content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def delete_redshift_cluster(config, redshift):
""" Deletes the Redshift cluster specified in config
Args:
config: a ConfigParser object
redshift: a boto3 client object for the AWS Redshift service
"""
try:
print("Deleting Redshift Cluster: ", config['CLUSTER']['IDENTIFIER'])
return redshift.delete_cluster(
ClusterIdentifier=config['CLUSTER']['IDENTIFIER'],
SkipFinalClusterSnapshot=True
)
except Exception as e:
print(e) | 2267eb4f017354563c9a7cf047a3a84983cd0044 | 7,659 |
def add_trailing_load(axle_spacing, axle_wt, space_to_trailing_load,
distributed_load, span1_begin, span2_end, pt_load_spacing=0.5):
"""Approximates the distributed trailing load as closely spaced point loads.
The distributed trailing load is approximated as discretly spaced point
loads. The point load spacing is assumed to be 0.5 unless the user
specifically enters a different spacing. The number of loads to add is
determined by dividing the total span length, span 1 plus span 2, by the
point load spacing.
Args:
axle_spacing (list of floats): spacing of axles used for analysis
axle_wt (list of floats): weight of axles used for analysis
space_to_trailing_load (float): distance from last discrete axle to
beginning of distributed load
distributed_load (float): uniformly distributed trailing load magnitude
span1_begin (float): coordinate location of beginning of span 1
span2_end (float): coordinate location of end of span 2
point_load_spacing (float, optional): spacing of approximate discretely
spaced point loads, defaults to 0.5
Returns:
axle_spacing (list of floats): user input axle spacing appended with
axle spacing for discretely spaced loads
to approximate the distributed load
axle_wt (list of floats): user input axle weights appended with axle
weights for discretely spaced loads to
approximate the distributed load
Notes:
Based on testing it can be shown that a reasonable level of accuracy is
found in the forces and reactions using a discrete point load spacing of
0.5. This spacing assumes the span lengths are entered in feet.
If the user does not want to have a distributed load on the entire
length of the bridge it is suggested that the actual axle spacing and
axle weights of the trailing load are entered and no distributed load is
specified.
"""
#approximate a distributed trailing load as closely spaced point loads
#each point load is the distributed load times the point load spacing
#the point load spacing is a function of the span lenght and number of
#divisions required
mod_axle_spacing = axle_spacing[:]
mod_axle_wt = axle_wt[:]
if space_to_trailing_load < 0.0:
raise ValueError("Must enter a positive float for space to trialing"
"load.")
elif distributed_load < 0.0:
raise ValueError("Must enter a positive float for distributed load.")
elif pt_load_spacing <= 0.0:
raise ValueError("Must enter a positive float (or nothing for default"
"value of 0.5) for the point load spacing.")
elif distributed_load != 0.0 and space_to_trailing_load != 0.0:
total_span_length = span2_end - span1_begin
num_loads = int(total_span_length/pt_load_spacing)
equivalent_pt_load = distributed_load*pt_load_spacing
mod_axle_spacing.append(space_to_trailing_load)
mod_axle_wt.append(equivalent_pt_load)
for x in range(num_loads):
mod_axle_spacing.append(pt_load_spacing)
mod_axle_wt.append(equivalent_pt_load)
return mod_axle_spacing, mod_axle_wt | 3eac900cff7d5e66c399e7f846d66aeff3e7389c | 7,662 |
def str_append(string, add):
"""Append add in end string. Example: str_append('hou', 'se'); Return='house'"""
return string + str(add) + "\n" | efbc9a085d1e63f290af3e6c447cde13bce5f5d0 | 7,663 |
def create_function(treatment_system, parameter, values):
"""
Creates a function based on user input
"""
func = str(treatment_system.loc[0, parameter])
func = func.replace(' ', '')
for key, value in values.items():
func = func.replace(key, str(value))
return func | d0afaf42e50aef943b7551c60f19d180bbbeba0b | 7,664 |
def unformat(combination: str) -> str:
"""Unformats a formatted string to it's original state"""
return str(combination).replace("<", "").replace(">", "") | d017903ddaac78adf5085198d25eb508b62a78b4 | 7,665 |
import re
def _size_to_bytes(size):
"""
Parse a string with a size into a number of bytes. I.e. parses "10m", "10MB", "10 M" and other variations into the
number of bytes in ten megabytes. Floating-point numbers are rounded to the nearest byte.
:type size: ``str``
:param size: The size to parse, given as a string with byte unit. No byte unit is assumed to be in bytes. Scientific
notation is not allowed; must be an integer or real number followed by a case-insensitive byte unit (e.g. as "k" or
"KB" for kilobyte, "g" or "Gb" for gigabyte, or a similar convention). Positive/negative sign in front of number is
allowed.
:rtype: ``long``
:return: The number of bytes represented by the given string.
"""
units = 'KMGTPEZY' # note that position of letter is same as power - 1
match = re.search(r'^\s*([-+]?\s*[0-9]*\.?[0-9]*)\s*([' + units + r']?\s*B?\s*S?)\s*', size, re.IGNORECASE)
if match is None or match.group(1) == '':
raise ValueError("size string not in proper format 'number [kmgtpezy]': " + size)
mem_size = float(re.sub(r'\s*', '', match.group(1)))
unit = re.sub(r'\s*', '', match.group(2)).upper()
unit = re.sub(r'B?S?$', '', unit) # remove trailing units symbol
if unit == '':
unit_pow = 0
else:
unit_pow = units.find(unit) + 1
byte_size = int(round(mem_size * (1024 ** unit_pow)))
return byte_size | 833657e51bb2c54b0e86684759e263d2f8b03ffe | 7,666 |
def is_valid_group(group_name, nova_creds):
"""
Checks to see if the configuration file contains a SUPERNOVA_GROUP
configuration option.
"""
valid_groups = [value['SUPERNOVA_GROUP'] for key, value in
nova_creds.items() if 'SUPERNOVA_GROUP'
in nova_creds[key].keys()]
if group_name in valid_groups:
return True
else:
return False | 6f94e88cfcea8775bab3c05a0720ba7df11f68cc | 7,669 |
def insertDoubleQuote(string, index):
""" Insert a double quote in the specified string at the specified index and return the string."""
return string[:index] + '\"' + string[index:] | 00d16f3bc619765895408f9fcdd3a7a6e428b153 | 7,672 |
def powerlaw(x, a, b, c):
"""Powerlaw function used by fitting software to characterise uncertainty."""
return a * x**b + c | e67a0be2f5faaff7867b713b43caec48910bad87 | 7,673 |
def readPeakList(peak_file):
"""
Read in list of peaks to delete from peaks_file. Comment lines (#) and
blank lines are ignored.
"""
f = open(peak_file,'r')
peak_list = f.readlines()
f.close()
peak_list = [l for l in peak_list if l[0] != "#" and l.strip() != ""]
peak_list = [l.strip() for l in peak_list]
return peak_list | 7c99f9fb18b36b658fe142a43adf18db7c42c7bd | 7,675 |
import numpy
def get_pandas_field_metadata(pandas_col_metadata, field_name):
"""
Fetch information for a given column. The column statistics returned
will be a bit different depending on if the types in the column are a
number or a string. 'NAN' values are stripped from statistics and don't
even show up in output.
