content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import inspect
def get_calling_module(point=2):
"""
Return a module at a different point in the stack.
:param point: the number of calls backwards in the stack.
:return:
"""
frm = inspect.stack()[point]
function = str(frm[3])
line = str(frm[2])
modulepath = str(frm[1]).split('/')
module = str(modulepath.pop())
return "%s:%s" % (module, line) | 638006a14fb062810db34beefcd906b898ba45a5 | 8,089 |
def _pad_keys_tabular(data, sort):
"""Pad only the key fields in data (i.e. the strs) in a tabular way, such that they
all take the same amount of characters
Args:
data: list of tuples. The first member of the tuple must be str, the rest can be anything.
Returns:
list with the strs padded with space chars in order to align in tabular way
"""
if sort:
data = sorted(data, key=lambda tup: tup[0])
sizes = [len(t[0]) for t in data]
pad = max(sizes) + 2
data = [(t[0].ljust(pad), *t[1:]) for t in data]
return data | eba58694354a89e0a6d808c08f964755f3b11822 | 8,090 |
import os
def get_file_names(path):
"""
Given a dir path, returns a list of files in this dir, not includes its child dir
:param path:
:return:
"""
names = []
if os.path.exists(path):
for (dirpath, dirnames, filenames) in os.walk(path):
names.extend(filenames)
break
else:
print('path: %s does not exit, please check.' % path)
return names | 574cbe862f16347809675895bddeb1d5c3b6cfff | 8,091 |
def timecoverage():
"""
Time intervals of GLDAS data
"""
return [
('All Available Times', 'alltimes'),
(2019, 2019),
(2018, 2018),
(2017, 2017),
(2016, 2016),
(2015, 2015),
(2014, 2014),
(2013, 2013),
(2012, 2012),
(2011, 2011),
(2010, 2010),
(2009, 2009),
(2008, 2008),
(2007, 2007),
(2006, 2006),
(2005, 2005),
(2004, 2004),
(2003, 2003),
(2002, 2002),
(2001, 2001),
(2000, 2000),
] | f6f279c8f223a361785cc3a72cebfa02101f099f | 8,093 |
import bz2
import base64
def passx_decode(passx):
"""decode the obfuscated plain text password, returns plain text password"""
return bz2.decompress(base64.b64decode(passx.encode("ascii"))).decode("ascii") | b8b2138c55dd28734661484a231128e6f3ccbbb7 | 8,094 |
def checksum_file(summer, path):
"""
Calculates the checksum of the file 'path' using the provided hashlib
digest implementation. Returns the hex form of the digest.
"""
with open(path, "rb") as f:
# Read the file in 4KB chunks until EOF.
while True:
chunk = f.read(4096)
if not chunk:
break
summer.update(chunk)
return summer.hexdigest() | 729b8f895fe74856e83046d0fd5177e584f835f2 | 8,097 |
def camel_case(value):
"""Convert an identifier to CamelCase"""
return "".join(ele.title() for ele in value.split("_")) | e7c74ebe7611eb567f3eae8f16fb01aadd201252 | 8,098 |
def format_directory_path(path: str) -> str:
"""Replaces windows style path seperators to forward-slashes and adds
another slash to the end of the string.
"""
if path == ".":
return path
formatted_path = path.replace('\\', '/')
if formatted_path[-1] is not '/':
formatted_path += '/'
return formatted_path | 0daa0cc65e50bd29c76da64d302c0e01c1bb333b | 8,101 |
def get_metagen_search_body(self):
""" Get the MetaGenSearchView view body.
Attributes
----------
measure: str
the genomic measure label.
gene: str
the gene name.
Returns
-------
html: str
the MetaGenSearchView view body.
"""
# Get parameters
measure = self._cw.form["measure"]
gene = self._cw.form["gene"]
# Get the HTML body code
view = self._cw.vreg["views"].select("metagen-search", req=self._cw,
rset=None)
html = view.render(measure=measure, gene=gene, export_type="data",
subjects="all")
return html | 9b1e8c6072991765cf566f1bccccb38b178141a4 | 8,102 |
def _toCamelCase(string):
"""Convert a snake case string (PyTorch) to camel case (PopART)"""
words = string.split("_")
return words[0] + "".join(w.capitalize() for w in words[1:]) | f1f21b0313c03b3d63944ee3fcbd5e16b435da6d | 8,103 |
def pulse(x):
"""Return the pulse fn of the input."""
return 2*(x % 1 < .5) -1 | f54f73ab6656c0242508170c16ab6ee6a0cc5b92 | 8,104 |
def index_singleton_clusters(clusters):
"""Replace cluster labels of -1 with ascending integers larger than the maximum cluster index.
"""
clusters = clusters.copy()
filt = clusters == -1
n = clusters.max()
clusters[filt] = range(n, n + len(filt))
return clusters | 9cad0df27d2d99ef3a7478f3c3753cd7795beb54 | 8,105 |
def bboxes_filter():
"""
"""
def _augment(
image,
bboxes,
classes=None
):
return image, bboxes, classes
return _augment | deee3384f7567181eda6e6735aab01d6967787af | 8,107 |
import os
def write_model_to_file(model: str, file_path: str = "model.py") -> str:
"""Write the Pydantic Model string to a Python file.
Args:
model: The Pydantic Model string.
file_path: The path must include the .py file extension.
* The file_path is relative to the Workspace Root.
Returns:
The path to the Model Python file.
"""
root = os.path.join(os.path.dirname(__file__), "../")
fp = os.path.join(root, file_path)
with open(fp, "w") as f:
f.write(model)
return fp | 01ab968d8130c03d748d39338b634e02d6332a0a | 8,108 |
def scaled_up_roi(roi, scale: int, shape=None):
"""
Compute ROI for a scaled up image.
Given a crop region in the original image compute equivalent crop in the upsampled image.
:param roi: ROI in the original image
:param scale: integer scale to get scaled up image
:return: ROI in the scaled upimage
"""
roi = tuple(slice(s.start * scale, s.stop * scale) for s in roi)
if shape is not None:
roi = tuple(
slice(min(dim, s.start), min(dim, s.stop)) for s, dim in zip(roi, shape)
)
return roi | 24f160bde7f995861aee3f0c20001ce4093aa58a | 8,109 |
import torch
def lowpass_filtering_in_frequency_domain(
image_grad: torch.Tensor, lowpass: torch.Tensor
) -> torch.Tensor:
"""Applies lowpass filtering in the frequency domain as descibed in Walker
et al. 2019.
