html_url
stringlengths 48
51
| title
stringlengths 1
290
| comments
sequencelengths 0
30
| body
stringlengths 0
228k
⌀ | number
int64 2
7.08k
|
---|---|---|---|---|
https://github.com/huggingface/datasets/issues/3091 | `blog_authorship_corpus` is broken | [
"Hi @fdtomasi, thanks for reporting.\r\n\r\nYou are right: the original host data URL does no longer exist.\r\n\r\nI've contacted the authors of the dataset to ask them if they host this dataset in another URL.",
"Hi, @fdtomasi, the URL is fixed.\r\n\r\nThe fix is already in our master branch and it will be accessible in our next release.\r\n\r\nIn the meantime, you can include the fix if you install the `datasets` library from the master branch:\r\n```\r\npip install -U git+ssh://[email protected]/huggingface/datasets.git@master#egg=datasest\r\n```\r\nor\r\n```\r\npip install -U git+https://github.com/huggingface/datasets.git@master#egg=datasets\r\n```",
"Awesome thank you so much for the quick fix!"
] | ## Describe the bug
The dataset `blog_authorship_corpus` is broken.
By bypassing the checksum checks, the loading does not return any error but the resulting dataset is empty.
I suspect it is because the data download url is broken (http://www.cs.biu.ac.il/~koppel/blogs/blogs.zip).
## Steps to reproduce the bug
```python
from datasets import load_dataset
ds = load_dataset("blog_authorship_corpus", split="train", download_mode='force_redownload')
```
## Expected results
No error.
## Actual results
```
---------------------------------------------------------------------------
NonMatchingChecksumError Traceback (most recent call last)
/tmp/ipykernel_5237/1729238701.py in <module>
2 ds = load_dataset(
3 "blog_authorship_corpus", split="train",
----> 4 download_mode='force_redownload'
5 )
/opt/conda/lib/python3.7/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)
1115 ignore_verifications=ignore_verifications,
1116 try_from_hf_gcs=try_from_hf_gcs,
-> 1117 use_auth_token=use_auth_token,
1118 )
1119
/opt/conda/lib/python3.7/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
635 if not downloaded_from_gcs:
636 self._download_and_prepare(
--> 637 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
638 )
639 # Sync info
/opt/conda/lib/python3.7/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
707 if verify_infos:
708 verify_checksums(
--> 709 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files"
710 )
711
/opt/conda/lib/python3.7/site-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name)
38 if len(bad_urls) > 0:
39 error_msg = "Checksums didn't match" + for_verification_name + ":\n"
---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))
41 logger.info("All the checksums matched successfully" + for_verification_name)
42
NonMatchingChecksumError: Checksums didn't match for dataset source files:
['http://www.cs.biu.ac.il/~koppel/blogs/blogs.zip']
```
## Environment info
- `datasets` version: 1.13.2
- Platform: Linux-4.19.0-18-cloud-amd64-x86_64-with-debian-10.11
- Python version: 3.7.10
- PyArrow version: 5.0.0 | 3,091 |
https://github.com/huggingface/datasets/issues/3089 | JNLPBA Dataset | [
"# Steps to reproduce\r\n\r\nTo reproduce:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('jnlpba')\r\n\r\ndataset['train'].features['ner_tags']\r\n```\r\nOutput:\r\n```python\r\nSequence(feature=ClassLabel(num_classes=3, names=['O', 'B', 'I'], names_file=None, id=None), length=-1, id=None)\r\n```\r\n\r\n",
"Since I cannot create a branch here is the updated code:\r\n\r\n```python\r\n\r\n# coding=utf-8\r\n# Copyright 2020 HuggingFace Datasets Authors.\r\n#\r\n# Licensed under the Apache License, Version 2.0 (the \"License\");\r\n# you may not use this file except in compliance with the License.\r\n# You may obtain a copy of the License at\r\n#\r\n# http://www.apache.org/licenses/LICENSE-2.0\r\n#\r\n# Unless required by applicable law or agreed to in writing, software\r\n# distributed under the License is distributed on an \"AS IS\" BASIS,\r\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\r\n# See the License for the specific language governing permissions and\r\n# limitations under the License.\r\n\r\n# Lint as: python3\r\n\"\"\"Introduction to the Bio-Entity Recognition Task at JNLPBA\"\"\"\r\n\r\nimport os\r\n\r\nimport datasets\r\n\r\n\r\nlogger = datasets.logging.get_logger(__name__)\r\n\r\n\r\n_CITATION = \"\"\"\\\r\n@inproceedings{kim2004introduction,\r\n title={Introduction to the bio-entity recognition task at JNLPBA},\r\n author={Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel},\r\n booktitle={Proceedings of the international joint workshop on natural language processing in biomedicine and its applications},\r\n pages={70--75},\r\n year={2004},\r\n organization={Citeseer}\r\n}\r\n\"\"\"\r\n\r\n_DESCRIPTION = \"\"\"\\\r\nThe data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search\r\non MEDLINE using the MeSH terms \u0018human\u0019, \u0018blood cells\u0019 and \u0018transcription factors\u0019. From this search 2,000 abstracts\r\nwere selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification.\r\nAmong the classes, 36 terminal classes were used to annotate the GENIA corpus.\r\n\"\"\"\r\n\r\n_HOMEPAGE = \"http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004\"\r\n_TRAIN_URL = \"http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz\"\r\n_VAL_URL = 'http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Evaluation/Genia4ERtest.tar.gz'\r\n\r\n\r\n_URLS = {\r\n \"train\": _TRAIN_URL,\r\n \"val\": _VAL_URL,\r\n}\r\n\r\n_TRAIN_DIRECTORY = \"Genia4ERtraining\"\r\n_VAL_DIRECTORY = \"Genia4ERtest\"\r\n\r\n_TRAIN_FILE = \"Genia4ERtask1.iob2\"\r\n_VAL_FILE = \"Genia4EReval1.iob2\"\r\n\r\n\r\nclass JNLPBAConfig(datasets.BuilderConfig):\r\n \"\"\"BuilderConfig for JNLPBA\"\"\"\r\n\r\n def __init__(self, **kwargs):\r\n \"\"\"BuilderConfig for JNLPBA.\r\n Args:\r\n **kwargs: keyword arguments forwarded to super.\r\n \"\"\"\r\n super(JNLPBAConfig, self).__init__(**kwargs)\r\n\r\n\r\nclass JNLPBA(datasets.GeneratorBasedBuilder):\r\n \"\"\"JNLPBA dataset.\"\"\"\r\n\r\n BUILDER_CONFIGS = [\r\n JNLPBAConfig(name=\"jnlpba\", version=datasets.Version(\"1.0.0\"), description=\"JNLPBA dataset\"),\r\n ]\r\n\r\n def _info(self):\r\n return datasets.DatasetInfo(\r\n description=_DESCRIPTION,\r\n features=datasets.Features(\r\n {\r\n \"id\": datasets.Value(\"string\"),\r\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\r\n \"ner_tags\": datasets.Sequence(\r\n datasets.features.ClassLabel(\r\n names=[\r\n 'O',\r\n 'B-DNA',\r\n 'I-DNA', \r\n 'B-RNA',\r\n 'I-RNA',\r\n 'B-cell_line',\r\n 'I-cell_line',\r\n 'B-cell_type',\r\n 'I-cell_type',\r\n 'B-protein',\r\n 'I-protein',\r\n ]\r\n )\r\n ),\r\n }\r\n ),\r\n supervised_keys=None,\r\n homepage=_HOMEPAGE,\r\n citation=_CITATION,\r\n )\r\n\r\n def _split_generators(self, dl_manager):\r\n downloaded_files = dl_manager.download_and_extract(_URLS)\r\n \r\n return [\r\n datasets.SplitGenerator(name=datasets.Split.TRAIN, \r\n gen_kwargs={\"filepath\": os.path.join(downloaded_files['train'], _TRAIN_FILE)}),\r\n datasets.SplitGenerator(name=datasets.Split.VALIDATION, \r\n gen_kwargs={\"filepath\": os.path.join(downloaded_files['val'], _VAL_FILE)})\r\n ]\r\n \r\n\r\n def _generate_examples(self, filepath):\r\n logger.info(\"⏳ Generating examples from = %s\", filepath)\r\n with open(filepath, encoding=\"utf-8\") as f:\r\n guid = 0\r\n tokens = []\r\n ner_tags = []\r\n for line in f:\r\n if line.startswith('###'):\r\n continue\r\n if line == '' or line == '\\n':\r\n if tokens:\r\n yield guid, {\r\n \"id\": str(guid),\r\n \"tokens\": tokens,\r\n \"ner_tags\": ner_tags,\r\n }\r\n guid += 1\r\n tokens = []\r\n ner_tags = []\r\n else:\r\n # tokens are tab separated\r\n splits = line.split(\"\\t\")\r\n #print(splits)\r\n #print(len(splits))\r\n if len(splits) < 2:\r\n splits = splits[0].split()\r\n tokens.append(splits[0])\r\n ner_tags.append(splits[1].rstrip())\r\n # last example\r\n yield guid, {\r\n \"id\": str(guid),\r\n \"tokens\": tokens,\r\n \"ner_tags\": ner_tags,\r\n }\r\n```"
] | ## Describe the bug
A clear and concise description of what the bug is.
## Steps to reproduce the bug
```python
# Sample code to reproduce the bug
```
## Expected results
The dataset loading script for this dataset is incorrect. This is a biomedical dataset used for named entity recognition. The entities in the [script](https://github.com/huggingface/datasets/blob/master/datasets/jnlpba/jnlpba.py#L81-L83) are: O, B, and I. The correct entities from the original data file are:
['O',
'B-DNA',
'I-DNA',
'B-RNA',
'I-RNA',
'B-cell_line',
'I-cell_line',
'B-cell_type',
'I-cell_type',
'B-protein',
'I-protein']
## Actual results
The dataset loader script needs to include the following NER names:
['O',
'B-DNA',
'I-DNA',
'B-RNA',
'I-RNA',
'B-cell_line',
'I-cell_line',
'B-cell_type',
'I-cell_type',
'B-protein',
'I-protein']
And the [data](https://github.com/huggingface/datasets/blob/master/datasets/jnlpba/jnlpba.py#L46) that is being pulled has been modified from the original dataset and does not include the original NER tags.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
- Platform:
- Python version:
- PyArrow version:
| 3,089 |
https://github.com/huggingface/datasets/issues/3087 | Removing label column in a text classification dataset yields to errors | [] | ## Describe the bug
This looks like #3059 but it's not linked to the cache this time. Removing the `label` column from a text classification dataset and then performing any processing will result in an error.
To reproduce:
```py
from datasets import load_dataset
from transformers import AutoTokenizer
raw_datasets = load_dataset("imdb")
raw_datasets = raw_datasets.remove_columns("label")
model_checkpoint = "distilbert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
context_length = 128
def tokenize_pad_and_truncate(texts):
return tokenizer(texts["text"], truncation=True, padding="max_length", max_length=context_length)
tokenized_datasets = raw_datasets.map(tokenize_pad_and_truncate, batched=True)
```
Traceback:
```
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-1-ba61bb32f786> in <module>
12 return tokenizer(texts["text"], truncation=True, padding="max_length", max_length=context_length)
13
---> 14 tokenized_datasets = raw_datasets.map(tokenize_pad_and_truncate, batched=True)
~/git/datasets/src/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, desc)
500 desc=desc,
501 )
--> 502 for k, dataset in self.items()
503 }
504 )
~/git/datasets/src/datasets/dataset_dict.py in <dictcomp>(.0)
500 desc=desc,
501 )
--> 502 for k, dataset in self.items()
503 }
504 )
~/git/datasets/src/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)
2051 new_fingerprint=new_fingerprint,
2052 disable_tqdm=disable_tqdm,
-> 2053 desc=desc,
2054 )
2055 else:
~/git/datasets/src/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
501 self: "Dataset" = kwargs.pop("self")
502 # apply actual function
--> 503 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
504 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
505 for dataset in datasets:
~/git/datasets/src/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
468 }
469 # apply actual function
--> 470 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
471 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
472 # re-apply format to the output
~/git/datasets/src/datasets/fingerprint.py in wrapper(*args, **kwargs)
404 # Call actual function
405
--> 406 out = func(self, *args, **kwargs)
407
408 # Update fingerprint of in-place transforms + update in-place history of transforms
~/git/datasets/src/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)
2243 if os.path.exists(cache_file_name) and load_from_cache_file:
2244 logger.warning("Loading cached processed dataset at %s", cache_file_name)
-> 2245 info = self.info.copy()
2246 info.features = features
2247 info.task_templates = None
~/git/datasets/src/datasets/info.py in copy(self)
278
279 def copy(self) -> "DatasetInfo":
--> 280 return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
281
282
~/git/datasets/src/datasets/info.py in __init__(self, description, citation, homepage, license, features, post_processed, supervised_keys, task_templates, builder_name, config_name, version, splits, download_checksums, download_size, post_processing_size, dataset_size, size_in_bytes)
~/git/datasets/src/datasets/info.py in __post_init__(self)
177 for idx, template in enumerate(self.task_templates):
178 if isinstance(template, TextClassification):
--> 179 labels = self.features[template.label_column].names
180 self.task_templates[idx] = TextClassification(
181 text_column=template.text_column, label_column=template.label_column, labels=labels
KeyError: 'label'
``` | 3,087 |
https://github.com/huggingface/datasets/issues/3084 | VisibleDeprecationWarning when using `set_format("numpy")` | [
"I just opened a PR and I verified that the code you provided doesn't show any deprecation warning :)"
] | Code to reproduce:
```
from datasets import load_dataset
dataset = load_dataset("glue", "mnli")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-cased')
def tokenize_function(dataset):
return tokenizer(dataset['premise'])
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset['train'].features)
tokenized_datasets.set_format("numpy")
tokenized_datasets['train'][5:8]
```
Outputs:
```
python3.9/site-packages/datasets/formatting/formatting.py:167: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return np.array(array, copy=False, **self.np_array_kwargs)
``` | 3,084 |
https://github.com/huggingface/datasets/issues/3083 | Datasets with Audio feature raise error when loaded from cache due to _resampler parameter | [] | ## Describe the bug
As reported by @patrickvonplaten, when loaded from the cache, datasets containing the Audio feature raise TypeError.
## Steps to reproduce the bug
```python
from datasets import load_dataset
# load first time works
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean")
# load from cache breaks
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean")
```
## Actual results
```
TypeError: __init__() got an unexpected keyword argument '_resampler'
```
| 3,083 |
https://github.com/huggingface/datasets/issues/3080 | Error related to timeout keyword argument | [] | ## Describe the bug
As reported by @patrickvonplaten, a TypeError is raised when trying to load a dataset.
## Steps to reproduce the bug
```python
from datasets import load_dataset
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean")
```
## Actual results
```
TypeError: dataset_info() got an unexpected keyword argument 'timeout'
```
| 3,080 |
https://github.com/huggingface/datasets/issues/3076 | Error when loading a metric | [] | ## Describe the bug
As reported by @sgugger, after last release, exception is thrown when loading a metric.
## Steps to reproduce the bug
```python
from datasets import load_metric
metric = load_metric("squad_v2")
```
## Actual results
```
FileNotFoundError Traceback (most recent call last)
<ipython-input-1-e612a8cab787> in <module>
1 from datasets import load_metric
----> 2 metric = load_metric("squad_v2")
d:\projects\huggingface\datasets\src\datasets\load.py in load_metric(path, config_name, process_id, num_process, cache_dir, experiment_id, keep_in_memory, download_config, download_mode, revision, script_version, **metric_init_kwargs)
1336 )
1337 revision = script_version
-> 1338 metric_module = metric_module_factory(
1339 path, revision=revision, download_config=download_config, download_mode=download_mode
1340 ).module_path
d:\projects\huggingface\datasets\src\datasets\load.py in metric_module_factory(path, revision, download_config, download_mode, force_local_path, dynamic_modules_path, **download_kwargs)
1237 if not isinstance(e1, FileNotFoundError):
1238 raise e1 from None
-> 1239 raise FileNotFoundError(
1240 f"Couldn't find a metric script at {relative_to_absolute_path(combined_path)}. "
1241 f"Metric '{path}' doesn't exist on the Hugging Face Hub either."
FileNotFoundError: Couldn't find a metric script at D:\projects\huggingface\datasets\squad_v2\squad_v2.py. Metric 'squad_v2' doesn't exist on the Hugging Face Hub either.
```
| 3,076 |
https://github.com/huggingface/datasets/issues/3073 | Import error installing with ppc64le | [
"This seems to be an issue with importing PyArrow so I posted the problem [here](https://issues.apache.org/jira/browse/ARROW-14323), and I'm closing this issue.\r\n"
] | ## Describe the bug
Installing the datasets library with a computer running with ppc64le seems to cause an issue when importing the datasets library.
```
python
Python 3.6.13 | packaged by conda-forge | (default, Sep 23 2021, 07:37:44)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import datasets
Illegal instruction (core dumped)
```
Error when importing
`Illegal instruction (core dumped)`
## Steps to reproduce the bug
I get this error when installing the library by using conda. I can't install with pip I believe because pyarrow only has the ppc64le library on conda forge
```
conda create --name transformers_py36_v2 python=3.6
conda activate transformers_py36_v2
conda install datasets
```
## Tracebacks
conda create --name transformers_py36_v2 python=3.6
```
Collecting package metadata (current_repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.9.2
latest version: 4.10.3
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /p/home/gerryc/.conda/envs/transformers_py36_v2
added / updated specs:
- python=3.6
The following NEW packages will be INSTALLED:
_libgcc_mutex conda-forge/linux-ppc64le::_libgcc_mutex-0.1-conda_forge
_openmp_mutex conda-forge/linux-ppc64le::_openmp_mutex-4.5-1_gnu
ca-certificates conda-forge/linux-ppc64le::ca-certificates-2021.10.8-h1084571_0
certifi pkgs/main/linux-ppc64le::certifi-2020.12.5-py36h6ffa863_0
ld_impl_linux-ppc~ conda-forge/linux-ppc64le::ld_impl_linux-ppc64le-2.36.1-ha35d02b_2
libffi conda-forge/linux-ppc64le::libffi-3.4.2-h3b9df90_4
libgcc-ng conda-forge/linux-ppc64le::libgcc-ng-11.2.0-h7698a5e_11
libgomp conda-forge/linux-ppc64le::libgomp-11.2.0-h7698a5e_11
libstdcxx-ng conda-forge/linux-ppc64le::libstdcxx-ng-11.2.0-habdf983_11
libzlib conda-forge/linux-ppc64le::libzlib-1.2.11-h339bb43_1013
ncurses conda-forge/linux-ppc64le::ncurses-6.2-hea85c5d_4
openssl conda-forge/linux-ppc64le::openssl-1.1.1l-h4e0d66e_0
pip conda-forge/noarch::pip-21.3-pyhd8ed1ab_0
python conda-forge/linux-ppc64le::python-3.6.13-h57873ef_2_cpython
readline conda-forge/linux-ppc64le::readline-8.1-h5c45dff_0
setuptools pkgs/main/linux-ppc64le::setuptools-58.0.4-py36h6ffa863_0
sqlite conda-forge/linux-ppc64le::sqlite-3.36.0-h4e2196e_2
tk conda-forge/linux-ppc64le::tk-8.6.11-h41c6715_1
wheel conda-forge/noarch::wheel-0.37.0-pyhd8ed1ab_1
xz conda-forge/linux-ppc64le::xz-5.2.5-h6eb9509_1
zlib conda-forge/linux-ppc64le::zlib-1.2.11-h339bb43_1013
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate transformers_py36_v2
#
# To deactivate an active environment, use
#
# $ conda deactivate
```
conda activate transformers_py36_v2
conda install datasets
```
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.9.2
latest version: 4.10.3
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: /p/home/gerryc/.conda/envs/transformers_py36_v2
added / updated specs:
- datasets
The following NEW packages will be INSTALLED:
abseil-cpp conda-forge/linux-ppc64le::abseil-cpp-20210324.2-h3b9df90_0
aiohttp conda-forge/linux-ppc64le::aiohttp-3.7.4.post0-py36hc33305d_0
arrow-cpp conda-forge/linux-ppc64le::arrow-cpp-5.0.0-py36hf9cf308_8_cpu
async-timeout conda-forge/noarch::async-timeout-3.0.1-py_1000
attrs conda-forge/noarch::attrs-21.2.0-pyhd8ed1ab_0
aws-c-cal conda-forge/linux-ppc64le::aws-c-cal-0.5.11-hb3fac3d_0
aws-c-common conda-forge/linux-ppc64le::aws-c-common-0.6.2-h4e0d66e_0
aws-c-event-stream conda-forge/linux-ppc64le::aws-c-event-stream-0.2.7-h76da5f2_13
aws-c-io conda-forge/linux-ppc64le::aws-c-io-0.10.5-hf6a6c7c_0
aws-checksums conda-forge/linux-ppc64le::aws-checksums-0.1.11-hfe76d68_7
aws-sdk-cpp conda-forge/linux-ppc64le::aws-sdk-cpp-1.8.186-h90855e8_3
brotlipy conda-forge/linux-ppc64le::brotlipy-0.7.0-py36hc33305d_1001
bzip2 conda-forge/linux-ppc64le::bzip2-1.0.8-h4e0d66e_4
c-ares conda-forge/linux-ppc64le::c-ares-1.17.2-h4e0d66e_0
cffi conda-forge/linux-ppc64le::cffi-1.14.6-py36h021ab3c_1
chardet conda-forge/linux-ppc64le::chardet-4.0.0-py36h270354c_1
colorama conda-forge/noarch::colorama-0.4.4-pyh9f0ad1d_0
cryptography conda-forge/linux-ppc64le::cryptography-3.4.7-py36hc71b123_0
dataclasses conda-forge/noarch::dataclasses-0.8-pyh787bdff_2
datasets conda-forge/noarch::datasets-1.12.1-pyhd8ed1ab_1
dill conda-forge/noarch::dill-0.3.4-pyhd8ed1ab_0
filelock conda-forge/noarch::filelock-3.3.0-pyhd8ed1ab_0
fsspec conda-forge/noarch::fsspec-2021.10.0-pyhd8ed1ab_0
gflags conda-forge/linux-ppc64le::gflags-2.2.2-hb209c28_1004
glog conda-forge/linux-ppc64le::glog-0.5.0-h4040248_0
grpc-cpp conda-forge/linux-ppc64le::grpc-cpp-1.40.0-h2bf711c_2
huggingface_hub conda-forge/noarch::huggingface_hub-0.0.19-pyhd8ed1ab_0
idna conda-forge/noarch::idna-2.10-pyh9f0ad1d_0
idna_ssl conda-forge/noarch::idna_ssl-1.0.0-0
importlib-metadata conda-forge/linux-ppc64le::importlib-metadata-4.8.1-py36h270354c_0
importlib_metadata conda-forge/noarch::importlib_metadata-4.8.1-hd8ed1ab_0
krb5 conda-forge/linux-ppc64le::krb5-1.19.2-haf43566_2
libblas conda-forge/linux-ppc64le::libblas-3.9.0-11_linuxppc64le_openblas
libbrotlicommon conda-forge/linux-ppc64le::libbrotlicommon-1.0.9-h4e0d66e_5
libbrotlidec conda-forge/linux-ppc64le::libbrotlidec-1.0.9-h4e0d66e_5
libbrotlienc conda-forge/linux-ppc64le::libbrotlienc-1.0.9-h4e0d66e_5
libcblas conda-forge/linux-ppc64le::libcblas-3.9.0-11_linuxppc64le_openblas
libcurl conda-forge/linux-ppc64le::libcurl-7.79.1-he415e40_1
libedit conda-forge/linux-ppc64le::libedit-3.1.20191231-h41a240f_2
libev conda-forge/linux-ppc64le::libev-4.33-h6eb9509_1
libevent conda-forge/linux-ppc64le::libevent-2.1.10-h97db324_4
libgfortran-ng conda-forge/linux-ppc64le::libgfortran-ng-11.2.0-hfdc3801_11
libgfortran5 conda-forge/linux-ppc64le::libgfortran5-11.2.0-he58fbb4_11
liblapack conda-forge/linux-ppc64le::liblapack-3.9.0-11_linuxppc64le_openblas
libnghttp2 conda-forge/linux-ppc64le::libnghttp2-1.43.0-h42039ad_1
libopenblas conda-forge/linux-ppc64le::libopenblas-0.3.17-pthreads_h486567c_1
libprotobuf conda-forge/linux-ppc64le::libprotobuf-3.18.1-h690f14c_0
libssh2 conda-forge/linux-ppc64le::libssh2-1.10.0-ha5a9321_2
libthrift conda-forge/linux-ppc64le::libthrift-0.15.0-h54f692e_1
libutf8proc conda-forge/linux-ppc64le::libutf8proc-2.6.1-h4e0d66e_0
lz4-c conda-forge/linux-ppc64le::lz4-c-1.9.3-h3b9df90_1
multidict conda-forge/linux-ppc64le::multidict-5.2.0-py36hc33305d_0
multiprocess conda-forge/linux-ppc64le::multiprocess-0.70.12.2-py36hc33305d_0
numpy conda-forge/linux-ppc64le::numpy-1.19.5-py36h86665d4_1
orc conda-forge/linux-ppc64le::orc-1.7.0-hae6b4bd_0
packaging conda-forge/noarch::packaging-21.0-pyhd8ed1ab_0
pandas conda-forge/linux-ppc64le::pandas-1.1.5-py36hab1a6e6_0
parquet-cpp conda-forge/noarch::parquet-cpp-1.5.1-2
pyarrow conda-forge/linux-ppc64le::pyarrow-5.0.0-py36h7a46c7e_8_cpu
pycparser conda-forge/noarch::pycparser-2.20-pyh9f0ad1d_2
pyopenssl conda-forge/noarch::pyopenssl-21.0.0-pyhd8ed1ab_0
pyparsing conda-forge/noarch::pyparsing-2.4.7-pyh9f0ad1d_0
pysocks conda-forge/linux-ppc64le::pysocks-1.7.1-py36h270354c_3
python-dateutil conda-forge/noarch::python-dateutil-2.8.2-pyhd8ed1ab_0
python-xxhash conda-forge/linux-ppc64le::python-xxhash-2.0.2-py36hc33305d_0
python_abi conda-forge/linux-ppc64le::python_abi-3.6-2_cp36m
pytz conda-forge/noarch::pytz-2021.3-pyhd8ed1ab_0
pyyaml conda-forge/linux-ppc64le::pyyaml-5.4.1-py36hc33305d_1
re2 conda-forge/linux-ppc64le::re2-2021.09.01-h3b9df90_0
requests conda-forge/noarch::requests-2.25.1-pyhd3deb0d_0
s2n conda-forge/linux-ppc64le::s2n-1.0.10-h97db324_0
six conda-forge/noarch::six-1.16.0-pyh6c4a22f_0
snappy conda-forge/linux-ppc64le::snappy-1.1.8-hb209c28_3
tqdm conda-forge/noarch::tqdm-4.62.3-pyhd8ed1ab_0
typing-extensions conda-forge/noarch::typing-extensions-3.10.0.2-hd8ed1ab_0
typing_extensions conda-forge/noarch::typing_extensions-3.10.0.2-pyha770c72_0
urllib3 conda-forge/noarch::urllib3-1.26.7-pyhd8ed1ab_0
xxhash conda-forge/linux-ppc64le::xxhash-0.8.0-h4e0d66e_3
yaml conda-forge/linux-ppc64le::yaml-0.2.5-h6eb9509_0
yarl conda-forge/linux-ppc64le::yarl-1.6.3-py36hc33305d_2
zipp conda-forge/noarch::zipp-3.6.0-pyhd8ed1ab_0
zstd conda-forge/linux-ppc64le::zstd-1.5.0-h65c4b1a_0
The following packages will be UPDATED:
certifi pkgs/main::certifi-2020.12.5-py36h6ff~ --> conda-forge::certifi-2021.5.30-py36h270354c_0
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Red Hat Enterprise Linux 8.2 (Ootpa)
- Python version: 3.6
- PyArrow version: pyarrow - 5.0.0 - py36h7a46c7e_8_cpu - conda-forge
Any help would be appreciated! I've been struggling on installing datasets on this machine.
| 3,073 |
https://github.com/huggingface/datasets/issues/3071 | Custom plain text dataset, plain json dataset and plain csv dataset are remove from datasets template folder | [
"Hi @zixiliuUSC, \r\n\r\nAs explained in the documentation (https://huggingface.co/docs/datasets/loading.html#json), we support loading any dataset in JSON (as well as CSV, text, Parquet) format:\r\n```python\r\nds = load_dataset('json', data_files='my_file.json')\r\n```"
] | ## Adding a Dataset
- **Name:** text, json, csv
- **Description:** I am developing a customized dataset loading script. The problem is mainly about my custom dataset is seperate into many files and I only find a dataset loading template in [https://github.com/huggingface/datasets/blob/1.2.1/datasets/json/json.py](https://github.com/huggingface/datasets/blob/1.2.1/datasets/json/json.py) that can handle my circumstance. I'm afraid these templates are too old to use. Could you re-add these three templates to current master branch?
| 3,071 |
https://github.com/huggingface/datasets/issues/3069 | CI fails on Windows with FileNotFoundError when stting up s3_base fixture | [] | ## Describe the bug
After commit 9353fc863d0c99ab0427f83cc5a4f04fcf52f1df, the CI fails on Windows with FileNotFoundError when stting up s3_base fixture. See: https://app.circleci.com/pipelines/github/huggingface/datasets/8151/workflows/5db8d154-badd-4d3d-b202-ca7a318997a2/jobs/50321
Error summary:
```
ERROR tests/test_arrow_dataset.py::test_dummy_dataset_serialize_s3 - FileNotF...
ERROR tests/test_dataset_dict.py::test_dummy_dataset_serialize_s3 - FileNotFo...
