content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import argparse
def get_args():
"""
Method to read the command line arguments and parse them
"""
parser = argparse.ArgumentParser(
description="Split a playlist into multiple playlists"
)
# Required arguments for the program
parser.add_argument("-p", "--playlist_id", required=True, help="Playlist ID")
parser.add_argument(
"-l", "--limit", required=True, default=20, help="Size of each small playlist"
)
return parser.parse_args() | 3648cd847a760182029d39d858b06a0dd7bc1545 | 9,323 |
import copy
def difference(df, cols, lag=1):
"""
Perform differencing on some columns in a dataframe.
Input:
------
df: pandas dataframe containing the timeseries data.
cols: list of strings indicating which columns to difference
"""
df2 = copy.deepcopy(df)
# Difference based on the lag provided.
for i in range(1, len(df2["block_end"])):
for L in cols:
curr = df2.loc[i, L]
prev = df2.loc[i - lag, L]
df2.loc[i, "d_{}_{}".format(lag, L)] = curr - prev
return df2 | 00a7edf9fc49f60736a15099b0ab2db178671dc0 | 9,324 |
def parse_amount_string(amount: str) -> float:
"""
Parse strings like
- '1.000,00-'
- '1.000,00 S'
- '23,23+'
- '23,23 H'
to the correct amount as float
:param amount: The string of an amount
:return:
"""
# Replace H and S
amount = amount.replace("H", "+").replace("S", "-")
# Remove german thousand separator
amount = amount.replace(".", "")
# Replace german decimal separator with english
amount = amount.replace(",", ".")
# Put the sign at the correct place and trim
amount = amount[-1] + amount[:-1].strip()
return float(amount) | 1307f753289b53bcd3f895e2582903064c9125ad | 9,326 |
def unique_chunks(lst, n):
""" Returns unique chunks of length n from lst. """
if n < 1:
return set()
return {tuple(lst[i:i + n]) for i in range(0, len(lst), n)} | e06758a4cb13e42394560e3fe2b4889a8e321af9 | 9,327 |
from pathlib import Path
def fixture_vcf_dir(fixtures_dir: Path) -> Path:
"""Return the path to the vcf fixtures directory"""
return fixtures_dir / "vcfs" | 7a77d40a34fc05b7acb20cc60c0e7343ffd4bfa8 | 9,329 |
def calcularPVoto(tVoto, vJogador):
"""
-> Calcula o percentual de voto de cada jogador que recebeu voto
:param tVoto: Quantidade total de votos computados
:param vJogador: Quantidade de votos do jagador a ser calculado o percentual
Função criada por Jcvendrame
"""
return (vJogador / tVoto) * 100 | d21dfc72d70d6a9bdea7d5420cea3a63a57204cf | 9,330 |
def equalRankin(ranking, other):
"""Compare two rankings
Args:
ranking (List<CurrencyUsers>)
other (List<CurrencyUsers>)
Return:
Boolean. True if both ranking are equals.
"""
if not other or not ranking:
return False
if len(ranking) != len(other):
return False
for user in ranking:
user_other = next(
(item for item in other if item.UserId == user.UserId), None)
if not user_other or user_other.TimeWatched != user.TimeWatched:
return False
return True | 351fc60ad18450179d7395f7f88698acfdb2c8d4 | 9,331 |
def get_game_range_row_names(game_begin, game_end):
"""Get the row range containing the given games.
Sample row name:
g_0000000001_m001
To capture the range of all moves in the two given games,
the end row will need to go up to g_00..(N+1).
Args:
game_begin: an integer of the beginning game number.
game_end: an integer of the ending game number, inclusive.
Returns:
The two string row numbers to pass to Bigtable as the row range.
"""
row_fmt = 'g_{:0>10}_'
return row_fmt.format(game_begin), row_fmt.format(game_end + 1) | 700740131dbd497af8b80832a7ad11960ccc710f | 9,332 |
import math
def score_word_count(count: int) -> float:
"""Score word frequency as log of count with min of 1.0"""
return max(1.0, math.log(count)) | e49febcac36653a3a188c0ec3edd9cca0c18b81a | 9,333 |
import jinja2
def render(filename, variables):
"""
Grabs the jinja2 file and renders it
:param filename: the jinja2 file to render
:param variables:
:return:
"""
with open(filename, 'rt') as f:
filename = jinja2.Template(f.read())
return filename.render(**variables) | 09fcf7a6966276e2a362f64bfac84dfb5fb1dd0c | 9,334 |
def reduce(l):
"""
Args:
Rangelist: generic list of tuples (can be either float or int tuple)
Return:
Reduced int list based on average value of every tuple in input tuple list
"""
result = []
for s in l:
midVal = abs(float(s[0]) - float(s[1])) / 2.0
result.append(midVal)
return result | 5db6214bc439dcc149d0d4cef1b66930f40694d7 | 9,335 |
import math
def choose_team_levels(num_teams, hackathon_level):
""" Calculates the average experience level per team and distributes any
remaining difference among some of the teams evenly
Returns a list of team_levels """
avg_team_level = math.floor(hackathon_level / num_teams)
team_levels = []
remainder = hackathon_level % num_teams
remainder_per_team = math.ceil(remainder / num_teams)
if remainder > 0:
while remainder > 0:
team_levels.append(avg_team_level + remainder_per_team)
remainder -= remainder_per_team
num_team_with_avg_level = num_teams - len(team_levels)
teams_at_normal_level = [avg_team_level for team
in range(num_team_with_avg_level)]
return team_levels + teams_at_normal_level | aaf372f00969da62b966a2a09aff64a188fbce82 | 9,336 |
def infer_time_unit(time_seconds_arr):
"""
Determine the most appropriate time unit for an array of time durations
specified in seconds.
e.g. 5400 seconds => 'minutes', 36000 seconds => 'hours'
"""
if len(time_seconds_arr) == 0:
return 'hours'
max_time_seconds = max(time_seconds_arr)
if max_time_seconds <= 60*2:
return 'seconds'
elif max_time_seconds <= 60*60*2:
return 'minutes'
elif max_time_seconds <= 24*60*60*2:
return 'hours'
else:
return 'days' | 11f25a712d8d66e8546fea2f7e36309dcebbcc74 | 9,338 |
def fprint(prompt: str, question: bool=False, returnstr: bool=False):
"""
Fancy print function
"""
tags = {'[o]': '[\033[01;32m+\033[0m]',
'[ok]': '[\033[01;32m+\033[0m]',
'[+]': '[\033[01;32m+\033[0m]',
'[e]': '[\033[01;31m-\033[0m]',
'[er]': '[\033[01;31m-\033[0m]',
'[error]': '[\033[01;31m-\033[0m]',
'[-]': '[\033[01;31m-\033[0m]',
'[i]': '[\033[01;36mi\033[0m]',
'[if]': '[\033[01;36mi\033[0m]',
'[ifo]': '[\033[01;36mi\033[0m]',
'[info]': '[\033[01;36mi\033[0m]',
'[q]': '[\033[01;33m?\033[0m]',
'[qu]': '[\033[01;33m?\033[0m]',
'[question]': '[\033[01;33m?\033[0m]',
'[?]': '[\033[01;33m?\033[0m]',
'[c]': '[\033[01;41m!\033[0m]',
'[cr]': '[\033[01;41m!\033[0m]',
'[critical]': '[\033[01;41m!\033[0m]',
'[!]': '[\033[01;41m!\033[0m]'}
for tag in tags.keys():
if prompt.startswith(tag):
prompt = prompt.replace(tag, tags[tag], 1)
break
if returnstr:
return prompt
elif question:
return input(prompt)
else:
print(prompt) | 27be27f40a112b5f14bbbf728deb319dccb77e7d | 9,340 |
def flip_y(im):
"""mirrors an image over the x axis."""
