image
imagewidth (px) 20
2.05k
| label
stringlengths 1
195
| normalized_label
stringlengths 1
188
| source
stringclasses 2
values | sample_id
stringlengths 0
16
| ink_path
stringlengths 0
45
|
---|---|---|---|---|---|
g_{\sigma } | g_{\sigma} | synthetic | 6afbcb41625c8260 | mathwriting-2024/synthetic/6afbcb41625c8260.inkml |
|
f \mapsto \frac{1}{\sqrt{2 \pi}} \left\{\int_{-\pi}^\pi f(t) e^{-i k t} \, \mathrm{d}t \right\}_{k \in \Z} | f\mapsto\frac{1}{\sqrt{2\pi}}\{\int_{-\pi}^{\pi}f(t)e^{-ikt}dt\}_{k\in\mathbb{Z}} | synthetic | 560c7e02a9c3eedc | mathwriting-2024/synthetic/560c7e02a9c3eedc.inkml |
|
B_2 \subseteq Y | B_{2}\subseteq Y | synthetic | 99ffefd7d766db89 | mathwriting-2024/synthetic/99ffefd7d766db89.inkml |
|
4.3 \times 10^{-9} | 4.3\times10^{-9} | synthetic | 6b204022fa5e448d | mathwriting-2024/synthetic/6b204022fa5e448d.inkml |
|
\sin\left(\theta_\alpha\right) | sin(\theta_{\alpha}) | synthetic | 6856bab58b067312 | mathwriting-2024/synthetic/6856bab58b067312.inkml |
|
((w,b),(j',i')) | ((w,b),(j^{\prime},i^{\prime})) | synthetic | 0c6e048a0be2af2f | mathwriting-2024/synthetic/0c6e048a0be2af2f.inkml |
|
\mathrm{SQNR} = 20 \log_{10}(2^Q) \approx 6.02 \cdot Q\ \mathrm{dB} \,\! | SQNR=20log_{10}(2^{Q})\approx6.02\cdot QdB | synthetic | 5e711c8a87a006a1 | mathwriting-2024/synthetic/5e711c8a87a006a1.inkml |
|
A = \frac{r\times d^2}{{r^2}+1} \quad= \frac{x \times y \times d^2}{x^2+y^2} | A=\frac{r\times d^{2}}{r^{2}+1}=\frac{x\times y\times d^{2}}{x^{2}+y^{2}} | synthetic | 2be15b1b688410c7 | mathwriting-2024/synthetic/2be15b1b688410c7.inkml |
|
l_e | l_{e} | synthetic | 5ed67af6d452ec41 | mathwriting-2024/synthetic/5ed67af6d452ec41.inkml |
|
f_p = 8970 N_e^\frac{1}{2} | f_{p}=8970N_{e}^{\frac{1}{2}} | synthetic | 40ec4c5713ff7b40 | mathwriting-2024/synthetic/40ec4c5713ff7b40.inkml |
|
\phi_x:x\times L \rightarrow p^{-1}(x) | \phi_{x}:x\times L\rightarrow p^{-1}(x) | synthetic | d96d3ab2eadbf52c | mathwriting-2024/synthetic/d96d3ab2eadbf52c.inkml |
|
C\beta | C\beta | synthetic | 1999d68e8cd87f73 | mathwriting-2024/synthetic/1999d68e8cd87f73.inkml |
|
\mathsf{NTIME}(t(n)) \subseteq \mathsf{DSPACE}(t(n)) | NTIME(t(n))\subseteq DSPACE(t(n)) | synthetic | 21f10a6b6095ec11 | mathwriting-2024/synthetic/21f10a6b6095ec11.inkml |
|
\beta \varepsilon^2 = \beta' \varepsilon | \beta\epsilon^{2}=\beta^{\prime}\epsilon | synthetic | fe3210842029617c | mathwriting-2024/synthetic/fe3210842029617c.inkml |
|
\text{Ric}^g=\lambda g | Ric^{g}=\lambda g | synthetic | 8897f91fbc4a7d7c | mathwriting-2024/synthetic/8897f91fbc4a7d7c.inkml |