```
Stack trace:
```
______________ ERROR at setup of test_dummy_dataset_serialize_s3 ______________
[gw0] win32 -- Python 3.6.8 C:\tools\miniconda3\python.exe
@pytest.fixture()
def s3_base():
# writable local S3 system
import shlex
import subprocess
# Mocked AWS Credentials for moto.
old_environ = os.environ.copy()
os.environ.update(S3_FAKE_ENV_VARS)
> proc = subprocess.Popen(shlex.split("moto_server s3 -p %s" % s3_port))
tests\s3_fixtures.py:32:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
C:\tools\miniconda3\lib\subprocess.py:729: in __init__
restore_signals, start_new_session)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <subprocess.Popen object at 0x0000012BB8A4B908>
args = 'moto_server s3 -p 5555', executable = None, preexec_fn = None
close_fds = True, pass_fds = (), cwd = None, env = None
startupinfo = <subprocess.STARTUPINFO object at 0x0000012BB8177630>
creationflags = 0, shell = False, p2cread = -1, p2cwrite = -1, c2pread = -1
c2pwrite = -1, errread = -1, errwrite = -1, unused_restore_signals = True
unused_start_new_session = False
def _execute_child(self, args, executable, preexec_fn, close_fds,
pass_fds, cwd, env,
startupinfo, creationflags, shell,
p2cread, p2cwrite,
c2pread, c2pwrite,
errread, errwrite,
unused_restore_signals, unused_start_new_session):
"""Execute program (MS Windows version)"""
assert not pass_fds, "pass_fds not supported on Windows."
if not isinstance(args, str):
args = list2cmdline(args)
# Process startup details
if startupinfo is None:
startupinfo = STARTUPINFO()
if -1 not in (p2cread, c2pwrite, errwrite):
startupinfo.dwFlags |= _winapi.STARTF_USESTDHANDLES
startupinfo.hStdInput = p2cread
startupinfo.hStdOutput = c2pwrite
startupinfo.hStdError = errwrite
if shell:
startupinfo.dwFlags |= _winapi.STARTF_USESHOWWINDOW
startupinfo.wShowWindow = _winapi.SW_HIDE
comspec = os.environ.get("COMSPEC", "cmd.exe")
args = '{} /c "{}"'.format (comspec, args)
# Start the process
try:
hp, ht, pid, tid = _winapi.CreateProcess(executable, args,
# no special security
None, None,
int(not close_fds),
creationflags,
env,
os.fspath(cwd) if cwd is not None else None,
> startupinfo)
E FileNotFoundError: [WinError 2] The system cannot find the file specified
C:\tools\miniconda3\lib\subprocess.py:1017: FileNotFoundError
``` | 3,069 |
https://github.com/huggingface/datasets/issues/3064 | Make `interleave_datasets` more robust | [
"Hi @lhoestq Any response on this issue?",
"Hi ! Sorry for the late response\r\n\r\nI agree `interleave_datasets` would benefit a lot from having more flexibility. If I understand correctly it would be nice to be able to define stopping strategies like `stop=\"first_exhausted\"` (default) or `stop=\"all_exhausted\"`. If you'd like to contribute this feature I'd be happy to give you some pointers :)\r\n\r\nAlso one can already set the max number of iterations per dataset by doing `dataset.take(n)` on the dataset that should only have `n` samples.\r\n\r\nRegarding the `iter_cnt` counter, I think this requires a bit more thoughts, since we might have to be able to backpropagate the the counter if `map` or other transforms have been applied after `interleave_datasets`. ",
"@sbmaruf I just notice that (1)`interleave_datasets` only samples indices once and reuse for all epochs, and (2) it's limited by the smallest dataset. Do you figure out an alternative way to achieve the same purpose?"
] | **Is your feature request related to a problem? Please describe.**
Right now there are few hiccups using `interleave_datasets`. Interleaved dataset iterates until the smallest dataset completes it's iterator. In this way larger datasets may not complete full epoch of iteration.
It creates new problems in calculation of epoch since there are no way to track which dataset from `interleave_datasets` completes how many epoch.
**Describe the solution you'd like**
For `interleave_datasets` module,
- [ ] Add a boolean argument `--stop-iter` in `interleave_datasets` that enables dataset to either iterate infinite amount of time or not. That means it should not return `StopIterator` exception in case `--stop-iter=False`.
- [ ] Internal list variable `iter_cnt` that explains how many times (in steps/epochs) each dataset iterates at a given point.
- [ ] Add an argument `--max-iter` (list type) that explain maximum amount of time each of the dataset can iterate. After complete `--max-iter` of one dataset, other dataset should continue sampling and when all the dataset finish their respective `--max-iter`, only then return `StopIterator`
Note: I'm new to `datasets` api. May be these features are already there in the datasets.
Since multitask training is the latest trends, I believe this feature would make the `datasets` api more popular.
@lhoestq | 3,064 |
https://github.com/huggingface/datasets/issues/3063 | Windows CI is unable to test streaming properly because of SSL issues | [
"I think this problem is already fixed:\r\n```python\r\nIn [4]: import fsspec\r\n ...:\r\n ...: url = \"https://moon-staging.huggingface.co/datasets/__DUMMY_TRANSFORMERS_USER__/my-dataset-16242824690709/resolve/main/.gitattributes\"\r\n ...:\r\n ...: fsspec.open(url).open()\r\nOut[4]: <File-like object HTTPFileSystem, https://moon-staging.huggingface.co/datasets/__DUMMY_TRANSFORMERS_USER__/my-dataset-16242824690709/resolve/main/.gitattribu\r\n```",
"No I'm still having this issue on my windows, and so does the CI"
] | In https://github.com/huggingface/datasets/pull/3041 the windows tests were skipped because of SSL issues with moon-staging.huggingface.co:443
The issue appears only on windows with asyncio. On Linux it works. With requests it works as well. And with the production environment huggingface.co it also works.
to reproduce on windows:
```python
import fsspec
# use any URL to a file in a dataset repo
url = "https://moon-staging.huggingface.co/datasets/__DUMMY_TRANSFORMERS_USER__/my-dataset-16242824690709/resolve/main/.gitattributes"
fsspec.open(url).open()
```
raises
```python
FileNotFoundError: https://moon-staging.huggingface.co/datasets/__DUMMY_TRANSFORMERS_USER__/my-dataset-16242824690709/resolve/main/.gitattributes
```
because of
```python
aiohttp.client_exceptions.ClientConnectorCertificateError: Cannot connect to host moon-staging.huggingface.co:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: certificate has expired (_ssl.c:1131)')]
``` | 3,063 |
https://github.com/huggingface/datasets/issues/3061 | Feature request : add leave=True to dataset.map to enable tqdm nested bars (and whilst we're at it couldn't we get a way to access directly tqdm underneath?) | [
"@lhoestq, @albertvillanova can we have `**tqdm_kwargs` in `map`? If there are any fields that are important to our tqdm (like iterable or unit), we can pop them before initialising the tqdm object so as to avoid duplicity.",
"Hi ! Sounds like a good idea :)\r\n\r\nAlso I think it would be better to have this as an actual parameters instead of kwargs to make it clearer"
] | **A clear and concise description of what you want to happen.**
It would be so nice to be able to nest HuggingFace `Datasets.map() ` progress bars in the grander scheme of things and whilst we're at it why not other functions.
**Describe alternatives you've considered**
By the way is there not a way to directly interact with underlying tqdm module ? **kwargs-ish?
**Additional context**
Furthering tqdm integration #2374 and huggingface/transformers#11797 solutioned by huggingface/transformers#12226 provided with tqdm description as `desc=`
@sgugger @bhavitvyamalik | 3,061 |
https://github.com/huggingface/datasets/issues/3060 | load_dataset('openwebtext') yields "Compressed file ended before the end-of-stream marker was reached" | [
"Hi @RylanSchaeffer, thanks for reporting.\r\n\r\nI'm sorry, but I was not able to reproduce your problem.\r\n\r\nNormally, the reason for this type of error is that, during your download of the data files, this was not fully complete.\r\n\r\nCould you please try to load the dataset again but forcing its redownload? Please use:\r\n```python\r\ndataset = load_dataset(\"openwebtext\", download_mode=\"FORCE_REDOWNLOAD\")\r\n```\r\n\r\nLet me know if the problem persists.",
"I close this issue for the moment. Feel free to re-open it again if the problem persists."
] | ## Describe the bug
When I try `load_dataset('openwebtext')`, I receive a "EOFError: Compressed file ended before the end-of-stream marker was reached" error.
## Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset('openwebtext')
```
## Expected results
I expect the `dataset` variable to be properly constructed.
## Actual results
```
File "/home/rschaef/CoCoSci-Language-Distillation/distillation_v2/ratchet_learning/tasks/base.py", line 37, in create_dataset
dataset_str,
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/load.py", line 1117, in load_dataset
use_auth_token=use_auth_token,
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/builder.py", line 637, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/builder.py", line 704, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
File "/home/rschaef/.cache/huggingface/modules/datasets_modules/datasets/openwebtext/85b3ae7051d2d72e7c5fdf6dfb462603aaa26e9ed506202bf3a24d261c6c40a1/openwebtext.py", line 61, in _split_generators
dl_dir = dl_manager.download_and_extract(_URL)
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 284, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 261, in extract
partial(cached_path, download_config=download_config), path_or_paths, num_proc=num_proc, disable_tqdm=False
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 197, in map_nested
return function(data_struct)
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 316, in cached_path
output_path, force_extract=download_config.force_extract
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/extract.py", line 40, in extract
self.extractor.extract(input_path, output_path, extractor=extractor)
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/extract.py", line 179, in extract
return extractor.extract(input_path, output_path)
File "/home/rschaef/CoCoSci-Language-Distillation/cocosci/lib/python3.6/site-packages/datasets/utils/extract.py", line 53, in extract
tar_file.extractall(output_path)
File "/usr/lib/python3.6/tarfile.py", line 2010, in extractall
numeric_owner=numeric_owner)
File "/usr/lib/python3.6/tarfile.py", line 2052, in extract
numeric_owner=numeric_owner)
File "/usr/lib/python3.6/tarfile.py", line 2122, in _extract_member
self.makefile(tarinfo, targetpath)
File "/usr/lib/python3.6/tarfile.py", line 2171, in makefile
copyfileobj(source, target, tarinfo.size, ReadError, bufsize)
File "/usr/lib/python3.6/tarfile.py", line 249, in copyfileobj
buf = src.read(bufsize)
File "/usr/lib/python3.6/lzma.py", line 200, in read
return self._buffer.read(size)
File "/usr/lib/python3.6/_compression.py", line 68, in readinto
data = self.read(len(byte_view))
File "/usr/lib/python3.6/_compression.py", line 99, in read
raise EOFError("Compressed file ended before the "
python-BaseException
EOFError: Compressed file ended before the end-of-stream marker was reached
```
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-4.4.0-173-generic-x86_64-with-Ubuntu-16.04-xenial
- Python version: 3.6.10
- PyArrow version: 5.0.0 | 3,060 |
https://github.com/huggingface/datasets/issues/3058 | Dataset wikipedia and Bookcorpusopen cannot be fetched from dataloader. | [
"Hi ! I think this issue is more related to the `transformers` project. Could you open an issue on https://github.com/huggingface/transformers ?\r\n\r\nAnyway I think the issue could be that both wikipedia and bookcorpusopen have an additional \"title\" column, contrary to wikitext which only has a \"text\" column. After calling `load_dataset`, can you try doing `dataset = dataset.remove_columns(\"title\")` ?",
"Removing the \"title\" column works! Thanks for your advice.\r\n\r\nMaybe I should still create an issue to `transformers' to mark this solution?"
] | ## Describe the bug
I have used the previous version of `transformers` and `datasets`. The dataset `wikipedia` can be successfully used. Recently, I upgrade them to the newest version and find it raises errors. I also tried other datasets. The `wikitext` works and the `bookcorpusopen` raises the same errors as `wikipedia`.
## Steps to reproduce the bug
Run the `run_mlm_no_trainer.py` and the given script on this [link](https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling). Change the dataset from wikitext to wikipedia or bookcorpusopen. BTW, the library transformers is of version 4.11.3.
## Expected results
The data batchs are fetched from the data loader and train.
## Actual results
The first time to fetch data batch occurs error.
`Traceback (most recent call last):
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 705, in convert_to_tensors
tensor = as_tensor(value)
ValueError: too many dimensions 'str'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "src/original_run_mlm_no_trainer.py", line 528, in <module>
main()
File "src/original_run_mlm_no_trainer.py", line 488, in main
for step, batch in enumerate(train_dataloader):
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/accelerate/data_loader.py", line 303, in __iter__
for batch in super().__iter__():
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 517, in __next__
data = self._next_data()
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 557, in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
return self.collate_fn(data)
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/data/data_collator.py", line 41, in __call__
return self.torch_call(features)
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/data/data_collator.py", line 671, in torch_call
batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of)
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 2774, in pad
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 210, in __init__
self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis)
File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 722, in convert_to_tensors
"Unable to create tensor, you should probably activate truncation and/or padding "
ValueError: Unable to create tensor, you should probably activate truncation and/or padding with 'padding=True' 'truncation=True' to have batched tensors with the same length.
`
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Linux-5.8.0-59-generic-x86_64-with-debian-bullseye-sid
- Python version: 3.7.6
- PyArrow version: 5.0.0
| 3,058 |
https://github.com/huggingface/datasets/issues/3057 | Error in per class precision computation | [
"Hi @tidhamecha2, thanks for reporting.\r\n\r\nIndeed, we fixed this issue just one week ago: #3008\r\n\r\nThe fix will be included in our next version release.\r\n\r\nIn the meantime, you can incorporate the fix by installing `datasets` from the master branch:\r\n```\r\npip install -U git+ssh://[email protected]/huggingface/datasets.git@master#egg=datasest\r\n```\r\nor\r\n```\r\npip install -U git+https://github.com/huggingface/datasets.git@master#egg=datasets\r\n```"
] | ## Describe the bug
When trying to get the per class precision values by providing `average=None`, following error is thrown `ValueError: can only convert an array of size 1 to a Python scalar`
## Steps to reproduce the bug
```python
from datasets import load_dataset, load_metric
precision_metric = load_metric("precision")
predictions = [0, 2, 1, 0, 0, 1]
references = [0, 1, 2, 0, 1, 2]
results = precision_metric.compute(predictions=predictions, references=references, average=None)
```
## Expected results
` {'precision': array([0.66666667, 0. , 0. ])}`
as per https://github.com/huggingface/datasets/blob/master/metrics/precision/precision.py
## Actual results
```
output = self._compute(predictions=predictions, references=references, **kwargs)
File "~/.cache/huggingface/modules/datasets_modules/metrics/precision/94709a71c6fe37171ef49d3466fec24dee9a79846c9f176dff66a649e9811690/precision.py", line 110, in _compute
sample_weight=sample_weight,
ValueError: can only convert an array of size 1 to a Python scalar
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: linux
- Python version: 3.6.9
- PyArrow version: 5.0.0
| 3,057 |
https://github.com/huggingface/datasets/issues/3055 | CI test suite fails after meteor metric update | [] | ## Describe the bug
CI test suite fails: https://app.circleci.com/pipelines/github/huggingface/datasets/8110/workflows/f059ba43-9154-4632-bebb-82318447ddc9/jobs/50010
Stack trace:
```
___________________ LocalMetricTest.test_load_metric_meteor ____________________
[gw1] linux -- Python 3.6.15 /home/circleci/.pyenv/versions/3.6.15/bin/python3.6
self = <tests.test_metric_common.LocalMetricTest testMethod=test_load_metric_meteor>
metric_name = 'meteor'
def test_load_metric(self, metric_name):
doctest.ELLIPSIS_MARKER = "[...]"
metric_module = importlib.import_module(datasets.load.prepare_module(os.path.join("metrics", metric_name))[0])
metric = datasets.load.import_main_class(metric_module.__name__, dataset=False)
# check parameters
parameters = inspect.signature(metric._compute).parameters
self.assertTrue("predictions" in parameters)
self.assertTrue("references" in parameters)
self.assertTrue(all([p.kind != p.VAR_KEYWORD for p in parameters.values()])) # no **kwargs
# run doctest
with self.patch_intensive_calls(metric_name, metric_module.__name__):
with self.use_local_metrics():
> results = doctest.testmod(metric_module, verbose=True, raise_on_error=True)
tests/test_metric_common.py:75:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../.pyenv/versions/3.6.15/lib/python3.6/doctest.py:1951: in testmod
runner.run(test)
../.pyenv/versions/3.6.15/lib/python3.6/doctest.py:1839: in run
r = DocTestRunner.run(self, test, compileflags, out, False)
../.pyenv/versions/3.6.15/lib/python3.6/doctest.py:1476: in run
return self.__run(test, compileflags, out)
../.pyenv/versions/3.6.15/lib/python3.6/doctest.py:1382: in __run
exception)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <doctest.DebugRunner object at 0x7f4c26bd3da0>
out = <built-in method write of _io.TextIOWrapper object at 0x7f51a21852d0>
test = <DocTest datasets_modules.datasets.meteor.6201bb45d2c144ea7963680949d20f523d74a741fa0f8a806f836e6caa5245d7.meteor.Mete...ets_modules/datasets/meteor/6201bb45d2c144ea7963680949d20f523d74a741fa0f8a806f836e6caa5245d7/meteor.py:87 (5 examples)>
example = <doctest.Example object at 0x7f4c26bd3eb8>
exc_info = (<class 'TypeError'>, TypeError('"hypothesis" expects pre-tokenized hypothesis (Iterable[str]): It is a guide to action which ensures that the military always obeys the commands of the party',), <traceback object at 0x7f4cd01afec8>)
def report_unexpected_exception(self, out, test, example, exc_info):
> raise UnexpectedException(test, example, exc_info)
E doctest.UnexpectedException: <DocTest datasets_modules.datasets.meteor.6201bb45d2c144ea7963680949d20f523d74a741fa0f8a806f836e6caa5245d7.meteor.Meteor from /tmp/pytest-of-circleci/pytest-0/popen-gw1/cache/modules/datasets_modules/datasets/meteor/6201bb45d2c144ea7963680949d20f523d74a741fa0f8a806f836e6caa5245d7/meteor.py:87 (5 examples)>
../.pyenv/versions/3.6.15/lib/python3.6/doctest.py:1845: UnexpectedException
```
| 3,055 |
https://github.com/huggingface/datasets/issues/3053 | load_dataset('the_pile_openwebtext2') produces ArrowInvalid, value too large to fit in C integer type | [
"I encountered the same bug using different datasets.\r\nany suggestions?",
"+1, can reproduce here!",
"I get the same error\r\nPlatform: Windows 10\r\nPython: python 3.8.8\r\nPyArrow: 5.0",
"I was getting a similar error `pyarrow.lib.ArrowInvalid: Integer value 528 not in range: -128 to 127` - AFAICT, this is because the type specified for `reddit_scores` is `datasets.Sequence(datasets.Value(\"int8\"))`, but the actual values can be well outside the max range for 8-bit integers.\r\n\r\nI worked around this by downloading the `the_pile_openwebtext2.py` and editing it to use local files and drop reddit scores as a column (not needed for my purposes).",
"Addressed in https://huggingface.co/datasets/the_pile_openwebtext2/discussions/4"
] | ## Describe the bug
When loading `the_pile_openwebtext2`, we get the error `pyarrow.lib.ArrowInvalid: Value 2111 too large to fit in C integer type`
## Steps to reproduce the bug
```python
import datasets
ds = datasets.load_dataset('the_pile_openwebtext2')
```
## Expected results
Should download the dataset, convert it to an arrow file, and return a working Dataset object.
## Actual results
The download works, but conversion to the arrow file fails as follows:
```
>>> ds = datasets.load_dataset('the_pile_openwebtext2')
Downloading and preparing dataset openwebtext2/plain_text (download: 27.33 GiB, generated: 63.86 GiB
, post-processed: Unknown size, total: 91.19 GiB) to /home/davidbau/.cache/huggingface/datasets/open
webtext2/plain_text/1.0.0/c48ec73ba3483bac673463f48f67e9a4fd8cb49a9d6ec4fb957f0b424b97cf25...
Traceback (most recent call last):
File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/builder.py", line 1133,
in _prepare_split
writer.write(example, key)
File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line
366, in write
self.write_examples_on_file()
File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line
311, in write_examples_on_file
pa_array = pa.array(typed_sequence)
File "pyarrow/array.pxi", line 222, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line
115, in __arrow_array__
out = pa.array(cast_to_python_objects(self.data, only_1d_for_numpy=True), type=type)
File "pyarrow/array.pxi", line 305, in pyarrow.lib.array
File "pyarrow/array.pxi", line 39, in pyarrow.lib._sequence_to_array
File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Value 2111 too large to fit in C integer type
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
```
- Platform: Ubuntu 20.04
- Python version: python 3.9
- PyArrow version: 3.0.0
| 3,053 |
https://github.com/huggingface/datasets/issues/3052 | load_dataset cannot download the data and hangs on forever if cache dir specified | [
"Issue was environment inconsistency, updating packages did the trick\r\n\r\n`conda install -c huggingface -c conda-forge datasets`\r\n\r\n> Collecting package metadata (current_repodata.json): done\r\n> Solving environment: |\r\n> The environment is inconsistent, please check the package plan carefully\r\n> The following packages are causing the inconsistency:\r\n> \r\n> - conda-forge/noarch::datasets==1.12.1=pyhd8ed1ab_1\r\n> - conda-forge/win-64::multiprocess==0.70.12.2=py38h294d835_0\r\n> done\r\n> \r\n> Package Plan\r\n> \r\n> environment location: C:\\xxx\\anaconda3\\envs\\UnBias-94-1\r\n> \r\n> added / updated specs:\r\n> - datasets\r\n> \r\n> \r\n> The following NEW packages will be INSTALLED:\r\n> \r\n> dill conda-forge/noarch::dill-0.3.4-pyhd8ed1ab_0\r\n> \r\n> The following packages will be UPDATED:\r\n> \r\n> ca-certificates pkgs/main::ca-certificates-2021.9.30-~ --> conda-forge::ca-certificates-2021.10.8-h5b45459_0\r\n> certifi pkgs/main::certifi-2021.5.30-py38haa9~ --> conda-forge::certifi-2021.10.8-py38haa244fe_0\r\n> \r\n> The following packages will be SUPERSEDED by a higher-priority channel:\r\n> "
] | ## Describe the bug
After updating datasets, a code that ran just fine for ages began to fail. Specifying _datasets.load_dataset_'s _cache_dir_ optional argument on Windows 10 machine results in data download to hang on forever. Same call without cache_dir works just fine. Surprisingly exact same code just runs perfectly fine on Linux docker instance running in cloud.
Unfortunately I updated Windows also at the same time and I can't remember which version of datasets was running in my conda environment prior to the update otherwise I would have tried both to check this out. :(
## Steps to reproduce the bug
```python
# Sample code to reproduce the bug
```
cache_dir = 'c:/data/datasets'
dataset = load_dataset('wikipedia', '20200501.en', split='train',cache_dir=cache_dir)
```
Note that exact same code without specifying _cache_dir_ argument works perfectly fine.
```
cache_dir = 'c:/data/datasets'
dataset = load_dataset('wikipedia', '20200501.en', split='train')
```
## Expected results
Downloads the dataset and cache is handled in the _cache_dir_ directory
## Actual results
Data download keeps hanging on forever, **NO TRACEBACK**!
## Environment info
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.19042-SP0
- Python version: 3.8.11
- PyArrow version: 3.0.0
| 3,052 |
https://github.com/huggingface/datasets/issues/3051 | Non-Matching Checksum Error with crd3 dataset | [
"I got the same error for another dataset (`multi_woz_v22`):\r\n\r\n```\r\ndatasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://github.com/budzianowski/multiwoz/raw/master/data/MultiWOZ_2.2/dialog_acts.json', 'https://github.com/budzianowski/multiwoz/raw/master/data/MultiWOZ_2.2/test/dialogues_001.json']\r\n```",
"I'm seeing the same issue as @RylanSchaeffer:\r\nPython 3.7.11, macOs 11.4\r\ndatasets==1.14.0\r\n\r\nfails on:\r\n```python\r\ndataset = datasets.load_dataset(\"multi_woz_v22\")\r\n```"
] | ## Describe the bug
When I try loading the crd3 dataset (https://huggingface.co/datasets/crd3), an error is thrown.
## Steps to reproduce the bug
```python
dataset = load_dataset('crd3', split='train')
```
## Expected results
I expect no error to be thrown.
## Actual results
A non-matching checksum error is thrown.
```
datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://github.com/RevanthRameshkumar/CRD3/archive/master.zip']
```
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-4.4.0-173-generic-x86_64-with-Ubuntu-16.04-xenial
- Python version: 3.6.10
- PyArrow version: 5.0.0
| 3,051 |
https://github.com/huggingface/datasets/issues/3049 | TimeoutError during streaming | [] | ## Describe the bug
I got a TimeoutError after streaming for about 10h.
## Steps to reproduce the bug
Very long code but we could do a test of streaming indefinitely data, though error may take a while to appear.
## Expected results
This error was not expected in the code which considers only `ClientError` but not `TimeoutError`.
See [this line](https://github.com/huggingface/datasets/blob/2814fbd0e18150be409f10804670e98d9ecb87d4/src/datasets/utils/streaming_download_manager.py#L129).
Based on the traceback, it looks like the `TimeoutError` was not captured.
## Actual results
```
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/asyn.py", line 25, in _runner
result[0] = await coro
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/implementations/http.py", line 614, in async_fetch_range
out = await r.read()
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/aiohttp/client_reqrep.py", line 1032, in read
self._body = await self.content.read()
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/aiohttp/streams.py", line 370, in read
block = await self.readany()
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/aiohttp/streams.py", line 392, in readany
await self._wait("readany")
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/aiohttp/streams.py", line 306, in _wait
await waiter
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/aiohttp/helpers.py", line 656, in __exit__
raise asyncio.TimeoutError from None
asyncio.exceptions.TimeoutError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/koush/dalle-mini/dev/seq2seq/run_seq2seq_flax.py", line 1027, in <module>
main()
File "/home/koush/dalle-mini/dev/seq2seq/run_seq2seq_flax.py", line 991, in main
for batch in tqdm(
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/tqdm/std.py", line 1180, in __iter__
for obj in iterable:
File "/home/koush/dalle-mini/dev/seq2seq/run_seq2seq_flax.py", line 376, in data_loader_streaming
for item in dataset:
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 341, in __iter__
for key, example in self._iter():
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 338, in _iter
yield from ex_iterable
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 179, in __iter__
key_examples_list = [(key, example)] + [
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 179, in <listcomp>
key_examples_list = [(key, example)] + [
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 176, in __iter__
for key, example in iterator:
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 225, in __iter__
for x in self.ex_iterable:
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 99, in __iter__
for key, example in self.generate_examples_fn(**kwargs_with_shuffled_shards):
File "/home/koush/datasets/src/datasets/iterable_dataset.py", line 287, in wrapper
for key, table in generate_tables_fn(**kwargs):
File "/home/koush/datasets/src/datasets/packaged_modules/json/json.py", line 107, in _generate_tables
batch = f.read(self.config.chunksize)
File "/home/koush/datasets/src/datasets/utils/streaming_download_manager.py", line 126, in read_with_retries
out = read(*args, **kwargs)
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/implementations/http.py", line 572, in read
return super().read(length)
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/spec.py", line 1533, in read
out = self.cache._fetch(self.loc, self.loc + length)
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/caching.py", line 390, in _fetch
self.cache = self.fetcher(start, bend)
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/asyn.py", line 91, in wrapper
return sync(self.loop, func, *args, **kwargs)
File "/home/koush/.pyenv/versions/dev/lib/python3.9/site-packages/fsspec/asyn.py", line 69, in sync
raise FSTimeoutError from return_result
fsspec.exceptions.FSTimeoutError
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.2.dev0
- Platform: Linux-5.4.0-1043-gcp-x86_64-with-glibc2.31
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 3,049 |
https://github.com/huggingface/datasets/issues/3048 | Identify which shard data belongs to | [
"Independently of this I think it raises the need to allow multiprocessing during streaming so that we get samples from multiple shards in one batch."
] | **Is your feature request related to a problem? Please describe.**
I'm training on a large dataset made of multiple sub-datasets.
During training I can observe some jumps in loss which may correspond to different shards.

My suspicion is that either:
* some of the sub-datasets are harder for the model than others
* some of the sub-datasets are not formatted properly
I'd like to identify which shards correspond to those jumps.
**Describe the solution you'd like**
It would be nice to have a key associated to each data sample or data batch containing details on where the data comes from (shard idx + item idx within the shard).
This should be supported both in local and streaming mode.
**Describe alternatives you've considered**
A fix would be for me to add myself details (shard id, sample id) as part of each data sample.
The inconvenient is that it requires users to process/reupload every dataset when they need this feature. | 3,048 |
https://github.com/huggingface/datasets/issues/3047 | Loading from cache a dataset for LM built from a text classification dataset sometimes errors | [
"This has been fixed in 1.15, let me know if you still have this issue"
] | ## Describe the bug
Yes, I know, that description sucks. So the problem is arising in the course when we build a masked language modeling dataset using the IMDB dataset. To reproduce (or try since it's a bit fickle).
Create a dataset for masled-language modeling from the IMDB dataset.
