file
stringlengths
18
26
data
stringlengths
2
1.05M
the_stack_data/718123.c
/* <TAGS>math</TAGS> DESCRIPTION: Sort an array of short integers using a quick-sort algorithm Modifies the input data array This function also modifies an array of indices so the user can know the original position of the sorted numbers USES: rearranging data in numerical order DEPENDENCY TREE: No dependencies ARGUMENTS: float *data: array holding the data long *index: array of numbers representing the original order of the data, typically 0 to (n-1) long n: size of the array RETURN VALUE: None NOTE! - behaviour for non-numeric values, Inf and Nan is not specified - arrays with only one element will be unaltered */ void xf_qsortindex1_s(short *data, long *index,long nn) { long ii,jj,kk,mm,left=0,right=(nn-1),tempindex; long first,last,pivot; short tempdatum,pivotvalue; /* if data is less than 2 elements long, do nothing */ if( right<=left ) return; /* choose the middle element of the data for the initial pivot */ pivot=(long)((left+right)/2); /* check if pivot=left, which could cause endless recursion */ if(pivot==left) pivot=right; /* define pivot value (saves indexing time in loop below) */ pivotvalue=data[pivot]; /* do an initial swap to move the pivot out of the way */ tempdatum = data[left]; data[left] = data[pivot]; data[pivot] = tempdatum; tempindex = index[left]; index[left] = index[pivot]; index[pivot] = tempindex; /* define end of the search (to be modified in the loop below) */ last=left; /* scan from first to last for values out of sequence: data[first]<= pivotvalue <data[last] */ for(first=left+1; first<=right; first++) { if(data[first]<pivotvalue) { last++; tempdatum = data[first]; data[first] = data[last]; data[last] = tempdatum; tempindex = index[first]; index[first] = index[last]; index[last] = tempindex; }} /* move the pivot to the adjusted last position */ tempdatum = data[left]; data[left] = data[last]; data[last] = tempdatum; tempindex = index[left]; index[left] = index[last]; index[last] = tempindex; /* recursively sort the left-side */ ii=left; jj=last-1; kk=1+(jj-ii); xf_qsortindex1_s((data+ii),(index+ii),kk); /* recursively sort the right-side */ ii=last+1; jj=right; kk=1+(jj-ii); xf_qsortindex1_s((data+ii),(index+ii),kk); }
the_stack_data/30722.c
#include <stdio.h> #include <stdlib.h> struct node { int data; struct node *next; }; typedef struct node list; list *createNode() { list *newNode = (list *)malloc(sizeof(list)); printf("\nEnter the value: "); scanf("%d", &newNode->data); newNode->next = NULL; return newNode; } void enqueue(list *list1) { list *tmp = list1; for (; tmp->next != NULL; tmp = tmp->next) ; tmp->next = createNode(); printf("Element added the queue."); } list *newList() { int n, i; list *newList = (list *)malloc(sizeof(list)); printf("\nHow many elements do you want to add? "); scanf("%d", &n); newList = createNode(); printf("Element added succesfully."); for (i = 0; i < n - 1; i++) enqueue(newList); printf("\n\nList created succesfully."); return newList; } void dequeue(list *list1) { if (list1 == NULL) { printf("\nThe queue is empty."); return; } list *tmp = list1; list1 = list1->next; printf("%d have left the queue.", tmp->data); free(tmp); } void display(list *list1) { list *temp = list1; printf("\nThe elements are: "); while (temp != NULL) { printf("%d", temp->data); if (temp->next != NULL) printf(", "); else printf("."); temp = temp->next; } } int main(int argc, char const *argv[]) { list *list1; list1 = (list *)malloc(sizeof(list)); int ch; while (1) { printf("\n\n==== MENU ===="); printf("\n1. Create"); printf("\n2. Enqueue"); printf("\n3. Dequeue"); printf("\n4. Display"); printf("\n0. Exit"); printf("\n\nEnter your choice: "); scanf("%d", &ch); switch (ch) { case 1: printf("\nCreate new Queue..."); list *list1 = newList(); break; case 2: enqueue(list1); break; case 3: dequeue(list1); break; case 4: display(list1); break; case 5: case 0: printf("\nExiting...\n"); return 0; default: printf("Invalid input."); } } return 0; }
the_stack_data/17064.c
#include <stdio.h> #include <signal.h> // #include <unistd.h> // #include <stdlib.h> typedef void (*funcPtr)(); void manejador(int *c){ printf("Recibi senial\n"); } int main(){ signal(SIGINT,(funcPtr)manejador); //(ptr) while(1); return 0; }
the_stack_data/138293.c
#include <stdio.h> /* * general implementation included in stidio as malloc and free * https://devdocs.io/c/memory/malloc * * */ /** * rudiment storage allocator * storage mantained in a Stack * alloc(n) returns a pointer to n consecutive character positions, can be used by caller to store chars * afree(p) releases the storage based on pointer p * * allocbuf chars array * allocp points to the next free element * */ #define ALLOCSIZE 1000 static char allocbuf[ALLOCSIZE]; static char *allocp = allocbuf; char *alloc(int n) { if (allocbuf + ALLOCSIZE - allocp >= n){ allocp += n; return allocp - n; } else return 0; } void afree(char *p) { if (p >= allocbuf & p <= allocbuf + ALLOCSIZE) allocp = p; } int main() { char *s = alloc(4); for(int i = 0; i < 4; i++) s[i] = 'a' + i; for(int i = 0; i < 4; i++) printf("pos %d elem %c \n", i, s[i]); afree(s); }
the_stack_data/341543.c
/* Taxonomy Classification: 0000000000000032000100 */ /* * WRITE/READ 0 write * WHICH BOUND 0 upper * DATA TYPE 0 char * MEMORY LOCATION 0 stack * SCOPE 0 same * CONTAINER 0 no * POINTER 0 no * INDEX COMPLEXITY 0 constant * ADDRESS COMPLEXITY 0 constant * LENGTH COMPLEXITY 0 N/A * ADDRESS ALIAS 0 none * INDEX ALIAS 0 none * LOCAL CONTROL FLOW 0 none * SECONDARY CONTROL FLOW 0 none * LOOP STRUCTURE 3 while * LOOP COMPLEXITY 2 one * ASYNCHRONY 0 no * TAINT 0 no * RUNTIME ENV. DEPENDENCE 0 no * MAGNITUDE 1 1 byte * CONTINUOUS/DISCRETE 0 discrete * SIGNEDNESS 0 no */ /* Copyright 2005 Massachusetts Institute of Technology All rights reserved. Redistribution and use of software in source and binary forms, with or without modification, are permitted provided that the following conditions are met. - Redistributions of source code must retain the above copyright notice, this set of conditions and the disclaimer below. - Redistributions in binary form must reproduce the copyright notice, this set of conditions, and the disclaimer below in the documentation and/or other materials provided with the distribution. - Neither the name of the Massachusetts Institute of Technology nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS". ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ int main(int argc, char *argv[]) { int test_value; int loop_counter; char buf[10]; test_value = 10; loop_counter = 0; while(loop_counter <= test_value) { /* BAD */ buf[10] = 'A'; loop_counter++; } return 0; }
the_stack_data/190768783.c
extern int printf(const char *fmt, ...); int main(void) { char a; int b; double c; printf("%d\n", sizeof(a)); printf("%d\n", sizeof(b)); printf("%d\n", sizeof(c)); return 0; }
the_stack_data/126057.c
#include <stdio.h> #include <stdlib.h> #include <pthread.h> #define USAGE "./reorder <param1> <param2>\n" static int iSet = 1; static int iCheck = 1; static int a = 0; static int b = 0; void __ESBMC_yield(); void *setThread(void *param); void *checkThread(void *param); void set(); int check(); int main(int argc, char *argv[]) { int i, err; if (argc != 1) { if (argc != 3) { fprintf(stderr, USAGE); exit(-1); } else { sscanf(argv[1], "%d", &iSet); sscanf(argv[2], "%d", &iCheck); } } //printf("iSet = %d\niCheck = %d\n", iSet, iCheck); pthread_t setPool[iSet]; pthread_t checkPool[iCheck]; for (i = 0; i < iSet; i++) { if (0 != (err = pthread_create(&setPool[i], NULL, &setThread, NULL))) { fprintf(stderr, "Error [%d] found creating set thread.\n", err); exit(-1); } } for (i = 0; i < iCheck; i++) { if (0 != (err = pthread_create(&checkPool[i], NULL, &checkThread, NULL))) { fprintf(stderr, "Error [%d] found creating check thread.\n", err); exit(-1); } } for (i = 0; i < iSet; i++) { if (0 != (err = pthread_join(setPool[i], NULL))) { fprintf(stderr, "pthread join error: %d\n", err); exit(-1); } } for (i = 0; i < iCheck; i++) { if (0 != (err = pthread_join(checkPool[i], NULL))) { fprintf(stderr, "pthread join error: %d\n", err); exit(-1); } } return 0; } void *setThread(void *param) { a = 1; b = -1; /*BAD: W/W data race */ return NULL; } void *checkThread(void *param) { if (! ((a == 0 && b == 0) || (a == 1 && b == -1))) { fprintf(stderr, "Bug found!\n"); assert(0); // exit(-1); } return NULL; }
the_stack_data/90761549.c
#include <stdio.h> #include <stdlib.h> #include <time.h> #include <sys/time.h> #include <inttypes.h> int main(int argc, char *argv[]) { int subResult; struct timespec ts; struct tm *pTm; clock_t clockType; if (argc < 2) { fprintf(stderr, "usage: %s clockType\n", argv[0]); fprintf(stderr, "clockType\n"); #ifdef CLOCK_REALTIME fprintf(stderr, "A: CLOCK_REALTIME\n"); #endif #ifdef CLOCK_REALTIME_COARSE fprintf(stderr, "B: CLOCK_REALTIME_COARSE\n"); #endif #ifdef CLOCK_MONOTONIC fprintf(stderr, "C: CLOCK_MONOTONIC\n"); #endif #ifdef CLOCK_MONOTONIC_COARSE fprintf(stderr, "D: CLOCK_MONOTONIC_COARSE\n"); #endif #ifdef CLOCK_MONOTONIC_RAW fprintf(stderr, "E: CLOCK_MONOTONIC_RAW\n"); #endif #ifdef CLOCK_BOOTTIME fprintf(stderr, "F: CLOCK_BOOTTIME\n"); #endif #ifdef CLOCK_PROCESS_CPUTIME_ID fprintf(stderr, "G: CLOCK_PROCESS_CPUTIME_ID\n"); #endif #ifdef CLOCK_PROCESS_CPUTIME_ID fprintf(stderr, "H: CLOCK_PROCESS_CPUTIME_ID\n"); #endif return EXIT_FAILURE; } switch (argv[1][0]) { #ifdef CLOCK_REALTIME case 'A': clockType = CLOCK_REALTIME; break; #endif #ifdef CLOCK_REALTIME_COARSE case 'B': clockType = CLOCK_REALTIME_COARSE; break; #endif #ifdef CLOCK_MONOTONIC case 'C': clockType = CLOCK_MONOTONIC; break; #endif #ifdef CLOCK_MONOTONIC_COARSE case 'D': clockType = CLOCK_MONOTONIC_COARSE; break; #endif #ifdef CLOCK_MONOTONIC_RAW case 'E': clockType = CLOCK_MONOTONIC_RAW; break; #endif #ifdef CLOCK_BOOTTIME case 'F': clockType = CLOCK_BOOTTIME; break; #endif #ifdef CLOCK_PROCESS_CPUTIME_ID case 'G': clockType = CLOCK_PROCESS_CPUTIME_ID; break; #endif #ifdef CLOCK_PROCESS_CPUTIME_ID case 'H': clockType = CLOCK_PROCESS_CPUTIME_ID; break; #endif default: fprintf(stderr, "unknown clock type."); } subResult = clock_gettime(clockType, &ts); if (subResult != 0) { perror("clock_gettime"); return EXIT_FAILURE; } printf("%" PRIdMAX ".%09" PRIdMAX "\n", (intmax_t)ts.tv_sec, (intmax_t)ts.tv_nsec); printf("ctime:%s\n", ctime(&ts.tv_sec)); pTm = localtime(&ts.tv_sec); printf("localtime\n"); printf("tm_year:%d\n", pTm->tm_year); printf("tm_mon:%d\n", pTm->tm_mon); printf("tm_mday:%d\n", pTm->tm_mday); printf("tm_hour:%d\n", pTm->tm_hour); printf("tm_min:%d\n", pTm->tm_min); printf("tm_sec:%d\n", pTm->tm_sec); printf("tm_wday:%d\n", pTm->tm_wday); printf("tm_yday:%d\n", pTm->tm_yday); printf("tm_isdst:%d\n", pTm->tm_isdst); printf("asctime:%s\n", asctime(pTm)); printf("\n"); pTm = gmtime(&ts.tv_sec); printf("gmtime\n"); printf("tm_year:%d\n", pTm->tm_year); printf("tm_mon:%d\n", pTm->tm_mon); printf("tm_mday:%d\n", pTm->tm_mday); printf("tm_hour:%d\n", pTm->tm_hour); printf("tm_min:%d\n", pTm->tm_min); printf("tm_sec:%d\n", pTm->tm_sec); printf("tm_wday:%d\n", pTm->tm_wday); printf("tm_yday:%d\n", pTm->tm_yday); printf("tm_isdst:%d\n", pTm->tm_isdst); printf("asctime:%s\n", asctime(pTm)); printf("\n"); return EXIT_SUCCESS; }
