contract_name
stringlengths
1
61
file_path
stringlengths
5
50.4k
contract_address
stringlengths
42
42
language
stringclasses
1 value
class_name
stringlengths
1
61
class_code
stringlengths
4
330k
class_documentation
stringlengths
0
29.1k
class_documentation_type
stringclasses
6 values
func_name
stringlengths
0
62
func_code
stringlengths
1
303k
func_documentation
stringlengths
2
14.9k
func_documentation_type
stringclasses
4 values
compiler_version
stringlengths
15
42
license_type
stringclasses
14 values
swarm_source
stringlengths
0
71
meta
dict
__index_level_0__
int64
0
60.4k
Fider
contracts/Fider.sol
0x715079d8285d91baab59055b47c17de4c5a378ac
Solidity
Fider
contract Fider is ERC20Detailed, ERC20Burnable, ERC20Capped, ERC20Pausable, AdminRole, SpenderRole, RecipientRole { using SafeERC20 for IERC20; address private root; modifier onlyRoot() { require(msg.sender == root, "This operation can only be performed by root account"); _; } constructor(string name, string symbol, uint8 decimals, uint256 cap) ERC20Detailed(name, symbol, decimals) ERC20Capped(cap) ERC20Mintable() ERC20() public { // Contract deployer (root) is automatically added as a minter in the MinterRole constructor // We revert this in here in order to separate the responsibilities of Root and Minter _removeMinter(msg.sender); // Contract deployer (root) is automatically added as a pauser in the PauserRole constructor // We revert this in here in order to separate the responsibilities of Root and Pauser _removePauser(msg.sender); root = msg.sender; } /*** ACCESS CONTROL MANAGEMENT ***/ /** * This is particularly for the cases where there is a chance that the keys are compromised * but no one has attacked/abused them yet, this function gives company the option to be on * the safe side and start using another address. * @dev Transfers control of the contract to a newRoot. * @param _newRoot The address to transfer ownership to. */ function transferRoot(address _newRoot) external onlyRoot { require(_newRoot != address(0)); root = _newRoot; } /** * Designates a given account as an authorized Minter, where minter are the only ones who * can call the mint function to create new tokens. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to mint */ function addMinter(address account) public onlyRoot { _addMinter(account); } /** * Revokes a given account as an authorized Minter, where minter are the only ones who * can call the mint function to create new tokens. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to mint anymore */ function removeMinter(address account) external onlyRoot { _removeMinter(account); } /** * Designates a given account as an authorized Pauser, where pausers are the only ones who * can call the pause and unpause functions to freeze or unfreeze the transfer functions. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to pause/unpause the token */ function addPauser(address account) public onlyRoot { _addPauser(account); } /** * Revokes a given account as an authorized Pauser, where pausers are the only ones who * can call the pause and unpause functions to freeze or unfreeze the transfer functions. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to pause/unpause the token anymore */ function removePauser(address account) external onlyRoot { _removePauser(account); } /** * Designates a given account as an authorized Admin, where admins are the only ones who * can call the addRecipient, removeRecipient, addSpender and removeSpender functions * to authorize or revoke spenders and recipients * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to administer spenders and recipients */ function addAdmin(address account) external onlyRoot { _addAdmin(account); } /** * Revokes a given account as an authorized Admin, where admins are the only ones who * can call the addRecipient, removeRecipient, addSpender and removeSpender functions * to authorize or revoke spenders and recipients * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to administer spenders and recipients anymore */ function removeAdmin(address account) external onlyRoot { _removeAdmin(account); } /** * Designates a given account as an authorized Spender, where spenders are the only ones who * can call the transfer, approve, increaseAllowance, decreaseAllowance and transferFrom functions * to send tokens to other accounts * This function can only be called by an authorized admin * @param account address The account who will be able to send tokens */ function addSpender(address account) external onlyAdmin { _addSpender(account); } /** * Revokes a given account as an authorized Spender, where spenders are the only ones who * can call the transfer, approve, increaseAllowance, decreaseAllowance and transferFrom functions * to send tokens to other accounts * This function can only be called by an authorized admin * @param account address The account who will not be able to send tokens anymore */ function removeSpender(address account) external onlyAdmin { _removeSpender(account); } /** * Designates a given account as an authorized Recipient, where recipients are the only ones who * can be on the receiving end of a transfer, either through a normal transfer, or through a third * party payment process (approve/transferFrom or increaseAllowance/transferFrom) * This function can only be called by an authorized admin * @param account address The account who will be able to receive tokens */ function addRecipient(address account) external onlyAdmin { _addRecipient(account); } /** * Revokes a given account as an authorized Recipient, where recipients are the only ones who * can be on the receiving end of a transfer, either through a normal transfer, or through a third * party payment process (approve/transferFrom or increaseAllowance/transferFrom) * This function can only be called by an authorized admin * @param account address The account who will not be able to receive tokens anymore */ function removeRecipient(address account) external onlyAdmin { _removeRecipient(account); } /*** MINTING ***/ /** * @dev Function to mint tokens * @param to The address that will receive the minted tokens. Must be an authorized spender. * @param value The amount of tokens to mint. * @return A boolean that indicates if the operation was successful. */ function mint(address to, uint256 value) public onlyMinter returns (bool) { require(isSpender(to), "To must be an authorized spender"); return super.mint(to, value); } /*** BURNING ***/ /** * @dev Burns a specific amount of tokens from the target address and decrements allowance * This function can only be called by an authorized minter. * @param from address The address which you want to burn tokens from * @param value uint256 The amount of tokens to be burned */ function burnFrom(address from, uint256 value) public onlyMinter { _burnFrom(from, value); } /*** TRANSFER ***/ /** * @dev Transfer token for a specified address * This function can only be called by an authorized spender. * @param to The address to transfer to. Must be an authorized recipient. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public onlySpender returns (bool) { require(isRecipient(to), "To must be an authorized recipient"); return super.transfer(to, value); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * This function can only be called by an authorized spender * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.approve(spender, value); } /** * @dev Transfer tokens from one address to another * This function can only be called by an authorized spender. * @param from address The address which you want to send tokens from. Must be an authorized spender. * @param to address The address which you want to transfer to. Must be an authorized recipient. * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public onlySpender returns (bool) { require(isSpender(from), "From must be an authorized spender"); require(isRecipient(to), "To must be an authorized recipient"); return super.transferFrom(from, to, value); } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * This function can only be called by an authorized spender. * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.increaseAllowance(spender, addedValue); } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * This function can only be called by an authorized spender. * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.decreaseAllowance(spender, subtractedValue); } /** RECOVERING ASSETS MISTAKENLY SENT TO CONTRACT **/ /** * @dev Disallows direct send by setting a default function without the `payable` flag. */ function() external { } /** * @dev Transfer all Ether held by the contract to the root. */ function reclaimEther() external onlyRoot { root.transfer(address(this).balance); } /** * @dev Reclaim all IERC20 compatible tokens * @param _token IERC20 The address of the token contract */ function reclaimERC20Token(IERC20 _token) external onlyRoot { uint256 balance = _token.balanceOf(this); _token.safeTransfer(root, balance); } }
reclaimEther
function reclaimEther() external onlyRoot { root.transfer(address(this).balance); }
/** * @dev Transfer all Ether held by the contract to the root. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://0263f906d97e70bd1cb272121de9b39a9911143a89b3fba8e94bdad599b0af36
{ "func_code_index": [ 11875, 11977 ] }
4,007
Fider
contracts/Fider.sol
0x715079d8285d91baab59055b47c17de4c5a378ac
Solidity
Fider
contract Fider is ERC20Detailed, ERC20Burnable, ERC20Capped, ERC20Pausable, AdminRole, SpenderRole, RecipientRole { using SafeERC20 for IERC20; address private root; modifier onlyRoot() { require(msg.sender == root, "This operation can only be performed by root account"); _; } constructor(string name, string symbol, uint8 decimals, uint256 cap) ERC20Detailed(name, symbol, decimals) ERC20Capped(cap) ERC20Mintable() ERC20() public { // Contract deployer (root) is automatically added as a minter in the MinterRole constructor // We revert this in here in order to separate the responsibilities of Root and Minter _removeMinter(msg.sender); // Contract deployer (root) is automatically added as a pauser in the PauserRole constructor // We revert this in here in order to separate the responsibilities of Root and Pauser _removePauser(msg.sender); root = msg.sender; } /*** ACCESS CONTROL MANAGEMENT ***/ /** * This is particularly for the cases where there is a chance that the keys are compromised * but no one has attacked/abused them yet, this function gives company the option to be on * the safe side and start using another address. * @dev Transfers control of the contract to a newRoot. * @param _newRoot The address to transfer ownership to. */ function transferRoot(address _newRoot) external onlyRoot { require(_newRoot != address(0)); root = _newRoot; } /** * Designates a given account as an authorized Minter, where minter are the only ones who * can call the mint function to create new tokens. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to mint */ function addMinter(address account) public onlyRoot { _addMinter(account); } /** * Revokes a given account as an authorized Minter, where minter are the only ones who * can call the mint function to create new tokens. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to mint anymore */ function removeMinter(address account) external onlyRoot { _removeMinter(account); } /** * Designates a given account as an authorized Pauser, where pausers are the only ones who * can call the pause and unpause functions to freeze or unfreeze the transfer functions. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to pause/unpause the token */ function addPauser(address account) public onlyRoot { _addPauser(account); } /** * Revokes a given account as an authorized Pauser, where pausers are the only ones who * can call the pause and unpause functions to freeze or unfreeze the transfer functions. * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to pause/unpause the token anymore */ function removePauser(address account) external onlyRoot { _removePauser(account); } /** * Designates a given account as an authorized Admin, where admins are the only ones who * can call the addRecipient, removeRecipient, addSpender and removeSpender functions * to authorize or revoke spenders and recipients * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will be able to administer spenders and recipients */ function addAdmin(address account) external onlyRoot { _addAdmin(account); } /** * Revokes a given account as an authorized Admin, where admins are the only ones who * can call the addRecipient, removeRecipient, addSpender and removeSpender functions * to authorize or revoke spenders and recipients * This function can only be called by Root, which is the account who deployed the contract. * @param account address The account who will not be able to administer spenders and recipients anymore */ function removeAdmin(address account) external onlyRoot { _removeAdmin(account); } /** * Designates a given account as an authorized Spender, where spenders are the only ones who * can call the transfer, approve, increaseAllowance, decreaseAllowance and transferFrom functions * to send tokens to other accounts * This function can only be called by an authorized admin * @param account address The account who will be able to send tokens */ function addSpender(address account) external onlyAdmin { _addSpender(account); } /** * Revokes a given account as an authorized Spender, where spenders are the only ones who * can call the transfer, approve, increaseAllowance, decreaseAllowance and transferFrom functions * to send tokens to other accounts * This function can only be