```python
from datasets import load_dataset
from transformers import Autotokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased)
imdb_dataset = load_dataset("imdb", split="train")
def tokenize_function(examples):
return tokenizer(examples["text"])
tokenized_dataset = imdb_dataset.map(
tokenize_function, batched=True, remove_columns=["text", "label"]
)
chunk_size = 128
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
# Compute length of concatenated texts
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the last chunk if it's smaller than chunk_size
total_length = (total_length // chunk_size) * chunk_size
# Split by chunks of max_len.
result = {
k: [t[i : i + chunk_size] for i in range(0, total_length, chunk_size)]
for k, t in concatenated_examples.items()
}
# Create a new labels column
result["labels"] = result["input_ids"].copy()
return result
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
```
Until now, all is well. The problem comes when you re-execute that code, more specifically:
```python
tokenized_dataset = imdb_dataset.map(
tokenize_function, batched=True, remove_columns=["text", "label"]
)
lm_dataset = tokenized_dataset.map(group_texts, batched=True)
```
Try several times if the bug doesn't appear instantly, or just each line at a time, ideally in a notebook/Colab and you should get at some point:
```python
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-40-357a56ee3d53> in <module>
----> 1 lm_dataset = tokenized_dataset.map(group_texts, batched=True)
~/git/datasets/src/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)
1947 new_fingerprint=new_fingerprint,
1948 disable_tqdm=disable_tqdm,
-> 1949 desc=desc,
1950 )
1951 else:
~/git/datasets/src/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
424 }
425 # apply actual function
--> 426 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
427 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
428 # re-apply format to the output
~/git/datasets/src/datasets/fingerprint.py in wrapper(*args, **kwargs)
404 # Call actual function
405
--> 406 out = func(self, *args, **kwargs)
407
408 # Update fingerprint of in-place transforms + update in-place history of transforms
~/git/datasets/src/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)
2138 if os.path.exists(cache_file_name) and load_from_cache_file:
2139 logger.warning("Loading cached processed dataset at %s", cache_file_name)
-> 2140 info = self.info.copy()
2141 info.features = features
2142 return Dataset.from_file(cache_file_name, info=info, split=self.split)
~/git/datasets/src/datasets/info.py in copy(self)
278
279 def copy(self) -> "DatasetInfo":
--> 280 return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
281
282
~/git/datasets/src/datasets/info.py in __init__(self, description, citation, homepage, license, features, post_processed, supervised_keys, task_templates, builder_name, config_name, version, splits, download_checksums, download_size, post_processing_size, dataset_size, size_in_bytes)
~/git/datasets/src/datasets/info.py in __post_init__(self)
177 for idx, template in enumerate(self.task_templates):
178 if isinstance(template, TextClassification):
--> 179 labels = self.features[template.label_column].names
180 self.task_templates[idx] = TextClassification(
181 text_column=template.text_column, label_column=template.label_column, labels=labels
KeyError: 'label'
```
It seems that when loading the cache, the dataset tries to access some kind of text classification template (which I imagine comes from the original dataset) and to look at a key that has since been removed. | 3,047 |
https://github.com/huggingface/datasets/issues/3044 | Inconsistent caching behaviour when using `Dataset.map()` with a `new_fingerprint` and `num_proc>1` | [
"Following the discussion in #3045 if would be nice to have a way to let users have a nice experience with caching even if the function is not hashable.\r\n\r\nCurrently a workaround is to make the function picklable. This can be done by implementing a callable class instead, that can be pickled using by implementing a custom `__getstate__` method for example.\r\n\r\nHowever it sounds pretty complicated for a simple thing. Maybe one idea would be to have something similar to streamlit: they allow users to register the hashing of their own objects.\r\n\r\nSee the documentation about their `hash_funcs` here: https://docs.streamlit.io/library/advanced-features/caching#the-hash_funcs-parameter\r\n\r\nHere is the example they give:\r\n\r\n```python\r\nclass FileReference:\r\n def __init__(self, filename):\r\n self.filename = filename\r\n\r\ndef hash_file_reference(file_reference):\r\n filename = file_reference.filename\r\n return (filename, os.path.getmtime(filename))\r\n\r\[email protected](hash_funcs={FileReference: hash_file_reference})\r\ndef func(file_reference):\r\n ...\r\n```",
"My solution was to generate a custom hash, and use the hash as a `new_fingerprint` argument to the `map()` method to enable caching. This works, but is quite hacky.\r\n\r\n@lhoestq, this approach is very neat, this would make the whole caching mechanic more explicit. I don't have so much time to look into this right now, but I might give it a try in the future. ",
"Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\r\n\r\nIs there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch. "
] | ## Describe the bug
Caching does not work when using `Dataset.map()` with:
1. a function that cannot be deterministically fingerprinted
2. `num_proc>1`
3. using a custom fingerprint set with the argument `new_fingerprint`.
This means that the dataset will be mapped with the function for each and every call, which does not happen if `num_proc==1`. In that case (`num_proc==1`) subsequent calls will load the transformed dataset from the cache, which is the expected behaviour. The example can easily be translated into a unit test.
I have a fix and will submit a pull request asap.
## Steps to reproduce the bug
```python
import hashlib
import json
import os
from typing import Dict, Any
import numpy as np
from datasets import load_dataset, Dataset
Batch = Dict[str, Any]
filename = 'example.json'
class Transformation():
"""A transformation with a random state that cannot be fingerprinted"""
def __init__(self):
self.state = np.random.random()
def __call__(self, batch: Batch) -> Batch:
batch['x'] = [np.random.random() for _ in batch['x']]
return batch
def generate_dataset():
"""generate a simple dataset"""
rgn = np.random.RandomState(24)
data = {
'data': [{'x': float(y), 'y': -float(y)} for y in
rgn.random(size=(1000,))]}
if not os.path.exists(filename):
with open(filename, 'w') as f:
f.write(json.dumps(data))
return filename
def process_dataset_with_cache(num_proc=1, remove_cache=False,
cache_expected_to_exist=False):
# load the generated dataset
dset: Dataset = next(
iter(load_dataset('json', data_files=filename, field='data').values()))
new_fingerprint = hashlib.md5("static-id".encode("utf8")).hexdigest()
# get the expected cached path
cache_path = dset._get_cache_file_path(new_fingerprint)
if remove_cache and os.path.exists(cache_path):
os.remove(cache_path)
# check that the cache exists, and print a statement
# if was actually expected to exist
cache_exist = os.path.exists(cache_path)
print(f"> cache file exists={cache_exist}")
if cache_expected_to_exist and not cache_exist:
print("=== Cache does not exist! ====")
# apply the transformation with the new fingerprint
dset = dset.map(
Transformation(),
batched=True,
num_proc=num_proc,
new_fingerprint=new_fingerprint,
desc="mapping dataset with transformation")
generate_dataset()
for num_proc in [1, 2]:
print(f"# num_proc={num_proc}, first pass")
# first pass to generate the cache (always create a new cache here)
process_dataset_with_cache(remove_cache=True,
num_proc=num_proc,
cache_expected_to_exist=False)
print(f"# num_proc={num_proc}, second pass")
# second pass, expects the cache to exist
process_dataset_with_cache(remove_cache=False,
num_proc=num_proc,
cache_expected_to_exist=True)
os.remove(filename)
```
## Expected results
In the above python example, with `num_proc=2`, the **cache file should exist in the second call** of `process_dataset_with_cache` ("=== Cache does not exist! ====" should not be printed).
When the cache is successfully created, `map()` is called only one time.
## Actual results
In the above python example, with `num_proc=2`, the **cache does not exist in the second call** of `process_dataset_with_cache` (this results in printing "=== Cache does not exist! ====").
Because the cache doesn't exist, the `map()` method is executed a second time and the dataset is not loaded from the cache.
## Environment info
- `datasets` version: 1.12.1
- Platform: macOS-10.16-x86_64-i386-64bit
- Python version: 3.8.8
- PyArrow version: 5.0.0
| 3,044 |
https://github.com/huggingface/datasets/issues/3043 | Add PASS dataset | [] | ## Adding a Dataset
- **Name:** PASS
- **Description:** An ImageNet replacement for self-supervised pretraining without humans
- **Data:** https://www.robots.ox.ac.uk/~vgg/research/pass/ https://github.com/yukimasano/PASS
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
| 3,043 |
https://github.com/huggingface/datasets/issues/3040 | [save_to_disk] Using `select()` followed by `save_to_disk` saves complete dataset making it hard to create dummy dataset | [
"Hi,\r\n\r\nthe `save_to_disk` docstring explains that `flatten_indices` has to be called on a dataset before saving it to save only the shard/slice of the dataset.",
"That works! Thansk!\r\n\r\nMight be worth doing that automatically actually in case the `save_to_disk` is called on a dataset that has an indices mapping :-)",
"I agree with @patrickvonplaten: this issue is reported recurrently, so better if we implement the `.flatten_indices()` automatically?",
"That would be great indeed - I don't really see a use case where one would not like to call `.flatten_indices()` before calling `save_to_disk`",
"+1 on this !"
] | ## Describe the bug
When only keeping a dummy size of a dataset (say the first 100 samples), and then saving it to disk to upload it in the following to the hub for easy demo/use - not just the small dataset is saved but the whole dataset with an indices file. The problem with this is that the dataset is still very big.
## Steps to reproduce the bug
E.g. run the following:
```python
from datasets import load_dataset, save_to_disk
nlp = load_dataset("glue", "mnli", split="train")
nlp.save_to_disk("full")
nlp = nlp.select(range(100))
nlp.save_to_disk("dummy")
```
Now one can see that both `"dummy"` and `"full"` have the same size. This shouldn't be the case IMO.
## Expected results
IMO `"dummy"` should be much smaller so that one can easily play around with the dataset on the hub.
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.2.dev0
- Platform: Linux-5.11.0-34-generic-x86_64-with-glibc2.10
- Python version: 3.8.5
- PyArrow version: 5.0.0
| 3,040 |
https://github.com/huggingface/datasets/issues/3036 | Protect master branch to force contributions via Pull Requests | [
"It would be nice to protect the master from direct commits, but still having a way to merge our own PRs when no review is required (for example when updating a dataset_infos.json file, or minor bug fixes - things that happen quite often actually).\r\nDo you know if there's a way ?",
"you can if you're an admin of the repo",
"This is done. Now the master branch is protected:\r\n- [x] Require a pull request before merging: all commits must be made to a non-protected branch and submitted via a pull request\r\n - Required number of approvals before merging: 1 \r\n- [x] Require linear history: prevent merge commits from being pushed\r\n- [x] These requirements are not enforced for administrators\r\n- [x] Additionally, the master branch is also protected against deletion and force pushes\r\n\r\nCC: @lhoestq @julien-c @thomwolf "
] | In order to have a clearer Git history in the master branch, I propose to protect it so that all contributions must be done through a Pull Request and no direct commits to master are allowed.
- The Pull Request allows to give context, discuss any potential issues and improve the quality of the contribution
- The Pull Request will eventually be squashed and merged into master with a single commit that links to the Pull Request page (with all the context/discussions)
Note that we already implemented a protection in the master branch to avoid *merge* commits and ensure a linear history. This proposal goes one step further by avoiding all kind of direct commits and forcing contributions **only** through Pull Requests.
Please note that we can temporarily deactivate this protection if we need to make a direct commit, e.g. at each new version release.
The only way GitHub allows this kind or protection is by requiring a minimal number (at least one) of approvals of the Pull Request. The inconvenient is that the PR creator cannot approve their own PR: another person must approve it before it can be merged into master. To circumvent this, we could eventually disable this protection in the master branch when an urgent commit is needed (e.g. for a hotfix) and there is no other person available at that time to approve the PR.
| 3,036 |
https://github.com/huggingface/datasets/issues/3035 | `load_dataset` does not work with uploaded arrow file | [
"Hi ! This is not a bug, this is simply not implemented.\r\n`save_to_disk` is for on-disk serialization and was not made compatible for the Hub.\r\nThat being said, I agree we actually should make it work with the Hub x)",
"cc @LysandreJik maybe we can solve this at the same time as adding `push_to_hub`"
] | ## Describe the bug
I've preprocessed and uploaded a dataset here: https://huggingface.co/datasets/ami-wav2vec2/ami_headset_single_preprocessed . The dataset is in `.arrow` format.
The dataset can correctly be loaded when doing:
```bash
git lfs install
git clone https://huggingface.co/datasets/ami-wav2vec2/ami_headset_single_preprocessed
```
followed by
```python
from datasets import load_from_disk
ds = load_from_disk("./ami_headset_single_preprocessed")
```
However when I try to directly download the dataset as follows:
```python
from datasets import load_dataset
ds = load_dataset("ami-wav2vec2/ami_headset_single_preprocessed")
```
the following error occurs:
```bash
/usr/local/lib/python3.7/dist-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)
1115 ignore_verifications=ignore_verifications,
1116 try_from_hf_gcs=try_from_hf_gcs,
-> 1117 use_auth_token=use_auth_token,
1118 )
1119
/usr/local/lib/python3.7/dist-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
635 if not downloaded_from_gcs:
636 self._download_and_prepare(
--> 637 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
638 )
639 # Sync info
/usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
724 try:
725 # Prepare split will record examples associated to the split
--> 726 self._prepare_split(split_generator, **prepare_split_kwargs)
727 except OSError as e:
728 raise OSError(
/usr/local/lib/python3.7/dist-packages/datasets/builder.py in _prepare_split(self, split_generator)
1186 generator, unit=" tables", leave=False, disable=bool(logging.get_verbosity() == logging.NOTSET)
1187 ):
-> 1188 writer.write_table(table)
1189 num_examples, num_bytes = writer.finalize()
1190
/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in write_table(self, pa_table, writer_batch_size)
424 # reorder the arrays if necessary + cast to self._schema
425 # we can't simply use .cast here because we may need to change the order of the columns
--> 426 pa_table = pa.Table.from_arrays([pa_table[name] for name in self._schema.names], schema=self._schema)
427 batches: List[pa.RecordBatch] = pa_table.to_batches(max_chunksize=writer_batch_size)
428 self._num_bytes += sum(batch.nbytes for batch in batches)
/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_arrays()
/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib._sanitize_arrays()
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.ChunkedArray.cast()
/usr/local/lib/python3.7/dist-packages/pyarrow/compute.py in cast(arr, target_type, safe)
279 else:
280 options = CastOptions.unsafe(target_type)
--> 281 return call_function("cast", [arr], options)
282
283
/usr/local/lib/python3.7/dist-packages/pyarrow/_compute.pyx in pyarrow._compute.call_function()
/usr/local/lib/python3.7/dist-packages/pyarrow/_compute.pyx in pyarrow._compute.Function.call()
/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()
/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowNotImplementedError: Unsupported cast from struct<train: struct<name: string, num_bytes: int64, num_examples: int64, dataset_name: string>, validation: struct<name: string, num_bytes: int64, num_examples: int64, dataset_name: string>, test: struct<name: string, num_bytes: int64, num_examples: int64, dataset_name: string>> to list using function cast_list
```
## Expected results
The dataset should be correctly loaded with `load_dataset` IMO.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.2.dev0
- Platform: Linux-5.11.0-34-generic-x86_64-with-glibc2.10
- Python version: 3.8.5
- PyArrow version: 5.0.0
| 3,035 |
https://github.com/huggingface/datasets/issues/3034 | Errors loading dataset using fs = a gcsfs.GCSFileSystem | [] | ## Describe the bug
Cannot load dataset using a `gcsfs.GCSFileSystem`. I'm not sure if this should be a bug in `gcsfs` or here...
Basically what seems to be happening is that since datasets saves datasets as folders and folders aren't "real objects" in gcs, gcsfs raises a 404 error. There are workarounds if you use gcsfs directly to download the file, but as is I can't get `load_from_disk` to work.
## Steps to reproduce the bug
```python
from datasets import load_dataset
# load some dataset
dataset = load_dataset("squad", split="train")
# save it to gcs
import gcsfs
fs = gcsfs.GCSFileSystem(project="my-gs-project")
dataset.save_to_disk("gs://my-bucket/squad", fs=fs)
# try to load it from gcs
from datasets import load_from_disk
dataset2 = load_from_disk("my-bucket/squad", fs=fs)
```
## Expected results
`dataset2` would be a copy of `dataset` but loaded from my bucket.
## Actual results
Long traceback but essentially it's a 404 error from gcsfs saying the object `my-bucket/squad` doesn't exist when this is called:
https://github.com/huggingface/datasets/blob/9c81b7d2e6d9feae69a084a3abda265a4ca07fb5/src/datasets/arrow_dataset.py#L977
This is because there is no actual object called `my-bucket/squad`, there are objects called `my-bucket/squad/dataset.arrow`, etc.
Note that *this* works fine, since it's explicitly saying "download all the objects with this prefix":
```python
fs.download(src_dataset_path + "/*", dataset_path.as_posix(), recursive=True)
```
For example, I can do a workaround this way:
```python
import tempfile
with tempfile.TemporaryDirectory() as temppath:
fs.download("gs://my-bucket/squad/*", temppath)
dataset2 = load_from_disk(temppath)
```
It's unclear to me if it's `gcsfs`'s responsibility to say "hey that's folder not a file, I should try to get objects inside of it not the object itself", or if that's `datasets`'s responsibility... I'm leaning towards the latter since you're never loading a dataset from one file using this function/method, only a dataset folder?
Another minor thing that should maybe should be rolled into this bug...
https://github.com/huggingface/datasets/blob/9c81b7d2e6d9feae69a084a3abda265a4ca07fb5/src/datasets/arrow_dataset.py#L968
These fail if you pass in a `gs://` path, e.g.
```python
dataset2 = load_from_disk("gs://my-bucket/squad", fs=fs)
```
Because at this point, `dataset_info_path` is `gs:/my-bucket/squad/dataset_info.json`, gcsfs throws a:
```
Invalid bucket name: 'gs:'
```
error
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: macOS Big Sur 11.6
- Python version: 3.7.12
- PyArrow version: 5.0.0
| 3,034 |
https://github.com/huggingface/datasets/issues/3032 | Error when loading private dataset with "data_files" arg | [
"We'll do a release tomorrow or on wednesday to make the fix available :)\r\n\r\nThanks for reproting !"
] | ## Describe the bug
A clear and concise description of what the bug is.
Private datasets with no loading script can't be loaded using `data_files` parameter.
## Steps to reproduce the bug
```python
from datasets import load_dataset
data_files = {"train": "**/train/*/*.jsonl", "valid": "**/valid/*/*.jsonl"}
dataset = load_dataset('dalle-mini/encoded', data_files=data_files, use_auth_token=True, streaming=True)
```
Same error happens in non-streaming mode.
## Expected results
Files should be loaded (whether in streaming or not).
## Actual results
Error:
```
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/datasets/load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, dynamic_modules_path, return_resolved_file_path, return_associated_base_path, data_files, **download_kwargs)
539 try:
--> 540 local_path = cached_path(file_path, download_config=download_config)
541 except FileNotFoundError:
8 frames
FileNotFoundError: Couldn't find file at https://huggingface.co/datasets/dalle-mini/encoded/resolve/main/encoded.py
During handling of the above exception, another exception occurred:
HTTPError Traceback (most recent call last)
HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/api/datasets/dalle-mini/encoded?full=true
During handling of the above exception, another exception occurred:
FileNotFoundError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/datasets/load.py in prepare_module(path, script_version, download_config, download_mode, dataset, force_local_path, dynamic_modules_path, return_resolved_file_path, return_associated_base_path, data_files, **download_kwargs)
547 except Exception:
548 raise FileNotFoundError(
--> 549 f"Couldn't find a directory or a {resource_type} named '{path}'. "
550 f"It doesn't exist locally at {expected_dir_for_combined_path_abs} or remotely on {hf_api.endpoint}/datasets"
551 )
FileNotFoundError: Couldn't find a directory or a dataset named 'dalle-mini/encoded'. It doesn't exist locally at /content/dalle-mini/encoded or remotely on https://huggingface.co/datasets
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.12
- PyArrow version: 3.0.0
@lhoestq | 3,032 |
https://github.com/huggingface/datasets/issues/3027 | Resolve data_files by split name | [
"Awesome @lhoestq I like the proposal and it works great on my JSON community dataset. Here is the [log](https://gist.github.com/vblagoje/714babc325bcbdd5de579fd8e1648892). ",
"From my discussion with @borisdayma it would be more general the files match if their paths contains the split name - not only if the filename contains the split name. For example for a dataset like this:\r\n```\r\ntrain/\r\n└── data.csv\r\ntest/\r\n└── data.csv\r\n```\r\n\r\nBut IMO the default should be \r\n```\r\ndata/\r\n├── train.csv\r\n└── test.csv\r\n```\r\nbecause it allows people to have other directories if they have different subsets of their data (different configurations, not splits)",
"I just created a PR for this at https://github.com/huggingface/datasets/pull/3221, let me know what you think :)"
] | This issue is about discussing the default behavior when someone loads a dataset that consists in data files. For example:
```python
load_dataset("lhoestq/demo1")
```
should return two splits "train" and "test" since the dataset repostiory is like
```
data/
├── train.csv
└── test.csv
```
Currently it returns only one split "train" which contains the data of both files
I started playing with this idea on this branch btw: `resolve-data_files-by-split-name`
Basically the idea is that if you named you data files after split names then the default pattern is
```python
{
"train": ["*train*"],
"test": ["*test*"],
"validation": ["*dev*", "valid"],
}
```
otherwise it's
```python
{
"train": ["*"]
}
```
Let me know what you think !
cc @albertvillanova @LysandreJik @vblagoje | 3,027 |
https://github.com/huggingface/datasets/issues/3024 | Windows test suite fails | [] | ## Describe the bug
There is an error during installation of tests dependencies for Windows: https://app.circleci.com/pipelines/github/huggingface/datasets/7981/workflows/9b6a0114-2b8e-4069-94e5-e844dbbdba4e/jobs/49206
```
ERROR: Cannot uninstall 'ruamel-yaml'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
```
| 3,024 |
https://github.com/huggingface/datasets/issues/3018 | Support multiple zipped CSV data files | [
"@lhoestq I would like to draw your attention to the proposed API by @lewtun, using `data_dir` to pass the ZIP URL.\r\n\r\nI'm not totally convinced with this... What do you think?\r\n\r\nMaybe we could discuss other approaches...\r\n\r\nOne brainstorming idea: what about using URL chaining with the hop operator in `data_files`?",
"`data_dir` is currently exclusively used for manually downloaded data.\r\n\r\nMaybe we can have an API that only uses data_files as you are suggesting, using URL chaining ?\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nurl = \"https://domain.org/filename.zip\"\r\ndata_files = {\"train\": \"zip://train_filename.csv::\" + url, \"test\": \"zip://test_filename.csv::\" + url}\r\ndataset = load_dataset(\"csv\", data_files=data_files)\r\n```\r\n\r\nURL chaining is used by `fsspec` to get access to files in nested filesystems of any kind. Since `fsspec` is being used by `pandas`, `dask` and also extensively by `datasets` I think it would be nice to use it here too",
"URL chaining sounds super nice to me! And it's also a nice way to leverage the same concepts we currently have in the docs around `fsspec` :)"
] | As requested by @lewtun, support loading multiple zipped CSV data files.
```python
from datasets import load_dataset
url = "https://domain.org/filename.zip"
data_files = {"train": "train_filename.csv", "test": "test_filename.csv"}
dataset = load_dataset("csv", data_dir=url, data_files=data_files)
```
| 3,018 |
https://github.com/huggingface/datasets/issues/3013 | Improve `get_dataset_infos`? | [
"To keeps things simple maybe we should use `load_dataset_builder` in `get_dataset_infos`.\r\n`load_dataset_builder` instantiates a builder and runs the _infos() method in order to give you the most up-to-date infos, even if the dataset_infos.json is outdated or missing."
] | Using the dedicated function `get_dataset_infos` on a dataset that has no dataset-info.json file returns an empty info:
```
>>> from datasets import get_dataset_infos
>>> get_dataset_infos('wit')
{}
```
While it's totally possible to get it (regenerate it) with:
```
>>> from datasets import load_dataset_builder
>>> builder = load_dataset_builder('wit')
>>> builder.info
DatasetInfo(description='Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. WIT is composed of a curated set\n of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its\n size enables WIT to be used as a pretraining dataset for multimodal machine learning models.\n', citation='@article{srinivasan2021wit,\n title={WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning},\n author={Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},\n journal={arXiv preprint arXiv:2103.01913},\n year={2021}\n}\n', homepage='https://github.com/google-research-datasets/wit', license='', features={'b64_bytes': Value(dtype='string', id=None), 'embedding': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'image_url': Value(dtype='string', id=None), 'metadata_url': Value(dtype='string', id=None), 'original_height': Value(dtype='int32', id=None), 'original_width': Value(dtype='int32', id=None), 'mime_type': Value(dtype='string', id=None), 'caption_attribution_description': Value(dtype='string', id=None), 'wit_features': Sequence(feature={'language': Value(dtype='string', id=None), 'page_url': Value(dtype='string', id=None), 'attribution_passes_lang_id': Value(dtype='string', id=None), 'caption_alt_text_description': Value(dtype='string', id=None), 'caption_reference_description': Value(dtype='string', id=None), 'caption_title_and_reference_description': Value(dtype='string', id=None), 'context_page_description': Value(dtype='string', id=None), 'context_section_description': Value(dtype='string', id=None), 'hierarchical_section_title': Value(dtype='string', id=None), 'is_main_image': Value(dtype='string', id=None), 'page_changed_recently': Value(dtype='string', id=None), 'page_title': Value(dtype='string', id=None), 'section_title': Value(dtype='string', id=None)}, length=-1, id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name='wit', config_name='default', version=0.0.0, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None)
```
Should we test if info is empty, and in that case regenerate it? Or always generate it? | 3,013 |
https://github.com/huggingface/datasets/issues/3011 | load_dataset_builder should error if "name" does not exist? | [
"Yes I think it should raise an error. Currently it looks like it instantiates a custom configuration with the name given by the user:\r\nhttps://github.com/huggingface/datasets/blob/ba27ce33bf568374cf23a07669fdd875b5718bc2/src/datasets/builder.py#L391-L397"
] | ```
import datasets as ds
builder = ds.load_dataset_builder('sent_comp', name="doesnotexist")
builder.info.config_name
```
returns
```
'doesnotexist'
```
Shouldn't it raise an error instead?
For this dataset, the only valid values for `name` should be: `"default"` or `None` (ie. argument not passed) | 3,011 |
https://github.com/huggingface/datasets/issues/3010 | Chain filtering is leaking | [
"### Update:\r\nI wrote a bit cleaner code snippet (without transforming to json) that can expose leaking.\r\n```python\r\nimport datasets\r\nimport json\r\n\r\nitems = ['ab', 'c', 'df']\r\n\r\nds = datasets.Dataset.from_dict({'col': items})\r\nprint(list(ds))\r\n# > Prints: [{'col': 'ab'}, {'col': 'c'}, {'col': 'df'}]\r\n\r\nfiltered = ds\r\n\r\n# get all items that are starting with a character with ascii code bigger than 'a'\r\nfiltered = filtered.filter(lambda x: x['col'][0] > 'a', load_from_cache_file=False)\r\nprint(list(filtered))\r\n# > Prints: [{'col': 'c'}, {'col': 'df'}] as expected\r\n\r\n# get all items that are shorter than 2\r\nfiltered = filtered.filter(lambda x: len(x['col']) < 2, load_from_cache_file=False)\r\nprint(list(filtered))\r\n# > Prints: [{'col': 'ab'}] -> this is a leaked item from the first filter\r\n# > Should be: [{'col': 'c'}]\r\n```",
"Thanks for reporting. I'm looking into it",
"I just pushed a fix ! We'll do a new release soon.\r\nIn the meantime feel free to install `datasets` from source to play with it",
"Thanks, I'm already using it from your branch!"
] | ## Describe the bug
As there's no support for lists within dataset fields, I convert my lists to json-string format. However, the bug described is occurring even when the data format is 'string'.
These samples show that filtering behavior diverges from what's expected when chaining filterings.
On sample 2 the second filtering leads to "leaking" of data that should've been filtered on the first filtering into the results.
## Steps to reproduce the bug
Sample 1:
```python
import datasets
import json
items = [[1, 2], [3], [4]]
jsoned_items = map(json.dumps, [[1, 2], [3], [4]])
ds = datasets.Dataset.from_dict({'a': jsoned_items})
print(list(ds))
# > Prints: [{'a': '[1, 2]'}, {'a': '[3]'}, {'a': '[4]'}] as expected
filtered = ds
# get all lists that are shorter than 2
filtered = filtered.filter(lambda x: len(json.loads(x['a'])) < 2, load_from_cache_file=False)
print(list(filtered))
# > Prints: [{'a': '[3]'}, {'a': '[4]'}] as expected
# get all lists, which have a value bigger than 3 on its zero index
filtered = filtered.filter(lambda x: json.loads(x['a'])[0] > 3, load_from_cache_file=False)
print(list(filtered))
# > Should be: [{'a': [4]}]
# > Prints: [{'a': [3]}]
```
Sample 2:
```python
import datasets
import json
items = [[1, 2], [3], [4]]
jsoned_items = map(json.dumps, [[1, 2], [3], [4]])
ds = datasets.Dataset.from_dict({'a': jsoned_items})
print(list(ds))
# > Prints: [{'a': '[1, 2]'}, {'a': '[3]'}, {'a': '[4]'}]
filtered = ds
# get all lists, which have a value bigger than 3 on its zero index
filtered = filtered.filter(lambda x: json.loads(x['a'])[0] > 3, load_from_cache_file=False)
print(list(filtered))
# > Prints: [{'a': '[4]'}] as expected
# get all lists that are shorter than 2
filtered = filtered.filter(lambda x: len(json.loads(x['a'])) < 2, load_from_cache_file=False)
print(list(filtered))
# > Prints: [{'a': '[1, 2]'}]
# > Should be: [{'a': '[4]'}] (remain intact)
```
## Expected results
Expected and actual results are attached to the code snippets.
## Actual results
Expected and actual results are attached to the code snippets.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.19042-SP0
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 3,010 |
https://github.com/huggingface/datasets/issues/3005 | DatasetDict.filter and Dataset.filter crashes with any "fn_kwargs" argument | [
"Hi @DrMatters, thanks for reporting.\r\n\r\nThis issue was fixed 14 days ago: #2950.\r\n\r\nCurrently, the fix is only in the master branch and will be made available in our next library release.\r\n\r\nIn the meantime, you can incorporate the fix by installing datasets from the master branch:\r\n```shell\r\npip install -U git+ssh://[email protected]/huggingface/datasets.git@master#egg=datasest\r\n```\r\nor\r\n```shell\r\npip install -U git+https://github.com/huggingface/datasets.git@master#egg=datasets\r\n```",
"Thanks, sorry for bothering"
] | ## Describe the bug
The ".filter" method of DatasetDict or Dataset objects fails when passing any "fn_kwargs" argument
## Steps to reproduce the bug
```python
import datasets
example_dataset = datasets.Dataset.from_dict({"a": {1, 2, 3, 4}})
def filter_value(example, value):
return example['a'] == value
filtered = example_dataset.filter(filter_value, fn_kwargs={'value': 3})
```
## Expected results
`filtered` is a dataset containing {"a": {3}}
## Actual results
> Traceback (most recent call last):
> File "C:\Users\qsemi\Documents\git\nlp_experiments\gpt_celebrity\src\test_faulty_filter.py", line 8, in <module>
> filtered = example_dataset.filter(filter_value, fn_kwargs={'value': 3})
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 185, in wrapper
> out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\fingerprint.py", line 398, in wrapper
> out = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 2169, in filter
> indices = self.map(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 1686, in map
> return self._map_single(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 185, in wrapper
> out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\fingerprint.py", line 398, in wrapper
> out = func(self, *args, **kwargs)
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 2048, in _map_single
> batch = apply_function_on_filtered_inputs(
> File "C:\Users\qsemi\miniconda3\envs\main\lib\site-packages\datasets\arrow_dataset.py", line 1939, in apply_function_on_filtered_inputs
> function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)
> TypeError: get_indices_from_mask_function() got an unexpected keyword argument 'value'
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.19042-SP0
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 3,005 |
https://github.com/huggingface/datasets/issues/2998 | cannot shuffle dataset loaded from disk | [] | ## Describe the bug
dataset loaded from disk cannot be shuffled.