the_stack_data/148578480.c
#ifdef ATL_OMP_THREADS #include <omp.h> #else #include <pthread.h> #endif int ATL_DecAtomicCount(void *vp) { char *cp=vp; #ifdef ATL_OMP_THREADS omp_lock_t *mp; #else pthread_mutex_t *mp; #endif int *cntp; int iret; cntp = (int*)(cp+128); #ifdef ATL_OMP_THREADS mp = (omp_lock_t*)(cntp+2); omp_set_lock(mp); #else mp = (pthread_mutex_t*)(cntp+2); pthread_mutex_lock(mp); #endif iret = *cntp; if (iret) (*cntp)--; #ifdef ATL_OMP_THREADS omp_unset_lock(mp); #else pthread_mutex_unlock(mp); #endif return(iret); }
the_stack_data/101711.c
#include <stdio.h> #include <pthread.h> struct { int x; int y; } data; void *t_fun(void *arg) { data.x++; // RACE! return NULL; } int main() { int *i,j; pthread_t id; if (j) i = &data.x; else i = &data.y; pthread_create(&id, NULL, t_fun, NULL); (*i)++; // RACE! return 0; }
the_stack_data/154830836.c
#include <stdio.h> // [out] <auto> // [opt] 1 int main(int argc, char* argv[]) { int a; double b, c; scanf("%i", &a); // [in] 5 scanf("%lf", &b); // [in] 1.0 scanf("%lf", &c); // [in] 2.0 printf("%f\n", (a < 10) ? b : c); return 0; }
the_stack_data/100499.c
#include <stdio.h> #include <pthread.h> #include <stdlib.h> /* 线程体,该线程休眠10秒钟 */ void * tfn1(void * arg) { printf("new thread\n"); /* 输出提示信息 */ sleep(10); /* 休眠 */ } int main(void) { pthread_t tid; void * res; int err; err = pthread_create(&tid, NULL, tfn1, NULL); /* 创建一个线程 */ if(err != 0){ printf("can’t create thread %d\n", strerror(err)); exit(1); } sleep(1); err = pthread_cancel(tid); /* 取消新创建的线程 */ if(err != 0){ printf("can’t cancel thread %d\n", strerror(err)); exit(1); } err = pthread_join(tid, &res); /* 取得线程的退出信息 */ if(err != 0){ printf("can’t join thread %d\n", strerror(err)); exit(1); } /* 如果线程被取消,则其退出信息的首地址为PTHREAD_CANCELED常量 */ if(res == PTHREAD_CANCELED) printf("thread %u has been canceled\n", (unsigned int)tid); else printf("error\n"); /* 不应该出现这种情况 */ return 0; }
the_stack_data/92324035.c
// RUN: %empty-directory(%t) // RUN: %target-clang %s -all_load %test-resource-dir/%target-sdk-name/libswiftCompatibility50.a -lobjc -o %t/main // RUN: %target-run %t/main // REQUIRES: objc_interop // REQUIRES: executable_test // The compatibility library needs to have no build-time dependencies on // libswiftCore so it can be linked into a program that doesn't link // libswiftCore, but will load it at runtime, such as xctest. // // Test this by linking it into a plain C program and making sure it builds. int main(void) {}
the_stack_data/386743.c
/*Alunos: Daniel Moraes dos Santos 201602449 Pedro Ramos Krauze Diehl 201611880 */ #include <stdio.h> void print_array(int *p,int len); void particao(int esq, int dir, int *i, int *j, int *A) { int x = 0, w = 0; *i = esq; *j = dir; x = A[(*i + *j)/2]; do { while(x > A[*i]) (*i)++; while(x < A[*j]) (*j)--; if (*i <= *j) { print_array(A,20); w = A[*i]; A[*i] = A[*j]; A[*j] = w; (*i)++; (*j)--; } //print_array(A, 20); } while(*i <= *j); } void ordena(int esq, int dir, int *A){ int i = 0; int j = 0; particao(esq, dir, &i, &j, A); if(esq < j) ordena(esq, j, A); if(dir > i) ordena(i, dir, A); } void quick_sort(int *A, int n) { ordena(0, n-1, A); } void print_array(int *p, int len){ int i = 0; printf("{"); for(i = 0; i < len; i++){ printf("%i,", p[i]); } printf("}\n"); } int main(){ int v[20] = {10, 15, 0, 6, 13, 11, 2, 8, 7, 4, 14, 18, 3, 17, 19, 12, 9, 1, 5, 16}; quick_sort(v, 20); print_array(v, 20); return 0; }
the_stack_data/100140057.c
/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials provided * with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors may be used to * endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ union test { int a; int b[10]; }; int main() { union test a; int i; for (i = 0; i < 10; i++) { a.b[i] = i + 1; } return a.a + a.b[3]; }
the_stack_data/234517008.c
#include <assert.h> #include <ctype.h> #include <limits.h> #include <math.h> #include <stdbool.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> char* readline(); char* ltrim(char*); char* rtrim(char*); char** split_string(char*); int parse_int(char*); /* * Complete the 'superDigit' function below. * * The function is expected to return an INTEGER. * The function accepts following parameters: * 1. STRING n * 2. INTEGER k */ /* // Alternatively we can multiply by K after finding sum on one string digit to minimize computation int getSmallSum(int sumN) { long smallSum = 0; while(sumN > 0) { smallSum += sumN%10; sumN /= 10; if (sumN ==0 && smallSum > 9) { sumN = smallSum; smallSum = 0; } } return smallSum; } int superDigit(char* n, int k) { long sumN = 0; for(long i = 0; i< strlen(n); i++) { if (n[i]>='0' && n[i]<='9') { sumN += n[i] - '0'; } } int smallSum = getSmallSum(sumN); sumN = smallSum*k; smallSum = getSmallSum(sumN); return smallSum; } */ int superDigit(char* n, long k) { long len = strlen(n); long sum = 0; for(int i = 0; i<len; i++) { sum = sum + n[i] - '0'; } sum *= k; while(sum > 10) { int temp = 0; while (sum > 0) { temp += sum % 10; sum = sum / 10; } sum = temp; } return sum; } int main() { FILE* fptr = fopen(getenv("OUTPUT_PATH"), "w"); char** first_multiple_input = split_string(rtrim(readline())); char* n = *(first_multiple_input + 0); char* eptr; long k = strtol(*(first_multiple_input + 1), &eptr, 10); int result = superDigit(n, k); fprintf(fptr, "%d\n", result); fclose(fptr); return 0; } char* readline() { size_t alloc_length = 1024; size_t data_length = 0; char* data = malloc(alloc_length); while (true) { char* cursor = data + data_length; char* line = fgets(cursor, alloc_length - data_length, stdin); if (!line) { break; } data_length += strlen(cursor); if (data_length < alloc_length - 1 || data[data_length - 1] == '\n') { break; } alloc_length <<= 1; data = realloc(data, alloc_length); if (!data) { data = '\0'; break; } } if (data[data_length - 1] == '\n') { data[data_length - 1] = '\0'; data = realloc(data, data_length); if (!data) { data = '\0'; } } else { data = realloc(data, data_length + 1); if (!data) { data = '\0'; } else { data[data_length] = '\0'; } } return data; } char* ltrim(char* str) { if (!str) { return '\0'; } if (!*str) { return str; } while (*str != '\0' && isspace(*str)) { str++; } return str; } char* rtrim(char* str) { if (!str) { return '\0'; } if (!*str) { return str; } char* end = str + strlen(str) - 1; while (end >= str && isspace(*end)) { end--; } *(end + 1) = '\0'; return str; } char** split_string(char* str) { char** splits = NULL; char* token = strtok(str, " "); int spaces = 0; while (token) { splits = realloc(splits, sizeof(char*) * ++spaces); if (!splits) { return splits; } splits[spaces - 1] = token; token = strtok(NULL, " "); } return splits; } int parse_int(char* str) { char* endptr; int value = strtol(str, &endptr, 10); if (endptr == str || *endptr != '\0') { exit(EXIT_FAILURE); } return value; }
the_stack_data/50136517.c
/*Exercise 3 - Repetition Write a C program to calculate the sum of the numbers from 1 to n. Where n is a keyboard input. e.g. n -> 100 sum = 1+2+3+....+ 99+100 = 5050 n -> 1- sum = 1+2+3+...+10 = 55 */ #include <stdio.h> int main() { int n, i, sum = 0;//declare variables printf("Enter a positive integer: "); scanf("%d", &n); for (i = 1; i <= n; ++i) { sum += i; } printf("Sum = %d", sum);//print sum return 0; }
the_stack_data/107953306.c
#ifdef HAVE_SYSTEMTAP_SYS_SDT_H #include <sys/sdt.h> #else #define DTRACE_PROBE2(a, b, c, d) (void)0 #endif #include <sys/time.h> #include <unistd.h> #include <stdio.h> static long myclock() { struct timeval tv; gettimeofday(&tv, NULL); DTRACE_PROBE2(tracetest, testprobe, tv.tv_sec, "Hello world"); DTRACE_PROBE2(tracetest, testprobe2, tv.tv_sec, "Hello world2"); DTRACE_PROBE2(tracetest2, testprobe2, tv.tv_sec, "Hello world3"); return tv.tv_sec; } int main(int argc, char **argv __attribute__((unused))) { if (argc > 1) // If we don't have Systemtap headers, we should skip USDT tests. Returning 1 can be used as validation in the REQUIRE #ifndef HAVE_SYSTEMTAP_SYS_SDT_H return 1; #else return 0; #endif while (1) { myclock(); } return 0; }
the_stack_data/62639.c
/*Exercise 3 - Repetition Write a C program to calculate the sum of the numbers from 1 to n. Where n is a keyboard input. e.g. n -> 100 sum = 1+2+3+....+ 99+100 = 5050 n -> 1- sum = 1+2+3+...+10 = 55 */ #include <stdio.h> int main() { int i, n, total=0; printf("Input a number: "); scanf("%d", &n); for(i=1; i<=n; ++i) { total = total + i; } printf("Total is: %d", total); return 0; }
the_stack_data/232955962.c
#ifdef STM32F3xx #include "stm32f3xx_ll_opamp.c" #endif #ifdef STM32H7xx #include "stm32h7xx_ll_opamp.c" #endif #ifdef STM32L1xx #include "stm32l1xx_ll_opamp.c" #endif #ifdef STM32L4xx #include "stm32l4xx_ll_opamp.c" #endif
the_stack_data/29825461.c
#include <stdlib.h> //integer cmp function int cmp(const void *lhs, const void *rhs) { if (*(int *)lhs == *(int *)rhs) return 0; return *(int *)lhs < *(int *)rhs ? -1 : 1; } int largestValsFromLabels(int *values, int valuesSize, int *labels, int labelsSize, int num_wanted, int use_limit) { int arr[labelsSize][2]; //{value,label} for (int i = 0; i < valuesSize; ++i) { arr[i][0] = values[i]; arr[i][1] = labels[i]; } qsort(arr, labelsSize, sizeof(arr[0]), cmp); int res = 0, hash[20001] = {0}; for (int i = valuesSize - 1; i >= 0 && num_wanted > 0; --i) { if (++hash[arr[i][1]] <= use_limit) { res += arr[i][0]; --num_wanted; } } return res; }
the_stack_data/2134.c