called by an authorized admin * @param account address The account who will not be able to send tokens anymore */ function removeSpender(address account) external onlyAdmin { _removeSpender(account); } /** * Designates a given account as an authorized Recipient, where recipients are the only ones who * can be on the receiving end of a transfer, either through a normal transfer, or through a third * party payment process (approve/transferFrom or increaseAllowance/transferFrom) * This function can only be called by an authorized admin * @param account address The account who will be able to receive tokens */ function addRecipient(address account) external onlyAdmin { _addRecipient(account); } /** * Revokes a given account as an authorized Recipient, where recipients are the only ones who * can be on the receiving end of a transfer, either through a normal transfer, or through a third * party payment process (approve/transferFrom or increaseAllowance/transferFrom) * This function can only be called by an authorized admin * @param account address The account who will not be able to receive tokens anymore */ function removeRecipient(address account) external onlyAdmin { _removeRecipient(account); } /*** MINTING ***/ /** * @dev Function to mint tokens * @param to The address that will receive the minted tokens. Must be an authorized spender. * @param value The amount of tokens to mint. * @return A boolean that indicates if the operation was successful. */ function mint(address to, uint256 value) public onlyMinter returns (bool) { require(isSpender(to), "To must be an authorized spender"); return super.mint(to, value); } /*** BURNING ***/ /** * @dev Burns a specific amount of tokens from the target address and decrements allowance * This function can only be called by an authorized minter. * @param from address The address which you want to burn tokens from * @param value uint256 The amount of tokens to be burned */ function burnFrom(address from, uint256 value) public onlyMinter { _burnFrom(from, value); } /*** TRANSFER ***/ /** * @dev Transfer token for a specified address * This function can only be called by an authorized spender. * @param to The address to transfer to. Must be an authorized recipient. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public onlySpender returns (bool) { require(isRecipient(to), "To must be an authorized recipient"); return super.transfer(to, value); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * This function can only be called by an authorized spender * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.approve(spender, value); } /** * @dev Transfer tokens from one address to another * This function can only be called by an authorized spender. * @param from address The address which you want to send tokens from. Must be an authorized spender. * @param to address The address which you want to transfer to. Must be an authorized recipient. * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public onlySpender returns (bool) { require(isSpender(from), "From must be an authorized spender"); require(isRecipient(to), "To must be an authorized recipient"); return super.transferFrom(from, to, value); } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * This function can only be called by an authorized spender. * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.increaseAllowance(spender, addedValue); } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * This function can only be called by an authorized spender. * @param spender The address which will spend the funds. Must be an authorized spender or minter. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public onlySpender returns (bool) { require(isSpender(spender) || isMinter(spender), "Spender must be an authorized spender or a minter"); return super.decreaseAllowance(spender, subtractedValue); } /** RECOVERING ASSETS MISTAKENLY SENT TO CONTRACT **/ /** * @dev Disallows direct send by setting a default function without the `payable` flag. */ function() external { } /** * @dev Transfer all Ether held by the contract to the root. */ function reclaimEther() external onlyRoot { root.transfer(address(this).balance); } /** * @dev Reclaim all IERC20 compatible tokens * @param _token IERC20 The address of the token contract */ function reclaimERC20Token(IERC20 _token) external onlyRoot { uint256 balance = _token.balanceOf(this); _token.safeTransfer(root, balance); } }
reclaimERC20Token
function reclaimERC20Token(IERC20 _token) external onlyRoot { uint256 balance = _token.balanceOf(this); _token.safeTransfer(root, balance); }
/** * @dev Reclaim all IERC20 compatible tokens * @param _token IERC20 The address of the token contract */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://0263f906d97e70bd1cb272121de9b39a9911143a89b3fba8e94bdad599b0af36
{ "func_code_index": [ 12108, 12277 ] }
4,008
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } }
/** * @title SafeMath * @dev Math operations with safety checks that revert on error */
NatSpecMultiLine
mul
function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; }
/** * @dev Multiplies two numbers, reverts on overflow. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 96, 534 ] }
4,009
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } }
/** * @title SafeMath * @dev Math operations with safety checks that revert on error */
NatSpecMultiLine
div
function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; }
/** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 652, 951 ] }
4,010
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } }
/** * @title SafeMath * @dev Math operations with safety checks that revert on error */
NatSpecMultiLine
sub
function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; }
/** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1072, 1227 ] }
4,011
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } }
/** * @title SafeMath * @dev Math operations with safety checks that revert on error */
NatSpecMultiLine
add
function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; }
/** * @dev Adds two numbers, reverts on overflow. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1298, 1453 ] }
4,012
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
SafeMath
library SafeMath { /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); // Solidity only automatically asserts when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } }
/** * @title SafeMath * @dev Math operations with safety checks that revert on error */
NatSpecMultiLine
mod
function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; }
/** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1596, 1725 ] }
4,013
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
Ownable
contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
owner
function owner() public view returns(address) { return _owner; }
/** * @return the address of the owner. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 481, 564 ] }
4,014
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
Ownable
contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
isOwner
function isOwner() public view returns(bool) { return msg.sender == _owner; }
/** * @return true if `msg.sender` is the owner of the contract. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 815, 911 ] }
4,015
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
Ownable
contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
renounceOwnership
function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); }
/** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1192, 1337 ] }
4,016
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
Ownable
contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
transferOwnership
function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); }
/** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1509, 1623 ] }
4,017
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
Ownable
contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
_transferOwnership
function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; }
/** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */
NatSpecMultiLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1768, 1960 ] }
4,018
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
function() external payable { }
/// Default function
NatSpecSingleLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1242, 1285 ] }
4,019
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
beginGame
function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; }
// begins a game
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 1388, 2395 ] }
4,020
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
finishGame
function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; }
// finishes a game that is in progress
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 2442, 2998 ] }
4,021
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
getGameState
function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); }
// returns current game state
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 3036, 3525 ] }
4,022
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
getMinBet
function getMinBet() public view returns (uint) { return minBet; }
// Returns the minimum bet
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 3560, 3645 ] }
4,023
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
getMaxBet
function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); }
// Returns the maximum bet
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 3680, 3858 ] }
4,024
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
calculateWinnings
function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); }
// calculates winnings for the given bet and percent
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 3919, 4073 ] }
4,025
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
getLowWinPercent
function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } }
// Returns the win percent when going low on the given number
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 4143, 5010 ] }
4,026
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
getHighWinPercent
function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } }
// Returns the win percent when going high on the given number
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 5081, 5947 ] }
4,027
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
incomingRandomNumberError
function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); }
/// ======================= /// RANDOM NUMBER CALLBACKS
NatSpecSingleLine
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 6020, 6361 ] }
4,028
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
transferBalance
function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); }
// fail safe for balance transfer
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 8619, 8729 ] }
4,029
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
cleanupAbandonedGame
function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; }
// cleans up a player abandoned game, but only if it's // greater than 24 hours old.
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 8827, 9133 ] }
4,030
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
setMinBet
function setMinBet(uint bet) public onlyOwner { minBet = bet; }
// set the minimum bet
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 9301, 9383 ] }
4,031
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
setGameRunning
function setGameRunning(bool v) public onlyOwner { gameRunning = v; }
// set whether or not the game is running
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 9433, 9521 ] }
4,032
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
setMaxBetThresholdPct
function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; }
// set the max bet threshold percent
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 9566, 9668 ] }
4,033
EtherHiLo
EtherHiLo.sol
0xa4a777d2a44b43f7eb814b67cb8f1e7c9b21aa1f
Solidity
EtherHiLo