Args:
grad (torch.Tensor): gradient
lowpass (torch.Tensor): losspass tensor (constant)
Returns:
torch.Tensor: filtered gradient
"""
# print("inputs:")
# print("lowpass:")
# print(lowpass.shape)
# fig, ax = plt.subplots(figsize=(3, 2))
# ax.imshow(lowpass)
# ax.set_title("lowpass filter")
# plt.show(block=False)
# plt.pause(1)
# plt.close("all")
# print("image gradient:")
batch_size, channels, height, width = image_grad.shape
image_grad = image_grad.squeeze()
# print(image_grad.shape)
# print("")
# fig, ax = plt.subplots(figsize=(3, 2))
# ax.imshow(image_grad)
# ax.set_title("gradient")
# plt.show(block=False)
# plt.pause(1)
# plt.close("all")
grad_fft = torch.fft.fft2(image_grad.data)
# print("pp (in frequency domain)")
# print(grad_fft.shape)
# print("")
filtered_tensor = (
grad_fft * lowpass
) # convolution in frequency domain is dotproduct!
# print("filtered tensor (in frequency domain")
# print(filtered_tensor.shape)
# print("")
out = torch.fft.ifft2(filtered_tensor)
out = out.real
# print("out (in image domain)")
# print(out.shape)
out = out.reshape(batch_size, channels, height, width)
# fig, ax = plt.subplots(figsize=(3, 2))
# ax.imshow(out.squeeze())
# ax.set_title("Out")
# plt.show(block=False)
# plt.pause(1)
# plt.close("all")
return out | 847d89f9f0078838b594b61df9dd4544cb2bd062 | 8,110 |
import torch
def ldot(u, v, keepdim=False):
"""Lorentzian scalar product"""
uv = u * v
uv.narrow(-1, 0, 1).mul_(-1)
return torch.sum(uv, dim=-1, keepdim=keepdim) | 59c26e622ef5ffe94d92a2e8c0fc40d316b58f5b | 8,112 |
def test_depends(func):
"""Decorator to prevent a test being executed in individual mode"""
def invalid(self, test):
if self.test_individual:
test.description = "Invalid"
return test.DISABLED("This test cannot be performed individually")
else:
return func(self, test)
invalid.__name__ = func.__name__
invalid.__doc__ = func.__doc__
return invalid | 4b2db29fc8c0a30ec3a4ec6c3fb93ed958f0094e | 8,113 |
import re
def compiler_call(executable):
""" A predicate to decide the entry is a compiler call or not. """
compilers = [
re.compile(r'^([^/]*/)*([^-]*-)*c(c|\+\+)$'),
re.compile(r'^([^/]*/)*([^-]*-)*g(cc|\+\+)(-\d+(\.\d+){0,2})?$'),
re.compile(r'^([^/]*/)*([^-]*-)*clang(\+\+)?(-\d+(\.\d+){0,2})?$'),
re.compile(r'^([^/]*/)*llvm-g(cc|\+\+)$'),
]
return any((pattern.match(executable) for pattern in compilers)) | d8fa6fa22f13b13154579e19a4ab18e016a56caf | 8,115 |
def fix_month(bib_str: str) -> str:
"""Fixes the string formatting in a bibtex entry"""
return (
bib_str.replace("{Jan}", "jan")
.replace("{jan}", "jan")
.replace("{Feb}", "feb")
.replace("{feb}", "feb")
.replace("{Mar}", "mar")
.replace("{mar}", "mar")
.replace("{Apr}", "apr")
.replace("{apr}", "apr")
.replace("{May}", "may")
.replace("{may}", "may")
.replace("{Jun}", "jun")
.replace("{jun}", "jun")
.replace("{Jul}", "jul")
.replace("{jul}", "jul")
.replace("{Aug}", "aug")
.replace("{aug}", "aug")
.replace("{Sep}", "sep")
.replace("{sep}", "sep")
.replace("{Oct}", "oct")
.replace("{oct}", "oct")
.replace("{Nov}", "nov")
.replace("{nov}", "nov")
.replace("{Dec}", "dec")
.replace("{dec}", "dec")
) | 9bdcb06dc43a6d6748af20d5279ca38ec6aa1d0a | 8,118 |
import os
def _is_attribute_file(filepath):
"""
Check, if ``filepath`` points to a valid udev attribute filename.
Implementation is stolen from udev source code, ``print_all_attributes``
in ``udev/udevadm-info.c``. It excludes hidden files (starting with a
dot), the special files ``dev`` and ``uevent`` and links.
Return ``True``, if ``filepath`` refers to an attribute, ``False``
otherwise.
"""
filename = os.path.basename(filepath)
return not (filename.startswith('.') or
filename in ('dev', 'uevent') or
os.path.islink(filepath)) | 6fbfc3b7de0f192ad96118f412ff7ea4ab42e06a | 8,119 |
def pad(text: str, width: int, align: str = '<', fill: str = ' '):
"""
pad the string with `fill` to length of `width`
:param text: text to pad
:param width: expected length
:param align: left: <, center: ^, right: >
:param fill: char to fill the padding
:return:
"""
assert align in ('<', '^', '>')
return f"{text:{fill}{align}{width}}" | 74befd22927438961b85e370ed16239d7df52707 | 8,120 |
import torch
def slerp(val, low, high):
"""
val, low, high: bs x frames x coordinates
if val == 0 then low
if val == 1 then high
"""
assert low.dim() == 3, low.dim()
assert val.dim() == 3, val.dim()
assert high.dim() == 3, high.dim()
low_norm = low / torch.norm(low, dim=2, keepdim=True)
high_norm = high / torch.norm(high, dim=2, keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(dim=2)).unsqueeze(-1) # bs x frames x 1
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high
return res | 96a74c366139f3f617676e5e011884f698569b97 | 8,121 |
import torch
def create_input(shape):
"""Create a random input tensor."""
return torch.rand(shape).float() | 88a907bae19882a4a7c1a0b819eb0deccb065752 | 8,123 |
def input_thing():
"""输入物品信息"""
name_str, price_str, weight_str = input('物品名称,价格,重量: ').split()
return name_str, int(price_str), int(weight_str) | d48452a942263ae522e93474c6cc4a5cdd9e097c | 8,124 |
import string
import random
def gene_text(number=6):
"""生成随机字符"""
source = string.ascii_letters+string.digits
return ''.join(random.sample(source,number)) | 40970c8b938797243d7626ebad48e78116df657a | 8,125 |
def add_data_to_list(twitter_return):
"""
Extract the data from the twitter_return dictionary and place in a list
"""
twitter_dict = twitter_return ['response_dict']
# Grab the twitter data
twitter_data_list=twitter_dict['data']
return twitter_data_list | 9e2a2a5e22926b604856c1ec1ae20ebf765b8610 | 8,128 |
def check_n_files(subject, collector, keep, n_file=1):
"""
Organise download path per subject for the two sessions.
If the number of total file is not the same as expected, drop the subject.
