File size: 9,068 Bytes
bcd86b7
abbd38c
0ea086a
abbd38c
 
0ea086a
abbd38c
0ea086a
abbd38c
0ea086a
 
bcd86b7
5a05031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcd86b7
5a05031
 
 
 
bcd86b7
abbd38c
 
 
 
 
e422d09
 
abbd38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0cadf
372c1fa
 
 
 
631c709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e422d09
 
 
d39d9fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
annotations_creators:
- no-annotation
license: other
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: ETTh
  features:
  - name: id
    dtype: string
  - name: timestamp
    sequence: timestamp[ns]
  - name: HUFL
    sequence: float64
  - name: HULL
    sequence: float64
  - name: MUFL
    sequence: float64
  - name: MULL
    sequence: float64
  - name: LUFL
    sequence: float64
  - name: LULL
    sequence: float64
  - name: OT
    sequence: float64
  splits:
  - name: train
    num_bytes: 2229842
    num_examples: 2
  download_size: 569100
  dataset_size: 2229842
configs:
- config_name: ETTh
  data_files:
  - split: train
    path: ETTh/train-*
---

## Forecast evaluation datasets

This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.

The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.

The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.

## Data format and usage

Each dataset satisfies the following schema:
- each dataset entry (=row) represents a single univariate or multivariate time series
- each entry contains
  - 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
  - 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
  - 3/ a field of type `string` that contains the unique ID of each time series
- all fields of type `Sequence` have the same length

Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.

```python
import datasets

ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays
```
Example entry in the `epf_electricity_de` dataset
```python
>>> ds[0]
{'id': 'DE',
 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
        '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
        '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
       dtype='datetime64[us]'),
 'target': array([34.97, 33.43, 32.74, ...,  5.3 ,  1.86, -0.92], dtype=float32),
 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
       dtype=float32),
 'PV+Wind Forecast': array([ 3569.5276,  3315.275 ,  3107.3076, ..., 29653.008 , 29520.33  ,
        29466.408 ], dtype=float32)}
```

For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).

## Dataset statistics

**Disclaimer:** These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data. Unless otherwise specified, the datasets are provided only for research purposes.


| config                  | freq   |   # items |     # obs |   # dynamic cols |   # static cols | source                                                                  | citation                                                                                         |
|:------------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| `ETTh`                  | h      |         2 |    243880 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `ETTm`                  | 15min  |         2 |    975520 |                7 |               0 | https://github.com/zhouhaoyi/ETDataset                                  | [[1]](https://arxiv.org/abs/2012.07436)                                                          |
| `epf_electricity_be`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_de`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_fr`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_np`    | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `epf_electricity_pjm`   | h      |         1 |    157248 |                3 |               0 | https://zenodo.org/records/4624805                                      | [[2]](https://doi.org/10.1016/j.apenergy.2021.116983)                                            |
| `favorita_store_sales`  | D      |      1782 |  12032064 |                4 |               6 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `favorita_transactions` | D      |        54 |    273456 |                3 |               5 | https://www.kaggle.com/competitions/store-sales-time-series-forecasting | [[3]](https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview/citation) |
| `m5_with_covariates`    | D      |     30490 | 428849460 |                9 |               5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy             | [[4]](https://doi.org/10.1016/j.ijforecast.2021.07.007)                                          |
| `proenfo_bull`          | h      |        41 |   2877216 |                4 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_cockatoo`      | h      |         1 |    105264 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_covid19`       | h      |         1 |    223384 |                7 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc12_load`    | h      |        11 |    867108 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc14_load`    | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_gfc17_load`    | h      |         8 |    280704 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_hog`           | h      |        24 |   2526336 |                6 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_pdb`           | h      |         1 |     35040 |                2 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |
| `proenfo_spain`         | h      |         1 |    736344 |               21 |               0 | https://github.com/Leo-VK/EnFoAV                                        | [[5]](https://doi.org/10.48550/arXiv.2307.07191)                                                 |

## Publications using these datasets

- ["ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables"](https://arxiv.org/abs/2503.12107)