content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def onBoard(top, left=0):
"""Simplifies a lot of logic to tell if the coords are within the board"""
return 0 <= top <= 9 and 0 <= left <= 9 | 2b2007ae2e3acdbb9c04c3df1397cffce97c6717 | 10,247 |
def name( path ):
"""Extracts the resource name."""
return path[1+path.rfind('/'):] | 7e8448e5b1c62c30e7ae28c80580731aa9f6f9fb | 10,250 |
def report_dfa(q_0, dfa, g):
"""
Give a complete description of the DFA as a string
"""
output = ""
output += "----------- DFA ----------- " + "Goal: " + g + " ----------- \n"
transitions = [(i,dfa[(i,sigma)],sigma) for i,sigma in dfa]
transitions.sort()
for i,j,sigma in transitions:
output += (f"delta({i},{sigma}) = {j}\n")
output += f"q_0 = {q_0}\n"
return output | 99d86557b9e1aede93f46e1ef78ecb1fe6cdbf30 | 10,251 |
def score(n):
"""根据成绩,计算成绩的级别,级别有:A、B、C、D
成绩>=90 ——A
成绩>=80 ——B
成绩>=70 ——C
成绩>=60 ——D
参数:
- n-:成绩
返回值:返回‘A’或‘B’或者'C'或者'D'
"""
if n >= 90:
return 'A'
if n >= 80:
return 'B'
if n >= 70:
return 'C'
if n >= 60:
return 'D' | fb854dbdb77e31b75a70eddf6d001814100c44d3 | 10,252 |
import os
def normalize_path(p):
"""Normalize filesystem path (case and origin). If two paths are identical, they should be equal when normalized."""
return os.path.normcase(os.path.abspath(p)) | 747948440eeebd99fca79ec413a616eaaba4dbdd | 10,253 |
def algo_options():
"""
Return the list of default options for supported algorithms.
"""
return {"grid": "",
"hubbard": "",
"medial": "-merge -burst -expand",
"octree": "",
"spawn": ""} | f52c12efe477bd50a49e7053cca97fc9e4072433 | 10,254 |
def shutting_down(globals=globals):
"""
Whether the interpreter is currently shutting down.
For use in finalizers, __del__ methods, and similar; it is advised
to early bind this function rather than look it up when calling it,
since at shutdown module globals may be cleared.
"""
# At shutdown, the attribute may have been cleared or set to None.
v = globals().get('_shutting_down')
return v is True or v is None | 01f601b989611b06a438a3be3e15937eff389038 | 10,255 |
def _err(msg=None):
"""To return a string to signal "error" in output table"""
if msg is None:
msg = 'error'
return '!' + msg | 029fae3786df61160867696fb71cc94b2edf0506 | 10,256 |
def add_xls_tag(file_name):
"""
Check the file_name to ensure it has ".xlsx" extension, if not add it
"""
if file_name[:-5] != ".xlsx":
return file_name + ".xlsx"
else:
return file_name | e053d9f7dad8e638122e93d05e49c5a06de3e664 | 10,258 |
import os
import json
def Open(filename):
"""
You can open/read a Zype File with Open() function.
Usage: Open(filename)
Filename is the Zype File's Name.
"""
if os.path.isfile(filename):
with open(filename) as Zype:
content = Zype.read()
content = content.replace('<', ' "')
content = content.replace('>', '":')
content = content.replace(';', ',')
content = content.replace('{', '{')
content = content.replace('}', ' }')
content = content.replace("'", '"')
content = '{\n' + content + '\n}'
content = content.replace('(', '{')
content = content.replace(')', ' }')
return json.loads(content) | 20a48af9c7e7a0f74e72fa02c7241915b5c5b78c | 10,260 |
import sys
import os
def check_enableusersite():
"""Check if user site directory is safe for inclusion
The function tests for the command line flag (including environment var),
process uid/gid equal to effective uid/gid.
None: Disabled for security reasons
False: Disabled by user (command line option)
True: Safe and enabled
"""
if sys.flags.no_user_site:
return False
if hasattr(os, "getuid") and hasattr(os, "geteuid"):
# check process uid == effective uid
if os.geteuid() != os.getuid():
return None
if hasattr(os, "getgid") and hasattr(os, "getegid"):
# check process gid == effective gid
if os.getegid() != os.getgid():
return None
return True | 466ce7da62b6578db0f99ca31c7271ef3bc2d832 | 10,262 |
def pedestal_ids_file(base_test_dir):
"""Mock pedestal ids file for testing."""
pedestal_ids_dir = base_test_dir / "auxiliary/PedestalFinder/20200117"
pedestal_ids_dir.mkdir(parents=True, exist_ok=True)
file = pedestal_ids_dir / "pedestal_ids_Run01808.0000.h5"
file.touch()
return file | edda4c192e577774e0cc4a38aaa7d838127e7dcd | 10,263 |
def get_fa_icon_class(app_config):
"""Return Font Awesome icon class to use for app."""
if hasattr(app_config, "fa_icon_class"):
return app_config.fa_icon_class
else:
return 'fa-circle' | 3766abb1f80b7ccea9e09a5edf011f1586e9b49e | 10,264 |
from typing import Any
def get_valid_ref(ref: Any) -> str:
"""Checks flow reference input for validity
:param ref: Flow reference to be checked
:return: Valid flow reference, either 't' or 's'
"""
if ref is None:
ref = 't'
else:
if not isinstance(ref, str):
raise TypeError("Error setting flow reference: Input is not a string")
if ref not in ['s', 't']:
raise ValueError("Error setting flow reference: Input is not 's' or 't', but {}".format(ref))
return ref | 16c66dc9e0568bcd33e1cc9956ed31b5ae47595e | 10,267 |
def return_dict():
"""
"interfaces": {
"Tunnel0": {
"state": "UP"
},
"Tunnel1": {
"state": "DOWN"
}
}
}
"""
return {"interfaces": {"Tunnel0": {"state": "UP"}, "Tunnel1": {"state": "DOWN"}}} | 2c3e71341c425166d11aba9175e3a98027c3d53e | 10,268 |
import torch
def replace_magnitude(x, mag):
"""
Extract the phase from x and apply it on mag
x [B,2,F,T] : A tensor, where [:,0,:,:] is real and [:,1,:,:] is imaginary
mag [B,1,F,T] : A tensor containing the absolute magnitude.
"""
phase = torch.atan2(x[:, 1:], x[:, :1]) # imag, real
return torch.cat([mag * torch.cos(phase), mag * torch.sin(phase)], dim=1) | b535e4271c6fc4fe508af358fbe3eee59a95cc6b | 10,269 |
def cut_rod2(p, n, r={}):
"""Cut rod.
