ^ theory name -> String -- ^ warning information -> G_theory -- ^ theory -> KnownProvers.KnownProversMap -- ^ map of known provers -> [(G_prover, AnyComorphism)] -- ^ list of suitable provers and comorphisms -> IO (Result.Result G_theory) #ifdef GTKGLADE proverGUI = showProverGUI #elif defined UNI_PACKAGE proverGUI prGuiAcs thName warningTxt th knownProvers comorphList = do guiMVar <- newMVar Nothing proofManagementGUI prGuiAcs thName warningTxt th knownProvers comorphList guiMVar #else proverGUI = error "not implemented" #endif
keithodulaigh/Hets
GUI/ProverGUI.hs
gpl-2.0
1,379
0
14
235
116
74
42
16
1
{-# LANGUAGE GADTs #-} {-# LANGUAGE ImpredicativeTypes #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE ScopedTypeVariables #-} -- | -- Module : Data.Array.Accelerate.CUDA.CodeGen.Mapping -- Copyright : [2008..2014] Manuel M T Chakravarty, Gabriele Keller -- [2009..2014] Trevor L. McDonell -- License : BSD3 -- -- Maintainer : Trevor L. McDonell <[email protected]> -- Stability : experimental -- Portability : non-portable (GHC extensions) -- module Data.Array.Accelerate.CUDA.CodeGen.Mapping ( mkMap, ) where import Language.C.Quote.CUDA import Foreign.CUDA.Analysis.Device import Data.Array.Accelerate.Array.Sugar ( Array, Shape, Elt ) import Data.Array.Accelerate.CUDA.AST import Data.Array.Accelerate.CUDA.CodeGen.Base -- Apply the given unary function to each element of an array. Each thread -- processes multiple elements, striding the array by the grid size. -- -- map :: (Shape sh, Elt a, Elt b) -- => (Exp a -> Exp b) -- -> Acc (Array sh a) -- -> Acc (Array sh b) -- mkMap :: forall aenv sh a b. (Shape sh, Elt a, Elt b) => DeviceProperties -> Gamma aenv -> CUFun1 aenv (a -> b) -> CUDelayedAcc aenv sh a -> [CUTranslSkel aenv (Array sh b)] mkMap dev aenv fun arr | CUFun1 dce f <- fun , CUDelayed _ _ (CUFun1 _ get) <- arr = return $ CUTranslSkel "map" [cunit| $esc:("#include <accelerate_cuda.h>") $edecls:texIn extern "C" __global__ void map ( $params:argIn, $params:argOut ) { const int shapeSize = $exp:(csize shOut); const int gridSize = $exp:(gridSize dev); int ix; for ( ix = $exp:(threadIdx dev) ; ix < shapeSize ; ix += gridSize ) { $items:(dce x .=. get ix) $items:(setOut "ix" .=. f x) } } |] where (texIn, argIn) = environment dev aenv (argOut, shOut, setOut) = writeArray "Out" (undefined :: Array sh b) (x, _, _) = locals "x" (undefined :: a) ix = [cvar "ix"]
flowbox-public/accelerate-cuda
Data/Array/Accelerate/CUDA/CodeGen/Mapping.hs
bsd-3-clause
2,221
0
14
686
329
197
132
27
1
module Concat () where import Language.Haskell.Liquid.Prelude ------------------------------------------------------------ ------------ Longer Version of neg/polypred.hs ------------- ------------------------------------------------------------ foo :: [[Int]] foo = [[choose 1], [choose 2]] -- concatmap f ls = concat $ map f ls myconcat [] = [] myconcat (x:xs) = x ++ (myconcat xs) myconcat1 :: a -> [[Int]] -> [Int] myconcat1 _ [] = [] myconcat1 f (x:xs) = x ++ (myconcat1 f xs) concat1 f = concat myconcat2 f = myconcat r :: Int r = 5 prop x = liquidAssertB (x == r) -- ok -- propC0 = map prop $ myconcat foo -- this is safe -- propC1 = map prop $ myconcat foo -- propC2 = map prop $ concat foo -- propC3 = map prop $ concat1 id foo propC4 = map prop $ myconcat1 id foo
mightymoose/liquidhaskell
tests/neg/concat1.hs
bsd-3-clause
797
0
8
157
221
125
96
15
1
{-# LANGUAGE FlexibleContexts, FlexibleInstances, GeneralizedNewtypeDeriving, OverlappingInstances, UndecidableInstances #-} module Main where import Control.Applicative class (Monad m) => MonadIO m where -- | Lift a computation from the 'IO' monad. liftIO :: IO a -> m a instance MonadIO IO where liftIO = id class XMLGenerator m where genElement :: (Maybe String, String) -> m () newtype IdentityT m a = IdentityT { runIdentityT :: m a } deriving (Functor, Applicative, Monad, MonadIO) instance (MonadIO m) => (XMLGenerator (IdentityT m)) where genElement _ = liftIO $ putStrLn "in genElement" main :: IO () main = do runIdentityT web putStrLn "done." class (Widgets x) => MonadRender x class (XMLGenerator m) => Widgets m -- instance Widgets (IdentityT IO) -- if you uncomment this, it will work instance MonadRender m => Widgets m instance MonadRender (IdentityT IO) web :: ( MonadIO m , Widgets m , XMLGenerator m ) => m () web = do liftIO $ putStrLn "before" genElement (Nothing, "p") return ()