## Steps to reproduce the bug
```
my_dataset = load_from_disk('s3://my_file/validate', fs=s3)
sample = my_dataset.select(range(100)).shuffle(seed=1234)
```
## Actual results
```
sample = my_dataset .select(range(100)).shuffle(seed=1234)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 185, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/fingerprint.py", line 398, in wrapper
out = func(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2494, in shuffle
new_fingerprint=new_fingerprint,
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 185, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/fingerprint.py", line 398, in wrapper
out = func(self, *args, **kwargs)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2303, in select
tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(indices_cache_file_name), delete=False)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/tempfile.py", line 547, in NamedTemporaryFile
(fd, name) = _mkstemp_inner(dir, prefix, suffix, flags, output_type)
File "/home/ubuntu/anaconda3/envs/pytorch_p37/lib/python3.7/tempfile.py", line 258, in _mkstemp_inner
fd = _os.open(file, flags, 0o600)
FileNotFoundError: [Errno 2] No such file or directory: '/tmp/tmpnnu5uhnx/my_file/validate/tmpy76d70g4'
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Python version: 3.7
- PyArrow version: 5.0.0
| 2,998 |
https://github.com/huggingface/datasets/issues/2997 | Dataset has incorrect labels | [
"Hi @marshmellow77, thanks for reporting.\r\n\r\nThat issue is fixed since `datasets` version 1.9.0 (see 16bc665f2753677c765011ef79c84e55486d4347).\r\n\r\nPlease, update `datasets` with: `pip install -U datasets`",
"Thanks. Please note that the dataset explorer (https://huggingface.co/datasets/viewer/?dataset=turkish_product_reviews) still shows the incorrect state. The sentiment for the first few customer reviews is actually negative and should be labelled with \"0\", see screenshot:\r\n\r\n\r\n\r\n\r\n",
"Thanks @marshmellow77, good catch! I'm transferring this issue to https://github.com/huggingface/datasets-viewer. "
] | The dataset https://huggingface.co/datasets/turkish_product_reviews has incorrect labels - all reviews are labelled with "1" (positive sentiment). None of the reviews is labelled with "0". See screenshot attached:

| 2,997 |
https://github.com/huggingface/datasets/issues/2993 | Can't download `trivia_qa/unfiltered` | [
"wooo that was fast! thank you @lhoestq !\r\nit is able to process now, though it's ignoring all files and ending up with 0 examples now haha :/\r\n\r\nFor subset \"unfiltered\":\r\n```python\r\n>>> load_dataset(\"trivia_qa\", \"unfiltered\")\r\nDownloading and preparing dataset trivia_qa/unfiltered (download: 3.07 GiB, generated: 27.23 GiB, post-processed: Unknown size, total: 30.30 GiB) to /gpfsscratch/rech/six/commun/datasets/trivia_qa/unfiltered/1.1.0/910043a609bb2bdf62b4874f68e0c24fb648cf81e40a358f4bd54c919d72c9ab...\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1354.53it/s]\r\n100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 40.60it/s]\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/load.py\", line 1198, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py\", line 647, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py\", line 748, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/utils/info_utils.py\", line 74, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=2906575347, num_examples=10832, dataset_name='trivia_qa'), 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='trivia_qa')}, {'expected': SplitInfo(name='validation', num_bytes=3038966234, num_examples=11313, dataset_name='trivia_qa'), 'recorded': SplitInfo(name='validation', num_bytes=0, num_examples=0, dataset_name='trivia_qa')}]\r\n```\r\nFor subset \"rc\":\r\n```python\r\n>>> load_dataset(\"trivia_qa\", \"rc\")\r\nDownloading and preparing dataset trivia_qa/rc (download: 2.48 GiB, generated: 14.92 GiB, post-processed: Unknown size, total: 17.40 GiB) to /gpfsscratch/rech/six/commun/datasets/trivia_qa/rc/1.1.0/910043a609bb2bdf62b4874f68e0c24fb648cf81e40a358f4bd54c919d72c9ab...\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 3806.08it/s]\r\n100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 51.57it/s]\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/load.py\", line 1198, in load_dataset\r\n use_auth_token=use_auth_token,\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py\", line 647, in download_and_prepare\r\n dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py\", line 748, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/utils/info_utils.py\", line 74, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='test', num_bytes=1577814583, num_examples=17210, dataset_name='trivia_qa'), 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='trivia_qa')}, {'expected': SplitInfo(name='train', num_bytes=12750976012, num_examples=138384, dataset_name='trivia_qa'), 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='trivia_qa')}, {'expected': SplitInfo(name='validation', num_bytes=1688535379, num_examples=18669, dataset_name='trivia_qa'), 'recorded': SplitInfo(name='validation', num_bytes=0, num_examples=0, dataset_name='trivia_qa')}]\r\n```\r\n\r\nCould you look into that when you get a chance?\r\nI wonder if it's not something they changed on the file to download? i couldn't find any information",
"@VictorSanh have you tried passing `download_mode=\"force_redownload\"`?\r\n```python\r\nds = load_dataset(\"trivia_qa\", \"unfiltered\", download_mode=\"force_redownload\")\r\n```",
"I aggressively rmed caches, especially rming the `datasets/downloads/extracted/c3d265fa20d99a147a76e4f5e...` solved the issue.\r\nthank you both!\r\n"
] | ## Describe the bug
For some reason, I can't download `trivia_qa/unfilted`. A file seems to be missing... I am able to see it fine though the viewer tough...
## Steps to reproduce the bug
```python
>>> from datasets import load_dataset
>>> load_dataset("trivia_qa", "unfiltered")
Downloading and preparing dataset trivia_qa/unfiltered (download: 3.07 GiB, generated: 27.23 GiB, post-processed: Unknown size, total: 30.30 GiB) to /gpfsscratch/rech/six/commun/datasets/trivia_qa/unfiltered/1.1.0/9977a5d6f72acfd92f587de052403e8138b43bb0d1ce595016c3baf7e14deba6...
Traceback (most recent call last):
File "/gpfswork/rech/six/commun/modules/datasets_modules/datasets/trivia_qa/9977a5d6f72acfd92f587de052403e8138b43bb0d1ce595016c3baf7e14deba6/trivia_qa.py", line 251, in _add_context
with open(os.path.join(file_dir, fname), encoding="utf-8") as f:
FileNotFoundError: [Errno 2] No such file or directory: '/gpfsscratch/rech/six/commun/datasets/downloads/extracted/9fcb7eddc6afd46fd074af3c5128931dfe4b548f933c925a23847faf4c1995ad/evidence/wikipedia/Peanuts.txt'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/load.py", line 852, in load_dataset
use_auth_token=use_auth_token,
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py", line 616, in download_and_prepare
dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py", line 693, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/builder.py", line 1107, in _prepare_split
disable=bool(logging.get_verbosity() == logging.NOTSET),
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/tqdm/std.py", line 1133, in __iter__
for obj in iterable:
File "/gpfswork/rech/six/commun/modules/datasets_modules/datasets/trivia_qa/9977a5d6f72acfd92f587de052403e8138b43bb0d1ce595016c3baf7e14deba6/trivia_qa.py", line 303, in _generate_examples
example = parse_example(article)
File "/gpfswork/rech/six/commun/modules/datasets_modules/datasets/trivia_qa/9977a5d6f72acfd92f587de052403e8138b43bb0d1ce595016c3baf7e14deba6/trivia_qa.py", line 274, in parse_example
_add_context(article.get("EntityPages", []), "WikiContext", wiki_dir),
File "/gpfswork/rech/six/commun/modules/datasets_modules/datasets/trivia_qa/9977a5d6f72acfd92f587de052403e8138b43bb0d1ce595016c3baf7e14deba6/trivia_qa.py", line 253, in _add_context
except (IOError, datasets.Value("errors").NotFoundError):
File "<string>", line 5, in __init__
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/features.py", line 265, in __post_init__
self.pa_type = string_to_arrow(self.dtype)
File "/gpfswork/rech/six/commun/conda/victor/lib/python3.7/site-packages/datasets/features.py", line 134, in string_to_arrow
f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. "
ValueError: Neither errors nor errors_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions
```
## Expected results
I am able to load another subset (`rc`), but unable to load.
I am not sure why the try/except doesn't catch it...
https://github.com/huggingface/datasets/blob/9675a5a1e7b99a86f9c250f6ea5fa5d1e6d5cc7d/datasets/trivia_qa/trivia_qa.py#L253
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.11.0
- Platform: Linux-4.18.0-147.51.2.el8_1.x86_64-x86_64-with-redhat-8.1-Ootpa
- Python version: 3.7.10
- PyArrow version: 3.0.0
| 2,993 |
https://github.com/huggingface/datasets/issues/2991 | add docmentation for the `Unix style pattern` matching feature that can be leverage for `data_files` into `load_dataset` | [] | Unless I'm mistaken, it seems that in the new documentation it is no longer mentioned that you can use Unix style pattern matching in the `data_files` argument of the `load_dataset` method.
This feature was mentioned [here](https://huggingface.co/docs/datasets/loading_datasets.html#from-a-community-dataset-on-the-hugging-face-hub) in the previous documentation.
I'd love to hear your opinion @lhoestq , @albertvillanova and @stevhliu | 2,991 |
https://github.com/huggingface/datasets/issues/2988 | IndexError: Invalid key: 14 is out of bounds for size 0 | [
"Hi ! Could you check the length of the `self.dataset` object (i.e. the Dataset object passed to the data loader) ? It looks like the dataset is empty.\r\nNot sure why the SWA optimizer would cause this though.",
"Any updates on this? \r\nThe same error occurred to me too when running `cardiffnlp/twitter-roberta-base-sentiment` on a custom dataset. This happened when I tried to do `model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3])` without using sagemaker distribution. \r\nPython: 3.6.13\r\ndatasets: 1.6.2",
"Hi @ruisi-su, do you have this issue while using SWA as well, or just data parallel ?\r\n\r\nIf you have a code example to reproduce this issue it would also be helpful",
"@lhoestq I had this issue without SWA. I followed [this](https://github.com/huggingface/notebooks/blob/master/sagemaker/03_distributed_training_data_parallelism/sagemaker-notebook.ipynb) notebook to utilize multiple gpus on the [roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) model. This tutorial could only work if I am on `ml.p3.16xlarge`, which I don't have access to. So I tried using just `model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]` before calling `trainer.fit()`. But maybe this is not the right way to do distributed training. I can provide a code example if that will be more helpful.",
"It might be an issue with old versions of `datasets`, can you try updating `datasets` ?",
"FYI I encountered the exact same error using the latest versions of `datasets`, `transformers` and `pyarrow`, without using any kind of SWA or dataparallel: \r\n\r\n```\r\n# packages in environment at C:\\Users\\zhang\\mambaforge:\r\n#\r\n# Name Version Build Channel\r\ncudatoolkit 11.0.3 h3f58a73_9 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge\r\ndatasets 1.17.0 pypi_0 pypi\r\npyarrow 6.0.1 pypi_0 pypi\r\npytorch 1.7.1 py3.9_cuda110_cudnn8_0 pytorch\r\ntornado 6.1 py39hb82d6ee_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge\r\n```\r\n\r\n```\r\n> python --version\r\n> 3.9.7\r\n```",
"Same error here! Datasets version `1.18.3` freshly updated.\r\n\r\n`IndexError: Invalid key: 90 is out of bounds for size 0`\r\n\r\nMy task is finetuning the model for token classification.\r\n\r\n**Solved**: I make a mistake while updating the dataset during the map, you should check that you return the correct values.\r\n",
"cc @sgugger This probably comes from the `Trainer` removing all the columns of a dataset, do you think we can improve the error message in this case ?",
"The `Trainer` clearly logs when it removes columns in the dataset. I'm not too sure of where the bug appears as I haven't seen a clear reproducer. Happy to display a more helpful error message, but I'd need a reproducer to see what the exact problem is to design the right test and warning :-) ",
"Well, if I can try to suggest how to reproduce, please try by do not returning any updated content in the map function used to tokenize input (e.g., in TokenClassification). I can leave here my wrong version for reference:\r\n\r\n```python\r\ndef preprocess_function(examples):\r\n\r\n text = examples[\"text\"]\r\n \r\n inputs = tokenizer(\r\n text,\r\n max_length=512,\r\n truncation=\"only_second\",\r\n return_offsets_mapping=True,\r\n padding=\"max_length\",\r\n )\r\n\r\n offset_mapping = inputs.pop(\"offset_mapping\")\r\n # ... processing code\r\n\r\n inputs[\"labels\"] = label_ids\r\n #return inputs\r\n \r\ntrain_ds = train_ds.map(preprocess_function, batched=False)\r\ntest_ds = test_ds.map(preprocess_function, batched=False)\r\neval_ds = eval_ds.map(preprocess_function, batched=False)\r\n```\r\n\r\nOf course, returning inputs solved the problem. As suggestion, a possible error message could display \"IndexError: the `key` required by trainer are not found in the dataset\" (just an hypothesis, I think there could be something better). \r\n\r\nPlease tell me if you need more details to reproduce, glad to help!",
"That's the thing though. The `Trainer` has no idea which inputs are required or not since all models can have different kinds of inputs, and it can work for models outside of the Transformers library. I can add a clear error message if I get an empty batch, as this is easy to detect, but that's pretty much it.",
"I think that it could be enough to ease the identification of the problem.",
"Done in [this commit](https://github.com/huggingface/transformers/commit/c87cfd653c4de3d4743a9ae09d749282d94d5829)"
] | ## Describe the bug
A clear and concise description of what the bug is.
Hi. I am trying to implement stochastic weighted averaging optimizer with transformer library as described here https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/ , for this I am using a run_clm.py codes which is working fine before adding SWA optimizer, the moment I modify the model with `swa_model = AveragedModel(model)` in this script, I am getting the below error, since I am NOT touching the dataloader part, I am confused why this is occurring, I very much appreciate your opinion on this @lhoestq
## Steps to reproduce the bug
```
Traceback (most recent call last):
File "run_clm.py", line 723, in <module>
main()
File "run_clm.py", line 669, in main
train_result = trainer.train(resume_from_checkpoint=checkpoint)
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/transformers/trainer.py", line 1258, in train
for step, inputs in enumerate(epoch_iterator):
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 435, in __next__
data = self._next_data()
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 475, in _next_data
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1530, in __getitem__
format_kwargs=self._format_kwargs,
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 1517, in _getitem
pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/datasets/formatting/formatting.py", line 368, in query_table
_check_valid_index_key(key, size)
File "/user/dara/libs/anaconda3/envs/success/lib/python3.7/site-packages/datasets/formatting/formatting.py", line 311, in _check_valid_index_key
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
IndexError: Invalid key: 14 is out of bounds for size 0
```
## Expected results
not getting the index error
## Actual results
Please see the above
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: datasets 1.12.1
- Platform: linux
- Python version: 3.7.11
- PyArrow version: 5.0.0
| 2,988 |
https://github.com/huggingface/datasets/issues/2987 | ArrowInvalid: Can only convert 1-dimensional array values | [
"Hi @NielsRogge, thanks for reporting!\r\n\r\nIn `datasets`, we were handling N-dimensional arrays only when passed as an instance of `np.array`, not when passed as a list of `np.array`s.\r\n\r\nI'm fixing it."
] | ## Describe the bug
For the ViT and LayoutLMv2 demo notebooks in my [Transformers-Tutorials repo](https://github.com/NielsRogge/Transformers-Tutorials), people reported an ArrowInvalid issue after applying the following function to a Dataset:
```
def preprocess_data(examples):
images = [Image.open(path).convert("RGB") for path in examples['image_path']]
words = examples['words']
boxes = examples['bboxes']
word_labels = examples['ner_tags']
encoded_inputs = processor(images, words, boxes=boxes, word_labels=word_labels,
padding="max_length", truncation=True)
return encoded_inputs
```
```
Full trace:
---------------------------------------------------------------------------
ArrowInvalid Traceback (most recent call last)
<ipython-input-8-0fc3efc6f0c2> in <module>()
27
28 train_dataset = datasets['train'].map(preprocess_data, batched=True, remove_columns=datasets['train'].column_names,
---> 29 features=features)
30 test_dataset = datasets['test'].map(preprocess_data, batched=True, remove_columns=datasets['test'].column_names,
31 features=features)
13 frames
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)
1701 new_fingerprint=new_fingerprint,
1702 disable_tqdm=disable_tqdm,
-> 1703 desc=desc,
1704 )
1705 else:
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
183 }
184 # apply actual function
--> 185 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
186 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
187 # re-apply format to the output
/usr/local/lib/python3.7/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)
396 # Call actual function
397
--> 398 out = func(self, *args, **kwargs)
399
400 # Update fingerprint of in-place transforms + update in-place history of transforms
/usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc, cache_only)
2063 writer.write_table(batch)
2064 else:
-> 2065 writer.write_batch(batch)
2066 if update_data and writer is not None:
2067 writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size)
409 typed_sequence = OptimizedTypedSequence(batch_examples[col], type=col_type, try_type=col_try_type, col=col)
410 typed_sequence_examples[col] = typed_sequence
--> 411 pa_table = pa.Table.from_pydict(typed_sequence_examples)
412 self.write_table(pa_table, writer_batch_size)
413
/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict()
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._handle_arrow_array_protocol()
/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py in __arrow_array__(self, type)
106 storage = numpy_to_pyarrow_listarray(self.data, type=type.value_type)
107 else:
--> 108 storage = pa.array(self.data, type.storage_dtype)
109 out = pa.ExtensionArray.from_storage(type, storage)
110 elif isinstance(self.data, np.ndarray):
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()
/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()
/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()
/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: Can only convert 1-dimensional array values
```
It can be fixed by adding the following line:
```diff
def preprocess_data(examples):
images = [Image.open(path).convert("RGB") for path in examples['image_path']]
words = examples['words']
boxes = examples['bboxes']
word_labels = examples['ner_tags']
encoded_inputs = processor(images, words, boxes=boxes, word_labels=word_labels,
padding="max_length", truncation=True)
+ encoded_inputs["image"] = np.array(encoded_inputs["image"])
return encoded_inputs
```
However, would be great if this can be fixed within Datasets itself. | 2,987 |
https://github.com/huggingface/datasets/issues/2984 | Exceeded maximum rows when reading large files | [
"Hi @zijwang, thanks for reporting this issue.\r\n\r\nYou did not mention which `datasets` version you are using, but looking at the code in the stack trace, it seems you are using an old version.\r\n\r\nCould you please update `datasets` (`pip install -U datasets`) and check if the problem persists?"
] | ## Describe the bug
A clear and concise description of what the bug is.
When using `load_dataset` with json files, if the files are too large, there will be "Exceeded maximum rows" error.
## Steps to reproduce the bug
```python
dataset = load_dataset('json', data_files=data_files) # data files have 3M rows in a single file
```
## Expected results
No error
## Actual results
```
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files)
134 with open(file, encoding="utf-8") as f:
--> 135 dataset = json.load(f)
136 except json.JSONDecodeError:
~/anaconda3/envs/python/lib/python3.9/json/__init__.py in load(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
292 """
--> 293 return loads(fp.read(),
294 cls=cls, object_hook=object_hook,
~/anaconda3/envs/python/lib/python3.9/json/__init__.py in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
345 parse_constant is None and object_pairs_hook is None and not kw):
--> 346 return _default_decoder.decode(s)
347 if cls is None:
~/anaconda3/envs/python/lib/python3.9/json/decoder.py in decode(self, s, _w)
339 if end != len(s):
--> 340 raise JSONDecodeError("Extra data", s, end)
341 return obj
JSONDecodeError: Extra data: line 2 column 1 (char 20321)
During handling of the above exception, another exception occurred:
ArrowInvalid Traceback (most recent call last)
<ipython-input-20-ab3718a6482f> in <module>
----> 1 dataset = load_dataset('json', data_files=data_files)
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)
841
842 # Download and prepare data
--> 843 builder_instance.download_and_prepare(
844 download_config=download_config,
845 download_mode=download_mode,
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
606 logger.warning("HF google storage unreachable. Downloading and preparing it from source")
607 if not downloaded_from_gcs:
--> 608 self._download_and_prepare(
609 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
610 )
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
684 try:
685 # Prepare split will record examples associated to the split
--> 686 self._prepare_split(split_generator, **prepare_split_kwargs)
687 except OSError as e:
688 raise OSError(
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/builder.py in _prepare_split(self, split_generator)
1153 generator = self._generate_tables(**split_generator.gen_kwargs)
1154 with ArrowWriter(features=self.info.features, path=fpath) as writer:
-> 1155 for key, table in utils.tqdm(
1156 generator, unit=" tables", leave=False, disable=bool(logging.get_verbosity() == logging.NOTSET)
1157 ):
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files)
135 dataset = json.load(f)
136 except json.JSONDecodeError:
--> 137 raise e
138 raise ValueError(
139 f"Not able to read records in the JSON file at {file}. "
~/anaconda3/envs/python/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py in _generate_tables(self, files)
114 while True:
115 try:
--> 116 pa_table = paj.read_json(
117 BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size)
118 )
~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/_json.pyx in pyarrow._json.read_json()
~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()
~/anaconda3/envs/python/lib/python3.9/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()
ArrowInvalid: Exceeded maximum rows
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
- Platform: Linux
- Python version: 3.9
- PyArrow version: 4.0.1
| 2,984 |
https://github.com/huggingface/datasets/issues/2980 | OpenSLR 25: ASR data for Amharic, Swahili and Wolof | [
"Whoever handles this just needs to: \r\n\r\n- [ ] fork the HuggingFace Datasets repo\r\n- [ ] update the [existing dataset script](https://github.com/huggingface/datasets/blob/master/datasets/openslr/openslr.py) to add SLR25. Lots of copypasting from other sections of the script should make that easy. \r\nAmharic URL: https://www.openslr.org/resources/25/data_readspeech_am.tar.bz2. \r\nSwahili URL: https://www.openslr.org/resources/25/data_broadcastnews_sw.tar.bz2, \r\nWolof URL: https://www.openslr.org/resources/25/data_readspeech_wo.tar.bz2\r\n- [ ] update the [data card](https://github.com/huggingface/datasets/blob/master/datasets/openslr/README.md) to include information about SLR25. There's lots of other examples to draw from. \r\n- [ ] add the appropriate language tags to the data card as well. https://www.w3.org/International/questions/qa-choosing-language-tags, or just use `sw`, `am`, and `wo` for consistency. \r\n- [ ] make a pull request to merge your changes back into HuggingFace's repo",
"... also the example in \"use in datasets library\" should be updated. It currently says \r\n\r\nBut you actually have to specify a subset, e.g. \r\n```python\r\ndataset = load_dataset(\"openslr\", \"SLR32\")\r\n```",
"\r\n\r\n"
] | ## Adding a Dataset
- **Name:** *SLR25*
- **Description:** *Subset 25 from OpenSLR. Other subsets have been added to https://huggingface.co/datasets/openslr, 25 covers Amharic, Swahili and Wolof data*
- **Paper:** *https://www.openslr.org/25/ has citations for each of the three subsubsets. *
- **Data:** *Currently the three links to the .tar.bz2 files can be found a thttps://www.openslr.org/25/*
- **Motivation:** *Increase ASR data for underrepresented African languages. Also, other subsets of OpenSLR speech recognition have been uploaded, so this would be easy.*
https://github.com/huggingface/datasets/blob/master/datasets/openslr/openslr.py already has been created for various other OpenSLR subsets, this should be relatively straightforward to do.
| 2,980 |
https://github.com/huggingface/datasets/issues/2979 | ValueError when computing f1 metric with average None | [
"Hi @asofiaoliveira, thanks for reporting.\r\n\r\nI'm fixing it."
] | ## Describe the bug
When I try to compute the f1 score for each class in a multiclass classification problem, I get a ValueError. The same happens with recall and precision. I traced the error to the `.item()` in these scripts, which is probably there for the other averages. E.g. from f1.py:
```python
return {
"f1": f1_score(
references,
predictions,
labels=labels,
pos_label=pos_label,
average=average,
sample_weight=sample_weight,
).item(),
}
```
Since the result is an array with more than one item, the `.item()` throws the error. I didn't submit a PR because this might be needed for the other averages, I'm not very familiar with the library
## Steps to reproduce the bug
```python
from datasets import load_metric
metric = load_metric("f1")
metric.add_batch(predictions=[2,34,1,34,1,2,3], references=[23,52,1,3,523,5,8])
metric.compute(average=None)
```
## Expected results
`array([0.66666667, 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. ])`
## Actual results
ValueError: can only convert an array of size 1 to a Python scalar
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.19041-SP0
- Python version: 3.9.5
- PyArrow version: 5.0.0
| 2,979 |
https://github.com/huggingface/datasets/issues/2978 | Run CI tests against non-production server | [
"Hey @albertvillanova could you provide more context, including extracts from the discussion we had ?\r\n\r\nLet's ping @Pierrci @julien-c and @n1t0 for their opinion about that",
"@julien-c increased the huggingface.co production workers in order to see if it solve [the 502 you had this morning](https://app.circleci.com/pipelines/github/huggingface/datasets/7843/workflows/fc83fa32-18f5-4dc3-9e2f-ba277ae1af74)\r\n\r\nFor the decision process: be aware that moon-staging does not have persistent repos (they are deleted regularly). as a consequence, **if the moon-staging solution is validated**, you should consider a way to keep the repository that are loaded in tests. These are the ones I found : https://github.com/huggingface/datasets/blob/d488db2f64f312f88f72bbc57a09b7eddb329182/tests/test_load.py and https://github.com/huggingface/datasets/blob/40773111c3e7db8a992fa1c48af32d900a1018d6/tests/test_streaming_download_manager."
] | Currently, the CI test suite performs requests to the HF production server.
As discussed with @elishowk, we should refactor our tests to use the HF staging server instead, like `huggingface_hub` and `transformers`. | 2,978 |
https://github.com/huggingface/datasets/issues/2977 | Impossible to load compressed csv | [
"Hi @Valahaar, thanks for reporting and for your investigation about the source cause.\r\n\r\nYou are right and that commit prevents `pandas` from inferring the compression. On the other hand, @lhoestq did that change to support loading that dataset in streaming mode. \r\n\r\nI'm fixing it."
] | ## Describe the bug
It is not possible to load from a compressed csv anymore.
## Steps to reproduce the bug
```python
load_dataset('csv', data_files=['/path/to/csv.bz2'])
```
## Problem and possible solution
This used to work, but the commit that broke it is [this one](https://github.com/huggingface/datasets/commit/ad489d4597381fc2d12c77841642cbeaecf7a2e0#diff-6f60f8d0552b75be8b3bfd09994480fd60dcd4e7eb08d02f721218c3acdd2782).
`pandas` usually gets the compression information from the filename itself (which was previously directly passed). Now, since it gets a file descriptor, it might be good to auto-infer the compression or let the user pass the `compression` kwarg to `load_dataset` (or maybe warn the user if the file ends with a commonly known compression scheme?).
## Environment info
- `datasets` version: 1.10.0 (and over)
- Platform: Linux-5.8.0-45-generic-x86_64-with-glibc2.17
- Python version: 3.8.10
- PyArrow version: 3.0.0
| 2,977 |
https://github.com/huggingface/datasets/issues/2976 | Can't load dataset | [
"Hi @mskovalova, \r\n\r\nSome datasets have multiple configurations. Therefore, in order to load them, you have to specify both the *dataset name* and the *configuration name*.\r\n\r\nIn the error message you got, you have a usage example:\r\n- To load the 'wikitext-103-raw-v1' configuration of the 'wikitext' dataset, you should use: \r\n ```python\r\n load_dataset('wikitext', 'wikitext-103-raw-v1')\r\n ```\r\n\r\nIn your case, if you would like to load the 'wikitext-2-v1' configuration of the 'wikitext' dataset, please use:\r\n```python\r\nraw_datasets = load_dataset(\"wikitext\", \"wikitext-2-v1\")\r\n```",
"Hi, if I want to load the dataset from local file, then how to specify the configuration name?",
"> 嗨,如果我想从本地文件加载数据集,那么如何指定配置名称?\r\n\r\n请问你知道怎么从本地加载了吗 谢谢",
"`raw_datasets = load_dataset(\"/local/path\", \"wikitext-2-v1\", ...)`\r\nI use datasets==2.18.0 "
] | I'm trying to load a wikitext dataset
```
from datasets import load_dataset
raw_datasets = load_dataset("wikitext")
```
ValueError: Config name is missing.
Please pick one among the available configs: ['wikitext-103-raw-v1', 'wikitext-2-raw-v1', 'wikitext-103-v1', 'wikitext-2-v1']
Example of usage:
`load_dataset('wikitext', 'wikitext-103-raw-v1')`.
If I try
```
from datasets import load_dataset
raw_datasets = load_dataset("wikitext-2-v1")
```
FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/1.12.1/datasets/wikitext-2-v1/wikitext-2-v1.py
#### Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic (colab)
- Python version: 3.7.12
- PyArrow version: 3.0.0
| 2,976 |
https://github.com/huggingface/datasets/issues/2972 | OSError: Not enough disk space. | [
"Maybe we can change the disk space calculating API from `shutil.disk_usage` to `os.statvfs` in UNIX-like system, which can provide correct results.\r\n```\r\nstatvfs = os.statvfs('path')\r\navail_space_bytes = statvfs.f_frsize * statvfs.f_bavail\r\n```",
"Hi @qqaatw, thanks for reporting.\r\n\r\nCould you please try:\r\n```python\r\ndataset = load_dataset(\"natural_questions\", cache_dir=os.path.abspath(args.dataset_cache_dir))\r\n```",
"@albertvillanova it works! Thanks for your suggestion. Is that a bug of `DownloadConfig`?",
"`DownloadConfig` only sets the location to download the files. On the other hand, `cache_dir` sets the location for both downloading and caching the data. You can find more information here: https://huggingface.co/docs/datasets/loading_datasets.html#cache-directory",
"I had encountered the same error when running a command `ds = load_dataset('food101')` in a docker container. The error I got: `OSError: Not enough disk space. Needed: 9.43 GiB (download: 4.65 GiB, generated: 4.77 GiB, post-processed: Unknown size)`\r\n\r\nIn case anyone encountered the same issue, this was my fix:\r\n\r\n```sh\r\n# starting the container (mount project directory onto /app, so that the code and data in my project directory are available in the container)\r\ndocker run -it --rm -v $(pwd):/app my-demo:latest bash\r\n```\r\n\r\n\r\n```python\r\n# other code ...\r\nds = load_dataset('food101', cache_dir=\"/app/data\") # set cache_dir to the absolute path of a directory (e.g. /app/data) that's mounted from the host (MacOS in my case) into the docker container\r\n\r\n# this assumes ./data directory exists in your project folder. If not, create it or point it to any other existing directory where you want to store the cache\r\n```\r\n\r\nThanks @albertvillanova for posting the fix above :-) "
] | ## Describe the bug
I'm trying to download `natural_questions` dataset from the Internet, and I've specified the cache_dir which locates in a mounted disk and has enough disk space. However, even though the space is enough, the disk space checking function still reports the space of root `/` disk having no enough space.