"""
pmeta = pandas_col_metadata.get(field_name)
# Pandas may return numpy.nan for statistics below, or nothing at all.
# ALL possibly missing values are treated as NAN values and stripped at
# the end.
metadata = {
'name': field_name,
'type': 'string' if str(pmeta.dtype) == 'object' else str(pmeta.dtype),
'count': int(pmeta['count']),
'top': pmeta.get('top', numpy.nan),
# string statistics
'unique': pmeta.get('unique', numpy.nan),
'frequency': pmeta.get('freq', numpy.nan),
# numerical statistics
'25': pmeta.get('25%', numpy.nan),
'50': pmeta.get('50%', numpy.nan),
'75': pmeta.get('75%', numpy.nan),
'mean': pmeta.get('mean', numpy.nan),
'std': pmeta.get('std', numpy.nan),
'min': pmeta.get('min', numpy.nan),
'max': pmeta.get('max', numpy.nan),
}
# Remove all NAN values
cleaned_metadata = {k: v for k, v in metadata.items()
if isinstance(v, str) or not numpy.isnan(v)}
# Pandas has special types for things. Coerce them to be regular
# ints and floats
for name in ['25', '50', '75', 'mean', 'std', 'min', 'max']:
if name in cleaned_metadata:
cleaned_metadata[name] = float(cleaned_metadata[name])
for name in ['count', 'unique', 'frequency']:
if name in cleaned_metadata:
cleaned_metadata[name] = int(cleaned_metadata[name])
return cleaned_metadata | cbf1a740a202c36fa7b008451d44582e195d71f8 | 7,678 |
def deep_replace(arr, x, y):
"""
Help function for extended_euclid
"""
for i in range(len(arr)):
element = arr[i]
if type(element) == list:
arr[i] = deep_replace(element, x, y)
else:
if element == x:
arr[i] = y
return arr | 55ef1c7efe04d436f9ce96bda0f565a092131400 | 7,679 |
def find_pmp(df):
"""simple function to find Pmp on an IV curve"""
return df.product(axis=1).max() | 5ed7c14bc58a62f6168308ccd1dfa17e56e2db89 | 7,680 |
def readable_timedelta(days):
"""Print the number of weeks and days in a number of days."""
#to get the number of weeks we use integer division
weeks = days // 7
#to get the number of days that remain we use %, the modulus operator
remainder = days % 7
return "{} week(s) and {} day(s).".format(weeks, remainder) | 120f517939842b4e0686a57a3117221e3db63004 | 7,681 |
def isMessageBody(line: str) -> bool:
"""
Returns True if line has more than just whitepsace and unempty or is a comment (contains #)
"""
return not (line.isspace() or line.lstrip().startswith('#')) | 990ae3ff01f794a6c8d4d45ecb766a763c51dff8 | 7,683 |
def get_combinations(limit, numbers_count, combination):
"""Get all combinations of numbers_count numbers summing to limit."""
if sum(combination) >= limit:
return None
if numbers_count == 1:
return [combination + [limit - sum(combination)]]
combinations = []
for number in range(1, limit - numbers_count + 2):
next_combinations = get_combinations(limit,
numbers_count - 1,
combination + [number])
if next_combinations:
combinations.extend(next_combinations)
return combinations | caecaeb8a5ef5f68bc47936c3b4db3d7514b6c52 | 7,685 |
def bit_list_to_int(bit_list):
"""
Converts binary number represented as a list of 0's and 1's into its corresponding base 10
integer value.
Args:
bit_list: a binary number represented as a list of 0's and 1's
Returns:
The base 10 integer value of the input binary number
"""
bit_string = ''.join([('0','1')[b] for b in bit_list])
base_ten_representation = int(bit_string, 2)
return base_ten_representation | ade66899fe1d23a22c76cccf4ba57e9ad9bf0ba1 | 7,686 |
def max_labor_budget_rule(M):
"""
Put upper bound on total labor cost.
Using individual shift variables multiplied by their length and a tour
type specific cost multiplier. Could easily generalize this to make costs
be complex function of time of day, day of week, shift length, tour type,
or some combination of.
:param M: Model
:return: Constraint rule
"""
return sum(M.Shift[i, j, w, k, t] * M.lengths[k] * M.tt_cost_multiplier[t]
for (i, j, w, k, t) in M.okShifts) <= M.labor_budget | f2637e4b2dba8cc4eb6e5afcae57c45d1b9560d7 | 7,687 |
import re
def email(value: str):
"""
Extract email from document
Example Result: ['[email protected]', '[email protected]']
"""
_email_pat = r'[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+'
return re.findall(_email_pat, value) | c8f3dcb4163e99f0aefe7eb42e61b127ffbaa393 | 7,688 |
def TransposeTable(table):
"""Transpose a list of lists, using None to extend all input lists to the
same length.
For example:
>>> TransposeTable(
[ [11, 12, 13],
[21, 22],
[31, 32, 33, 34]])
[ [11, 21, 31],
[12, 22, 32],
[13, None, 33],
[None, None, 34]]
"""
transposed = []
rows = len(table)
cols = max(len(row) for row in table)
for x in range(cols):
transposed.append([])
for y in range(rows):
if x < len(table[y]):
transposed[x].append(table[y][x])
else:
transposed[x].append(None)
return transposed | d53dc20a9eff391560269e818e99d41f8dc2ce94 | 7,689 |
import os
import logging
def checksum_from_label(path):
"""Extract checksum from a label rather than calculating it.
:param path: Product path
:type path: str
:return: MD5 Sum for the file indicated by path
:rtype: str
"""
checksum = ""
product_label = path.split(".")[0] + ".xml"
if os.path.exists(product_label):
with open(product_label, "r") as lbl:
for line in lbl:
if "<md5_checksum>" in line:
checksum = line.split("<md5_checksum>")[-1]
checksum = checksum.split("</md5_check")[0]
logging.warning(
f"-- Checksum obtained from existing label:"
f" {product_label.split(os.sep)[-1]}"
)
break
return checksum | 69da6b07d091b0c296d09ec0d9a3d0586c34b978 | 7,690 |
def vvisegment2dict( link):
"""
Intern rutine for å gjøre om visveginfo-data til håndterbar liste
"""
start = round( float( link['FromMeasure'] ), 8 )
slutt = round( float( link['ToMeasure'] ), 8 )
mydict = { 'vegref' : str( link['County']).zfill(2) + str( link['Municipality'] ).zfill(2) + ' ' + \
link['RoadCategory'].upper() + link['RoadStatus'].lower() + str( link['RoadNumber']) + \
'hp' + str( link['RoadNumberSegment']) + ' m' + \
str(link['RoadNumberSegmentStartDistance'] ) + '-' + \
str( link['RoadNumberSegmentEndDistance']),
'veglenkesekvensid' : link['ReflinkOID'],
'startposisjon' : start,
'sluttposisjon' : slutt,
'kortform' : str( start ) + '-' + str( slutt ) + \
'@' + str( link['ReflinkOID']),
'wkt' : link['WKTGeometry']
}
return mydict | ad8c5de2065ee2e935b63674c7f4d11ba11bcff8 | 7,691 |
def percentage(value):
"""Return a float with 1 point of precision and a percent sign."""