/* * Copyright (c) 2017, [Ribose Inc](https://www.ribose.com). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* axfr.c zone transfer utility * no output, returns 0 or 1 */ #include <stdio.h> #include <string.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #define QTYPE_AXFR 0xfc #define QCLASS_AXFR 0x01 /* axfr query header */ struct axfr_query { unsigned short id; unsigned short rd:1; unsigned short tc:1; unsigned short aa:1; unsigned short opcode:4; unsigned short qr:1; unsigned short rcode:4; unsigned short cd:1; unsigned short ad:1; unsigned short z:1; unsigned short ra:1; unsigned short qdcount; unsigned short ancount; unsigned short nscount; unsigned short arcount; }; /* * build qname */ static void build_qname(const char *domain, unsigned char **qname, int *qname_len) { const char *p1, *p2 = domain; unsigned char *q = NULL; int i, q_len = 0; while (1) { int len; p1 = strchr(p2, '.'); /* allocate buffer */ if (!p1) len = strlen(p2); else len = p1 - p2; q = realloc(q, q_len + len + 1); /* set buffer for each domain */ q[q_len] = (unsigned char) len; memcpy(&q[q_len + 1], p2, len); q_len += len + 1; if (!p1) break; p2 = p1 + 1; } q = realloc(q, q_len + 1); q[q_len] = 0x00; *qname = q; *qname_len = q_len + 1; } /* * build axfr query */ static void build_axfr_request(const char *domain, unsigned char **query, int *query_len) { struct axfr_query query_hdr; unsigned char *qname; int qname_len; unsigned short qtype; unsigned short qclass; unsigned char *q; int q_len = 0; /* init query header */ memset(&query_hdr, 0, sizeof(struct axfr_query)); query_hdr.id = random() % 0xFFFF; query_hdr.qdcount = htons(1); /* set qname */ build_qname(domain, &qname, &qname_len); /* set qtype and class */ qtype = htons(QTYPE_AXFR); qclass = htons(QCLASS_AXFR); /* allocate and set buffer */ q = (unsigned char *) malloc(sizeof(struct axfr_query) + qname_len + 2 * sizeof(unsigned short)); memcpy(q, &query_hdr, sizeof(struct axfr_query)); q_len += sizeof(struct axfr_query); memcpy(q + q_len, qname, qname_len); q_len += qname_len; memcpy(q + q_len, &qtype, sizeof(unsigned short)); q_len += sizeof(unsigned short); memcpy(q + q_len, &qclass, sizeof(unsigned short)); q_len += sizeof(unsigned short); /* free qname buffer */ free(qname); *query = q; *query_len = q_len; } /* * main function */ int main(int argc, char *argv[]) { int sock; struct sockaddr_in addr; unsigned char *query; int query_len; unsigned short len; unsigned char resp[512]; /* check arguments */ if (argc != 3) { fprintf(stderr, "Usage: %s <nameserver> <domain>\n", argv[0]); exit(-1); } /* connect to DNS server */ sock = socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) { fprintf(stderr, "socket() failed.(err:%d)\n", errno); return -1; } /* connect to DNS server */ memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; if (inet_pton(AF_INET, argv[1], &addr.sin_addr) < 1) { fprintf(stderr, "inet_pton(%s) failed.(err:%d)\n", argv[1], errno); close(sock); return -1; } addr.sin_port = htons(53); if (connect(sock, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) != 0) { fprintf(stderr, "connect() failed(err:%d)\n", errno); close(sock); return -1; } /* build DNS forward request */ build_axfr_request(argv[2], &query, &query_len); /* send length of query */ len = htons(query_len); if (write(sock, (void *) &len, 2) == -1) { fprintf(stderr, "write() failed(err:%d)\n", errno); close(sock); return -1; } /* send query to DNS server */ if (sendto(sock, (void *) query, query_len, 0, NULL, 0) < 0) { fprintf(stderr, "sendto() failed(err:%d)\n", errno); close(sock); return -1; } /* receive response from DNS server */ if (recvfrom(sock, resp, sizeof(resp), 0, NULL, 0) < 0) { fprintf(stderr, "recvfrom() failed(err:%d)\n", errno); close(sock); return -1; } /* close socket */ close(sock); return 0; }
the_stack_data/152582.c
// BUG: using __this_cpu_read() in preemptible [ADDR] code: syzkaller6NUM/3348 // https://syzkaller.appspot.com/bug?id=d5213e5c53321f9de672b67a217b27dbd0644ff0 // status:invalid // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include <sys/syscall.h> #include <unistd.h> #include <stdint.h> #include <string.h> static void test(); void loop() { while (1) { test(); } } long r[60]; void test() { memset(r, -1, sizeof(r)); r[0] = syscall(__NR_mmap, 0x20000000ul, 0x903000ul, 0x3ul, 0x32ul, 0xfffffffffffffffful, 0x0ul); r[1] = syscall(__NR_socket, 0xful, 0x3ul, 0x2ul); *(uint64_t*)0x205f5000 = (uint64_t)0x0; *(uint32_t*)0x205f5008 = (uint32_t)0x0; *(uint64_t*)0x205f5010 = (uint64_t)0x208feff0; *(uint64_t*)0x205f5018 = (uint64_t)0x1; *(uint64_t*)0x205f5020 = (uint64_t)0x0; *(uint64_t*)0x205f5028 = (uint64_t)0x0; *(uint32_t*)0x205f5030 = (uint32_t)0x0; *(uint64_t*)0x208feff0 = (uint64_t)0x208fe000; *(uint64_t*)0x208feff8 = (uint64_t)0x50; *(uint8_t*)0x208fe000 = (uint8_t)0x2; *(uint8_t*)0x208fe001 = (uint8_t)0x3; *(uint8_t*)0x208fe002 = (uint8_t)0x0; *(uint8_t*)0x208fe003 = (uint8_t)0x9; *(uint16_t*)0x208fe004 = (uint16_t)0xa; *(uint16_t*)0x208fe006 = (uint16_t)0x0; *(uint32_t*)0x208fe008 = (uint32_t)0x3; *(uint32_t*)0x208fe00c = (uint32_t)0x0; *(uint16_t*)0x208fe010 = (uint16_t)0x3; *(uint16_t*)0x208fe012 = (uint16_t)0x6; *(uint8_t*)0x208fe014 = (uint8_t)0x0; *(uint8_t*)0x208fe015 = (uint8_t)0x0; *(uint16_t*)0x208fe016 = (uint16_t)0x0; *(uint16_t*)0x208fe018 = (uint16_t)0x2; *(uint16_t*)0x208fe01a = (uint16_t)0x204e; *(uint32_t*)0x208fe01c = (uint32_t)0x1020000; *(uint8_t*)0x208fe020 = (uint8_t)0x0; *(uint8_t*)0x208fe021 = (uint8_t)0x0; *(uint8_t*)0x208fe022 = (uint8_t)0x0; *(uint8_t*)0x208fe023 = (uint8_t)0x0; *(uint8_t*)0x208fe024 = (uint8_t)0x0; *(uint8_t*)0x208fe025 = (uint8_t)0x0; *(uint8_t*)0x208fe026 = (uint8_t)0x0; *(uint8_t*)0x208fe027 = (uint8_t)0x0; *(uint16_t*)0x208fe028 = (uint16_t)0x2; *(uint16_t*)0x208fe02a = (uint16_t)0x1; *(uint32_t*)0x208fe02c = (uint32_t)0x0; *(uint8_t*)0x208fe030 = (uint8_t)0x0; *(uint8_t*)0x208fe031 = (uint8_t)0x0; *(uint8_t*)0x208fe032 = (uint8_t)0x0; *(uint8_t*)0x208fe033 = (uint8_t)0x2; *(uint32_t*)0x208fe034 = (uint32_t)0x0; *(uint16_t*)0x208fe038 = (uint16_t)0x3; *(uint16_t*)0x208fe03a = (uint16_t)0x2000000005; *(uint8_t*)0x208fe03c = (uint8_t)0x0; *(uint8_t*)0x208fe03d = (uint8_t)0x0; *(uint16_t*)0x208fe03e = (uint16_t)0x0; *(uint16_t*)0x208fe040 = (uint16_t)0x2; *(uint16_t*)0x208fe042 = (uint16_t)0x204e; *(uint32_t*)0x208fe044 = (uint32_t)0x100007f; *(uint8_t*)0x208fe048 = (uint8_t)0x0; *(uint8_t*)0x208fe049 = (uint8_t)0x0; *(uint8_t*)0x208fe04a = (uint8_t)0x0; *(uint8_t*)0x208fe04b = (uint8_t)0x0; *(uint8_t*)0x208fe04c = (uint8_t)0x0; *(uint8_t*)0x208fe04d = (uint8_t)0x0; *(uint8_t*)0x208fe04e = (uint8_t)0x0; *(uint8_t*)0x208fe04f = (uint8_t)0x0; r[59] = syscall(__NR_sendmsg, r[1], 0x205f5000ul, 0x0ul); } int main() { loop(); return 0; }
the_stack_data/1002160.c
// Tool to merge unigram counts of 2 languages generated by vocab_count // // Copyright (c) 2014 The Board of Trustees of // The Leland Stanford Junior University. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // // For more information, bug reports, fixes, contact: // Jilei Wang ([email protected]) #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_STRING_LENGTH 1000 int verbose = 2; // 0, 1, or 2 char *filename1, *filename2; /* Efficient string comparison */ int scmp( char *s1, char *s2 ) { while (*s1 != '\0' && *s1 == *s2) {s1++; s2++;} return(*s1 - *s2); } /* Vocab frequency comparison; break ties alphabetically */ int CompareVocabTie(long long count1, long long count2, char *word1, char *word2) { long long c; if ( (c = count2 - count1) != 0) return ( c > 0 ? 1 : -1 ); else return (scmp(word1, word2)); } int merge_files() { char format[20], word1_prefix[MAX_STRING_LENGTH + 2], word2_prefix[MAX_STRING_LENGTH + 2]; char *word1, * word2; FILE *fid1, *fid2; int ret1, ret2; long long count1, count2; word1 = word1_prefix + 1; word2 = word2_prefix + 1; word1_prefix[0] = '1'; word2_prefix[0] = '2'; fid1 = fopen(filename1,"r"); if (fid1 == NULL) {fprintf(stderr,"Unable to open vocab file 1: %s.\n",filename1); return 1;} fid2 = fopen(filename2,"r"); if (fid2 == NULL) {fprintf(stderr,"Unable to open vocab file 2: %s.\n",filename2); return 1;} sprintf(format,"%%%ds %%lld", MAX_STRING_LENGTH); ret1 = fscanf(fid1, format, word1, &count1); ret2 = fscanf(fid2, format, word2, &count2); while (ret1 != EOF && ret2 != EOF) { if (CompareVocabTie(count1, count2, word1, word2) <= 0) { printf("%s %lld\n", word1_prefix, count1); ret1 = fscanf(fid1, format, word1, &count1); } else { printf("%s %lld\n", word2_prefix, count2); ret2 = fscanf(fid2, format, word2, &count2); } } while (ret1 != EOF) { printf("%s %lld\n", word1_prefix, count1); ret1 = fscanf(fid1, format, word1, &count1); } while (ret1 != EOF) { printf("%s %lld\n", word2_prefix, count2); ret2 = fscanf(fid2, format, word2, &count2); } return 0; } int find_arg(char *str, int argc, char **argv) { int i; for (i = 1; i < argc; i++) { if (!scmp(str, argv[i])) { if (i == argc - 1) { printf("No argument given for %s\n", str); exit(1); } return i; } } return -1; } int main(int argc, char **argv) { int i; filename1 = malloc(sizeof(char) * MAX_STRING_LENGTH); filename2 = malloc(sizeof(char) * MAX_STRING_LENGTH); if (argc == 1) { printf("Merge 2 unigram count files of 2 languages\n"); printf("Author: Jilei Wang ([email protected])\n\n"); printf("Usage options:\n"); printf("\t-verbose <int>\n"); printf("\t\tSet verbosity: 0, 1, or 2 (default)\n"); printf("\t-file1 <int>\n"); printf("\t\tThe first vocab count file\n"); printf("\t-file2 <int>\n"); printf("\t\tThe second vocab count file\n"); printf("\nExample usage:\n"); printf("./bi_vocab_count -verbose 2 -file1 vocab.zh.txt -file2 vocab.ja.txt > vocab.bi.txt\n"); return 0; } if ((i = find_arg((char *)"-verbose", argc, argv)) > 0) verbose = atoi(argv[i + 1]); if ((i = find_arg((char *)"-file1", argc, argv)) > 0) strcpy(filename1, argv[i + 1]); if ((i = find_arg((char *)"-file2", argc, argv)) > 0) strcpy(filename2, argv[i + 1]); return merge_files(); }
the_stack_data/57951393.c