contract EtherHiLo is Ownable, EtherHiLoRandomNumberRequester { uint8 constant NUM_DICE_SIDES = 13; uint public minBet; uint public maxBetThresholdPct; bool public gameRunning; uint public balanceInPlay; EtherHiLoRandomNumberGenerator private random; mapping(address => Game) private gamesInProgress; event GameFinished(address indexed player, uint indexed playerGameNumber, uint bet, uint8 firstRoll, uint8 finalRoll, uint winnings, uint payout); event GameError(address indexed player, uint indexed playerGameNumber); enum BetDirection { None, Low, High } enum GameState { None, WaitingForFirstCard, WaitingForDirection, WaitingForFinalCard, Finished } // the game object struct Game { address player; GameState state; uint id; BetDirection direction; uint bet; uint8 firstRoll; uint8 finalRoll; uint winnings; } // the constructor constructor() public { setMinBet(100 finney); setGameRunning(true); setMaxBetThresholdPct(75); } /// Default function function() external payable { } /// ======================= /// EXTERNAL GAME RELATED FUNCTIONS // begins a game function beginGame() public payable { address player = msg.sender; uint bet = msg.value; require(player != address(0)); require(gamesInProgress[player].state == GameState.None || gamesInProgress[player].state == GameState.Finished); require(gameRunning); require(bet >= minBet && bet <= getMaxBet()); Game memory game = Game({ id: uint(keccak256(block.number, player, bet)), player: player, state: GameState.WaitingForFirstCard, bet: bet, firstRoll: 0, finalRoll: 0, winnings: 0, direction: BetDirection.None }); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { player.transfer(msg.value); return; } balanceInPlay = balanceInPlay + game.bet; gamesInProgress[player] = game; } // finishes a game that is in progress function finishGame(BetDirection direction) public { address player = msg.sender; require(player != address(0)); require(gamesInProgress[player].state != GameState.None && gamesInProgress[player].state != GameState.Finished); if (!random.generateRandomNumber(player, NUM_DICE_SIDES)) { return; } Game storage game = gamesInProgress[player]; game.direction = direction; game.state = GameState.WaitingForFinalCard; gamesInProgress[player] = game; } // returns current game state function getGameState(address player) public view returns (GameState, uint, BetDirection, uint, uint8, uint8, uint) { return ( gamesInProgress[player].state, gamesInProgress[player].id, gamesInProgress[player].direction, gamesInProgress[player].bet, gamesInProgress[player].firstRoll, gamesInProgress[player].finalRoll, gamesInProgress[player].winnings ); } // Returns the minimum bet function getMinBet() public view returns (uint) { return minBet; } // Returns the maximum bet function getMaxBet() public view returns (uint) { return SafeMath.div(SafeMath.div(SafeMath.mul(this.balance - balanceInPlay, maxBetThresholdPct), 100), 12); } // calculates winnings for the given bet and percent function calculateWinnings(uint bet, uint percent) public pure returns (uint) { return SafeMath.div(SafeMath.mul(bet, percent), 100); } // Returns the win percent when going low on the given number function getLowWinPercent(uint number) public pure returns (uint) { require(number >= 2 && number <= NUM_DICE_SIDES); if (number == 2) { return 1200; } else if (number == 3) { return 500; } else if (number == 4) { return 300; } else if (number == 5) { return 300; } else if (number == 6) { return 200; } else if (number == 7) { return 180; } else if (number == 8) { return 150; } else if (number == 9) { return 140; } else if (number == 10) { return 130; } else if (number == 11) { return 120; } else if (number == 12) { return 110; } else if (number == 13) { return 100; } } // Returns the win percent when going high on the given number function getHighWinPercent(uint number) public pure returns (uint) { require(number >= 1 && number < NUM_DICE_SIDES); if (number == 1) { return 100; } else if (number == 2) { return 110; } else if (number == 3) { return 120; } else if (number == 4) { return 130; } else if (number == 5) { return 140; } else if (number == 6) { return 150; } else if (number == 7) { return 180; } else if (number == 8) { return 200; } else if (number == 9) { return 300; } else if (number == 10) { return 300; } else if (number == 11) { return 500; } else if (number == 12) { return 1200; } } /// ======================= /// RANDOM NUMBER CALLBACKS function incomingRandomNumberError(address player) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.bet > 0) { game.player.transfer(game.bet); } delete gamesInProgress[player]; GameError(player, game.id); } function incomingRandomNumber(address player, uint8 randomNumber) public { require(msg.sender == address(random)); Game storage game = gamesInProgress[player]; if (game.firstRoll == 0) { game.firstRoll = randomNumber; game.state = GameState.WaitingForDirection; gamesInProgress[player] = game; return; } uint8 finalRoll = randomNumber; uint winnings = 0; if (game.direction == BetDirection.High && finalRoll > game.firstRoll) { winnings = calculateWinnings(game.bet, getHighWinPercent(game.firstRoll)); } else if (game.direction == BetDirection.Low && finalRoll < game.firstRoll) { winnings = calculateWinnings(game.bet, getLowWinPercent(game.firstRoll)); } // this should never happen according to the odds, // and the fact that we don't allow people to bet // so large that they can take the whole pot in one // fell swoop - however, a number of people could // theoretically all win simultaneously and cause // this scenario. This will try to at a minimum // send them back what they bet and then since it // is recorded on the blockchain we can verify that // the winnings sent don't match what they should be // and we can manually send the rest to the player. uint transferAmount = winnings; if (transferAmount > this.balance) { if (game.bet < this.balance) { transferAmount = game.bet; } else { transferAmount = SafeMath.div(SafeMath.mul(this.balance, 90), 100); } } balanceInPlay = balanceInPlay - game.bet; if (transferAmount > 0) { game.player.transfer(transferAmount); } game.finalRoll = finalRoll; game.winnings = winnings; game.state = GameState.Finished; gamesInProgress[player] = game; GameFinished(player, game.id, game.bet, game.firstRoll, finalRoll, winnings, transferAmount); } /// OWNER / MANAGEMENT RELATED FUNCTIONS // fail safe for balance transfer function transferBalance(address to, uint amount) public onlyOwner { to.transfer(amount); } // cleans up a player abandoned game, but only if it's // greater than 24 hours old. function cleanupAbandonedGame(address player) public onlyOwner { require(player != address(0)); Game storage game = gamesInProgress[player]; require(game.player != address(0)); game.player.transfer(game.bet); delete gamesInProgress[game.player]; } function setRandomAddress(address _address) public onlyOwner { random = EtherHiLoRandomNumberGenerator(_address); } // set the minimum bet function setMinBet(uint bet) public onlyOwner { minBet = bet; } // set whether or not the game is running function setGameRunning(bool v) public onlyOwner { gameRunning = v; } // set the max bet threshold percent function setMaxBetThresholdPct(uint v) public onlyOwner { maxBetThresholdPct = v; } // Transfers the current balance to the recepient and terminates the contract. function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); } }
/// @title EtherHiLo /// @dev the contract than handles the EtherHiLo app
NatSpecSingleLine
destroyAndSend
function destroyAndSend(address _recipient) public onlyOwner { selfdestruct(_recipient); }
// Transfers the current balance to the recepient and terminates the contract.
LineComment
v0.4.24+commit.e67f0147
bzzr://d7dd15eab0599182f4209804ee6564396b6e731d99c3911dcf2a8f64c8e46065
{ "func_code_index": [ 9755, 9864 ] }
4,034
UniSwap_ETH_CHAIZap
browser/UniSwap_ETH_CHAIZapV3.sol
0xd17cda470bd0237fae82ef254c84d06d0e4cc02f
Solidity
UniSwap_ETH_CHAIZap
contract UniSwap_ETH_CHAIZap is Ownable, ReentrancyGuard { using SafeMath for uint; // events event ERC20TokenHoldingsOnConversionDaiChai(uint); event ERC20TokenHoldingsOnConversionEthDai(uint); event LiquidityTokens(uint); // state variables uint public balance = address(this).balance; // in relation to the emergency functioning of this contract bool private stopped = false; // circuit breaker modifiers modifier stopInEmergency {if (!stopped) _;} modifier onlyInEmergency {if (stopped) _;} function toggleContractActive() onlyOwner public { stopped = !stopped; } // - Key Addresses IuniswapFactory public UniSwapFactoryAddress = IuniswapFactory(0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95); IKyberInterface public KyberInterfaceAddresss; IERC20 public NEWDAI_TOKEN_ADDRESS = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F); IChaiContract public CHAI_TOKEN_ADDRESS = IChaiContract(0x06AF07097C9Eeb7fD685c692751D5C66dB49c215); function set_KyberInterfaceAddresss(IKyberInterface _new_KyberInterfaceAddresss) public onlyOwner { KyberInterfaceAddresss = _new_KyberInterfaceAddresss; } function LetsInvest(address _src, address _towhomtoissue, uint _MaxslippageValue) public payable stopInEmergency returns (uint) { IERC20 ERC20TokenAddress = IERC20(address(CHAI_TOKEN_ADDRESS)); IuniswapExchange UniSwapExchangeContractAddress = IuniswapExchange(UniSwapFactoryAddress.getExchange(address(CHAI_TOKEN_ADDRESS))); IChaiContract ChaiTokenAddress = IChaiContract(address(CHAI_TOKEN_ADDRESS)); // determining the portion of the incoming ETH to be converted to the ERC20 Token uint conversionPortion = SafeMath.div(SafeMath.mul(msg.value, 505), 1000); uint non_conversionPortion = SafeMath.sub(msg.value,conversionPortion); KyberInterfaceAddresss.swapTokentoToken.value(conversionPortion)(IERC20(_src), NEWDAI_TOKEN_ADDRESS, _MaxslippageValue); uint tokenBalance = NEWDAI_TOKEN_ADDRESS.balanceOf(address(this)); // conversion of DAI to CHAI uint qty2approve = SafeMath.mul(tokenBalance, 3); require(NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), qty2approve)); ChaiTokenAddress.join(address(this), tokenBalance); uint ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); require (ERC20TokenHoldings > 0, "the conversion did not happen as planned"); emit ERC20TokenHoldingsOnConversionDaiChai(ERC20TokenHoldings); NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), 0); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),ERC20TokenHoldings); // adding Liquidity uint max_tokens_ans = getMaxTokens(address(UniSwapExchangeContractAddress), ERC20TokenAddress, non_conversionPortion); UniSwapExchangeContractAddress.addLiquidity.value(non_conversionPortion)(1,max_tokens_ans,SafeMath.add(now,1800)); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),0); // transferring Liquidity uint LiquityTokenHoldings = UniSwapExchangeContractAddress.balanceOf(address(this)); emit LiquidityTokens(LiquityTokenHoldings); UniSwapExchangeContractAddress.transfer(_towhomtoissue, LiquityTokenHoldings); ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_towhomtoissue, ERC20TokenHoldings); return LiquityTokenHoldings; } function getMaxTokens(address _UniSwapExchangeContractAddress, IERC20 _ERC20TokenAddress, uint _value) internal view returns (uint) { uint contractBalance = address(_UniSwapExchangeContractAddress).balance; uint eth_reserve = SafeMath.sub(contractBalance, _value); uint token_reserve = _ERC20TokenAddress.balanceOf(_UniSwapExchangeContractAddress); uint token_amount = SafeMath.div(SafeMath.mul(_value,token_reserve),eth_reserve) + 1; return token_amount; } // incase of half-way error function withdrawERC20Token (address _TokenContractAddress) public onlyOwner { IERC20 ERC20TokenAddress = IERC20(_TokenContractAddress); uint StuckERC20Holdings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_owner, StuckERC20Holdings); } function set_new_CHAI_TokenContractAddress(address _new_CHAI_TokenContractAddress) public onlyOwner { CHAI_TOKEN_ADDRESS = IChaiContract(address(_new_CHAI_TokenContractAddress)); } // fx in relation to ETH held by the contract sent by the owner // - this function lets you deposit ETH into this wallet function depositETH() public payable onlyOwner { balance += msg.value; } // - fallback function let you / anyone send ETH to this wallet without the need to call any function function() external payable { if (msg.sender == _owner) { depositETH(); } else { LetsInvest(address(0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee), msg.sender, 3); } } // - to withdraw any ETH balance sitting in the contract function withdraw() public onlyOwner { _owner.transfer(address(this).balance); } function _selfDestruct() public onlyOwner { selfdestruct(_owner); } }
withdrawERC20Token
function withdrawERC20Token (address _TokenContractAddress) public onlyOwner { IERC20 ERC20TokenAddress = IERC20(_TokenContractAddress); uint StuckERC20Holdings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_owner, StuckERC20Holdings); }
// incase of half-way error
LineComment
v0.5.13+commit.5b0b510c
GNU GPLv2
bzzr://5ca8c35f7c5c292742ccc40363dcab8ab150c57ad3d136af1bcfffe0d665cc9e
{ "func_code_index": [ 4220, 4521 ] }
4,035
UniSwap_ETH_CHAIZap
browser/UniSwap_ETH_CHAIZapV3.sol
0xd17cda470bd0237fae82ef254c84d06d0e4cc02f
Solidity
UniSwap_ETH_CHAIZap