return format(value, ".1%") | 43567c120e4994b54a92570405c02934eb989a6f | 7,692 |
def decode(packed_list):
"""
implement the function packed the string
"""
# Empty list of tuple
decode_str = ""
list_len = len(packed_list)
for i in range(list_len):
# element of packed list
str_tuple_count = packed_list[i]
# find number of counting from tuple
count = str_tuple_count[1]
while count:
# add the character in string for all count
decode_str = decode_str + str_tuple_count[0]
count = count - 1
return decode_str | d6fe8de66ead935a14e99b069d3b416089d5a93d | 7,695 |
def travel_space_separated(curr):
"""Print space separated linked list elements."""
if curr is None:
return ""
print(curr.data, end=' ')
travel_space_separated(curr._next) | 19213588f06a569560b236563975bcd6cb5254a0 | 7,696 |
def identity_matrix(dim):
"""Construct an identity matrix.
Parameters
----------
dim : int
The number of rows and/or columns of the matrix.
Returns
-------
list of list
A list of `dim` lists, with each list containing `dim` elements.
The items on the "diagonal" are one.
All other items are zero.
Examples
--------
>>> identity_matrix(4)
[[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]
"""
return [[1. if i == j else 0. for i in range(dim)] for j in range(dim)] | dd37f0c7df41478e23dd26df727341a37a201ec1 | 7,697 |
def kg2m3H2O_hot(kg):
"""kg -> m^3 (50 C hot water)"""
return kg/988.1 | 060b039db404014ab6cbea6aa5e416efc70aa8a2 | 7,698 |
import yaml
def load_yaml(file_path):
"""Load a yaml file into a dictionary"""
try:
with open(file_path, 'r') as file:
return yaml.safe_load(file)
except EnvironmentError: # parent of IOError, OSError *and* WindowsError where available
return None | 3d4fa37794bc99c352959e49057d2e9cfb0d4c92 | 7,700 |
import time
def timed_call(f, args):
"""Call function f with arguments args and time its run time.
Args:
f: The function to call
args: The arguments to pass to f
Returns:
Return the result of the function call and how much time it takes as tuple e.g. (result, time).
"""
start_time = time.time()
result = f(*args)
elapsed_time = time.time() - start_time
return result, round(elapsed_time, 3) | e592ecdf5ebb4aa3391b2500b2a3a20d2faa9b40 | 7,703 |
def count_words(texts):
"""
Counts the words in the given texts, ignoring puncuation and the like.
@param texts - Texts (as a single string or list of strings)
@return Word count of texts
"""
if type(texts) is list:
return sum(len(t.split()) for t in texts)
return len(texts.split()) | f08cbb1dcac3cbd6b62829cf4467167ae9b7694e | 7,704 |
def get_subnetwork(project_id, context):
""" Gets a subnetwork name. """
subnet_name = context.properties.get('subnetwork')
is_self_link = '/' in subnet_name or '.' in subnet_name
if is_self_link:
subnet_url = subnet_name
else:
subnet_url = 'projects/{}/regions/{}/subnetworks/{}'
subnet_url = subnet_url.format(
project_id,
context.properties['region'],
subnet_name
)
return subnet_url | de0217b7a78d3278d6dbf70db10b4c270aff2b15 | 7,705 |
def quadraticEval(a, b, c, x):
"""given all params return the result of quadratic equation a*x^2 + b*x + c"""
return a*(x**2) + b*x + c | cfb808435b50ec262ec14cd54cf9caf30f2bc4b8 | 7,706 |
def stringdb_escape_text(text):
"""Escape text for database_documents.tsv format."""
return text.replace('\\', '\\\\').replace('\t', '\\t') | 5d41b0b224cb314141b669ff721896d04a2fe2e8 | 7,707 |
import argparse
def parse_args():
"""
Parse command arguments.
"""
parser = argparse.ArgumentParser(description='validate data from starbust algo I for test (ex. chessboard test)')
parser.add_argument('path', help='path to starburst filtered file')
return parser.parse_args() | 544372e75b2dd56923883f13b6c7f3070ecc9e14 | 7,708 |
def friends(graph, user):
"""Returns a set of the friends of the given user, in the given graph"""
return set(graph.neighbors(user)) | 125c3cc21be4cc29f9ff6f0ff0bb60b35a1074ba | 7,710 |
def diagonal(a, offset=0, axis1=None, axis2=None, extract=True, axes=None):
"""
diagonal(a, offset=0, axis1=None, axis2=None)
Return specified diagonals.
If `a` is 2-D, returns the diagonal of `a` with the given offset,
i.e., the collection of elements of the form ``a[i, i+offset]``. If
`a` has more than two dimensions, then the axes specified by `axis1`
and `axis2` are used to determine the 2-D sub-array whose diagonal is
returned. The shape of the resulting array can be determined by
removing `axis1` and `axis2` and appending an index to the right equal
to the size of the resulting diagonals.
Parameters
----------
a : array_like
Array from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal. Can be positive or
negative. Defaults to main diagonal (0).
axis1 : int, optional
Axis to be used as the first axis of the 2-D sub-arrays from which
the diagonals should be taken. Defaults to first axis (0).
axis2 : int, optional
Axis to be used as the second axis of the 2-D sub-arrays from
which the diagonals should be taken. Defaults to second axis (1).
Returns
-------
array_of_diagonals : ndarray
If `a` is 2-D, then a 1-D array containing the diagonal and of the
same type as `a` is returned unless `a` is a `matrix`, in which case
a 1-D array rather than a (2-D) `matrix` is returned in order to
maintain backward compatibility.
If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
are removed, and a new axis inserted at the end corresponding to the
diagonal.
Raises
------
ValueError
If the dimension of `a` is less than 2.
Notes
-----
Unlike NumPy's, the cuNumeric implementation always returns a copy
See Also
--------
numpy.diagonal
Availability
--------
Multiple GPUs, Multiple CPUs
"""
return a.diagonal(
offset=offset, axis1=axis1, axis2=axis2, extract=extract, axes=axes
) | e18a9ca2dcab7beb5891f701cdc0f26c3943f749 | 7,711 |
def ctd_sbe16digi_preswat(p0, t0, C1, C2, C3, D1, D2, T1, T2, T3, T4, T5):
"""
Description:
OOI Level 1 Pressure (Depth) data product, which is calculated using
data from the Sea-Bird Electronics conductivity, temperature and depth
(CTD) family of instruments.
This data product is derived from SBE 16Plus instruments outfitted with
a digiquartz pressure sensor. This applies to the CTDBP-N,O instruments
only.
Implemented by:
2013-05-10: Christopher Wingard. Initial Code.
2013-05-10: Christopher Wingard. Minor edits to comments.
2014-01-31: Russell Desiderio. Standardized comment format.
2014-01-31: Russell Desiderio. Modified algorithm to use pressure [Hz] (pf)
to calculate pressure period instead of pressure [counts] (p0).
