ADT-test / upload_to_HF.py
ariakang's picture
update readme
759f08b
import io
import json
import os
from pathlib import Path
import pandas as pd
from datasets import Dataset, DatasetDict
from huggingface_hub import HfApi
def serialize_dataframe(df):
"""Convert DataFrame to string."""
buffer = io.StringIO()
df.to_csv(buffer, index=False)
return buffer.getvalue()
def load_csv_safely(file_path):
"""Load CSV file and convert to string."""
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
df = pd.read_csv(file_path)
return serialize_dataframe(df)
return ""
def load_json_safely(file_path):
"""Load JSON/JSONL file and convert to string."""
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
with open(file_path, "r") as f:
if file_path.endswith(".jsonl"):
data = [json.loads(line) for line in f if line.strip()]
else:
try:
data = json.load(f)
except json.JSONDecodeError:
f.seek(0)
data = [json.loads(line) for line in f if line.strip()]
return json.dumps(data)
return ""
def upload_sequence(sequence_path, sequence_name, repo_id="ariakang/ADT-test"):
"""Upload a single sequence to Hugging Face Hub."""
print(f"Starting upload process for sequence: {sequence_name}")
# Initialize Hugging Face API
api = HfApi()
# Upload VRS files first
print("Uploading VRS files...")
vrs_files = list(Path(sequence_path).glob("*.vrs"))
print(f"Found VRS files:", [f.name for f in vrs_files])
vrs_info = []
for vrs_file in vrs_files:
print(f"Uploading {vrs_file.name}...")
path_in_repo = f"sequences/{sequence_name}/vrs_files/{vrs_file.name}"
try:
api.upload_file(
path_or_fileobj=str(vrs_file),
path_in_repo=path_in_repo,
repo_id=repo_id,
repo_type="dataset",
)
print(f"Uploaded {vrs_file.name}")
vrs_info.append(
{
"filename": vrs_file.name,
"path": path_in_repo,
"size_bytes": vrs_file.stat().st_size,
}
)
except Exception as e:
print(f"Error uploading {vrs_file.name}: {str(e)}")
raise
# Prepare sequence data
sequence_data = {
"data_type": [], # To identify what type of data each entry is
"data": [], # The serialized data
"filename": [], # Original filename
}
# Load CSV files
csv_files = [
"2d_bounding_box.csv",
"3d_bounding_box.csv",
"aria_trajectory.csv",
"eyegaze.csv",
"scene_objects.csv",
]
for file in csv_files:
file_path = os.path.join(sequence_path, file)
data = load_csv_safely(file_path)
if data:
sequence_data["data_type"].append("csv")
sequence_data["data"].append(data)
sequence_data["filename"].append(file)
print(f"Loaded {file}")
# Load JSON files
json_files = ["instances.json", "metadata.json"]
for file in json_files:
file_path = os.path.join(sequence_path, file)
data = load_json_safely(file_path)
if data:
sequence_data["data_type"].append("json")
sequence_data["data"].append(data)
sequence_data["filename"].append(file)
print(f"Loaded {file}")
# Load MPS folder data
mps_path = os.path.join(sequence_path, "mps")
if os.path.exists(mps_path):
# Eye gaze data
eye_gaze_path = os.path.join(mps_path, "eye_gaze")
if os.path.exists(eye_gaze_path):
data = load_csv_safely(os.path.join(eye_gaze_path, "general_eye_gaze.csv"))
if data:
sequence_data["data_type"].append("csv")
sequence_data["data"].append(data)
sequence_data["filename"].append("mps/eye_gaze/general_eye_gaze.csv")
data = load_json_safely(os.path.join(eye_gaze_path, "summary.json"))
if data:
sequence_data["data_type"].append("json")
sequence_data["data"].append(data)
sequence_data["filename"].append("mps/eye_gaze/summary.json")
# SLAM data
slam_path = os.path.join(mps_path, "slam")
if os.path.exists(slam_path):
for file in ["closed_loop_trajectory.csv", "open_loop_trajectory.csv"]:
data = load_csv_safely(os.path.join(slam_path, file))
if data:
sequence_data["data_type"].append("csv")
sequence_data["data"].append(data)
sequence_data["filename"].append(f"mps/slam/{file}")
data = load_json_safely(os.path.join(slam_path, "online_calibration.jsonl"))
if data:
sequence_data["data_type"].append("jsonl")
sequence_data["data"].append(data)
sequence_data["filename"].append("mps/slam/online_calibration.jsonl")
# Add VRS file information
sequence_data["data_type"].append("vrs_info")
sequence_data["data"].append(json.dumps(vrs_info))
sequence_data["filename"].append("vrs_files_info.json")
# Create dataset
dataset_dict = DatasetDict({sequence_name: Dataset.from_dict(sequence_data)})
print("\nPushing dataset to hub...")
dataset_dict.push_to_hub(repo_id=repo_id, private=True)
# Update README
readme_content = """---
language:
- en
license:
- mit
---
# ADT Dataset
## Dataset Description
This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations.
## Usage Example
```python
from datasets import load_dataset
import pandas as pd
import json
import io
def deserialize_csv(csv_string):
return pd.read_csv(io.StringIO(csv_string))
def deserialize_json(json_string):
return json.loads(json_string)
# Load the dataset
dataset = load_dataset("ariakang/ADT-test")
sequence = dataset["{sequence_name}"]
# Get list of available files
files = list(zip(sequence["filename"], sequence["data_type"]))
print("Available files:", files)
# Load specific data
for i, (filename, data_type, data) in enumerate(zip(
sequence["filename"], sequence["data_type"], sequence["data"]
)):
if data_type == "csv":
df = deserialize_csv(data)
print(f"Loaded CSV {filename}: {len(df)} rows")
elif data_type in ["json", "jsonl"]:
json_data = deserialize_json(data)
print(f"Loaded JSON {filename}")
elif data_type == "vrs_info":
vrs_info = deserialize_json(data)
print(f"VRS files: {[f['filename'] for f in vrs_info]}")
```
## VRS Files
VRS files are stored in: sequences/{sequence_name}/vrs_files/
"""
api.upload_file(
path_or_fileobj=readme_content.encode(),
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset",
)
return f"https://huggingface.co/datasets/{repo_id}"
if __name__ == "__main__":
sequence_path = "/Users/ariak/Documents/projectaria_tools_adt_data/Apartment_release_clean_seq131_M1292"
sequence_name = "Apartment_release_clean_seq131_M1292"
repo_url = upload_sequence(sequence_path, sequence_name)
print(f"Dataset uploaded successfully to: {repo_url}")