source_pix = im.load()
im = im.copy()
dest_pix = im.load()
width, height = im.size
for i in range(width):
for j in range(height):
dest_pix[i,j] = source_pix[i, height-j-1]
return im | 9ad00b2de3e628cc6dd441884103b9d2e3492333 | 9,343 |
import torch
def lower_matrix_to_vector(lower: torch.Tensor) -> torch.Tensor:
"""Convert a lower triangular matrix to a vector.
Parameters
----------
lower : torch.Tensor
lower
Returns
-------
torch.Tensor
"""
shape = lower.shape
assert shape[-1] == shape[-2]
lower_idx = torch.tril_indices(shape[-1], shape[-1])
lower_flat = lower[..., lower_idx[0], lower_idx[1]]
return lower_flat | e4fe825caf5926ce3219c4dd7720d1b7f180b998 | 9,344 |
def blockify(sudoku):
"""
Converts 9x9 sudoku list into a list containing lists of values in given sudoku's blocks
args:
-sudoku - 9x9 sudoku list
returns: List with lists of values of sudoku blocks
"""
i=0
block_row = []
while i<len(sudoku):
j=0
while j<7:
k=i
blocked = []
while k<i+3:
l=j
block = []
while l<j+3:
block.append(sudoku[k][l])
l += 1
blocked.extend(block)
k += 1
block_row.append(blocked)
j += 3
i += 3
return block_row | 4f24aa3c3f8eb7132ab512bd74c03d8fd1947db0 | 9,345 |
def map_coords_to_scaled_float(coords, orig_size, new_size):
"""
maps coordinates relative to the original 3-D image to coordinates corresponding to the
re-scaled 3-D image, given the coordinates and the shapes of the original and "new" scaled
images. Returns a floating-point coordinate center where the pixel at array coordinates
(0,0) has its center at (0.5, 0.5). Take the floor of the return value from this function
to get back to indices.
"""
if not all(
isinstance(arg, (tuple, list, set)) for arg in (coords, orig_size, new_size)
):
raise TypeError(
"`coords`, `orig_size` and `new_size` must be tuples corresponding to the image shape."
)
if not all(len(arg) == len(coords) for arg in (orig_size, new_size)):
raise TypeError(
"Number of dimensions in `coords` ({}), `orig_size` ({}), and `new_size` ({}) did not match.".format(
len(coords), len(orig_size), len(new_size)
)
)
ratio = lambda dim: float(new_size[dim]) / orig_size[dim]
center = lambda s, dim: s[dim] / 2.0
offset = lambda dim: (coords[dim] + 0.5) - center(orig_size, dim)
new_index = lambda dim: (center(new_size, dim) + ratio(dim) * offset(dim))
return tuple([new_index(dim) for dim in range(len(orig_size))]) | f5e1e1523366a9e1e37f9d1a304d9deea8d53e00 | 9,346 |
def _structure_summary(structure):
"""
Extract messages from the structure.
Args:
structure: a Pymatgen Structure object
Returns:
dict of the following messages:
nsites (int): number of sites in the structure.
is_ordered (bool): whether the structure is ordered or not.
...to be continued
"""
return {"n_sites": len(structure.sites),
"is_ordered": structure.is_ordered} | 65fe88a01d53df7ab487ae1d1ab24a4c2c746477 | 9,347 |
import torch
def multiclass_nms(multi_bboxes,
multi_scores,
score_thr,
nms_cfg,
max_num=-1,
score_factors=None):
"""NMS for multi-class bboxes.
Args:
multi_bboxes (Tensor): shape (n, #class*4) or (n, 4)
multi_scores (Tensor): shape (n, #class), where the 0th column
contains scores of the background class, but this will be ignored.
score_thr (float): bbox threshold, bboxes with scores lower than it
will not be considered.
nms_thr (float): NMS IoU threshold
max_num (int): if there are more than max_num bboxes after NMS,
only top max_num will be kept.
score_factors (Tensor): The factors multiplied to scores before
applying NMS
Returns:
tuple: (bboxes, labels), tensors of shape (k, 5) and (k, 1). Labels
are 0-based.
"""
num_classes = multi_scores.shape[1]
bboxes, labels = [], []
nms_cfg_ = nms_cfg.copy()
nms_type = nms_cfg_.pop('type', 'nms')
nms_op = nms_type
for i in range(1, num_classes):
cls_inds = multi_scores[:, i] > score_thr
if not cls_inds.any():
continue
# get bboxes and scores of this class
if multi_bboxes.shape[1] == 4:
_bboxes = multi_bboxes[cls_inds, :]
else:
_bboxes = multi_bboxes[cls_inds, i * 4:(i + 1) * 4]
_scores = multi_scores[cls_inds, i]
if score_factors is not None:
_scores *= score_factors[cls_inds]
cls_dets = torch.cat([_bboxes, _scores[:, None]], dim=1)
cls_dets, _ = nms_op(cls_dets, **nms_cfg_)
cls_labels = multi_bboxes.new_full((cls_dets.shape[0], ),
i - 1,
dtype=torch.long)
bboxes.append(cls_dets)
labels.append(cls_labels)
if bboxes:
bboxes = torch.cat(bboxes)
labels = torch.cat(labels)
if bboxes.shape[0] > max_num:
_, inds = bboxes[:, -1].sort(descending=True)
inds = inds[:max_num]
bboxes = bboxes[inds]
labels = labels[inds]
else:
bboxes = multi_bboxes.new_zeros((0, 5))
labels = multi_bboxes.new_zeros((0, ), dtype=torch.long)
return bboxes, labels | f3152e30eda4286ecfedc1b3fa3cf922470e0ada | 9,350 |
def borders(det):
"""
Calculates the borders for image
Parameters
--------------
det: int array
Detected face
Returns
----------------------
l: int list
Coordinates for left bound of border
r: int list
Coordinates for right bound of border
t: int list
Coordinates for top bound of border
b: int list
Coordinates for bottom bound of border
"""
l, r, t, b = det.left(), det.right(), det.top(), det.bottom()
return l, r, t, b | d6358c88ee26e64b7b209d2f5f9725a5b3fad9ba | 9,351 |
def get_line_row(lines, row):
"""
- lines: (Array string), array of lines
- row: int, >=0, the row index to grab
RETURN: string, if row greater than or equal to lines length, returns ''
"""
if row < len(lines):
return lines[row]
return '' | f03f230b677fabb3c488c496dad7e35f875023fe | 9,352 |
def filter_dict_null(d):
"""
Filters recursively null values from dictionary
"""
if isinstance(d, dict):
return dict(
(k, filter_dict_null(v))
for k, v in list(d.items())
if filter_dict_null(v) is not None
)
elif isinstance(d, list):
if len(d) > 0:
return list(map(filter_dict_null, d))
return None
return d | 13b0288f2e032d0e6ca115d02d6540bb8f8739b5 | 9,353 |
def get_1obj_gt_scenario():
"""
Egovehicle stationary (represented by `o`).