Same functionality as the original but implemented
as a top-down with memoization.
"""
q = r.get(n, None)
if q:
return q
else:
if n == 0:
return 0
else:
q = 0
for i in range(n):
q = max(q, p[i] + cut_rod2(p, n - (i + 1), r))
r[n] = q
return q | 2fa1433dffb9099709e466025645c4981f289692 | 10,270 |
def _set_karma(bot, trigger, change, reset=False):
"""Helper function for increasing/decreasing/resetting user karma."""
channel = trigger.sender
user = trigger.group(2).split()[0]
if reset:
bot.db.set_nick_value(user, 'karma', 0)
return
karma = bot.db.get_nick_value(user, 'karma')
karma = int(karma) if karma else 0
if karma or change > 0:
bot.db.set_nick_value(user, 'karma', karma + change)
return karma + change
else:
return -1 | 72531c032625c365e057057edb84672b86a4faac | 10,271 |
def monthly_file_name(var, model, rcp):
"""Function for creating file connections for different variables
scenarios and models. Preasently, ensemble member r1i1p1 is assumed, as
well as 200601-210012 dime span for the monthly data."""
# e.g. hfls_Amon_CNRM-CM5_rcp85_r1i1p1_200601-210012.nc
f = var + "_" + "Amon_" + model + "_rcp" + rcp + "_r1i1p1_200601-210012.nc"
return f | 7aeea6d3724c470e076645ddb96877e9fa15843f | 10,276 |
def calc_distance(l):
"""Calculates distance between list items in two lists"""
# l needs to start from zero, get lowest number and substract it from all numbers
min_l = min([x[1] for x in l if x[1] != ''], default=0)
l = [[x[0], (x[1] - min_l)] for x in l if x[1] != '']
distance = 0
for idx, item in enumerate(l):
if len(item) > 1 and item[1] != '': # check if we found a sense
diff = abs(item[1] - idx) # check how far away we are in our token list
distance += diff
return distance | 57d52eb4bb4b772024d68cb397f2e315825a25df | 10,277 |
def lam(x, lam0, alpha=4.0):
"""Return classic alpha model lambda value(s) for input value(s)."""
return lam0 * ( 1.0 - x**alpha ) | 37a10d890acc2b983c09300b865e58fe9dc2f7fe | 10,278 |
def subset(part, whole):
"""Test whether `part` is a subset of `whole`.
Both must be iterable. Note consumable iterables will be consumed
by the test!
This is a convenience function.
Examples::
assert subset([1, 2, 3], [1, 2, 3, 4, 5])
assert subset({"cat"}, {"cat", "lynx"})
"""
return all(elt in whole for elt in part) | 4200ea95e0c9ff03d0b7589812d0313c5d13cfac | 10,279 |
from pathlib import Path
def stem(fname, include_suffix=False):
"""/blah/my_file.json.gz --> my_file"""
path = Path(fname)
stem = path.stem
# If a filename has multiple suffixes, take them all off.
stem = stem[: stem.index(".")] if "." in stem else stem
if include_suffix:
stem = stem + "".join(path.suffixes)
return stem | 9e4c557dff8583f9129215f91f8e123f062ccf52 | 10,280 |
import sqlite3
def username_lookup(userName):
""" Lookup user from availability.db by unique username """
# connect to db
conn = sqlite3.connect("availability.db")
# create cursor
c = conn.cursor()
# check if lookup initiated for specific user or for all users
if userName:
# query for username in db
c.execute("SELECT * FROM users WHERE username = ?", (userName,))
else:
c.execute("SELECT * FROM users")
# store user/users list into variable
users = c.fetchall()
# commit connect and close
conn.commit()
conn.close()
# return user
return users | 36c0927a79791eca8d69f574799490c716f2fe05 | 10,281 |
def get_backend(config):
"""
:param app: celery instance
:type app: celery.Celery
"""
klass = config.backend_class
kwargs = config.backend_kwargs
url = config.backend_url
return klass(url, **kwargs) | 57d6c82f99888ae992503492a8edfa802315a3cc | 10,282 |
def atol(s, base=None): # real signature unknown; restored from __doc__
"""
atol(s [,base]) -> long
Return the long integer represented by the string s in the
given base, which defaults to 10. The string s must consist
of one or more digits, possibly preceded by a sign. If base
is 0, it is chosen from the leading characters of s, 0 for
octal, 0x or 0X for hexadecimal. If base is 16, a preceding
0x or 0X is accepted. A trailing L or l is not accepted,
unless base is 0.
"""
return 0 | f39aa403cbad98c448a35305c97c595bc3a77c02 | 10,283 |
def tokens_to_sovatoms(tokens: float) -> int:
"""Convert tokens to sovatoms."""
return int(tokens * 100000000) | 23f4bc3a1afc4520b5e2416332702d0a594c5039 | 10,284 |
def _frame_only(frame, skeleton_data):
"""
Save only one frame from skeleton data
"""
result = []
for raw_descriptor in skeleton_data:
if raw_descriptor[0] == frame:
result.append(raw_descriptor)
return result | 1581ddc52eedc81dbe2cc71ed66524b6af5f4b3d | 10,285 |
def sort_node_id(a, b):
"""
@param a, b: node pair to be sorted by id
@type treenode, treenode
"""
if a.id > b.id:
return 1
else:
return -1 | 2db33f63f009d4d50c922b4daf45dbac56a60312 | 10,286 |
def __Boundary_outside__(self):
"""Is the boundary is on the outside of the mesh."""
return self.leftCell() is not None and self.rightCell() is None | cce3ffadc5e2598beae8b320b4d2f5122d6de904 | 10,287 |
def flow_cell_mode(info_reads):
"""Return flow cell sequencing mode."""
res = ''
if info_reads:
read_lens = [
a['num_cycles'] for a in info_reads if not a['is_indexed_read']]
if len(read_lens) == 1:
res = '1x{}'.format(read_lens[0])
elif len(set(read_lens)) == 1:
res = '2x{}'.format(read_lens[0])
else:
res = ' + '.join(map(str, read_lens))
index_lens = [
a['num_cycles'] for a in info_reads if a['is_indexed_read']]
if index_lens:
res += '/'
if len(set(index_lens)) == 1:
res += '{}x{}'.format(len(index_lens), index_lens[0])
else:
res += '+'.join(map(str, index_lens))
return res or '?x?' | 0563d0c163c2bd42b05d07fb30940669a8ef3513 | 10,289 |
def sortKey(e):
"""
This sorts the chores based on their start time.
e[0] is the start time for all the chores in my array of chores.
"""
return int(e[0]) | 00d37751d23fe6210b406485cbd76906075b2578 | 10,290 |
def merge_into_dict(original, secondary):
"""Merge two dictionaries into the first and return it.