The file system structure is like below. The root `/` has `115G` disk space available, and the `sda1` is mounted to `/mnt`, which has `1.2T` disk space available:
```
/
/mnt/sda1/path/to/args.dataset_cache_dir
```
## Steps to reproduce the bug
```python
dataset_config = DownloadConfig(
cache_dir=os.path.abspath(args.dataset_cache_dir),
resume_download=True,
)
dataset = load_dataset("natural_questions", download_config=dataset_config)
```
## Expected results
Can download the dataset without an error.
## Actual results
The following error raised:
```
OSError: Not enough disk space. Needed: 134.92 GiB (download: 41.97 GiB, generated: 92.95 GiB, post-processed: Unknown size)
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.9.0
- Platform: Ubuntu 18.04
- Python version: 3.8.10
- PyArrow version:
| 2,972 |
https://github.com/huggingface/datasets/issues/2971 | masakhaner dataset load problem | [
"Thanks for reporting, @ontocord. We are fixing the wrong metadata."
] | ## Describe the bug
Masakhaner dataset is not loading
## Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset("masakhaner",'amh')
```
## Expected results
Expected the return of a dataset
## Actual results
```
NonMatchingSplitsSizesError Traceback (most recent call last)
<ipython-input-3-a6abc1161d4c> in <module>()
1 from datasets import load_dataset
2
----> 3 dataset = load_dataset("masakhaner",'amh')
3 frames
/usr/local/lib/python3.7/dist-packages/datasets/utils/info_utils.py
in verify_splits(expected_splits, recorded_splits)
72 ]
73 if len(bad_splits) > 0:
---> 74 raise NonMatchingSplitsSizesError(str(bad_splits))
75 logger.info("All the splits matched successfully.")
76
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=639927, num_examples=1751, dataset_name='masakhaner'), 'recorded': SplitInfo(name='train', num_bytes=639911, num_examples=1750, dataset_name='masakhaner')}, {'expected': SplitInfo(name='validation', num_bytes=92768, num_examples=251, dataset_name='masakhaner'), 'recorded': SplitInfo(name='validation', num_bytes=92753, num_examples=250, dataset_name='masakhaner')}, {'expected': SplitInfo(name='test', num_bytes=184286, num_examples=501, dataset_name='masakhaner'), 'recorded': SplitInfo(name='test', num_bytes=184271, num_examples=500, dataset_name='masakhaner')}]
```
## Environment info
Google Colab
| 2,971 |
https://github.com/huggingface/datasets/issues/2970 | Magnet’s | [] | ## Adding a Dataset
- **Name:** *name of the dataset*
- **Description:** *short description of the dataset (or link to social media or blog post)*
- **Paper:** *link to the dataset paper if available*
- **Data:** *link to the Github repository or current dataset location*
- **Motivation:** *what are some good reasons to have this dataset*
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). | 2,970 |
https://github.com/huggingface/datasets/issues/2969 | medical-dialog error | [
"Hi @smeyerhot, thanks for reporting.\r\n\r\nYou are right: there is an issue with the dataset metadata. I'm fixing it.\r\n\r\nIn the meantime, you can circumvent the issue by passing `ignore_verifications=True`:\r\n```python\r\nraw_datasets = load_dataset(\"medical_dialog\", \"en\", split=\"train\", download_mode=\"force_redownload\", data_dir=\"./Medical-Dialogue-Dataset-English\", ignore_verifications=True)\r\n```",
"Hi @albertvillanova -- I see you made changes to the wikitext dataset a few hours ago.\r\nI'm getting an error similar to the one here : https://github.com/huggingface/datasets/issues/215\r\nAfter your changes. \r\n\r\nI deleted the original dataset cache after encountering that error and then rerun with the following command :\r\n\r\n`traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train', ignore_verifications=True, download_mode='force_redownload')\r\n testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test', ignore_verifications=True)`\r\n\r\nBut this is currently hanging. Any ideas ? Thanks",
"@ldery, you can find the answer in the corresponding Discussion on the Hub: https://huggingface.co/datasets/wikitext/discussions/9\r\n\r\nYou need to update the `datasets` library:\r\n```shell\r\npip install -U datasets\r\n```"
] | ## Describe the bug
A clear and concise description of what the bug is.
When I attempt to download the huggingface datatset medical_dialog it errors out midway through
## Steps to reproduce the bug
```python
raw_datasets = load_dataset("medical_dialog", "en", split="train", download_mode="force_redownload", data_dir="./Medical-Dialogue-Dataset-English")
```
## Expected results
A clear and concise description of the expected results.
No error
## Actual results
```
3 frames
/usr/local/lib/python3.7/dist-packages/datasets/utils/info_utils.py in verify_splits(expected_splits, recorded_splits)
72 ]
73 if len(bad_splits) > 0:
---> 74 raise NonMatchingSplitsSizesError(str(bad_splits))
75 logger.info("All the splits matched successfully.")
76
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='medical_dialog'), 'recorded': SplitInfo(name='train', num_bytes=295097913, num_examples=229674, dataset_name='medical_dialog')}]
```
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.21.1
- Platform: colab
- Python version: colab 3.7
- PyArrow version: N/A
| 2,969 |
https://github.com/huggingface/datasets/issues/2968 | `DatasetDict` cannot be exported to parquet if the splits have different features | [
"This is because you have to specify which split corresponds to what file:\r\n```python\r\ndata_files = {\"train\": \"train/split.parquet\", \"validation\": \"validation/split.parquet\"}\r\nbrand_new_dataset_2 = load_dataset(\"ds\", data_files=data_files)\r\n```\r\n\r\nOtherwise it tries to concatenate the two splits, and it fails because they don't have the same features.\r\n\r\nIt works with save_to_disk/load_from_disk because it also stores json files that contain the information about which files goes into which split",
"Wonderful, thanks for the help!",
"I may be mistaken but I think the following doesn't work either:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"lhoestq/custom_squad\")\r\n\r\n\r\ndef identical_answers(e):\r\n e['identical_answers'] = len(set(e['answers']['text'])) == 1\r\n return e\r\n\r\n\r\nds['validation'] = ds['validation'].map(identical_answers)\r\nds['train'].to_parquet(\"./ds/train/split.parquet\")\r\nds['validation'].to_parquet(\"./ds/validation/split.parquet\")\r\n\r\ndata_files = {\"train\": \"train/split.parquet\", \"validation\": \"validation/split.parquet\"}\r\nbrand_new_dataset_2 = load_dataset(\"ds\", data_files=data_files)\r\n```",
"It works on my side as soon as the directories named `ds/train` and `ds/validation` exist (otherwise it returns a FileNotFoundError). What error are you getting ?",
"Also we may introduce a default mapping for the data files:\r\n```python\r\n{\r\n \"train\": [\"*train*\"],\r\n \"test\": [\"*test*\"],\r\n \"validation\": [\"*dev*\", \"valid\"],\r\n}\r\n```\r\nthis way if you name your files according to the splits you won't have to specify the data_files parameter. What do you think ?\r\n\r\nI moved this discussion to #3027 ",
"I'm getting the following error:\r\n\r\n```\r\nDownloading and preparing dataset custom_squad/plain_text to /home/lysandre/.cache/huggingface/datasets/lhoestq___custom_squad)/plain_text/1.0.0/397916d1ae99584877e0fb4f5b8b6f01e66fcbbeff4d178afb30c933a8d0d93a...\r\n100%|██████████| 2/2 [00:00<00:00, 7760.04it/s]\r\n100%|██████████| 2/2 [00:00<00:00, 2020.38it/s]\r\n 0%| | 0/2 [00:00<?, ?it/s]Traceback (most recent call last):\r\n File \"<input>\", line 1, in <module>\r\n File \"/opt/pycharm-professional/plugins/python/helpers/pydev/_pydev_bundle/pydev_umd.py\", line 198, in runfile\r\n pydev_imports.execfile(filename, global_vars, local_vars) # execute the script\r\n File \"/opt/pycharm-professional/plugins/python/helpers/pydev/_pydev_imps/_pydev_execfile.py\", line 18, in execfile\r\n exec(compile(contents+\"\\n\", file, 'exec'), glob, loc)\r\n File \"/home/lysandre/.config/JetBrains/PyCharm2021.2/scratches/datasets/upload_dataset.py\", line 12, in <module>\r\n ds = load_dataset(\"lhoestq/custom_squad\")\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/load.py\", line 1207, in load_dataset\r\n ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py\", line 823, in as_dataset\r\n datasets = utils.map_nested(\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py\", line 207, in map_nested\r\n mapped = [\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py\", line 208, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True))\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py\", line 143, in _single_map_nested\r\n return function(data_struct)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py\", line 854, in _build_single_dataset\r\n ds = self._as_dataset(\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py\", line 924, in _as_dataset\r\n dataset_kwargs = ArrowReader(self._cache_dir, self.info).read(\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py\", line 217, in read\r\n return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py\", line 238, in read_files\r\n pa_table = self._read_files(files, in_memory=in_memory)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py\", line 173, in _read_files\r\n pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py\", line 308, in _get_table_from_filename\r\n table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py\", line 327, in read_table\r\n return table_cls.from_file(filename)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/table.py\", line 458, in from_file\r\n table = _memory_mapped_arrow_table_from_file(filename)\r\n File \"/home/lysandre/Workspaces/Python/datasets/src/datasets/table.py\", line 45, in _memory_mapped_arrow_table_from_file\r\n pa_table = opened_stream.read_all()\r\n File \"pyarrow/ipc.pxi\", line 563, in pyarrow.lib.RecordBatchReader.read_all\r\n File \"pyarrow/error.pxi\", line 114, in pyarrow.lib.check_status\r\nOSError: Header-type of flatbuffer-encoded Message is not RecordBatch.\r\n```\r\n\r\nTried on current master, after updating latest dependencies and obtained the same result",
"The proposal in #3027 sounds good to me!",
"I just tried again on colab by installing `datasets` from source with pyarrow 3.0.0 and didn't get any error.\r\n\r\nYou error seems to happen when doing\r\n```python\r\nds = load_dataset(\"lhoestq/custom_squad\")\r\n```\r\n\r\nMore specifically it fails when trying to read the arrow file that just got generated. I haven't issues like this before. Can you make sure you have a recent version of `pyarrow` ? Maybe it was an old version that wrote the arrow file and some header was missing.",
"Thank you for your pointer! This seems to have been linked to Python 3.9.7: it works flawlessly with Python 3.8.6. This can be closed, thanks a lot for your help."
] | ## Describe the bug
I'm trying to use parquet as a means of serialization for both `Dataset` and `DatasetDict` objects. Using `to_parquet` alongside `from_parquet` or `load_dataset` for a `Dataset` works perfectly.
For `DatasetDict`, I use `to_parquet` on each split to save the parquet files in individual folders representing individual splits. This works too, as long as the splits have identical features. If a split has different features to neighboring splits, then loading the dataset will fail: a single schema is used to load both splits, resulting in a failure to load the second parquet file.
## Steps to reproduce the bug
The following works as expected:
```python
from datasets import load_dataset
ds = load_dataset("lhoestq/custom_squad")
ds['train'].to_parquet("./ds/train/split.parquet")
ds['validation'].to_parquet("./ds/validation/split.parquet")
brand_new_dataset = load_dataset("ds")
```
Modifying a single split to add a new feature ends up in a crash:
```python
from datasets import load_dataset
ds = load_dataset("lhoestq/custom_squad")
def identical_answers(e):
e['identical_answers'] = len(set(e['answers']['text'])) == 1
return e
ds['validation'] = ds['validation'].map(identical_answers)
ds['train'].to_parquet("./ds/train/split.parquet")
ds['validation'].to_parquet("./ds/validation/split.parquet")
brand_new_dataset = load_dataset("ds")
```
```
File "/home/lysandre/.config/JetBrains/PyCharm2021.2/scratches/datasets/upload_dataset.py", line 26, in <module>
brand_new_dataset = load_dataset("ds")
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/load.py", line 1151, in load_dataset
builder_instance.download_and_prepare(
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 642, in download_and_prepare
self._download_and_prepare(
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 732, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 1194, in _prepare_split
writer.write_table(table)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_writer.py", line 428, in write_table
pa_table = pa.Table.from_arrays([pa_table[name] for name in self._schema.names], schema=self._schema)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_writer.py", line 428, in <listcomp>
pa_table = pa.Table.from_arrays([pa_table[name] for name in self._schema.names], schema=self._schema)
File "pyarrow/table.pxi", line 1257, in pyarrow.lib.Table.__getitem__
File "pyarrow/table.pxi", line 1833, in pyarrow.lib.Table.column
File "pyarrow/table.pxi", line 1808, in pyarrow.lib.Table._ensure_integer_index
KeyError: 'Field "identical_answers" does not exist in table schema'
```
It does work, however, to use the `save_to_disk` and `load_from_disk` methods:
```py
from datasets import load_from_disk
ds = load_dataset("lhoestq/custom_squad")
def identical_answers(e):
e['identical_answers'] = len(set(e['answers']['text'])) == 1
return e
ds['validation'] = ds['validation'].map(identical_answers)
ds.save_to_disk("local_path")
brand_new_dataset = load_from_disk("local_path")
```
## Expected results
The saving works correctly - but the loading fails. I would expect either an error when saving or an error-less instantiation of the dataset through the parquet files.
If it's helpful, I've traced a possible patch to the `write_table` method here:
https://github.com/huggingface/datasets/blob/26ff41aa3a642e46489db9e95be1e9a8c4e64bea/src/datasets/arrow_writer.py#L424-L425
The writer is built only if the parquet writer is `None`, but I expect we would want to build a new writer as the table schema has changed. Furthermore, it relies on having the property `update_features` set to `True` in order to update the features:
https://github.com/huggingface/datasets/blob/26ff41aa3a642e46489db9e95be1e9a8c4e64bea/src/datasets/arrow_writer.py#L254-L255
but the `ArrowWriter` is instantiated without that option in the `_prepare_split` method of the `ArrowBasedBuilder`:
https://github.com/huggingface/datasets/blob/26ff41aa3a642e46489db9e95be1e9a8c4e64bea/src/datasets/builder.py#L1190
Updating these two parts to recreate a schema on each split results in an error that is, unfortunately, out of my expertise:
```
File "/home/lysandre/.config/JetBrains/PyCharm2021.2/scratches/datasets/upload_dataset.py", line 27, in <module>
brand_new_dataset = load_dataset("ds")
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/load.py", line 1163, in load_dataset
ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 819, in as_dataset
datasets = utils.map_nested(
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py", line 207, in map_nested
mapped = [
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py", line 208, in <listcomp>
_single_map_nested((function, obj, types, None, True))
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/utils/py_utils.py", line 143, in _single_map_nested
return function(data_struct)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 850, in _build_single_dataset
ds = self._as_dataset(
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/builder.py", line 920, in _as_dataset
dataset_kwargs = ArrowReader(self._cache_dir, self.info).read(
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py", line 217, in read
return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py", line 238, in read_files
pa_table = self._read_files(files, in_memory=in_memory)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py", line 173, in _read_files
pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py", line 308, in _get_table_from_filename
table = ArrowReader.read_table(filename, in_memory=in_memory)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/arrow_reader.py", line 327, in read_table
return table_cls.from_file(filename)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/table.py", line 458, in from_file
table = _memory_mapped_arrow_table_from_file(filename)
File "/home/lysandre/Workspaces/Python/datasets/src/datasets/table.py", line 45, in _memory_mapped_arrow_table_from_file
pa_table = opened_stream.read_all()
File "pyarrow/ipc.pxi", line 563, in pyarrow.lib.RecordBatchReader.read_all
File "pyarrow/error.pxi", line 114, in pyarrow.lib.check_status
OSError: Header-type of flatbuffer-encoded Message is not RecordBatch.
```
## Environment info
- `datasets` version: 1.12.2.dev0
- Platform: Linux-5.14.7-arch1-1-x86_64-with-glibc2.33
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 2,968 |
https://github.com/huggingface/datasets/issues/2967 | Adding vision-and-language datasets (e.g., VQA, VCR) to Datasets | [] | **Is your feature request related to a problem? Please describe.**
Would you like to add any vision-and-language datasets (e.g., VQA, VCR) to Huggingface Datasets?
**Describe the solution you'd like**
N/A
**Describe alternatives you've considered**
N/A
**Additional context**
This is Da Yin at UCLA. Recently, we have published an EMNLP 2021 paper about geo-diverse visual commonsense reasoning (https://arxiv.org/abs/2109.06860). We propose a new dataset called GD-VCR, a vision-and-language dataset to evaluate how well V&L models perform on scenarios involving geo-location-specific commonsense. We hope to have our V&L dataset incorporated into Huggingface to further promote our project, but I haven't seen much V&L datasets in the current package. Is it possible to add V&L datasets, and if so, how should we prepare for the loading? Thank you very much!
| 2,967 |
https://github.com/huggingface/datasets/issues/2965 | Invalid download URL of WMT17 `zh-en` data | [
"Fixed in the current release. Close this issue."
] | ## Describe the bug
Partial data (wmt17 zh-en) cannot be downloaded due to an invalid URL.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset('wmt17','zh-en')
```
## Expected results
ConnectionError: Couldn't reach ftp://cwmt-wmt:[email protected]/parallel/casia2015.zip | 2,965 |
https://github.com/huggingface/datasets/issues/2964 | Error when calculating Matthews Correlation Coefficient loaded with `load_metric` | [
"After some more tests I've realized that this \"issue\" is due to the `numpy.float64` to `float` conversion, but when defining a function named `compute_metrics` as it follows:\r\n\r\n```python\r\ndef compute_metrics(eval_preds):\r\n metric = load_metric(\"matthews_correlation\")\r\n logits, labels = eval_preds\r\n predictions = np.argmax(logits, axis=1)\r\n return metric.compute(predictions=predictions, references=labels)\r\n```\r\n\r\nIt fails when the evaluation metrics are computed in the `Trainer` with the same error code `AttributeError: 'float' object has no attribute 'item'` as the output is not a `numpy.float64`... Maybe I'm doing something wrong, not sure!"
] | ## Describe the bug
After loading the metric named "[Matthews Correlation Coefficient](https://huggingface.co/metrics/matthews_correlation)" from `🤗datasets`, the `.compute` method fails with the following exception `AttributeError: 'float' object has no attribute 'item'` (complete stack trace can be provided if required).
## Steps to reproduce the bug
```python
import torch
predictions = torch.ones((10,))
references = torch.zeros((10,))
from datasets import load_metric
METRIC = load_metric("matthews_correlation")
result = METRIC.compute(predictions=predictions, references=references)
```
## Expected results
We should expect a Python `dict` as it follows:
```
{
"matthews_correlation": float()
}
```
as defined in https://github.com/huggingface/datasets/blob/master/metrics/matthews_correlation/matthews_correlation.py, so the fix will imply removing `.item()`, since the value returned by the `scikit-learn` function is not a `torch.Tensor` but a `float`, which means that the `.item()` will fail.
## Actual results
```
Traceback (most recent call last):
File "/home/alvaro.bartolome/XXX/xxx/cli.py", line 59, in main
app()
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/typer/main.py", line 214, in __call__
return get_command(self)(*args, **kwargs)
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/click/core.py", line 1137, in __call__
return self.main(*args, **kwargs)
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/click/core.py", line 1062, in main
rv = self.invoke(ctx)
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/click/core.py", line 1668, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/click/core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/click/core.py", line 763, in invoke
return __callback(*args, **kwargs)
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/typer/main.py", line 500, in wrapper
return callback(**use_params) # type: ignore
File "/home/alvaro.bartolome/XXX/xxx/cli.py", line 43, in train
metrics = trainer.evaluate()
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/transformers/trainer.py", line 2051, in evaluate
output = eval_loop(
File "/home/alvaro.bartolome/miniconda3/envs/xxx/lib/python3.9/site-packages/transformers/trainer.py", line 2292, in evaluation_loop
metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels))
File "/home/alvaro.bartolome/XXX/xxx/metrics.py", line 20, in compute_metrics
res = METRIC.compute(predictions=predictions, references=eval_preds.label_ids)
File "/home/alvaro.bartolome/miniconda3/envs/lang/lib/python3.9/site-packages/datasets/metric.py", line 402, in compute
output = self._compute(predictions=predictions, references=references, **kwargs)
File "/home/alvaro.bartolome/.cache/huggingface/modules/datasets_modules/metrics/matthews_correlation/0275f1e9a4d318e3ea8cdd87547ee0d58d894966616052e3d18444ac8ddd2357/matthews_correlation.py", line 88, in _compute
"matthews_correlation": matthews_corrcoef(references, predictions, sample_weight=sample_weight).item(),
AttributeError: 'float' object has no attribute 'item'
```
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-4.15.0-1113-azure-x86_64-with-glibc2.23
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 2,964 |
https://github.com/huggingface/datasets/issues/2963 | raise TypeError( TypeError: Provided `function` which is applied to all elements of table returns a variable of type <class 'list'>. Make sure provided `function` returns a variable of type `dict` to update the dataset or `None` if you are only interested in side effects. | [] | ## Describe the bug
A clear and concise description of what the bug is.
I am trying to use Dataset to load my file in order to use Bert embeddings model baut when I finished loading using dataset and I want to pass to the tokenizer using the function map; I get the following error : raise TypeError(
TypeError: Provided `function` which is applied to all elements of table returns a variable of type <class 'list'>. Make sure provided `function` returns a variable of type `dict` to update the dataset or `None` if you are only interested in side effects.
I was able to load my file using dataset before but since this morning , I keep getting this erreor.
## Steps to reproduce the bug
```python
# Xtrain, ytrain, filename, len_labels = read_file_2(fic)
# Xtrain, lge_size = get_flaubert_layer(Xtrain, path_to_model_lge)
data_preprocessed = make_new_traindata(Xtrain)
my_dict = {"verbatim": data_preprocessed[1], "label": ytrain} # lemme avec conjonction
dataset = Dataset.from_dict(my_dict)
```
## Expected results
A clear and concise description of the expected results.
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
- Platform:
- Python version:
- PyArrow version:
| 2,963 |
https://github.com/huggingface/datasets/issues/2962 | Enable splits during streaming the dataset | [] | ## Describe the Problem
I'd like to stream only a specific percentage or part of the dataset.
I want to do splitting when I'm streaming dataset as well.
## Solution
Enabling splits when `streaming = True` as well.
`e.g. dataset = load_dataset('dataset', split='train[:100]', streaming = True)`
## Alternatives
Below is the alternative of doing it.
`dataset = load_dataset("dataset", split='train', streaming = True).take(100)`
| 2,962 |
https://github.com/huggingface/datasets/issues/2957 | MultiWOZ Dataset NonMatchingChecksumError | [
"Hi Brady! I met the similar issue, it stuck in the downloading stage instead of download anything, maybe it is broken. After I change the downloading from URLs to one url of the [Multiwoz project](https://github.com/budzianowski/multiwoz/archive/44f0f8479f11721831c5591b839ad78827da197b.zip) and use dirs to get separate files, the problems gone."
] | ## Describe the bug
The checksums for the downloaded MultiWOZ dataset and source MultiWOZ dataset aren't matching.
## Steps to reproduce the bug
Both of the below dataset versions yield the checksum error:
```python
from datasets import load_dataset
dataset = load_dataset('multi_woz_v22', 'v2.2')
dataset = load_dataset('multi_woz_v22', 'v2.2_active_only')
```
## Expected results
For the above calls to `load_dataset` to work.
## Actual results
NonMatchingChecksumError. Traceback:
> Traceback (most recent call last):
File "/Users/brady/anaconda3/envs/elysium/lib/python3.8/site-packages/IPython/core/interactiveshell.py", line 3441, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-15-4e91280e112e>", line 1, in <module>
dataset = load_dataset('multi_woz_v22', 'v2.2')
File "/Users/brady/anaconda3/envs/elysium/lib/python3.8/site-packages/datasets/load.py", line 847, in load_dataset
builder_instance.download_and_prepare(
File "/Users/brady/anaconda3/envs/elysium/lib/python3.8/site-packages/datasets/builder.py", line 615, in download_and_prepare
self._download_and_prepare(
File "/Users/brady/anaconda3/envs/elysium/lib/python3.8/site-packages/datasets/builder.py", line 675, in _download_and_prepare
verify_checksums(
File "/Users/brady/anaconda3/envs/elysium/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 40, in verify_checksums
raise NonMatchingChecksumError(error_msg + str(bad_urls))
datasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://github.com/budzianowski/multiwoz/raw/master/data/MultiWOZ_2.2/dialog_acts.json', 'https://github.com/budzianowski/multiwoz/raw/master/data/MultiWOZ_2.2/test/dialogues_001.json']
## Environment info
- `datasets` version: 1.11.0
- Platform: macOS-10.15.7-x86_64-i386-64bit
- Python version: 3.8.10
- PyArrow version: 5.0.0
| 2,957 |
https://github.com/huggingface/datasets/issues/2956 | Cache problem in the `load_dataset` method for local compressed file(s) | [
"The problem is still present. \r\nOne solution would be to add the `download_mode=\"force_redownload\"` argument to load_dataset. \r\nHowever, doing so may lead to a `DatasetGenerationError: An error occurred while generating the dataset`. To mitigate, just do:\r\n`rm -r ~/.cache/huggingface/datasets/*`"
] | ## Describe the bug
Cache problem in the `load_dataset` method: when modifying a compressed file in a local folder `load_dataset` doesn't detect the change and load the previous version.
## Steps to reproduce the bug
To test it directly, I have prepared a [Google Colaboratory notebook](https://colab.research.google.com/drive/11Em_Amoc-aPGhSBIkSHU2AvEh24nVayy?usp=sharing) that shows this behavior.
For this example, I have created a toy dataset at: https://huggingface.co/datasets/SaulLu/toy_struc_dataset
This dataset is composed of two versions:
- v1 on commit `a6beb46` which has a single example `{'id': 1, 'value': {'tag': 'a', 'value': 1}}` in file `train.jsonl.gz`
- v2 on commit `e7935f4` (`main` head) which has a single example `{'attr': 1, 'id': 1, 'value': 'a'}` in file `train.jsonl.gz`
With a terminal, we can start to get the v1 version of the dataset
```bash
git lfs install
git clone https://huggingface.co/datasets/SaulLu/toy_struc_dataset
cd toy_struc_dataset
git checkout a6beb46
```
Then we can load it with python and look at the content:
```python
from datasets import load_dataset
path = "/content/toy_struc_dataset"
dataset = load_dataset(path, data_files={"train": "*.jsonl.gz"})
print(dataset["train"][0])
```
Output
```
{'id': 1, 'value': {'tag': 'a', 'value': 1}} # This is the example in v1
```
With a terminal, we can now start to get the v1 version of the dataset
```bash
git checkout main
```
Then we can load it with python and look at the content:
```python
from datasets import load_dataset
path = "/content/toy_struc_dataset"
dataset = load_dataset(path, data_files={"train": "*.jsonl.gz"})
print(dataset["train"][0])
```
Output
```
{'id': 1, 'value': {'tag': 'a', 'value': 1}} # This is the example in v1 (not v2)
```
## Expected results
The last output should have been
```
{"id":1, "value": "a", "attr": 1} # This is the example in v2
```
## Ideas
As discussed offline with Quentin, if the cache hash was ever sensitive to changes in a compressed file we would probably not have the problem anymore.
This situation leads me to suggest 2 other features:
- to also have an `load_from_cache_file` argument in the "load_dataset" method
- to reorganize the cache so that we can delete the caches related to a dataset (cf issue #ToBeFilledSoon)
And thanks again for this great library :hugs:
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.12
- PyArrow version: 3.0.0
| 2,956 |
https://github.com/huggingface/datasets/issues/2953 | Trying to get in touch regarding a security issue | [
"Hi @JamieSlome,\r\n\r\nThanks for reaching out. Yes, you are right: I'm opening a PR to add the `SECURITY.md` file and a contact method.\r\n\r\nIn the meantime, please feel free to report the security issue to: [email protected]"
] | Hey there!
I'd like to report a security issue but cannot find contact instructions on your repository.
If not a hassle, might you kindly add a `SECURITY.md` file with an email, or another contact method? GitHub [recommends](https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository) this best practice to ensure security issues are responsibly disclosed, and it would serve as a simple instruction for security researchers in the future.
Thank you for your consideration, and I look forward to hearing from you!
(cc @huntr-helper) | 2,953 |
https://github.com/huggingface/datasets/issues/2945 | Protect master branch | [
"Cool, I think we can do both :)",
"@lhoestq now the 2 are implemented.\r\n\r\nPlease note that for the the second protection, finally I have chosen to protect the master branch only from **merge commits** (see update comment above), so no need to disable/re-enable the protection on each release (direct commits, different from merge commits, can be pushed to the remote master branch; and eventually reverted without messing up the repo history)."
] | After accidental merge commit (91c55355b634d0dc73350a7ddee1a6776dbbdd69) into `datasets` master branch, all commits present in the feature branch were permanently added to `datasets` master branch history, as e.g.:
- 00cc036fea7c7745cfe722360036ed306796a3f2
- 13ae8c98602bbad8197de3b9b425f4c78f582af1
- ...
I propose to protect our master branch, so that we avoid we can accidentally make this kind of mistakes in the future:
- [x] For Pull Requests using GitHub, allow only squash merging, so that only a single commit per Pull Request is merged into the master branch
- Currently, simple merge commits are already disabled
- I propose to disable rebase merging as well
- ~~Protect the master branch from direct pushes (to avoid accidentally pushing of merge commits)~~
- ~~This protection would reject direct pushes to master branch~~
- ~~If so, for each release (when we need to commit directly to the master branch), we should previously disable the protection and re-enable it again after the release~~
- [x] Protect the master branch only from direct pushing of **merge commits**
- GitHub offers the possibility to protect the master branch only from merge commits (which are the ones that introduce all the commits from the feature branch into the master branch).
