File size: 7,387 Bytes
759f08b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import io
import json
import os
from pathlib import Path

import pandas as pd
from datasets import Dataset, DatasetDict
from huggingface_hub import HfApi


def serialize_dataframe(df):
    """Convert DataFrame to string."""
    buffer = io.StringIO()
    df.to_csv(buffer, index=False)
    return buffer.getvalue()


def load_csv_safely(file_path):
    """Load CSV file and convert to string."""
    if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
        df = pd.read_csv(file_path)
        return serialize_dataframe(df)
    return ""


def load_json_safely(file_path):
    """Load JSON/JSONL file and convert to string."""
    if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
        with open(file_path, "r") as f:
            if file_path.endswith(".jsonl"):
                data = [json.loads(line) for line in f if line.strip()]
            else:
                try:
                    data = json.load(f)
                except json.JSONDecodeError:
                    f.seek(0)
                    data = [json.loads(line) for line in f if line.strip()]
            return json.dumps(data)
    return ""


def upload_sequence(sequence_path, sequence_name, repo_id="ariakang/ADT-test"):
    """Upload a single sequence to Hugging Face Hub."""

    print(f"Starting upload process for sequence: {sequence_name}")

    # Initialize Hugging Face API
    api = HfApi()

    # Upload VRS files first
    print("Uploading VRS files...")
    vrs_files = list(Path(sequence_path).glob("*.vrs"))
    print(f"Found VRS files:", [f.name for f in vrs_files])

    vrs_info = []
    for vrs_file in vrs_files:
        print(f"Uploading {vrs_file.name}...")
        path_in_repo = f"sequences/{sequence_name}/vrs_files/{vrs_file.name}"

        try:
            api.upload_file(
                path_or_fileobj=str(vrs_file),
                path_in_repo=path_in_repo,
                repo_id=repo_id,
                repo_type="dataset",
            )
            print(f"Uploaded {vrs_file.name}")
            vrs_info.append(
                {
                    "filename": vrs_file.name,
                    "path": path_in_repo,
                    "size_bytes": vrs_file.stat().st_size,
                }
            )
        except Exception as e:
            print(f"Error uploading {vrs_file.name}: {str(e)}")
            raise

    # Prepare sequence data
    sequence_data = {
        "data_type": [],  # To identify what type of data each entry is
        "data": [],  # The serialized data
        "filename": [],  # Original filename
    }

    # Load CSV files
    csv_files = [
        "2d_bounding_box.csv",
        "3d_bounding_box.csv",
        "aria_trajectory.csv",
        "eyegaze.csv",
        "scene_objects.csv",
    ]

    for file in csv_files:
        file_path = os.path.join(sequence_path, file)
        data = load_csv_safely(file_path)
        if data:
            sequence_data["data_type"].append("csv")
            sequence_data["data"].append(data)
            sequence_data["filename"].append(file)
            print(f"Loaded {file}")

    # Load JSON files
    json_files = ["instances.json", "metadata.json"]
    for file in json_files:
        file_path = os.path.join(sequence_path, file)
        data = load_json_safely(file_path)
        if data:
            sequence_data["data_type"].append("json")
            sequence_data["data"].append(data)
            sequence_data["filename"].append(file)
            print(f"Loaded {file}")

    # Load MPS folder data
    mps_path = os.path.join(sequence_path, "mps")
    if os.path.exists(mps_path):
        # Eye gaze data
        eye_gaze_path = os.path.join(mps_path, "eye_gaze")
        if os.path.exists(eye_gaze_path):
            data = load_csv_safely(os.path.join(eye_gaze_path, "general_eye_gaze.csv"))
            if data:
                sequence_data["data_type"].append("csv")
                sequence_data["data"].append(data)
                sequence_data["filename"].append("mps/eye_gaze/general_eye_gaze.csv")

            data = load_json_safely(os.path.join(eye_gaze_path, "summary.json"))
            if data:
                sequence_data["data_type"].append("json")
                sequence_data["data"].append(data)
                sequence_data["filename"].append("mps/eye_gaze/summary.json")

        # SLAM data
        slam_path = os.path.join(mps_path, "slam")
        if os.path.exists(slam_path):
            for file in ["closed_loop_trajectory.csv", "open_loop_trajectory.csv"]:
                data = load_csv_safely(os.path.join(slam_path, file))
                if data:
                    sequence_data["data_type"].append("csv")
                    sequence_data["data"].append(data)
                    sequence_data["filename"].append(f"mps/slam/{file}")

            data = load_json_safely(os.path.join(slam_path, "online_calibration.jsonl"))
            if data:
                sequence_data["data_type"].append("jsonl")
                sequence_data["data"].append(data)
                sequence_data["filename"].append("mps/slam/online_calibration.jsonl")

    # Add VRS file information
    sequence_data["data_type"].append("vrs_info")
    sequence_data["data"].append(json.dumps(vrs_info))
    sequence_data["filename"].append("vrs_files_info.json")

    # Create dataset
    dataset_dict = DatasetDict({sequence_name: Dataset.from_dict(sequence_data)})

    print("\nPushing dataset to hub...")
    dataset_dict.push_to_hub(repo_id=repo_id, private=True)

    # Update README
    readme_content = """---
language:
- en
license:
- mit
---

# ADT Dataset

## Dataset Description
This dataset contains Aria Digital Twin (ADT) sequences with various sensor data and annotations.

## Usage Example
```python
from datasets import load_dataset
import pandas as pd
import json
import io

def deserialize_csv(csv_string):
    return pd.read_csv(io.StringIO(csv_string))

def deserialize_json(json_string):
    return json.loads(json_string)

# Load the dataset
dataset = load_dataset("ariakang/ADT-test")
sequence = dataset["{sequence_name}"]

# Get list of available files
files = list(zip(sequence["filename"], sequence["data_type"]))
print("Available files:", files)

# Load specific data
for i, (filename, data_type, data) in enumerate(zip(
    sequence["filename"], sequence["data_type"], sequence["data"]
)):
    if data_type == "csv":
        df = deserialize_csv(data)
        print(f"Loaded CSV {filename}: {len(df)} rows")
    elif data_type in ["json", "jsonl"]:
        json_data = deserialize_json(data)
        print(f"Loaded JSON {filename}")
    elif data_type == "vrs_info":
        vrs_info = deserialize_json(data)
        print(f"VRS files: {[f['filename'] for f in vrs_info]}")
```

## VRS Files
VRS files are stored in: sequences/{sequence_name}/vrs_files/
"""

    api.upload_file(
        path_or_fileobj=readme_content.encode(),
        path_in_repo="README.md",
        repo_id=repo_id,
        repo_type="dataset",
    )

    return f"https://huggingface.co/datasets/{repo_id}"


if __name__ == "__main__":
    sequence_path = "/Users/ariak/Documents/projectaria_tools_adt_data/Apartment_release_clean_seq131_M1292"
    sequence_name = "Apartment_release_clean_seq131_M1292"
    repo_url = upload_sequence(sequence_path, sequence_name)
    print(f"Dataset uploaded successfully to: {repo_url}")