This is simply a conveinence wrapper around the dictionary update method. In
addition to the update it returns the original dict to allow for chaining.
Args:
original: The dict which will be updated.
secondary: The dict which will be copied.
Returns:
The updated original dictionary.
"""
original.update(secondary)
return original | 899d40396885f0775f2cbaa865702ed0e5706dba | 10,291 |
def normalize_obs(obs_dict, obs_normalization_stats):
"""
Normalize observations using the provided "mean" and "std" entries
for each observation key. The observation dictionary will be
modified in-place.
Args:
obs_dict (dict): dictionary mapping observation key to np.array or
torch.Tensor. Leading batch dimensions are optional.
obs_normalization_stats (dict): this should map observation keys to dicts
with a "mean" and "std" of shape (1, ...) where ... is the default
shape for the observation.
Returns:
obs_dict (dict): obs dict with normalized observation arrays
"""
# ensure we have statistics for each modality key in the observation
assert set(obs_dict.keys()).issubset(obs_normalization_stats)
for m in obs_dict:
mean = obs_normalization_stats[m]["mean"]
std = obs_normalization_stats[m]["std"]
# check shape consistency
shape_len_diff = len(mean.shape) - len(obs_dict[m].shape)
assert shape_len_diff in [0, 1], "shape length mismatch in @normalize_obs"
assert mean.shape[shape_len_diff:] == obs_dict[m].shape, "shape mismatch in @normalize obs"
# handle case where obs dict is not batched by removing stats batch dimension
if shape_len_diff == 1:
mean = mean[0]
std = std[0]
obs_dict[m] = (obs_dict[m] - mean) / std
return obs_dict | c866b6d18df13b9e6903b7d96024d48cde99d2ff | 10,292 |
def get_closest_language(differences):
"""[summary]
Args:
differences ([list]): [contains tuples with language and difference score]
Returns:
[tuple]: [containing 3 closest possible languages to given input]
"""
# print(differences)
differences_sorted = sorted(differences, key=lambda item: item[1])
return differences_sorted[0][0], differences_sorted[1][0], differences_sorted[2][0] | 55e231e249c8bae5116be0b2feac96d184a6cbee | 10,293 |
def remap_labels(labels, mappings):
"""
:param labels:
:param mappings:
:return:
"""
for source, target in mappings.items():
labels[labels == int(source)] = target
return labels | df418b76c7831ac315e095cd9bf75b7596b04a91 | 10,296 |
def get_bprop_l2_loss(self):
"""Grad definition for `L2Loss` operation."""
def bprop(x, out, dout):
dx = x * dout
return (dx,)
return bprop | 6f52c07d9133939f5a7dc6d12a2416169f32147e | 10,297 |
def change_dimension_shape_resolution(changed_dimension_shape_conflict):
"""Create a resolution for a changed shape prior"""
return changed_dimension_shape_conflict.ChangeDimensionResolution(
changed_dimension_shape_conflict
) | c6f93f080ed14876a4724924dc848fb835364c33 | 10,298 |
def extract_tracklist_begin_num(content):
"""Return list of track names extracted from messy web content.
The name of a track is defined as a line which begins with a number
(excluding whitespace).
"""
tracklist = []
for line in content.splitlines():
# Empty line
if not line:
continue
# Strip leading and trailing whitespace
line.lstrip()
line.rstrip()
if line[0].isdigit():
tracklist.append(line)
return tracklist | 7d860fb0ea444ae0d9bd536a4644fa6b1c11a826 | 10,299 |
def net_solar_radiation(rs, albedo=0.23):
"""
Calculate the fraction of the solar radiation that is not reflected from
the surface (Allen et al. 1998).
Parameters
----------
rs : float
Solar radiation (MJ m-2 day-1).
albedo : float, optional
Albedo (-), default is 0.23 (value for a hypothetical
grass reference crop.
Returns
-------
float
Net solar radiation (MJ m-2 day-1).
"""
return (1 - albedo) * rs | 41a8930966db4a658d1c3ec31e754987bc9ed387 | 10,300 |
def text_color(message='{}', color_code='\033[0;37m'):
"""Set text to a color, default color is White"""
no_color = '\033[0m'
return f'{color_code}{message}{no_color}' | bede08b771b33ce26bbb0ee4fd42f3712d224cc1 | 10,301 |
def get_max_elements_in_row(row: list) -> int:
"""
Loops through the dataset and gets the max elements in a list if
one is found in the list or 1 if all strings.
"""
max_array_count = 0
# get the max height of the cells.
for item in row:
if isinstance(item, list) and len(item) > max_array_count:
max_array_count = len(item)
elif isinstance(item, str) and max_array_count == 0:
max_array_count = 1
return max_array_count | 0f8573bbabe95c03e3eda5949ff9c1c209b0f5fa | 10,302 |
def get_adventure(): # noqa: E501
"""Get all adventures
# noqa: E501
:rtype: List[Adventure]
"""
return "do some magic!" | 8ca2cb6b8e0aa004ca7fa54ec35f907c3351cab8 | 10,303 |
def cst_efield_2freq_cut_healpix(cst_efield_2freq_cut_healpix_main):
"""Make function level cut down HEALPix 2-freq efield beam."""
return cst_efield_2freq_cut_healpix_main.copy() | b7b2388efbe4f6ca1e22c08e46ec70d391c68ce8 | 10,304 |
def shift_chord(chord, shift):
"""Shift chord"""
if chord < 12:
new_chord = (chord + shift) % 12
elif chord < 24:
new_chord = (chord - 12 + shift) % 12 + 12
else:
new_chord = chord
return new_chord | bc72df71282d8ae7d15e591bb2a46e5d00f1cd30 | 10,305 |
def register_new_user(access, username, password):
""" Register a new user & handle duplicate detection """
if access.user_data(username) is not None:
raise ValueError("User '%s' already exists!" % username)
if username in access.pending_users():
raise ValueError("User '%s' has already registered!" % username)
access.register(username, password)
if access.need_admin():
access.approve_user(username)
access.set_user_admin(username, True)
return True
return False | 25b98c4def9da81d71176aed196f61b2e71d64c5 | 10,306 |
def get_not_constant_species(model):
"""
get species of the model that are not constant
@param model: libsbml.model
@type model: libsbml.model
@return: list of species
@rtype: list[libsbml.species]
"""
def not_const(s): return not( s.getConstant() or s.getBoundaryCondition() )
return filter(not_const, model.getListOfSpecies()) | abb376899405fa1623ec5ca646d0399e067fd5cc | 10,307 |
from math import floor
from typing import Tuple
from typing import Union
def conv_output_shape(
h_w: Tuple[int, int],
kernel_size: Union[int, Tuple[int, int]] = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a convolution layer.
kernel_size, stride, padding and dilation correspond to the inputs of the
torch.nn.Conv2d layer (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html)
:param h_w: The height and width of the input.