See SeaBird 16Plus V2 User Manual (reference (2)), page 57, item 5.
Usage:
p = ctd_sbe16digi_preswat(p0,t0,C1,C2,C3,D1,D2,T1,T2,T3,T4,T5)
where
p = sea water pressure (PRESWAT_L1) [dbar]
p0 = raw pressure (PRESWAT_L0) [counts]
t0 = raw temperature from pressure sensor thermistor [counts]
C1 = digiquartz pressure calibration coefficients
C2 = digiquartz pressure calibration coefficients
C3 = digiquartz pressure calibration coefficients
D1 = digiquartz pressure calibration coefficients
D2 = digiquartz pressure calibration coefficients
T1 = digiquartz pressure calibration coefficients
T2 = digiquartz pressure calibration coefficients
T3 = digiquartz pressure calibration coefficients
T4 = digiquartz pressure calibration coefficients
T5 = digiquartz pressure calibration coefficients
References:
OOI (2012). Data Product Specification for Pressure (Depth). Document
Control Number 1341-00020. https://alfresco.oceanobservatories.org/
(See: Company Home >> OOI >> Controlled >> 1000 System Level >>
1341-00020_Data_Product_SPEC_PRESWAT_OOI.pdf)
OOI (2011). SeaBird 16Plus V2 User Manual. 1341-00020_PRESWAT Artifact.
https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >>
>> REFERENCE >> Data Product Specification Artifacts >> 1341-00020_PRESWAT >>
PRESWAT_SeaBird_16PlusV2_2009.pdf)
"""
# Convert raw pressure input to frequency [Hz]
pf = p0 / 256.0
# Convert raw temperature input to voltage
tv = t0 / 13107.0
# Calculate U (thermistor temp):
U = (23.7 * (tv + 9.7917)) - 273.15
# Calculate calibration parameters
C = C1 + C2 * U + C3 * U**2
D = D1 + D2 * U
T0 = T1 + T2 * U + T3 * U**2 + T4 * U**3 + T5 * U**4
# Calculate T (pressure period, in microseconds):
T = (1.0 / pf) * 1.0e6
# compute pressure in psi, rescale and compute in dbar and return
p_psi = C * (1.0 - T0**2 / T**2) * (1.0 - D * (1.0 - T0**2 / T**2))
p_dbar = (p_psi * 0.689475729) - 10.1325
return p_dbar | 3756752c661773bd74436311a278efdaa3d3913f | 7,714 |
import hashlib
def sha256(file: str):
"""
Reads a file content and returns its sha256 hash.
"""
sha = hashlib.sha256()
with open(file, "rb") as content:
for line in content:
sha.update(line)
return sha.hexdigest() | c6babc2939e25228df25827a5a0b383d6c68dd07 | 7,715 |
def lookup_capacity(lookup, environment, ant_type, frequency,
bandwidth, generation):
"""
Use lookup table to find the combination of spectrum bands
which meets capacity by clutter environment geotype, frequency,
bandwidth, technology generation and site density.
"""
if (environment, ant_type, frequency, bandwidth, generation) not in lookup:
raise KeyError("Combination %s not found in lookup table",
(environment, ant_type, frequency, bandwidth, generation))
density_capacities = lookup[
(environment, ant_type, frequency, bandwidth, generation)
]
return density_capacities | 3bd132f97022acfe33c4bc6d706265e808679eae | 7,718 |
import json
def to_json(response):
""" Return a response as JSON. """
assert response.status_code == 200
return json.loads(response.get_data(as_text=True)) | 4fb4d62eb8b793363394b6d0759a923f90315072 | 7,719 |
def dots2utf8(dots):
""" braille dots to utf-8 hex codes"""
code=0
for number in dots:
code += 2**(int(number)-1)
return hex(0x2800 + code) | 0406c3cf18d5dbd66ea35b0862785371cdd68796 | 7,723 |
import ast
def doCompare(op, left, right):
"""Perform the given AST comparison on the values"""
top = type(op)
if top == ast.Eq:
return left == right
elif top == ast.NotEq:
return left != right
elif top == ast.Lt:
return left < right
elif top == ast.LtE:
return left <= right
elif top == ast.Gt:
return left > right
elif top == ast.GtE:
return left >= right
elif top == ast.Is:
return left is right
elif top == ast.IsNot:
return left is not right
elif top == ast.In:
return left in right
elif top == ast.NotIn:
return left not in right | b82a1c4d101428cf9ded532d65539cfe3195d8a1 | 7,725 |
def get_interface_by_name(interfaces, name):
"""
Return an interface by it's devname
:param name: interface devname
:param interfaces: interfaces dictionary provided by interface_inspector
:return: interface dictionary
"""
for interface in interfaces:
if interface['devname'] == name:
return interface | 9d63bf667a0677ba7d0c3fdde2b4b35affc3b72b | 7,726 |
import unicodedata
def trata_texto(texto):
"""
Trata textos convertendo para maiusulo,\n
sem acentos e espaços indesejaveis.
"""
texto = texto.strip().upper()
texto = unicodedata.normalize("NFKD", texto)
texto = texto.encode("ascii", "ignore")
texto = texto.decode("utf-8").upper()
# print(f"trata texto: \"{texto}\"")
return(texto) | 0cced9e55fd3fc15a9cdbaa3899519658668025c | 7,727 |
def normalize_trans_probs(p):
"""
Normalize a set of transition probabilities.
Parameters
----------
p : pandas.DataFrame, dtype float
Unnormalized transition probabilities. Indexed by
source_level_idx, destination_level_idx.
Returns
-------
pandas.DataFrame, dtype float
Normalized transition probabilities: the sum of
all probabilites with the same source_level_idx sum to one.
Indexed by source_level_idx, destination_level_idx.
"""
p_summed = p.groupby(level=0).sum()
index = p.index.get_level_values("source_level_idx")
p_norm = p / p_summed.loc[index].values
p_norm = p_norm.fillna(0.0)
return p_norm | d484c4ac08ee785e5451b1aa92ff2b85fc945384 | 7,728 |
def get_number_of_ones(n):
"""
Deterine the number of 1s ins the binary representation of
and integer n.
"""
return bin(n).count("1") | 83fb14c29064008dd9f8e7ecea4c1d9dfae1dafa | 7,729 |
from typing import Iterable
from typing import Dict
from typing import Sequence
import hashlib
import mmap
def verify_checksums(sources: Iterable[str], hashes: Dict[str, Sequence[str]]) -> bool:
"""Verify checksums for local files.
Prints a message whenever there is a mismatch.
Args:
sources: An iterable of source strings.
hashes: A dictionary of hash name -> hashes.
For each entry, the list of hashes corresponds to `sources`
in order but may be shorter.
Returns:
True if no checksums are mismatched, otherwise False.