|
0 < x < a | 0<x<a | synthetic | 55dcc705c6f77313 | mathwriting-2024/synthetic/55dcc705c6f77313.inkml |
|
\partial\vec x = -\partial\vec nS^{-1} | \partial\vec{x}=-\partial\vec{n}S^{-1} | synthetic | 668bb30456454056 | mathwriting-2024/synthetic/668bb30456454056.inkml |
|
10.30 | 10.30 | synthetic | 7e85e5bd33d05ddd | mathwriting-2024/synthetic/7e85e5bd33d05ddd.inkml |
|
S_\infty | S_{\infty} | synthetic | 72012df474e77817 | mathwriting-2024/synthetic/72012df474e77817.inkml |
|
\frac{\frac{\frac{444443333366}{555588888777}}{\frac{888887772222}{v}}}{333330000088} | \frac{\frac{\frac{444443333366}{555588888777}}{\frac{888887772222}{v}}}{333330000088} | synthetic | 5819192ea2a32be4 | mathwriting-2024/synthetic/5819192ea2a32be4.inkml |
|
\frac{222222777774}{u} | \frac{222222777774}{u} | synthetic | 8d155e597b6807d0 | mathwriting-2024/synthetic/8d155e597b6807d0.inkml |
|
P_N^{(m)}(x) = \frac {d^m}{dx^m} P_{N+m}^{(0)}(x) | P_{N}^{(m)}(x)=\frac{d^{m}}{dx^{m}}P_{N+m}^{(0)}(x) | synthetic | d24ef7ba6c25350e | mathwriting-2024/synthetic/d24ef7ba6c25350e.inkml |
|
u = \int \frac{d\xi}{\sqrt{E \cosh^{2} \xi + \left( \frac{\mu_{1} + \mu_{2}}{a} \right) \cosh \xi - \gamma}} = \int \frac{d\eta}{\sqrt{-E \cos^{2} \eta + \left( \frac{\mu_{1} - \mu_{2}}{a} \right) \cos \eta + \gamma}}. | u=\int\frac{d\xi}{\sqrt{Ecosh^{2}\xi+(\frac{\mu_{1}+\mu_{2}}{a})cosh\xi-\gamma}}=\int\frac{d\eta}{\sqrt{-Ecos^{2}\eta+(\frac{\mu_{1}-\mu_{2}}{a})cos\eta+\gamma}}. | synthetic | ff747c9e153bc89d | mathwriting-2024/synthetic/ff747c9e153bc89d.inkml |
|
CR = \textstyle \frac{\textstyle \sum_{k=1}^{NC}C_i \cdot f(N_i) \displaystyle}{\textstyle \sum_{k=1}^{NC}C_i \displaystyle}\displaystyle | CR=\frac{\sum_{k=1}^{NC}C_{i}\cdot f(N_{i})}{\sum_{k=1}^{NC}C_{i}} | synthetic | 03df5f924e2cf443 | mathwriting-2024/synthetic/03df5f924e2cf443.inkml |
|
\mathfrak{n}_{\mathfrak g}(S) = \{x\in\mathfrak g\ \mid\ [x,s]\in S \ \text{ for all}\ s\in S\} | n_{g}(S)=\{x\in g|[x,s]\in Sforalls\in S\} | synthetic | ed8c85ae968194f4 | mathwriting-2024/synthetic/ed8c85ae968194f4.inkml |
|
e^{4 \kappa^2} + 2 e^{3 \kappa^2} + 3 e^{2 \kappa^2} - 6 | e^{4\kappa^{2}}+2e^{3\kappa^{2}}+3e^{2\kappa^{2}}-6 | synthetic | a98fd39a2c484118 | mathwriting-2024/synthetic/a98fd39a2c484118.inkml |
|
x' \in K \mapsto x''(x'), \quad \left |x''(x')\right| \leq \left \|x''\right \|. | x^{\prime}\in K\mapsto x^{\prime\prime}(x^{\prime}),|x^{\prime\prime}(x^{\prime})|\le\|x^{\prime\prime}\|. | synthetic | ef92b46536efe0d1 | mathwriting-2024/synthetic/ef92b46536efe0d1.inkml |
|