:param kernel_size: The size of the kernel of the convolution (can be an int or a
tuple [width, height])
:param stride: The stride of the convolution
:param padding: The padding of the convolution
:param dilation: The dilation of the convolution
"""
if not isinstance(kernel_size, tuple):
kernel_size = (int(kernel_size), int(kernel_size))
h = floor(
((h_w[0] + (2 * padding) - (dilation * (kernel_size[0] - 1)) - 1) / stride) + 1
)
w = floor(
((h_w[1] + (2 * padding) - (dilation * (kernel_size[1] - 1)) - 1) / stride) + 1
)
return h, w | ea757a413a3b38ea024b85dd6987beda8a3b9aeb | 10,310 |
def sum_all(grid_values):
"""
Calculates the sum of all grid values.
Results in scores from
:param grid_values: values of grid
:return: metrics score
"""
score = sum(grid_values)
return score | a7741961c240cb8edbff050566b7f9341a203af7 | 10,311 |
def _path(from_object, to_object):
"""
Calculates the 'path' of objects starting from 'from_object'
to 'to_object', along with the index of the first common
ancestor in the tree.
Returns (index, list) tuple.
"""
if from_object._root != to_object._root:
raise ValueError('No connecting path found between ' +
str(from_object) + ' and ' + str(to_object))
other_path = []
obj = to_object
while obj._parent is not None:
other_path.append(obj)
obj = obj._parent
other_path.append(obj)
object_set = set(other_path)
from_path = []
obj = from_object
while obj not in object_set:
from_path.append(obj)
obj = obj._parent
index = len(from_path)
i = other_path.index(obj)
while i >= 0:
from_path.append(other_path[i])
i -= 1
return index, from_path | 0ccfe54d36832b8dce3c55168f02abb3c79261ef | 10,312 |
def is_type_name(type_name):
"""Does not handle keywords.
"""
return type_name[0].isupper() | fd8f4e7cdc0bac7f00bc41ecaa87533103907db5 | 10,314 |
def process(data, action):
"""Выполняет верхнюю операцию в стаке и возвращаем результат в стэк"""
if not action.function:
return True
# Если для операции не хватает аргументов или значение не подходит - выдаём ошибку
try:
# Берём нужное кол-во аргументов для операции
if action.arguments == 1:
a = data.Q.pop()
data.Q.append(action(a))
elif action.arguments == 2:
b = data.Q.pop()
a = data.Q.pop()
data.Q.append(action(a, b))
return True
except (TypeError, ValueError):
return None | 84bce6a3d942e1db308b3fe4848da9044cc856d4 | 10,315 |
def get_key_in_nested_dict(nested_dict, target_key):
"""
Traverses the passed dict to find and return the value of target_key in the dict.
:param nested_dict: dictionary to search in
:param target_key: key you are looking for
:return: values of key
"""
for key in nested_dict:
if key == target_key:
return nested_dict[key]
elif type(nested_dict[key]) is dict:
return get_key_in_nested_dict(nested_dict[key], target_key)
elif type(nested_dict[key]) is list:
if type(nested_dict[key][0]) is dict:
for item in nested_dict[key]:
res = get_key_in_nested_dict(item, target_key)
if res:
return res | f0e677cc02ccbab7a4e3c09ba8bf1694c52b1818 | 10,316 |
import argparse
import sys
def _parse_args() -> argparse.Namespace:
"""
Creates an arg parser for AsciiQrCode and parses the supplied args.
:return: The parsed args.
"""
parser = argparse.ArgumentParser(description='Processes ASCII QR Codes.')
parser.add_argument('-v', '--verbose', action='store_true', default=False,
help='Enable verbose logging.')
parser.add_argument('--dump-qr-code', action='store_true', default=False,
help='Write the created QR code image to disc.')
parser.add_argument('file', type=str, help='A file containing an ASCII QR code.')
# Print help when no args are supplied.
if len(sys.argv) == 1:
parser.print_help(sys.stderr)
exit(1)
return parser.parse_args() | bea8fb2e58b55e3e749036e171aa7bc5796d330b | 10,318 |
def unique(data):
"""
in python 3: TypeError: '<' not supported between instances of 'int' and 'str'
need to keep the same Type of member in List
"""
data.sort()
l = len(data) - 1
i = 0
while i < l:
if (data[i] == data[i + 1]):
del data[i]
i -= 1
l -= 1
i += 1
return data | 5102a0d868741f9dca745e11972987ce74e78b8a | 10,320 |
def PtknsToStr(path_tokens):
"""
There are three ways to store paths:
As a single string: '/Protein/Phe/Ca' <- the format entered by the user
As a list of tokens ['Protein', 'Phe', 'Ca'] <- split into tokens
As a list of nodes in a tree (pointers to nodes in a tree hierarchy)
This function converts between the first two formats.
"""
text = ''
if len(path_tokens) > 0:
text = path_tokens[0]
for i in range(1, len(path_tokens)):
text += '/' + path_tokens[i]
else:
text = ''
return text | 8dd64e6213f8a49f5b20619261a4b3d8daa8d95d | 10,321 |
def traverse_grid(start_cell, direction, num_steps):
"""
Helper function that iterates over the cells
in a grid in a linear direction and returns
a list of their indices.
"""
indices = list()
for step in range(num_steps):
row = start_cell[0] + step * direction[0]
col = start_cell[1] + step * direction[1]
indices.append((row, col))
return indices | 0ce6f91759c36a63b103ebff2cddd8dd50ca837b | 10,322 |
def __format_size(file_size):
"""
Format file size information depending on the amount of bytes.