/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-ppc32-linux.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2005-2017 Nicholas Nethercote <[email protected]> Copyright (C) 2005-2017 Cerion Armour-Brown <[email protected]> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #if defined(VGP_ppc32_linux) #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_vkiscnums.h" #include "pub_core_threadstate.h" #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_options.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" // For VG_(sigframe_destroy)() #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */ #include "priv_syswrap-main.h" /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f.*/ __attribute__((noreturn)) void ML_(call_on_new_stack_0_1) ( Addr stack, Addr retaddr, void (*f)(Word), Word arg1 ); // r3 = stack // r4 = retaddr // r5 = f // r6 = arg1 asm( ".text\n" ".globl vgModuleLocal_call_on_new_stack_0_1\n" "vgModuleLocal_call_on_new_stack_0_1:\n" " mr %r1,%r3\n\t" // stack to %sp " mtlr %r4\n\t" // retaddr to %lr " mtctr %r5\n\t" // f to count reg " mr %r3,%r6\n\t" // arg1 to %r3 " li 0,0\n\t" // zero all GP regs " li 4,0\n\t" " li 5,0\n\t" " li 6,0\n\t" " li 7,0\n\t" " li 8,0\n\t" " li 9,0\n\t" " li 10,0\n\t" " li 11,0\n\t" " li 12,0\n\t" " li 13,0\n\t" " li 14,0\n\t" " li 15,0\n\t" " li 16,0\n\t" " li 17,0\n\t" " li 18,0\n\t" " li 19,0\n\t" " li 20,0\n\t" " li 21,0\n\t" " li 22,0\n\t" " li 23,0\n\t" " li 24,0\n\t" " li 25,0\n\t" " li 26,0\n\t" " li 27,0\n\t" " li 28,0\n\t" " li 29,0\n\t" " li 30,0\n\t" " li 31,0\n\t" " mtxer 0\n\t" // CAB: Need this? " mtcr 0\n\t" // CAB: Need this? " bctr\n\t" // jump to dst " trap\n" // should never get here ".previous\n" ); /* Perform a clone system call. clone is strange because it has fork()-like return-twice semantics, so it needs special handling here. Upon entry, we have: int (fn)(void*) in r3 void* child_stack in r4 int flags in r5 void* arg in r6 pid_t* child_tid in r7 pid_t* parent_tid in r8 void* ??? in r9 System call requires: int $__NR_clone in r0 (sc number) int flags in r3 (sc arg1) void* child_stack in r4 (sc arg2) pid_t* parent_tid in r5 (sc arg3) ?? child_tls in r6 (sc arg4) pid_t* child_tid in r7 (sc arg5) void* ??? in r8 (sc arg6) Returns an Int encoded in the linux-ppc32 way, not a SysRes. */ #define __NR_CLONE VG_STRINGIFY(__NR_clone) #define __NR_EXIT VG_STRINGIFY(__NR_exit) // See priv_syswrap-linux.h for arg profile. asm( ".text\n" ".globl do_syscall_clone_ppc32_linux\n" "do_syscall_clone_ppc32_linux:\n" " stwu 1,-32(1)\n" " stw 29,20(1)\n" " stw 30,24(1)\n" " stw 31,28(1)\n" " mr 30,3\n" // preserve fn " mr 31,6\n" // preserve arg // setup child stack " rlwinm 4,4,0,~0xf\n" // trim sp to multiple of 16 bytes " li 0,0\n" " stwu 0,-16(4)\n" // make initial stack frame " mr 29,4\n" // preserve sp // setup syscall " li 0,"__NR_CLONE"\n" // syscall number " mr 3,5\n" // syscall arg1: flags // r4 already setup // syscall arg2: child_stack " mr 5,8\n" // syscall arg3: parent_tid " mr 6,2\n" // syscall arg4: REAL THREAD tls " mr 7,7\n" // syscall arg5: child_tid " mr 8,8\n" // syscall arg6: ???? " mr 9,9\n" // syscall arg7: ???? " sc\n" // clone() " mfcr 4\n" // return CR in r4 (low word of ULong) " cmpwi 3,0\n" // child if retval == 0 " bne 1f\n" // jump if !child /* CHILD - call thread function */ /* Note: 2.4 kernel doesn't set the child stack pointer, so we do it here. That does leave a small window for a signal to be delivered on the wrong stack, unfortunately. */ " mr 1,29\n" " mtctr 30\n" // ctr reg = fn " mr 3,31\n" // r3 = arg " bctrl\n" // call fn() // exit with result " li 0,"__NR_EXIT"\n" " sc\n" // Exit returned?! " .long 0\n" // PARENT or ERROR - return "1: lwz 29,20(1)\n" " lwz 30,24(1)\n" " lwz 31,28(1)\n" " addi 1,1,32\n" " blr\n" ".previous\n" ); #undef __NR_CLONE #undef __NR_EXIT /* --------------------------------------------------------------------- More thread stuff ------------------------------------------------------------------ */ void VG_(cleanup_thread) ( ThreadArchState* arch ) { } /* --------------------------------------------------------------------- PRE/POST wrappers for ppc32/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(ppc32_linux, name) #define POST(name) DEFN_POST_TEMPLATE(ppc32_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE(ppc32_linux, sys_mmap); DECL_TEMPLATE(ppc32_linux, sys_mmap2); DECL_TEMPLATE(ppc32_linux, sys_stat64); DECL_TEMPLATE(ppc32_linux, sys_lstat64); DECL_TEMPLATE(ppc32_linux, sys_fstatat64); DECL_TEMPLATE(ppc32_linux, sys_fstat64); DECL_TEMPLATE(ppc32_linux, sys_sigreturn); DECL_TEMPLATE(ppc32_linux, sys_rt_sigreturn); DECL_TEMPLATE(ppc32_linux, sys_sigsuspend); DECL_TEMPLATE(ppc32_linux, sys_spu_create); DECL_TEMPLATE(ppc32_linux, sys_spu_run); PRE(sys_mmap) { SysRes r; PRINT("sys_mmap ( %#lx, %lu, %lu, %lu, %lu, %lu )", ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); PRE_REG_READ6(long, "mmap", unsigned long, start, unsigned long, length, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, offset); r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, (Off64T)ARG6 ); SET_STATUS_from_SysRes(r); } PRE(sys_mmap2) { SysRes r; // Exactly like old_mmap() except: // - the file offset is specified in 4K units rather than bytes, // so that it can be used for files bigger than 2^32 bytes. PRINT("sys_mmap2 ( %#lx, %lu, %lu, %lu, %lu, %lu )", ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 ); PRE_REG_READ6(long, "mmap2", unsigned long, start, unsigned long, length, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, offset); r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, 4096 * (Off64T)ARG6 ); SET_STATUS_from_SysRes(r); } // XXX: lstat64/fstat64/stat64 are generic, but not necessarily // applicable to every architecture -- I think only to 32-bit archs. // We're going to need something like linux/core_os32.h for such // things, eventually, I think. --njn PRE(sys_stat64) { PRINT("sys_stat64 ( %#lx, %#lx )",ARG1,ARG2); PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 ); PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_stat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } PRE(sys_lstat64) { PRINT("sys_lstat64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2); PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 ); PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_lstat64) { vg_assert(SUCCESS); if (RES == 0) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } } PRE(sys_fstatat64) { PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx )", SARG1, ARG2, (HChar*)ARG2, ARG3); PRE_REG_READ3(long, "fstatat64", int, dfd, char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "fstatat64(file_name)", ARG2 ); PRE_MEM_WRITE( "fstatat64(buf)", ARG3, sizeof(struct vki_stat64) ); } POST(sys_fstatat64) { POST_MEM_WRITE( ARG3, sizeof(struct vki_stat64) ); } PRE(sys_fstat64) { PRINT("sys_fstat64 ( %lu, %#lx )", ARG1, ARG2); PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf); PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_fstat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } //.. PRE(old_select, MayBlock) //.. { //.. /* struct sel_arg_struct { //.. unsigned long n; //.. fd_set *inp, *outp, *exp; //.. struct timeval *tvp; //.. }; //.. */ //.. PRE_REG_READ1(long, "old_select", struct sel_arg_struct *, args); //.. PRE_MEM_READ( "old_select(args)", ARG1, 5*sizeof(UWord) ); //.. //.. { //.. UInt* arg_struct = (UInt*)ARG1; //.. UInt a1, a2, a3, a4, a5; //.. //.. a1 = arg_struct[0]; //.. a2 = arg_struct[1]; //.. a3 = arg_struct[2]; //.. a4 = arg_struct[3]; //.. a5 = arg_struct[4]; //.. //.. PRINT("old_select ( %d, %p, %p, %p, %p )", a1,a2,a3,a4,a5); //.. if (a2 != (Addr)NULL) //.. PRE_MEM_READ( "old_select(readfds)", a2, a1/8 /* __FD_SETSIZE/8 */ ); //.. if (a3 != (Addr)NULL) //.. PRE_MEM_READ( "old_select(writefds)", a3, a1/8 /* __FD_SETSIZE/8 */ ); //.. if (a4 != (Addr)NULL) //.. PRE_MEM_READ( "old_select(exceptfds)", a4, a1/8 /* __FD_SETSIZE/8 */ ); //.. if (a5 != (Addr)NULL) //.. PRE_MEM_READ( "old_select(timeout)", a5, sizeof(struct vki_timeval) ); //.. } //.. } PRE(sys_sigreturn) { /* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for an explanation of what follows. */ //ThreadState* tst; PRINT("sys_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); ///* Adjust esp to point to start of frame; skip back up over // sigreturn sequence's "popl %eax" and handler ret addr */ //tst = VG_(get_ThreadState)(tid); //tst->arch.vex.guest_ESP -= sizeof(Addr)+sizeof(Word); // Should we do something equivalent on ppc32? Who knows. ///* This is only so that the EIP is (might be) useful to report if // something goes wrong in the sigreturn */ //ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); // Should we do something equivalent on ppc32? Who knows. /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, False); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_rt_sigreturn) { /* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for an explanation of what follows. */ //ThreadState* tst; PRINT("rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); ///* Adjust esp to point to start of frame; skip back up over handler // ret addr */ //tst = VG_(get_ThreadState)(tid); //tst->arch.vex.guest_ESP -= sizeof(Addr); // Should we do something equivalent on ppc32? Who knows. ///* This is only so that the EIP is (might be) useful to report if // something goes wrong in the sigreturn */ //ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); // Should we do something equivalent on ppc32? Who knows. /* Restore register state from frame and remove it */ VG_(sigframe_destroy)(tid, True); /* Tell the driver not to update the guest state with the "result", and set a bogus result to keep it happy. */ *flags |= SfNoWriteResult; SET_STATUS_Success(0); /* Check to see if any signals arose as a result of this. */ *flags |= SfPollAfter; } //.. PRE(sys_modify_ldt, Special) //.. { //.. PRINT("sys_modify_ldt ( %d, %p, %d )", ARG1,ARG2,ARG3); //.. PRE_REG_READ3(int, "modify_ldt", int, func, void *, ptr, //.. unsigned long, bytecount); //.. //.. if (ARG1 == 0) { //.. /* read the LDT into ptr */ //.. PRE_MEM_WRITE( "modify_ldt(ptr)", ARG2, ARG3 ); //.. } //.. if (ARG1 == 1 || ARG1 == 0x11) { //.. /* write the LDT with the entry pointed at by ptr */ //.. PRE_MEM_READ( "modify_ldt(ptr)", ARG2, sizeof(vki_modify_ldt_t) ); //.. } //.. /* "do" the syscall ourselves; the kernel never sees it */ //.. SET_RESULT( VG_(sys_modify_ldt)( tid, ARG1, (void*)ARG2, ARG3 ) ); //.. //.. if (ARG1 == 0 && !VG_(is_kerror)(RES) && RES > 0) { //.. POST_MEM_WRITE( ARG2, RES ); //.. } //.. } //.. PRE(sys_set_thread_area, Special) //.. { //.. PRINT("sys_set_thread_area ( %p )", ARG1); //.. PRE_REG_READ1(int, "set_thread_area", struct user_desc *, u_info) //.. PRE_MEM_READ( "set_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) ); //.. //.. /* "do" the syscall ourselves; the