|
--- |
|
language: |
|
- en |
|
license: mit |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- image-classification |
|
pretty_name: Metashift subset for PCBM reproduction |
|
viewer: false |
|
dataset_info: |
|
- config_name: cherrypicked_task_1_bed_cat_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': airplane |
|
'1': bed |
|
'2': car |
|
'3': cow |
|
'4': keyboard |
|
splits: |
|
- name: train |
|
num_bytes: 28494 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28486 |
|
num_examples: 500 |
|
download_size: 477673284 |
|
dataset_size: 56980 |
|
- config_name: cherrypicked_task_1_bed_dog_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': airplane |
|
'1': bed |
|
'2': car |
|
'3': cow |
|
'4': keyboard |
|
splits: |
|
- name: train |
|
num_bytes: 28490 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28478 |
|
num_examples: 500 |
|
download_size: 477673272 |
|
dataset_size: 56968 |
|
- config_name: cherrypicked_task_2_table_books_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28413 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28478 |
|
num_examples: 500 |
|
download_size: 477673223 |
|
dataset_size: 56891 |
|
- config_name: cherrypicked_task_2_table_books_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28411 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28477 |
|
num_examples: 500 |
|
download_size: 477673220 |
|
dataset_size: 56888 |
|
- config_name: cherrypicked_task_2_table_cat_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28477 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28485 |
|
num_examples: 500 |
|
download_size: 477673292 |
|
dataset_size: 56962 |
|
- config_name: cherrypicked_task_2_table_dog_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28476 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28484 |
|
num_examples: 500 |
|
download_size: 477673290 |
|
dataset_size: 56960 |
|
- config_name: seed42_task_1_bed_cat_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': airplane |
|
'1': bed |
|
'2': car |
|
'3': cow |
|
'4': keyboard |
|
splits: |
|
- name: train |
|
num_bytes: 28498 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28480 |
|
num_examples: 500 |
|
download_size: 477673282 |
|
dataset_size: 56978 |
|
- config_name: seed42_task_1_bed_dog_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': airplane |
|
'1': bed |
|
'2': car |
|
'3': cow |
|
'4': keyboard |
|
splits: |
|
- name: train |
|
num_bytes: 28501 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28485 |
|
num_examples: 500 |
|
download_size: 477673290 |
|
dataset_size: 56986 |
|
- config_name: seed42_task_2_table_books_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28434 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28481 |
|
num_examples: 500 |
|
download_size: 477673247 |
|
dataset_size: 56915 |
|
- config_name: seed42_task_2_table_books_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28434 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28479 |
|
num_examples: 500 |
|
download_size: 477673245 |
|
dataset_size: 56913 |
|
- config_name: seed42_task_2_table_cat_dog |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28465 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28479 |
|
num_examples: 500 |
|
download_size: 477673274 |
|
dataset_size: 56944 |
|
- config_name: seed42_task_2_table_dog_cat |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': beach |
|
'1': computer |
|
'2': motorcycle |
|
'3': stove |
|
'4': table |
|
splits: |
|
- name: train |
|
num_bytes: 28463 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 28481 |
|
num_examples: 500 |
|
download_size: 477673274 |
|
dataset_size: 56944 |
|
--- |
|
|
|
# PCBM Metashift |
|
|
|
For the sake of reproducibility, this dataset hosts the postprocessed Metashift according to [[Yuksekgonul et al.]](https://arxiv.org/pdf/2205.15480.pdf) for the use in Post-Hoc Concept Bottleneck Models. |
|
|
|
|
|
| Config Name | Description | |
|
|---|---| |
|
| `task_1_bed_cat_dog` | Task 1: bed(cat) -> bed(dog) | |
|
| `task_1_bed_dog_cat` | Task 1: bed(dog) -> bed(cat) | |
|
| `task_2_table_books_cat` | Task 2: table(books) -> table(cat) | |
|
| `task_2_table_books_dog` | Task 2: table(books) -> table(dog) | |
|
| `task_2_table_cat_dog` | Task 2: table(cat) -> table(dog) | |
|
| `task_2_table_dog_cat` | Task 2: table(dog) -> table(cat) | |
|
|
|
The script to generate this dataset can be found at `scripts/generate.py`. You will need to download the [Metashift repo](https://github.com/Weixin-Liang/MetaShift) and the [Visual Genome dataset](https://nlp.stanford.edu/data/gqa/images.zip) as instructed in the Metashift repo. |
|
|