2 \psi + 180^\circ - \theta = 180^\circ. | 2\psi+180^{\circ}-\theta=180^{\circ}. | synthetic | e2df84b2b8d6be59 | mathwriting-2024/synthetic/e2df84b2b8d6be59.inkml |
|
\cdots\to H^{n}(X;G)\to H^{n}(A;G)\oplus H^{n}(B;G)\to H^{n}(A\cap B;G)\to H^{n+1}(X;G)\to\cdots | \cdot\cdot\cdot\rightarrow H^{n}(X;G)\rightarrow H^{n}(A;G)\oplus H^{n}(B;G)\rightarrow H^{n}(A\cap B;G)\rightarrow H^{n+1}(X;G)\rightarrow\cdot\cdot\cdot | synthetic | 9f9c58955f4847a3 | mathwriting-2024/synthetic/9f9c58955f4847a3.inkml |
|
Q_{\text{base}} = 1 \text{ pu} | Q_{base}=1pu | synthetic | 671ac55131ead4ff | mathwriting-2024/synthetic/671ac55131ead4ff.inkml |
|
\left(B_r \setminus \{0\}\right) S \subseteq \, A | (B_{r}\backslash\{0\})S\subseteq A | synthetic | 010c8aa18cf27c3d | mathwriting-2024/synthetic/010c8aa18cf27c3d.inkml |
|
\mathbf{\alpha}[\mathbf{f}] = \begin{bmatrix}\alpha_1[\mathbf{f}],\alpha_2[\mathbf{f}],\dots,\alpha_n[\mathbf{f}]\end{bmatrix} | \alpha[f]=[\alpha_{1}[f],\alpha_{2}[f],...,\alpha_{n}[f]] | synthetic | cd3c4ae5e1a46638 | mathwriting-2024/synthetic/cd3c4ae5e1a46638.inkml |
|
\frac{\frac{17}{888111177777}-\frac{\frac{133}{999110001177}}{v}}{100000000} | \frac{\frac{17}{888111177777}-\frac{\frac{133}{999110001177}}{v}}{100000000} | synthetic | 7cd114ddede66071 | mathwriting-2024/synthetic/7cd114ddede66071.inkml |
|
-\left\langle \frac{dP_b}{dt} \right\rangle = \frac{192 \pi G^{5/3} m_1 m_2 (m_1 + m_2)^{-1/3}}{5c^5 \left(1 - e^2\right)^{7/2}} \left( 1 + \frac{73}{24} e^2 + \frac{37}{96} e^4 \right) \left(\frac{P_b}{2 \pi}\right)^{-{5/3}} | -\langle\frac{dP_{b}}{dt}\rangle=\frac{192\pi G^{5/3}m_{1}m_{2}(m_{1}+m_{2})^{-1/3}}{5c^{5}(1-e^{2})^{7/2}}(1+\frac{73}{24}e^{2}+\frac{37}{96}e^{4})(\frac{P_{b}}{2\pi})^{-5/3} | synthetic | a4f696926454bc73 | mathwriting-2024/synthetic/a4f696926454bc73.inkml |
|
\frac{\frac{664447777722}{x}}{40} | \frac{\frac{664447777722}{x}}{40} | synthetic | e007eb3681f4ff28 | mathwriting-2024/synthetic/e007eb3681f4ff28.inkml |
|
v=k L/2 | v=kL/2 | synthetic | f4ba8545dc7b2d61 | mathwriting-2024/synthetic/f4ba8545dc7b2d61.inkml |
|
X \to Y \to Z \to X[1] | X\rightarrow Y\rightarrow Z\rightarrow X[1] | synthetic | 48d75e6242ef7a21 | mathwriting-2024/synthetic/48d75e6242ef7a21.inkml |
|
\frac{\partial^2 F^2}{\partial y^i \, \partial y^j}\xi^i\xi^j>0 | \frac{\partial^{2}F^{2}}{\partial y^{i}\partial y^{j}}\xi^{i}\xi^{j}>0 | synthetic | 447d54f5686e282f | mathwriting-2024/synthetic/447d54f5686e282f.inkml |
|
\mathbb P(\mathbf u) = \mathbf v. | \mathbb{P}(u)=v. | synthetic | 43b7d1db5a31156f | mathwriting-2024/synthetic/43b7d1db5a31156f.inkml |