Parameters
----------
subject: str
Subject ID.
collecter: dict
Dictionary collecting files per subject
keep: list
List of zipped tuple of source and target path
n_files: int
Number of files
Return
------
dict
Updated `collecter` dictionary
"""
download_these = collector.copy()
if not download_these.get(subject):
# first session
download_these[subject] = keep.copy()
elif len(download_these[subject]) < n_file:
download_these[subject] += keep.copy()
if len(download_these[subject]) != n_file:
download_these.pop(subject)
return download_these | 56e9ec830d573b8fc8f5c50c1b6bc126a44653a7 | 8,129 |
from typing import Dict
def get_noise_range_pcts(db_range_exps: dict, length: float) -> Dict[int, float]:
"""Calculates percentages of aggregated exposures to different noise levels of total length.
Note:
Noise levels exceeding 70 dB are aggregated and as well as noise levels lower than 50 dB.
Returns:
A dictionary containing noise level values with respective percentages.
(e.g. { 50: 35.00, 60: 65.00 })
"""
return {
db_range: round(db_range_length * 100 / length, 3)
for db_range, db_range_length
in db_range_exps.items()
} | 723c7e45a24c149df6f5f19b3f8aabb1f8d5b184 | 8,130 |
def calc_n_max_vehicle(n2v_g_vmax, v_max):
"""Calc `n_max3` of Annex 2-2.g from `v_max` (Annex 2-2.i). """
return n2v_g_vmax * v_max | 457562edce05aebf7d7b870a232b4e0a01df5055 | 8,133 |
import unittest
def test_suite():
"""Discover unittests"""
test_loader = unittest.TestLoader()
test_suite = test_loader.discover('str_analysis', pattern='*tests.py')
return test_suite | 351d2f09e9fcd0e709d04ed3af5283cd7d94768d | 8,136 |
def distance(woolrgb, cpixel):
""" ricerca il blocco di lana colorata piu' vicino al colore del pixel """
r = cpixel[0]
g = cpixel[1]
b = cpixel[2]
did = 0
dmin = 255*255*3
for i in woolrgb:
dr = r - woolrgb[i][0]
dg = g - woolrgb[i][1]
db = b - woolrgb[i][2]
d = dr*dr+dg*dg+db*db
if d < dmin:
dmin = d
did = i
return did | d6247e40ba12a271dc6784f71088ad0e838c600a | 8,139 |
def get_filepath_wo_ext(file_spec):
"""
Get file path without extension
Parameters
----------
file_spec : DataStruct
The function use attributes output_dir and fname_wo_ext for construct file path
Returns
-------
out : str
Constructed file path
"""
return file_spec.output_dir + '/' + file_spec.fname_wo_ext | 6ef9d329292769a3f163678915ff696ef3b8fe1a | 8,141 |
def prob_double_roll(x, n):
""" Expected probabilities for the sum of two dice."""
# For two n-sided dice, the probability of two rolls summing to x is
# (n − |x−(n+1)|) / n^2, for x = 2 to 2n.
return (n - abs(x - (n+1))) / n**2 | 30d891203a09807ce9dcd16c3f9c05cddef00b1c | 8,142 |
def amplitude(data):
"""
Calculates the amplitude of a data list.
"""
n = len(data)
if (n == 0) :
amplitude = None
else :
min_value = min(data)
max_value = max(data)
amplitude = (max_value + min_value) / 2.0
return amplitude | 4dc053287f2de3748961943a8d9d064c9a3d1f87 | 8,143 |
def ranks_from_scores(scores):
"""Return the ordering of the scores"""
return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True) | f49fe306f456d990be5ad8308eae07f186a89da6 | 8,145 |
import struct
def unpack_word(str, big_endian=False):
""" Unpacks a 32-bit word from binary data.
"""
endian = ">" if big_endian else "<"
return struct.unpack("%sL" % endian, str)[0] | 8da8d168b1828062bd44ca3142c8b389bfd634c7 | 8,146 |
import ast
def parse_source(source, path=None):
"""Parse python source into an AST."""
path = "<unknown>" if path is None else path
return ast.parse(source, filename=path) | 7d1188e96b3a72220eca084cf18fc5f7b0b35ef3 | 8,147 |
import argparse
def post_process_arguments(args: argparse.Namespace) -> argparse.Namespace:
"""
post process sertop arguments
:param args: args parsed
:return: new name space
"""
for dirpath in args.coq_args_I:
args.sertop_args.extend(("-I", dirpath))
for pair in args.coq_args_R:
args.sertop_args.extend(("-R", ",".join(pair)))
for pair in args.coq_args_Q:
args.sertop_args.extend(("-Q", ",".join(pair)))
return args | f31ef03bb1df0a13d3f3715e24588ed5373c66eb | 8,148 |
def is_hit(x, y):
"""Return wheter given coords hit a circular target of r=1."""
return x*x + y*y <= 1 | 4f71afa458ad0a891010e1f5a2be3049b0818c71 | 8,149 |
def set_fpn_weights(training_model, inference_model, verbose=False):
"""
Set feature pyramid network (FPN) weights from training to inference graph
Args:
training_model: MaskRCNN training graph, tf.keras.Model
inference_model: MaskRCNN inference graph, tf.keras.Model
verbose: Print layers that get weights, bool
Returns: inference_model
"""
fpn_layers = ['fpn_c5p5', 'fpn_c4p4', 'fpn_c3p3', 'fpn_c2p2',
'fpn_p5', 'fpn_p4', 'fpn_p3', 'fpn_p2',
]
for layer_name in fpn_layers:
# Get weights from training graph
layer_weights = training_model.get_layer(layer_name).get_weights()
# Set weights in inference graph
inference_model.get_layer(layer_name).set_weights(layer_weights)
if verbose:
print(f'Set weights: {layer_name}')
return inference_model | 29aadfcd0dcb50edb41938433ff644b1b62f209e | 8,150 |
def _get_persistent_binding(app, device_addr):
"""
:return: bool
"""
x = app.__dict__.get('persistent_binding', False)
if x and device_addr is None:
msg = ('In case of `persistent_binding` set to `True`, '
'the `device_addr` should be set and fixed.')
raise ValueError(msg)
return x | 3f6f4f71297fd8a6a9615d2a76529e5376e4786e | 8,151 |
import math
def pop_age_data(pop, code, age, percent_pop):
"""Select and return the proportion value of population
for a given municipality, gender and age"""
n_pop = pop[pop['code'] == str(code)][age].iloc[0] * percent_pop
rounded = int(round(n_pop))
# for small `percent_pop`, sometimes we get 0
# when it's better to have at least 1 agent
if rounded == 0 and math.ceil(n_pop) == 1:
return 1
return rounded | f3a6a0c972eeea5a351d0f734a41a498035e5ecc | 8,152 |
def navamsa_from_long(longitude):
"""Calculates the navamsa-sign in which given longitude falls
0 = Aries, 1 = Taurus, ..., 11 = Pisces
"""
one_pada = (360 / (12 * 9)) # There are also 108 navamsas
one_sign = 12 * one_pada # = 40 degrees exactly
signs_elapsed = longitude / one_sign
fraction_left = signs_elapsed % 1
return int(fraction_left * 12) | d151f66c0e69541ccdcc3cabc4d0de82e7aa84bd | 8,153 |
def compare_connexion(conn1, conn2):
"""See if two connexions are the same.