manyoo/ghcjs
test/ghc/typecheck/t5751.hs
mit
1,085
1
10
245
323
163
160
-1
-1
module Parser ( parseExpr , parseExprList ) where import Control.Applicative ((<$>), (<*>), (<|>)) import Text.ParserCombinators.Parsec hiding (spaces, (<|>)) import Types spaces :: Parser () spaces = skipMany1 space symbol :: Parser Char symbol = oneOf "!#$%&|*+-/:<=>?@^_~" parseExpr :: Parser LispVal parseExpr = parseAtom <|> parseString <|> parseNumber <|> parseQuoted <|> do _ <- char '(' x <- try parseList <|> parseDottedList _ <- char ')' return x parseExprList :: Parser [LispVal] parseExprList = endBy parseExpr spaces parseStringChar :: Parser Char parseStringChar = (char '\\' >> ( (char 'n' >> return '\n') <|> (char 'r' >> return '\r') <|> (char 't' >> return '\t') <|> char '\\' <|> char '"' )) <|> noneOf "\"" parseString :: Parser LispVal parseString = do _ <- char '"' s <- many parseStringChar _ <- char '"' return $ String s parseAtom :: Parser LispVal parseAtom = do first <- letter <|> symbol rest <- many (letter <|> digit <|> symbol) let atom = first:rest return $ case atom of "#t" -> Bool True "#f" -> Bool False _ -> Atom atom parseNumber :: Parser LispVal parseNumber = Number . read <$> many1 digit parseList :: Parser LispVal parseList = List <$> sepBy parseExpr spaces parseDottedList :: Parser LispVal parseDottedList = DottedList <$> endBy parseExpr spaces <*> (char '.' >> spaces >> parseExpr) parseQuoted :: Parser LispVal parseQuoted = List . (Atom "quote" :) . (:[]) <$> (char '\'' >> parseExpr)
frasertweedale/wyas
src/Parser.hs
mit
1,553
0
15
355
555
279
276
58
3
-- Phone Directory -- https://www.codewars.com/kata/56baeae7022c16dd7400086e module Codewars.G964.Phonedir(phone) where import Data.Char(isDigit) import Data.List(intercalate) import Data.Maybe(listToMaybe, mapMaybe) import Control.Applicative((<|>)) import Text.ParserCombinators.ReadP(readP_to_S, satisfy, get, many, char, many1, pfail, sepBy1, between) data Person = Person { name :: String, pNumber :: String, address :: String} instance Show Person where show (Person n p a) = "Phone => " ++ p ++ ", " ++ "Name => " ++ n ++ ", " ++ "Address => " ++ a addressChars = ['0'..'9'] ++ ['A'..'Z'] ++ ['a'..'z'] ++ ".-" process = fmap record . listToMaybe . map fst . filter (null . snd) . readP_to_S phoneNameRest where phoneNameRest = many get >>= \a -> nameOrPhone >>= \b -> many get >>= \c -> nameOrPhone >>= \d -> many get >>= \e -> return (if isDigit . head $ b then (b, d) else (d, b), unwords [a, c, e]) phoneNumber = char '+' >> sepBy1 (many1 digit) (char '-') >>= \ds -> if validPhone ds then return . intercalate "-" $ ds else pfail validPhone x = length x == 4 && ((\(c, ns) -> all (<=2) c && ns == [3,3,4]) . splitAt 1 . map length $ x) nameOrPhone = between (char '<') (char '>') (many1 get) <|> phoneNumber digit = satisfy isDigit record ((p, n), rest) = Person {name = n, pNumber = p, address = clean rest} clean = unwords . filter (not . null) . map (filter (`elem` addressChars )) . words . map (\c -> if c == '_' then ' ' else c) phone :: String -> String -> String phone dr num = present . filter ((==num) . pNumber) . mapMaybe process . lines $ dr where present [] = "Error => Not found: " ++ num present [x] = show x present (x:xs) = "Error => Too many people: " ++ num
gafiatulin/codewars
src/5 kyu/Phonedir.hs
mit
1,841
0
21
456
756
415
341
25
4