|
sT^{n-1}, | sT^{n-1}, | synthetic | 296c4249ba6544cb | mathwriting-2024/synthetic/296c4249ba6544cb.inkml |
|
\theta( \vec{b}, \vec{a} ) | \theta(\vec{b},\vec{a}) | synthetic | dafba127cd6e70c5 | mathwriting-2024/synthetic/dafba127cd6e70c5.inkml |
|
\frac { x^{\alpha-1} e^{- \frac{x}{\theta}}}{ \theta^k \Gamma(\alpha)} | \frac{x^{\alpha-1}e^{-\frac{x}{\theta}}}{\theta^{k}\Gamma(\alpha)} | synthetic | 8450b8fb18e157f3 | mathwriting-2024/synthetic/8450b8fb18e157f3.inkml |
|
q = H\cdot e | q=H\cdot e | synthetic | 0b8dfd62fea1ae9d | mathwriting-2024/synthetic/0b8dfd62fea1ae9d.inkml |
|
x^p | x^{p} | synthetic | dc0f57bf4c12ef26 | mathwriting-2024/synthetic/dc0f57bf4c12ef26.inkml |
|
n= p_1^{n_1} \cdots p_k^{n_k} | n=p_{1}^{n_{1}}\cdot\cdot\cdot p_{k}^{n_{k}} | synthetic | 3bb66441dd69f9c2 | mathwriting-2024/synthetic/3bb66441dd69f9c2.inkml |
|
{\left\vert \mathcal{B}_w \right\vert} ^2 | {|B_{w}|}^{2} | synthetic | d500988826eb714b | mathwriting-2024/synthetic/d500988826eb714b.inkml |
|
x^2 > y | x^{2}>y | synthetic | 5614d628f85ee4f5 | mathwriting-2024/synthetic/5614d628f85ee4f5.inkml |
|
-\cfrac{2h^3E}{3(1-\nu^2)}\left[w^0_{,1111} + 2\,w^0_{,1212} + w^0_{,2222}\right] = q \,. | -\frac{2h^{3}E}{3(1-\nu^{2})}[w_{,1111}^{0}+2w_{,1212}^{0}+w_{,2222}^{0}]=q. | synthetic | cf520e6f57f7b693 | mathwriting-2024/synthetic/cf520e6f57f7b693.inkml |
|
\mu>1 | \mu>1 | synthetic | 26378d729120cb16 | mathwriting-2024/synthetic/26378d729120cb16.inkml |
|
\langle n\rangle=|\alpha|^2 +\langle n\rangle_{\text{th}}, | \langle n\rangle=|\alpha|^{2}+\langle n\rangle_{th}, | synthetic | 09afd82f9bfc371b | mathwriting-2024/synthetic/09afd82f9bfc371b.inkml |
|
\frac{115555666665}{\frac{666777777111}{\frac{18}{999991113311}}} | \frac{115555666665}{\frac{666777777111}{\frac{18}{999991113311}}} | synthetic | 61919a098cc51c48 | mathwriting-2024/synthetic/61919a098cc51c48.inkml |
|
\mathbf{x}(t)=\mathbf{x}^*+e^{\mathbf{A}t}[\mathbf{x}(0)-\mathbf{x}^*] ~, | x(t)=x^{*}+e^{At}[x(0)-x^{*}], | synthetic | d9fa11fff3fab77b | mathwriting-2024/synthetic/d9fa11fff3fab77b.inkml |
|
\mu_P | \mu_{P} | synthetic | 53fb226b403acad0 | mathwriting-2024/synthetic/53fb226b403acad0.inkml |
|
\ln(2) / \lambda | ln(2)/\lambda | synthetic | 61cd4374a940efc9 | mathwriting-2024/synthetic/61cd4374a940efc9.inkml |
|
p \cdot z \leq r | p\cdot z\le r | synthetic | f6efcc8ba82bc354 | mathwriting-2024/synthetic/f6efcc8ba82bc354.inkml |
|
g^{q-1}, | g^{q-1}, | synthetic | 788224b0f16d2f14 | mathwriting-2024/synthetic/788224b0f16d2f14.inkml |
|