Seqeuence of 4-nanosecond timestamps.
|-|
| |
|-|
|-|
| |
|-|
o (x,y,z) = (0,0,0)
|-|
| |
|-|
|-|
| | (x,y,z)=(-3,2,0)
|-|
"""
centers = []
# timestamp 0
cx = -3
cy = 2
cz = 0
centers += [(cx,cy,cz)]
# timestamp 1
cx = -1
cy = 2
cz = 0
centers += [(cx,cy,cz)]
# timestamp 2
cx = 1
cy = 2
cz = 0
centers += [(cx,cy,cz)]
# timestamp 3
cx = 3
cy = 2
cz = 0
centers += [(cx,cy,cz)]
yaw_angles = [0,0,0,0]
return centers, yaw_angles | 5f528802f8b7f131fdba344e7bcf195e9414bd0b | 9,357 |
import os
import subprocess
def list_folders(root):
"""
List the folders from a root path
:param root:
:return:
"""
commands = ["find", os.path.realpath(root), "-type","d"]
results = subprocess.check_output(commands)
return results.decode().split("\n")[1:] | 04aced7c8ab264e0babe87cc1f3caa6f243de29f | 9,358 |
def fuel(i: int) -> int:
"""
>>> [fuel(i) for i in [12,14,1969,100756]]
[2, 2, 654, 33583]
"""
return i // 3 - 2 | ea738361f4dc7081c5adeaf628c5424d9919e1bc | 9,359 |
import psutil
def get_proc_name_from_pid(pid):
"""
using psutil to obtain proc name from pid
:param pid:
:return: proc name
"""
return psutil.Process(pid).name() | 300ce9bcb945fce90a08b8dc2326e899180546fc | 9,360 |
import os
def is_git_repo(path):
"""
Rudimentary tests for if I have a git repo. Simply look for .git directory
**Positional Arguments:**
path:
- The path that we are assessing
"""
return os.path.exists(os.path.join(path, ".git")) and \
os.path.isdir(os.path.join(path, ".git")) | 00c113010b4aa9a946e50ad3788b4cd110907e79 | 9,361 |
import os
def gcp_application_default_creds_exist():
"""
Return true if the application default credentials file exists.
:return: True if we can find app default creds file otherwise False.
"""
cred_file = os.path.expanduser('~/.config/gcloud/application_default_credentials.json')
return os.path.exists(cred_file) | 0ec98a81f74fe4d20bdf2c6e1764338871c303cc | 9,362 |
import os
def get_extension(filename):
"""
Gets the extension of a file
Parameters
----------
str filename: the filename to extract extension from
"""
try:
return os.path.splitext(filename)[1].replace(".", "")
except (AttributeError, TypeError):
return "" | 6cc4a9eb2755db54801b3314961b32d1104cbe7b | 9,363 |
import os
def lookup_env(names):
"""
Look up for names in environment. Returns the first element
found.
"""
for name in names:
value = os.environ.get(name)
if value:
return value | 0db95875d4dba3eafc659b9bb17e6a01526b599b | 9,364 |
def get_bag_count(list_of_bags: list, colour: str) -> int:
"""
Recursive function to loop through list.
Gather rules on line.
While there are still rules to be processed, get colour and recursively call function again.
Append to total.
:return: Total amount of bags inside colour.
:rtype: int
"""
# Figure out the current rule on line.
rule = ""
for line in list_of_bags:
if line[: line.index(" bags")] == colour:
rule = line
# If contains no bags, skip.
if "no" in rule:
return 1
# Get the rest of the string.
rule = rule[rule.index("contain") + 8 :].split()
# Iterate over bags in rule, recursively searching for each bag.
total = 0
i = 0
while i < len(rule):
count = int(rule[i])
colour = rule[i + 1] + " " + rule[i + 2]
total += count * get_bag_count(list_of_bags, colour)
i += 4
return total + 1 | 593bb1d826cd996ca4725fe7e2c18043c8853021 | 9,366 |
def connection_str():
""" SQLAlchemy connection string to test database """
return "postgresql://nebulo_user:password@localhost:4442/nebulo_db" | b5220a9ce7e44acde4154686af00164d2f065a83 | 9,367 |
from typing import Dict
import yaml
def load_yaml_into_dict(file_path: str) -> Dict:
"""
This loads yaml files into a dictionary to be used in API calls.
"""
with open(file_path, "r") as yaml_file:
loaded = yaml.safe_load(yaml_file)
if isinstance(loaded, dict):
return loaded
print(f"Failed to parse invalid manifest: {file_path.split('/')[-1]}. Skipping.")
return {} | 891439af7cdd0e83f360b7398c98890419e8232f | 9,369 |
from typing import Union
def _get_reception_time_from_scene_dir_second(scene_dir_second: str) -> Union[str, None]:
"""If there is time datum inside `scene_dir_second` string, then return it.
Otherwise, return None."""
# second part of scene dir, it can be: `13_53_00`,
# `13_53_00_ETC2`, `14_35_23_CB11_SIR18`, etc.
second_part = scene_dir_second.split('_')
# I need at least three elements to create the time datum
if len(second_part) < 3:
return None
# get the first three elements from the list
second_part = second_part[0:3]
# iterate over the list to check if all elements are numbers.
# if there is an element that is not a number, then return None
for part in second_part:
if not part.isdigit():
return None
# if all parts are numbers, then join them to create time datum
return ':'.join(second_part) | 89cf95ed1f110c6641de4eae6ac8230d78a7b802 | 9,370 |
import json
import requests
def get_arc_servicedict(url):
"""Returns a dict of service information for an ArcGIS REST service URL
Arguments
url (String): An ArcGIS REST service URL,
e.g. 'http://services.slip.wa.gov.au/arcgis/rest/services/QC/MRWA_Public_Services/MapServer'
"""
res = json.loads(requests.get(url + "?f=pjson").content)
d = dict()
d["layer_ids"] = [str(x['id']) for x in res["layers"]]
d["supportedExtensions"] = res["supportedExtensions"]
return d | 80a1775d809c63ea34729c02ddcf98b8488fd825 | 9,371 |
import json
def dumps(obj):
"""
Serialize ``obj`` to a JSON formatted ``str``.