-- Generated by protobuf-simple. DO NOT EDIT! module Types.UInt64Msg where import Control.Applicative ((<$>)) import Prelude () import qualified Data.ProtoBufInt as PB newtype UInt64Msg = UInt64Msg { value :: PB.Word64 } deriving (PB.Show, PB.Eq, PB.Ord) instance PB.Default UInt64Msg where defaultVal = UInt64Msg { value = PB.defaultVal } instance PB.Mergeable UInt64Msg where merge a b = UInt64Msg { value = PB.merge (value a) (value b) } instance PB.Required UInt64Msg where reqTags _ = PB.fromList [PB.WireTag 1 PB.VarInt] instance PB.WireMessage UInt64Msg where fieldToValue (PB.WireTag 1 PB.VarInt) self = (\v -> self{value = PB.merge (value self) v}) <$> PB.getUInt64 fieldToValue tag self = PB.getUnknown tag self messageToFields self = do PB.putUInt64 (PB.WireTag 1 PB.VarInt) (value self)
sru-systems/protobuf-simple
test/Types/UInt64Msg.hs
mit
844
0
13
157
296
159
137
20
0
series = [x^x|x<-[1..1000]] ans = sum series
stefan-j/ProjectEuler
q48.hs
mit
51
1
8
12
37
18
19
2
1
-- This file is covered by an MIT license. See 'LICENSE' for details. -- Author: Bertram Felgenhauer {-# LANGUAGE OverloadedStrings #-} module Confluence.Direct.HuetToyamaOostrom ( confluent ) where import Text.PrettyPrint.ANSI.Leijen import Data.Rewriting.CriticalPair as C import Data.Rewriting.Rules import Confluence.Types import Framework.Types import Framework.Explain import Util.Pretty import Development as D confluent :: (Show f, Show v, PPretty f, PPretty v, Ord f, Ord v) => Problem f v -> Explain Answer confluent trs = section "Huet-Toyama-van-Oostrom (development closed)" $ do if not (isLeftLinear trs) then do tell "Not left-linear." return Maybe else do let i = cpsIn' trs o = cpsOut' trs a <- processInner trs i if a /= Yes then return a else do processOuter trs o processInner trs [] = return Yes processInner trs (c:cs) = do tell $ "Considering the inner critical pair" tell $ nest 4 $ vcat [ ppretty (C.top c), " =>" <+> ppretty (C.left c), " ><" <+> ppretty (C.right c)] let l = development trs (C.left c) r = [D.fromTerm (C.right c)] if null (D.toList $ D.simplify $ D.intersect l r) then do tell "not joinable in a development step." return Maybe else do -- tell "l" -- tell $ nest 4 $ vcat $ map ppretty (D.toList l) -- tell "r" -- tell $ nest 4 $ vcat $ map ppretty (D.toList r) tell "l & r" tell $ nest 4 $ vcat $ map ppretty (D.toList $ D.intersect l r) tell "joinable in a development step." processInner trs cs processOuter trs [] = return Yes processOuter trs (c:cs) = do tell $ "Considering the outer critical pair" tell $ nest 4 $ vcat [ ppretty (C.top c), " =>" <+> ppretty (C.left c), " ><" <+> ppretty (C.right c)] let l = development trs (C.left c) r = development trs (C.right c) if null (D.toList $ D.simplify $ D.intersect l r) then do tell "not joinable in a pair of development steps." return Maybe else do tell "l & r" tell $ nest 4 $ vcat $ map ppretty (D.toList $ D.intersect l r) tell "joinable using development steps." processOuter trs cs
haskell-rewriting/confluence-tool
src/Confluence/Direct/HuetToyamaOostrom.hs
mit
2,344
0
15
706
735
357
378
56
3
{-# htermination realToFrac :: (Ratio Int) -> Float #-}
ComputationWithBoundedResources/ara-inference
doc/tpdb_trs/Haskell/full_haskell/Prelude_realToFrac_4.hs
mit
56
0
2
9
3
2
1
1
0
{-# LANGUAGE OverloadedStrings #-} import qualified Data.Char as Char import Data.Text (Text) import qualified Data.Text as Text import qualified Data.Text.IO as IO import qualified Numeric main = do strings <- Text.lines <$> IO.getContents let stringLiterals = map encode strings let sizeOfStringLiterals = sum $ map Text.length stringLiterals let sizeOfStrings = sum $ map Text.length strings print sizeOfStringLiterals print sizeOfStrings print $ sizeOfStringLiterals - sizeOfStrings encode :: Text -> Text encode string = Text.concat ["\"", Text.concatMap encodeChar string, "\""] where encodeChar '\\' = "\\\\" encodeChar '"' = "\\\"" encodeChar char = Text.singleton char
SamirTalwar/advent-of-code
2015/AOC_08_2.hs
mit
709
1
12
123
211
107
104
19
3
module Web.TSBot.ClientQuery.PrettyPrintSpec (spec) where import Web.TSBot.ClientQuery.PrettyPrint () import Test.Hspec spec :: Spec spec = it "is" pending
taktoa/TSBot
test-suite/Web/TSBot/ClientQuery/PrettyPrintSpec.hs
mit
159
0
5
20
43
27
16
5
1