\bar{X}_4 | \overline{X}_{4} | synthetic | cd53ad42a7dd785e | mathwriting-2024/synthetic/cd53ad42a7dd785e.inkml |
|
\bar\psi(x) | \overline{\psi}(x) | synthetic | a5fe17285a6d52a7 | mathwriting-2024/synthetic/a5fe17285a6d52a7.inkml |
|
\frac{888883333339\cdot45.60255-\frac{\frac{b}{111100077333}}{10000000000}\cdot a}{42.555} | \frac{888883333339\cdot45.60255-\frac{\frac{b}{111100077333}}{10000000000}\cdot a}{42.555} | synthetic | 24bf4e61787092ff | mathwriting-2024/synthetic/24bf4e61787092ff.inkml |
|
H=\frac{\sum_{i=1}^m{u_i^d}}{\sum_{i=1}^m{u_i^d}+\sum_{i=1}^m{w_i^d}} \,, | H=\frac{\sum_{i=1}^{m}u_{i}^{d}}{\sum_{i=1}^{m}u_{i}^{d}+\sum_{i=1}^{m}w_{i}^{d}}, | synthetic | face4d44e106dcb7 | mathwriting-2024/synthetic/face4d44e106dcb7.inkml |
|
r \cdot ( x + y ) = r \cdot x + r \cdot y | r\cdot(x+y)=r\cdot x+r\cdot y | synthetic | 0bdb086044b25de9 | mathwriting-2024/synthetic/0bdb086044b25de9.inkml |
|
(X,\omega,\Omega) | (X,\omega,\Omega) | synthetic | b2bfaae6187e83ff | mathwriting-2024/synthetic/b2bfaae6187e83ff.inkml |
|
X = Spec(R) | X=Spec(R) | synthetic | 20121e2a7078790c | mathwriting-2024/synthetic/20121e2a7078790c.inkml |
|
\mathfrak{a} = \mathfrak{p} | a=p | synthetic | 13c4f9e204933685 | mathwriting-2024/synthetic/13c4f9e204933685.inkml |
|
1 - (n+1)/2^{n} | 1-(n+1)/2^{n} | synthetic | 88b1a36539bae4c5 | mathwriting-2024/synthetic/88b1a36539bae4c5.inkml |
|
B \subset X\times Y | B\subset X\times Y | synthetic | eaa79e68dbbf6740 | mathwriting-2024/synthetic/eaa79e68dbbf6740.inkml |
|
\langle s_\lambda,s_\mu \rangle = \delta_{\lambda\mu} | \langle s_{\lambda},s_{\mu}\rangle=\delta_{\lambda\mu} | synthetic | cba8f5e11265dd5a | mathwriting-2024/synthetic/cba8f5e11265dd5a.inkml |
|
\varphi_M(U) | \varphi_{M}(U) | synthetic | 870dcb41736c1e04 | mathwriting-2024/synthetic/870dcb41736c1e04.inkml |
|
-j1.49\, | -j1.49 | synthetic | 8bfb854cdf9aaa57 | mathwriting-2024/synthetic/8bfb854cdf9aaa57.inkml |
|
\vec F_0={1 \choose 0}=\frac{1}{\sqrt{5}}\vec{\mu}-\frac{1}{\sqrt{5}}\vec{\nu}, | \vec{F}_{0}=(\begin{matrix}1\\ 0\end{matrix})=\frac{1}{\sqrt{5}}\vec{\mu}-\frac{1}{\sqrt{5}}\vec{\nu}, | synthetic | 5495434b3832b926 | mathwriting-2024/synthetic/5495434b3832b926.inkml |
|
(\tau_1, \dots, \tau_{k+2g-1}) | (\tau_{1},...,\tau_{k+2g-1}) | synthetic | f666a109663b1bd6 | mathwriting-2024/synthetic/f666a109663b1bd6.inkml |
|
F_\omega | F_{\omega} | synthetic | 544a1ea734b93301 | mathwriting-2024/synthetic/544a1ea734b93301.inkml |
|
x_4 x_2 + y_4 y_2 = | x_{4}x_{2}+y_{4}y_{2}= | synthetic | 951c2c68b67b17aa | mathwriting-2024/synthetic/951c2c68b67b17aa.inkml |