"""
valid = True
hashlib_warnings = set()
for i, source in enumerate(sources):
try:
source_file, _ = source.split("::")
except ValueError:
source_file = source
for hashname, source_hashes in hashes.items():
try:
expected_digest = source_hashes[i]
except IndexError:
continue
if expected_digest.lower() == "skip":
continue
try:
h = hashlib.new(hashname)
except ValueError:
# Hopefully unlikely. As of the time of writing, all of HASHES are
# in hashes.algorithms_guaranteed.
if hashname not in hashlib_warnings:
print(
f"Warning: Your version of hashlib doesn't support {hashname}"
)
hashlib_warnings.add(hashname)
continue
try:
with open(source_file, "rb") as f:
# Memory map in case the file is large
contents = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
h.update(contents) # type: ignore
except FileNotFoundError:
break # No point trying other hashes
actual_digest = h.hexdigest()
if expected_digest != actual_digest:
print(source_file)
print(f"\tExpected ({hashname}): {expected_digest}")
print(f"\tActual ({hashname}): {actual_digest}")
valid = False
return valid | 95abd66c3e6a007b8df8b2caaecde8a85a1f0886 | 7,730 |
def add_column(colname, desc=None):
"""Adds column in the form of dict."""
return {'name': colname, 'desc': desc} | e0b985f71e17bfef6096d1433c84b5c163d343ff | 7,732 |
def _extreact_qml_file_info(file):
"""Returns file object in QML-ready format"""
return {
"name": file["name"],
"path": file["path"],
"isFile": file["is_file"],
"isDir": file["is_dir"],
"level": file["level"]
} | 4d28a0c1e440023ca887a693a2aea5dbd71d336b | 7,734 |
def check_cn_match(sv_list, cn_increase, cn_decrease, final_cn):
"""
Check that the CNV combination produces the right final copy number.
"""
if sv_list == []:
return False
initial_cn = 2
for sv in sv_list:
if sv in cn_increase:
initial_cn += 1
if sv in cn_decrease:
initial_cn -= 1
if initial_cn == final_cn:
return True
return False | a9d45b1421b5b6f5ce085df7e2f0c8040bffd163 | 7,735 |
def rotateMatrix(m):
"""
rotate matrix
:param m: matrix
:type m: list of list of integers
:return: rotated matrix
:rtype: list of list
"""
for i in range(int(len(m) / 2)):
last_layer = len(m) - i - 1
for j in range(i, last_layer):
offset = j - i
top = m[i][j]
m[i][j] = m[last_layer-offset][i]
m[last_layer- offset][i] = m[last_layer][last_layer - offset]
m[last_layer][last_layer - offset] = m[j][last_layer]
m[j][last_layer] = top
return m | 198c8c28c29c49fee1d26d603e52ec2da43d82a5 | 7,736 |
import re
def GetUniqueName(context, name):
""" Fixup any sbsar naming collision """
foundName = False
nameCount = 1
lastChar = ''
for sb in context.scene.loadedSbsars:
if sb.name.startswith(name):
foundName = True
# find the highest value suffix on the name
lastChar = re.findall('^.*_([0-9]+)$', sb.name)
if len(lastChar) > 0:
if lastChar[0].isnumeric:
currentCount = int(lastChar[0]) + 1
if currentCount > nameCount:
nameCount = currentCount
# append the new suffix
if foundName:
name = name + '_' + str(nameCount)
return name | fe8b868ec791af091eb0e78abea2549b7e724adf | 7,737 |
def get_least_sig_bit(band):
"""Return the least significant bit in color value"""
mask = 0x1
last_bit = band & mask
return str(last_bit) | 9d56bc5fdbf613f31bf7b21ee08f4f753b3a92db | 7,738 |
import os
import json
import subprocess
import re
def get_status(jobdir, jobid=None):
"""
Given list of jobs, returns status of each.
"""
cmd_template = "aws batch describe-jobs --jobs {}"
if jobid is None:
print(("Describing jobs in {}/ids/...".format(jobdir)))
jobs = os.listdir(jobdir + "/ids/")
for job in jobs:
with open("{}/ids/{}".format(jobdir, job), "r") as inf:
submission = json.load(inf)
cmd = cmd_template.format(submission["jobId"])
print(("... Checking job {}...".format(submission["jobName"])))
out = subprocess.check_output(cmd, shell=True)
status = re.findall(
'"status": "([A-Za-z]+)",', out.decode("utf-8"))[0]
print(("... ... Status: {}".format(status)))
return 0
else:
print(("Describing job id {}...".format(jobid)))
cmd = cmd_template.format(jobid)
out = subprocess.check_output(cmd, shell=True)
status = re.findall('"status": "([A-Za-z]+)",', out.decode("utf-8"))[0]
print(("... Status: {}".format(status)))
return status | 665ca433ca90ed7d0851bfd4d0d1a1e800fcc4ad | 7,742 |
def denormalize_image(image):
""" Undo normalization of image. """
image = (image / 2) + 0.5
return image | c49a1465d89e317a1c8013969fbee913bf705f4a | 7,744 |
def find_overlapping_selections(selections, selection_strings):
"""
Given a list of atom selections (:py:class:`scitbx.array_family.flex.bool`
arrays) and corresponding selection strings, inspect the selections to
determine whether any two arrays overlap. Returns a tuple of the first pair
of selection strings found to overlap, or None if all selections are unique.
"""
assert (len(selections) == len(selection_strings))
for i_sel, selection1 in enumerate(selections[:-1]):
for j_sel in range(i_sel + 1, len(selections)):
selection2 = selections[j_sel]
if ((selection1 & selection2).count(True) > 0):
return (selection_strings[i_sel], selection_strings[j_sel])
return None | fffd25a98cbb2184d372c5904718f30cd7c97d1a | 7,745 |
import imghdr
def check_bmp(input_file_name):
""" Check if filename is a BMP file
:param input_file_name: input file name
:type input_file_name: string
:return whether the file is .bmp
:rtype boolean
"""
return 'bmp' == imghdr.what(input_file_name) | 3a8749832418d3976825a79a0bd89c7a77649fe8 | 7,746 |
import socket
def allowed_gai_family():
"""
https://github.com/shazow/urllib3/blob/master/urllib3/util/connection.py
"""
return socket.AF_INET #* this to force use ipv4 (issue with ipv6, get 2s delay) | 97d983d7c573ba73a2833ca07513a37ce17b521d | 7,748 |
def _get_list_pairs(pairs, idx_class_dict, num_feature):
"""Creates flattened list of (repeated) pairs.
The indexing corresponds with the flattened list of T values and the
flattened list of p-values obtained from _get_list_signif_scores().