contract UniSwap_ETH_CHAIZap is Ownable, ReentrancyGuard { using SafeMath for uint; // events event ERC20TokenHoldingsOnConversionDaiChai(uint); event ERC20TokenHoldingsOnConversionEthDai(uint); event LiquidityTokens(uint); // state variables uint public balance = address(this).balance; // in relation to the emergency functioning of this contract bool private stopped = false; // circuit breaker modifiers modifier stopInEmergency {if (!stopped) _;} modifier onlyInEmergency {if (stopped) _;} function toggleContractActive() onlyOwner public { stopped = !stopped; } // - Key Addresses IuniswapFactory public UniSwapFactoryAddress = IuniswapFactory(0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95); IKyberInterface public KyberInterfaceAddresss; IERC20 public NEWDAI_TOKEN_ADDRESS = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F); IChaiContract public CHAI_TOKEN_ADDRESS = IChaiContract(0x06AF07097C9Eeb7fD685c692751D5C66dB49c215); function set_KyberInterfaceAddresss(IKyberInterface _new_KyberInterfaceAddresss) public onlyOwner { KyberInterfaceAddresss = _new_KyberInterfaceAddresss; } function LetsInvest(address _src, address _towhomtoissue, uint _MaxslippageValue) public payable stopInEmergency returns (uint) { IERC20 ERC20TokenAddress = IERC20(address(CHAI_TOKEN_ADDRESS)); IuniswapExchange UniSwapExchangeContractAddress = IuniswapExchange(UniSwapFactoryAddress.getExchange(address(CHAI_TOKEN_ADDRESS))); IChaiContract ChaiTokenAddress = IChaiContract(address(CHAI_TOKEN_ADDRESS)); // determining the portion of the incoming ETH to be converted to the ERC20 Token uint conversionPortion = SafeMath.div(SafeMath.mul(msg.value, 505), 1000); uint non_conversionPortion = SafeMath.sub(msg.value,conversionPortion); KyberInterfaceAddresss.swapTokentoToken.value(conversionPortion)(IERC20(_src), NEWDAI_TOKEN_ADDRESS, _MaxslippageValue); uint tokenBalance = NEWDAI_TOKEN_ADDRESS.balanceOf(address(this)); // conversion of DAI to CHAI uint qty2approve = SafeMath.mul(tokenBalance, 3); require(NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), qty2approve)); ChaiTokenAddress.join(address(this), tokenBalance); uint ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); require (ERC20TokenHoldings > 0, "the conversion did not happen as planned"); emit ERC20TokenHoldingsOnConversionDaiChai(ERC20TokenHoldings); NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), 0); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),ERC20TokenHoldings); // adding Liquidity uint max_tokens_ans = getMaxTokens(address(UniSwapExchangeContractAddress), ERC20TokenAddress, non_conversionPortion); UniSwapExchangeContractAddress.addLiquidity.value(non_conversionPortion)(1,max_tokens_ans,SafeMath.add(now,1800)); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),0); // transferring Liquidity uint LiquityTokenHoldings = UniSwapExchangeContractAddress.balanceOf(address(this)); emit LiquidityTokens(LiquityTokenHoldings); UniSwapExchangeContractAddress.transfer(_towhomtoissue, LiquityTokenHoldings); ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_towhomtoissue, ERC20TokenHoldings); return LiquityTokenHoldings; } function getMaxTokens(address _UniSwapExchangeContractAddress, IERC20 _ERC20TokenAddress, uint _value) internal view returns (uint) { uint contractBalance = address(_UniSwapExchangeContractAddress).balance; uint eth_reserve = SafeMath.sub(contractBalance, _value); uint token_reserve = _ERC20TokenAddress.balanceOf(_UniSwapExchangeContractAddress); uint token_amount = SafeMath.div(SafeMath.mul(_value,token_reserve),eth_reserve) + 1; return token_amount; } // incase of half-way error function withdrawERC20Token (address _TokenContractAddress) public onlyOwner { IERC20 ERC20TokenAddress = IERC20(_TokenContractAddress); uint StuckERC20Holdings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_owner, StuckERC20Holdings); } function set_new_CHAI_TokenContractAddress(address _new_CHAI_TokenContractAddress) public onlyOwner { CHAI_TOKEN_ADDRESS = IChaiContract(address(_new_CHAI_TokenContractAddress)); } // fx in relation to ETH held by the contract sent by the owner // - this function lets you deposit ETH into this wallet function depositETH() public payable onlyOwner { balance += msg.value; } // - fallback function let you / anyone send ETH to this wallet without the need to call any function function() external payable { if (msg.sender == _owner) { depositETH(); } else { LetsInvest(address(0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee), msg.sender, 3); } } // - to withdraw any ETH balance sitting in the contract function withdraw() public onlyOwner { _owner.transfer(address(this).balance); } function _selfDestruct() public onlyOwner { selfdestruct(_owner); } }
depositETH
function depositETH() public payable onlyOwner { balance += msg.value; }
// fx in relation to ETH held by the contract sent by the owner // - this function lets you deposit ETH into this wallet
LineComment
v0.5.13+commit.5b0b510c
GNU GPLv2
bzzr://5ca8c35f7c5c292742ccc40363dcab8ab150c57ad3d136af1bcfffe0d665cc9e
{ "func_code_index": [ 4883, 4975 ] }
4,036
UniSwap_ETH_CHAIZap
browser/UniSwap_ETH_CHAIZapV3.sol
0xd17cda470bd0237fae82ef254c84d06d0e4cc02f
Solidity
UniSwap_ETH_CHAIZap
contract UniSwap_ETH_CHAIZap is Ownable, ReentrancyGuard { using SafeMath for uint; // events event ERC20TokenHoldingsOnConversionDaiChai(uint); event ERC20TokenHoldingsOnConversionEthDai(uint); event LiquidityTokens(uint); // state variables uint public balance = address(this).balance; // in relation to the emergency functioning of this contract bool private stopped = false; // circuit breaker modifiers modifier stopInEmergency {if (!stopped) _;} modifier onlyInEmergency {if (stopped) _;} function toggleContractActive() onlyOwner public { stopped = !stopped; } // - Key Addresses IuniswapFactory public UniSwapFactoryAddress = IuniswapFactory(0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95); IKyberInterface public KyberInterfaceAddresss; IERC20 public NEWDAI_TOKEN_ADDRESS = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F); IChaiContract public CHAI_TOKEN_ADDRESS = IChaiContract(0x06AF07097C9Eeb7fD685c692751D5C66dB49c215); function set_KyberInterfaceAddresss(IKyberInterface _new_KyberInterfaceAddresss) public onlyOwner { KyberInterfaceAddresss = _new_KyberInterfaceAddresss; } function LetsInvest(address _src, address _towhomtoissue, uint _MaxslippageValue) public payable stopInEmergency returns (uint) { IERC20 ERC20TokenAddress = IERC20(address(CHAI_TOKEN_ADDRESS)); IuniswapExchange UniSwapExchangeContractAddress = IuniswapExchange(UniSwapFactoryAddress.getExchange(address(CHAI_TOKEN_ADDRESS))); IChaiContract ChaiTokenAddress = IChaiContract(address(CHAI_TOKEN_ADDRESS)); // determining the portion of the incoming ETH to be converted to the ERC20 Token uint conversionPortion = SafeMath.div(SafeMath.mul(msg.value, 505), 1000); uint non_conversionPortion = SafeMath.sub(msg.value,conversionPortion); KyberInterfaceAddresss.swapTokentoToken.value(conversionPortion)(IERC20(_src), NEWDAI_TOKEN_ADDRESS, _MaxslippageValue); uint tokenBalance = NEWDAI_TOKEN_ADDRESS.balanceOf(address(this)); // conversion of DAI to CHAI uint qty2approve = SafeMath.mul(tokenBalance, 3); require(NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), qty2approve)); ChaiTokenAddress.join(address(this), tokenBalance); uint ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); require (ERC20TokenHoldings > 0, "the conversion did not happen as planned"); emit ERC20TokenHoldingsOnConversionDaiChai(ERC20TokenHoldings); NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), 0); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),ERC20TokenHoldings); // adding Liquidity uint max_tokens_ans = getMaxTokens(address(UniSwapExchangeContractAddress), ERC20TokenAddress, non_conversionPortion); UniSwapExchangeContractAddress.addLiquidity.value(non_conversionPortion)(1,max_tokens_ans,SafeMath.add(now,1800)); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),0); // transferring Liquidity uint LiquityTokenHoldings = UniSwapExchangeContractAddress.balanceOf(address(this)); emit LiquidityTokens(LiquityTokenHoldings); UniSwapExchangeContractAddress.transfer(_towhomtoissue, LiquityTokenHoldings); ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_towhomtoissue, ERC20TokenHoldings); return LiquityTokenHoldings; } function getMaxTokens(address _UniSwapExchangeContractAddress, IERC20 _ERC20TokenAddress, uint _value) internal view returns (uint) { uint contractBalance = address(_UniSwapExchangeContractAddress).balance; uint eth_reserve = SafeMath.sub(contractBalance, _value); uint token_reserve = _ERC20TokenAddress.balanceOf(_UniSwapExchangeContractAddress); uint token_amount = SafeMath.div(SafeMath.mul(_value,token_reserve),eth_reserve) + 1; return token_amount; } // incase of half-way error function withdrawERC20Token (address _TokenContractAddress) public onlyOwner { IERC20 ERC20TokenAddress = IERC20(_TokenContractAddress); uint StuckERC20Holdings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_owner, StuckERC20Holdings); } function set_new_CHAI_TokenContractAddress(address _new_CHAI_TokenContractAddress) public onlyOwner { CHAI_TOKEN_ADDRESS = IChaiContract(address(_new_CHAI_TokenContractAddress)); } // fx in relation to ETH held by the contract sent by the owner // - this function lets you deposit ETH into this wallet function depositETH() public payable onlyOwner { balance += msg.value; } // - fallback function let you / anyone send ETH to this wallet without the need to call any function function() external payable { if (msg.sender == _owner) { depositETH(); } else { LetsInvest(address(0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee), msg.sender, 3); } } // - to withdraw any ETH balance sitting in the contract function withdraw() public onlyOwner { _owner.transfer(address(this).balance); } function _selfDestruct() public onlyOwner { selfdestruct(_owner); } }
function() external payable { if (msg.sender == _owner) { depositETH(); } else { LetsInvest(address(0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee), msg.sender, 3); } }
// - fallback function let you / anyone send ETH to this wallet without the need to call any function
LineComment
v0.5.13+commit.5b0b510c
GNU GPLv2
bzzr://5ca8c35f7c5c292742ccc40363dcab8ab150c57ad3d136af1bcfffe0d665cc9e
{ "func_code_index": [ 5089, 5318 ] }
4,037
UniSwap_ETH_CHAIZap
browser/UniSwap_ETH_CHAIZapV3.sol
0xd17cda470bd0237fae82ef254c84d06d0e4cc02f
Solidity
UniSwap_ETH_CHAIZap
contract UniSwap_ETH_CHAIZap is Ownable, ReentrancyGuard { using SafeMath for uint; // events event ERC20TokenHoldingsOnConversionDaiChai(uint); event ERC20TokenHoldingsOnConversionEthDai(uint); event LiquidityTokens(uint); // state variables uint public balance = address(this).balance; // in relation to the emergency functioning of this contract bool private stopped = false; // circuit breaker modifiers modifier stopInEmergency {if (!stopped) _;} modifier onlyInEmergency {if (stopped) _;} function toggleContractActive() onlyOwner public { stopped = !stopped; } // - Key Addresses IuniswapFactory public UniSwapFactoryAddress = IuniswapFactory(0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95); IKyberInterface public KyberInterfaceAddresss; IERC20 public NEWDAI_TOKEN_ADDRESS = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F); IChaiContract public CHAI_TOKEN_ADDRESS = IChaiContract(0x06AF07097C9Eeb7fD685c692751D5C66dB49c215); function set_KyberInterfaceAddresss(IKyberInterface _new_KyberInterfaceAddresss) public onlyOwner { KyberInterfaceAddresss = _new_KyberInterfaceAddresss; } function LetsInvest(address _src, address _towhomtoissue, uint _MaxslippageValue) public payable stopInEmergency returns (uint) { IERC20 ERC20TokenAddress = IERC20(address(CHAI_TOKEN_ADDRESS)); IuniswapExchange UniSwapExchangeContractAddress = IuniswapExchange(UniSwapFactoryAddress.getExchange(address(CHAI_TOKEN_ADDRESS))); IChaiContract ChaiTokenAddress = IChaiContract(address(CHAI_TOKEN_ADDRESS)); // determining the portion of the incoming ETH to be converted to the ERC20 Token uint conversionPortion = SafeMath.div(SafeMath.mul(msg.value, 505), 1000); uint non_conversionPortion = SafeMath.sub(msg.value,conversionPortion); KyberInterfaceAddresss.swapTokentoToken.value(conversionPortion)(IERC20(_src), NEWDAI_TOKEN_ADDRESS, _MaxslippageValue); uint tokenBalance = NEWDAI_TOKEN_ADDRESS.balanceOf(address(this)); // conversion of DAI to CHAI uint qty2approve = SafeMath.mul(tokenBalance, 3); require(NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), qty2approve)); ChaiTokenAddress.join(address(this), tokenBalance); uint ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); require (ERC20TokenHoldings > 0, "the conversion did not happen as planned"); emit ERC20TokenHoldingsOnConversionDaiChai(ERC20TokenHoldings); NEWDAI_TOKEN_ADDRESS.approve(address(ERC20TokenAddress), 0); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),ERC20TokenHoldings); // adding Liquidity uint max_tokens_ans = getMaxTokens(address(UniSwapExchangeContractAddress), ERC20TokenAddress, non_conversionPortion); UniSwapExchangeContractAddress.addLiquidity.value(non_conversionPortion)(1,max_tokens_ans,SafeMath.add(now,1800)); ERC20TokenAddress.approve(address(UniSwapExchangeContractAddress),0); // transferring Liquidity uint LiquityTokenHoldings = UniSwapExchangeContractAddress.balanceOf(address(this)); emit LiquidityTokens(LiquityTokenHoldings); UniSwapExchangeContractAddress.transfer(_towhomtoissue, LiquityTokenHoldings); ERC20TokenHoldings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_towhomtoissue, ERC20TokenHoldings); return LiquityTokenHoldings; } function getMaxTokens(address _UniSwapExchangeContractAddress, IERC20 _ERC20TokenAddress, uint _value) internal view returns (uint) { uint contractBalance = address(_UniSwapExchangeContractAddress).balance; uint eth_reserve = SafeMath.sub(contractBalance, _value); uint token_reserve = _ERC20TokenAddress.balanceOf(_UniSwapExchangeContractAddress); uint token_amount = SafeMath.div(SafeMath.mul(_value,token_reserve),eth_reserve) + 1; return token_amount; } // incase of half-way error function withdrawERC20Token (address _TokenContractAddress) public onlyOwner { IERC20 ERC20TokenAddress = IERC20(_TokenContractAddress); uint StuckERC20Holdings = ERC20TokenAddress.balanceOf(address(this)); ERC20TokenAddress.transfer(_owner, StuckERC20Holdings); } function set_new_CHAI_TokenContractAddress(address _new_CHAI_TokenContractAddress) public onlyOwner { CHAI_TOKEN_ADDRESS = IChaiContract(address(_new_CHAI_TokenContractAddress)); } // fx in relation to ETH held by the contract sent by the owner // - this function lets you deposit ETH into this wallet function depositETH() public payable onlyOwner { balance += msg.value; } // - fallback function let you / anyone send ETH to this wallet without the need to call any function function() external payable { if (msg.sender == _owner) { depositETH(); } else { LetsInvest(address(0x00eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee), msg.sender, 3); } } // - to withdraw any ETH balance sitting in the contract function withdraw() public onlyOwner { _owner.transfer(address(this).balance); } function _selfDestruct() public onlyOwner { selfdestruct(_owner); } }
withdraw
function withdraw() public onlyOwner { _owner.transfer(address(this).balance); }
// - to withdraw any ETH balance sitting in the contract
LineComment
v0.5.13+commit.5b0b510c
GNU GPLv2
bzzr://5ca8c35f7c5c292742ccc40363dcab8ab150c57ad3d136af1bcfffe0d665cc9e
{ "func_code_index": [ 5395, 5494 ] }
4,038
SCHTSub
SCHTSub.sol