module TypeChecksAssignment where --- Person data Person = Person Bool deriving Show printPerson :: Person -> IO() printPerson person = putStrLn( show person ) --- Mood data Mood = Blah | Woot deriving (Show, Eq) settleDown x = if x == Woot then Blah else x --- Sentence type Subject = String type Verb = String type Object = String data Sentence = Sentence Subject Verb Object deriving (Eq, Show) s1 = Sentence "dogs" "drool" s2 = Sentence "Julie" "loves" "dog" --- Papu data Rocks = Rocks String deriving (Eq, Show) data Yeah = Yeah Bool deriving (Eq, Show) data Papu = Papu Rocks Yeah deriving (Eq, Show) -- it actually works: equalityForall :: Papu -> Papu -> Bool; equalityForall p p' = p == p'
Lyapunov/haskell-programming-from-first-principles
chapter_6/typechecks.hs
mit
771
0
7
197
247
138
109
25
2
-- A solution, but incredibly slow. One to work on. module Main where import Data.List main :: IO () main = do putStrLn $ show $ largestPrimeFactor 600851475143 factorize :: Int -> [Int] factorize n = filter (\x -> (n `mod` x == 0)) [1 .. n] largestPrimeFactor :: Int -> Int largestPrimeFactor n = maximum $ filter (\f -> factorize f == [1,f]) (factorize n)
Praenomen/My-Project-Euler
Haskell/Problem003.hs
mit
366
0
10
74
144
79
65
9
1
{- Copyright (c) 2015 Nils 'bash0r' Jonsson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {- | Module : $Header$ Description : Conversion from a main module to JavaScript. Author : Nils 'bash0r' Jonsson Copyright : (c) 2015 Nils 'bash0r' Jonsson License : MIT Maintainer : [email protected] Stability : unstable Portability : non-portable (Portability is untested.) Conversion from a main module to JavaScript. -} module Language.PolyDSL.Transformation.JavaScript.MainModule ( VirtualResolver , MainModule ) where import Control.Applicative import Control.Monad import Language.JavaScript hiding (when) import Language.Transformation.Protocol import Language.Transformation.Semantics import Language.PolyDSL.Lib import qualified Language.PolyDSL.DOM as DOM import Language.PolyDSL.Transformation.JavaScript.Internal -- | A concrete main module. type MainModule = MainModuleT VirtualResolverT DOM.ModuleT String -- | A virtual resolver for compilation units. type VirtualResolver = VirtualResolverT DOM.ModuleT String instance CompilationUnitResolver VirtualResolverT where resolveCompilationUnit (VirtualResolver ms) m = do let ms' = filter (\m' -> unitName m' == m) ms when (null ms') (fail ("Module " ++ show m ++ " is not in scope.")) when (length ms' /= 1) (fail ("Module name " ++ show m ++ " exists multiple times.")) let (m:_) = ms' return m
project-horizon/framework
src/lib/Language/PolyDSL/Transformation/JavaScript/MainModule.hs
mit
2,550
0
15
488
255
141
114
22
0
{-# LANGUAGE BangPatterns #-} module Main where import Control.Monad.State import Control.Monad.Writer import Control.Monad.Reader import Control.Monad.MonteCarlo import Control.Monad.Loops import Control.DeepSeq import Control.Exception import System.Random.TF import Transport.NISTData import Data.List (foldl') import Graphics.Gloss hiding (Point, rotate) ---------------------------------------------------------------- -- Datatypes ---------------- data ParticleState = PS { noColls :: !Int , remEnergy :: !Energy , curPos :: !Point , curDir :: !Angle , path :: [(Point,Energy)] } deriving (Show) psInit :: ParticleState psInit = PS 0 5000 (0,0) (0,1) [] type Energy = Float type Point = (Float,Float) type Angle = (Float,Float) ---------------------------------------------------------------- -- MonteCarlo ---------------- type Simulation = ReaderT (Float -> (Float,Float)) (StateT ParticleState (MonteCarlo TFGen)) -- Helper function for getting the cross-section data for the current energy getMu :: Simulation (Float,Float) getMu = do en <- gets remEnergy (t,a) <- asks (\f -> f en) return (rho*t,rho*a) where rho = 1 -- g/cm^3 (water) -- Helper functions for sampling random numbers uniform :: Simulation Float uniform = lift (lift random) uniformR :: (Float,Float) -> Simulation