Arguments:
pairs: [(int, int)]
list of pairs of classes which were compared during interpretation
idx_class_dict: {int: string}
dictionary mapping class indices to classes
num_feature: int
number of features
Returns:
list_pairs: [(string, string)]
list of pairs of compared classes with length num_feature * num_pair
"""
list_pairs = [[p] * num_feature for p in pairs]
list_pairs = [p for sublist in list_pairs for p in sublist] # flatten
list_pairs = [[idx_class_dict[p[0]], idx_class_dict[p[1]]]
for p in list_pairs] # lookup class
return list_pairs | fbdff91f18587894a15a9eeb77fc1427779bc6ae | 7,749 |
def evaluate_predictions_per_char(predictions, original_sentences, answers):
"""Evaluates predictions per char, returning the accuracy and lists of correct and incorrect sentences."""
predicted_chars = []
sentences_with_preds = []
errors = set()
correct_sentences = []
total = 0
correct = 0
for pred in predictions:
predicted_chars.append(pred["predictions"]["predictions"])
sentences_with_preds.append(pred["predictions"]["text_with_preds"])
for pred_chars, sent_with_pred, ans, orig_sent in zip(
predicted_chars, sentences_with_preds, answers, original_sentences
):
sent_correct = True
for p, a in zip(pred_chars, ans):
total += 1
if p != a:
errors.add(f"{sent_with_pred}\t{orig_sent}\t{ans}")
sent_correct = False
else:
correct += 1
if sent_correct:
correct_sentences.append(sent_with_pred)
acc = correct / total
return acc, errors, correct_sentences | fb27ce85ad0843e474930802b06ab89849d87aba | 7,750 |
def n2es(x):
"""None/Null to Empty String
"""
if not x:
return ""
return x | cf73dd72230040cfc1c71b248b4cdd490004a213 | 7,751 |
def get_default_benchmark_simulated_datasets():
"""Default parameter sets to generate simulated data for benchmarking.
The training periods and forecast horizon are chosen to complement default real datasets.
Every tuple has the following structure:
(data_name, frequency, training_periods, forecast_horizon)"""
simulation_parameters = [
# daily data
("daily_simulated", "D", 3*30, [30]),
("daily_simulated", "D", 2*365, [365]),
# hourly data
("hourly_simulated", "H", 7*24, [24]),
("hourly_simulated", "H", 30*24, [7*24]),
("hourly_simulated", "H", 365*24, [6*30*24]),
("hourly_simulated", "H", 4*365*24, [365*24])
]
return simulation_parameters | aa0d7017fc693e71c016d80f7e50cc1c9a6cdc24 | 7,752 |
import os
import json
def load_config(cfg_path):
"""Load the config from a json file"""
if not os.path.exists(cfg_path):
raise RuntimeError('file {} does not exists!'.format(cfg_path))
with open(cfg_path, 'r') as f:
cfg = json.load(f)
return cfg | dcb1f309f7868191854203994b91cb28f759b5dd | 7,753 |
import re
def __remove_punctuation(string):
"""
Remove all the punctuation symbols and characters in a string.
:param string: the string where the punctation characters must be removed.
:return: a string without punctuation.
"""
return re.sub("[!@#£$.()/-]", "", string) | bb2015dc040fedb3656099b57b103f7fb9c416b9 | 7,755 |
def pad_chunk_columns(chunk):
"""Given a set of items to be inserted, make sure they all have the
same columns by padding columns with None if they are missing."""
columns = set()
for record in chunk:
columns.update(record.keys())
for record in chunk:
for column in columns:
record.setdefault(column, None)
return chunk | 2e5d91ad03ad613b55bcaea97fd8c0785eec977f | 7,756 |
def get_next_match( map ):
""" This changes the inverse table by removing hits"""
todelete = []
retval = None
for px,s in map.iteritems():
if len(s) > 1:
retval = s.pop(),s.pop()
if retval[0][0] == retval[1][0]:
s.add( retval[1] )
#print retval, s
retval = None
continue
else:
break
else:
todelete.append(px)
for k in todelete:
del map[k]
return retval | a1154773fb466f976c8145787200c6489f800f5f | 7,757 |
import os
import pickle
def read_pickle(text_folder_path, file_name):
"""
Read a pickled file from a directory.
Parameters:
text_folder_path (string): path to the directory where the file is located
file_name (string): name of file to read.
Returns:
read_text (string): text read from the pickle file.
"""
with open(os.path.join(text_folder_path, file_name), 'rb') as filehandle:
# read the data as binary data stream
read_text = pickle.load(filehandle)
return read_text | 046dba6305a7b786715d3af89fbda597851ce684 | 7,758 |
def is_negligible(in_text):
"""" Checks if text or tail of XML element is either empty string or None"""
if in_text is None:
return True
elif type(in_text) is str:
if in_text.strip(chr(160) + ' \t\n\r') == '':
return True
else:
return False
else:
raise TypeError | 3e9e5276e0b58518d942fc3e2a16f64223eb4e0d | 7,759 |
def make_a_tweet(Hash, Message, Reduced):
"""
Generate a valid tweet using the info passed in.
"""
tweet = Hash + ': ' + Message
if Reduced:
tweet += '…'
return tweet | 1d0c3246874f8a6c9b3cb1b1f7cf27040ff1bd1b | 7,761 |
import os
def search_with_id(student_id):
"""
Obtain the username for a user with a given Student ID number (if server is tied into WPI network).
:param student_id: Student ID number to use in the search
:return: The user's network username
"""
try:
username = os.popen('id +' + str(student_id) + ' -un').read().replace('\n', '')
if username not in ['', None]:
return username
except:
pass
return None | f7792ba2a2c891c22b07988846dd6bd8016676c7 | 7,763 |
def remainder(numbers):
"""Function for finding the remainder of 2 numbers divided.
Parameters
----------
numbers : list
List of numbers that the user inputs.
Returns
-------
result : int
Integer that is the remainder of the numbers divided.
"""
return numbers[0] % numbers[1] | 4c17d717ef52a7958af235e06feff802ed9c3802 | 7,764 |
def ret_int(potential):
"""Utility function to check the input is an int, including negative."""
try:
return int(potential)
except:
return None | 682ab4987e94d7d758be5957b610dc1ee72156a1 | 7,769 |
def read_file(file_name):
"""Read contents of file."""
with open(file_name, encoding='utf8') as file:
return file.read().rstrip().lstrip() | cb8e85c076baa97d8f1a5361abe6ab4ee5b9f00c | 7,770 |
def RGB2HEX(color):
"""In: RGB color array
Out: HEX string"""
return "#{:02x}{:02x}{:02x}".format(int(color[0]), int(color[1]), int(color[2])) | 7283f0a8a72d83496c93084ab5c514a0184682c7 | 7,771 |
def signed_area(contour):
"""Return the signed area of a contour.
Parameters
----------
contour: sequence of x,y coordinates, required
Returns
-------
area: :class:`float`
Signed area of the given closed contour. Positive
if the contour coordinates are in counter-clockwise
order, negative otherwise.
"""
result = 0
for index, (x1, y1) in enumerate(contour):
x2, y2 = contour[(index + 1) % len(contour)]
result += (x2 - x1) * (y2 + y1)
return result | 79a60d064fad70afb8902d6d66b980d778215de3 | 7,772 |
def set_initxval(constr_func, constr_values):
""" Calculates the initial value of xval.
Args:
constr_func (:obj:`list`): constraint functions applied.
constr_values (:obj:`list`): Values of constraint functions applied.