0x705417e415b41a1ec1b0c363679145ac4c0f24d4
Solidity
Ownable
contract Ownable { address public ctOwner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == ctOwner); _; } /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender account. */ function Ownable() public { ctOwner = msg.sender; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(ctOwner, newOwner); ctOwner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
Ownable
function Ownable() public { ctOwner = msg.sender; }
/** * @dev The Ownable constructor sets the original `owner` of the contract to the sender account. */
NatSpecMultiLine
v0.4.21+commit.dfe3193c
bzzr://acb735468f87355d1e4cab85b0c08d95cd431fe096f9449c4f6e80af3ca9aaec
{ "func_code_index": [ 408, 470 ] }
4,039
SCHTSub
SCHTSub.sol
0x705417e415b41a1ec1b0c363679145ac4c0f24d4
Solidity
Ownable
contract Ownable { address public ctOwner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == ctOwner); _; } /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender account. */ function Ownable() public { ctOwner = msg.sender; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(ctOwner, newOwner); ctOwner = newOwner; } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
transferOwnership
function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(ctOwner, newOwner); ctOwner = newOwner; }
/** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */
NatSpecMultiLine
v0.4.21+commit.dfe3193c
bzzr://acb735468f87355d1e4cab85b0c08d95cd431fe096f9449c4f6e80af3ca9aaec
{ "func_code_index": [ 634, 819 ] }
4,040
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
fromInt
function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } }
/** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 816, 1530 ] }
4,041
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
toInt
function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } }
/** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 1771, 2902 ] }
4,042
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
fromUInt
function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } }
/** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 3097, 3665 ] }
4,043
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
toUInt
function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } }
/** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 4078, 4744 ] }
4,044
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
from128x128
function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } }
/** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 4958, 5676 ] }
4,045
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
to128x128
function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } }
/** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 5911, 7046 ] }
4,046
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
from64x64
function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } }
/** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 7256, 7972 ] }
4,047
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
to64x64
function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } }
/** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 8203, 9164 ] }
4,048
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
fromOctuple
function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } }
/** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 9345, 10734 ] }
4,049
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
toOctuple
function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } }
/** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 10915, 11949 ] }
4,050
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
fromDouble
function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } }
/** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 12128, 13062 ] }
4,051
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
toDouble
function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } }
/** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 13241, 14853 ] }
4,052
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
isNaN
function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } }
/** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 15031, 15264 ] }
4,053
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
isInfinity
function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } }
/** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 15501, 15740 ] }
4,054
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
sign
function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } }
/** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 15985, 16411 ] }
4,055
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
cmp
function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } }
/** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 16674, 17815 ] }
4,056
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
eq
function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } }
/** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 18076, 18388 ] }
4,057
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
add
function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } }
/** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 18888, 24922 ] }
4,058
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
sub
function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } }
/** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 25422, 25597 ] }
4,059
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
mul
function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } }
/** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 26311, 29683 ] }
4,060
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
div
function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } }
/** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 31005, 34931 ] }
4,061
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
neg
function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } }
/** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 35062, 35218 ] }
4,062
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
abs
function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } }
/** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 35350, 35506 ] }
4,063
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
sqrt
function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } }
/** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 35691, 38258 ] }
4,064
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
log_2
function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } }
/** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 38448, 41633 ] }
4,065
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
ln
function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } }
/** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 41824, 41990 ] }
4,066
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
pow_2
function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } }
/** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 42122, 74236 ] }
4,067
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
exp
function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } }
/** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 74368, 74535 ] }
4,068
BondingShareV2
contracts/libs/ABDKMathQuad.sol
0x2da07859613c14f6f05c97efe37b9b4f212b5ef5
Solidity
ABDKMathQuad
library ABDKMathQuad { /* * 0. */ bytes16 private constant _POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant _NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant _POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant _NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt(uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { uint256 result = x; uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112); return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt(bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; if (exponent < 16383) return 0; // Underflow require(uint128(x) < 0x80000000000000000000000000000000); // Negative require(exponent <= 16638); // Overflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128(int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint256(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128(bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require( result <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(result); // We rely on overflow behavior here } else { require( result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64(int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16(0); else { // We rely on overflow behavior here uint256 result = uint128(x > 0 ? x : -x); uint256 msb = mostSignificantBit(result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112); if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64(bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; require(exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128(x) >= 0x80000000000000000000000000000000) { // Negative require(result <= 0x80000000000000000000000000000000); return -int128(int256(result)); // We rely on overflow behavior here } else { require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(int256(result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple(bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = (uint256(x) >> 236) & 0x7FFFF; uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; } if (exponent > 278526) return negative ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else if (exponent < 245649) return negative ? _NEGATIVE_ZERO : _POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> (245885 - exponent); exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128(significand | (exponent << 112)); if (negative) result |= 0x80000000000000000000000000000000; return bytes16(result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple(bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128(x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32(result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble(bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = (uint64(x) >> 52) & 0x7FF; uint256 result = uint64(x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit(result); result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16(uint128(result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble(bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128(x) >= 0x80000000000000000000000000000000; uint256 exponent = (uint128(x) >> 112) & 0x7FFF; uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8(0xFFF0000000000000) // -Infinity : bytes8(0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8(0x8000000000000000) // -0 : bytes8(0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent); exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64(significand | (exponent << 52)); if (negative) result |= 0x8000000000000000; return bytes8(result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity(bytes16 x) internal pure returns (bool) { unchecked { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign(bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128(x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp(bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require(x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128(x) >= 0x80000000000000000000000000000000; bool negativeY = uint128(y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8(1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8(1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq(bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128(x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128(y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == _NEGATIVE_ZERO ? _POSITIVE_ZERO : y; else if (ySignifier == 0) return x == _NEGATIVE_ZERO ? _POSITIVE_ZERO : x; else { int256 delta = int256(xExponent) - int256(yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256(delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256(-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return _POSITIVE_ZERO; uint256 msb = mostSignificantBit(xSignifier); if (msb == 113) { xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? _NEGATIVE_INFINITY : _POSITIVE_INFINITY; else return bytes16( uint128( ( xSign ? 0x80000000000000000000000000000000 : 0 ) | (xExponent << 112) | xSignifier ) ); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add(x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ (y & 0x80000000000000000000000000000000); else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ (x & 0x80000000000000000000000000000000); } else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit(xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div(bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 yExponent = (uint128(y) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ (y & 0x80000000000000000000000000000000); } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return _POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000); } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return _POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000); } else { uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint256 shift = 226 - mostSignificantBit(xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? _NEGATIVE_ZERO : _POSITIVE_ZERO; assert(xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit(xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16( uint128( uint128( (x ^ y) & 0x80000000000000000000000000000000 ) | (xExponent << 112) | xSignifier ) ); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg(bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs(bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = (xExponent + 16383) >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit(xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= (shift - 112) >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16( uint128( (xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2(bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128(x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return _POSITIVE_ZERO; else { uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return _NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit(xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit(resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while ( resultSignifier < 0x10000000000000000000000000000 ) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16( uint128( ( resultNegative ? 