Float uniformR bounds = lift (lift (randomR bounds)) -- Flies the particle some random distance with prob. according to -- cross-section data fly :: Simulation () fly = do (PS i en (x,y) (ux,uy) ps) <- get (mu_t,_) <- getMu !eta <- uniform let s = -(log eta / mu_t) put (PS i en (x+ux*s,y+uy*s) (ux,uy) ps) -- The main loop responsible for a single photon's lifetime loop :: Simulation [(Point,Energy)] loop = do untilM_ (fly >> scatter) isBelowCutoff exit -- Terminates a particle if its energy is below the cutoff isBelowCutoff :: Simulation Bool isBelowCutoff = do en <- gets remEnergy return $ en < 10 -- Returns the path stored in the ParticleState exit :: Simulation [(Point,Energy)] exit = do ps <- gets path return $ ps -- Randomly determines whether the scattering event scatters left or right _scatterDir :: Simulation Float _scatterDir = do eta <- uniform return $ if eta >= 0.5 then 1 else (-1) -- Scattering event; compute scattering angle, record collision site scatter :: Simulation () scatter = do (PS i en (x,y) (ux,uy) ps) <- get (mu_t,mu_en) <- getMu let deltaW = mu_en * en / mu_t dir <- _scatterDir let angle = diffAngle en (en-deltaW) * dir let (ux',uy') = rotate (ux,uy) angle put (PS (i+1) (en-deltaW) (x,y) (ux',uy') (ps++[((x,y),deltaW)])) -- Computes the angle to rotate based on energy exchanged in coll. diffAngle :: Energy -> Energy -> Float diffAngle en en' = acos $ 1 - 0.511 * (1/en' - 1/en) -- Knuth -- Rotates a vector rotate :: Point -> Float -> Point rotate (x,y) th = (x*cos th - y*sin th, x*sin th + y*cos th) ---------------------------------------------------------------- -- Main ---------------- noRuns :: Int noRuns = 10000 main :: IO () main = do g <- newTFGen fnist <- loadData "water.dat" let unrolled = evalStateT (runReaderT loop fnist) psInit let bs = experimentP (unrolled) noRuns (noRuns `div` 200) g :: [[(Point,Energy)]] evaluate (rnf bs) let lengthF = fromIntegral . length let avgCol = (foldl' (+) 0 (map lengthF bs)) / lengthF bs :: Double putStrLn $ "Average number of collisions: " ++ show avgCol displayResults bs displayResults :: [[(Point, Energy)]] -> IO () displayResults res = display (InWindow "Sim." (800,800) (200,200)) white (results `mappend` Color white (Line [(0,-100),(0,0)])) where color' = makeColor8 0 0 0 100 results = mconcat $ map (\p -> Color color' $ Line (map fst p)) res
icasperzen/hs-carbon-examples
examples-src/Transport/Transport.hs
mit
4,020
0
14
939
1,383
750
633
99
2
-- Homework01.hs -- -- EECS 776, Homework 1 -- Author: Stefan Mendoza -- Date: 25 September 2015 -- Email: [email protected] module Main where import Data.Char rot13 :: String -> String rot13 = map rotateChar rotateChar :: Char -> Char rotateChar c | c `elem` ['A'..'Z'] = if (ord c) + 13 > (ord 'Z') then chr $ (ord c) - 13 else chr $ (ord c) + 13 | c `elem` ['a'..'z'] = if (ord c) + 13 > (ord 'z') then chr $ (ord c) - 13 else chr $ (ord c) + 13 | otherwise = c main :: IO () main = do putStr "Enter a phrase to be rotated: " s <- getLine putStrLn $ rot13 s
stefanmendoza/EECS-776
Homework01.hs
mit
664
0
10
214
245
129
116
20
3
module Main where import Data.List main :: IO () main = putStrLn $ show result --result :: Integer --result = foldr (*) 1 [1 .. 100000] result :: Integer result = foldl' (*) 1 [1 .. 100000]
hnfmr/beginning_haskell
profiling-example/src/Main.hs
mit
195
0
6
42
58
34
24
6
1
module FuzzyMatch where matchingCount xs ys = length $ filter (uncurry (==)) $ zip xs ys bigrams [] = [] bigrams [_] = [] bigrams xs@(_:xs') = take 2 xs : bigrams xs' intersection [] _ = [] intersection (x:xs) ys = if x `elem` ys then x : intersection xs ys else intersection xs ys diceIndex x y = fromIntegral (2*nT) / fromIntegral (nX + nY) where nT = length $ intersection bX bY nX = length bX nY = length bY bX = bigrams x bY = bigrams y hammingDistance [] [] = Just 0 hammingDistance [] _ = Nothing hammingDistance _ [] = Nothing hammingDistance (x:xs) (y:ys) | x == y = case hammingDistance xs ys of Nothing -> Nothing Just n -> Just (n+1) | otherwise = hammingDistance xs ys -- http://en.wikipedia.org/wiki/Levenshtein_distance levenshteinDistance xs [] = length xs levenshteinDistance [] ys = length ys levenshteinDistance xs@(x:xs') ys@(y:ys') = min m1 (levenshteinDistance xs' ys' + if x==y then 0 else 1) where m1 = min (levenshteinDistance xs ys' + 1) (levenshteinDistance xs' ys + 1) -- TODO: Implementation should be based on: http://xlinux.nist.gov/dads//HTML/jaroWinkler.html standard. jaroWrinkler sOne sTwo = undefined