- No need to disable/re-enable this protection on each release
This purpose of this Issue is to open a discussion about this problem and to agree in a solution. | 2,945 |
https://github.com/huggingface/datasets/issues/2944 | Add `remove_columns` to `IterableDataset ` | [
"Hi ! Good idea :)\r\nIf you are interested in contributing, feel free to give it a try and open a Pull Request. Also let me know if I can help you with this or if you have questions"
] | **Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is.
```python
from datasets import load_dataset
dataset = load_dataset("c4", 'realnewslike', streaming =True, split='train')
dataset = dataset.remove_columns('url')
```
```
AttributeError: 'IterableDataset' object has no attribute 'remove_columns'
```
**Describe the solution you'd like**
It would be nice to have `.remove_columns()` to match the `Datasets` api.
**Describe alternatives you've considered**
This can be done with a single call to `.map()`,
I can try to help add this. 🤗 | 2,944 |
https://github.com/huggingface/datasets/issues/2943 | Backwards compatibility broken for cached datasets that use `.filter()` | [
"Hi ! I guess the caching mechanism should have considered the new `filter` to be different from the old one, and don't use cached results from the old `filter`.\r\nTo avoid other users from having this issue we could make the caching differentiate the two, what do you think ?",
"If it's easy enough to implement, then yes please 😄 But this issue can be low-priority, since I've only encountered it in a couple of `transformers` CI tests.",
"Well it can cause issue with anyone that updates `datasets` and re-run some code that uses filter, so I'm creating a PR",
"I just merged a fix, let me know if you're still having this kind of issues :)\r\n\r\nWe'll do a release soon to make this fix available",
"Definitely works on several manual cases with our dummy datasets, thank you @lhoestq !",
"Fixed by #2947."
] | ## Describe the bug
After upgrading to datasets `1.12.0`, some cached `.filter()` steps from `1.11.0` started failing with
`ValueError: Keys mismatch: between {'indices': Value(dtype='uint64', id=None)} and {'file': Value(dtype='string', id=None), 'text': Value(dtype='string', id=None), 'speaker_id': Value(dtype='int64', id=None), 'chapter_id': Value(dtype='int64', id=None), 'id': Value(dtype='string', id=None)}`
Related feature: https://github.com/huggingface/datasets/pull/2836
:question: This is probably a `wontfix` bug, since it can be solved by simply cleaning the related cache dirs, but the workaround could be useful for someone googling the error :)
## Workaround
Remove the cache for the given dataset, e.g. `rm -rf ~/.cache/huggingface/datasets/librispeech_asr`.
## Steps to reproduce the bug
1. Delete `~/.cache/huggingface/datasets/librispeech_asr` if it exists.
2. `pip install datasets==1.11.0` and run the following snippet:
```python
from datasets import load_dataset
ids = ["1272-141231-0000"]
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.filter(lambda x: x["id"] in ids)
```
3. `pip install datasets==1.12.1` and re-run the code again
## Expected results
Same result as with the previous `datasets` version.
## Actual results
```bash
Reusing dataset librispeech_asr (./.cache/huggingface/datasets/librispeech_asr/clean/2.1.0/468ec03677f46a8714ac6b5b64dba02d246a228d92cbbad7f3dc190fa039eab1)
Loading cached processed dataset at ./.cache/huggingface/datasets/librispeech_asr/clean/2.1.0/468ec03677f46a8714ac6b5b64dba02d246a228d92cbbad7f3dc190fa039eab1/cache-cd1c29844fdbc87a.arrow
Traceback (most recent call last):
File "./repos/transformers/src/transformers/models/wav2vec2/try_dataset.py", line 5, in <module>
ds = ds.filter(lambda x: x["id"] in ids)
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 185, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "./envs/transformers/lib/python3.8/site-packages/datasets/fingerprint.py", line 398, in wrapper
out = func(self, *args, **kwargs)
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2169, in filter
indices = self.map(
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1686, in map
return self._map_single(
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 185, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "./envs/transformers/lib/python3.8/site-packages/datasets/fingerprint.py", line 398, in wrapper
out = func(self, *args, **kwargs)
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1896, in _map_single
return Dataset.from_file(cache_file_name, info=info, split=self.split)
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 343, in from_file
return cls(
File "./envs/transformers/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 282, in __init__
self.info.features = self.info.features.reorder_fields_as(inferred_features)
File "./envs/transformers/lib/python3.8/site-packages/datasets/features.py", line 1151, in reorder_fields_as
return Features(recursive_reorder(self, other))
File "./envs/transformers/lib/python3.8/site-packages/datasets/features.py", line 1140, in recursive_reorder
raise ValueError(f"Keys mismatch: between {source} and {target}" + stack_position)
ValueError: Keys mismatch: between {'indices': Value(dtype='uint64', id=None)} and {'file': Value(dtype='string', id=None), 'text': Value(dtype='string', id=None), 'speaker_id': Value(dtype='int64', id=None), 'chapter_id': Value(dtype='int64', id=None), 'id': Value(dtype='string', id=None)}
Process finished with exit code 1
```
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.11.0-34-generic-x86_64-with-glibc2.17
- Python version: 3.8.10
- PyArrow version: 5.0.0
| 2,943 |
https://github.com/huggingface/datasets/issues/2941 | OSCAR unshuffled_original_ko: NonMatchingSplitsSizesError | [
"I tried `unshuffled_original_da` and it is also not working"
] | ## Describe the bug
Cannot download OSCAR `unshuffled_original_ko` due to `NonMatchingSplitsSizesError`.
## Steps to reproduce the bug
```python
>>> dataset = datasets.load_dataset('oscar', 'unshuffled_original_ko')
NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=25292102197, num_examples=7345075, dataset_name='oscar'), 'recorded': SplitInfo(name='train', num_bytes=25284578514, num_examples=7344907, dataset_name='oscar')}]
```
## Expected results
Loading is successful.
## Actual results
Loading throws above error.
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.4.0-81-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 5.0.0
| 2,941 |
https://github.com/huggingface/datasets/issues/2937 | load_dataset using default cache on Windows causes PermissionError: [WinError 5] Access is denied | [
"Hi @daqieq, thanks for reporting.\r\n\r\nUnfortunately, I was not able to reproduce this bug:\r\n```ipython\r\nIn [1]: from datasets import load_dataset\r\n ...: ds = load_dataset('wiki_bio')\r\nDownloading: 7.58kB [00:00, 26.3kB/s]\r\nDownloading: 2.71kB [00:00, ?B/s]\r\nUsing custom data configuration default\r\nDownloading and preparing dataset wiki_bio/default (download: 318.53 MiB, generated: 736.94 MiB, post-processed: Unknown size, total: 1.03 GiB) to C:\\Users\\username\\.cache\\huggingface\\datasets\\wiki_bio\\default\\\r\n1.1.0\\5293ce565954ba965dada626f1e79684e98172d950371d266bf3caaf87e911c9...\r\nDownloading: 334MB [01:17, 4.32MB/s]\r\nDataset wiki_bio downloaded and prepared to C:\\Users\\username\\.cache\\huggingface\\datasets\\wiki_bio\\default\\1.1.0\\5293ce565954ba965dada626f1e79684e98172d950371d266bf3caaf87e911c9. Subsequent calls will reuse thi\r\ns data.\r\n```\r\n\r\nThis kind of error messages usually happen because:\r\n- Your running Python script hasn't write access to that directory\r\n- You have another program (the File Explorer?) already browsing inside that directory",
"Thanks @albertvillanova for looking at it! I tried on my personal Windows machine and it downloaded just fine.\r\n\r\nRunning on my work machine and on a colleague's machine it is consistently hitting this error. It's not a write access issue because the `.incomplete` directory is written just fine. It just won't rename and then it deletes the directory in the `finally` step. Also the zip file is written and extracted fine in the downloads directory.\r\n\r\nThat leaves another program that might be interfering, and there are plenty of those in my work machine ... (full antivirus, data loss prevention, etc.). So the question remains, why not extend the `try` block to allow catching the error and circle back to the rename after the unknown program is finished doing its 'stuff'. This is the approach that I read about in the linked repo (see my comments above).\r\n\r\nIf it's not high priority, that's fine. However, if someone were to write an PR that solved this issue in our environment in an `except` clause, would it be reviewed for inclusion in a future release? Just wondering whether I should spend any more time on this issue.",
"Hi @albertvillanova, even I am facing the same issue on my work machine:\r\n\r\n`Downloading and preparing dataset json/c4-en-html-with-metadata to C:\\Users\\......\\.cache\\huggingface\\datasets\\json\\c4-en-html-with-metadata-4635c2fd9249f62d\\0.0.0\\c90812beea906fcffe0d5e3bb9eba909a80a998b5f88e9f8acbd320aa91acfde...\r\n100%|███████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 983.42it/s]\r\n100%|███████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 209.01it/s]\r\nTraceback (most recent call last):\r\n File \"bsmetadata/preprocessing_utils.py\", line 710, in <module>\r\n ds = load_dataset(\r\n File \"C:\\Users\\.......\\AppData\\Roaming\\Python\\Python38\\site-packages\\datasets\\load.py\", line 1694, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"C:\\Users\\........\\AppData\\Roaming\\Python\\Python38\\site-packages\\datasets\\builder.py\", line 603, in download_and_prepare\r\n self._save_info()\r\n File \"C:\\Users\\..........\\AppData\\Local\\Programs\\Python\\Python38\\lib\\contextlib.py\", line 120, in __exit__\r\n next(self.gen)\r\n File \"C:\\Users\\.....\\AppData\\Roaming\\Python\\Python38\\site-packages\\datasets\\builder.py\", line 557, in incomplete_dir\r\n os.rename(tmp_dir, dirname)\r\nPermissionError: [WinError 5] Access is denied: 'C:\\\\Users\\\\.........\\\\.cache\\\\huggingface\\\\datasets\\\\json\\\\c4-en-html-with-metadata-4635c2fd9249f62d\\\\0.0.0\\\\c90812beea906fcffe0d5e3bb9eba909a80a998b5f88e9f8acbd320aa91acfde.incomplete' -> 'C:\\\\Users\\\\I355109\\\\.cache\\\\huggingface\\\\datasets\\\\json\\\\c4-en-html-with-metadata-4635c2fd9249f62d\\\\0.0.0\\\\c90812beea906fcffe0d5e3bb9eba909a80a998b5f88e9f8acbd320aa91acfde'`",
"I'm facing the same issue.\r\n\r\n## System Information\r\n\r\n- OS Edition: Windows 10 21H1\r\n- OS build: 19043.1826\r\n- Python version: 3.10.6 (installed using `choco install python`)\r\n- datasets: 2.4.0\r\n- PyArrow: 6.0.1\r\n\r\n## Troubleshooting steps\r\n\r\n- Restart the computer, unfortunately doesn't work! 🌚\r\n- Checked the permissions of `~./cache/...`, looks fine.\r\n- Tested with a simple file operation using the `open()` function and writing a hello_world.txt, it works fine.\r\n- Tested with a different `cache_dir` value on the `load_dataset()`, e.g. \"./data\"\r\n- Tested different datasets: `conll2003`, `squad_v2`, and `wiki_bio`.\r\n- Downgraded datasets from `2.4.0` to `2.1.0`, issue persists.\r\n- Tested it on WSL (Ubuntu 20.04), and it works! \r\n- Python reinstallation, in the first time downloading `conll2003` works fine, but `squad` or `squad_v2` raises Access Denied.\r\n - After the system or VSCode restart, the issue comes back.\r\n\r\n## Resolution\r\n\r\nI fixed it by changing the following command:\r\n\r\nhttps://github.com/huggingface/datasets/blob/68cffe30917a9abed68d28caf54b40c10f977602/src/datasets/builder.py#L666\r\n\r\nfor\r\n\r\n```python\r\nshutil.move(tmp_dir, dirname)\r\n```"
] | ## Describe the bug
Standard process to download and load the wiki_bio dataset causes PermissionError in Windows 10 and 11.
## Steps to reproduce the bug
```python
from datasets import load_dataset
ds = load_dataset('wiki_bio')
```
## Expected results
It is expected that the dataset downloads without any errors.
## Actual results
PermissionError see trace below:
```
Using custom data configuration default
Downloading and preparing dataset wiki_bio/default (download: 318.53 MiB, generated: 736.94 MiB, post-processed: Unknown size, total: 1.03 GiB) to C:\Users\username\.cache\huggingface\datasets\wiki_bio\default\1.1.0\5293ce565954ba965dada626f1e79684e98172d950371d266bf3caaf87e911c9...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Users\username\.conda\envs\hf\lib\site-packages\datasets\load.py", line 1112, in load_dataset
builder_instance.download_and_prepare(
File "C:\Users\username\.conda\envs\hf\lib\site-packages\datasets\builder.py", line 644, in download_and_prepare
self._save_info()
File "C:\Users\username\.conda\envs\hf\lib\contextlib.py", line 120, in __exit__
next(self.gen)
File "C:\Users\username\.conda\envs\hf\lib\site-packages\datasets\builder.py", line 598, in incomplete_dir
os.rename(tmp_dir, dirname)
PermissionError: [WinError 5] Access is denied: 'C:\\Users\\username\\.cache\\huggingface\\datasets\\wiki_bio\\default\\1.1.0\\5293ce565954ba965dada626f1e79684e98172d950371d266bf3caaf87e911c9.incomplete' -> 'C:\\Users\\username\\.cache\\huggingface\\datasets\\wiki_bio\\default\\1.1.0\\5293ce565954ba965dada626f1e79684e98172d950371d266bf3caaf87e911c9'
```
By commenting out the os.rename() [L604](https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L604) and the shutil.rmtree() [L607](https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L607) lines, in my virtual environment, I was able to get the load process to complete, rename the directory manually and then rerun the `load_dataset('wiki_bio')` to get what I needed.
It seems that os.rename() in the `incomplete_dir` content manager is the culprit. Here's another project [Conan](https://github.com/conan-io/conan/issues/6560) with similar issue with os.rename() if it helps debug this issue.
## Environment info
- `datasets` version: 1.12.1
- Platform: Windows-10-10.0.22449-SP0
- Python version: 3.8.12
- PyArrow version: 5.0.0
| 2,937 |
https://github.com/huggingface/datasets/issues/2934 | to_tf_dataset keeps a reference to the open data somewhere, causing issues on windows | [
"I did some investigation and, as it seems, the bug stems from [this line](https://github.com/huggingface/datasets/blob/8004d7c3e1d74b29c3e5b0d1660331cd26758363/src/datasets/arrow_dataset.py#L325). The lifecycle of the dataset from the linked line is bound to one of the returned `tf.data.Dataset`. So my (hacky) solution involves wrapping the linked dataset with `weakref.proxy` and adding a custom `__del__` to `tf.python.data.ops.dataset_ops.TensorSliceDataset` (this is the type of a dataset that is returned by `tf.data.Dataset.from_tensor_slices`; this works for TF 2.x, but I'm not sure `tf.python.data.ops.dataset_ops` is a valid path for TF 1.x) that deletes the linked dataset, which is assigned to the dataset object as a property. Will open a draft PR soon!",
"Thanks a lot for investigating !"
] | To reproduce:
```python
import datasets as ds
import weakref
import gc
d = ds.load_dataset("mnist", split="train")
ref = weakref.ref(d._data.table)
tfd = d.to_tf_dataset("image", batch_size=1, shuffle=False, label_cols="label")
del tfd, d
gc.collect()
assert ref() is None, "Error: there is at least one reference left"
```
This causes issues because the table holds a reference to an open arrow file that should be closed. So on windows it's not possible to delete or move the arrow file afterwards.
Moreover the CI test of the `to_tf_dataset` method isn't able to clean up the temporary arrow files because of this.
cc @Rocketknight1 | 2,934 |
https://github.com/huggingface/datasets/issues/2932 | Conda build fails | [
"Why 1.9 ?\r\n\r\nhttps://anaconda.org/HuggingFace/datasets currently says 1.11",
"Alright I added 1.12.0 and 1.12.1 and fixed the conda build #2952 "
] | ## Describe the bug
Current `datasets` version in conda is 1.9 instead of 1.12.
The build of the conda package fails.
| 2,932 |
https://github.com/huggingface/datasets/issues/2930 | Mutable columns argument breaks set_format | [
"Pushed a fix to my branch #2731 "
] | ## Describe the bug
If you pass a mutable list to the `columns` argument of `set_format` and then change the list afterwards, the returned columns also change.
## Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("glue", "cola")
column_list = ["idx", "label"]
dataset.set_format("python", columns=column_list)
column_list[1] = "foo" # Change the list after we call `set_format`
dataset['train'][:4].keys()
```
## Expected results
```python
dict_keys(['idx', 'label'])
```
## Actual results
```python
dict_keys(['idx'])
``` | 2,930 |
https://github.com/huggingface/datasets/issues/2927 | Datasets 1.12 dataset.filter TypeError: get_indices_from_mask_function() got an unexpected keyword argument | [
"Thanks for reporting, I'm looking into it :)",
"Fixed by #2950."
] | ## Describe the bug
Upgrading to 1.12 caused `dataset.filter` call to fail with
> get_indices_from_mask_function() got an unexpected keyword argument valid_rel_labels
## Steps to reproduce the bug
```pythondef
filter_good_rows(
ex: Dict,
valid_rel_labels: Set[str],
valid_ner_labels: Set[str],
tokenizer: PreTrainedTokenizerFast,
) -> bool:
"""Get the good rows"""
encoding = get_encoding_for_text(text=ex["text"], tokenizer=tokenizer)
ex["encoding"] = encoding
for relation in ex["relations"]:
if not is_valid_relation(relation, valid_rel_labels):
return False
for span in ex["spans"]:
if not is_valid_span(span, valid_ner_labels, encoding):
return False
return True
def get_dataset():
loader_path = str(Path(__file__).parent / "prodigy_dataset_builder.py")
ds = load_dataset(
loader_path,
name="prodigy-dataset",
data_files=sorted(file_paths),
cache_dir=cache_dir,
)["train"]
valid_ner_labels = set(vocab.ner_category)
valid_relations = set(vocab.relation_types.keys())
ds = ds.filter(
filter_good_rows,
fn_kwargs=dict(
valid_rel_labels=valid_relations,
valid_ner_labels=valid_ner_labels,
tokenizer=vocab.tokenizer,
),
keep_in_memory=True,
num_proc=num_proc,
)
```
`ds` is a `DatasetDict` produced by a jsonl dataset.
This runs fine on 1.11 but fails on 1.12
**Stack Trace**
## Expected results
I expect 1.12 datasets filter to filter the dataset without raising as it does on 1.11
## Actual results
```
tf_ner_rel_lib/dataset.py:695: in load_prodigy_arrow_datasets_from_jsonl
ds = ds.filter(
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:185: in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/fingerprint.py:398: in wrapper
out = func(self, *args, **kwargs)
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:2169: in filter
indices = self.map(
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:1686: in map
return self._map_single(
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:185: in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/fingerprint.py:398: in wrapper
out = func(self, *args, **kwargs)
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:2048: in _map_single
batch = apply_function_on_filtered_inputs(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
inputs = {'_input_hash': [2108817714, 1477695082, -1021597032, 2130671338, -1260483858, -1203431639, ...], '_task_hash': [18070...ons', 'relations', 'relations', ...], 'answer': ['accept', 'accept', 'accept', 'accept', 'accept', 'accept', ...], ...}
indices = [0, 1, 2, 3, 4, 5, ...], check_same_num_examples = False, offset = 0
def apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples=False, offset=0):
"""Utility to apply the function on a selection of columns."""
nonlocal update_data
fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns]
if offset == 0:
effective_indices = indices
else:
effective_indices = [i + offset for i in indices] if isinstance(indices, list) else indices + offset
processed_inputs = (
> function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)
)
E TypeError: get_indices_from_mask_function() got an unexpected keyword argument 'valid_rel_labels'
../../../../.pyenv/versions/tf_ner_rel_lib/lib/python3.8/site-packages/datasets/arrow_dataset.py:1939: TypeError
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.12.1
- Platform: Mac
- Python version: 3.8.9
- PyArrow version: pyarrow==5.0.0
| 2,927 |
https://github.com/huggingface/datasets/issues/2926 | Error when downloading datasets to non-traditional cache directories | [
"Same here !"
] | ## Describe the bug
When the cache directory is linked (soft link) to a directory on a NetApp device, the download fails.
## Steps to reproduce the bug
```bash
ln -s /path/to/netapp/.cache ~/.cache
```
```python
load_dataset("imdb")
```
## Expected results
Successfully loading IMDB dataset
## Actual results
```
datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=33432835,
num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0,
dataset_name='imdb')}, {'expected': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'),
'recorded': SplitInfo(name='test', num_bytes=659932, num_examples=503, dataset_name='imdb')}, {'expected':
SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb'), 'recorded':
SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}]
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.1.2
- Platform: Ubuntu
- Python version: 3.8
## Extra notes
Stranger yet, trying to debug the phenomenon, I found the range of results to vary a lot without clear direction:
- With `cache_dir="/path/to/netapp/.cache"` the same thing happens.
- However, when linking `~/netapp/` to `/path/to/netapp` *and* setting `cache_dir="~/netapp/.cache/huggingface/datasets"` - it does work
- On the other hand, when linking `~/.cache` to `~/netapp/.cache` without using `cache_dir`, it does work anymore.
While I could test it only for a NetApp device, it might have to do with any other mounted FS.
Thanks :)
| 2,926 |
https://github.com/huggingface/datasets/issues/2924 | "File name too long" error for file locks | [
"Hi, the filename here is less than 255\r\n```python\r\n>>> len(\"_home_garrett_.cache_huggingface_datasets_csv_test-7c856aea083a7043_0.0.0_9144e0a4e8435090117cea53e6c7537173ef2304525df4a077c435d8ee7828ff.incomplete.lock\")\r\n154\r\n```\r\nso not sure why it's considered too long for your filesystem.\r\n(also note that the lock files we use always have smaller filenames than 255)\r\n\r\nhttps://github.com/huggingface/datasets/blob/5d1a9f1e3c6c495dc0610b459e39d2eb8893f152/src/datasets/utils/filelock.py#L135-L135",
"Yes, you're right! I need to get you more info here. Either there's something going with the name itself that the file system doesn't like (an encoding that blows up the name length??) or perhaps there's something with the path that's causing the entire string to be used as a name. I haven't seen this on any system before and the Internet's not forthcoming with any info.",
"Snap, encountered when trying to run [this example from PyTorch Lightning Flash](https://lightning-flash.readthedocs.io/en/latest/reference/speech_recognition.html):\r\n\r\n```py\r\nimport torch\r\n\r\nimport flash\r\nfrom flash.audio import SpeechRecognition, SpeechRecognitionData\r\nfrom flash.core.data.utils import download_data\r\n\r\n# 1. Create the DataModule\r\ndownload_data(\"https://pl-flash-data.s3.amazonaws.com/timit_data.zip\", \"./data\")\r\n\r\ndatamodule = SpeechRecognitionData.from_json(\r\n input_fields=\"file\",\r\n target_fields=\"text\",\r\n train_file=\"data/timit/train.json\",\r\n test_file=\"data/timit/test.json\",\r\n)\r\n```\r\n\r\nGave this traceback:\r\n\r\n```py\r\nTraceback (most recent call last):\r\n File \"lf_ft.py\", line 10, in <module>\r\n datamodule = SpeechRecognitionData.from_json(\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/flash/core/data/data_module.py\", line 1005, in from_json\r\n return cls.from_data_source(\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/flash/core/data/data_module.py\", line 571, in from_data_source\r\n train_dataset, val_dataset, test_dataset, predict_dataset = data_source.to_datasets(\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/flash/core/data/data_source.py\", line 307, in to_datasets\r\n train_dataset = self.generate_dataset(train_data, RunningStage.TRAINING)\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/flash/core/data/data_source.py\", line 344, in generate_dataset\r\n data = load_data(data, mock_dataset)\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/flash/audio/speech_recognition/data.py\", line 103, in load_data\r\n dataset_dict = load_dataset(self.filetype, data_files={stage: str(file)})\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/load.py\", line 1599, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/load.py\", line 1457, in load_dataset_builder\r\n builder_instance: DatasetBuilder = builder_cls(\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/builder.py\", line 285, in __init__\r\n with FileLock(lock_path):\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/utils/filelock.py\", line 323, in __enter__\r\n self.acquire()\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/utils/filelock.py\", line 272, in acquire\r\n self._acquire()\r\n File \"/home/louis/miniconda3/envs/w2vlf/lib/python3.8/site-packages/datasets/utils/filelock.py\", line 403, in _acquire\r\n fd = os.open(self._lock_file, open_mode)\r\nOSError: [Errno 36] File name too long: '/home/louis/.cache/huggingface/datasets/_home_louis_.cache_huggingface_datasets_json_default-98e6813a547f72fa_0.0.0_c2d554c3377ea79c7664b93dc65d0803b45e3279000f993c7bfd18937fd7f426.lock'\r\n```\r\n\r\nMy home directory is encrypted, therefore the maximum length is 143 ([source 1](https://github.com/ray-project/ray/issues/1463#issuecomment-425674521), [source 2](https://stackoverflow.com/a/6571568/2668831))\r\n\r\nFrom what I've read I think the error is in reference to the file name (just the final part of the path) which is 145 chars long:\r\n\r\n```py\r\n>>> len(\"_home_louis_.cache_huggingface_datasets_json_default-98e6813a547f72fa_0.0.0_c2d554c3377ea79c7664b93dc65d0803b45e3279000f993c7bfd18937fd7f426.lock\")\r\n145\r\n```\r\n\r\nI also have a file in this directory (i.e. whose length is not a problem):\r\n\r\n```py\r\n>>> len(\"_home_louis_.cache_huggingface_datasets_librispeech_asr_clean_2.1.0_468ec03677f46a8714ac6b5b64dba02d246a228d92cbbad7f3dc190fa039eab1.lock\")\r\n137\r\n```",
"Perhaps this could be exposed as a config setting so you could change it manually?\r\n\r\nhttps://github.com/huggingface/datasets/blob/5d1a9f1e3c6c495dc0610b459e39d2eb8893f152/src/datasets/utils/filelock.py#L135-L135\r\n\r\nRather than hard-code 255, default it to 255, and allow it to be changed, the same way is done for `datasets.config.IN_MEMORY_MAX_SIZE`:\r\n\r\nhttps://github.com/huggingface/datasets/blob/12b7e13bc568b9f92705f64b249e148f3bc9a9ea/src/datasets/config.py#L171-L173\r\n\r\nIn fact there already appears to be an existing variable to do so:\r\n\r\nhttps://github.com/huggingface/datasets/blob/12b7e13bc568b9f92705f64b249e148f3bc9a9ea/src/datasets/config.py#L187\r\n\r\nIt's used here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/efe89edd36e4ffa562fc3eebaf07a5fec26e6dac/src/datasets/builder.py#L163-L165\r\n\r\nPerhaps it could be set based on a test (trying to create a 255 char length named lock file and seeing if it fails)",
"Just fixed it, sending a PR :smile:",
"Hi @lmmx @gar1t ,\r\n\r\nit would be helpful if you could run the following code and copy-paste the output here:\r\n```python\r\nimport datasets\r\nimport os\r\nos.statvfs(datasets.config.HF_DATASETS_CACHE)\r\n```",
"`os.statvfs_result(f_bsize=4096, f_frsize=4096, f_blocks=240046344, f_bfree=96427610, f_bavail=84216487, f_files=61038592, f_ffree=58216027, f_favail=58216027, f_flag=4102, f_namemax=143)`",
"Hi @lmmx,\r\n\r\nThanks for providing the result of the command. I've opened a PR, and it would be great if you could verify that the fix works on your system. To install the version of the datasets with the fix, please run the following command:\r\n```\r\npip install git+https://github.com/huggingface/datasets.git@fix-2924\r\n```\r\n\r\nBtw, I saw your PR, and I appreciate your effort. However, my approach is a bit simpler for the end-user, so that's why I decided to fix the issue myself.",
"No problem Mario I didn't know that was where that value was recorded so I learnt something :smiley: I just wanted to get a local version working, of course you should implement whatever fix is best for HF. Yes can confirm this fixes it too. Thanks!",
"Hello @mariosasko \r\n\r\nHas this fix shown up in the 2.10.1 version of huggingface datasets?",
"It looks like the issue is back with #6445 since the `MAX_FILENAME_LENGTH` is explicitly set to be 255 there\r\nhttps://github.com/huggingface/datasets/blob/dd9044cdaabc1f9abce02c1b71bdb48fd3525d4e/src/datasets/utils/_filelock.py#L28\r\n@mariosasko Could you please take a look",
"Ah good catch, I opened https://github.com/huggingface/datasets/pull/6482 with a quick fix"
] | ## Describe the bug
Getting the following error when calling `load_dataset("gar1t/test")`:
```
OSError: [Errno 36] File name too long: '<user>/.cache/huggingface/datasets/_home_garrett_.cache_huggingface_datasets_csv_test-7c856aea083a7043_0.0.0_9144e0a4e8435090117cea53e6c7537173ef2304525df4a077c435d8ee7828ff.incomplete.lock'
```
## Steps to reproduce the bug
Where the user cache dir (e.g. `~/.cache`) is on a file system that limits filenames to 255 chars (e.g. ext4):
```python
from datasets import load_dataset
load_dataset("gar1t/test")
```
## Expected results
Expect the function to return without an error.