"""
file_size = int(file_size)
list_units = ["B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"]
list_index = 0
while file_size > 1000:
file_size = float(file_size) / 1000
list_index += 1
if list_index > len(list_units) - 1:
list_index = len(list_units) - 1
break
if list_index > 0:
file_size = round(file_size, 1)
unit = list_units[list_index]
else:
if file_size == 1:
unit = "byte"
else:
unit = "bytes"
return "%s %s" % (str(file_size), unit) | d893e09281fce75cb5d0ea011cca623767ae6cbb | 10,323 |
def parse_wiggle_header(header):
"""
:param header:
:return:
"""
_, chrom, start, step = header.strip().split()
foo, chrom = chrom.split('=')
assert foo == 'chrom', 'Unexpected wiggle header: {}'.format(header)
bar, start = start.split('=')
assert bar == 'start', 'Unexpected wiggle header: {}'.format(header)
loo, step = step.split('=')
assert loo == 'step', 'Unexpected wiggle header: {}'.format(header)
# NB: wiggle coordinates start at 1, make 0-based here
return chrom, int(start) - 1, int(step) | 87525a16b849fca7f78b786c220c7861de085b82 | 10,324 |
def _path_in_ignore_dirs(source_path: str, ignore_dirs: list) -> bool:
"""Checks if the source path is to be ignored using a case sensitive match
Arguments:
source_path: the path to check
ignore_dirs: the list of directories to ignore
Return:
Returns True if the path is to be ignored, and False if not
"""
# Break apart the source path for later checking
if '/' in source_path:
source_parts = source_path.split('/')
test_join_char = '/'
elif '\\' in source_path:
source_parts = source_path.split('\\')
test_join_char = '\\'
else:
source_parts = [source_path]
test_join_char = '/'
for one_dir in ignore_dirs:
# Check for multiple folders
if '/' in one_dir:
dir_parts = one_dir.split('/')
elif '\\' in one_dir:
dir_parts = one_dir.split('\\')
else:
dir_parts = [one_dir]
# See if the entire path to check is to be found
if test_join_char.join(dir_parts) not in source_path:
continue
# Check path particles to ensure the entire path names match and not just parts of path names
# 'test' vs. 'testing' for example
parts_matched = 0
for one_part in dir_parts:
if one_part not in source_parts:
break
parts_matched += 1
if parts_matched == len(dir_parts):
return True
return False | 5d392392e735bdbc1e60cca9414fca8a1eb3ec0c | 10,325 |
import argparse
def init_parser():
"""Initialize and return the command line parser."""
autoddoc_description =\
("AutoDDoc 0.1\n"
"Documentation generator script for D using DDoc.\n"
"Copyright Ferdinand Majerech 2011.\n\n"
"AutoDDoc scans subdirectories of the current directory for D or DDoc\n"
"sources (.d, .dd or .ddoc) and generates documentation using settings\n"
"from a configuration file.\n"
"NOTE: AutoDDoc will only work if package/module hierarchy matches the\n"
"directory hierarchy, so e.g. module 'pkg.util' would be in file './pkg/util.d' .")
autoddoc_epilog =\
("\nTutorial:\n"
"1. Copy the script to your project directory and move into that directory.\n"
" Relative to this directory, module names must match their filenames,\n"
" so e.g. module 'pkg.util' would be in file './pkg/util.d' .\n"
"2. Generate AutoDDoc configuation file. To do this, type\n"
" './autoddoc.py -g'. This will generate file 'autoddoc.cfg' .\n"
"3. Edit the configuation file. Set project name, version, output\n"
" directory and other parameters.\n"
"4. Generate the documentation by typing './autoddoc.py' .\n")
parser = argparse.ArgumentParser(description= autoddoc_description,
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog = autoddoc_epilog, add_help=True)
parser.add_argument("config_file", nargs="?", default="autoddoc.cfg",
help="Configuration file to use to generate documentation. "
"Can not be used with any optional arguments. "
"If not specified, 'autoddoc.cfg' is assumed. "
"Examples: 'autoddoc.py config.cfg' "
"will generate documentation using file 'config.cfg' . "
"'autoddoc.py' will generate documentation "
"using file 'autoddoc.cfg' if it exists.",
metavar="config_file")
parser.add_argument("-g", "--gen-config", nargs="?", const="autoddoc.cfg",
help="Generate default AutoDDoc configuation file. "
"config_file is the filename to use. If not specified, "
"autoddoc.cfg is used.",
metavar="config_file")
parser.add_argument("-s", "--gen-style", nargs="?", const="autoddoc_style.css",
help="Generate default AutoDDoc style sheet. "
"css_file is the filename to use. If not specified, "
"autoddoc_style.css is used.",
metavar="css_file")
parser.add_argument("-i", "--gen-index", nargs="?", const="autoddoc_index.dd",
help="Generate default AutoDDoc documentation index. "
"index_file is the filename to use. If not specified, "
"autoddoc_index.dd is used.",
metavar="index_file")
return parser | 49090858be2baed2f0efcf375c195267d5eacc38 | 10,328 |
import requests
def open_recipe_file(file, recipes_path=None, github_repo='bioconda/bioconda-recipes'):
"""
Open a file at a particular location and return contents as string
"""
if recipes_path:
return open(f'{recipes_path}/{file}').read()
else: # if no clone of the repo is available locally, download from GitHub
r = requests.get(f'https://raw.githubusercontent.com/{github_repo}/master/{file}')
if r.status_code == 404:
raise OSError
else:
return r.content | ce5fc3c054bc937203966459e9981a5befdae40b | 10,329 |
def confidence_interval(data, column_name, confidence_level):
"""
get a 95% confidence interval from a bootstrap dataframe column
Parameters
----------
data : pandas dataframe
the bootstrap dataframe generated by :py:func:`.bootstrapLE`
column_name : string
the statistic that you want the interval for, specified by the name of the column
containing it
confidence_level : float
a real number between 0 and 1 that represents the desired confidence level.
eg. 0.95 for 95%.
Returns
----------
list
a two-element list with the lower bound and upper bound.
"""
results = data[column_name].tolist()
results.sort()
lower_bound = int((1 - confidence_level) / 2 * len(results)) - 1
upper_bound = int((confidence_level + 1) / 2 * len(results)) - 1
if lower_bound < 0:
lower_bound = 0
return [round(float(results[lower_bound]), 1), round(float(results[upper_bound]), 1)] | 69668a88030c0a2d6d90dbc1b834cbab76d0ec17 | 10,330 |
def dist_to_freq(dist: float, bw: float, ts: float) -> float:
"""
"""
return int(2 * dist * bw / (299792458 * ts)) | 5e232569e25e663ca6b13a7acdd0c5f1b2afd5aa | 10,331 |
def pig_latin(wrd):
"""Returns the Pig Latin version of a word.
For words that begin with a consonant, take the consonant/consonant cluster
and move it to the end of the word, adding the suffix 'ay' to the end of the word.
For words that begin with a vowel, leave the word as is and add the
suffix 'way' to the end of the word.
>>> pig_latin('dog')
'ogday'
>>> pig_latin('brush')
'ushbray'
>>> pig_latin('elephant')
'elephantway'
>>> pig_latin('awesome')
'awesomeway'
>>> pig_latin('rhythm')
'rhythmay'
"""
idx = next((i for i, v in enumerate(wrd) if v in 'aeiou'), len(wrd))
return wrd[idx:] + (wrd[:idx] or 'w') + 'ay' | 2eba5f4aaff1391e60f4097e526539d5b486c9bd | 10,334 |
def parse_units(units_str):
"""
Extract and parse the units
Extract the bounds over which the expression is assumed to apply.