dewaka/fuzzy_string_match
Text/FuzzyMatch.hs
mit
1,258
0
11
313
494
250
244
29
2
module Proteome.Test.MultiTagsTest where import Hedgehog ((===)) import Path (File, Rel, parseAbsDir, parseRelDir, relfile, toFilePath, (</>)) import Path.IO (doesFileExist) import Ribosome.Config.Setting (updateSetting) import Ribosome.Nvim.Api.IO (bufferGetOption, vimGetCurrentBuffer) import Ribosome.Test.Run (UnitTest) import Ribosome.Test.Unit (tempDir) import Proteome.Add (proAdd) import Proteome.BufEnter (bufEnter) import Proteome.Data.AddOptions (AddOptions (AddOptions)) import Proteome.Data.ProjectConfig (ProjectConfig (ProjectConfig)) import qualified Proteome.Settings as Settings (projectConfig, tagsArgs, tagsCommand, tagsFork) import Proteome.Tags (proTags) import Proteome.Test.Config (vars) import Proteome.Test.Project (cil, cn, createTestProject, flag, fn, hask, tp) import Proteome.Test.Unit (ProteomeTest, testWithDef) multiSpec :: ProteomeTest () multiSpec = do projectsDir <- parseAbsDir =<< tempDir "multi/projects" updateSetting Settings.projectConfig (ProjectConfig [projectsDir] def def def def def def) createTestProject tp fn createTestProject tp cn updateSetting Settings.tagsCommand "touch" updateSetting Settings.tagsArgs ".tags" updateSetting Settings.tagsFork False proAdd $ AddOptions fn tp (Just False) proAdd $ AddOptions cn tp (Just False) proTags bufEnter haskPath <- parseRelDir (toString hask) flagPath <- parseRelDir (toString flag) cilPath <- parseRelDir (toString cil) let ftags = projectsDir </> haskPath </> flagPath </> [relfile|.tags|] let ctags = projectsDir </> haskPath </> cilPath </> [relfile|.tags|] ftagsExists <- doesFileExist ftags ctagsExists <- doesFileExist ctags buf <- vimGetCurrentBuffer tags <- bufferGetOption buf "tags" ftagsExists === True ctagsExists === True toFilePath ftags <> "," <> toFilePath ctags === tags test_multi :: UnitTest test_multi = vars >>= testWithDef multiSpec
tek/proteome
packages/test/test/Proteome/Test/MultiTagsTest.hs
mit
1,902
0
12
252
580
312
268
-1
-1
module TiposAbstratosPolimorfismoParametricoLimitado where import ExpressoesLambdaComposicaoLazyness -- Voltando agora para o exercício de expressões de ExpressoesLambdaComposicaoLazyness, -- a representação de expressões como triplas não é tão adequada (representa expressões -- binárias, não expressões em geral), e é extremamente limitada (subexpressões têm que -- ser números, não podemos ter subexpressões complexas). Podemos resolver com definições -- de novos tipos, com novos elementos, em Haskell. Isso é diferente de definir sinônimos -- para tipos cujos valores já existem em Haskell. -- -- Além de tipos primitivos, tuplas e listas, podemos ter estruturas definidas pelos -- programadores, fazendo uso de união (lista é caso particular) de conjuntos de elementos -- de estruturas diferentes (cada elemento é precedidos por um construtor, e é formado por -- diferentes componentes). type Operador = Char data Expressao = Numero Float | Unaria Operador Expressao | Binaria Expressao Operador Expressao -- Equivalente em Java a classe abstrata (ou interface) e três subclasses. -- Podemos então definir funções por casamento de padrão, assim como feito com listas. avaliard (Numero f) = f avaliard (Binaria e1 op e2) = avOp op (avaliard e1) (avaliard e2) avaliard (Unaria op e) | op == '-' = -(avaliard e) | op == '+' = avaliard e showExpressao (Numero f) = show f showExpressao (Binaria e1 op e2) = "("++ (showExpressao e1) ++ (showOp op) ++ (showExpressao e2) ++ ")" showExpressao (Unaria op e) = (showOp op) ++ (showExpressao e) showOp '+' = " + " showOp '-' = " - " showOp '*' = " * " showOp '/' = " / " -- Testando exp7 = Binaria (Numero 4) '+' (Binaria (Numero 6) '/' (Numero 2)) res7 = avaliard exp7 priexp7 = showExpressao exp7 -- Os construtores de tipo são vistos como funções que constroem elementos do tipo. -- Numero :: Float -> Expressao -- Binaria :: Expressao -> Operador -> Expressao -> Expressao -- Unaria :: Operador -> Expressao -> Expressao -- -- avaliard :: Expressao -> Float -- Melhorando com datatype para operador. Reduz a quantidade de elementos do tipo criado. -- Deixa de fora elementos como "Binaria (Numero 5.1) ';' (Numero 5.2)", que não tinham -- significado para o problema em questão, mas mesmo assim faziam parte do conjunto de -- elementos do tipo. Em particular, a função avaliard não estava definida para todos os -- elementos do seu tipo. O que aconteceria se a expressão binária acima fosse passada como -- parâmetro? Agora poderia-se garantir que todos os casos estão sendo cobertos... Deixa -- de fora vários caracteres que não representavam operadores. Diminui a quantidade de -- elementos do tipo; deixa só os representativos. data OpBinario = Soma | Sub | Mul | Div data OpUnario = Pos | Neg data Exp = Literal Float | Un OpUnario Exp | Bin Exp OpBinario Exp -- Tipo definido pode ser polimórfico, parametrizado por tipo dos elementos literais. -- Expp funciona então como um gerador de tipos; para cada tipo passado como parâmetro -- para Expp, temos um novo tipo. data Expp t = Litp t | Unp OpUnario (Expp t) | Binp (Expp t) OpBinario (Expp t) type ExpInt = Expp Int type ExpStr = Expp String type ExpFloat = Expp Float exps = (Litp "4") expf = (Litp 4.0) -- Litp :: t -> Expp t -- Unp :: OpUnario -> Expp t -> Expp t -- Binp :: Expp t -> OpBinario -> Expp t -> Expp t -- A função de avaliação precisa então receber como parâmetro uma função -- que sabe transformar os literais em valores, um avaliador de literais, -- já que podemos agora trabalhar com literais de diferentes tipos. eval lit (Litp f) = lit f eval lit (Binp e1 op e2) = evBOp op (eval lit e1) (eval lit e2) eval lit (Unp Neg e) = -(eval lit e) eval lit (Unp Pos e) = eval lit e evBOp Soma = (+) evBOp Sub = (-) evBOp Mul = (*) evBOp Div = (/) -- Observando o tipo de eval, vemos que o avaliador de literais tem -- que retornar um elemento de um tipo "a", mas não um "a" qualquer, um -- "a" que seja Fractional, um subtipo de Num que aceita divisão (/). -- -- eval :: Fractional a => (t -> a) -> Expp t -> a -- evBOp :: Fractional a => OpBinario -> a -> a -> a -- Para expressões com literais que são números, o avaliador de literais -- é simplesmente a função identidade. exp8 = Binp (Litp 5) Soma (Binp (Litp 6) Div (Litp 2)) res8 = eval (\x -> x) exp8 -- Para expressões com literais que são strings, o avaliador de literais -- é uma função que transforma strings em números. exp9 = Binp (Litp "6") Soma (Binp (Litp "6") Div (Litp "2")) res9 = eval (\x -> (read x)) exp9 -- Tipos existentes em Haskell poderiam ter sido definidos assim... e até outros... -- Quais as diferenças entre os elementos dos três tipos de árvores definidos? data List t = Nil | Cons t (List t) data Tree t = NilT | Node t (Tree t) (Tree t) data TTree t = Leaf t | NNode (TTree t) (TTree t) data TTTree t = NilTTT | NNNode t [(TTTree t)] -- Algo similar ao tipo de eval ocorre com o tipo de == e show -- -- (==) :: Eq a => a -> a -> Bool -- show :: Show a => a -> String -- -- Elas não funcionam para um tipo a qualquer. Funcionam para qualquer -- tipo a que satisfaz algumas propriedades, que contém algumas funções -- específicas. A função não serve apenas para um tipo específico (função -- não polimórfica). Nem é completamente genérica, servindo para qualquer -- tipo (polimorfismo paramétrico ). É um meio termo, a função serve para -- um subconjunto dos tipos da linguagem, uma classe de tipos, o parâmetro -- tem que satisfazer algumas condições (bounded parametric polymorphism).