## Actual results
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<python_venv>/lib/python3.9/site-packages/datasets/load.py", line 1112, in load_dataset
builder_instance.download_and_prepare(
File "<python_venv>/lib/python3.9/site-packages/datasets/builder.py", line 644, in download_and_prepare
self._save_info()
File "<python_venv>/lib/python3.9/site-packages/datasets/builder.py", line 765, in _save_info
with FileLock(lock_path):
File "<python_venv>/lib/python3.9/site-packages/datasets/utils/filelock.py", line 323, in __enter__
self.acquire()
File "<python_venv>/lib/python3.9/site-packages/datasets/utils/filelock.py", line 272, in acquire
self._acquire()
File "<python_venv>/lib/python3.9/site-packages/datasets/utils/filelock.py", line 403, in _acquire
fd = os.open(self._lock_file, open_mode)
OSError: [Errno 36] File name too long: '<user>/.cache/huggingface/datasets/_home_garrett_.cache_huggingface_datasets_csv_test-7c856aea083a7043_0.0.0_9144e0a4e8435090117cea53e6c7537173ef2304525df4a077c435d8ee7828ff.incomplete.lock'
```
## Environment info
- `datasets` version: 1.12.1
- Platform: Linux-5.11.0-27-generic-x86_64-with-glibc2.31
- Python version: 3.9.7
- PyArrow version: 5.0.0
| 2,924 |
https://github.com/huggingface/datasets/issues/2923 | Loading an autonlp dataset raises in normal mode but not in streaming mode | [
"Closing since autonlp dataset are now supported"
] | ## Describe the bug
The same dataset (from autonlp) raises an error in normal mode, but does not raise in streaming mode
## Steps to reproduce the bug
```python
from datasets import load_dataset
load_dataset("severo/autonlp-data-sentiment_detection-3c8bcd36", split="train", streaming=False)
## raises an error
load_dataset("severo/autonlp-data-sentiment_detection-3c8bcd36", split="train", streaming=True)
## does not raise an error
```
## Expected results
Both calls should raise the same error
## Actual results
Call with streaming=False:
```
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 5825.42it/s]
Using custom data configuration autonlp-data-sentiment_detection-3c8bcd36-fe30267462d1d42b
Downloading and preparing dataset json/autonlp-data-sentiment_detection-3c8bcd36 to /home/slesage/.cache/huggingface/datasets/json/autonlp-data-sentiment_detection-3c8bcd36-fe30267462d1d42b/0.0.0/d75ead8d5cfcbe67495df0f89bd262f0023257fbbbd94a730313295f3d756d50...
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 15923.71it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 3346.88it/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/load.py", line 1112, in load_dataset
builder_instance.download_and_prepare(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 636, in download_and_prepare
self._download_and_prepare(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 726, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 1187, in _prepare_split
writer.write_table(table)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/arrow_writer.py", line 418, in write_table
pa_table = pa.Table.from_arrays([pa_table[name] for name in self._schema.names], schema=self._schema)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/arrow_writer.py", line 418, in <listcomp>
pa_table = pa.Table.from_arrays([pa_table[name] for name in self._schema.names], schema=self._schema)
File "pyarrow/table.pxi", line 1249, in pyarrow.lib.Table.__getitem__
File "pyarrow/table.pxi", line 1825, in pyarrow.lib.Table.column
File "pyarrow/table.pxi", line 1800, in pyarrow.lib.Table._ensure_integer_index
KeyError: 'Field "splits" does not exist in table schema'
```
Call with `streaming=False`:
```
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6000.43it/s]
Using custom data configuration autonlp-data-sentiment_detection-3c8bcd36-fe30267462d1d42b
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 46916.15it/s]
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 148734.18it/s]
```
## Environment info
- `datasets` version: 1.12.1.dev0
- Platform: Linux-5.11.0-1017-aws-x86_64-with-glibc2.29
- Python version: 3.8.11
- PyArrow version: 4.0.1
| 2,923 |
https://github.com/huggingface/datasets/issues/2921 | Using a list of multi-dim numpy arrays raises an error "can only convert 1-dimensional array values" | [] | This error has been introduced in https://github.com/huggingface/datasets/pull/2361
To reproduce:
```python
import numpy as np
from datasets import Dataset
d = Dataset.from_dict({"a": [np.zeros((2, 2))]})
```
raises
```python
Traceback (most recent call last):
File "playground/ttest.py", line 5, in <module>
d = Dataset.from_dict({"a": [np.zeros((2, 2))]}).with_format("torch")
File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/arrow_dataset.py", line 458, in from_dict
pa_table = InMemoryTable.from_pydict(mapping=mapping)
File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/table.py", line 365, in from_pydict
return cls(pa.Table.from_pydict(*args, **kwargs))
File "pyarrow/table.pxi", line 1639, in pyarrow.lib.Table.from_pydict
File "pyarrow/array.pxi", line 332, in pyarrow.lib.asarray
File "pyarrow/array.pxi", line 223, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/arrow_writer.py", line 107, in __arrow_array__
out = pa.array(self.data, type=type)
File "pyarrow/array.pxi", line 306, in pyarrow.lib.array
File "pyarrow/array.pxi", line 39, in pyarrow.lib._sequence_to_array
File "pyarrow/error.pxi", line 143, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 99, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Can only convert 1-dimensional array values | 2,921 |
https://github.com/huggingface/datasets/issues/2919 | Unwanted progress bars when accessing examples | [
"doing a patch release now :)"
] | When accessing examples from a dataset formatted for pytorch, some progress bars appear when accessing examples:
```python
In [1]: import datasets as ds
In [2]: d = ds.Dataset.from_dict({"a": [0, 1, 2]}).with_format("torch")
In [3]: d[0]
100%|████████████████████████████████| 1/1 [00:00<00:00, 3172.70it/s]
Out[3]: {'a': tensor(0)}
```
This is because the pytorch formatter calls `map_nested` that uses progress bars
cc @sgugger | 2,919 |
https://github.com/huggingface/datasets/issues/2918 | `Can not decode content-encoding: gzip` when loading `scitldr` dataset with streaming | [
"Hi @SBrandeis, thanks for reporting! ^^\r\n\r\nI think this is an issue with `fsspec`: https://github.com/intake/filesystem_spec/issues/389\r\n\r\nI will ask them if they are planning to fix it...",
"Code to reproduce the bug: `ClientPayloadError: 400, message='Can not decode content-encoding: gzip'`\r\n```python\r\nIn [1]: import fsspec\r\n\r\nIn [2]: import json\r\n\r\nIn [3]: with fsspec.open('https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/test.jsonl', encoding=\"utf-8\") as f:\r\n ...: for row in f:\r\n ...: data = json.loads(row)\r\n ...:\r\n---------------------------------------------------------------------------\r\nClientPayloadError Traceback (most recent call last)\r\n```",
"Thanks for investigating @albertvillanova ! 🤗 "
] | ## Describe the bug
Trying to load the `"FullText"` config of the `"scitldr"` dataset with `streaming=True` raises an error from `aiohttp`:
```python
ClientPayloadError: 400, message='Can not decode content-encoding: gzip'
```
cc @lhoestq
## Steps to reproduce the bug
```python
from datasets import load_dataset
iter_dset = iter(
load_dataset("scitldr", name="FullText", split="test", streaming=True)
)
next(iter_dset)
```
## Expected results
Returns the first sample of the dataset
## Actual results
Calling `__next__` crashes with the following Traceback:
```python
----> 1 next(dset_iter)
~\miniconda3\envs\datasets\lib\site-packages\datasets\iterable_dataset.py in __iter__(self)
339
340 def __iter__(self):
--> 341 for key, example in self._iter():
342 if self.features:
343 # we encode the example for ClassLabel feature types for example
~\miniconda3\envs\datasets\lib\site-packages\datasets\iterable_dataset.py in _iter(self)
336 else:
337 ex_iterable = self._ex_iterable
--> 338 yield from ex_iterable
339
340 def __iter__(self):
~\miniconda3\envs\datasets\lib\site-packages\datasets\iterable_dataset.py in __iter__(self)
76
77 def __iter__(self):
---> 78 for key, example in self.generate_examples_fn(**self.kwargs):
79 yield key, example
80
~\.cache\huggingface\modules\datasets_modules\datasets\scitldr\72d6e2195786c57e1d343066fb2cc4f93ea39c5e381e53e6ae7c44bbfd1f05ef\scitldr.py in _generate_examples(self, filepath, split)
162
163 with open(filepath, encoding="utf-8") as f:
--> 164 for id_, row in enumerate(f):
165 data = json.loads(row)
166 if self.config.name == "AIC":
~\miniconda3\envs\datasets\lib\site-packages\fsspec\implementations\http.py in read(self, length)
496 else:
497 length = min(self.size - self.loc, length)
--> 498 return super().read(length)
499
500 async def async_fetch_all(self):
~\miniconda3\envs\datasets\lib\site-packages\fsspec\spec.py in read(self, length)
1481 # don't even bother calling fetch
1482 return b""
-> 1483 out = self.cache._fetch(self.loc, self.loc + length)
1484 self.loc += len(out)
1485 return out
~\miniconda3\envs\datasets\lib\site-packages\fsspec\caching.py in _fetch(self, start, end)
378 elif start < self.start:
379 if self.end - end > self.blocksize:
--> 380 self.cache = self.fetcher(start, bend)
381 self.start = start
382 else:
~\miniconda3\envs\datasets\lib\site-packages\fsspec\asyn.py in wrapper(*args, **kwargs)
86 def wrapper(*args, **kwargs):
87 self = obj or args[0]
---> 88 return sync(self.loop, func, *args, **kwargs)
89
90 return wrapper
~\miniconda3\envs\datasets\lib\site-packages\fsspec\asyn.py in sync(loop, func, timeout, *args, **kwargs)
67 raise FSTimeoutError
68 if isinstance(result[0], BaseException):
---> 69 raise result[0]
70 return result[0]
71
~\miniconda3\envs\datasets\lib\site-packages\fsspec\asyn.py in _runner(event, coro, result, timeout)
23 coro = asyncio.wait_for(coro, timeout=timeout)
24 try:
---> 25 result[0] = await coro
26 except Exception as ex:
27 result[0] = ex
~\miniconda3\envs\datasets\lib\site-packages\fsspec\implementations\http.py in async_fetch_range(self, start, end)
538 if r.status == 206:
539 # partial content, as expected
--> 540 out = await r.read()
541 elif "Content-Length" in r.headers:
542 cl = int(r.headers["Content-Length"])
~\miniconda3\envs\datasets\lib\site-packages\aiohttp\client_reqrep.py in read(self)
1030 if self._body is None:
1031 try:
-> 1032 self._body = await self.content.read()
1033 for trace in self._traces:
1034 await trace.send_response_chunk_received(
~\miniconda3\envs\datasets\lib\site-packages\aiohttp\streams.py in read(self, n)
342 async def read(self, n: int = -1) -> bytes:
343 if self._exception is not None:
--> 344 raise self._exception
345
346 # migration problem; with DataQueue you have to catch
ClientPayloadError: 400, message='Can not decode content-encoding: gzip'
```
## Environment info
- `datasets` version: 1.12.0
- Platform: Windows-10-10.0.19041-SP0
- Python version: 3.8.5
- PyArrow version: 2.0.0
- aiohttp version: 3.7.4.post0
| 2,918 |
https://github.com/huggingface/datasets/issues/2917 | windows download abnormal | [
"Hi ! Is there some kind of proxy that is configured in your browser that gives you access to internet ? If it's the case it could explain why it doesn't work in the code, since the proxy wouldn't be used",
"It is indeed an agency problem, thank you very, very much",
"Let me know if you have other questions :)\r\n\r\nClosing this issue now"
] | ## Describe the bug
The script clearly exists (accessible from the browser), but the script download fails on windows. Then I tried it again and it can be downloaded normally on linux. why??
## Steps to reproduce the bug
```python3.7 + windows

# Sample code to reproduce the bug
```
## Expected results
It can be downloaded normally.
## Actual results
it cann't
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:1.11.0
- Platform:windows
- Python version:3.7
- PyArrow version:
| 2,917 |
https://github.com/huggingface/datasets/issues/2914 | Having a dependency defining fsspec entrypoint raises an AttributeError when importing datasets | [
"Closed by #2915."
] | ## Describe the bug
In one of my project, I defined a custom fsspec filesystem with an entrypoint.
My guess is that by doing so, a variable named `spec` is created in the module `fsspec` (created by entering a for loop as there are entrypoints defined, see the loop in question [here](https://github.com/intake/filesystem_spec/blob/0589358d8a029ed6b60d031018f52be2eb721291/fsspec/__init__.py#L55)).
So that `fsspec.spec`, that was previously referring to the `spec` submodule, is now referring to that `spec` variable.
This make the import of datasets failing as it is using that `fsspec.spec`.
## Steps to reproduce the bug
I could reproduce the bug with a dummy poetry project.
Here is the pyproject.toml:
```toml
[tool.poetry]
name = "debug-datasets"
version = "0.1.0"
description = ""
authors = ["Pierre Godard"]
[tool.poetry.dependencies]
python = "^3.8"
datasets = "^1.11.0"
[tool.poetry.dev-dependencies]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.poetry.plugins."fsspec.specs"]
"file2" = "fsspec.implementations.local.LocalFileSystem"
```
The only other file being a `debug_datasets/__init__.py` empty file.
The overall structure of the project is as follows:
```
.
├── pyproject.toml
└── debug_datasets
└── __init__.py
```
Then, within the project folder run:
```
poetry install
poetry run python
```
And in the python interpreter, try to import `datasets`:
```
import datasets
```
## Expected results
The import should run successfully.
## Actual results
Here is the trace of the error I get:
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/godarpi/.cache/pypoetry/virtualenvs/debug-datasets-JuFzTKL--py3.8/lib/python3.8/site-packages/datasets/__init__.py", line 33, in <module>
from .arrow_dataset import Dataset, concatenate_datasets
File "/home/godarpi/.cache/pypoetry/virtualenvs/debug-datasets-JuFzTKL--py3.8/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 48, in <module>
from .filesystems import extract_path_from_uri, is_remote_filesystem
File "/home/godarpi/.cache/pypoetry/virtualenvs/debug-datasets-JuFzTKL--py3.8/lib/python3.8/site-packages/datasets/filesystems/__init__.py", line 30, in <module>
def is_remote_filesystem(fs: fsspec.spec.AbstractFileSystem) -> bool:
AttributeError: 'EntryPoint' object has no attribute 'AbstractFileSystem'
```
## Suggested fix
`datasets/filesystems/__init__.py`, line 30, replace:
```
def is_remote_filesystem(fs: fsspec.spec.AbstractFileSystem) -> bool:
```
by:
```
def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool:
```
I will come up with a PR soon if this effectively solves the issue.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.11.0
- Platform: WSL2 (Ubuntu 20.04.1 LTS)
- Python version: 3.8.5
- PyArrow version: 5.0.0
- `fsspec` version: 2021.8.1
| 2,914 |
https://github.com/huggingface/datasets/issues/2913 | timit_asr dataset only includes one text phrase | [
"Hi @margotwagner, \r\nThis bug was fixed in #1995. Upgrading the datasets should work (min v1.8.0 ideally)",
"Hi @margotwagner,\r\n\r\nYes, as @bhavitvyamalik has commented, this bug was fixed in `datasets` version 1.5.0. You need to update it, as your current version is 1.4.1:\r\n> Environment info\r\n> - `datasets` version: 1.4.1"
] | ## Describe the bug
The dataset 'timit_asr' only includes one text phrase. It only includes the transcription "Would such an act of refusal be useful?" multiple times rather than different phrases.
## Steps to reproduce the bug
Note: I am following the tutorial https://huggingface.co/blog/fine-tune-wav2vec2-english
1. Install the dataset and other packages
```python
!pip install datasets>=1.5.0
!pip install transformers==4.4.0
!pip install soundfile
!pip install jiwer
```
2. Load the dataset
```python
from datasets import load_dataset, load_metric
timit = load_dataset("timit_asr")
```
3. Remove columns that we don't want
```python
timit = timit.remove_columns(["phonetic_detail", "word_detail", "dialect_region", "id", "sentence_type", "speaker_id"])
```
4. Write a short function to display some random samples of the dataset.
```python
from datasets import ClassLabel
import random
import pandas as pd
from IPython.display import display, HTML
def show_random_elements(dataset, num_examples=10):
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
picks = []
for _ in range(num_examples):
pick = random.randint(0, len(dataset)-1)
while pick in picks:
pick = random.randint(0, len(dataset)-1)
picks.append(pick)
df = pd.DataFrame(dataset[picks])
display(HTML(df.to_html()))
show_random_elements(timit["train"].remove_columns(["file"]))
```
## Expected results
10 random different transcription phrases.
## Actual results
10 of the same transcription phrase "Would such an act of refusal be useful?"
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.4.1
- Platform: macOS-10.15.7-x86_64-i386-64bit
- Python version: 3.8.5
- PyArrow version: not listed
| 2,913 |
https://github.com/huggingface/datasets/issues/2904 | FORCE_REDOWNLOAD does not work | [
"Hi ! Thanks for reporting. The error seems to happen only if you use compressed files.\r\n\r\nThe second dataset is prepared in another dataset cache directory than the first - which is normal, since the source file is different. However, it doesn't uncompress the new data file because it finds the old uncompressed data in the extraction cache directory.\r\n\r\nIf we fix the extraction cache mechanism to uncompress a local file if it changed then it should fix the issue.\r\nCurrently the extraction cache mechanism only takes into account the path of the compressed file, which is an issue.",
"Facing the same issue, is there any way to overtake this issue until it will be fixed? ",
"You can clear your extraction cache in the meantime (by default at `~/.cache/huggingface/datasets/downloads/extracted`)"
] | ## Describe the bug
With GenerateMode.FORCE_REDOWNLOAD, the documentation says
+------------------------------------+-----------+---------+
| | Downloads | Dataset |
+====================================+===========+=========+
| `REUSE_DATASET_IF_EXISTS` (default)| Reuse | Reuse |
+------------------------------------+-----------+---------+
| `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh |
+------------------------------------+-----------+---------+
| `FORCE_REDOWNLOAD` | Fresh | Fresh |
+------------------------------------+-----------+---------+
However, the old dataset is loaded even when FORCE_REDOWNLOAD is chosen.
## Steps to reproduce the bug
```python
import pandas as pd
from datasets import load_dataset, GenerateMode
pd.DataFrame(range(5), columns=['numbers']).to_csv('/tmp/test.tsv.gz', index=False)
ee = load_dataset('csv', data_files=['/tmp/test.tsv.gz'], delimiter='\t', split='train', download_mode=GenerateMode.FORCE_REDOWNLOAD)
print(ee)
pd.DataFrame(range(10), columns=['numerals']).to_csv('/tmp/test.tsv.gz', index=False)
ee = load_dataset('csv', data_files=['/tmp/test.tsv.gz'], delimiter='\t', split='train', download_mode=GenerateMode.FORCE_REDOWNLOAD)
print(ee)
```
## Expected results
Dataset({
features: ['numbers'],
num_rows: 5
})
Dataset({
features: ['numerals'],
num_rows: 10
})
## Actual results
Dataset({
features: ['numbers'],
num_rows: 5
})
Dataset({
features: ['numbers'],
num_rows: 5
})
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.8.0
- Platform: Linux-4.14.181-108.257.amzn1.x86_64-x86_64-with-glibc2.10
- Python version: 3.7.10
- PyArrow version: 3.0.0
| 2,904 |
https://github.com/huggingface/datasets/issues/2902 | Add WIT Dataset | [
"@hassiahk is working on it #2810 ",
"WikiMedia is now hosting the pixel values directly which should make it a lot easier!\r\nThe files can be found here:\r\nhttps://techblog.wikimedia.org/2021/09/09/the-wikipedia-image-caption-matching-challenge-and-a-huge-release-of-image-data-for-research/\r\nhttps://analytics.wikimedia.org/published/datasets/one-off/caption_competition/training/image_pixels/",
"> @hassiahk is working on it #2810\r\n\r\nThank you @bhavitvyamalik! Added this issue so we could track progress 😄 . Just linked the PR as well for visibility. ",
"Hey folks, we are now hosting the merged pixel values + embeddings + metadata ourselves. I gave it a try - [nateraw/wit](https://huggingface.co/datasets/nateraw/wit)\r\n\r\n**⚠️ - Make sure you add `streaming=True` unless you're prepared to download 400GB of data!**\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset('nateraw/wit', streaming=True)\r\nexample = next(iter(ds))\r\n```\r\n\r\n```python\r\n>>> example = next(iter(ds['train']))\r\n>>> example.keys()\r\ndict_keys(['b64_bytes', 'original_width', 'image_url', 'wit_features', 'original_height', 'metadata_url', 'mime_type', 'caption_attribution_description', 'embedding'])\r\n>>> example['wit_features'].keys()\r\ndict_keys(['hierarchical_section_title', 'language', 'attribution_passes_lang_id', 'context_section_description', 'is_main_image', 'page_title', 'caption_title_and_reference_description', 'caption_alt_text_description', 'caption_reference_description', 'page_url', 'context_page_description', 'section_title', 'page_changed_recently'])\r\n```",
"Hi! `datasets` now hosts two versions of the WIT dataset:\r\n* [`google/wit`](https://huggingface.co/datasets/google/wit): Google's version with the image URLs\r\n* [`wikimedia/wit_base`](https://huggingface.co/datasets/wikimedia/wit_base): Wikimedia's version with the images + ResNet embeddings, but with less data than Google's version"
] | ## Adding a Dataset
- **Name:** *WIT*
- **Description:** *Wikipedia-based Image Text Dataset*
- **Paper:** *[WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning
](https://arxiv.org/abs/2103.01913)*
- **Data:** *https://github.com/google-research-datasets/wit*
- **Motivation:** (excerpt from their Github README.md)
> - The largest multimodal dataset (publicly available at the time of this writing) by the number of image-text examples.
> - A massively multilingual dataset (first of its kind) with coverage for over 100+ languages.
> - A collection of diverse set of concepts and real world entities.
> - Brings forth challenging real-world test sets.
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
| 2,902 |
https://github.com/huggingface/datasets/issues/2901 | Incompatibility with pytest | [
"Sorry, my bad... When implementing `xpathopen`, I just considered the use case in the COUNTER dataset... I'm fixing it!"
] | ## Describe the bug
pytest complains about xpathopen / path.open("w")
## Steps to reproduce the bug
Create a test file, `test.py`:
```python
import datasets as ds
def load_dataset():
ds.load_dataset("counter", split="train", streaming=True)
```
And launch it with pytest:
```bash
python -m pytest test.py
```
## Expected results
It should give something like:
```
collected 1 item
test.py . [100%]
======= 1 passed in 3.15s =======
```
## Actual results
```
============================================================================================================================= test session starts ==============================================================================================================================
platform linux -- Python 3.8.11, pytest-6.2.5, py-1.10.0, pluggy-1.0.0
rootdir: /home/slesage/hf/datasets-preview-backend, configfile: pyproject.toml
plugins: anyio-3.3.1
collected 1 item
tests/queries/test_rows.py . [100%]Traceback (most recent call last):
File "/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pytest/__main__.py", line 5, in <module>
raise SystemExit(pytest.console_main())
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/config/__init__.py", line 185, in console_main
code = main()
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/config/__init__.py", line 162, in main
ret: Union[ExitCode, int] = config.hook.pytest_cmdline_main(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265, in __call__
return self._hookexec(self.name, self.get_hookimpls(), kwargs, firstresult)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80, in _hookexec
return self._inner_hookexec(hook_name, methods, kwargs, firstresult)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_callers.py", line 60, in _multicall
return outcome.get_result()
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_result.py", line 60, in get_result
raise ex[1].with_traceback(ex[2])
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39, in _multicall
res = hook_impl.function(*args)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/main.py", line 316, in pytest_cmdline_main
return wrap_session(config, _main)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/main.py", line 304, in wrap_session
config.hook.pytest_sessionfinish(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265, in __call__
return self._hookexec(self.name, self.get_hookimpls(), kwargs, firstresult)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80, in _hookexec
return self._inner_hookexec(hook_name, methods, kwargs, firstresult)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_callers.py", line 55, in _multicall
gen.send(outcome)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/terminal.py", line 803, in pytest_sessionfinish
outcome.get_result()
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_result.py", line 60, in get_result
raise ex[1].with_traceback(ex[2])
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39, in _multicall
res = hook_impl.function(*args)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/cacheprovider.py", line 428, in pytest_sessionfinish
config.cache.set("cache/nodeids", sorted(self.cached_nodeids))
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/_pytest/cacheprovider.py", line 188, in set
f = path.open("w")
TypeError: xpathopen() takes 1 positional argument but 2 were given
```
## Environment info
- `datasets` version: 1.12.0
- Platform: Linux-5.11.0-1017-aws-x86_64-with-glibc2.29
- Python version: 3.8.11
- PyArrow version: 4.0.1
| 2,901 |
https://github.com/huggingface/datasets/issues/2899 | Dataset | [] | ## Adding a Dataset
- **Name:** *name of the dataset*
- **Description:** *short description of the dataset (or link to social media or blog post)*
- **Paper:** *link to the dataset paper if available*
- **Data:** *link to the Github repository or current dataset location*
- **Motivation:** *what are some good reasons to have this dataset*
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). | 2,899 |
https://github.com/huggingface/datasets/issues/2898 | Hug emoji | [] | ## Adding a Dataset
- **Name:** *name of the dataset*
- **Description:** *short description of the dataset (or link to social media or blog post)*
- **Paper:** *link to the dataset paper if available*
- **Data:** *link to the Github repository or current dataset location*
- **Motivation:** *what are some good reasons to have this dataset*
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). | 2,898 |
https://github.com/huggingface/datasets/issues/2892 | Error when encoding a dataset with None objects with a Sequence feature | [
"This has been fixed by https://github.com/huggingface/datasets/pull/2900\r\nWe're doing a new release 1.12 today to make the fix available :)"
] | There is an error when encoding a dataset with None objects with a Sequence feature
To reproduce:
```python
from datasets import Dataset, Features, Value, Sequence
data = {"a": [[0], None]}
features = Features({"a": Sequence(Value("int32"))})
dataset = Dataset.from_dict(data, features=features)
```
raises
```python
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-40add67f8751> in <module>
2 data = {"a": [[0], None]}
3 features = Features({"a": Sequence(Value("int32"))})
----> 4 dataset = Dataset.from_dict(data, features=features)
[...]
~/datasets/features.py in encode_nested_example(schema, obj)
888 if isinstance(obj, str): # don't interpret a string as a list
889 raise ValueError("Got a string but expected a list instead: '{}'".format(obj))
--> 890 return [encode_nested_example(schema.feature, o) for o in obj]
891 # Object with special encoding:
892 # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks
TypeError: 'NoneType' object is not iterable
```
Instead, if should run without error, as if the `features` were not passed | 2,892 |
https://github.com/huggingface/datasets/issues/2890 | 0x290B112ED1280537B24Ee6C268a004994a16e6CE | [] | ## Adding a Dataset
- **Name:** *name of the dataset*
- **Description:** *short description of the dataset (or link to social media or blog post)*
- **Paper:** *link to the dataset paper if available*
- **Data:** *link to the Github repository or current dataset location*
- **Motivation:** *what are some good reasons to have this dataset*
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). | 2,890 |
https://github.com/huggingface/datasets/issues/2889 | Coc | [] | ## Adding a Dataset
- **Name:** *name of the dataset*
- **Description:** *short description of the dataset (or link to social media or blog post)*
- **Paper:** *link to the dataset paper if available*
- **Data:** *link to the Github repository or current dataset location*
- **Motivation:** *what are some good reasons to have this dataset*
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). | 2,889 |
https://github.com/huggingface/datasets/issues/2888 | v1.11.1 release date | [
"Hi ! Probably 1.12 on monday :)\r\n",
"@albertvillanova i think this issue is still valid and should not be closed till `>1.11.0` is published :)"
] | Hello, i need to use latest features in one of my packages but there have been no new datasets release since 2 months ago.
When do you plan to publush v1.11.1 release? | 2,888 |
https://github.com/huggingface/datasets/issues/2886 | Hj | [] | null | 2,886 |
https://github.com/huggingface/datasets/issues/2885 | Adding an Elastic Search index to a Dataset | [
"Hi, is this bug deterministic in your poetry env ? I mean, does it always stop at 90% or is it random ?\r\n\r\nAlso, can you try using another version of Elasticsearch ? Maybe there's an issue with the one of you poetry env",
"I face similar issue with oscar dataset on remote ealsticsearch instance. It was mainly due to timeout of batch indexing requests and I solve these by adding large request_timeout param in `search.py`\r\n\r\n```\r\n for ok, action in es.helpers.streaming_bulk(\r\n client=self.es_client,\r\n index=index_name,\r\n actions=passage_generator(),\r\n request_timeout=3600,\r\n )\r\n ```",
"Hi @MotzWanted - are there any errors in the Elasticsearch cluster logs? Since it works in your local environment and the cluster versions are different between your poetry env and your local env, it is possible that it is some difference in the cluster - either settings or the cluster being under a different load etc that has this effect, so it would be useful to see if any errors are thrown in the cluster's logs when you try to ingest. \r\nWhich elasticsearch client method is the function `add_elasticsearch_index` from your code using under the hood? Is it `helpers.bulk` or is the indexing performed using something else? You can try adding a timeout to the indexing method to see if this helps. Also, you mention that it stops at around 90% - do you know if the timeout/hanging happens always when a particular document is being indexed or does it happen randomly at around 90% completeness but on different documents?"
] | ## Describe the bug
When trying to index documents from the squad dataset, the connection to ElasticSearch seems to break:
Reusing dataset squad (/Users/andreasmotz/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453)
90%|████████████████████████████████████████████▉ | 9501/10570 [00:01<00:00, 6335.61docs/s]
No error is thrown, but the indexing breaks ~90%.
## Steps to reproduce the bug
```python
# Sample code to reproduce the bug
from datasets import load_dataset
from elasticsearch import Elasticsearch
es = Elasticsearch()
squad = load_dataset('squad', split='validation')
index_name = "corpus"
es_config = {
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"idx" : {"type" : "keyword"},
"title" : {"type" : "keyword"},
"text": {
"type": "text",
"analyzer": "standard",
"similarity": "BM25"
},
}
},
}
class IndexBuilder:
"""
Elastic search indexing of a corpus
"""
def __init__(
self,
*args,
#corpus : None,
dataset : squad,
index_name = str,
query = str,
config = dict,
**kwargs,
):
#instantiate HuggingFace dataset
self.dataset = dataset
#instantiate ElasticSearch config
self.config = config
self.es = Elasticsearch()
self.index_name = index_name
self.query = query
def elastic_index(self):
print(self.es.info)
self.es.indices.delete(index=self.index_name, ignore=[400, 404])
search_index = self.dataset.add_elasticsearch_index(column='context', host='localhost', port='9200', es_index_name=self.index_name, es_index_config=self.config)
return search_index
def exact_match_method(self, index):
scores, retrieved_examples = index.get_nearest_examples('context', query=self.query, k=1)
return scores, retrieved_examples
if __name__ == "__main__":
print(type(squad))
Index = IndexBuilder(dataset=squad, index_name='corpus_index', query='Where was Chopin born?', config=es_config)
search_index = Index.elastic_index()
scores, examples = Index.exact_match_method(search_index)
print(scores, examples)
for name in squad.column_names:
print(type(squad[name]))
```
## Environment info
We run the code in Poetry. This might be the issue, since the script runs successfully in our local environment.
