Dataset Viewer (First 5GB)
Search is not available for this dataset
The dataset viewer is not available for this split.
Rows from parquet row groups are too big to be read: 835.36 MiB (max=286.10 MiB)
Error code: TooBigContentError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Flood Detection Dataset
Quick Start
# Example: Loading and filtering data for Dolo Ado in SE Ethiopia, one of the sites explored in our paper (4.17°N, 42.05°E)
import pandas as pd
import rasterio
# Load parquet data
df = pd.read_parquet('N03/N03E042/N03E042-post-processing.parquet')
# Apply recommended filters
filtered_df = df[
(df.dem_metric_2 < 10) &
(df.soil_moisture_sca > 1) &
(df.soil_moisture_zscore > 1) &
(df.soil_moisture > 20) &
(df.temp > 0) &
(df.land_cover != 60) &
(df.edge_false_positives == 0)
]
# Load corresponding geotiff
with rasterio.open('N03/N03E042/N03E042-90m-buffer.tif') as src:
flood_data = src.read(1) # Read first band
Overview
This dataset provides flood detection data from satellite observations. Each geographic area is divided into 3° × 3° tiles (approximately 330km × 330km at the equator).
What's in each tile?
- Parquet file (post-processing.parquet): Contains detailed observations with timestamps, locations, and environmental metrics
- 80-meter buffer geotiff (80m-buffer.tif): Filtered flood extent with 80m safety buffer
- 240-meter buffer geotiff (240m-buffer.tif): Filtered flood extent with wider 240m safety buffer
- Flood recurrence geotiff with 80-meter buffer (recurrence-80m-buffer.tif): Number of distinct months with flooding detected.
In the geotiffs:
- Value 2: Pixels with flooding detected within the buffer distance (80m or 240m). For the recurrence file, it is number of months with flooding minus 1. So 2=1 month of flooding, 3=2 months of flooding, etc.
- Value 1: Default exclusion layer representing areas with potential false positives (rough terrain or arid regions) or false negatives (urban areas)
- Value 0: Areas without any flood detection and outside of our exclusion mask
Finding Your Area of Interest
- Identify the coordinates of your area
- Round down to the nearest 3 degrees for both latitude and longitude
- Use these as the filename. For example:
- For Dolo Ado (4.17°N, 42.05°E)
- Round down to (3°N, 42°E)
- Look for file
N03E042
in theN03
folder
Directory Structure
├── N03 # Main directory by latitude
│ ├── N03E042 # Subdirectory for specific tile
│ │ ├── N03E042-post-processing.parquet # Tabular data
│ │ ├── N03E042-90m-buffer.parquet # Geotiff with 90m buffer
│ │ └── N03E042-240m-buffer.tif # Geotiff with 240m buffer
Data Description
Parquet File Schema
Column | Type | Description | Example Value |
---|---|---|---|
year | int | Year of observation | 2023 |
month | int | Month of observation | 7 |
day | int | Day of observation | 15 |
lat | float | Latitude of detection | 27.842 |
lon | float | Longitude of detection | 30.156 |
filename | str | Sentinel-1 source file | 'S1A_IW_GRDH_1SDV...' |
land_cover | int | ESA WorldCover class | 40 |
dem_metric_1 | float | Pixel slope | 2.5 |
dem_metric_2 | float | Max slope within 240m | 5.8 |
soil_moisture | float | LPRM soil moisture % | 35.7 |
soil_moisture_zscore | float | Moisture anomaly | 2.3 |
soil_moisture_sca | float | SCA soil moisture % | 38.2 |
soil_moisture_sca_zscore | float | SCA moisture anomaly | 2.1 |
temp | float | Avg daily min temp °C | 22.4 |
edge_false_positives | int | Edge effect flag (0=no, 1=yes) | 0 |
Land Cover Classes
Common values in the land_cover
column:
- 10: Tree cover
- 20: Shrubland
- 30: Grassland
- 40: Cropland
- 50: Urban/built-up
- 60: Bare ground (typically excluded)
- 70: Snow/Ice
- 80: Permanent Water bodies (excluded in this dataset)
- 90: Wetland
Recommended Filtering
To reduce false positives, apply these filters:
recommended_filters = {
'dem_metric_2': '< 10', # Exclude steep terrain
'soil_moisture_sca': '> 1', # Ensure meaningful soil moisture
'soil_moisture_zscore': '> 1', # Above normal moisture
'soil_moisture': '> 20', # Sufficient moisture present
'temp': '> 0', # Above freezing
'land_cover': '!= 60', # Exclude bare ground
'edge_false_positives': '= 0' # Remove edge artifacts
}
Spatial Resolution
Current data resolution (as of Feb 24,2025):
- ✅ Global geotiffs: 20-meter resolution
- ✅ Africa parquet files: 20-meter resolution
- ⏳ Rest of world parquet files: 30-meter resolution
- Update to 20-meter expected later this year
Common Issues and Solutions
- Edge Effects: If you see suspicious linear patterns near tile edges, use the
edge_false_positives
filter - Desert Areas: Consider stricter soil moisture thresholds in arid regions
- Mountain Regions: You may need to adjust
dem_metric_2
threshold based on your needs
Known Limitations
- Detection quality may be reduced in urban areas and areas with dense vegetation cover
- While we try to control for false positives, certain soil types can still lead to false positives
Citation
If you use this dataset, please cite our paper: https://arxiv.org/abs/2411.01411
Questions or Issues?
Please open an issue on our GitHub repository at https://github.com/microsoft/ai4g-flood or contact us at [[email protected]]
- Downloads last month
- 57,216