hj / README.md
ajsbsd's picture
Update README.md
dc19bc3 verified
metadata
datasets:
  - hj
language:
  - en
license: bsd
tags:
  - crime
  - homicide

2025 Homicide Trend Analysis

License Python Platform

πŸ“Š This project provides Python-based data visualization examples for analyzing homicide trends over time.

Source: HeyJackass.com


πŸ“Š Overview

This repository includes Python scripts to visualize homicide data using:

  • Bar graphs
  • Pie charts
  • DataFrames from pandas

All visualizations are based on real-world data spanning from 2015 to 2024.


πŸ“ˆ Sample Data

Year Homicides
2024 219
2023 257
2022 261
2021 276
2020 254
2019 211
2018 211
2017 257
2016 262
2015 174

πŸ“Š Visualization Examples

1. Bar Graph: Homicides Per Year

import matplotlib.pyplot as plt
import pandas as pd

# Data from your CSV
data = {
    'Year': [2024, 2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015],
    'Homicides': [219, 257, 261, 276, 254, 211, 211, 257, 262, 174]
}

# Convert to DataFrame
df = pd.DataFrame(data)

# Plot bar graph
plt.figure(figsize=(10, 6))
plt.bar(df['Year'].astype(str), df['Homicides'], color='skyblue')
plt.title('Homicides Per Year')
plt.xlabel('Year')
plt.ylabel('Number of Homicides')
plt.xticks(rotation=45)
plt.tight_layout()

# Show the plot
plt.show()

2. Pie Chart: Distribution of Incidents by Year

from datasets import load_dataset
import matplotlib.pyplot as plt

# Load the dataset
ds = load_dataset("ajsbsd/hj")

# Count year occurrences
year_counts = {}
for entry in ds['train']:
    year = entry.get('Year', None)
    if year is not None:
        year_counts[year] = year_counts.get(year, 0) + 1

# Sort years
sorted_years = sorted(year_counts.items())
years, counts = zip(*sorted_years)

# Plot pie chart
plt.figure(figsize=(8, 8))
plt.pie(counts, labels=years, autopct='%1.1f%%', startangle=140)
plt.title('Distribution of Incidents by Year')
plt.axis('equal')
plt.show()

BSD-3-Clause-Clear License

See LICENSE file for full text.