Parameters
----------
units_str
Returns
-------
Examples
--------
>>> parse_units('Widgets/Month [-10,10,1]')
('Widgets/Month', (-10,10,1))
>>> parse_units('Month [0,?]')
('Month', [-10, None])
>>> parse_units('Widgets [0,100]')
('Widgets', (0, 100))
>>> parse_units('Widgets')
('Widgets', (None, None))
>>> parse_units('[0, 100]')
('', (0, 100))
"""
if not len(units_str):
return units_str, (None, None)
if units_str[-1] == "]":
units, lims = units_str.rsplit("[") # types: str, str
else:
units = units_str
lims = "?, ?]"
lims = tuple(
[float(x) if x.strip() != "?" else None for x in lims.strip("]").split(
",")]
)
return units.strip(), lims | 18f35a06aedfc9d026cfa70a1217b0b5b0420ca5 | 10,335 |
def seg_pixel_accuracy_nd(label_imask,
pred_imask,
vague_idx=-1,
use_vague=False,
macro_average=True,
empty_result=0.0):
"""
The segmentation pixel accuracy (for MXNet nd-arrays).
Parameters
----------
label_imask : mx.nd.array
Ground truth index mask (maybe batch of).
pred_imask : mx.nd.array
Predicted index mask (maybe batch of).
vague_idx : int, default -1
Index of masked pixels.
use_vague : bool, default False
Whether to use pixel masking.
macro_average : bool, default True
Whether to use micro or macro averaging.
empty_result : float, default 0.0
Result value for an image without any classes.
Returns
-------
float or tuple of two floats
PA metric value.
"""
assert (label_imask.shape == pred_imask.shape)
if use_vague:
mask = (label_imask != vague_idx)
sum_u_ij = mask.sum().asscalar()
if sum_u_ij == 0:
if macro_average:
return empty_result
else:
return 0, 0
sum_u_ii = ((label_imask == pred_imask) * mask).sum().asscalar()
else:
sum_u_ii = (label_imask == pred_imask).sum().asscalar()
sum_u_ij = pred_imask.size
if macro_average:
return float(sum_u_ii) / sum_u_ij
else:
return sum_u_ii, sum_u_ij | 7da093ef624dee07fd335021ae2317d53583e612 | 10,336 |
import importlib
import inspect
def getCoursesFromModels():
"""This method imports and inspects Models.py file and adds name of its classes to the list.
User class is skipped so it is not added into list of courses.
Returns:
list: List of string names of classes in Models.py file.
"""
coursesList = []
mod = importlib.import_module('project.models')
for name, obj in inspect.getmembers(mod, inspect.isclass):
if name != "User":
coursesList.append(name.lower())
coursesList.sort()
return coursesList | fd3685ca68e98afd9384ad0711e43ac68e02c94d | 10,337 |
def extract_seed(path, key):
""" Scrape the 5-character seed from the path and return it as an integer.
:param path: path to the tsv file containing results
:param key: substring preceding the seed, "batch-train" for splits, seed-" for shuffles
"""
try:
i = path.find(key) + len(key)
return int(path[i:i + 5])
except ValueError:
return 0 | c5073ad43e8a966aba5382894490aa6cbc871271 | 10,338 |
def get_neighbor_dict_from_table(db, table_name):
"""
returns a dict with bgp neighbor ip as key and neighbor name as value
:param table_name: config db table name
:param db: config_db
"""
neighbor_dict = {}
neighbor_data = db.get_table(table_name)
try:
for entry in neighbor_data:
neighbor_dict[entry] = neighbor_data[entry].get(
'name') if 'name' in neighbor_data[entry] else 'NotAvailable'
return neighbor_dict
except Exception:
return neighbor_dict | 17d8230956c36db8c79bd98f0eec63320b6e77d0 | 10,339 |
import pickle
def get_cells_to_calculate_variance(file_path, percentage_of_extreme_cells=15):
"""
Get a list of cells to use to calculate the methylation and variance
In this case we have a list of all cells that might be possible and the avg methylation and variance of
them and we want to take the percentage to take top and bottom cells
:param file_path:
:return:
"""
with open(file_path, "rb") as f:
all_cells = pickle.load(f)
all_cells.sort(key=lambda x: x[1])
low = percentage_of_extreme_cells * len(all_cells) / 100 + 1
top = len(all_cells) - percentage_of_extreme_cells * len(all_cells) / 100 - 1
cells = all_cells[:int(low)] + all_cells[int(top):]
return [i[0] for i in cells] | c151b03cb873f179eb946dd12f6a286aeea8e7a3 | 10,340 |
def calc_buckets(
start: float,
upper_bound: float,
/,
*,
increment_ratio: float = 1.20
) -> tuple[float, ...]:
"""Calculate histogram buckets on a logarithmic scale."""
# See https://amplitude.com/blog/2014/08/06/optimal-streaming-histograms
# for more details.
result: list[float] = []
while start <= upper_bound:
result.append(start)
start *= increment_ratio
return tuple(result) | 541fdb81b150a81d24b515acaf53365afb4b62b4 | 10,341 |
def from_hexpoints(s):
"""Parses a string from its codepoints as hex.
Given a string containing one or more code points (as hex values),
parse it to a a string. For example, the input "006E 006F" produces
output "no".
"""
return "".join([chr(int(cp, 16)) for cp in s.split()]) | 55b5088d000cf90059ca93d7e3895aee043d554e | 10,342 |
def basicFitness(individual, env):
"""
The trivial case, where fitness is just the result of passing through
the environment.
"""
return individual.result | 7d108bac92ce390699b66e1ead5b08080856c5be | 10,344 |
import os
def solution_name() -> str:
"""
Get the Solution Name from environment variable
:return: the solution name
"""
return os.environ["SOLUTION_NAME"] | a43b79ac9ad39b22ab65de02ec6845f3058e259e | 10,345 |
def find_missing_integer(arr):
"""
Find the first missing integer in unsorted array of integers
"""
# segregate integers, with negative (including zero) on right and positives
# on left
left = 0
right = len(arr) - 1
while left < right:
if arr[left] > 0:
left += 1
elif arr[right] <= 0:
right -= 1
else:
arr[left], arr[right] = arr[right], arr[left]
left += 1
right -= 1
# mark indexes of positive integers as negative
for idx in arr[:left+1]:
pos_idx = abs(idx)
if pos_idx < len(arr):
arr[pos_idx-1] = -abs(arr[pos_idx-1])
# find first positive integer
for idx, elt in enumerate(arr[:left+1]):
if elt > 0:
return idx + 1
return left + 1 | d31b5a42ed9bd43d7d036098e8491b4b839c5873 | 10,346 |
import re
import argparse
def valid_labels_regex(arg_value, pat=re.compile(r"^all|random|([a-z|0-9|,|\.]+)|([a-z|0-9|\.]+-[a-z]+-[1-9]-[0-9]-[1-9]-[c|h],?)+$")):
"""Get the params regex."""
if not pat.match(arg_value):
raise argparse.ArgumentTypeError
return arg_value | 7f278654cf7c1630ce6751aaacfa85d0b08e65cb | 10,347 |
def get_html_fields(fields):
"""
Converts a fields table with mandatory keywords type, text, id and partially optional
keywords value, allowed_values, checked and help into html input lines.