Because the :class:`connexion` could store the two components in different
orders, or have different instances of the same component object, direct
comparison may fail. This function explicitly compares both possible
combinations of serial numbers.
Parameters
----------
conn1 : :obj:`connexion`
The first connexion object.
conn2 : :obj:`connexion`
The second connexion object.
Returns
-------
:obj:`True` if the connexions are the same, :obj:`False` otherwise.
"""
sn11 = conn1.comp1.sn
sn12 = conn1.comp2.sn
sn21 = conn2.comp1.sn
sn22 = conn2.comp2.sn
if (sn11 == sn21 and sn12 == sn22) or (sn11 == sn22 and sn12 == sn21):
return True
else:
return False | 25c3737cfcdb0ab6516237ea5423e2237cc94529 | 8,154 |
def without_end_slash(url):
"""Makes sure there is no end slash at the end of a url."""
return url.rstrip("/") | 19d6b49f7d2a788ea4bb81179e596eb6f019843e | 8,155 |
def CloneNodeList(nodeList):
"""Return a clone of the given nodeList."""
# This is tricky because we want to maintain client/server links
# make a list of cloned nodes, map maps original nodes to new nodes
cloneList = []
map = {}
for node in nodeList:
newNode = node.Clone()
newNode.RemoveAllServers()
cloneList.append(newNode)
map[node] = newNode
# fixup client/server links
for node in nodeList:
for s in node.GetServers():
if s in nodeList:
# connect the corresponding new server to
# corresponding new client
assert s in map.keys()
newServer = map[s]
assert newServer in cloneList
newNode = map[node]
newNode.LastSPU().AddServer(newServer)
return cloneList | cfaeab6edc6d40dd3373ecedc1641b3f542deda4 | 8,157 |
from stat import S_ISDIR
def list_remote_files(con, directory):
"""
List the files and folders in a remote directory using an active SFTPClient from Paramiko
:param con: SFTPClient, an active connection to an SFTP server
:param directory: string, the directory to search
:return: (generator, generator), the files and directories as separate generators
"""
print(directory)
all_files = [file for file in con.listdir_attr(directory)]
files = []
dirs = []
for file in all_files:
if S_ISDIR(file.st_mode):
file.path = directory + f'/{file.filename}' # ad-hoc add the remote filepath since Paramiko ignores this?!
dirs.append(file)
else:
file.path = directory + f'/{file.filename}' # ad-hoc add the remote filepath since Paramiko ignores this?!
files.append(file)
files = (file for file in files)
dirs = (dir for dir in dirs)
return (files, dirs) | f65e4a5d48f793ff3703ea5e4fc88a0e9b7ea39d | 8,159 |
def error_rate(predictions, imgs):
"""Return the error rate based on dense predictions and sparse labels."""
return 0.5 * ((predictions - imgs)**2).mean() | 22fb7ccee4facff54e41e784cdb7c317e0e3f8dc | 8,160 |
import json
def unjsonb(bytes):
"""bytes -> list"""
return [json.loads(s.decode("utf-8")) for s in bytes.splitlines()] | e831851ea0149d46d73610fc1979168aba9ef1cd | 8,161 |
def doHammingByte(byte):
"""Secures one byte by hamming code"""
#P1 = A1 xor A2 xor A4 xor A5 xor A7
P1 = str(
int(byte[0]) ^
int(byte[1]) ^
int(byte[3]) ^
int(byte[4]) ^
int(byte[6])
)
#P2 = A1 xor A3 xor A4 xor A6 xor A7
P2 = str(
int(byte[0]) ^
int(byte[2]) ^
int(byte[3]) ^
int(byte[5]) ^
int(byte[6])
)
#P3 = A2 xor A3 xor A4 xor A8
P3 = str(
int(byte[1]) ^
int(byte[2]) ^
int(byte[3]) ^
int(byte[7])
)
#P4 = A5 xor A6 xor A7 xor A8
P4 = str(
int(byte[4]) ^
int(byte[5]) ^
int(byte[6]) ^
int(byte[7])
)
#PX = C1 to C12
PX = str(
int(P1) ^
int(P2) ^
int(byte[0]) ^
int(P3) ^
int(byte[1]) ^
int(byte[2]) ^
int(byte[3]) ^
int(P4) ^
int(byte[4]) ^
int(byte[5]) ^
int(byte[6]) ^
int(byte[7])
)
return PX + P1 + P2 + byte[0] + P3 + byte[1] + byte[2] +\
byte[3] + P4 + byte[4] + byte[5] + byte[6] + byte[7] | fca53ce3958820ac3ed122d00045edd46d7e36d8 | 8,162 |
def get_sleep_time(time_start, time_now, poll_int):
"""Calculate time to sleep.
Args:
time_start(datetime): Time loop started
time_now(datetime): Current time
poll_int(int): Poll interval in seconds
Returns:
sleep_time(float)
"""
time_sleep = poll_int - (time_now - time_start).total_seconds()
if time_sleep < 0:
time_sleep = 0
return time_sleep | 6d3a00d12c8ff5677c9625228a2150bca55762de | 8,163 |
import os
def expand_session(name):
"""
Helper function that creates the session names for the original mkdir and the actual code being run.
"""
user_name = os.environ.get('SUDO_USER') or os.environ['USER']
return "{}_cp_{}".format(user_name, name), "{}_run_{}".format(user_name, name) | 9426d2f3d867b7c69a0b366d0cecef585ec9ecc7 | 8,164 |
def distinct_count(daskDf, columnName):
"""Counts distint number of values in Dask dataframe
Keyword arguments:
daskDf -- Dask dataframe
columnName -- Column name
Return:
return -- Distinct number of values
"""
return daskDf[columnName].drop_duplicates().size | 27a03a6eef1f9c949d22f02e5d880ef626b6acf6 | 8,165 |
def verse(num_of_bottles):
"""bottle verse"""
b = "bottle" if num_of_bottles == 1 else "bottles"
if num_of_bottles==1:
last = "No more bottles"
elif num_of_bottles==2:
last = "1 bottle"
else:
last = f'{num_of_bottles-1} bottles'
return '\n'.join([
f'{num_of_bottles} {b} of beer on the wall,', f'{num_of_bottles} {b} of beer,',
'Take one down, pass it around,',
f'{last} of beer on the wall!'
