arth-shukla commited on
Commit
26bb2ed
·
verified ·
1 Parent(s): 46ba9af

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +229 -0
README.md ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # Example metadata to be added to a dataset card.
3
+ # Full dataset card template at https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md
4
+ language:
5
+ - en
6
+ license: mit # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
7
+ tags:
8
+ - robotics
9
+ - manipulation
10
+ - rearrangement
11
+ - computer-vision
12
+ - reinforcement-learning
13
+ - imitation-learning
14
+ - rgbd
15
+ - rgb
16
+ - depth
17
+ - low-level-control
18
+ - whole-body-control
19
+ - home-assistant
20
+ - simulation
21
+ - maniskill
22
+ annotations_creators:
23
+ - machine-generated # Generated from RL policies with filtering
24
+ language_creators:
25
+ - machine-generated
26
+ language_details: en-US
27
+ pretty_name: ManiSkill-HAB SetTabkle Dataset
28
+ size_categories:
29
+ - 1M<n<10M # Dataset has 8K episodes with 1.6M transitions
30
+ # source_datasets: # None, original
31
+ task_categories:
32
+ - robotics
33
+ - reinforcement-learning
34
+ task_ids:
35
+ - grasping
36
+ - task-planning
37
+
38
+ configs:
39
+ - config_name: pick-013_apple
40
+ data_files:
41
+ - split: trajectories
42
+ path: pick/013_apple.h5
43
+ - split: metadata
44
+ path: pick/013_apple.json
45
+
46
+ - config_name: pick-024_bowl
47
+ data_files:
48
+ - split: trajectories
49
+ path: pick/024_bowl.h5
50
+ - split: metadata
51
+ path: pick/024_bowl.json
52
+
53
+ - config_name: place-013_apple
54
+ data_files:
55
+ - split: trajectories
56
+ path: place/013_apple.h5
57
+ - split: metadata
58
+ path: place/013_apple.json
59
+
60
+ - config_name: place-024_bowl
61
+ data_files:
62
+ - split: trajectories
63
+ path: place/024_bowl.h5
64
+ - split: metadata
65
+ path: place/024_bowl.json
66
+
67
+ - config_name: open-fridge
68
+ data_files:
69
+ - split: trajectories
70
+ path: open/fridge.h5
71
+ - split: metadata
72
+ path: open/fridge.json
73
+
74
+ - config_name: open-kitchen_counter
75
+ data_files:
76
+ - split: trajectories
77
+ path: open/kitchen_counter.h5
78
+ - split: metadata
79
+ path: open/kitchen_counter.json
80
+
81
+ - config_name: close-fridge
82
+ data_files:
83
+ - split: trajectories
84
+ path: close/fridge.h5
85
+ - split: metadata
86
+ path: close/fridge.json
87
+
88
+ - config_name: close-kitchen_counter
89
+ data_files:
90
+ - split: trajectories
91
+ path: close/kitchen_counter.h5
92
+ - split: metadata
93
+ path: close/kitchen_counter.json
94
+
95
+ # # Optional. This part can be used to store the feature types and size of the dataset to be used in python. This can be automatically generated using the datasets-cli.
96
+ # dataset_info:
97
+ # features:
98
+ # - name: {feature_name_0} # Example: id
99
+ # dtype: {feature_dtype_0} # Example: int32
100
+ # - name: {feature_name_1} # Example: text
101
+ # dtype: {feature_dtype_1} # Example: string
102
+ # - name: {feature_name_2} # Example: image
103
+ # dtype: {feature_dtype_2} # Example: image
104
+ # # Example for SQuAD:
105
+ # # - name: id
106
+ # # dtype: string
107
+ # # - name: title
108
+ # # dtype: string
109
+ # # - name: context
110
+ # # dtype: string
111
+ # # - name: question
112
+ # # dtype: string
113
+ # # - name: answers
114
+ # # sequence:
115
+ # # - name: text
116
+ # # dtype: string
117
+ # # - name: answer_start
118
+ # # dtype: int32
119
+ # config_name: {config_name} # Name of the dataset subset. Example for glue: sst2
120
+ # splits:
121
+ # - name: {split_name_0} # Example: train
122
+ # num_bytes: {split_num_bytes_0} # Example for SQuAD: 79317110
123
+ # num_examples: {split_num_examples_0} # Example for SQuAD: 87599
124
+ # download_size: {dataset_download_size} # Example for SQuAD: 35142551
125
+ # dataset_size: {dataset_size} # Example for SQuAD: 89789763
126
+
127
+ # It can also be a list of multiple subsets (also called "configurations"):
128
+ # ```yaml
129
+ # dataset_info:
130
+ # - config_name: {config0}
131
+ # features:
132
+ # ...
133
+ # - config_name: {config1}
134
+ # features:
135
+ # ...
136
+ # ```
137
+
138
+ # # Optional. If you want your dataset to be protected behind a gate that users have to accept to access the dataset. More info at https://huggingface.co/docs/hub/datasets-gated
139
+ # extra_gated_fields:
140
+ # - {field_name_0}: {field_type_0} # Example: Name: text
141
+ # - {field_name_1}: {field_type_1} # Example: Affiliation: text
142
+ # - {field_name_2}: {field_type_2} # Example: Email: text
143
+ # - {field_name_3}: {field_type_3} # Example for speech datasets: I agree to not attempt to determine the identity of speakers in this dataset: checkbox
144
+ # extra_gated_prompt: {extra_gated_prompt} # Example for speech datasets: By clicking on “Access repository” below, you also agree to not attempt to determine the identity of speakers in the dataset.