kernel never sees it */ //.. SET_RESULT( VG_(sys_set_thread_area)( tid, (void *)ARG1 ) ); //.. } //.. PRE(sys_get_thread_area, Special) //.. { //.. PRINT("sys_get_thread_area ( %p )", ARG1); //.. PRE_REG_READ1(int, "get_thread_area", struct user_desc *, u_info) //.. PRE_MEM_WRITE( "get_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) ); //.. //.. /* "do" the syscall ourselves; the kernel never sees it */ //.. SET_RESULT( VG_(sys_get_thread_area)( tid, (void *)ARG1 ) ); //.. //.. if (!VG_(is_kerror)(RES)) { //.. POST_MEM_WRITE( ARG1, sizeof(vki_modify_ldt_t) ); //.. } //.. } //.. // Parts of this are ppc32-specific, but the *PEEK* cases are generic. //.. // XXX: Why is the memory pointed to by ARG3 never checked? //.. PRE(sys_ptrace, 0) //.. { //.. PRINT("sys_ptrace ( %d, %d, %p, %p )", ARG1,ARG2,ARG3,ARG4); //.. PRE_REG_READ4(int, "ptrace", //.. long, request, long, pid, long, addr, long, data); //.. switch (ARG1) { //.. case VKI_PTRACE_PEEKTEXT: //.. case VKI_PTRACE_PEEKDATA: //.. case VKI_PTRACE_PEEKUSR: //.. PRE_MEM_WRITE( "ptrace(peek)", ARG4, //.. sizeof (long)); //.. break; //.. case VKI_PTRACE_GETREGS: //.. PRE_MEM_WRITE( "ptrace(getregs)", ARG4, //.. sizeof (struct vki_user_regs_struct)); //.. break; //.. case VKI_PTRACE_GETFPREGS: //.. PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4, //.. sizeof (struct vki_user_i387_struct)); //.. break; //.. case VKI_PTRACE_GETFPXREGS: //.. PRE_MEM_WRITE( "ptrace(getfpxregs)", ARG4, //.. sizeof(struct vki_user_fxsr_struct) ); //.. break; //.. case VKI_PTRACE_SETREGS: //.. PRE_MEM_READ( "ptrace(setregs)", ARG4, //.. sizeof (struct vki_user_regs_struct)); //.. break; //.. case VKI_PTRACE_SETFPREGS: //.. PRE_MEM_READ( "ptrace(setfpregs)", ARG4, //.. sizeof (struct vki_user_i387_struct)); //.. break; //.. case VKI_PTRACE_SETFPXREGS: //.. PRE_MEM_READ( "ptrace(setfpxregs)", ARG4, //.. sizeof(struct vki_user_fxsr_struct) ); //.. break; //.. default: //.. break; //.. } //.. } //.. POST(sys_ptrace) //.. { //.. switch (ARG1) { //.. case VKI_PTRACE_PEEKTEXT: //.. case VKI_PTRACE_PEEKDATA: //.. case VKI_PTRACE_PEEKUSR: //.. POST_MEM_WRITE( ARG4, sizeof (long)); //.. break; //.. case VKI_PTRACE_GETREGS: //.. POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct)); //.. break; //.. case VKI_PTRACE_GETFPREGS: //.. POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct)); //.. break; //.. case VKI_PTRACE_GETFPXREGS: //.. POST_MEM_WRITE( ARG4, sizeof(struct vki_user_fxsr_struct) ); //.. break; //.. default: //.. break; //.. } //.. } /* NB: This is an almost identical clone of versions for x86-linux and arm-linux, which are themselves literally identical. */ PRE(sys_sigsuspend) { /* The C library interface to sigsuspend just takes a pointer to a signal mask but this system call only takes the first word of the signal mask as an argument so only 32 signals are supported. In fact glibc normally uses rt_sigsuspend if it is available as that takes a pointer to the signal mask so supports more signals. */ *flags |= SfMayBlock; PRINT("sys_sigsuspend ( %lu )", ARG1 ); PRE_REG_READ1(int, "sigsuspend", vki_old_sigset_t, mask); } PRE(sys_spu_create) { PRE_MEM_RASCIIZ("stat64(filename)", ARG1); } POST(sys_spu_create) { vg_assert(SUCCESS); } PRE(sys_spu_run) { *flags |= SfMayBlock; if (ARG2 != 0) PRE_MEM_WRITE("npc", ARG2, sizeof(unsigned int)); PRE_MEM_READ("event", ARG3, sizeof(unsigned int)); } POST(sys_spu_run) { if (ARG2 != 0) POST_MEM_WRITE(ARG2, sizeof(unsigned int)); } #undef PRE #undef POST /* --------------------------------------------------------------------- The ppc32/Linux syscall table ------------------------------------------------------------------ */ /* Add an ppc32-linux specific wrapper to a syscall table. */ #define PLAX_(sysno, name) WRAPPER_ENTRY_X_(ppc32_linux, sysno, name) #define PLAXY(sysno, name) WRAPPER_ENTRY_XY(ppc32_linux, sysno, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm-ppc/unistd.h) to the appropriate PRE/POST sys_foo() // wrappers on ppc32 (as per sys_call_table in linux/arch/ppc/kernel/entry.S). // // For those syscalls not handled by Valgrind, the annotation indicate its // arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/? // (unknown). static SyscallTableEntry syscall_table[] = { //.. (restart_syscall) // 0 GENX_(__NR_exit, sys_exit), // 1 GENX_(__NR_fork, sys_fork), // 2 GENXY(__NR_read, sys_read), // 3 GENX_(__NR_write, sys_write), // 4 GENXY(__NR_open, sys_open), // 5 GENXY(__NR_close, sys_close), // 6 GENXY(__NR_waitpid, sys_waitpid), // 7 GENXY(__NR_creat, sys_creat), // 8 GENX_(__NR_link, sys_link), // 9 GENX_(__NR_unlink, sys_unlink), // 10 GENX_(__NR_execve, sys_execve), // 11 GENX_(__NR_chdir, sys_chdir), // 12 GENXY(__NR_time, sys_time), // 13 GENX_(__NR_mknod, sys_mknod), // 14 //.. GENX_(__NR_chmod, sys_chmod), // 15 GENX_(__NR_lchown, sys_lchown), // 16 ## P //.. GENX_(__NR_break, sys_ni_syscall), // 17 //.. // (__NR_oldstat, sys_stat), // 18 (obsolete) LINX_(__NR_lseek, sys_lseek), // 19 //.. GENX_(__NR_getpid, sys_getpid), // 20 LINX_(__NR_mount, sys_mount), // 21 LINX_(__NR_umount, sys_oldumount), // 22 GENX_(__NR_setuid, sys_setuid), // 23 ## P GENX_(__NR_getuid, sys_getuid), // 24 ## P //.. //.. // (__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN) //.. PLAXY(__NR_ptrace, sys_ptrace), // 26 GENX_(__NR_alarm, sys_alarm), // 27 //.. // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete GENX_(__NR_pause, sys_pause), // 29 //.. LINX_(__NR_utime, sys_utime), // 30 //.. GENX_(__NR_stty, sys_ni_syscall), // 31 //.. GENX_(__NR_gtty, sys_ni_syscall), // 32 GENX_(__NR_access, sys_access), // 33 //.. GENX_(__NR_nice, sys_nice), // 34 //.. //.. GENX_(__NR_ftime, sys_ni_syscall), // 35 GENX_(__NR_sync, sys_sync), // 36 GENX_(__NR_kill, sys_kill), // 37 GENX_(__NR_rename, sys_rename), // 38 GENX_(__NR_mkdir, sys_mkdir), // 39 GENX_(__NR_rmdir, sys_rmdir), // 40 GENXY(__NR_dup, sys_dup), // 41 LINXY(__NR_pipe, sys_pipe), // 42 GENXY(__NR_times, sys_times), // 43 //.. GENX_(__NR_prof, sys_ni_syscall), // 44 //.. GENX_(__NR_brk, sys_brk), // 45 GENX_(__NR_setgid, sys_setgid), // 46 GENX_(__NR_getgid, sys_getgid), // 47 //.. // (__NR_signal, sys_signal), // 48 */* (ANSI C) GENX_(__NR_geteuid, sys_geteuid), // 49 GENX_(__NR_getegid, sys_getegid), // 50 //.. GENX_(__NR_acct, sys_acct), // 51 LINX_(__NR_umount2, sys_umount), // 52 //.. GENX_(__NR_lock, sys_ni_syscall), // 53 LINXY(__NR_ioctl, sys_ioctl), // 54 //.. LINXY(__NR_fcntl, sys_fcntl), // 55 //.. GENX_(__NR_mpx, sys_ni_syscall), // 56 GENX_(__NR_setpgid, sys_setpgid), // 57 //.. GENX_(__NR_ulimit, sys_ni_syscall), // 58 //.. // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete GENX_(__NR_umask, sys_umask), // 60 GENX_(__NR_chroot, sys_chroot), // 61 //.. // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated GENXY(__NR_dup2, sys_dup2), // 63 GENX_(__NR_getppid, sys_getppid), // 64 GENX_(__NR_getpgrp, sys_getpgrp), // 65 GENX_(__NR_setsid, sys_setsid), // 66 LINXY(__NR_sigaction, sys_sigaction), // 67 //.. // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C) //.. // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C) //.. GENX_(__NR_setreuid, sys_setreuid), // 70 GENX_(__NR_setregid, sys_setregid), // 71 PLAX_(__NR_sigsuspend, sys_sigsuspend), // 72 LINXY(__NR_sigpending, sys_sigpending), // 73 //.. // (__NR_sethostname, sys_sethostname), // 74 */* //.. GENX_(__NR_setrlimit, sys_setrlimit), // 75 //.. GENXY(__NR_getrlimit, sys_old_getrlimit), // 76 GENXY(__NR_getrusage, sys_getrusage), // 77 GENXY(__NR_gettimeofday, sys_gettimeofday), // 78 //.. GENX_(__NR_settimeofday, sys_settimeofday), // 79 //.. GENXY(__NR_getgroups, sys_getgroups), // 80 GENX_(__NR_setgroups, sys_setgroups), // 81 //.. PLAX_(__NR_select, old_select), // 82 GENX_(__NR_symlink, sys_symlink), // 83 //.. // (__NR_oldlstat, sys_lstat), // 84 -- obsolete //.. GENX_(__NR_readlink, sys_readlink), // 85 //.. // (__NR_uselib, sys_uselib), // 86 */Linux //.. // (__NR_swapon, sys_swapon), // 87 */Linux //.. // (__NR_reboot, sys_reboot), // 88 */Linux //.. // (__NR_readdir, old_readdir), // 89 -- superseded PLAX_(__NR_mmap, sys_mmap), // 90 GENXY(__NR_munmap, sys_munmap), // 91 GENX_(__NR_truncate, sys_truncate), // 92 GENX_(__NR_ftruncate, sys_ftruncate), // 93 GENX_(__NR_fchmod, sys_fchmod), // 94 GENX_(__NR_fchown, sys_fchown), // 95 GENX_(__NR_getpriority, sys_getpriority), // 96 GENX_(__NR_setpriority, sys_setpriority), // 97 //.. GENX_(__NR_profil, sys_ni_syscall), // 98 GENXY(__NR_statfs, sys_statfs), // 99 //.. GENXY(__NR_fstatfs, sys_fstatfs), // 100 //.. LINX_(__NR_ioperm, sys_ioperm), // 101 LINXY(__NR_socketcall, sys_socketcall), // 102 LINXY(__NR_syslog, sys_syslog), // 103 GENXY(__NR_setitimer, sys_setitimer), // 104 GENXY(__NR_getitimer, sys_getitimer), // 105 GENXY(__NR_stat, sys_newstat), // 106 GENXY(__NR_lstat, sys_newlstat), // 107 GENXY(__NR_fstat, sys_newfstat), // 108 //.. // (__NR_olduname, sys_uname), // 109 -- obsolete //.. //.. GENX_(__NR_iopl, sys_iopl), // 110 LINX_(__NR_vhangup, sys_vhangup), // 111 //.. GENX_(__NR_idle, sys_ni_syscall), // 112 //.. // (__NR_vm86old, sys_vm86old), // 113 x86/Linux-only GENXY(__NR_wait4, sys_wait4), // 114 //.. //.. // (__NR_swapoff, sys_swapoff), // 115 */Linux LINXY(__NR_sysinfo, sys_sysinfo), // 116 LINXY(__NR_ipc, sys_ipc), // 117 GENX_(__NR_fsync, sys_fsync), // 118 PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux //.. LINX_(__NR_clone, sys_clone), // 120 //.. // (__NR_setdomainname, sys_setdomainname), // 121 */*(?) GENXY(__NR_uname, sys_newuname), // 122 //.. PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123 LINXY(__NR_adjtimex, sys_adjtimex), // 124 GENXY(__NR_mprotect, sys_mprotect), // 125 LINXY(__NR_sigprocmask, sys_sigprocmask), // 126 GENX_(__NR_create_module, sys_ni_syscall), // 127 LINX_(__NR_init_module, sys_init_module), // 128 LINX_(__NR_delete_module, sys_delete_module), // 129 //.. //.. // Nb: get_kernel_syms() was removed 2.4-->2.6 //.. GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130 //.. LINX_(__NR_quotactl, sys_quotactl), // 131 GENX_(__NR_getpgid, sys_getpgid), // 132 GENX_(__NR_fchdir, sys_fchdir), // 133 //.. // (__NR_bdflush, sys_bdflush), // 134 */Linux //.. //.. // (__NR_sysfs, sys_sysfs), // 135 SVr4 LINX_(__NR_personality, sys_personality), // 136 //.. GENX_(__NR_afs_syscall, sys_ni_syscall), // 137 LINX_(__NR_setfsuid, sys_setfsuid), // 138 