]) | 57cf46e430a7a75deb9e6b88c5defa35991fda4e | 8,167 |
def fizz_buzz(tuple):
"""
Transform the input tuple to a string that follows
the Fizz Buzz rules
Args:
tuple: tuple
Returns:
string
"""
if tuple == 0:
return None
ret_val = ""
if tuple % 3 == 0:
ret_val += "Fizz"
if tuple % 5 == 0:
ret_val += "Buzz"
if len(ret_val) == 0:
ret_val += str(tuple)
else:
ret_val += "!"
return ret_val | 4053cad878c05fa0430835a9a9728a6c0b8e420d | 8,168 |
from typing import OrderedDict
def save_chain(config, chain):
"""
Encode a chain of operation classes as json.
:param config: dictionary with settings.
:param chain: OrderedDict of operation class lists.
:return: string-encoded version of the above.
"""
di = OrderedDict()
di['__config__'] = config
for key, ops in chain.items():
di[key] = [op.to_json() for op in ops]
return di
#return dumps(di, indent = 2) | d6838dfe1f079233ba8e3d93c62ddc1ebbcec5e4 | 8,170 |
def db_connection_string(dbconf): # type: (dict) -> str
"""
Constructs a database connection string from the passed configuration object.
"""
user = dbconf["user"]
password = dbconf["password"]
db_name = "traffic_ops" if dbconf["type"] == "Pg" else dbconf["type"]
hostname = dbconf["hostname"]
port = dbconf["port"]
return "postgresql://{user}:{password}@{hostname}:{port}/{db_name}".format(user=user, password=password, hostname=hostname, port=port, db_name=db_name) | 3fbb52c398f5150f6101b9d0d286f1db1b8aa99f | 8,171 |
def normalize_units(
df,
unitsmap,
targetunit,
paramcol="parameter",
rescol="res",
unitcol="units",
napolicy="ignore",
):
"""
Normalize units of measure in a dataframe.
Parameters
----------
df : pandas.DataFrame
Dataframe contained results and units of measure data.
unitsmap : dictionary
Dictionary where keys are the units present in the df and
values are the conversion factors required to standardize
results to a common unit.
targetunit : string or dict
The desired final units of measure. Must be present in
``unitsmap``. If a string, all rows in df will be
assigned ``targetunit``. If a dictionary, the units will be
mapped from the dictionary using the values of ``paramcol`` as
keys.
paramcol, rescol, unitcol : string, optional
Labels for the parameter, results, and units columns in the
df.
napolicy : string, optional
Determines how mull/missing values are stored. By default,
this is set to "ignore". Use "raise" to throw a ``ValueError``
if when unit conversion or target units data cannot be found.
Returns
-------
normalized : pandas.DataFrame
Dataframe with normalized units of measure.
"""
# determine the preferred units in the wqdata
target = df[paramcol].map(targetunit)
# factors to normialize to standard units
normalization = df[unitcol].map(unitsmap)
# factor to convert to preferred units
conversion = target.map(unitsmap)
if napolicy == "raise":
msg = ""
if target.isnull().any():
nulls = df[target.isnull()][paramcol].unique()
msg += "Some target units could not be mapped to the {} column ({})\n".format(
paramcol, nulls
)
if normalization.isnull().any():
nulls = df[normalization.isnull()][unitcol].unique()
msg += "Some normalization factors could not be mapped to the {} column ({})\n".format(
unitcol, nulls
)
if conversion.isnull().any():
nulls = target[conversion.isnull()]
msg += "Some conversion factors could not be mapped to the target units ({})".format(
nulls
)
if len(msg) > 0:
raise ValueError(msg)
# convert results
normalized = df.assign(
**{rescol: df[rescol] * normalization / conversion, unitcol: target}
)
return normalized | 89aa2692ae778eede36d02b8bea756793a55c172 | 8,172 |
def shorten(k):
"""
k an attrname like foo_bar_baz.
We return fbb, fbbaz, which we'll match startswith style if exact match
not unique.
"""
parts = k.split('_')
r = ''.join([s[0] for s in parts if s])
return r, r + parts[-1][1:] | 6d9c29849cc5a63ec466d2548ea2492d112946cf | 8,173 |
def standardizeText(line, forward=True):
"""
Remove whitespace, lowercase,
and end with termination character \r
"""
text = line.strip().lower()[:63]
return (text if forward else text[::-1]) + '\r' | 5487f416abe78385f712c7b0ec652b4548accbf0 | 8,175 |
def selstr(a, start, stop):
""" Select elements of a string from an array.
:param a: array containing a string.
:param start: int referring to the first character index to select.
:param stop: int referring to the last character index to select.
:return: array of strings
"""
if type(a) not in [str]:
raise TypeError(f"a: must be a single string")
out = []
for i in range(start, stop):
out.append(a[i])
out = "".join(out)
return out | 91400815c1be10f1691be2799ce84229d121afec | 8,176 |
from typing import List
from typing import Dict
from typing import Any
def format_sents_for_output(sents: List[str], doc_id: str) -> Dict[str, Dict[str, Any]]:
"""
Transform a list of sentences into a dict of format:
{
"sent_id": {"text": "sentence text", "label": []}
}
"""
formatted_sents = {}
for i, sent in enumerate(sents):
formatted_sents.update({f"{doc_id}_sent_{i}": {"text": sent, "label": []}})
return formatted_sents | d6178ac48da4d95e8d3727ca9220168e06ba223e | 8,177 |
def get_guess(guesses):
"""
This function will get the user's guess.
"""
# Get the user's guess.
guess = input("------\nGuess a letter: ")
# Check if the user has already guessed the letter.
if guess in guesses:
print("You've already guessed that letter.")
return get_guess(guesses)
# Return the guess.
return guess | 04b559d3850421ef91fa1ce5d9850b2f4852f917 | 8,180 |
from typing import Counter
def generate_common_dict(d1, d2):
"""Generate a dictionary by combining d1 and d2
Args:
d1 (list): a list of words
d2 (list): a list of words
Returns:
Counter: combined dictionary
"""
word1 = d1.copy()
word1.extend(d2)
c = Counter(i for i in word1)
return c | 581a41f60ae47caadced8a08ef1c4356a9b7d3b8 | 8,182 |
def calc_process_time(t1, t2):
"""Calculates difference between times
Args:
t1 (float): initial time
t2 (float): end time
Returns:
str: difference in times
"""
return str(t2 - t1) | 72e59c1a053041aae53cdb4415b241499eefdd4c | 8,183 |
from typing import Iterable
import math
def percentile(N: Iterable, percent: int):
"""
Find the percentile of a list of values.