序列化对象
"""
return json.dumps(obj) | 8fa77ad5615531eea0e2190abf9eaf27196a2337 | 9,374 |
def from_grid_range(x):
"""from [-1,1] to [0,1]"""
return (x + 1) / 2.0 | a36e3ccace6fe385eeef1f4b5bf64c00f7b971ba | 9,375 |
import re
def escaped_split(inp_str, split_char):
"""
Split inp_str on character split_char but ignore if escaped.
Since, return value is used to write back to the intermediate
data file, any escape characters in the input are retained in the
output.
:param inp_str: String to split
:param split_char: Split character
:return: List of splits
"""
if len(split_char) > 1:
raise ValueError('Expected split character. Found string!')
out = re.sub(r'(\\.)|' + split_char,
lambda m: m.group(1) or '\n', inp_str,
len(inp_str)).split('\n')
out = [x for x in out if x]
return out | 13eaf77ffff52fdd6cfaa83ee08fc773f241be17 | 9,376 |
def extract_result(log):
"""Extracts the name of each test condition run"""
module_name = log['testInfo']["testName"]
str=""
for d in log['results']:
src = d['src']
if src == 'WebRunner' or src == 'BROWSER' or src == module_name:
# these are asyncronous and the order isn't predictable
continue
str += src + "\n"
return str | 4f4b5311c0dc27b7b178488bee81abeabf4e434d | 9,378 |
def trace_fn(current_state, kernel_results, summary_freq=10, callbacks=()):
"""
Can be passed to the HMC kernel to obtain a trace of intermediate
kernel results and histograms of the network parameters in Tensorboard.
"""
# step = kernel_results.step
# with tf.summary.record_if(tf.equal(step % summary_freq, 0)):
return kernel_results.is_accepted, [cb(*current_state) for cb in callbacks] | b129e3487304bc7dd6f36446841bfa28e5d4c699 | 9,379 |
import collections
def insert(container, key_path, item):
"""
>>> insert({}, ['a', '1', '2', 'world'], 'hello')
{'a': {'1': {'2': {'world': 'hello'}}}}
"""
if isinstance(container, collections.OrderedDict):
gen = collections.OrderedDict
update = lambda i, k, v: i.update({k: v})
else:
gen = dict
update = lambda i, k, v: i.__setitem__(k, v)
sub_container = container
for key in key_path[:-1]:
if isinstance(key, int):
raise ValueError('No int keys allowed in deep insert')
if key not in sub_container:
update(sub_container, key, gen())
sub_container = sub_container[key]
update(sub_container, key_path[-1], item)
return container | 656c6a69f3f261d7598daca8bda37908ddf1527b | 9,380 |
import torch
def construct_edge_feature_gather(feature, knn_inds):
"""Construct edge feature for each point (or regarded as a node)
using torch.gather
Args:
feature (torch.Tensor): point features, (batch_size, channels, num_nodes),
knn_inds (torch.Tensor): indices of k-nearest neighbour, (batch_size, num_nodes, k)
Returns:
edge_feature: (batch_size, 2*channels, num_nodes, k)
Notes:
Pytorch Gather is 50x faster than advanced indexing, but needs 2x more memory.
It is because it will allocate a tensor as large as expanded features during backward.
"""
batch_size, channels, num_nodes = feature.shape
k = knn_inds.size(-1)
# CAUTION: torch.expand
feature_central = feature.unsqueeze(3).expand(batch_size, channels, num_nodes, k)
feature_expand = feature.unsqueeze(2).expand(batch_size, channels, num_nodes, num_nodes)
knn_inds_expand = knn_inds.unsqueeze(1).expand(batch_size, channels, num_nodes, k)
feature_neighbour = torch.gather(feature_expand, 3, knn_inds_expand)
# (batch_size, 2 * channels, num_nodes, k)
edge_feature = torch.cat((feature_central, feature_neighbour - feature_central), 1)
return edge_feature | b49d26e0e7cee13952ff85f8f1f8075658fc391a | 9,382 |
import os
import re
def find_version(*file_paths):
"""Find version information in file."""
path = os.path.join(os.path.dirname(__file__), *file_paths)
version_file = open(path).read()
version_pattern = r"^__version__ = ['\"]([^'\"]*)['\"]"
version_match = re.search(version_pattern, version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.") | 47c84af5fa2578fbbf28d6ac72fe5ab88ac2db8d | 9,383 |
def canonicalize_name(name: str) -> str:
"""
Normalize the name strings from certificates and emails so that they
hopefully match.
"""
name = name.upper()
for c in "-.,<> ":
name = name.replace(c, "")
return name | 3cfee0a655c876c037bb915098e564376f9b8cf5 | 9,384 |
import timeit
def get_exec_time(total_execs=1, _repeat=1):
"""
basically here we calculate the
average time it takes to run this function
or block of code
"""
def inner_wrapper(_function, *args, **kwargs):
computational_times = timeit.repeat(
lambda: _function(*args, **kwargs),
number=total_execs,
repeat=_repeat
)
return sum(computational_times) / len(computational_times)
return inner_wrapper | d0826d3fb047736c5d4a5baa4d440bb7d2af2373 | 9,385 |
def negate_value(func):
"""negate value decorator."""
def do_negation(name, value):
print("decorate: we can change return values by negating value")
return -value
return do_negation | 276981a7c668308c97ca9e54066163036cb55528 | 9,386 |
import os
import json
def get_pmc(uid, metadata_df, directory='data/cord-19/'):
"""
In:
uid [str]: cord-uid of required file
metadata_df: DataFrame containing metadata for file
Returns:
json of required file"""
uid_df = metadata_df[metadata_df.cord_uid == uid]
pmc = uid_df.iloc[0].pmc_json_files
if pmc == 'none':
return 'none'
if ';' in pmc:
pmc = pmc.split(';')[0].strip()
pmc = os.path.join(directory, pmc)
with open(pmc, 'r') as file:
pmc_json = json.load(file)
return pmc_json | da8d0825272493dceb0ce26d98410f9a5481acf6 | 9,387 |
import re
def normalize_summary(summary):
"""Return normalized docstring summary."""
# Remove newlines
summary = re.sub(r'\s*\n\s*', ' ', summary.rstrip())
# Add period at end of sentence
if (
summary and
(summary[-1].isalnum() or summary[-1] in ['"', "'"]) and
(not summary.startswith('#'))
):
summary += '.'
return summary | 002e72668e87d668c2d6df678092ac57fc2b1d37 | 9,388 |
import hashlib
def md5_key(string):
"""
Use this to generate filenae keys
"""
m = hashlib.md5()
m.update(string.encode('utf-8'))
return m.hexdigest() | ffa2d26933b5a18f43d2c8ed696e880a38039ece | 9,390 |
def name_to_hash(name: str) -> int:
"""
given a name, generate a unique-ish number.
cannot simply use hash(), since that is different each
time we re-run the process...
