Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Mask must be a pyarrow.Array of type boolean
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1625, in _prepare_split_single
                  writer.write(example, key)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 537, in write
                  self.write_examples_on_file()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 495, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 609, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 624, in write_table
                  pa_table = embed_table_storage(pa_table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2270, in embed_table_storage
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in <listcomp>
                  embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2140, in embed_array_storage
                  return feature.embed_storage(array)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/audio.py", line 276, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1634, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 636, in finalize
                  self.write_examples_on_file()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 495, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 609, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 624, in write_table
                  pa_table = embed_table_storage(pa_table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2270, in embed_table_storage
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in <listcomp>
                  embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2140, in embed_array_storage
                  return feature.embed_storage(array)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/audio.py", line 276, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1486, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1643, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

audio
audio
label
class label
0Participant1
0Participant1
0Participant1
0Participant1
0Participant1
1Participant10
1Participant10
1Participant10
1Participant10
1Participant10
2Participant11
2Participant11
2Participant11
2Participant11
2Participant11
3Participant12
3Participant12
3Participant12
3Participant12
3Participant12
4Participant13
4Participant13
4Participant13
4Participant13
4Participant13
5Participant14
5Participant14
5Participant14
5Participant14
5Participant14
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
6Participant15
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
7Participant16
8Participant17
8Participant17
8Participant17
8Participant17
8Participant17
9Participant18
9Participant18
9Participant18
9Participant18
9Participant18
10Participant19
10Participant19
10Participant19
10Participant19
10Participant19
11Participant2
11Participant2
11Participant2
11Participant2
11Participant2
12Participant20
12Participant20
12Participant20
12Participant20
12Participant20
13Participant3
13Participant3
13Participant3
13Participant3
13Participant3
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
14Participant4
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
15Participant5
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Card for Gaze-Speech Analysis in Referential Communication with ARIA Headset

Dataset Description

This dataset investigates the synchronization of eye tracking and speech recognition using Aria smart glasses to determine whether individuals exhibit visual and verbal synchronization when identifying an object. Participants were tasked with identifying food items from a recipe while wearing Aria glasses, which recorded their eye movements and speech in real time. The dataset provides insight into gaze-speech synchronization patterns in referential communication.

  • Curated by: KTH Royal Institute of Technology
  • Language(s) (NLP): English
  • License: CC BY-NC-ND 4.0 (Link)

Dataset Details

  • Total duration: 2.259 h
  • Number of takes: 96
  • Average take duration: 84.7 s

Example from dataset. Example from dataset.

Dataset Sources [optional]

TBA

Direct Use

This dataset is suitable for research in:

  • Referential communication analysis
  • Gaze and speech synchronization
  • Human-robot interaction and multimodal dialogue systems
  • Eye-tracking studies in task-based environments

Out-of-Scope Use

  • The dataset is not intended for commercial applications without proper ethical considerations.
  • Misuse in contexts where privacy-sensitive information might be inferred or manipulated should be avoided.

Dataset Structure

  • Participants: 20 individuals (2 men, 18 women).
  • Data Collection Setup: Participants memorized a series of ingredients and steps in five recipes and verbally instructed the steps while wearing ARIA glasses.
  • Recorded Data: Eye movement (gaze tracking) and speech (audio recordings), alongside 3rd view camera.
  • Analysis Methods: Python-based temporal correlation detection, helper functions to plot gaze fixations and track objects.

Dataset Creation

Curation Rationale

The dataset was created to explore how gaze and speech synchronize in referential communication and whether object location influences this synchronization.

Source Data

Data Collection and Processing

  • Hardware: ARIA smart glasses, GoPro camera
  • Collection Method: Participants wore ARIA glasses while describing recipe ingredients and steps, allowing real-time capture of gaze and verbal utterances.

Who are the source data producers?

  • KTH Students involved in the project: Gong, Yanliang; Hafsteinsdóttir, Kristín; He, Yiyan; Lin, Wei-Jun; Lindh, Matilda; Liu, Tianyun; Lu, Yu; Yan, Jingyi; Zhang, Ruopeng; Zhang, Yulu

Dataset

  • Audio (.wav)
  • Utterances (.txt)
  • 1st person video feed (.mp4)
  • Gaze fixation from running provided python script.

Annotation process

  • Temporal correlation between gaze and speech was detected using Python scripts.
Downloads last month
4,319