145
+
146
+ # # Optional. Add this if you want to encode a train and evaluation info in a structured way for AutoTrain or Evaluation on the Hub
147
+ # train-eval-index:
148
+ # - config: {config_name} # The dataset subset name to use. Example for datasets without subsets: default. Example for glue: sst2
149
+ # task: {task_name} # The task category name (same as task_category). Example: question-answering
150
+ # task_id: {task_type} # The AutoTrain task id. Example: extractive_question_answering
151
+ # splits:
152
+ # train_split: train # The split to use for training. Example: train
153
+ # eval_split: validation # The split to use for evaluation. Example: test
154
+ # col_mapping: # The columns mapping needed to configure the task_id.
155
+ # # Example for extractive_question_answering:
156
+ # # question: question
157
+ # # context: context
158
+ # # answers:
159
+ # # text: text
160
+ # # answer_start: answer_start
161
+ # metrics:
162
+ # - type: {metric_type} # The metric id. Example: wer. Use metric id from https://hf.co/metrics
163
+ # name: {metric_name} # Tne metric name to be displayed. Example: Test WER
164
+ ---
165
+
166
+ # ManiSkill-HAB SetTable Dataset
167
+
168
+ **[Paper (arXiv TBA)]()**
169
+ | **[Website](https://arth-shukla.github.io/mshab)**
170
+ | **[Code](https://github.com/arth-shukla/mshab)**
171
+ | **[Models](https://huggingface.co/arth-shukla/mshab_checkpoints)**
172
+ | **[(Full) Dataset](https://arth-shukla.github.io/mshab/#dataset-section)**
173
+ | **[Supplementary](https://sites.google.com/view/maniskill-hab)**
174
+
175
+
176
+ <!-- Provide a quick summary of the dataset. -->
177
+
178
+ Whole-body, low-level control/manipulation demonstration dataset for ManiSkill-HAB SetTable.
179
+
180
+ ## Dataset Details
181
+
182
+ ### Dataset Description
183
+
184
+ <!-- Provide a longer summary of what this dataset is. -->
185
+
186
+ Demonstration dataset for ManiSkill-HAB SetTable. Each subtask/object combination (e.g pick 013_apple) has 1000 successful episodes (200 samples/demonstration) gathered using [RL policies](https://huggingface.co/arth-shukla/mshab_checkpoints) fitered for safe robot behavior with a rule-based event labeling system.
187
+
188
+ SetTable contains the Pick, Place, Open, and Close subtasks. Relative to the other MS-HAB long-horizon tasks (TidyHouse, PrepareGroceries), SetTable Pick, Place, Open, and Close are easy difficulty (on a scale of easy-medium-hard). The difficulty of SetTable primarily comes from skill chaining rather than individual subtasks.
189
+
190
+ ### Related Datasets
191
+
192
+ Full information about the MS-HAB datasets (size, difficulty, links, etc), including the other long horizon tasks, are available [on the ManiSkill-HAB website](https://arth-shukla.github.io/mshab/#dataset-section).
193
+
194
+ - [ManiSkill-HAB TidyHouse Dataset](https://huggingface.co/datasets/arth-shukla/MS-HAB-TidyHouse)
195
+ - [ManiSkill-HAB PrepareGroceries Dataset](https://huggingface.co/datasets/arth-shukla/MS-HAB-PrepareGroceries)
196
+
197
+ ## Uses
198
+
199
+ <!-- Address questions around how the dataset is intended to be used. -->
200
+
201
+ ### Direct Use
202
+
203
+ This dataset can be used to train vision-based learning from demonstrations and imitation learning methods, which can be evaluated with the [MS-HAB environments](https://github.com/arth-shukla/mshab). This dataset may be useful as synthetic data for computer vision tasks as well.
204
+
205
+ ### Out-of-Scope Use
206
+
207
+ While blind state-based policies can be trained on this dataset, it is recommended to train vision-based policies to handle collisions and obstructions.
208
+
209
+ ## Dataset Structure
210
+
211
+ Each subtask/object combination has files `[SUBTASK]/[OBJECT].json` and `[SUBTASK]/[OBJECT].h5`. The JSON file contains episode metadata, event labels, etc, while the HDF5 file contains the demonstration data.
212
+
213
+ ## Dataset Creation
214
+
215
+ <!-- TODO (arth): link paper appendix, maybe html, for the event labeling system -->
216
+ The data is gathered using [RL policies](https://huggingface.co/arth-shukla/mshab_checkpoints) fitered for safe robot behavior with a rule-based event labeling system.
217
+
218
+ ## Bias, Risks, and Limitations
219
+
220
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
221
+
222
+ The dataset is purely synthetic.
223
+
224
+ While MS-HAB supports high-quality ray-traced rendering, this dataset uses ManiSkill's default rendering for data generation due to efficiency. However, users can generate their own data with the [data generation code](https://github.com/arth-shukla/mshab/blob/main/mshab/utils/gen/gen_data.py).
225
+
226
+ <!-- TODO (arth): citation -->
227
+ <!-- ## Citation [TBA]
228
+
229
+ [Citation TBA] -->