Poetry:
- Python version: 3.8
- PyArrow: 4.0.1
- Elasticsearch: 7.13.4
- datasets: 1.10.2
Local:
- Python version: 3.8
- PyArrow: 3.0.0
- Elasticsearch: 7.7.1
- datasets: 1.7.0
| 2,885 |
https://github.com/huggingface/datasets/issues/2882 | `load_dataset('docred')` results in a `NonMatchingChecksumError` | [
"Hi @tmpr, thanks for reporting.\r\n\r\nTwo weeks ago (23th Aug), the host of the source `docred` dataset updated one of the files (`dev.json`): you can see it [here](https://drive.google.com/drive/folders/1c5-0YwnoJx8NS6CV2f-NoTHR__BdkNqw).\r\n\r\nTherefore, the checksum needs to be updated.\r\n\r\nNormally, in the meantime, you could avoid the error by passing `ignore_verifications=True` to `load_dataset`. However, as the old link points to a non-existing file, the link must be updated too.\r\n\r\nI'm fixing all this.\r\n\r\n"
] | ## Describe the bug
I get consistent `NonMatchingChecksumError: Checksums didn't match for dataset source files` errors when trying to execute `datasets.load_dataset('docred')`.
## Steps to reproduce the bug
It is quasi only this code:
```python
import datasets
data = datasets.load_dataset('docred')
```
## Expected results
The DocRED dataset should be loaded without any problems.
## Actual results
```
NonMatchingChecksumError Traceback (most recent call last)
<ipython-input-4-b1b83f25a16c> in <module>
----> 1 d = datasets.load_dataset('docred')
~/anaconda3/lib/python3.8/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, task, streaming, **config_kwargs)
845
846 # Download and prepare data
--> 847 builder_instance.download_and_prepare(
848 download_config=download_config,
849 download_mode=download_mode,
~/anaconda3/lib/python3.8/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)
613 logger.warning("HF google storage unreachable. Downloading and preparing it from source")
614 if not downloaded_from_gcs:
--> 615 self._download_and_prepare(
616 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs
617 )
~/anaconda3/lib/python3.8/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)
673 # Checksums verification
674 if verify_infos:
--> 675 verify_checksums(
676 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files"
677 )
~/anaconda3/lib/python3.8/site-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name)
38 if len(bad_urls) > 0:
39 error_msg = "Checksums didn't match" + for_verification_name + ":\n"
---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls))
41 logger.info("All the checksums matched successfully" + for_verification_name)
42
NonMatchingChecksumError: Checksums didn't match for dataset source files:
['https://drive.google.com/uc?export=download&id=1fDmfUUo5G7gfaoqWWvK81u08m71TK2g7']
```
## Environment info
- `datasets` version: 1.11.0
- Platform: Linux-5.11.0-7633-generic-x86_64-with-glibc2.10
- Python version: 3.8.5
- PyArrow version: 5.0.0
This error also happened on my Windows-partition, after freshly installing python 3.9 and `datasets`.
## Remarks
- I have already called `rm -rf /home/<user>/.cache/huggingface`, i.e., I have tried clearing the cache.
- The problem does not exist for other datasets, i.e., it seems to be DocRED-specific. | 2,882 |
https://github.com/huggingface/datasets/issues/2879 | In v1.4.1, all TIMIT train transcripts are "Would such an act of refusal be useful?" | [
"Hi @rcgale, thanks for reporting.\r\n\r\nPlease note that this bug was fixed on `datasets` version 1.5.0: https://github.com/huggingface/datasets/commit/a23c73e526e1c30263834164f16f1fdf76722c8c#diff-f12a7a42d4673bb6c2ca5a40c92c29eb4fe3475908c84fd4ce4fad5dc2514878\r\n\r\nIf you update `datasets` version, that should work.\r\n\r\nOn the other hand, would it be possible for @patrickvonplaten to update the [blog post](https://huggingface.co/blog/fine-tune-wav2vec2-english) with the correct version of `datasets`?",
"I just proposed a change in the blog post.\r\n\r\nI had assumed there was a data format change that broke a previous version of the code, since presumably @patrickvonplaten tested the tutorial with the version they explicitly referenced. But that fix you linked suggests a problem in the code, which surprised me.\r\n\r\nI still wonder, though, is there a way for downloads to be invalidated server-side? If the client can announce its version during a download request, perhaps the server could reject known incompatibilities? It would save much valuable time if `datasets` raised an informative error on a known problem (\"Error: the requested data set requires `datasets>=1.5.0`.\"). This kind of API versioning is a prudent move anyhow, as there will surely come a time when you'll need to make a breaking change to data.",
"Also, thank you for a quick and helpful reply!"
] | ## Describe the bug
Using version 1.4.1 of `datasets`, TIMIT transcripts are all the same.
## Steps to reproduce the bug
I was following this tutorial
- https://huggingface.co/blog/fine-tune-wav2vec2-english
But here's a distilled repro:
```python
!pip install datasets==1.4.1
from datasets import load_dataset
timit = load_dataset("timit_asr", cache_dir="./temp")
unique_transcripts = set(timit["train"]["text"])
print(unique_transcripts)
assert len(unique_transcripts) > 1
```
## Expected results
Expected the correct TIMIT data. Or an error saying that this version of `datasets` can't produce it.
## Actual results
Every train transcript was "Would such an act of refusal be useful?" Every test transcript was "The bungalow was pleasantly situated near the shore."
## Environment info
- `datasets` version: 1.4.1
- Platform: Darwin-18.7.0-x86_64-i386-64bit
- Python version: 3.7.9
- PyTorch version (GPU?): 1.9.0 (False)
- Tensorflow version (GPU?): not installed (NA)
- Using GPU in script?: tried both
- Using distributed or parallel set-up in script?: no
-
| 2,879 |
https://github.com/huggingface/datasets/issues/2878 | NotADirectoryError: [WinError 267] During load_from_disk | [] | ## Describe the bug
Trying to load saved dataset or dataset directory from Amazon S3 on a Windows machine fails.
Performing the same operation succeeds on non-windows environment (AWS Sagemaker).
## Steps to reproduce the bug
```python
# Followed https://huggingface.co/docs/datasets/filesystems.html#loading-a-processed-dataset-from-s3
from datasets import load_from_disk
from datasets.filesystems import S3FileSystem
s3_file = "output of save_to_disk"
s3_filesystem = S3FileSystem()
load_from_disk(s3_file, fs=s3_filesystem)
```
## Expected results
load_from_disk succeeds without error
## Actual results
Seems like it succeeds in pulling the file into a windows temp directory, as it exists in my system, but fails to process it.
```
Exception ignored in: <finalize object at 0x26409231ce0; dead>
Traceback (most recent call last):
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\weakref.py", line 566, in __call__
return info.func(*info.args, **(info.kwargs or {}))
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 817, in _cleanup
cls._rmtree(name)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 813, in _rmtree
_shutil.rmtree(name, onerror=onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 740, in rmtree
return _rmtree_unsafe(path, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
[Previous line repeated 2 more times]
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 618, in _rmtree_unsafe
onerror(os.unlink, fullname, sys.exc_info())
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 805, in onerror
cls._rmtree(path)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 813, in _rmtree
_shutil.rmtree(name, onerror=onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 740, in rmtree
return _rmtree_unsafe(path, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 599, in _rmtree_unsafe
onerror(os.scandir, path, sys.exc_info())
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 596, in _rmtree_unsafe
with os.scandir(path) as scandir_it:
NotADirectoryError: [WinError 267] The directory name is invalid: 'C:\\Users\\grassycup\\AppData\\Local\\Temp\\tmp45f_qbma\\tests3bucket\\output\\test_output\\train\\dataset.arrow'
Exception ignored in: <finalize object at 0x264091c7880; dead>
Traceback (most recent call last):
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\weakref.py", line 566, in __call__
return info.func(*info.args, **(info.kwargs or {}))
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 817, in _cleanup
cls._rmtree(name)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 813, in _rmtree
_shutil.rmtree(name, onerror=onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 740, in rmtree
return _rmtree_unsafe(path, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 613, in _rmtree_unsafe
_rmtree_unsafe(fullname, onerror)
[Previous line repeated 2 more times]
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 618, in _rmtree_unsafe
onerror(os.unlink, fullname, sys.exc_info())
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 805, in onerror
cls._rmtree(path)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\tempfile.py", line 813, in _rmtree
_shutil.rmtree(name, onerror=onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 740, in rmtree
return _rmtree_unsafe(path, onerror)
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 599, in _rmtree_unsafe
onerror(os.scandir, path, sys.exc_info())
File "C:\Users\grassycup\Anaconda3\envs\hello.world\lib\shutil.py", line 596, in _rmtree_unsafe
with os.scandir(path) as scandir_it:
NotADirectoryError: [WinError 267] The directory name is invalid:
'C:\\Users\\grassycup\\AppData\\Local\\Temp\\tmp45f_qbma\\tests3bucket\\output\\test_output\\train\\dataset.arrow'
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.11.0
- Platform: Windows-10-10.0.19042-SP0
- Python version: 3.8.11
- PyArrow version: 3.0.0
| 2,878 |
https://github.com/huggingface/datasets/issues/2877 | Don't keep the dummy data folder or dataset_infos.json when resolving data files | [
"Hi @lhoestq I am new to huggingface datasets, I would like to work on this issue!\r\n",
"Thanks for the help :) \r\n\r\nAs mentioned in the PR, excluding files named \"dummy_data.zip\" is actually more general than excluding the files inside a \"dummy\" folder. I just did the change in the PR, I think we can merge it now"
] | When there's no dataset script, all the data files of a folder or a repository on the Hub are loaded as data files.
There are already a few exceptions:
- files starting with "." are ignored
- the dataset card "README.md" is ignored
- any file named "config.json" is ignored (currently it isn't used anywhere, but it could be used in the future to define splits or configs for example, but not 100% sure)
However any data files in a folder named "dummy" should be ignored as well as they should only be used to test the dataset.
Same for "dataset_infos.json" which should only be used to get the `dataset.info` | 2,877 |
https://github.com/huggingface/datasets/issues/2875 | Add Congolese Swahili speech datasets | [] | ## Adding a Dataset
- **Name:** Congolese Swahili speech corpora
- **Data:** https://gamayun.translatorswb.org/data/
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
Also related: https://mobile.twitter.com/OktemAlp/status/1435196393631764482 | 2,875 |
https://github.com/huggingface/datasets/issues/2871 | datasets.config.PYARROW_VERSION has no attribute 'major' | [
"I have changed line 288 to `if int(datasets.config.PYARROW_VERSION.split(\".\")[0]) < 3:` just to get around it.",
"Hi @bwang482,\r\n\r\nI'm sorry but I'm not able to reproduce your bug.\r\n\r\nPlease note that in our current master branch, we made a commit (d03223d4d64b89e76b48b00602aba5aa2f817f1e) that simultaneously modified:\r\n- test_dataset_common.py: https://github.com/huggingface/datasets/commit/d03223d4d64b89e76b48b00602aba5aa2f817f1e#diff-a1bc225bd9a5bade373d1f140e24d09cbbdc97971c2f73bb627daaa803ada002L289 that introduces the usage of `datasets.config.PYARROW_VERSION.major`\r\n- but also changed config.py: https://github.com/huggingface/datasets/commit/d03223d4d64b89e76b48b00602aba5aa2f817f1e#diff-e021fcfc41811fb970fab889b8d245e68382bca8208e63eaafc9a396a336f8f2L40, so that `datasets.config.PYARROW_VERSION.major` exists\r\n",
"Sorted. Thanks!",
"Reopening this. Although the `test_dataset_common.py` script works fine now.\r\n\r\nHas this got something to do with my pull request not passing `ci/circleci: run_dataset_script_tests_pyarrow` tests?\r\n\r\nhttps://github.com/huggingface/datasets/pull/2873",
"Hi @bwang482,\r\n\r\nIf you click on `Details` (on the right of your non passing CI test names: `ci/circleci: run_dataset_script_tests_pyarrow`), you can have more information about the non-passing tests.\r\n\r\nFor example, for [\"ci/circleci: run_dataset_script_tests_pyarrow_1\" details](https://circleci.com/gh/huggingface/datasets/46324?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link), you can see that the only non-passing test has to do with the dataset card (missing information in the `README.md` file): `test_changed_dataset_card`\r\n```\r\n=========================== short test summary info ============================\r\nFAILED tests/test_dataset_cards.py::test_changed_dataset_card[swedish_medical_ner]\r\n= 1 failed, 3214 passed, 2874 skipped, 2 xfailed, 1 xpassed, 15 warnings in 175.59s (0:02:55) =\r\n```\r\n\r\nTherefore, your PR non-passing test has nothing to do with this issue."
] | In the test_dataset_common.py script, line 288-289
```
if datasets.config.PYARROW_VERSION.major < 3:
packaged_datasets = [pd for pd in packaged_datasets if pd["dataset_name"] != "parquet"]
```
which throws the error below. `datasets.config.PYARROW_VERSION` itself return the string '4.0.1'. I have tested this on both datasets.__version_=='1.11.0' and '1.9.0'. I am using Mac OS.
```
import datasets
datasets.config.PYARROW_VERSION.major
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
/var/folders/1f/0wqmlgp90qjd5mpj53fnjq440000gn/T/ipykernel_73361/2547517336.py in <module>
1 import datasets
----> 2 datasets.config.PYARROW_VERSION.major
AttributeError: 'str' object has no attribute 'major'
```
## Environment info
- `datasets` version: 1.11.0
- Platform: Darwin-20.6.0-x86_64-i386-64bit
- Python version: 3.7.11
- PyArrow version: 4.0.1
| 2,871 |
https://github.com/huggingface/datasets/issues/2869 | TypeError: 'NoneType' object is not callable | [
"Hi, @Chenfei-Kang.\r\n\r\nI'm sorry, but I'm not able to reproduce your bug:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"glue\", 'cola')\r\nds\r\n```\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 8551\r\n })\r\n validation: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 1043\r\n })\r\n test: Dataset({\r\n features: ['sentence', 'label', 'idx'],\r\n num_rows: 1063\r\n })\r\n})\r\n```\r\n\r\nCould you please give more details and environment info (platform, PyArrow version)?",
"> Hi, @Chenfei-Kang.\r\n> \r\n> I'm sorry, but I'm not able to reproduce your bug:\r\n> \r\n> ```python\r\n> from datasets import load_dataset\r\n> \r\n> ds = load_dataset(\"glue\", 'cola')\r\n> ds\r\n> ```\r\n> \r\n> ```\r\n> DatasetDict({\r\n> train: Dataset({\r\n> features: ['sentence', 'label', 'idx'],\r\n> num_rows: 8551\r\n> })\r\n> validation: Dataset({\r\n> features: ['sentence', 'label', 'idx'],\r\n> num_rows: 1043\r\n> })\r\n> test: Dataset({\r\n> features: ['sentence', 'label', 'idx'],\r\n> num_rows: 1063\r\n> })\r\n> })\r\n> ```\r\n> \r\n> Could you please give more details and environment info (platform, PyArrow version)?\r\n\r\nSorry to reply you so late.\r\nplatform: pycharm 2021 + anaconda with python 3.7\r\nPyArrow version: 5.0.0\r\nhuggingface-hub: 0.0.16\r\ndatasets: 1.9.0\r\n",
"- For the platform, we need to know the operating system of your machine. Could you please run the command `datasets-cli env` and copy-and-paste its output below?\r\n- In relation with the error, you just gave us the error type and message (`TypeError: 'NoneType' object is not callable`). Could you please copy-paste the complete stack trace, so that we know exactly which part of the code threw the error?",
"> * For the platform, we need to know the operating system of your machine. Could you please run the command `datasets-cli env` and copy-and-paste its output below?\r\n> * In relation with the error, you just gave us the error type and message (`TypeError: 'NoneType' object is not callable`). Could you please copy-paste the complete stack trace, so that we know exactly which part of the code threw the error?\r\n\r\n1. For the platform, here are the output:\r\n - datasets` version: 1.11.0\r\n - Platform: Windows-10-10.0.19041-SP0\r\n - Python version: 3.7.10\r\n - PyArrow version: 5.0.0\r\n2. For the code and error:\r\n ```python\r\n from datasets import load_dataset, load_metric\r\n dataset = load_dataset(\"glue\", \"cola\")\r\n ```\r\n ```python\r\n Traceback (most recent call last):\r\n ....\r\n ....\r\n File \"my_file.py\", line 2, in <module>\r\n dataset = load_dataset(\"glue\", \"cola\")\r\n File \"My environments\\lib\\site-packages\\datasets\\load.py\", line 830, in load_dataset\r\n **config_kwargs,\r\n File \"My environments\\lib\\site-packages\\datasets\\load.py\", line 710, in load_dataset_builder\r\n **config_kwargs,\r\n TypeError: 'NoneType' object is not callable\r\n ```\r\n Thank you!",
"For that environment, I am sorry but I can't reproduce the bug: I can load the dataset without any problem.",
"One naive question: do you have internet access from the machine where you execute the code?",
"> For that environment, I am sorry but I can't reproduce the bug: I can load the dataset without any problem.\r\n\r\nBut I can download other task dataset such as `dataset = load_dataset('squad')`. I don't know what went wrong. Thank you so much!",
"Hi,friends. I meet the same problem. Do you have a way to fix this? Thanks!\r\n",
"I'm getting the same error. Have you solved the problem? Please tell me how to fix it"
] | ## Describe the bug
TypeError: 'NoneType' object is not callable
## Steps to reproduce the bug
```python
from datasets import load_dataset, load_metric
dataset = datasets.load_dataset("glue", 'cola')
```
## Expected results
A clear and concise description of the expected results.
## Actual results
Specify the actual results or traceback.
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 1.11.0
- Platform:
- Python version: 3.7
- PyArrow version:
| 2,869 |
https://github.com/huggingface/datasets/issues/2868 | Add Common Objects in 3D (CO3D) | [] | ## Adding a Dataset
- **Name:** *Common Objects in 3D (CO3D)*
- **Description:** *See blog post [here](https://ai.facebook.com/blog/common-objects-in-3d-dataset-for-3d-reconstruction)*
- **Paper:** *[link to paper](https://arxiv.org/abs/2109.00512)*
- **Data:** *[link to data](https://ai.facebook.com/datasets/co3d-downloads/)*
- **Motivation:** *excerpt from above blog post:*
> As the first data set of its kind, CO3D will aptly enable reconstruction of real-life 3D objects. Indeed, CO3D already provides training data to enable our NeRFormer to tackle the new-view synthesis (NVS) task. Here, photorealistic NVS is a major step on the path to fully immersive AR/VR effects, where objects can be virtually transported across different environments, which will allow connecting users by sharing or recollecting their experiences.
>
> Besides practical applications in AR/VR, we hope that the data set will become a standard testbed for the recent proliferation of methods (including NeRFormer, Implicit Differentiable Renderer, NeRF, and others) that reconstruct 3D scenes by means of an implicit shape model.
>
Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
| 2,868 |
https://github.com/huggingface/datasets/issues/2866 | "counter" dataset raises an error in normal mode, but not in streaming mode | [
"Hi @severo, thanks for reporting.\r\n\r\nJust note that currently not all canonical datasets support streaming mode: this is one case!\r\n\r\nAll datasets that use `pathlib` joins (using `/`) instead of `os.path.join` (as in this dataset) do not support streaming mode yet.",
"OK. Do you think it's possible to detect this, and raise an exception (maybe `NotImplementedError`, or a specific `StreamingError`)?",
"We should definitely support datasets using `pathlib` in streaming mode...\r\n\r\nFor non-supported datasets in streaming mode, we have already a request of raising an error/warning: see #2654.",
"Hi @severo, please note that \"counter\" dataset will be streamable (at least until it arrives at the missing file, error already in normal mode) once these PRs are merged:\r\n- #2874\r\n- #2876\r\n- #2880\r\n\r\nI have tested it. 😉 ",
"Now (on master), we get:\r\n\r\n```\r\nimport datasets as ds\r\nds.load_dataset('counter', split=\"train\", streaming=False)\r\n```\r\n\r\n```\r\nUsing custom data configuration default\r\nDownloading and preparing dataset counter/default (download: 1.29 MiB, generated: 2.48 MiB, post-processed: Unknown size, total: 3.77 MiB) to /home/slesage/.cache/huggingface/datasets/counter/default/1.0.0/9f84962fa0f35bec5a34fe0bdff8681838d497008c457f7856c48654476ec0e9...\r\nTraceback (most recent call last):\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 726, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 1124, in _prepare_split\r\n for key, record in utils.tqdm(\r\n File \"/home/slesage/hf/datasets/.venv/lib/python3.8/site-packages/tqdm/std.py\", line 1185, in __iter__\r\n for obj in iterable:\r\n File \"/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/counter/9f84962fa0f35bec5a34fe0bdff8681838d497008c457f7856c48654476ec0e9/counter.py\", line 161, in _generate_examples\r\n with derived_file.open(encoding=\"utf-8\") as f:\r\n File \"/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/pathlib.py\", line 1222, in open\r\n return io.open(self, mode, buffering, encoding, errors, newline,\r\n File \"/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/pathlib.py\", line 1078, in _opener\r\n return self._accessor.open(self, flags, mode)\r\nFileNotFoundError: [Errno 2] No such file or directory: '/home/slesage/.cache/huggingface/datasets/downloads/extracted/b57aa6db5601a738e57b95c1fd8cced54ff28fc540efcdaf0f6c4f1bb5dfe211/COUNTER/0032p.xml'\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/slesage/hf/datasets/src/datasets/load.py\", line 1112, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 636, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/slesage/hf/datasets/src/datasets/builder.py\", line 728, in _download_and_prepare\r\n raise OSError(\r\nOSError: Cannot find data file.\r\nOriginal error:\r\n[Errno 2] No such file or directory: '/home/slesage/.cache/huggingface/datasets/downloads/extracted/b57aa6db5601a738e57b95c1fd8cced54ff28fc540efcdaf0f6c4f1bb5dfe211/COUNTER/0032p.xml'\r\n```\r\n\r\nThe error is now the same with or without streaming. I close the issue, thanks @albertvillanova and @lhoestq!\r\n",
"Note that we might want to open an issue to fix the \"counter\" dataset by itself, but I let it up to you.",
"Fixed here: https://github.com/huggingface/datasets/pull/2894. Thanks @albertvillanova ",
"On master, I get:\r\n\r\n```python\r\n>>> import datasets as ds\r\n>>> iterable_dataset = ds.load_dataset('counter', split=\"train\", streaming=True)\r\n>>> rows = list(iterable_dataset.take(100))\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/slesage/hf/datasets/src/datasets/iterable_dataset.py\", line 341, in __iter__\r\n for key, example in self._iter():\r\n File \"/home/slesage/hf/datasets/src/datasets/iterable_dataset.py\", line 338, in _iter\r\n yield from ex_iterable\r\n File \"/home/slesage/hf/datasets/src/datasets/iterable_dataset.py\", line 273, in __iter__\r\n yield from islice(self.ex_iterable, self.n)\r\n File \"/home/slesage/hf/datasets/src/datasets/iterable_dataset.py\", line 78, in __iter__\r\n for key, example in self.generate_examples_fn(**self.kwargs):\r\n File \"/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/counter/b9e4378dbd3f5ce235d2302e48168c00196e67bbcd13cc7e1f6e69ef82c0cf2a/counter.py\", line 153, in _generate_examples\r\n files = sorted(base_path.glob(r\"[0-9][0-9][0-9][0-9].xml\"))\r\nTypeError: xpathglob() missing 1 required positional argument: 'pattern'\r\n```",
"Associated to the above exception, if I create a test and run it with pytest, I get an awful traceback.\r\n\r\n- create a file `test_counter.py`\r\n\r\n```python\r\nimport pytest\r\nfrom datasets import load_dataset, IterableDataset\r\nfrom typing import Any, cast\r\n\r\n\r\ndef test_counter() -> Any:\r\n iterable_dataset = cast(IterableDataset, load_dataset(\"counter\", split=\"train\", streaming=True))\r\n with pytest.raises(TypeError):\r\n list(iterable_dataset.take(100))\r\n```\r\n\r\n- run the test with pytest\r\n\r\n```bash\r\n$ python -m pytest -x test_counter.py\r\n============================================================================================================================= test session starts ==============================================================================================================================\r\nplatform linux -- Python 3.9.6, pytest-6.2.5, py-1.10.0, pluggy-1.0.0\r\nrootdir: /home/slesage/hf/datasets-preview-backend, configfile: pyproject.toml\r\nplugins: anyio-3.3.2, cov-2.12.1\r\ncollected 1 item\r\n\r\ntests/test_counter.py . [100%]Traceback (most recent call last):\r\n File \"/home/slesage/.pyenv/versions/3.9.6/lib/python3.9/runpy.py\", line 197, in _run_module_as_main\r\n return _run_code(code, main_globals, None,\r\n File \"/home/slesage/.pyenv/versions/3.9.6/lib/python3.9/runpy.py\", line 87, in _run_code\r\n exec(code, run_globals)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pytest/__main__.py\", line 5, in <module>\r\n raise SystemExit(pytest.console_main())\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/config/__init__.py\", line 185, in console_main\r\n code = main()\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/config/__init__.py\", line 162, in main\r\n ret: Union[ExitCode, int] = config.hook.pytest_cmdline_main(\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_hooks.py\", line 265, in __call__\r\n return self._hookexec(self.name, self.get_hookimpls(), kwargs, firstresult)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_manager.py\", line 80, in _hookexec\r\n return self._inner_hookexec(hook_name, methods, kwargs, firstresult)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_callers.py\", line 60, in _multicall\r\n return outcome.get_result()\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_result.py\", line 60, in get_result\r\n raise ex[1].with_traceback(ex[2])\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_callers.py\", line 39, in _multicall\r\n res = hook_impl.function(*args)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/main.py\", line 316, in pytest_cmdline_main\r\n return wrap_session(config, _main)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/main.py\", line 304, in wrap_session\r\n config.hook.pytest_sessionfinish(\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_hooks.py\", line 265, in __call__\r\n return self._hookexec(self.name, self.get_hookimpls(), kwargs, firstresult)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_manager.py\", line 80, in _hookexec\r\n return self._inner_hookexec(hook_name, methods, kwargs, firstresult)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_callers.py\", line 55, in _multicall\r\n gen.send(outcome)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/terminal.py\", line 803, in pytest_sessionfinish\r\n outcome.get_result()\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_result.py\", line 60, in get_result\r\n raise ex[1].with_traceback(ex[2])\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/pluggy/_callers.py\", line 39, in _multicall\r\n res = hook_impl.function(*args)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/cacheprovider.py\", line 428, in pytest_sessionfinish\r\n config.cache.set(\"cache/nodeids\", sorted(self.cached_nodeids))\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/_pytest/cacheprovider.py\", line 188, in set\r\n f = path.open(\"w\")\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/datasets/utils/streaming_download_manager.py\", line 199, in xpathopen\r\n return xopen(_as_posix(path), *args, **kwargs)\r\n File \"/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.9/site-packages/datasets/utils/streaming_download_manager.py\", line 117, in _as_posix\r\n path_as_posix = path.as_posix()\r\nAttributeError: 'str' object has no attribute 'as_posix'\r\n```\r\n",
"I opened a PR to fix these issues.\r\nAlso in your test you expect a TypeError but I don't know why. On my side it works fine without raising a TypeError",
"I had the issue (TypeError raised) on my branch, but it's fixed now. Thanks"
] | ## Describe the bug
`counter` dataset raises an error on `load_dataset()`, but simply returns an empty iterator in streaming mode.
## Steps to reproduce the bug
```python
>>> import datasets as ds
>>> a = ds.load_dataset('counter', split="train", streaming=False)
Using custom data configuration default
Downloading and preparing dataset counter/default (download: 1.29 MiB, generated: 2.48 MiB, post-processed: Unknown size, total: 3.77 MiB) to /home/slesage/.cache/huggingface/datasets/counter/default/1.0.0/9f84962fa0f35bec5a34fe0bdff8681838d497008c457f7856c48654476ec0e9...
Traceback (most recent call last):
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 726, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 1124, in _prepare_split
for key, record in utils.tqdm(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/tqdm/std.py", line 1185, in __iter__
for obj in iterable:
File "/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/counter/9f84962fa0f35bec5a34fe0bdff8681838d497008c457f7856c48654476ec0e9/counter.py", line 161, in _generate_examples
with derived_file.open(encoding="utf-8") as f:
File "/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/pathlib.py", line 1222, in open
return io.open(self, mode, buffering, encoding, errors, newline,
File "/home/slesage/.pyenv/versions/3.8.11/lib/python3.8/pathlib.py", line 1078, in _opener
return self._accessor.open(self, flags, mode)
FileNotFoundError: [Errno 2] No such file or directory: '/home/slesage/.cache/huggingface/datasets/downloads/extracted/b57aa6db5601a738e57b95c1fd8cced54ff28fc540efcdaf0f6c4f1bb5dfe211/COUNTER/0032p.xml'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/load.py", line 1112, in load_dataset
builder_instance.download_and_prepare(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 636, in download_and_prepare
self._download_and_prepare(
File "/home/slesage/hf/datasets-preview-backend/.venv/lib/python3.8/site-packages/datasets/builder.py", line 728, in _download_and_prepare
raise OSError(
OSError: Cannot find data file.
Original error:
[Errno 2] No such file or directory: '/home/slesage/.cache/huggingface/datasets/downloads/extracted/b57aa6db5601a738e57b95c1fd8cced54ff28fc540efcdaf0f6c4f1bb5dfe211/COUNTER/0032p.xml'
```
```python
>>> import datasets as ds
>>> b = ds.load_dataset('counter', split="train", streaming=True)
Using custom data configuration default
>>> list(b)
[]
```
## Expected results
An exception should be raised in streaming mode
## Actual results
No exception is raised in streaming mode: there is no way to tell if something has broken or if the dataset is simply empty.
## Environment info
- `datasets` version: 1.11.1.dev0
- Platform: Linux-5.11.0-1016-aws-x86_64-with-glibc2.29
- Python version: 3.8.11
- PyArrow version: 4.0.1
| 2,866 |
Subsets and Splits