Stolen from http://code.activestate.com/recipes/511478-finding-the-percentile-of-the-values/
"""
if not N:
raise ValueError('N must be non-empty iterable')
if not (0 < percent < 100 and type(percent) == int):
raise ValueError('percent parameter must be integer from 0 to 100')
N = sorted(N)
k = (len(N) - 1) * percent / 100
prev_index = math.floor(k)
next_index = math.ceil(k)
if prev_index == next_index:
return N[int(k)]
d0 = N[prev_index] * (next_index - k)
d1 = N[next_index] * (k - prev_index)
return d0 + d1 | 9e6402b60ec077fe43ca807fa73aac27267cfd2b | 8,184 |
from typing import Any
def _lower(obj: Any) -> str:
"""Helper for the sort filter"""
try:
return str(obj).lower()
except AttributeError:
return "" | 45b8d5de8b74cb40b32f2369a8a3d8ff9ae8d6d1 | 8,186 |
import ast
def _visit_local(gen_sym, node, to_mangle, mangled):
"""
Replacing known variables with literal values
"""
is_name = type(node) == ast.Name
node_id = node.id if is_name else node.arg
if node_id in to_mangle:
if node_id in mangled:
mangled_id = mangled[node_id]
else:
mangled_id, gen_sym = gen_sym('mangled')
mangled = mangled.set(node_id, mangled_id)
if is_name:
new_node = ast.Name(id=mangled_id, ctx=node.ctx)
else:
new_node = ast.arg(arg=mangled_id, annotation=node.annotation)
else:
new_node = node
return gen_sym, new_node, mangled | 26bd532d8f3c73cd25395a4982aff63e75fdc5ac | 8,187 |
def get_longest_key(tuple_of_tuples):
"""
Why is this needed? Because sometimes we want to know how long a CharField
should be -- so let's have it as long as the longest choice available.
(For example, when we have a radio button and we want to store a single value.)
INPUT=(
('short', 'blahblahblah'),
('longer', 'blahblahblah'),
('longest', 'blahblahblah')
)
OUTPUT=len(longest)
USAGE:
BLAH_CHOICES=(...)
blah=CharField(max_length=get_longest_key(BLAH_CHOICES))
"""
return max(len(i) for i in dict(tuple_of_tuples).values()) | a0a55ced79bb6e27edb82790ee7ea4d1c1efc3c7 | 8,188 |
def mass_within_region(gals, x_bound, y_bound):
"""
Calculate the total mass and number of galaxies within a specified region.
Parameters
----------
gals: list of ``Galaxy`` class instances.
Galaxies that we're calculating the mass for.
x_bound, y_bound: [float, float]
The minimum and maximum bounds that define the region we're averaging
inside.
Returns
-------
mass_in_region: float
The total galaxy mass within the specified region.
num_gals_in_region: int
The number of galaxies within the specified region.
"""
# Initialize our counters.
mass_in_region = 0.0
num_gals_in_region = 0
region_bounds = [x_bound, y_bound]
for gal in gals:
gal_pos = [gal.x, gal.y]
in_region = True
# We're going to go through each dimension of the galaxy and ask if the position is
# inside the region.
for region_bound, dim_pos in zip(region_bounds, gal_pos):
# Galaxy is outside the region. Flag it and move to the next galaxy.
if dim_pos < region_bound[0] or dim_pos > region_bound[1]:
in_region = False
break
# Galaxy was in the region, add it.
if in_region:
mass_in_region += gal.mass
num_gals_in_region += 1
return mass_in_region, num_gals_in_region | b9d1564a88239ab33402255c44646101f8116060 | 8,189 |
def splitCentersByStrips(centers, splitter_array):
"""
Split list of note centers by strip.
"""
# Sort by rows
row_sorted_centers = sorted(centers, key=lambda x: x[1])
# Split notehead into strips
strips = {}
current_offset = 0
counter = 0
for i in range(1, len(splitter_array) + 1):
strip = []
for note_center in row_sorted_centers[current_offset:]:
strip.append(note_center)
counter += 1
if counter == splitter_array[i - 1]:
break
strips[i] = strip
current_offset = counter
if current_offset == len(centers):
return strips, i
assert False, "Should haven't been here"
return None | 9ae82e74f12e298f1a1924883db66e11cb86d0fc | 8,190 |
import json
def read_status(path="status.json"):
"""
opens the written status file in case of restarts
that we do not start with an empty status file.
If there is no file, create empty status dict
:path: str
:returns: dict
"""
try:
with open(path, "r") as jsonfile:
status = json.load(jsonfile)
except (IOError,json.decoder.JSONDecodeError):
status = {}
return status | d44529230a6fa39d9655425508f968220d6fb67e | 8,191 |
def get_json_for_r_log_entry(req, x_set):
"""Returns a dict used to match r_log entries returned through API."""
return {
"request": req.to_dct(),
"x_set": x_set
} | 989650af29c25f3d11346945d905d48af6718d25 | 8,193 |
def _get_sub_types_of_compositional_types(compositional_type: str) -> tuple:
"""
Extract the sub-types of compositional types.
This method handles both specification types (e.g. pt:set[], pt:dict[]) as well as python types (e.g. FrozenSet[], Union[]).
:param compositional_type: the compositional type string whose sub-types are to be extracted.
:return: tuple containing all extracted sub-types.
"""
sub_types_list = list()
if compositional_type.startswith("Optional") or compositional_type.startswith(
"pt:optional"
):
sub_type1 = compositional_type[
compositional_type.index("[") + 1 : compositional_type.rindex("]")
].strip()
sub_types_list.append(sub_type1)
if (
compositional_type.startswith("FrozenSet")
or compositional_type.startswith("pt:set")
or compositional_type.startswith("pt:list")
):
sub_type1 = compositional_type[
compositional_type.index("[") + 1 : compositional_type.rindex("]")
].strip()
sub_types_list.append(sub_type1)
if compositional_type.startswith("Tuple"):
sub_type1 = compositional_type[
compositional_type.index("[") + 1 : compositional_type.rindex("]")
].strip()
sub_type1 = sub_type1[:-5]
sub_types_list.append(sub_type1)
if compositional_type.startswith("Dict") or compositional_type.startswith(
"pt:dict"
):
sub_type1 = compositional_type[
compositional_type.index("[") + 1 : compositional_type.index(",")
].strip()
sub_type2 = compositional_type[
compositional_type.index(",") + 1 : compositional_type.rindex("]")
].strip()
sub_types_list.extend([sub_type1, sub_type2])
if compositional_type.startswith("Union") or compositional_type.startswith(
"pt:union"
):
inside_union = compositional_type[
compositional_type.index("[") + 1 : compositional_type.rindex("]")
].strip()
while inside_union != "":
if inside_union.startswith("Dict") or inside_union.startswith("pt:dict"):
sub_type = inside_union[: inside_union.index("]") + 1].strip()
rest_of_inside_union = inside_union[
inside_union.index("]") + 1 :
].strip()
if rest_of_inside_union.find(",") == -1:
# it is the last sub-type
inside_union = rest_of_inside_union.strip()
else:
# it is not the last sub-type
inside_union = rest_of_inside_union[
rest_of_inside_union.index(",") + 1 :
].strip()
elif inside_union.startswith("Tuple"):
sub_type = inside_union[: inside_union.index("]") + 1].strip()
rest_of_inside_union = inside_union[
inside_union.index("]") + 1 :
].strip()
if rest_of_inside_union.find(",") == -1:
# it is the last sub-type
inside_union = rest_of_inside_union.strip()
else:
# it is not the last sub-type
inside_union = rest_of_inside_union[
rest_of_inside_union.index(",") + 1 :
].strip()
else:
if inside_union.find(",") == -1:
# it is the last sub-type
sub_type = inside_union.strip()
inside_union = ""
else:
# it is not the last sub-type
sub_type = inside_union[: inside_union.index(",")].strip()
inside_union = inside_union[inside_union.index(",") + 1 :].strip()
sub_types_list.append(sub_type)
return tuple(sub_types_list) | 4fb1e67f8b6db717ccdf8c33e0b2458baf98c661 | 8,194 |
import random
def unsort(list):
"""Return a copy of unsorted list"""
new_list = []
for chance in range(len(list)):
char = random.choice(list)
list.remove(char)
new_list.append(char)
return new_list | 249a61de0de500305bd9f1fe54ea7ac8f2d07d84 | 8,195 |
def count_lines(file):
"""Given a file, returns the number of lines it contains.