"""
hash_v = sum([ord(c) for c in name])
print('hash_v', hash_v)
return hash_v | e707d401911d7ca41b019e73d1afcd0c66fe045e | 9,391 |
def query_introspection() -> str:
"""Retrieve available queries."""
return """query {
__type(name: "Query") {
kind
name
fields {
name
description
args {
name
description
defaultValue
}
}
possibleTypes {
name
kind
description
}
}
}
""" | f01c4a79517b60a5c130805a673665b9bfae858e | 9,392 |
def re_exp_matching_backward(s, p):
"""
:type s: str for match
:type p: pattern str
:rtype: match or not
"""
def is_match(chr_for_match, match_pattern):
return match_pattern == '.' or match_pattern == chr_for_match
def match_core(str, pattern):
if pattern < 0:
return str < 0
if str < 0 :
if p[pattern] != '*':
return False
else:
return match_core(str, pattern - 2)
if p[pattern] == '*':
if is_match(s[str], p[pattern - 1]):
if match_core(str - 1, pattern):
return True
return match_core(str, pattern - 2)
if is_match(s[str], p[pattern]):
return match_core(str - 1, pattern - 1)
return False
return match_core(len(s) - 1, len(p) -1) | 03fb3bb85123435779b46086b1c2ef1705b686f3 | 9,393 |
def date_list(start, end):
"""
:param start: year start; format: 2017, int
:param end: year end; format: 2019, int
:return: a list include all the month
"""
assert int(start / 1000) == 0 or type(start) is int, 'start error'
assert int(end / 1000) == 0 or type(end) is int, 'end error'
result = []
years = end - start + 1
for year in range(years):
for i in range(12):
result.append((start + year) * 100 + i + 1)
return result | 4af977d47e611013ead4dd6538e7bdcbb87bf5be | 9,394 |
import re
def count_characters(text, whites=False):
"""
Get character count of a text
Args:
whites: If True, whitespaces are not counted
"""
if whites:
return len(text)
else:
return len(re.sub(r"\s", "", text)) | e4db9e873e800282cf7f2398272a8b4546fe171e | 9,395 |
import re
def remove_html(raw_text):
"""
Remove html tags
"""
text = str(raw_text)
cleaner = re.compile('<.*?>')
text = re.sub(cleaner, '', text)
return text | 397b49c052e055a71876d9883ab259f871b5015e | 9,397 |
def pull_words(words_file, word_length):
"""Compile set of words, converted to lower case and matching length of
start and end words.
Args:
words_file: str, name of the file containing all words
word_length: int, length of the start/end words
Returns:
words_set: set, all possible interesting words
"""
words_set = set()
with open(words_file) as words:
for word in words:
word_ = word.strip().lower()
if len(word_) == word_length and word_ not in words_set:
words_set.add(word_)
return words_set | cbecb29bd93177cb14a208e7e3a7bcee14f7c010 | 9,398 |
def vertices_vector_to_matrix(vertices):
"""vertices_vector_to_matrix(vertices) -> List[List[float]]
PyPRT outputs the GeneratedModel vertex coordinates as a list. The list
contains the x, y, z coordinates of all the vertices. This function converts the
vertex list into a list of N vertex coordinates lists (with N, the number
of geometry vertices).
Parameters:
vertices: List[float]
Returns:
List[List[float]]
Example:
``[[-10.0, 0.0, 10.0], [-10.0, 0.0, 0.0], [10.0, 0.0, 0.0], [10.0, 0.0, 10.0]]
= vertices_vector_to_matrix([-10.0, 0.0, 10.0, -10.0, 0.0, 0.0, 10.0, 0.0, 0.0,
10.0, 0.0, 10.0])``
"""
vertices_as_matrix = []
for count in range(0, int(len(vertices)/3)):
vector_per_pt = [vertices[count*3],
vertices[count*3+1], vertices[count*3+2]]
vertices_as_matrix.append(vector_per_pt)
return vertices_as_matrix | 0d03a60f32ed722d089500840e1a2a2e645c20b4 | 9,399 |
import torch
def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
"""
Returns a random rectangular matrix (batch of matrices)
with singular values sampled from a Gaussian with
mean `mean` and standard deviation `sigma`.
The smaller the `sigma`, the better conditioned
the output matrix is.
"""
primitive_dtype = {
torch.float: torch.float,
torch.double: torch.double,
torch.cfloat: torch.float,
torch.cdouble: torch.double
}
x = torch.rand(shape, dtype=dtype, device=device)
m = x.size(-2)
n = x.size(-1)
u, _, vh = torch.linalg.svd(x, full_matrices=False)
s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
.sort(-1, descending=True).values.to(dtype)
return (u * s.unsqueeze(-2)) @ vh | bd2d7e232ffcd2848b836e9187d32a00339477de | 9,400 |
def get_index_str(n, i):
"""
To convert an int 'i' to a string.
Parameters
----------
n : int
Order to put 0 if necessary.
i : int
The number to convert.
Returns
-------
res : str
The number as a string.
Examples
--------
```python
getIndexStr(100,15)
```
Out:
```
'015'
```
"""
if i < 0 or i > n:
raise ValueError("N >= i or i > 0 is required")
lm = len(str(n))
res = str(i)
while lm > len(res):
res = "0" + res
return res | e7b3561a49b447d1edec22da8cc86d2a702ec039 | 9,401 |
def get_ipsec_udp_key_status(
self,
) -> dict:
"""Get IPSEC UDP key status for all appliances
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - ikeless
- GET
- /ikeless/seedStatus
:return: Returns dictionary ikeless key status \n
* keyword **<ne_pk>** (`dict`): Appliance key status object \n
* keyword **hasActiveSeed** (`bool`): If appliance has the
active key material
* keyword **hasNewSeed** (`bool`): If appliance has the
new key material
* keyword **detail** (`str`): Detail of appliance seed
status, including date stamp ID of active and new seed
:rtype: dict
"""
return self._get("/ikeless/seedStatus") | db5ac6fee37574987a023183f8416d40234ac4e4 | 9,402 |
import typing
def describe_services(
ecs, cluster: str, services: typing.Set[str]
) -> typing.List[typing.Dict[str, typing.Any]]:
"""Wrap `ECS.Client.describe_services` to allow more then 10 services in
one call.
"""
result: typing.List[typing.Dict[str, typing.Any]] = []
services_list = list(services)
for i in range(0, len(services_list), 10):
response = ecs.describe_services(
cluster=cluster, services=services_list[i : i + 10]
)
result.extend(response["services"])
return result | f585610480aa7c657974b6f3163888fe7e9b6a32 | 9,403 |
import re
def extract_page_nr(some_string):
""" extracts the page number from a string like `Seite 21`
:param some_string: e.g. `Seite 21`
:type some_string: str
:return: The page number e.g. `21`
:rtype: str
"""
page_nr = re.findall(r'\d+', some_string)
if len(page_nr) > 0:
return "-".join(page_nr)
else:
return some_string | 6d39314de89c8f4bf4d931f2dc329fe394a10091 | 9,404 |
def decode_lookup(key, dataset, description):
"""Convert a reference to a description to be used in data files"""
if key in dataset:
return dataset[key]
else:
decoded = input("Please enter {desc} for {key}: ".format(desc=description, key=key))
dataset[key] = decoded
return decoded | 4df44c411ef4d1ffe76e489611c4a65888b0a3cd | 9,405 |
def create_explicit_child_condition(parentage_tuple_list):
"""
This states for a parent node, what its explicit children are.
