Datasets:
metadata
dataset_info:
config_name: triplet
features:
- name: query
dtype: string
- name: positive
dtype: string
- name: negative
dtype: string
splits:
- name: train
num_bytes: 12581563.792427007
num_examples: 42076
- name: test
num_bytes: 3149278.207572993
num_examples: 10532
download_size: 1254810
dataset_size: 15730842
configs:
- config_name: triplet
data_files:
- split: train
path: triplet/train-*
- split: test
path: triplet/test-*
task_categories:
- sentence-similarity
This dataset is the triplet subset of https://huggingface.co/datasets/sentence-transformers/sql-questions with a train and test split.
The test split can be passed to TripletEvaluator
.
The train and test spilts don't have any queries in common.
Here's the full script used to generate this dataset
import os
import datasets
from sklearn.model_selection import train_test_split
dataset = datasets.load_dataset(
"sentence-transformers/sql-questions", "triplet", split="train"
)
queries_unique = list({record["query"]: None for record in dataset})
# Use a dict for deterministic (insertion) order
len(queries_unique)
queries_tr, queries_te = train_test_split(
queries_unique, test_size=0.2, random_state=42
)
queries_tr = set(queries_tr)
queries_te = set(queries_te)
train_dataset = dataset.filter(lambda record: record["query"] in queries_tr)
test_dataset = dataset.filter(lambda record: record["query"] in queries_te)
assert not set(train_dataset["query"]) & set(test_dataset["query"])
assert len(train_dataset) + len(test_dataset) == len(dataset)
dataset_dict = datasets.DatasetDict({"train": train_dataset, "test": test_dataset})
dataset_dict.push_to_hub(
"aladar/sql-questions", config_name="triplet", token=os.environ["HF_TOKEN_CREATE"]
)