The current file position should be preserved as long as the file
supports tell() and seek()."""
old_position = file.tell()
file.seek(0)
count = 0
while file.readline() != '':
count += 1
file.seek(old_position)
return count | 53c1578d96f7bf031c4a8a5131739e36d35be5e7 | 8,196 |
def cite():
"""Returns BibTeX citation for the dataset."""
return """@misc{stackoverflow2019,
title={TensorFlow Federated Stack Overflow dataset},
author={The TensorFlow Federated Authors.},
year={2019},
}""" | b156145455d1f9c69f612bcf9958f1d49fc94137 | 8,197 |
def join_apply(df, func, new_column_name):
"""
Join the result of applying a function across dataframe rows.
This method does not mutate the original DataFrame.
This is a convenience function that allows us to apply arbitrary functions
that take any combination of information from any of the columns. The only
requirement is that the function signature takes in a row from the
DataFrame.
The example below shows us how to sum the result of two columns into a new
column.
.. code-block:: python
df = (
pd.DataFrame({'a':[1, 2, 3], 'b': [2, 3, 4]})
.join_apply(lambda x: 2 * x['a'] + x['b'], new_column_name="2a+b")
)
This following example shows us how to use conditionals in the same
function.
.. code-block:: python
def take_a_if_even(x):
if x['a'] % 2:
return x['a']
else:
return x['b']
df = (
pd.DataFrame({'a': [1, 2, 3], 'b': [2, 3, 4]})
.join_apply(take_a_if_even, 'a_if_even')
)
:param df: A pandas DataFrame
:param func: A function that is applied elementwise across all rows of the
DataFrame.
:param new_name: New column name.
"""
df = df.copy().join(df.apply(func, axis=1).rename(new_column_name))
return df | 474fc3628d7f4066f33154df78ac945a72e8166f | 8,198 |
import threading
def is_main_thread() -> bool:
"""
Check if we are in the main thread.
"""
return threading.main_thread() == threading.current_thread() | 1f91ae9e2d5b395cd995efcc2f87002ade53e6a9 | 8,199 |
from typing import List
from typing import Tuple
def fast_text_prediction_to_language_code(res: List[Tuple[str, str]]) -> List[str]:
"""Convert fastText language predictions to language codes"""
labels, _ = res
return [tmp[tmp.rfind("_") + 1 :] for tmp in labels] | 3a39c3d416b4f66d1519284496fbaab940b202fc | 8,200 |
def add_newline_to_end_of_each_sentence(x: str) -> str:
"""This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS."""
if "<n>" in x:
return x.replace("<n>", "\n") # remove pegasus newline char
else:
return x | 54842070d316d07fd98a06d8c33d5171d5ae7a57 | 8,203 |
def _excluded_scenario(test_name, scenario):
"""Skip list generator for scenarios to skip in test_name.
Arguments
---------
test_name : str, name of test
scenario : instance of TestScenario, to be used in test
Returns
-------
bool, whether scenario should be skipped in test_name
"""
# for forecasters tested in test_methods_do_not_change_state
# if fh is not passed in fit, then this test would fail
# since fh will be stored in predict through fh handling
# as there are scenarios which pass it early and everything else is the same
# we skip those scenarios
if test_name == "test_methods_do_not_change_state":
if not scenario.get_tag("fh_passed_in_fit", True, raise_error=False):
return True
# this line excludes all scenarios that are not 1:1 to the "pre-scenario" state
# pre-refactor, all tests pass, so all post-refactor tests should with these lines
# comment out to run the full test suite with new scenarios
if not scenario.get_tag("pre-refactor", False, raise_error=False):
return True
return False | 34adc91987c86c8f8af2243f0d414c7d00eaa748 | 8,204 |
def select(element, selector):
"""Syntactic sugar for element#cssselect that grabs the first match."""
matches = element.cssselect(selector)
return matches[0] | a99c684073fe898bc297dd747cff4abf3c0cb524 | 8,206 |
def is_in_bbox(x, y, bbox):
"""
Answers True or Folse if the x, y is inside the BBOX.
"""
xMin, yMin, xMax, yMax = bbox
if xMin <= x <= xMax and yMin <= y <= yMax:
return True
return False | 911089af818c5e15e6ba857b1dd46f0182b1ea31 | 8,207 |
def convert_tuple_to_8_int(tuple_date):
""" Converts a date tuple (Y,M,D) to 8-digit integer date (e.g. 20161231).