pauloborba/plc
src/TiposAbstratosPolimorfismoParametricoLimitado.hs
cc0-1.0
5,798
0
10
1,203
911
507
404
50
1
{- An example yi.hs that uses the Vim keymap with these additions: - Always uses the VTY UI by default. - The color style is darkBlueTheme - The insert mode of the Vim keymap has been extended with a few additions I find useful. -} import Yi.Prelude import Prelude () import Yi import Yi.Keymap.Vim import Yi.Buffer.Indent (indentAsPreviousB) import Yi.Keymap.Keys import Yi.Misc (adjBlock) import qualified Yi.UI.Vty import Yi.Style.Library (darkBlueTheme) import Data.List (isPrefixOf, reverse, replicate) import Control.Monad (replicateM_) -- Set soft tabs of 4 spaces in width. prefIndent :: Mode s -> Mode s prefIndent m = m { modeIndentSettings = IndentSettings { expandTabs = True, shiftWidth = 4, tabSize = 4 }} noHaskellAnnots m | modeName m == "haskell" = m { modeGetAnnotations = modeGetAnnotations emptyMode } | otherwise = m main :: IO () main = yi $ defaultConfig { -- Use VTY as the default UI. startFrontEnd = Yi.UI.Vty.start, defaultKm = mkKeymap extendedVimKeymap, modeTable = fmap (onMode $ noHaskellAnnots . prefIndent) (modeTable defaultConfig), configUI = (configUI defaultConfig) { configTheme = darkBlueTheme } } extendedVimKeymap = defKeymap `override` \super self -> super { v_top_level = (deprioritize >> v_top_level super) -- On 'o' in normal mode I always want to use the indent of the previous line. -- TODO: If the line where the newline is to be inserted is inside a -- block comment then the block comment should be "continued" -- TODO: Ends up I'm trying to replicate vim's "autoindent" feature. This -- should be made a function in Yi. <|> (char 'o' ?>> beginIns self $ do moveToEol insertB '\n' indentAsPreviousB ) -- On HLX (Haskell Language Extension) I want to go into insert mode such -- that the cursor position is correctly placed to start entering the name -- of an language extension in a LANGUAGE pragma. -- A language pragma will take either the form -- {-# LANGUAGE Foo #-} -- or -- >{-# LANGUAGE Foo #-} -- The form should be chosen based on the current mode. <|> ( pString "HXL" >> startExtesnionNameInsert self ), v_ins_char = (deprioritize >> v_ins_char super) -- On enter I always want to use the indent of previous line -- TODO: If the line where the newline is to be inserted is inside a -- block comment then the block comment should be "continued" -- TODO: Ends up I'm trying to replicate vim's "autoindent" feature. This -- should be made a function in Yi. <|> ( spec KEnter ?>>! do insertB '\n' indentAsPreviousB ) -- I want softtabs to be deleted as if they are tabs. So if the -- current col is a multiple of 4 and the previous 4 characters -- are spaces then delete all 4 characters. -- TODO: Incorporate into Yi itself. <|> ( spec KBS ?>>! do c <- curCol line <- readRegionB =<< regionOfPartB Line Backward sw <- indentSettingsB >>= return . shiftWidth let indentStr = replicate sw ' ' toDel = if (c `mod` sw) /= 0 then 1 else if indentStr `isPrefixOf` reverse line then sw else 1 adjBlock (-toDel) replicateM_ toDel $ deleteB Character Backward ) -- On starting to write a block comment I want the close comment -- text inserted automatically. <|> choice [ pString open_tag >>! do insertN $ open_tag ++ " \n" indentAsPreviousB insertN $ " " ++ close_tag lineUp | (open_tag, close_tag) <- [ ("{-", "-}") -- Haskell block comments , ("/*", "*/") -- C++ block comments ] ] } startExtesnionNameInsert :: ModeMap -> I Event Action () startExtesnionNameInsert self = beginIns self $ do p_current <- pointB m_current <- getMarkB (Just "'") setMarkPointB m_current p_current moveTo $ Point 0 insertB '\n' moveTo $ Point 0 insertN "{-# LANGUAGE " p <- pointB insertN " #-}" moveTo p
codemac/yi-editor
src/Yi/Users/Corey.hs
gpl-2.0
4,927
0
21
1,912
753
402
351
73
3