Returns:
initial_xval (:obj:`float`): First value of xval
"""
idx = [i for i, e in enumerate(constr_func) if e == constr_func[0]]
if len(idx) > 1:
initial_xval = ((abs(constr_values[idx[0]]) + abs(constr_values[idx[1]]))/2)/100
else:
initial_xval = abs(constr_values[idx[0]])/100
return initial_xval | 434608817ed261538e605b8a8d4e4b53c0749906 | 7,774 |
def deep_dictionary_check(dict1: dict, dict2: dict) -> bool:
"""Used to check if all keys and values between two dicts are equal, and recurses if it encounters a nested dict."""
if dict1.keys() != dict2.keys():
return False
for key in dict1:
if isinstance(dict1[key], dict) and not deep_dictionary_check(dict1[key], dict2[key]):
return False
elif dict1[key] != dict2[key]:
return False
return True | b5011c2c79c79ecc74953e5f44db5c4a62464c07 | 7,776 |
def unshared_copy(inList):
"""perform a proper deepcopy of a multi-dimensional list (function from http://stackoverflow.com/a/1601774)"""
if isinstance(inList, list):
return list( map(unshared_copy, inList) )
return inList | 44cfd186e02a70a51cd29a3cdf01c698c1380d02 | 7,777 |
def SEARCH(find_text, within_text, start_num=1):
"""
Returns the position at which a string is first found within text, ignoring case.
Find is case-sensitive. The returned position is 1 if within_text starts with find_text.
Start_num specifies the character at which to start the search, defaulting to 1 (the first
character of within_text).
If find_text is not found, or start_num is invalid, raises ValueError.
>>> SEARCH("e", "Statements", 6)
7
>>> SEARCH("margin", "Profit Margin")
8
>>> SEARCH(" ", "Profit Margin")
7
>>> SEARCH('"', 'The "boss" is here.')
5
>>> SEARCH("gle", "Google")
4
>>> SEARCH("GLE", "Google")
4
"""
# .lower() isn't always correct for unicode. See http://stackoverflow.com/a/29247821/328565
return within_text.lower().index(find_text.lower(), start_num - 1) + 1 | 1afc843583695a801aca28b5013a6afa21221094 | 7,778 |
def GetDefaultAndCustomPreset(presets):
""" Get the default and custom preset values from the saved property group"""
defaultPreset = ''
customPreset = ''
if presets:
for p in presets:
if p.name == 'Default':
defaultPreset = p.value
if p.name == 'Custom':
customPreset = p.value
return defaultPreset, customPreset | ad5ee60ec995a1662f7c674a11ebf11bf16ab3be | 7,779 |
def getvaluelist(doclist, fieldname):
"""
Returns a list of values of a particualr fieldname from all Document object in a doclist
"""
l = []
for d in doclist:
l.append(d.fields[fieldname])
return l | b85d171b537636477b00021ce717788b5e4735da | 7,780 |
import numpy
def to_cpu_async(array, stream=None):
"""Copies the given GPU array asynchronously to host CPU.
Args:
array: Array to be sent to GPU.
stream (~pycuda.driver.Stream): CUDA stream.
Returns:
~numpy.ndarray: Array on CPU.
If given ``array`` is already on CPU, then this function just returns
``array`` without performing any copy.
"""
if isinstance(array, numpy.ndarray):
return array
return array.get_async(stream=stream) | 2149ddf3de42a7ea41e59810dea3151f5eb97d9b | 7,781 |
import numpy
def preprocess_depth(depth_data):
""" preprocess depth data
This function "reverses" the original recorded data, and
convert data into grayscale pixel value.
The higher the value of a pixel, the closer to the camera.
Parameters
----------
depth_data : numpy.ndarray
The data coming from the depth channel
Returns
-------
numpy.ndarray :
The preprocessed depth data, to be saved as an image
"""
# get background / foreground (i.e. zero-valued pixels are considered as background)
background = numpy.where(depth_data <= 0)
foreground = numpy.where(depth_data > 0)
# trick such that the highest value is the closest to the sensor
depth_data = depth_data * (-1)
max_significant = numpy.max(depth_data[foreground])
min_significant = numpy.min(depth_data[foreground])
# normalize to 0-255 and set background to zero
new_depth_data = 255 * ((depth_data - min_significant) / float(max_significant - min_significant))
new_depth_data[background] = 0
return new_depth_data | 25aa5f13594752f262a27b9ea99ee72c38ab3db7 | 7,782 |
def changed_keys(a: dict, b: dict) -> list:
"""Compares two dictionaries and returns list of keys where values are different"""
# Note! This function disregards keys that don't appear in both dictionaries
return [k for k in (a.keys() & b.keys()) if a[k] != b[k]] | 77ae93614a2c736091886024338c1b4ecb1f6ec1 | 7,783 |
def _negation(value):
"""Parse an optional negation after a verb (in a Gherkin feature spec)."""
if value == "":
return False
elif value in [" not", "not"]:
return True
else:
raise ValueError("Cannot parse '{}' as an optional negation".format(value)) | c13f06b8a11ecbe948a4c2d710e165e1731f08fd | 7,784 |
import re
import requests
import json
def get_all_stealth_cards():
"""Returns a list of all the Stealth Cards"""
class StealthCard:
def __init__(self, card_info):
self.name = card_info["Name"]
self.img_url = card_info["ImageUrl"]
self.cost = card_info["Cost"]
self.description = card_info["CardText"]
self.intrigue = 0
if "Intrigue" in card_info["CardText"]:
intrigue_val = re.search("Intrigue (\d+):", card_info["CardText"])
if intrigue_val:
self.intrigue = int(intrigue_val.group(1))
if card_info["Influence"]:
self.influence = {
"F": card_info["Influence"].count("F"),
"T": card_info["Influence"].count("T"),
"J": card_info["Influence"].count("J"),
"P": card_info["Influence"].count("P"),
"S": card_info["Influence"].count("S"),
}
else:
self.influence = {"F": 0, "T": 0, "J": 0, "P": 0, "S": 0}
all_stealth_cards = list()
response = requests.get("https://eternalwarcry.com/content/cards/eternal-cards.json")
data = json.loads(response.text.encode('utf8'))
for row in data:
try:
if re.search("Stealth", row["CardText"]):
all_stealth_cards.append(StealthCard(row))
except KeyError:
"""Card does not contain Card Text."""
pass
return all_stealth_cards | 93abd19276a600f9b344ca5d72a87d7a7f0a9e1a | 7,785 |
from typing import Any
from pathlib import Path
def config_to_ext(conf: Any) -> str:
"""Find the extension(flag) of the configuration"""
if isinstance(conf, dict):
return "dict"
conf = Path(conf)
out = conf.suffix.lstrip(".").lower()
if not out and conf.name.lower().endswith("rc"):
out = "rc"
if out in ("ini", "rc", "cfg", "conf", "config"):
return "ini"
if out == "yml":
return "yaml"
return out | 53a4c452c050266736d1fddc1bd18634702e2f5a | 7,786 |
def get_status_messages(connection, uid, timeline='home:', page=1, count=30):
"""默认从主页从时间线获取给定页数的最新状态消息,另外还可以获取个人时间线"""
# 获取时间线上最新的状态消息ID
statuses = connection.zrevrange('%s%s' % (timeline, uid),
(page - 1) * count, page * count - 1)
pipe = connection.pipeline(True)
for sid in statuses:
pipe.hgetall('status:%s' % sid)
return filter(None, pipe.execute()) | 21af458155d7de793b420047178507d1f77296d2 | 7,787 |
import warnings
def ensure_all_columns_are_used(num_vars_accounted_for,
dataframe,
data_title='long_data'):
"""
Ensure that all of the columns from dataframe are in the list of used_cols.