The tal in the templates has become too complicated therefore the python code handles
most of the conditions.
"""
html_fields = []
for field in fields:
html_field = {}
for key in ["help","text","id"]:
if key in field:
html_field[key] = field[key]
if field["type"] == "text":
html_field["input_html"] = ("<input name=\"" + field["id"] + "\" value=\"" +
field["value"] + "\" id=\"" + field["id"] +
"\"type=\"text\">\n")
if field["type"] == "select":
html_field["input_html"] = ("<select name=\"" + field["id"] + "\" value=\"" +
field["value"] + "\">\n")
for option in field["allowed_values"]:
html_field["input_html"] += "<option>"+option+"</option>\n"
html_field["input_html"] += "</select>\n"
if field["type"] == "checkbox":
html_field["input_html"] = ("<input name=\"" + field["id"] + "\" value=\"" +
field["value"] + "\" id=\"" + field["id"] +
"\"type=\"checkbox\"")
if "checked" in field:
html_field["input_html"] += " checked=\"checked\""
html_field["input_html"] += ">\n"
html_fields.append(html_field)
return html_fields | 9269d26a86892791d5ef4847546600d629c8f7c6 | 10,350 |
def get_metadata_from_attributes(Object, skip_attributes = None, custom_classes = None):
"""
Get metadata dict from attributes of an object.
Parameters
----------
Object :
object from which the attributes are.
skip_attributes : list, optional
If given, these attributes are skipped (next to the methods of the class of Object).
The default is None.
custom_classes : dict, optional
Dict where keys are classes and values are functions that specify how
objects of this class should be stored in metadata_dict. The default is None.
Returns
-------
metadata_dict : dict
dict where keys-values are attributes from Object.
"""
if skip_attributes is None:
skip_attributes = []
skip_attributes += dir(type(Object)) # methods of class will be skipped as attributes
if custom_classes is None:
custom_classes = {}
metadata_dict = {}
for a in dir(Object):
if a not in skip_attributes:
a_val = getattr(Object,a)
if a_val is None:
metadata_dict[a] = "None"
elif type(a_val) in custom_classes:
# treat class as specified in custom_classes dict
metadata_dict[a] = custom_classes[type(a_val)](a_val)
elif callable(a_val):
# only get docstrings from callables
metadata_dict[a] = a_val.__doc__
else:
metadata_dict[a] = a_val
return metadata_dict | 0c6eacae223ea94e128ff5b507fcaa5a71034c38 | 10,351 |
import zipfile
import json
def _GetExtensionInfoFromCRX(crx_path):
"""Parse an extension archive and return information.
Note:
The extension name returned by this function may not be valid
(e.g. in the case of a localized extension name). It's use is just
meant to be informational.
Args:
crx_path: path to crx archive to look at.
Returns:
Tuple consisting of:
(crx_version, extension_name)"""
crx_zip = zipfile.ZipFile(crx_path)
manifest_contents = crx_zip.read('manifest.json')
decoded_manifest = json.loads(manifest_contents)
crx_version = decoded_manifest['version']
extension_name = decoded_manifest['name']
return (crx_version, extension_name) | 8a5f2ef2547c67d65195334df89d589fbff54dcf | 10,352 |
def update_state(td_state, job_results):
"""
Updates the torsiondrive state with the compute jobs. The state is updated inplace
Parameters
----------
td_state : dict
The current torsiondrive state
job_results : dict
A dictionary of completed jobs and job ID's
Returns
-------
None
"""
for grid_id_str, job_result_tuple_list in job_results.items():
if grid_id_str not in td_state['grid_status']:
td_state['grid_status'][grid_id_str] = []
td_state['grid_status'][grid_id_str] += job_result_tuple_list
return td_state | 476d19fb9946045dc555f815d680d0475f253003 | 10,353 |
from typing import Tuple
def yaml_remove_split(docstr: str) -> Tuple[str, str]:
"""Extract parameter summary within :yaml: tags in docstring,
and clean up the :yaml: tag for the full docstring.
Return cleaned up docstring, and summary version."""
key = ":yaml:"
summary = ""
i_start = docstr.find(key)
while i_start >= 0:
i_key_stop = i_start + len(key) + 1 # end of :yaml:
i_stop = docstr.find("`", i_key_stop) + 1 # end of content after it
fullkey = docstr[i_start:i_stop] # includes `content` after key
summary = docstr[i_key_stop : (i_stop - 1)] # just the content
docstr = docstr.replace(fullkey, summary)
# Search for any other keys:
i_start = docstr.find(key)
return docstr, summary | e0e3e34871c56c5cc176fcd371e5402846771078 | 10,354 |
def trace_size_converter(value, params, key):
"""
Converts trace size from seconds to samples
"""
params = params[key]
if value is None:
return None
if not value:
return value
if not params['frequency']:
raise AttributeError('No frequency specified for trace-size argument!')
return int(float(value) * params['frequency']) | 87ec3707b36ee76bed365c4a91d4af829161b4b5 | 10,355 |
def decode_chrome_leveldb_bytes(value):
"""
decode the encoded localstorage values from the leveldb file
"""
if value[0] == 0:
return value[1:].decode('utf-16le')
elif value[0] == 1:
return value[1:].decode('utf-8')
else:
msg = "Unable to process Chrome LevelDB bytes in unknown format: {}".format(value)
print(msg)
raise ValueError(msg) | e200c3da3a2f75c215fa13fc12eb12f1034b3e14 | 10,357 |
import requests
import logging
def get_url_descriptor(url):
"""
Returns an url descriptor or None on failure
"""
try:
resp = requests.get(url)
except requests.exceptions.ConnectionError:
logging.error("Error connecting to {}".format(url))
return None
if resp.ok:
return resp
return None | 8e09711e08200980c1778fd47673dcaaba67c47b | 10,358 |
def year_isnt_int(YEARS):
"""A funciton to test if years are integers"""
return any(type(x) != int for x in YEARS) | d23d093f4655846d07228019b4110e2ef3180c69 | 10,359 |
import os
def get_pictures(pictures_dir):
"""Return a list of picture files found in pictures_dir"""
pictures = []
for directory, subdirs, files in os.walk(pictures_dir):
for fname in files:
if fname.lower().endswith(('.jpg', '.png')):
pictures.append(os.path.join(directory, fname))
return pictures | 5bb257fdf3bb910d8c0b45bbc8368a23d17ca7bf | 10,360 |
import json
def isJsonDict(s):
"""
Take a string and determine if valid JSON.