LINX_(__NR_setfsgid, sys_setfsgid), // 139 LINXY(__NR__llseek, sys_llseek), // 140 GENXY(__NR_getdents, sys_getdents), // 141 GENX_(__NR__newselect, sys_select), // 142 GENX_(__NR_flock, sys_flock), // 143 GENX_(__NR_msync, sys_msync), // 144 //.. GENXY(__NR_readv, sys_readv), // 145 GENX_(__NR_writev, sys_writev), // 146 GENX_(__NR_getsid, sys_getsid), // 147 GENX_(__NR_fdatasync, sys_fdatasync), // 148 LINXY(__NR__sysctl, sys_sysctl), // 149 //.. GENX_(__NR_mlock, sys_mlock), // 150 GENX_(__NR_munlock, sys_munlock), // 151 GENX_(__NR_mlockall, sys_mlockall), // 152 LINX_(__NR_munlockall, sys_munlockall), // 153 LINXY(__NR_sched_setparam, sys_sched_setparam), // 154 //.. LINXY(__NR_sched_getparam, sys_sched_getparam), // 155 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157 LINX_(__NR_sched_yield, sys_sched_yield), // 158 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160 LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161 GENXY(__NR_nanosleep, sys_nanosleep), // 162 GENX_(__NR_mremap, sys_mremap), // 163 LINX_(__NR_setresuid, sys_setresuid), // 164 LINXY(__NR_getresuid, sys_getresuid), // 165 //.. GENX_(__NR_query_module, sys_ni_syscall), // 166 GENXY(__NR_poll, sys_poll), // 167 //.. // (__NR_nfsservctl, sys_nfsservctl), // 168 */Linux //.. LINX_(__NR_setresgid, sys_setresgid), // 169 LINXY(__NR_getresgid, sys_getresgid), // 170 LINXY(__NR_prctl, sys_prctl), // 171 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 172 LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 173 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 174 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 175 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait), // 176 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo), // 177 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 178 GENXY(__NR_pread64, sys_pread64), // 179 GENX_(__NR_pwrite64, sys_pwrite64), // 180 GENX_(__NR_chown, sys_chown), // 181 GENXY(__NR_getcwd, sys_getcwd), // 182 LINXY(__NR_capget, sys_capget), // 183 LINX_(__NR_capset, sys_capset), // 184 GENXY(__NR_sigaltstack, sys_sigaltstack), // 185 LINXY(__NR_sendfile, sys_sendfile), // 186 //.. GENXY(__NR_getpmsg, sys_getpmsg), // 187 //.. GENX_(__NR_putpmsg, sys_putpmsg), // 188 // Nb: we treat vfork as fork GENX_(__NR_vfork, sys_fork), // 189 GENXY(__NR_ugetrlimit, sys_getrlimit), // 190 LINX_(__NR_readahead, sys_readahead), // 191 */Linux PLAX_(__NR_mmap2, sys_mmap2), // 192 GENX_(__NR_truncate64, sys_truncate64), // 193 GENX_(__NR_ftruncate64, sys_ftruncate64), // 194 //.. PLAXY(__NR_stat64, sys_stat64), // 195 PLAXY(__NR_lstat64, sys_lstat64), // 196 PLAXY(__NR_fstat64, sys_fstat64), // 197 // __NR_pciconfig_read // 198 // __NR_pciconfig_write // 199 // __NR_pciconfig_iobase // 200 // __NR_multiplexer // 201 GENXY(__NR_getdents64, sys_getdents64), // 202 LINX_(__NR_pivot_root, sys_pivot_root), // 203 LINXY(__NR_fcntl64, sys_fcntl64), // 204 GENX_(__NR_madvise, sys_madvise), // 205 GENXY(__NR_mincore, sys_mincore), // 206 LINX_(__NR_gettid, sys_gettid), // 207 //.. LINX_(__NR_tkill, sys_tkill), // 208 */Linux LINX_(__NR_setxattr, sys_setxattr), // 209 LINX_(__NR_lsetxattr, sys_lsetxattr), // 210 LINX_(__NR_fsetxattr, sys_fsetxattr), // 211 LINXY(__NR_getxattr, sys_getxattr), // 212 LINXY(__NR_lgetxattr, sys_lgetxattr), // 213 LINXY(__NR_fgetxattr, sys_fgetxattr), // 214 LINXY(__NR_listxattr, sys_listxattr), // 215 LINXY(__NR_llistxattr, sys_llistxattr), // 216 LINXY(__NR_flistxattr, sys_flistxattr), // 217 LINX_(__NR_removexattr, sys_removexattr), // 218 LINX_(__NR_lremovexattr, sys_lremovexattr), // 219 LINX_(__NR_fremovexattr, sys_fremovexattr), // 220 LINXY(__NR_futex, sys_futex), // 221 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 222 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 223 /* 224 currently unused */ // __NR_tuxcall // 225 LINXY(__NR_sendfile64, sys_sendfile64), // 226 //.. LINX_(__NR_io_setup, sys_io_setup), // 227 LINX_(__NR_io_destroy, sys_io_destroy), // 228 LINXY(__NR_io_getevents, sys_io_getevents), // 229 LINX_(__NR_io_submit, sys_io_submit), // 230 LINXY(__NR_io_cancel, sys_io_cancel), // 231 //.. LINX_(__NR_set_tid_address, sys_set_tid_address), // 232 LINX_(__NR_fadvise64, sys_fadvise64), // 233 */(Linux?) LINX_(__NR_exit_group, sys_exit_group), // 234 //.. GENXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 235 LINXY(__NR_epoll_create, sys_epoll_create), // 236 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 237 LINXY(__NR_epoll_wait, sys_epoll_wait), // 238 //.. // (__NR_remap_file_pages, sys_remap_file_pages), // 239 */Linux LINXY(__NR_timer_create, sys_timer_create), // 240 LINXY(__NR_timer_settime, sys_timer_settime), // 241 LINXY(__NR_timer_gettime, sys_timer_gettime), // 242 LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 243 LINX_(__NR_timer_delete, sys_timer_delete), // 244 LINX_(__NR_clock_settime, sys_clock_settime), // 245 LINXY(__NR_clock_gettime, sys_clock_gettime), // 246 LINXY(__NR_clock_getres, sys_clock_getres), // 247 LINXY(__NR_clock_nanosleep, sys_clock_nanosleep), // 248 // __NR_swapcontext // 249 LINXY(__NR_tgkill, sys_tgkill), // 250 */Linux //.. GENX_(__NR_utimes, sys_utimes), // 251 GENXY(__NR_statfs64, sys_statfs64), // 252 GENXY(__NR_fstatfs64, sys_fstatfs64), // 253 LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 254 */(Linux?) // __NR_rtas // 255 /* Number 256 is reserved for sys_debug_setcontext */ /* Number 257 is reserved for vserver */ /* Number 258 is reserved for new sys_remap_file_pages */ LINX_(__NR_mbind, sys_mbind), // 259 LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 260 LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 261 LINXY(__NR_mq_open, sys_mq_open), // 262 LINX_(__NR_mq_unlink, sys_mq_unlink), // 263 LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 264 LINXY(__NR_mq_timedreceive, sys_mq_timedreceive), // 265 LINX_(__NR_mq_notify, sys_mq_notify), // 266 LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 267 // __NR_kexec_load // 268 /* Number 269 is reserved for sys_add_key */ /* Number 270 is reserved for sys_request_key */ /* Number 271 is reserved for sys_keyctl */ /* Number 272 is reserved for sys_waitid */ LINX_(__NR_ioprio_set, sys_ioprio_set), // 273 LINX_(__NR_ioprio_get, sys_ioprio_get), // 274 LINX_(__NR_inotify_init, sys_inotify_init), // 275 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 276 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 277 PLAXY(__NR_spu_run, sys_spu_run), // 278 PLAX_(__NR_spu_create, sys_spu_create), // 279 LINXY(__NR_pselect6, sys_pselect6), // 280 LINXY(__NR_ppoll, sys_ppoll), // 281 LINXY(__NR_openat, sys_openat), // 286 LINX_(__NR_mkdirat, sys_mkdirat), // 287 LINX_(__NR_mknodat, sys_mknodat), // 288 LINX_(__NR_fchownat, sys_fchownat), // 289 LINX_(__NR_futimesat, sys_futimesat), // 290 PLAXY(__NR_fstatat64, sys_fstatat64), // 291 LINX_(__NR_unlinkat, sys_unlinkat), // 292 LINX_(__NR_renameat, sys_renameat), // 293 LINX_(__NR_linkat, sys_linkat), // 294 LINX_(__NR_symlinkat, sys_symlinkat), // 295 LINX_(__NR_readlinkat, sys_readlinkat), // 296 LINX_(__NR_fchmodat, sys_fchmodat), // 297 LINX_(__NR_faccessat, sys_faccessat), // 298 LINX_(__NR_set_robust_list, sys_set_robust_list), // 299 LINXY(__NR_get_robust_list, sys_get_robust_list), // 300 LINXY(__NR_move_pages, sys_move_pages), // 301 LINXY(__NR_getcpu, sys_getcpu), // 302 LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 303 LINX_(__NR_utimensat, sys_utimensat), // 304 LINXY(__NR_signalfd, sys_signalfd), // 305 LINXY(__NR_timerfd_create, sys_timerfd_create), // 306 LINXY(__NR_eventfd, sys_eventfd), // 307 LINX_(__NR_sync_file_range2, sys_sync_file_range2), // 308 LINX_(__NR_fallocate, sys_fallocate), // 309 // LINXY(__NR_subpage_prot, sys_ni_syscall), // 310 LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 311 LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 312 LINXY(__NR_signalfd4, sys_signalfd4), // 313 LINXY(__NR_eventfd2, sys_eventfd2), // 314 LINXY(__NR_epoll_create1, sys_epoll_create1), // 315 LINXY(__NR_dup3, sys_dup3), // 316 LINXY(__NR_pipe2, sys_pipe2), // 317 LINXY(__NR_inotify_init1, sys_inotify_init1), // 318 LINXY(__NR_perf_event_open, sys_perf_event_open), // 319 LINXY(__NR_preadv, sys_preadv), // 320 LINX_(__NR_pwritev, sys_pwritev), // 321 LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 322 LINXY(__NR_socket, sys_socket), // 326 LINX_(__NR_bind, sys_bind), // 327 LINX_(__NR_connect, sys_connect), // 328 LINX_(__NR_listen, sys_listen), // 329 LINXY(__NR_accept, sys_accept), // 330 LINXY(__NR_getsockname, sys_getsockname), // 331 LINXY(__NR_getpeername, sys_getpeername), // 332 LINX_(__NR_send, sys_send), // 334 LINX_(__NR_sendto, sys_sendto), // 335 LINXY(__NR_recv, sys_recv), // 336 LINXY(__NR_recvfrom, sys_recvfrom), // 337 LINX_(__NR_shutdown, sys_shutdown), // 338 LINX_(__NR_setsockopt, sys_setsockopt), // 339 LINXY(__NR_recvmmsg, sys_recvmmsg), // 343 LINXY(__NR_accept4, sys_accept4), // 344 LINX_(__NR_clock_adjtime, sys_clock_adjtime), // 347 LINX_(__NR_syncfs, sys_syncfs), // 348 LINXY(__NR_sendmmsg, sys_sendmmsg), // 349 LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 351 LINX_(__NR_process_vm_writev, sys_process_vm_writev),// 352 LINXY(__NR_getrandom, sys_getrandom), // 359 LINXY(__NR_memfd_create, sys_memfd_create) // 360 }; SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno ) { const UInt syscall_table_size = sizeof(syscall_table) / sizeof(syscall_table[0]); /* Is it in the contiguous initial section of the table? */ if (sysno < syscall_table_size) { SyscallTableEntry* sys = &syscall_table[sysno]; if (sys->before == NULL) return NULL; /* no entry */ else return sys; } /* Can't find a wrapper */ return NULL; } #endif // defined(VGP_ppc32_linux) /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/
the_stack_data/12638703.c