"""
return int('{0}{1:02}{2:02}'.format(*tuple_date)) | 8584bb9ade995e95d12c9d09c4a6d52f7df44f5d | 8,208 |
def coord_lister(geom):
"""[summary] when given a geometry pandas geoseries, returns an exterior
list of coordinates for all of the entries, given should
Args:
geom ([type]): [description]
Returns:
[type]: [description]
"""
coords = list(geom.exterior.coords)
return (coords) | b9d28a32241bf8f2b13988ef149eb4cf05ffb315 | 8,209 |
def get_request_raw_header(request, name) :
""" Return raw header value of request by header name """
name = name.lower()
for header in request.raw_headers :
if header[0].decode("utf-8").lower() == name:
return header[1].decode("utf-8")
return "" | 37abaac86ae770354bacd6a96326d8b43f54999a | 8,211 |
import os
def readTimeStamp(fname,path):
"""reads an insight tstmp file and returns
an array of the times at which photos were
taken at relative to the begining of
aquasition"""
fname = os.path.join(os.path.abspath(path),fname)
num_lines = sum(1 for line in open(fname))
f = open(fname)
for i in range(3):
f.readline()
strt = [f.readline().split()[1] for i in range(num_lines-4)]
t = [float(i)/1000000 for i in strt]
return t | b1145882bedf011eed599f2e873635df86c9145a | 8,212 |
def scale_values_based_on_eich_peak(lead_list, gamma=0.5):
"""
scale values on the Y-axis
:param lead_list: list of the value
:param gamma: scaling factor
:return: rescaled list
"""
new_lead_list = []
for xy_pair in lead_list:
new_y_value = xy_pair[1] * gamma
new_lead_list.append([xy_pair[0], new_y_value])
return new_lead_list | 34d2c79f07c23e4fe23ab0eee8642ce17e03dbb7 | 8,213 |
def import_class(class_path):
"""Imports a class using a type string.
:param class_path: Type string of the class.
:type class_path: str
:rtype: type
"""
components = class_path.split('.')
mod = __import__(components[0])
for comp in components[1:]:
mod = getattr(mod, comp)
return mod | bcfeed25c2b5f6672df63e63a031cfa580c0e275 | 8,214 |
import subprocess
def getYARNApplicationID(app_name):
"""Returns the YARN application ID."""
state = 'RUNNING,ACCEPTED,FINISHED,KILLED,FAILED'
out = subprocess.check_output(["yarn","application","-list", "-appStates",state], stderr=subprocess.DEVNULL, universal_newlines=True)
lines = [x for x in out.split("\n")]
application_id = ''
for line in lines:
if app_name in line:
application_id = line.split('\t')[0]
break
return application_id | f7b6f5a77c0e0fe6ed602455609fa1475108eeac | 8,215 |
def create_system_id(os_string, architecture):
"""
Create a system-ID by joining the OS-String and the architecture with a hyphen.
Args:
os_string (str):
The Operating system string.
architecture (str):
The Architecture string.
Returns:
The System-ID string.
"""
system_id_format = '{os_string} {architecture}'
return system_id_format.format(os_string=os_string.replace('_', ' '),
architecture=architecture) | 7ae682e2d57784ca771c1e50b7e980b56f631947 | 8,217 |
def circular_array_rotation(a, k, queries):
"""Hackerrank Problem: https://www.hackerrank.com/challenges/circular-array-rotation/problem
John Watson knows of an operation called a right circular rotation on an array of integers. One rotation operation
moves the last array element to the first position and shifts all remaining elements right one. To test Sherlock's
abilities, Watson provides Sherlock with an array of integers. Sherlock is to perform the rotation operation a number
of times then determine the value of the element at a given position.
For each array, perform a number of right circular rotations and return the value of the element at a given index.
For example, array a = [3, 4, 5], number of rotations, k = 2 and indices to check, m = [1, 2].
First we perform the two rotations:
[3, 4, 5] -> [5, 3, 4] -> [4, 5, 3]
Now return the values from the zero-based indices and as indicated in the array.
a[1] = 5
a[2] = 3
Args:
a (list): array of integers to rotate
k (int): the number of times to shift the array right
queries (list): list of indices to query on the newly shifted array
Returns:
list: a list of values returned from the queries
"""
query_values = []
for query in queries:
query_values.append(a[(query-k) % len(a)])
return query_values | 940e193fec0ad1f78c499ee8604e418dd0261109 | 8,219 |
from typing import Dict
def normalize_score_dict(input_dict: Dict[str, float], exponent=1) -> Dict[str, float]:
"""Takes a dictionary of scores and applies L1-normalization (dividing each value by the sum).
This is the simplest way of turning a collection of scores into a probability distribution.
The exponent can be used to make the normalization use L2 or some other norm.
"""
total_weight = sum([pow(val, exponent) for val in input_dict.values()])
norm = pow(total_weight, 1/exponent)
output_dict = {key: value / norm if total_weight > 0 else 1 / len(input_dict)
for key, value in input_dict.items()}
return output_dict | 6a8d65d42d7f356b23a0e814841e8005f7daff30 | 8,222 |
import tempfile
import os
def _tempfile_path(*args, **kwargs):
"""Generate a sure-to-be-free tempfile path.
It's hacky but it works.
"""
fd, tmpfile = tempfile.mkstemp()
# close and delete; we only want the path
os.close(fd)
os.remove(tmpfile)
return tmpfile | f1460bafa8aa250202510e1cad4c860a3bbd0889 | 8,223 |
def prepareDataForClassification(dataset, start_test):
"""
generates categorical output column, attach to dataframe
label the categories and split into train and test
"""
features = dataset.columns[0:-1]
X = dataset[features]
y = dataset.UpDown
X_train = X[X.index < start_test]
y_train = y[y.index < start_test]
X_test = X[X.index >= start_test]
y_test = y[y.index >= start_test]
return X_train, y_train, X_test, y_test | 88b42a8145b1f8da469337a8af214cc57c24848e | 8,225 |
def remove_ambiguous_solutions(fn_in, db_lines, strict=True, verbose=True):
""" Removes features with identical solutions.
During solving, some tags may be tightly coupled and solve to the same
solution. In these cases, those solutions must be dropped until
disambiguating information can be found.
"""
solutions = {}
dropped_solutions = set()
for l in db_lines:
parts = l.split()
feature = parts[0]
bits = frozenset(parts[1:])
if bits in solutions:
if strict:
assert False, "Found solution {} at least twice, in {} and {}".format(
bits, feature, solutions[bits])
else:
dropped_solutions.add(bits)
else:
solutions[bits] = feature
if strict:
return 0, db_lines
drops = 0
output_lines = []
for l in db_lines:
parts = l.split()
feature = parts[0]
bits = frozenset(parts[1:])
if bits not in dropped_solutions:
output_lines.append(l)
drops += 1
else:
if verbose:
print(
"WARNING: dropping line due to duplicate solution: %s" % l)
if drops > 0:
print("WARNING: %s dropped %s duplicate solutions" % (fn_in, drops))
return drops, output_lines | 59dc2de17c1311b1dc7096661dc6b39d0d8fc373 | 8,226 |
def residuals(fit, obs):
"""Calculate residuals for fit compared to observed data
:fit: list of discrete fit data points
:obs: list of observed data points
:returns: fit minus observed data points
"""
return fit-obs | 46c5eac3620ab8bce58502822aa7d8824bed0988 | 8,227 |
def deEmojify(inputString):
"""
Drop emojis
:param inputString:
:return:
"""
return inputString.encode('ascii', 'ignore').decode('ascii') | f0e2ad0ce597e74a133b37244a6bc047b90b1ecd | 8,230 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.