"""
try:
data = json.loads(s)
return type(data) == dict
except ValueError:
return False | 222841fc39f78a45f0c682a83282e714a26dc0ed | 10,361 |
from datetime import datetime
def blog():
"""
The blog section will show the user an infinite cascade of blog posts
that will load based on the user scroll.
"""
return dict(
title="Blog",
year=datetime.now().year
) | 51a6447ef8081cf8053afbbacfcd145efefca5e4 | 10,363 |
import json
def read_dependencies(file_path):
"""Reads a json file and creates an iterable of unique dependencies.
Args:
file_path: The path to the runtime dependencies file.
Returns:
An iterable with unique dependencies.
"""
deps = None
with open(file_path) as deps_file:
deps = json.load(deps_file)
deps_set = set()
for _, dep_list in deps.items():
deps_set.update(dep_list)
return deps_set | 52756a443b3a7b0ee6ed1a932b3d1b7984fe4189 | 10,364 |
def get_tags_by_month_for_users(data , usernames):
"""
initialize list of months and sets
for each list of data in data
slice out twitter information
if username in username list
for each tag in hashtags in tweet
add hashtag to set in data list
:param data - list of twitter data:
:param usernames - list of usernames in twitter data:
:return data_list - list of month numbers and set of unique hashtags:
"""
data_list = [(i, set()) for i in range(1, 13)]
for lists in data:
username = lists[0]
month = lists[1]-1
hashtags = lists[2]
if username in usernames:
for tag in hashtags:
data_list[month][1].add(tag)
return data_list | ca2fbfb2137b47fe23c7d113f002e528cb55b3ae | 10,365 |
def get_face_rectangles(azure_response):
"""
Returns the rectangles corresponding to the faces detected by Azure
:param azure_response: Response from Azure Face request as dictionary.
:return: The rectangles of any detected face with the format: (width, height, left, top)
"""
result = []
for face in azure_response:
result.append(face.face_rectangle)
return result | d07e40f1b4c648c52ea660179f8d8c1f4957f0db | 10,367 |
def retr_spacegroup_number(xtalstr,ini0):
"""
Retrieve the space group number.
When choosing real space grids some space groups imply restrictions
on the number of points along the different lattice vectors.
To impose the correct restrictions we need to know the space group
number of the current system. This function add this number to
the dictionary.
"""
ini0["spacegroup"] = xtalstr.spacegroup_number
return ini0 | f86827aa089b79c054fe8c4d78c5a6da48f0463e | 10,368 |
import requests
import numpy as np
from requests.exceptions import ReadTimeout
def post_nadlan_sviva_rest(body, only_neighborhoods=True, subject=None,
add_coords=True):
"""take body from request and post to nadlan.gov.il deals REST API,
Sviva=other parameters, demographics, etc,
subject 1: nadlan
subject 2: area services
subject 4: demography
subject 8: education
subject 16: environment
subject 32: greenarea
subject 64: transaccess
"""
if only_neighborhoods:
if body['DescLayerID'] != 'NEIGHBORHOODS_AREA':
raise ValueError('DescLayerID is {}.. only NEIGHBORHOODS_AREA allowed.'.format(
body['DescLayerID']))
if subject is not None:
url = 'https://www.nadlan.gov.il/Nadlan.REST//Mwa/GetDetails?subjects={}&pointBuffer=1500'.format(
subject)
else:
url = 'https://www.nadlan.gov.il/Nadlan.REST//Mwa/GetPreInfo?subjects=127&pointBuffer=1500'
try:
r = requests.post(url, json=body, timeout=10)
except ReadTimeout:
raise ValueError('TimeOut')
if r.status_code != 200:
raise ValueError('couldnt get a response ({}).'.format(r.status_code))
result = r.json()
if result is not None:
if add_coords:
try:
result['X'] = body['X']
result['Y'] = body['Y']
except TypeError:
result['X'] = np.nan
result['Y'] = np.nan
return result
else:
raise ValueError('no data') | c659b5ac32b6b5317d614460def207fe9fc20820 | 10,370 |
import numpy
def positions_join(positions_sequence):
"""Return concatenated positions arrays."""
return numpy.concatenate(positions_sequence) | f2743b00ac6b3c19e2c8efe0209e8a3f938389b7 | 10,371 |
def callback_on_failure():
"""Simple callback on failure"""
return False | 98fcb160561ff4c6c25f49e95610394b56580a04 | 10,372 |
def snd(pair):
"""Return the second element of pair
"""
return pair[1] | a7893d60324ebdd358a0a0bb86bd2842d2617629 | 10,374 |
from numpy import log
def log_mean(T_hi, T_lo, exact=False):
"""
compute the logarithmic mean
"""
if exact:
return (T_hi-T_lo)/log(T_hi/T_lo)
else:
d = T_hi - T_lo
return T_hi - d/2*(1 + d/6/T_hi*(1 + d/2/T_hi)) | dcae1d753c416a117dc2f8502454d18f9413fc36 | 10,376 |
def reduceSet(setList):
"""Step through a list of sets and combine sets that overlap.
This will create a unique list of sets, where each set contains the headers
of reads that optical duplicates."""
setList2 = [setList[0]]
for item1 in setList[1:]:
inSetList2 = False
for item2 in setList2:
if item1 & item2: # If there is an intersection
item2 |= item1 # Combine sets and go to next item in setList
inSetList2 = True
break
if not inSetList2: # If I could not find any overlaps then append set to setList2
setList2.append(item1)
return(setList2) | 4e7e763ae78d5cf97fa122f991b01529e12c86a5 | 10,377 |
def weird_compare(interval, start, end):
"""
This is a function that is used later on in data_upscale, to add a corrective integer (either 1 or 0),
when that function checks whether the image it is working on has reached the border.
This function is not expected to be used anywhere outside data_upscale.
:param interval: Width in pixels of the target zoom images compared to the original image.
:param start: Position in pixels of the start of the ROI (either in X or Y direction)
:param end: Position in pixels of the end of the ROI (either in X or Y direction)
:return: 0 or 1, depending on where the ROI lies on the direction.
"""
if interval - (end - start) % interval <= start % interval:
return 1
else:
return 0 | f4b67c2b740a318ad659d1001bd14d402dad9e21 | 10,378 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.