"""
def explicit_child_condition(G):
return all(
[sorted(G.out_edges(y[0])) == sorted([(y[0],x) for x in y[1]])
for y in parentage_tuple_list])
return explicit_child_condition | 81860f24e7538feb84e9205dc233d2bf7d1dd1b3 | 9,407 |
def intDictToStringDict(dictionary):
"""
Converts dictionary keys into strings.
:param dictionary:
:return:
"""
result = {}
for k in dictionary:
result[str(k)] = dictionary[k]
return result | 65e519f04433a5dfcb4d7ace9bad91d8e06db4e5 | 9,408 |
def calculate_displacement(src_grammar, tgt_grammar):
"""Calculate displacement between 2 grammar. E.g: S -> A B C to S -> B C A has displacement of [1 2 0]"""
src_grammar_lst = src_grammar.split()
tgt_grammar_lst = tgt_grammar.split()
src_grammar_lst = src_grammar_lst[src_grammar_lst.index("->")+1:]
tgt_grammar_lst = tgt_grammar_lst[tgt_grammar_lst.index("->")+1:]
displacement = []
new_words = []
for word in tgt_grammar_lst:
try:
displacement.append(src_grammar_lst.index(word))
except ValueError:
# Resolve ValueError: substring not found
# Which indicates this is a new word
displacement.append(-1)
new_words.append(word)
return displacement, new_words | 0d14b5757d26c2b8398fe6ecbd94f53d0df70375 | 9,409 |
def create_confusion_matrix(actual, predicted, category):
"""
Calculates the confusion matrix for a give category.
:param actual: The actual labels of the data
:param predicted: The predicted labels of the data
:param category: The category we of the confusion matrix
:return: dictionary, with the values of the confusion matrix
"""
conf_matrix = dict()
conf_matrix['TP'], conf_matrix['FP'], conf_matrix['TN'], conf_matrix['FN'] = 0, 0, 0, 0
print('The category is: {}'.format(category))
for sentence in predicted:
if sentence in actual[predicted[sentence]] and predicted[sentence] == category:
print('TP: Actual: {}, Predicted: {}'.format(category, category))
conf_matrix['TP'] += 1
elif sentence in actual[predicted[sentence]]:
print('TN: Actual: not category, Predicted: not category'.format(predicted[sentence]))
conf_matrix['TN'] += 1
elif sentence not in actual[predicted[sentence]] and predicted[sentence] == category:
print('FP: Actual: not category, Predicted: {}'.format(category))
conf_matrix['FP'] += 1
else:
print('FN: Actual: {}, Predicted: {}'.format(category, predicted[sentence]))
conf_matrix['FN'] += 1
return conf_matrix | 34ae6608a2d0293e651a627a21220ec70a54004f | 9,410 |
import time
def clock(func):
"""
定义装饰器decorator,除了实现原函数功能外,额外提供计时功能
装饰器就是一个函数,它接收函数(原函数),返回函数(新函数)
:param func: 被装饰的函数
:return: 装饰后的函数
"""
def decorator():
t0 = time.perf_counter()
result = func()
elapsed = time.perf_counter() - t0
print("elapsed: {:.8f}s".format(elapsed))
return result
return decorator | 540250a4dfef4c385f208b834e3fea623a00db71 | 9,411 |
def get_page(paginated_list):
"""
Take a github.PaginatedList.PaginatedList and then iterate through the
pages to get all of its entries
Args:
paginated_list (github.PaginatedList.PaginatedList): PyGithub paginated
list object
Returns:
`list`: All entries in the paginated list
"""
idx = 0
_page_entries = paginated_list.get_page(idx)
page_entries = []
while _page_entries:
page_entries.extend(_page_entries)
idx += 1
_page_entries = paginated_list.get_page(idx)
return page_entries | 0510537b20c18b6b1be5b10ca014e13be7a19a1f | 9,413 |
import math
def prime(n):
"""Primality test by trial division."""
if n == 2:
return True
elif n < 2 or n % 2 == 0:
return False
else:
return not any(n % x == 0
for x in range(3, math.ceil(math.sqrt(n)) + 1, 2)) | 3504217a7e8149867ec16ddf9c54f4fac736d592 | 9,414 |
def average(numbers):
"""
:param list[float] numbers: a list of numbers
:returns: the average of the given number sequence. an empty list returns 0.
:rtype: float
"""
return float(sum(numbers)) / max(len(numbers), 1) | d86c6f24733d3032b82cb6c64c02eba37cc34a04 | 9,415 |
import six
def _IsIdentityTypeMapping(type_mappings):
"""\
An identity type mapping is a special case where each of the input types
matches the output type.
"""
for input_type, output_types in six.iteritems(type_mappings):
if output_types != [input_type]:
return False
return True | 27f13266dc23c5d4bd78a27c240664208d4f8c8f | 9,416 |
def general_pool_fn(x):
"""
x[0]: function to call
x[1] to x[n]: arguments of the function
"""
return x[0](*x[1:]) | d398378d3d1671f0e58bff2bc8737ff07da0c3e3 | 9,417 |
def dt_hms(d, n=3):
"""
Allow negative times
"""
try:
sign = '+' if d > 0. else '-'
x = abs(d)
h = int(x)
x = (x-h) * 60.
m = int(x)
s = (x-m) * 60.
w = n + 3
return f"{sign}{h:02d}h {m:02d}m {s:0{w}.{n}f}s"
except:
return None | 30c04b23ba304a1d8dffcdbe38035bdde24b1848 | 9,418 |
def _EraseTombstone(device, tombstone_file):
"""Deletes a tombstone from the device.
Args:
device: An instance of DeviceUtils.
tombstone_file: the tombstone to delete.
"""
return device.RunShellCommand(
'rm /data/tombstones/' + tombstone_file, root=True) | 00e6f316062785d7465f501ea743a2dc94864aef | 9,419 |
def shorten_class(class_name: str) -> str:
"""Returns a shortened version of the fully qualilied class name."""
return class_name.replace('org.chromium.',
'.').replace('chrome.browser.', 'c.b.') | 2064e6e0dc159bc130f84ce4a830857455d12ba4 | 9,421 |
def weight_function(run_params, displacement_norm):
"""Determine motion-dependent prediction weight of given supporter point.
This method determines the weight to apply to each supporter point when
using it for prediction of a target point based on the norm of its
displacement vector. The larger the displacement, the higher weight the
supporter point receives; the weight is a linear function of the
displacement norm, with an offset of 1.
Displacement-based weighting is used to give less importance to supporter
points that are part of the "background" and have little correlation with
the movement of the muscle fascia.