|
\zeta_\text{max} | \zeta_{max} | synthetic | 5b87a6725500c138 | mathwriting-2024/synthetic/5b87a6725500c138.inkml |
|
\delta+R\leq 1+1/n | \delta+R\le1+1/n | synthetic | 35715d51017be848 | mathwriting-2024/synthetic/35715d51017be848.inkml |
|
x_{k+1}=f(x'_{k+1}) | x_{k+1}=f(x_{k+1}^{\prime}) | synthetic | 3cde8e048c3e47b4 | mathwriting-2024/synthetic/3cde8e048c3e47b4.inkml |
|
V \subset \mathbb{P}^r | V\subset\mathbb{P}^{r} | synthetic | 68364a9ecfa659c6 | mathwriting-2024/synthetic/68364a9ecfa659c6.inkml |
|
L \mathbf{s}_i = \mathbf{r}_i | Ls_{i}=r_{i} | synthetic | 1f9f371a3d7377a5 | mathwriting-2024/synthetic/1f9f371a3d7377a5.inkml |
|
\frac{h}{12} \cdot 2\pi | \frac{h}{12}\cdot2\pi | synthetic | c3989f209e8c6674 | mathwriting-2024/synthetic/c3989f209e8c6674.inkml |
|
w_\ell(\eta,\rho) | w_{l}(\eta,\rho) | synthetic | 7f9062d28fef1885 | mathwriting-2024/synthetic/7f9062d28fef1885.inkml |
|
\tau = \mu \left(\nabla \mathbf u + \left(\nabla \mathbf u\right)^\mathsf{T} \right) + \lambda \left( \nabla \cdot \mathbf u \right) \mathbf I | \tau=\mu(\nabla u+(\nabla u)^{T})+\lambda(\nabla\cdot u)I | synthetic | faab39717e3fa8f5 | mathwriting-2024/synthetic/faab39717e3fa8f5.inkml |
|
\frac{k!}{|G|} \sum_{r_1 + r_2 + \ldots + r_n = k} [z^{r_1}] g(z) [z^{r_2}] g(z) \cdots [z^{r_n}] g(z) \; = \; \frac{k!}{|G|} [z^k] g(z)^n | \frac{k!}{|G|}\sum_{r_{1}+r_{2}+...+r_{n}=k}[z^{r_{1}}]g(z)[z^{r_{2}}]g(z)\cdot\cdot\cdot[z^{r_{n}}]g(z)=\frac{k!}{|G|}[z^{k}]g(z)^{n} | synthetic | b26514fc55c82373 | mathwriting-2024/synthetic/b26514fc55c82373.inkml |
|
\tau^{\pm} \approx 1/(k V_A) | \tau^{\pm}\approx1/(kV_{A}) | synthetic | 4460119a3e2b5325 | mathwriting-2024/synthetic/4460119a3e2b5325.inkml |
|
f(x)/(M g(x)) | f(x)/(Mg(x)) | synthetic | 435006668f1619c9 | mathwriting-2024/synthetic/435006668f1619c9.inkml |
|
i\colon (A, C) \to (X, B) | i:(A,C)\rightarrow(X,B) | synthetic | 6822f51e1b5fb82d | mathwriting-2024/synthetic/6822f51e1b5fb82d.inkml |
|
a + b\sqrt{d} \in \mathbf{Q}(\sqrt{d}) | a+b\sqrt{d}\in Q(\sqrt{d}) | synthetic | a9d71583c7ada523 | mathwriting-2024/synthetic/a9d71583c7ada523.inkml |
|
H(t) \equiv \frac{\dot a}{a}, | H(t)\equiv\frac{\dot{a}}{a}, | synthetic | 231ac3bf2985bd78 | mathwriting-2024/synthetic/231ac3bf2985bd78.inkml |
|
\frac{\mathrm{d}V(x=0)}{\mathrm{d}x} = -\frac{R_S}{Z} I_0 | \frac{dV(x=0)}{dx}=-\frac{R_{S}}{Z}I_{0} | synthetic | a26571de6292d392 | mathwriting-2024/synthetic/a26571de6292d392.inkml |
|
\frac{51.19}{124.425903} | \frac{51.19}{124.425903} | synthetic | 456da74ef8a60928 | mathwriting-2024/synthetic/456da74ef8a60928.inkml |