Will raise a helpful UserWarning if otherwise.
Parameters
----------
num_vars_accounted_for : int.
Denotes the number of variables used in one's function.
dataframe : pandas dataframe.
Contains all of the data to be converted from one format to another.
data_title : str, optional.
Denotes the title by which `dataframe` should be referred in the
UserWarning.
Returns
-------
None.
"""
dataframe_vars = set(dataframe.columns.tolist())
num_dataframe_vars = len(dataframe_vars)
if num_vars_accounted_for == num_dataframe_vars:
pass
elif num_vars_accounted_for < num_dataframe_vars:
msg = "Note, there are {:,} variables in {} but the inputs"
msg_2 = " ind_vars, alt_specific_vars, and subset_specific_vars only"
msg_3 = " account for {:,} variables."
warnings.warn(msg.format(num_dataframe_vars, data_title) +
msg_2 + msg_3.format(num_vars_accounted_for))
else: # This means num_vars_accounted_for > num_dataframe_vars
msg = "There are more variable specified in ind_vars, "
msg_2 = "alt_specific_vars, and subset_specific_vars ({:,}) than there"
msg_3 = " are variables in {} ({:,})"
warnings.warn(msg +
msg_2.format(num_vars_accounted_for) +
msg_3.format(data_title, num_dataframe_vars))
return None | 0470503c8adac107f85dd628409fc3ca8de641d3 | 7,788 |
def arrayizeDict(g):
"""Transforms a dict with unique sequential integer indices into an array"""
mk = max(g.keys())
ga = [None] * mk
for k, v in g.items():
ga[k - 1] = v
return ga | d2da3848436be8d47b3f338797eefd87cfa4344c | 7,790 |
def get_values(units, *args):
"""
Return the values of Quantity objects after optionally converting to units.
Parameters
----------
units : str or `~astropy.units.Unit` or None
Units to convert to. The input values are converted to ``units``
before the values are returned.
args : `~astropy.units.Quantity`
Quantity inputs.
"""
if units is not None:
result = [a.to_value(unit) for a, unit in zip(args, units)]
else:
result = [a.value for a in args]
return result | 462e336fa2f4bcdfd77ba43658c37cf4c6782c75 | 7,792 |
def cli(ctx, library_id, filesystem_paths, folder_id="", file_type="auto", dbkey="?", link_data_only="", roles=""):
"""Upload a set of files already present on the filesystem of the Galaxy server to a library.
Output:
"""
return ctx.gi.libraries.upload_from_galaxy_filesystem(library_id, filesystem_paths, folder_id=folder_id, file_type=file_type, dbkey=dbkey, link_data_only=link_data_only, roles=roles) | c0b269344da39a2ae9f43280ec1d7bf69a6a345c | 7,793 |
import numpy
def h2e(az, za, lat):
"""
Horizon to equatorial.
Convert az/za (radian) to HA/DEC (degrees, degrees)
given an observatory latitude (degrees)
"""
sa = numpy.sin(az)
ca = numpy.cos(az)
se = numpy.sin(numpy.pi / 2.0 - za)
ce = numpy.cos(numpy.pi / 2.0 - za)
sp = numpy.sin(lat * numpy.pi / 180.0)
cp = numpy.cos(lat * numpy.pi / 180.0)
# HA,Dec as x,y,z */
x = - ca * ce * sp + se * cp
y = - sa * ce
z = ca * ce * cp + se * sp
# To spherical */
r = numpy.sqrt(x * x + y * y)
ha = numpy.arctan2(y, x) * 180.0 / numpy.pi
dec = numpy.arctan2(z, r) * 180.0 / numpy.pi
return (ha, dec) | 89f82c0035eaf9b73d3c2adf07b2ed1145c822f9 | 7,794 |
def _add_metadata_as_attrs_da(data, units, description, dtype_out_vert):
"""Add metadata attributes to DataArray"""
if dtype_out_vert == 'vert_int':
if units != '':
units = '(vertical integral of {0}): {0} kg m^-2)'.format(units)
else:
units = '(vertical integral of quantity with unspecified units)'
data.attrs['units'] = units
data.attrs['description'] = description
return data | 3bdead2b0b341a065ef1e147660605c9c591c0df | 7,795 |
def load_uvarint_b(buffer):
"""
Variable int deserialization, synchronous from buffer.
:param buffer:
:return:
"""
result = 0
idx = 0
byte = 0x80
while byte & 0x80:
byte = buffer[idx]
result += (byte & 0x7F) << (7 * idx)
idx += 1
return result | f45534114fa310c027e9ff7627a41bfd51950b48 | 7,796 |
def parse_print_dur(print_dur):
"""
Parse formatted string containing print duration to total seconds.
>>> parse_print_dur(" 56m 47s")
3407
"""
h_index = print_dur.find("h")
hours = int(print_dur[h_index - 2 : h_index]) if h_index != -1 else 0
m_index = print_dur.find("m")
minutes = int(print_dur[m_index - 2 : m_index]) if m_index != -1 else 0
s_index = print_dur.find("s")
seconds = int(print_dur[s_index - 2 : s_index]) if s_index != -1 else 0
return hours * 60 * 60 + minutes * 60 + seconds | 7b1a29f31ba38e7d25b4dca9600d4be96a1da3ac | 7,797 |
def welcoming():
"""
Welcoming for user
"""
return("""
*************************************************
** **
** Welcome to speech emotion recognition! **
** **
*************************************************
""") | b3bcd19adda9cc8aa9678e823d1e524ba36f80af | 7,798 |
def _find_vlan(mac, domain_interfaces):
"""
Given a mac address and a collection of domains and their network
interfaces, find the domain that is assigned the interface with the
desired mac address.
Parameters
----------
mac : str
The MAC address.
domain_interfaces : dict
The list of domain interfaces.
Returns
-------
The domain
"""
for d, i in domain_interfaces.items():
if i.get(mac):
return d
return None | c4f667dd80146de83157e8966cb34e5867457397 | 7,799 |
import os
import re
def canonicalize_path(path, prefix=None):
"""Canonicalize a given path.
Remove the prefix from the path. Otherwise, if the path starts with
/build/XXX/package-version then remove this prefix.
Args:
path
Returns:
Canonicalized path.
"""
dummy_prefix = '/build/dummy_pkg/pkg-version/'
if not path.startswith('/'):
path = dummy_prefix + path
path = os.path.abspath(path)
# Remove /build prefix
prefix_regex = re.match(r'(/build/[^/]*/[^/]*-[^/]*/)(.*)', path)
if prefix_regex:
path = prefix_regex.groups()[1]
return path | 47bd737502466f15679047ec77b9d4f5a3cbea33 | 7,801 |
def tests():
""" Make these Unittests for each function. """
tests_list = [
'assertNotEqual',
'assertEqual'
]
return tests_list | cdba4e6293df2231640d6896a5104791cdf073be | 7,802 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.