0x80000000000000000000000000000000 : 0 ) | (resultExponent << 112) | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ) ); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln(bytes16 x) internal pure returns (bytes16) { unchecked { return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2(bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128(x) > 0x80000000000000000000000000000000; uint256 xExponent = (uint128(x) >> 112) & 0x7FFF; uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? _POSITIVE_ZERO : _POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if ( xNegative && xSignifier > 0x406E00000000000000000000000000000000 ) return _POSITIVE_ZERO; if ( !xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ) return _POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128; if (xSignifier & 0x800 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128; if (xSignifier & 0x400 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128; if (xSignifier & 0x200 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128; if (xSignifier & 0x100 > 0) resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128; if (xSignifier & 0x80 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128; if (xSignifier & 0x40 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128; if (xSignifier & 0x20 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128; if (xSignifier & 0x10 > 0) resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128; if (xSignifier & 0x8 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128; if (xSignifier & 0x4 > 0) resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128; if (!xNegative) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> (resultExponent - 16367); resultExponent = 0; } return bytes16(uint128((resultExponent << 112) | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp(bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } }
/** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */
NatSpecMultiLine
mostSignificantBit
function mostSignificantBit(uint256 x) private pure returns (uint256) { unchecked { require(x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } }
/** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */
NatSpecMultiLine
v0.8.3+commit.8d00100c
MIT
none
{ "func_code_index": [ 74778, 75793 ] }
4,069
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
TurtleToken
function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes }
/** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 842, 1388 ] }
4,070
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
_transfer
function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); }
/** * Internal transfer, only can be called by this contract */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 1472, 2320 ] }
4,071
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
transfer
function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); }
/** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 2526, 2638 ] }
4,072
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
transferFrom
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; }
/** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 2913, 3214 ] }
4,073
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
approve
function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; }
/** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 3478, 3654 ] }
4,074
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
approveAndCall
function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } }
/** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 4048, 4400 ] }
4,075
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
burn
function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; }
/** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 4570, 4949 ] }
4,076
TurtleToken
TurtleToken.sol
0x7d41b9575611704daddf1e66af745055f076c1c8
Solidity
TurtleToken
contract TurtleToken { // Public variables of the token string public name; string public symbol; uint8 public decimals = 18; // 18 decimals is the strongly suggested default, avoid changing it uint256 public totalSupply; // This creates an array with all balances mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; // This generates a public event on the blockchain that will notify clients event Transfer(address indexed from, address indexed to, uint256 value); // This notifies clients about the amount burnt event Burn(address indexed from, uint256 value); /** * Constructor function * * Initializes contract with initial supply tokens to the creator of the contract */ function TurtleToken( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); // Update total supply with the decimal amount balanceOf[msg.sender] = totalSupply; // Give the creator all initial tokens name = tokenName; // Set the name for display purposes symbol = tokenSymbol; // Set the symbol for display purposes } /** * Internal transfer, only can be called by this contract */ function _transfer(address _from, address _to, uint _value) internal { // Prevent transfer to 0x0 address. Use burn() instead require(_to != 0x0); // Check if the sender has enough require(balanceOf[_from] >= _value); // Check for overflows require(balanceOf[_to] + _value >= balanceOf[_to]); // Save this for an assertion in the future uint previousBalances = balanceOf[_from] + balanceOf[_to]; // Subtract from the sender balanceOf[_from] -= _value; // Add the same to the recipient balanceOf[_to] += _value; emit Transfer(_from, _to, _value); // Asserts are used to use static analysis to find bugs in your code. They should never fail assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } /** * Transfer tokens * * Send `_value` tokens to `_to` from your account * * @param _to The address of the recipient * @param _value the amount to send */ function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } /** * Transfer tokens from other address * * Send `_value` tokens to `_to` on behalf of `_from` * * @param _from The address of the sender * @param _to The address of the recipient * @param _value the amount to send */ function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); // Check allowance allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } /** * Set allowance for other address * * Allows `_spender` to spend no more than `_value` tokens on your behalf * * @param _spender The address authorized to spend * @param _value the max amount they can spend */ function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } /** * Set allowance for other address and notify * * Allows `_spender` to spend no more than `_value` tokens on your behalf, and then ping the contract about it * * @param _spender The address authorized to spend * @param _value the max amount they can spend * @param _extraData some extra information to send to the approved contract */ function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } /** * Destroy tokens * * Remove `_value` tokens from the system irreversibly * * @param _value the amount of money to burn */ function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); // Check if the sender has enough balanceOf[msg.sender] -= _value; // Subtract from the sender totalSupply -= _value; // Updates totalSupply emit Burn(msg.sender, _value); return true; } /** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */ function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; } }
burnFrom
function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); // Check if the targeted balance is enough require(_value <= allowance[_from][msg.sender]); // Check allowance balanceOf[_from] -= _value; // Subtract from the targeted balance allowance[_from][msg.sender] -= _value; // Subtract from the sender's allowance totalSupply -= _value; // Update totalSupply emit Burn(_from, _value); return true; }
/** * Destroy tokens from other account * * Remove `_value` tokens from the system irreversibly on behalf of `_from`. * * @param _from the address of the sender * @param _value the amount of money to burn */
NatSpecMultiLine
v0.4.23+commit.124ca40d
bzzr://1ae8876f7d95baa35b5a40baeec84407dd96f73f226f6f45500ad6213382e570
{ "func_code_index": [ 5207, 5823 ] }
4,077
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
Ownable
contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
Ownable
function Ownable() public { owner = msg.sender; }
/** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 180, 248 ] }
4,078
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
Ownable
contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } }
/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */
NatSpecMultiLine
transferOwnership
function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } }
/** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 592, 748 ] }
4,079
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
BasicToken
contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } }
/** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */
NatSpecMultiLine
transfer
function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); }
/** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 626, 1204 ] }
4,080
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
BasicToken
contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } }
/** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */
NatSpecMultiLine
balanceOf
function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; }
/** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 1417, 1538 ] }
4,081
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
StandardToken
contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } }
/** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */
NatSpecMultiLine
transferFrom
function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); }
/** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 451, 1357 ] }
4,082
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
StandardToken
contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } }
/** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */
NatSpecMultiLine
approve
function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); }
/** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 1599, 2177 ] }
4,083
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
StandardToken
contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } }
/** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */
NatSpecMultiLine
allowance
function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; }
/** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 2505, 2655 ] }
4,084
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
Pausable
contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } }
/** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */
NatSpecMultiLine
pause
function pause() onlyOwner whenNotPaused public { paused = true; Pause(); }
/** * @dev called by the owner to pause, triggers stopped state */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 513, 604 ] }
4,085
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
Pausable
contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } }
/** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */
NatSpecMultiLine
unpause
function unpause() onlyOwner whenPaused public { paused = false; Unpause(); }
/** * @dev called by the owner to unpause, returns to normal state */
NatSpecMultiLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 688, 781 ] }
4,086
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
BlackList
contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); }
getBlackListStatus
function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; }
/////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
NatSpecSingleLine
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 167, 296 ] }
4,087
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
UpgradedStandardToken
contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; }
transferByLegacy
function transferByLegacy(address from, address to, uint value) public;
// those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 173, 249 ] }
4,088
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
HBToken
function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; }
// The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 502, 799 ] }
4,089
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
transfer
function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } }
// Forward ERC20 methods to upgraded contract if this one is deprecated
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 879, 1210 ] }
4,090
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
transferFrom
function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } }
// Forward ERC20 methods to upgraded contract if this one is deprecated