Args:
run_params (ParamValues): values of parameters used in tracking,
including scalar alpha
displacement_norm (float): L2 norm of relevant supporter point's
displacement vector
Returns:
float weighting applied to supporter point when tracking target point
"""
alpha = run_params.displacement_weight
return 1 + (alpha * displacement_norm) | 2fdea32511ae8b4cedd47e79d7f8517a08a6b457 | 9,422 |
def _algorithm_kwargs(request):
"""Auto-parametrizes `_rl_algorithm_cls` for the `trainer` fixture."""
return dict(request.param) | fddb2a376449973f49d5a27cef04b3596e9cc3dd | 9,423 |
def add_api_config_to_queries(generated_query_strings, search_engines):
"""
Merges the two parameters and returns a list of dicts that include the
api config.
If only 1 API key is provided, it is assumed this is valid for many searches and is used for all queries
If more than 1 is provided, then the number of keys provided needs to match the number of queries
Args:
generated_query_strings: The output from the generate_query_strings
function.
search_engines: The search engines list that is found in the
api_config file. See the documentation for usage
guidelines (http://coast_search.readthedocs.io/).
Returns:
result_list: Updated list of query data now including search engine/api info
"""
if len(search_engines) == 1:
se = search_engines[0]
for query_object in generated_query_strings:
query_object["se_name"] = se["name"]
query_object["api_key"] = se["api_key"]
query_object["search_engine_id"] = se["search_engine_id"]
elif len(search_engines) == len(generated_query_strings):
for i in range(0, len(search_engines)):
query_object = generated_query_strings[i]
se = search_engines[i]
query_object["se_name"] = se["name"]
query_object["api_key"] = se["api_key"]
query_object["search_engine_id"] = se["search_engine_id"]
else:
raise Exception("Invalid number of API keys.")
return generated_query_strings | 209b14e98c2cb339f958fc7dfe456a4a40876c8c | 9,424 |
def convert_entity_schema(entity_schema):
""" Convert entity schmea to record schema
"""
spots = list()
asocs = list()
spot_asoc_map = dict()
for entity in entity_schema:
spots += [entity]
spot_asoc_map[entity] = list()
return spots, asocs, spot_asoc_map | 6e3cc2bbecbbd88312c1a486142d9e8a50a5e39a | 9,425 |
from typing import Dict
from typing import Any
import requests
def pull_astronaut_list(url: str ='http://api.open-notify.org/astros.json') -> Dict[str, Any]:
"""
Pull a list of astronauts via API. Defaults to open-notify's API.
Args:
url: the URL to pull data from.
Returns:
A dict containing the astronaut count and names.
"""
data = requests.get(url).json()
return data | d008cd1d62a435086dbd8dc08baaa5323298f11c | 9,428 |
def get_widget_for_attr(traits_ui, attr_name):
""" Return the Qt widget in the UI which displays the attribute specified.
"""
x_editor = traits_ui.get_editors(attr_name)[0]
qt_widget = x_editor.control
return qt_widget | 2bb2959963734bee48d067f41425808412bd2421 | 9,429 |
def all(*args, span=None):
"""Create a new expression of the intersection of all conditions in the
arguments
Parameters
----------
args : list
List of symbolic boolean expressions
span : Optional[Span]
The location of this operator in the source code.
Returns
-------
expr: Expr
Expression
"""
if not args:
raise ValueError("Any must take at least 1 argument")
if len(args) == 1:
return args[0]
val = _ffi_api._OpAnd(args[0], args[1], span) # type: ignore
for i in range(2, len(args)):
val = _ffi_api._OpAnd(val, args[i], span) # type: ignore
return val | f0cebfb241c10c2d53c58a8b4fb186e9d65a1b7a | 9,430 |
from datetime import datetime
def initialise_library(members, items, item_copies, library):
"""Takes in items that needs to be populated into the library,
and conduct a series of pre-defined events by members (loan, renewal, return)
The Library object after conducting the events is used to initialise the LibraryApplication
object that presents a menu for members to interact with subsequently
Args:
members (list): A list of members that has registered with the library
items (list): A list of unique items available in the library
item_copies (dict): A dictionary of the number of copies available for each item in the
library
library (Library): A empty Library object to be initialise with the `member`, `items`
and `item_copies`.
Returns:
library (Library): An initialised library object with all `members`, `items`, `item_copies`,
and pre-defined events initialised for usage within the LibraryApplication.
"""
print("*** Start initialising library ***\n")
# Adding the items, item_copies, members into the library
# Registering the members
for member in members:
library.register_member(member)
# Adding the items to the library
for item in items:
library.add_item(item)
# Adding the copies of the items to the library
for item in items:
for _ in range(item_copies[item.title]):
library.add_copy_item(item)
# Key members_id and actual member object
john = library.search_member("S123")
mary = library.search_member("J111")
print(
"John borrows 4 items on 1 March 2021 and Mary borrows 1 item on 3 March 2021."
)
item_copies_loaned = [
(john, datetime(2021, 3, 1), [1, 3, 6, 8]),
(mary, datetime(2021, 3, 3), [9]),
]
for record in item_copies_loaned:
member = record[0]
date_borrowed = record[1]
copy_id_borrowed = record[2]
for copy_id in copy_id_borrowed:
item_copy = library.search_copy_item(copy_id)
member.borrow_item(item_copy, date_borrowed)
print("Showing copy items\n")
print(library.copy_item_str() + "\n")
print("Showing members")
print(library.member_str() + "\n")
print(
"Member data after Mary renews loan on 5 March 2021 and John returns "
"Copy Item 6, Dark Knight on 17 March 2021"
)
# John returns 'Dark Knight on 17 March 2021'
john.return_item("Dark Knight", datetime(2021, 3, 17))
# Mary renews loan on 5 March 2021
mary.renew("Powerpoint Presentation Tips", datetime(2021, 3, 5))
print(library.member_str() + "\n")
print("John data after paying fines and he receives change $1.50")
john.pay(2.00)
print(f"{john}\n")
print("John data after borrowing copy item 6, Dark Knight again on 22 March 2021")
john.borrow_item(library.search_copy_item(6), datetime(2021, 3, 22))
print(f"{john}\n")
print("Mary data after returning Powerpoint Presentation Tips on 17 March 2021")
mary.return_item("Powerpoint Presentation Tips", datetime(2021, 3, 17))
print(f"{mary}")
print("*** Done initialising library ***\n")
print("******* Library Test Data *******")
print(library)
print("******* Ends Library Test Data *******\n")
return library | 0f5021358dd701790be75140673ede4634de1a41 | 9,431 |
def update_cache_bykey(cache_list, new_list, key='id'):
"""
Given a cache list of dicts, update the cache with a 2nd list of dicts by a specific key in the dict.