|
E_\text{XC}^\text{LDA}[n] = \int \varepsilon_\text{XC}(n) n(\mathbf r) \,\mathrm d^3 \mathbf r. | E_{XC}^{LDA}[n]=\int\epsilon_{XC}(n)n(r)d^{3}r. | synthetic | e9adc975b69253ee | mathwriting-2024/synthetic/e9adc975b69253ee.inkml |
|
\mathcal L_X T_{ab} = X^c \nabla_c T_{ab} + (\nabla_a X^c) T_{cb} + (\nabla_b X^c) T_{ac} = X^c T_{ab,c} + X^c_{,a} T_{cb} + X^c_{,b} T_{ac} | L_{X}T_{ab}=X^{c}\nabla_{c}T_{ab}+(\nabla_{a}X^{c})T_{cb}+(\nabla_{b}X^{c})T_{ac}=X^{c}T_{ab,c}+X_{,a}^{c}T_{cb}+X_{,b}^{c}T_{ac} | synthetic | be821fe2bc1c7ed7 | mathwriting-2024/synthetic/be821fe2bc1c7ed7.inkml |
|
C_T = -r\,C + (r-d) e^{-rT} \int_K^{\infty} s\,p\, ds + \frac{1}{2} e^{-rT} (\sigma K)^2\,p | C_{T}=-rC+(r-d)e^{-rT}\int_{K}^{\infty}spds+\frac{1}{2}e^{-rT}(\sigma K)^{2}p | synthetic | 8739f6365943b01d | mathwriting-2024/synthetic/8739f6365943b01d.inkml |
|
n \neq -1 | n\ne-1 | synthetic | 898c91f93b99bf04 | mathwriting-2024/synthetic/898c91f93b99bf04.inkml |
|
r_O = \frac{1 + \lambda V_{DS}}{\lambda I_D} = \frac{1}{I_D}\left(\frac{1}{\lambda} + V_{DS}\right) | r_{O}=\frac{1+\lambda V_{DS}}{\lambda I_{D}}=\frac{1}{I_{D}}(\frac{1}{\lambda}+V_{DS}) | synthetic | 950531ed844ac988 | mathwriting-2024/synthetic/950531ed844ac988.inkml |
|
e^{(\phi_\text{p} - \phi_\text{n}) / V_\text{T}} | e^{(\phi_{p}-\phi_{n})/V_{T}} | synthetic | 56e82e8214d6053b | mathwriting-2024/synthetic/56e82e8214d6053b.inkml |
|
\Omega_{matter}\rho_{crit}V_{obs} | \Omega_{matter}\rho_{crit}V_{obs} | synthetic | 955a7986670e8f98 | mathwriting-2024/synthetic/955a7986670e8f98.inkml |
|
\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{-1}{\lambda R} & 1 \end{bmatrix}. | [\begin{matrix}a&b\\ c&d\end{matrix}]=[\begin{matrix}1&0\\ \frac{-1}{\lambda R}&1\end{matrix}]. | synthetic | cdf6ef304885c9ee | mathwriting-2024/synthetic/cdf6ef304885c9ee.inkml |
|
\mathbf{u} = \frac{F_z}{4\pi\mu r} \left[\frac{1}{4(1-\nu)} \, \frac{\rho z}{r^2} \hat{\boldsymbol{\rho}} + \left(1-\frac{1}{4(1-\nu)}\,\frac{\rho^2}{r^2}\right)\hat{\mathbf{z}}\right] | u=\frac{F_{z}}{4\pi\mu r}[\frac{1}{4(1-\nu)}\frac{\rho z}{r^{2}}\hat{\rho}+(1-\frac{1}{4(1-\nu)}\frac{\rho^{2}}{r^{2}})\hat{z}] | synthetic | c85849d13e474ebf | mathwriting-2024/synthetic/c85849d13e474ebf.inkml |
|
\lambda m.\lambda n.n \operatorname{pred} m | \lambda m.\lambda n.npredm | synthetic | afa6f01e1acdf59c | mathwriting-2024/synthetic/afa6f01e1acdf59c.inkml |
|
P_\text{tot}/(4\pi) | P_{tot}/(4\pi) | synthetic | a6c842ee89d1a4bd | mathwriting-2024/synthetic/a6c842ee89d1a4bd.inkml |
Subsets and Splits