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 1290, 1657 ] }
4,091
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
balanceOf
function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } }
// Forward ERC20 methods to upgraded contract if this one is deprecated
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 1737, 1986 ] }
4,092
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
approve
function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } }
// Forward ERC20 methods to upgraded contract if this one is deprecated
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 2066, 2373 ] }
4,093
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
allowance
function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } }
// Forward ERC20 methods to upgraded contract if this one is deprecated
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 2453, 2751 ] }
4,094
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
deprecate
function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); }
// deprecate current contract in favour of a new one
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 2812, 2998 ] }
4,095
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
totalSupply
function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } }
// deprecate current contract if favour of a new one
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 3059, 3282 ] }
4,096
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
issue
function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); }
// Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 3441, 3712 ] }
4,097
HBToken
HBToken.sol
0x978e6eb7ef39bf7bc809c61aa89a495e1a3041be
Solidity
HBToken
contract HBToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function HBToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }
redeem
function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); }
// Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued
LineComment
v0.4.17+commit.bdeb9e52
bzzr://4abc1cdd6dc575aef683af58cdb5b3b79f412195568a4f40a7ab082727cf0c72
{ "func_code_index": [ 3938, 4180 ] }
4,098
TokenTestToken
contracts/OctusNetworkGoldenToken.sol
0x85d736760743b5380bf15c3e78b112bac8de6473
Solidity
TokenTestToken
contract TokenTestToken is StandardToken, Ownable { string public constant name = "Token Test token"; string public constant symbol = "3T"; uint8 public constant decimals = 18; uint256 public constant INITIAL_SUPPLY = 10000000 * (10 ** uint256(decimals)); uint256 public constant MAXIMUM_SUPPLY = 1000000000 * (10 ** uint256(decimals)); mapping (address => bool) public frozenAccount; // This creates an array with all balances mapping (address => mapping (address => uint256)) public allowance; /* This generates a public event on the blockchain that will notify clients */ event FrozenFunds(address target, bool frozen); /** * @dev Constructor that gives msg.sender all of existing tokens. */ constructor() public{ totalSupply = INITIAL_SUPPLY; balances[msg.sender] = INITIAL_SUPPLY; // Set the total supply emit Transfer(0x0, msg.sender, INITIAL_SUPPLY); // Creator address is assigned all } /// @notice Create `mintedAmount` tokens and send it to `target` /// @param target Address to receive the tokens /// @param mintedAmount the amount of tokens it will receive function mintToken(address target, uint256 mintedAmount)public onlyOwner returns(bool){ if((totalSupply + mintedAmount)>MAXIMUM_SUPPLY){ return false; }else{ balances[target] += mintedAmount; totalSupply += mintedAmount; emit Transfer(address(0), address(this), mintedAmount); emit Transfer(address(this), target, mintedAmount); return true; } } /// @notice `freeze? Prevent | Allow` `target` from sending & receiving tokens /// @param target Address to be frozen /// @param freeze either to freeze it or not function freezeAccount(address target, bool freeze) public onlyOwner{ frozenAccount[target] = freeze; emit FrozenFunds(target, freeze); } }
/** * @title OctusNetworkGoldenToken * @dev DistributableToken contract is based on a simple initial supply token, with an API for the owner to perform bulk distributions. * transactions to the distributeTokens function should be paginated to avoid gas limits or computational time restrictions. */
NatSpecMultiLine
mintToken
function mintToken(address target, uint256 mintedAmount)public onlyOwner returns(bool){ ((totalSupply + mintedAmount)>MAXIMUM_SUPPLY){ eturn false; lse{ alances[target] += mintedAmount; otalSupply += mintedAmount; mit Transfer(address(0), address(this), mintedAmount); mit Transfer(address(this), target, mintedAmount); eturn true; }
/// @notice Create `mintedAmount` tokens and send it to `target` /// @param target Address to receive the tokens /// @param mintedAmount the amount of tokens it will receive
NatSpecSingleLine
v0.4.25+commit.59dbf8f1
bzzr://79f581617745f2cc74c09e9f244d9bd2a063c57fb01e7978db74eb0c8c1af282
{ "func_code_index": [ 1195, 1584 ] }
4,099
TokenTestToken
contracts/OctusNetworkGoldenToken.sol
0x85d736760743b5380bf15c3e78b112bac8de6473
Solidity
TokenTestToken
contract TokenTestToken is StandardToken, Ownable { string public constant name = "Token Test token"; string public constant symbol = "3T"; uint8 public constant decimals = 18; uint256 public constant INITIAL_SUPPLY = 10000000 * (10 ** uint256(decimals)); uint256 public constant MAXIMUM_SUPPLY = 1000000000 * (10 ** uint256(decimals)); mapping (address => bool) public frozenAccount; // This creates an array with all balances mapping (address => mapping (address => uint256)) public allowance; /* This generates a public event on the blockchain that will notify clients */ event FrozenFunds(address target, bool frozen); /** * @dev Constructor that gives msg.sender all of existing tokens. */ constructor() public{ totalSupply = INITIAL_SUPPLY; balances[msg.sender] = INITIAL_SUPPLY; // Set the total supply emit Transfer(0x0, msg.sender, INITIAL_SUPPLY); // Creator address is assigned all } /// @notice Create `mintedAmount` tokens and send it to `target` /// @param target Address to receive the tokens /// @param mintedAmount the amount of tokens it will receive function mintToken(address target, uint256 mintedAmount)public onlyOwner returns(bool){ if((totalSupply + mintedAmount)>MAXIMUM_SUPPLY){ return false; }else{ balances[target] += mintedAmount; totalSupply += mintedAmount; emit Transfer(address(0), address(this), mintedAmount); emit Transfer(address(this), target, mintedAmount); return true; } } /// @notice `freeze? Prevent | Allow` `target` from sending & receiving tokens /// @param target Address to be frozen /// @param freeze either to freeze it or not function freezeAccount(address target, bool freeze) public onlyOwner{ frozenAccount[target] = freeze; emit FrozenFunds(target, freeze); } }
/** * @title OctusNetworkGoldenToken * @dev DistributableToken contract is based on a simple initial supply token, with an API for the owner to perform bulk distributions. * transactions to the distributeTokens function should be paginated to avoid gas limits or computational time restrictions. */
NatSpecMultiLine
freezeAccount
function freezeAccount(address target, bool freeze) public onlyOwner{ frozenAccount[target] = freeze; emit FrozenFunds(target, freeze); }
/// @notice `freeze? Prevent | Allow` `target` from sending & receiving tokens /// @param target Address to be frozen /// @param freeze either to freeze it or not
NatSpecSingleLine
v0.4.25+commit.59dbf8f1
bzzr://79f581617745f2cc74c09e9f244d9bd2a063c57fb01e7978db74eb0c8c1af282
{ "func_code_index": [ 1762, 1928 ] }
4,100
LibertyTaler
LibertyTaler.sol
0x46bc872506c0bb6e634166a2c2375e4926db80ae
Solidity
LibertyTaler
contract LibertyTaler is ERC20, Owned { using SafeMath for uint256; address owner = msg.sender; mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; string public constant name = "LibertyTaler"; string public constant symbol = "LBRT"; uint public constant decimals = 18; uint256 public totalSupply = 35000000000000000000000000; uint256 public totalDistributed = 0; uint256 public totalIcoDistributed = 0; uint256 public constant minContribution = 1 ether / 100; // 0.01 Eth uint256 public tokensPerEth = 0; // ------------------------------ // Token Distribution and Address // ------------------------------ // saleable 45% uint256 public constant totalIco = 15750000000000000000000000; uint256 public totalIcoDist = 0; address storageIco = owner; // airdrop 10% uint256 public constant totalAirdrop = 3500000000000000000000000; address private storageAirdrop = 0x745541E2c3cE1e669C60CBB11198ccd75397f17c; // developer 45% uint256 public constant totalDeveloper = 15750000000000000000000000; address private storageDeveloper = 0x36836fCD844CFdebb84628ba4a916B72ceBeffb9; // --------------------- // sale start price and bonus // --------------------- // presale uint public presaleStartTime = 1544979600; // Monday, 17 December 2018 00:00:00 GMT+07:00 uint256 public presalePerEth = 500000000000000000000; // ico uint public icoStartTime = 1546189200; // Tuesday, 15 January 2019 00:00:00 GMT+07:00 uint256 public icoPerEth = 500000000000000000000; // ico1 uint public ico1StartTime = 1547398800; // Wednesday, 30 January 2019 00:00:00 GMT+07:00 uint256 public ico1PerEth = 500000000000000000000; // ico2 uint public ico2StartTime = 1548608400; // Wednesday, 13 February 2019 00:00:00 GMT+07:00 uint256 public ico2PerEth = 500000000000000000000; //ico start and end uint public icoOpenTime = presaleStartTime; uint public icoEndTime = 1549818000; // Thursday, 28 February 2019 00:00:00 GMT+07:00 // ----------------------- // events // ----------------------- event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event Distr(address indexed to, uint256 amount); event DistrFinished(); event Airdrop(address indexed _owner, uint _amount, uint _balance); event TokensPerEthUpdated(uint _tokensPerEth); event Burn(address indexed burner, uint256 value); event Sent(address from, address to, uint amount); // ------------------- // STATE // --------------------- bool public icoOpen = false; bool public icoFinished = false; bool public distributionFinished = false; // ----- // temp // ----- uint256 public tTokenPerEth = 0; uint256 public tAmount = 0; uint i = 0; bool private tIcoOpen = false; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { balances[owner] = totalIco; balances[storageAirdrop] = totalAirdrop; balances[storageDeveloper] = totalDeveloper; } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return totalSupply - balances[address(0)]; } modifier canDistr() { require(!distributionFinished); _; } function startDistribution() onlyOwner canDistr public returns (bool) { icoOpen = true; presaleStartTime = now; icoOpenTime = now; return true; } function finishDistribution() onlyOwner canDistr public returns (bool) { distributionFinished = true; icoFinished = true; emit DistrFinished(); return true; } function distr(address _to, uint256 _amount) canDistr private returns (bool) { totalDistributed = totalDistributed.add(_amount); balances[_to] = balances[_to].add(_amount); balances[owner] = balances[owner].sub(_amount); emit Distr(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function send(address receiver, uint amount) public { if (balances[msg.sender] < amount) return; balances[msg.sender] -= amount; balances[receiver] += amount; emit Sent(msg.sender, receiver, amount); } function updateTokensPerEth(uint _tokensPerEth) public onlyOwner { tokensPerEth = _tokensPerEth; emit TokensPerEthUpdated(_tokensPerEth); } function () external payable { //owner withdraw if (msg.sender == owner && msg.value == 0){ withdraw(); } if(msg.sender != owner){ if ( now < icoOpenTime ){ revert('ICO does not open yet'); } //is Open if ( ( now >= icoOpenTime ) && ( now <= icoEndTime ) ){ icoOpen = true; } if ( now > icoEndTime ){ icoOpen = false; icoFinished = true; distributionFinished = true; } if ( icoFinished == true ){ revert('ICO has finished'); } if ( distributionFinished == true ){ revert('Token distribution has finished'); } if ( icoOpen == true ){ if ( now >= presaleStartTime && now < icoStartTime){ tTokenPerEth = presalePerEth; } if ( now >= icoStartTime && now < ico1StartTime){ tTokenPerEth = icoPerEth; } if ( now >= ico1StartTime && now < ico2StartTime){ tTokenPerEth = ico1PerEth; } if ( now >= ico2StartTime && now < icoEndTime){ tTokenPerEth = ico2PerEth; } tokensPerEth = tTokenPerEth; getTokens(); } } } function getTokens() payable canDistr public { uint256 tokens = 0; require( msg.value >= minContribution ); require( msg.value > 0 ); tokens = tokensPerEth.mul(msg.value) / 1 ether; address investor = msg.sender; if ( icoFinished == true ){ revert('ICO Has Finished'); } if( balances[owner] < tokens ){ revert('Insufficient Token Balance or Sold Out.'); } if (tokens < 0){ revert(); } totalIcoDistributed += tokens; if (tokens > 0) { distr(investor, tokens); } if (totalIcoDistributed >= totalIco) { distributionFinished = true; } } function balanceOf(address _owner) constant public returns (uint256) { return balances[_owner]; } // mitigates the ERC20 short address attack modifier onlyPayloadSize(uint size) { assert(msg.data.length >= size + 4); _; } function transfer(address _to, uint256 _amount) onlyPayloadSize(2 * 32) public returns (bool success) { require(_to != address(0)); require(_amount <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_amount); balances[_to] = balances[_to].add(_amount); emit Transfer(msg.sender, _to, _amount); return true; } function transferFrom(address _from, address _to, uint256 _amount) onlyPayloadSize(3 * 32) public returns (bool success) { require(_to != address(0)); require(_amount <= balances[_from]); require(_amount <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_amount); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_amount); balances[_to] = balances[_to].add(_amount); emit Transfer(_from, _to, _amount); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { // mitigates the ERC20 spend/approval race condition if (_value != 0 && allowed[msg.sender][_spender] != 0) { return false; } allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant public returns (uint256) { return allowed[_owner][_spender]; } function getTokenBalance(address tokenAddress, address who) constant public returns (uint){ AltcoinToken t = AltcoinToken(tokenAddress); uint bal = t.balanceOf(who); return bal; } function withdraw() onlyOwner public { address myAddress = this; uint256 etherBalance = myAddress.balance; owner.transfer(etherBalance); } function burn(uint256 _amount) onlyOwner public { balances[owner] = balances[owner].sub(_amount); totalSupply = totalSupply.sub(_amount); totalDistributed = totalDistributed.sub(_amount); emit Burn(owner, _amount); } function withdrawAltcoinTokens(address _tokenContract) onlyOwner public returns (bool) { AltcoinToken token = AltcoinToken(_tokenContract); uint256 amount = token.balanceOf(address(this)); return token.transfer(owner, amount); } function dist_privateSale(address _to, uint256 _amount) onlyOwner public { require(_amount <= balances[owner]); require(_amount > 0); totalDistributed = totalDistributed.add(_amount); balances[_to] = balances[_to].add(_amount); balances[owner] = balances[owner].sub(_amount); emit Distr(_to, _amount); emit Transfer(address(0), _to, _amount); tAmount = 0; } function dist_airdrop(address _to, uint256 _amount) onlyOwner public { require(_amount <= balances[storageAirdrop]); require(_amount > 0); balances[_to] = balances[_to].add(_amount); balances[storageAirdrop] = balances[storageAirdrop].sub(_amount); emit Airdrop(_to, _amount, balances[_to]); emit Transfer(address(0), _to, _amount); } function dist_multiple_airdrop(address[] _participants, uint256 _amount) onlyOwner public { tAmount = 0; for ( i = 0; i < _participants.length; i++){ tAmount = tAmount.add(_amount); } require(tAmount <= balances[storageAirdrop]); for ( i = 0; i < _participants.length; i++){ dist_airdrop(_participants[i], _amount); } tAmount = 0; } function dist_developer(address _to, uint256 _amount) onlyOwner public { require(_amount <= balances[storageDeveloper]); require(_amount > 0); balances[_to] = balances[_to].add(_amount); balances[storageDeveloper] = balances[storageDeveloper].sub(_amount); emit Distr(_to, _amount); emit Transfer(address(0), _to, _amount); tAmount = 0; } function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
totalSupply
function totalSupply() public constant returns (uint) { return totalSupply - balances[address(0)]; }
// ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------
LineComment
v0.4.24+commit.e67f0147
bzzr://9f4bba4f4000000d18f76aef123e2d4e616628a49bc6bd17e0880d8884027bf8
{ "func_code_index": [ 3764, 3884 ] }
4,101
MEMORYCOIN
MEMORYCOIN.sol
0xaf99b6de45260d0ac522b299a67a0ef0c7cd292a
Solidity
MEMORYCOIN
contract MEMORYCOIN is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { symbol = "MEM"; name = "MEMORY COIN"; decimals = 18; _totalSupply = 55555555000000000000000000; balances[0x57e18baE7303989BB6E1384e93d197C45c8eB6A2] = _totalSupply; emit Transfer(address(0), 0x57e18baE7303989BB6E1384e93d197C45c8eB6A2, _totalSupply); } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } // ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------ function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } // ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } // ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Returns the amount of tokens approved by the owner that can be // transferred to the spender's account // ------------------------------------------------------------------------ function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account. The spender contract function // receiveApproval(...) is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } // ------------------------------------------------------------------------ // Don't accept ETH // ------------------------------------------------------------------------ function () public payable { revert(); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
// ---------------------------------------------------------------------------- // ERC20 Token, with the addition of symbol, name and decimals and assisted // token transfers // ----------------------------------------------------------------------------
LineComment
totalSupply
function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; }
// ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------
LineComment
v0.4.26+commit.4563c3fc
MIT
bzzr://d20ab5c17263d942517824888ef8cf23f6c763053fccfa01d50e322cd7868112
{ "func_code_index": [ 983, 1104 ] }
4,102
MEMORYCOIN
MEMORYCOIN.sol
0xaf99b6de45260d0ac522b299a67a0ef0c7cd292a
Solidity
MEMORYCOIN
contract MEMORYCOIN is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { symbol = "MEM"; name = "MEMORY COIN"; decimals = 18; _totalSupply = 55555555000000000000000000; balances[0x57e18baE7303989BB6E1384e93d197C45c8eB6A2] = _totalSupply; emit Transfer(address(0), 0x57e18baE7303989BB6E1384e93d197C45c8eB6A2, _totalSupply); } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } // ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------ function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } // ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } // ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Returns the amount of tokens approved by the owner that can be // transferred to the spender's account // ------------------------------------------------------------------------ function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account. The spender contract function // receiveApproval(...) is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } // ------------------------------------------------------------------------ // Don't accept ETH // ------------------------------------------------------------------------ function () public payable { revert(); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
// ---------------------------------------------------------------------------- // ERC20 Token, with the addition of symbol, name and decimals and assisted // token transfers // ----------------------------------------------------------------------------
LineComment
balanceOf
function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; }
// ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------
LineComment
v0.4.26+commit.4563c3fc
MIT
bzzr://d20ab5c17263d942517824888ef8cf23f6c763053fccfa01d50e322cd7868112
{ "func_code_index": [ 1324, 1453 ] }
4,103
MEMORYCOIN
MEMORYCOIN.sol
0xaf99b6de45260d0ac522b299a67a0ef0c7cd292a
Solidity
MEMORYCOIN
contract MEMORYCOIN is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { symbol = "MEM"; name = "MEMORY COIN"; decimals = 18; _totalSupply = 55555555000000000000000000; balances[0x57e18baE7303989BB6E1384e93d197C45c8eB6A2] = _totalSupply; emit Transfer(address(0), 0x57e18baE7303989BB6E1384e93d197C45c8eB6A2, _totalSupply); } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } // ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------ function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } // ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } // ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Returns the amount of tokens approved by the owner that can be // transferred to the spender's account // ------------------------------------------------------------------------ function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account. The spender contract function // receiveApproval(...) is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } // ------------------------------------------------------------------------ // Don't accept ETH // ------------------------------------------------------------------------ function () public payable { revert(); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
// ---------------------------------------------------------------------------- // ERC20 Token, with the addition of symbol, name and decimals and assisted // token transfers // ----------------------------------------------------------------------------
LineComment
transfer
function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; }
// ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------
LineComment
v0.4.26+commit.4563c3fc
MIT
bzzr://d20ab5c17263d942517824888ef8cf23f6c763053fccfa01d50e322cd7868112
{ "func_code_index": [ 1797, 2079 ] }
4,104
MEMORYCOIN
MEMORYCOIN.sol
0xaf99b6de45260d0ac522b299a67a0ef0c7cd292a
Solidity
MEMORYCOIN
contract MEMORYCOIN is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { symbol = "MEM"; name = "MEMORY COIN"; decimals = 18; _totalSupply = 55555555000000000000000000; balances[0x57e18baE7303989BB6E1384e93d197C45c8eB6A2] = _totalSupply; emit Transfer(address(0), 0x57e18baE7303989BB6E1384e93d197C45c8eB6A2, _totalSupply); } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } // ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------ function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } // ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } // ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Returns the amount of tokens approved by the owner that can be // transferred to the spender's account // ------------------------------------------------------------------------ function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account. The spender contract function // receiveApproval(...) is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } // ------------------------------------------------------------------------ // Don't accept ETH // ------------------------------------------------------------------------ function () public payable { revert(); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
// ---------------------------------------------------------------------------- // ERC20 Token, with the addition of symbol, name and decimals and assisted // token transfers // ----------------------------------------------------------------------------
LineComment
approve
function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; }
// ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------
LineComment
v0.4.26+commit.4563c3fc
MIT
bzzr://d20ab5c17263d942517824888ef8cf23f6c763053fccfa01d50e322cd7868112
{ "func_code_index": [ 2587, 2800 ] }
4,105
MEMORYCOIN
MEMORYCOIN.sol
0xaf99b6de45260d0ac522b299a67a0ef0c7cd292a
Solidity
MEMORYCOIN
contract MEMORYCOIN is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; // ------------------------------------------------------------------------ // Constructor // ------------------------------------------------------------------------ constructor() public { symbol = "MEM"; name = "MEMORY COIN"; decimals = 18; _totalSupply = 55555555000000000000000000; balances[0x57e18baE7303989BB6E1384e93d197C45c8eB6A2] = _totalSupply; emit Transfer(address(0), 0x57e18baE7303989BB6E1384e93d197C45c8eB6A2, _totalSupply); } // ------------------------------------------------------------------------ // Total supply // ------------------------------------------------------------------------ function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } // ------------------------------------------------------------------------ // Get the token balance for account tokenOwner // ------------------------------------------------------------------------ function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } // ------------------------------------------------------------------------ // Transfer the balance from token owner's account to to account // - Owner's account must have sufficient balance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = safeSub(balances[msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } // ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Returns the amount of tokens approved by the owner that can be // transferred to the spender's account // ------------------------------------------------------------------------ function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for spender to transferFrom(...) tokens // from the token owner's account. The spender contract function // receiveApproval(...) is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } // ------------------------------------------------------------------------ // Don't accept ETH // ------------------------------------------------------------------------ function () public payable { revert(); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
// ---------------------------------------------------------------------------- // ERC20 Token, with the addition of symbol, name and decimals and assisted // token transfers // ----------------------------------------------------------------------------
LineComment
transferFrom
function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = safeSub(balances[from], tokens); allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); return true; }
// ------------------------------------------------------------------------ // Transfer tokens from the from account to the to account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the from account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------
LineComment
v0.4.26+commit.4563c3fc
MIT
bzzr://d20ab5c17263d942517824888ef8cf23f6c763053fccfa01d50e322cd7868112
{ "func_code_index": [ 3331, 3694 ] }
4,106