:param cache_list: List of dicts
:param new_list: New list of dicts to update by
:param key: Optional, key to use as the identifier to update new entries with
:return: Updated list of dicts
"""
# create a cache dict keyed by id.
cache_bykey = {entry[key]: entry for entry in cache_list if entry.get(key)}
# create a new dict keyed by id.
new_bykey = {entry[key]: entry for entry in new_list if entry.get(key)}
# combine and update cache into a 3rd dict
combined_bykey = {**cache_bykey, **new_bykey}
# return a list of the updated dict.
return [value for key, value in combined_bykey.items()] | b077a1c40cbf0a8848ff9e017a644c20e1d25199 | 9,432 |
def calc_theor_avg_mass(dictionary, cfg, prec=6, reducing_end=None) -> float:
"""Returns theoretical average mass for glycan in dictionary form"""
reducing_end_tag_mass = 0.0
if reducing_end is not None:
if reducing_end in cfg["reducing_end_tag_avg"].keys():
reducing_end_tag_mass = cfg["reducing_end_tag_avg"][reducing_end]
return round(
sum([
dictionary[key] * cfg["avg_masses_underivatized"][key]
for key in dictionary.keys()
]) + cfg["avg_masses_underivatized"]["H3O+"] + reducing_end_tag_mass,
prec) | 32a5aab08463366e8b43d13f2891489d94ab075a | 9,433 |
import inspect
import sys
def is_builtin(key):
"""Test builtin using inspect (some modules not seen
as builtin in sys.builtin_module_names may look builtin
anyway to inspect and in this case we want to filter them
out."""
try:
inspect.getfile(sys.modules[key])
except TypeError:
return True
return False | 1834b871b8d4f8d55f6de61052568dffdd2b8474 | 9,434 |
def Eliminar_Columnas(df, Dic):
""" Recibe el dataframe y el listado de las columnas que se quieren eliminar
"""
df = df.drop(columns=Dic)
return df | 96c049508f196406807cc9102b87cb4aa4884650 | 9,435 |
def parse_tpl_file(tpl_file):
""" parse a pest template file to get the parameter names
Parameters
----------
tpl_file : str
template file name
Returns
-------
par_names : list
list of parameter names
"""
par_names = []
with open(tpl_file,'r') as f:
try:
header = f.readline().strip().split()
assert header[0].lower() in ["ptf","jtf"],\
"template file error: must start with [ptf,jtf], not:" +\
str(header[0])
assert len(header) == 2,\
"template file error: header line must have two entries: " +\
str(header)
marker = header[1]
assert len(marker) == 1,\
"template file error: marker must be a single character, not:" +\
str(marker)
for line in f:
par_line = line.strip().split(marker)[1::2]
for p in par_line:
if p not in par_names:
par_names.append(p)
except Exception as e:
raise Exception("error processing template file " +\
tpl_file+" :\n" + str(e))
par_names = [pn.strip().lower() for pn in par_names]
return par_names | 0797cfedbef07dcd118e13440691c287f952a740 | 9,436 |
def find_factors(n):
"""
Finds a list of factors of a number
"""
factList = {1, n}
for i in range(2, int(n ** 0.5) + 1):
if (n % i == 0):
factList.add(i)
factList.add(n // i)
return sorted(factList) | 0b8992bfe81bfd49c738b49380ceb0c8e7155b3f | 9,437 |
def unique(a):
""" Return the list with duplicate elements removed.
Args:
a (list): A list.
Returns (list):
The list with duplicate elements removed.
"""
# NOTES:
# 1. Built-in function 'set()' can convert a list (ordered) into a set (unordered).
# 2. Built-in function 'list()' can convert a set (unordered) into a list (ordered).
return list(set(a)) | 1aeac608e53ebc91cb0709b69fc8731f0ad39562 | 9,438 |
def _log_commit_progress(table_size, no_chunks):
"""Shim to avoid sgr spamming output with commit progress for small images"""
return table_size > 500000 or no_chunks > 100 | 82394d325bb755045ca7057ebbe53520024edeab | 9,439 |
import subprocess
def rearm_windows():
"""Rearm Windows License"""
rearm_cmd = r'cscript c:\Windows\System32\slmgr.vbs -rearm //nologo'
return subprocess.check_call(rearm_cmd) == 0 | d7c468005f2504b0210568efc588919cdb6e1568 | 9,440 |
def _warn(warn_message, *args, **kwargs):
"""
Inputs: warn_message- the warning message
Used to override "warnings.formatwarning" to output only the warning
message.
"""
return f'{warn_message}\n\n' | cf88c86af6492142c6f3d364f8cdf1f5cb39da1d | 9,441 |
def max_key(dict):
""" Returns the maximum key in an integer-keyed dictionary.
Args:
dict (dict): The integer-keyed dictionary.
Returns:
int: The maximum key.
"""
output = 0
for key, value in dict.items():
output = max(output, int(key))
return output | 059a26fa690aaca2df2b0a7e251c206aa5e7276b | 9,442 |
def seperator(digits):
"""Seperate thousands into list container. e.g ['1', '000'] for 1000."""
strdigits = str(digits)
sep = []
while len(strdigits) > 3:
sep.insert(0, strdigits[-3: len(strdigits)])
strdigits = strdigits[0:-3]
# if strdigits not empty at the end of loop
if strdigits: sep.insert(0, strdigits)
return sep | 5a75e73521900a5a600d4bac8496811b9a3a371d | 9,443 |
import argparse
def get_arguments():
"""
parses the command line arguments.
:return:
"""
parser = argparse.ArgumentParser(
description='Analyse the estimator_status and ekf2_innovation message data for the '
'.ulg files in the specified directory')
parser.add_argument("directory_path")
parser.add_argument(
'-o', '--overwrite', action='store_true',
help='Whether to overwrite an already analysed file. If a file with .pdf extension exists '
'for a .ulg file, the log file will be skipped from analysis unless this flag has '
'been set.')
parser.add_argument('--no-plots', action='store_true',
help='Whether to only analyse and not plot the summaries for developers.')
return parser.parse_args() | 678d1069f5d290a4f45cb0c1df42608c2d8764ab | 9,444 |
def polaritySanitizer(polarity):
"""Sanitize input polarity values.
Renames the, case-insensitive, values 'positive', 'pos', or '+' to 'positive'
and 'negative', 'neg', or '-' to 'negative'.
Errors on unrecognized polarity value.
Arguments:
polarity (str): unsanitized polarity type
"""
if polarity.lower() in ["positive", "pos", "+"]:
polarity = "positive"
elif polarity.lower() in ["negative", "neg", "-"]:
polarity = "negative"
else:
raise ValueError(f"{polarity} is not recognized as a polarity type.")
return polarity | e328345ea48a9441f9ab323fd6a3ff5ca06f07d5 | 9,447 |
def hash_table_size(item, tablesize):
"""
A hashing technique that involves
1. Converting the characters in a string to a list of ordinal values
2. Get the sum of the list
3. Get the remained by doing a modulo using tablesize
item - string
tablesize
"""
ordinal_list = [ord(i) for i in item]
return sum(ordinal_list) % tablesize | cf47a023c35693681485331878dfd3eb9164a7bf | 9,448 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.