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \ // RUN: | FileCheck %s #include <stdint.h> // Doubles are still passed in GPRs, so the 'e' argument will be anyext as // GPRs are exhausted. // CHECK: define{{.*}} void @f_fpr_tracking(double %a, double %b, double %c, double %d, i8 %e) void f_fpr_tracking(double a, double b, double c, double d, int8_t e) {} // Lowering for doubles is unnmodified, as 64 > FLEN. struct double_s { double d; }; // CHECK: define{{.*}} void @f_double_s_arg(i64 %a.coerce) void f_double_s_arg(struct double_s a) {} // CHECK: define{{.*}} i64 @f_ret_double_s() struct double_s f_ret_double_s() { return (struct double_s){1.0}; } struct double_double_s { double d; double e; }; // CHECK: define{{.*}} void @f_double_double_s_arg(%struct.double_double_s* %a) void f_double_double_s_arg(struct double_double_s a) {} // CHECK: define{{.*}} void @f_ret_double_double_s(%struct.double_double_s* noalias sret(%struct.double_double_s) align 8 %agg.result) struct double_double_s f_ret_double_double_s() { return (struct double_double_s){1.0, 2.0}; } struct double_int8_s { double d; int64_t i; }; struct int_double_s { int a; double b; }; // CHECK: define{{.*}} void @f_int_double_s_arg(%struct.int_double_s* %a) void f_int_double_s_arg(struct int_double_s a) {} // CHECK: define{{.*}} void @f_ret_int_double_s(%struct.int_double_s* noalias sret(%struct.int_double_s) align 8 %agg.result) struct int_double_s f_ret_int_double_s() { return (struct int_double_s){1, 2.0}; }
the_stack_data/92225.c
/* stbi-1.18 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c when you control the images you're loading QUICK NOTES: Primarily of interest to game developers and other people who can avoid problematic images and only need the trivial interface JPEG baseline (no JPEG progressive, no oddball channel decimations) PNG 8-bit only BMP non-1bpp, non-RLE TGA (not sure what subset, if a subset) PSD (composited view only, no extra channels) HDR (radiance rgbE format) writes BMP,TGA (define STBI_NO_WRITE to remove code) decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD) TODO: stbi_info_* history: 1.18 fix a threading bug (local mutable static) 1.17 support interlaced PNG 1.16 major bugfix - convert_format converted one too many pixels 1.15 initialize some fields for thread safety 1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including) 1.13 threadsafe 1.12 const qualifiers in the API 1.11 Support installable IDCT, colorspace conversion routines 1.10 Fixes for 64-bit (don't use "unsigned long") optimized upsampling by Fabian "ryg" Giesen 1.09 Fix format-conversion for PSD code (bad global variables!) 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz 1.07 attempt to fix C++ warning/errors again 1.06 attempt to fix C++ warning/errors again 1.05 fix TGA loading to return correct *comp and use good luminance calc 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR 1.02 support for (subset of) HDR files, float interface for preferred access to them 1.01 fix bug: possible bug in handling right-side up bmps... not sure fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all 1.00 interface to zlib that skips zlib header 0.99 correct handling of alpha in palette 0.98 TGA loader by lonesock; dynamically add loaders (untested) 0.97 jpeg errors on too large a file; also catch another malloc failure 0.96 fix detection of invalid v value - particleman@mollyrocket forum 0.95 during header scan, seek to markers in case of padding 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same 0.93 handle jpegtran output; verbose errors 0.92 read 4,8,16,24,32-bit BMP files of several formats 0.91 output 24-bit Windows 3.0 BMP files 0.90 fix a few more warnings; bump version number to approach 1.0 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd 0.60 fix compiling as c++ 0.59 fix warnings: merge Dave Moore's -Wall fixes 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available 0.56 fix bug: zlib uncompressed mode len vs. nlen 0.55 fix bug: restart_interval not initialized to 0 0.54 allow NULL for 'int *comp' 0.53 fix bug in png 3->4; speedup png decoding 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments 0.51 obey req_comp requests, 1-component jpegs return as 1-component, on 'test' only check type, not whether we support this variant */ #ifndef STBI_INCLUDE_STB_IMAGE_H #define STBI_INCLUDE_STB_IMAGE_H //// begin header file //////////////////////////////////////////////////// // // Limitations: // - no progressive/interlaced support (jpeg, png) // - 8-bit samples only (jpeg, png) // - not threadsafe // - channel subsampling of at most 2 in each dimension (jpeg) // - no delayed line count (jpeg) -- IJG doesn't support either // // Basic usage (see HDR discussion below): // int x,y,n; // unsigned char *data = stbi_load(filename, &x, &y, &n, 0); // // ... process data if not NULL ... // // ... x = width, y = height, n = # 8-bit components per pixel ... // // ... replace '0' with '1'..'4' to force that many components per pixel // stbi_image_free(data) // // Standard parameters: // int *x -- outputs image width in pixels // int *y -- outputs image height in pixels // int *comp -- outputs # of image components in image file // int req_comp -- if non-zero, # of image components requested in result // // The return value from an image loader is an 'unsigned char *' which points // to the pixel data. The pixel data consists of *y scanlines of *x pixels, // with each pixel consisting of N interleaved 8-bit components; the first // pixel pointed to is top-left-most in the image. There is no padding between // image scanlines or between pixels, regardless of format. The number of // components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. // If req_comp is non-zero, *comp has the number of components that _would_ // have been output otherwise. E.g. if you set req_comp to 4, you will always // get RGBA output, but you can check *comp to easily see if it's opaque. // // An output image with N components has the following components interleaved // in this order in each pixel: // // N=#comp components // 1 grey // 2 grey, alpha // 3 red, green, blue // 4 red, green, blue, alpha // // If image loading fails for any reason, the return value will be NULL, // and *x, *y, *comp will be unchanged. The function stbi_failure_reason() // can be queried for an extremely brief, end-user unfriendly explanation // of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid // compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly // more user-friendly ones. // // Paletted PNG and BMP images are automatically depalettized. // // // =========================================================================== // // HDR image support (disable by defining STBI_NO_HDR) // // stb_image now supports loading HDR images in general, and currently // the Radiance .HDR file format, although the support is provided // generically. You can still load any file through the existing interface; // if you attempt to load an HDR file, it will be automatically remapped to // LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; // both of these constants can be reconfigured through this interface: // // stbi_hdr_to_ldr_gamma(2.2f); // stbi_hdr_to_ldr_scale(1.0f); // // (note, do not use _inverse_ constants; stbi_image will invert them // appropriately). // // Additionally, there is a new, parallel interface for loading files as // (linear) floats to preserve the full dynamic range: // // float *data = stbi_loadf(filename, &x, &y, &n, 0); // // If you load LDR images through this interface, those images will // be promoted to floating point values, run through the inverse of // constants corresponding to the above: // // stbi_ldr_to_hdr_scale(1.0f); // stbi_ldr_to_hdr_gamma(2.2f); // // Finally, given a filename (or an open file or memory block--see header // file for details) containing image data, you can query for the "most // appropriate" interface to use (that is, whether the image is HDR or // not), using: // // stbi_is_hdr(char *filename); #ifndef STBI_NO_STDIO #include <stdio.h> #endif #define STBI_VERSION 1 enum { STBI_default = 0, // only used for req_comp STBI_grey = 1, STBI_grey_alpha = 2, STBI_rgb = 3, STBI_rgb_alpha = 4, }; typedef unsigned char stbi_uc; #ifdef __cplusplus extern "C" { #endif // WRITING API #if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO) // write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding) // (you must include the appropriate extension in the filename). // returns TRUE on success, FALSE if couldn't open file, error writing file extern int stbi_write_bmp (char const *filename, int x, int y, int comp, void *data); extern int stbi_write_tga (char const *filename, int x, int y, int comp, void *data); #endif // PRIMARY API - works on images of any type // load image by filename, open file, or memory buffer #ifndef STBI_NO_STDIO extern stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); // for stbi_load_from_file, file pointer is left pointing immediately after image #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO extern float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp); extern float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif extern float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern void stbi_hdr_to_ldr_gamma(float gamma); extern void stbi_hdr_to_ldr_scale(float scale); extern void stbi_ldr_to_hdr_gamma(float gamma); extern void stbi_ldr_to_hdr_scale(float scale); #endif // STBI_NO_HDR // get a VERY brief reason for failure // NOT THREADSAFE extern char *stbi_failure_reason (void); // free the loaded image -- this is just free() extern void stbi_image_free (void *retval_from_stbi_load); // get image dimensions & components without fully decoding extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); extern int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_is_hdr (char const *filename); extern int stbi_is_hdr_from_file(FILE *f); #endif // ZLIB client - used by PNG, available for other purposes extern char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); extern char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); extern char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); extern int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); // TYPE-SPECIFIC ACCESS // is it a jpeg? extern int stbi_jpeg_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_jpeg_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_test_file (FILE *f); extern stbi_uc *stbi_jpeg_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a png? extern int stbi_png_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_png_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_STDIO extern stbi_uc *stbi_png_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info (char const *filename, int *x, int *y, int *comp); extern int stbi_png_test_file (FILE *f); extern stbi_uc *stbi_png_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif // is it a bmp? extern int stbi_bmp_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_bmp_test_file (FILE *f); extern stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a tga? extern int stbi_tga_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_tga_test_file (FILE *f); extern stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it a psd? extern int stbi_psd_test_memory (stbi_uc const *buffer, int len); extern stbi_uc *stbi_psd_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_psd_test_file (FILE *f); extern stbi_uc *stbi_psd_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // is it an hdr? extern int stbi_hdr_test_memory (stbi_uc const *buffer, int len); extern float * stbi_hdr_load (char const *filename, int *x, int *y, int *comp, int req_comp); extern float * stbi_hdr_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO extern int stbi_hdr_test_file (FILE *f); extern float * stbi_hdr_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp); #endif // define new loaders typedef struct { int (*test_memory)(stbi_uc const *buffer, int len); stbi_uc * (*load_from_memory)(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp); #ifndef STBI_NO_STDIO int (*test_file)(FILE *f); stbi_uc * (*load_from_file)(FILE *f, int *x, int *y, int *comp, int req_comp); #endif } stbi_loader; // register a loader by filling out the above structure (you must defined ALL functions) // returns 1 if added or already added, 0 if not added (too many loaders) // NOT THREADSAFE extern int stbi_register_loader(stbi_loader *loader); // define faster low-level operations (typically SIMD support) #if STBI_SIMD typedef void (*stbi_idct_8x8)(uint8 *out, int out_stride, short data[64], unsigned short *dequantize); // compute an integer IDCT on "input" // input[x] = data[x] * dequantize[x] // write results to 'out': 64 samples, each run of 8 spaced by 'out_stride' // CLAMP results to 0..255 typedef void (*stbi_YCbCr_to_RGB_run)(uint8 *output, uint8 const *y, uint8 const *cb, uint8 const *cr, int count, int step); // compute a conversion from YCbCr to RGB // 'count' pixels // write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B // y: Y input channel // cb: Cb input channel; scale/biased to be 0..255 // cr: Cr input channel; scale/biased to be 0..255 extern void stbi_install_idct(stbi_idct_8x8 func); extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func); #endif // STBI_SIMD #ifdef __cplusplus } #endif // // //// end header file ///////////////////////////////////////////////////// #endif // STBI_INCLUDE_STB_IMAGE_H #ifndef STBI_HEADER_FILE_ONLY #ifndef STBI_NO_HDR #include <math.h> // ldexp #include <string.h> // strcmp #endif #ifndef STBI_NO_STDIO #include <stdio.h> #endif #include <stdlib.h> #include <memory.h> #include <assert.h> #include <stdarg.h> #ifndef _MSC_VER #ifdef __cplusplus #define __forceinline inline #else #define __forceinline #endif #endif // implementation: typedef unsigned char uint8; typedef unsigned short uint16; typedef signed short int16; typedef unsigned int uint32; typedef signed int int32; typedef unsigned int uint; // should produce compiler error if size is wrong typedef unsigned char validate_uint32[sizeof(uint32)==4]; #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE) #define STBI_NO_WRITE #endif ////////////////////////////////////////////////////////////////////////////// // // Generic API that works on all image types // // this is not threadsafe static char *failure_reason; char *stbi_failure_reason(void) { return failure_reason; } static int e(char *str) { failure_reason = str; return 0; } #ifdef STBI_NO_FAILURE_STRINGS #define e(x,y) 0 #elif defined(STBI_FAILURE_USERMSG) #define e(x,y) e(y) #else #define e(x,y) e(x) #endif #define epf(x,y) ((float *) (e(x,y)?NULL:NULL)) #define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL)) void stbi_image_free(void *retval_from_stbi_load) { free(retval_from_stbi_load); } #define MAX_LOADERS 32 stbi_loader *loaders[MAX_LOADERS]; static int max_loaders = 0; int stbi_register_loader(stbi_loader *loader) { int i; for (i=0; i < MAX_LOADERS; ++i) { // already present? if (loaders[i] == loader) return 1; // end of the list? if (loaders[i] == NULL) { loaders[i] = loader; max_loaders = i+1; return 1; } } // no room for it return 0; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp); static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp); #endif #ifndef STBI_NO_STDIO unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); unsigned char *result; if (!f) return epuc("can't fopen", "Unable to open file"); result = stbi_load_from_file(f,x,y,comp,req_comp); fclose(f); return result; } unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_file(f)) return stbi_jpeg_load_from_file(f,x,y,comp,req_comp); if (stbi_png_test_file(f)) return stbi_png_load_from_file(f,x,y,comp,req_comp); if (stbi_bmp_test_file(f)) return stbi_bmp_load_from_file(f,x,y,comp,req_comp); if (stbi_psd_test_file(f)) return stbi_psd_load_from_file(f,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) { float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_file(f)) return loaders[i]->load_from_file(f,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_file(f)) return stbi_tga_load_from_file(f,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #endif unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { int i; if (stbi_jpeg_test_memory(buffer,len)) return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_png_test_memory(buffer,len)) return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_bmp_test_memory(buffer,len)) return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp); if (stbi_psd_test_memory(buffer,len)) return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp); #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) { float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); } #endif for (i=0; i < max_loaders; ++i) if (loaders[i]->test_memory(buffer,len)) return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp); // test tga last because it's a crappy test! if (stbi_tga_test_memory(buffer,len)) return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp); return epuc("unknown image type", "Image not of any known type, or corrupt"); } #ifndef STBI_NO_HDR #ifndef STBI_NO_STDIO float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) { FILE *f = fopen(filename, "rb"); float *result; if (!f) return epf("can't fopen", "Unable to open file"); result = stbi_loadf_from_file(f,x,y,comp,req_comp); fclose(f); return result; } float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { unsigned char *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_file(f)) return stbi_hdr_load_from_file(f,x,y,comp,req_comp); #endif data = stbi_load_from_file(f, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; #ifndef STBI_NO_HDR if (stbi_hdr_test_memory(buffer, len)) return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); #endif data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp); if (data) return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); return epf("unknown image type", "Image not of any known type, or corrupt"); } #endif // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is // defined, for API simplicity; if STBI_NO_HDR is defined, it always // reports false! int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) { #ifndef STBI_NO_HDR return stbi_hdr_test_memory(buffer, len); #else return 0; #endif } #ifndef STBI_NO_STDIO extern int stbi_is_hdr (char const *filename) { FILE *f = fopen(filename, "rb"); int result=0; if (f) { result = stbi_is_hdr_from_file(f); fclose(f); } return result; } extern int stbi_is_hdr_from_file(FILE *f) { #ifndef STBI_NO_HDR return stbi_hdr_test_file(f); #else return 0; #endif } #endif // @TODO: get image dimensions & components without fully decoding #ifndef STBI_NO_STDIO extern int stbi_info (char const *filename, int *x, int *y, int *comp); extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); #ifndef STBI_NO_HDR static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f; static float l2h_gamma=2.2f, l2h_scale=1.0f; void stbi_hdr_to_ldr_gamma(float gamma) { h2l_gamma_i = 1/gamma; } void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; } void stbi_ldr_to_hdr_gamma(float gamma) { l2h_gamma = gamma; } void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; } #endif ////////////////////////////////////////////////////////////////////////////// // // Common code used by all image loaders // enum { SCAN_load=0, SCAN_type, SCAN_header, }; typedef struct { uint32 img_x, img_y; int img_n, img_out_n; #ifndef STBI_NO_STDIO FILE *img_file; #endif uint8 *img_buffer, *img_buffer_end; } stbi; #ifndef STBI_NO_STDIO static void start_file(stbi *s, FILE *f) { s->img_file = f; } #endif static void start_mem(stbi *s, uint8 const *buffer, int len) { #ifndef STBI_NO_STDIO s->img_file = NULL; #endif s->img_buffer = (uint8 *) buffer; s->img_buffer_end = (uint8 *) buffer+len; } __forceinline static int get8(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) { int c = fgetc(s->img_file); return c == EOF ? 0 : c; } #endif if (s->img_buffer < s->img_buffer_end) return *s->img_buffer++; return 0; } __forceinline static int at_eof(stbi *s) { #ifndef STBI_NO_STDIO if (s->img_file) return feof(s->img_file); #endif return s->img_buffer >= s->img_buffer_end; } __forceinline static uint8 get8u(stbi *s) { return (uint8) get8(s); } static void skip(stbi *s, int n) { #ifndef STBI_NO_STDIO if (s->img_file) fseek(s->img_file, n, SEEK_CUR); else #endif s->img_buffer += n; } static int get16(stbi *s) { int z = get8(s); return (z << 8) + get8(s); } static uint32 get32(stbi *s) { uint32 z = get16(s); return (z << 16) + get16(s); } static int get16le(stbi *s) { int z = get8(s); return z + (get8(s) << 8); } static uint32 get32le(stbi *s) { uint32 z = get16le(s); return z + (get16le(s) << 16); } static void getn(stbi *s, stbi_uc *buffer, int n) { #ifndef STBI_NO_STDIO if (s->img_file) { fread(buffer, 1, n, s->img_file); return; } #endif memcpy(buffer, s->img_buffer, n); s->img_buffer += n; } ////////////////////////////////////////////////////////////////////////////// // // generic converter from built-in img_n to req_comp // individual types do this automatically as much as possible (e.g. jpeg // does all cases internally since it needs to colorspace convert anyway, // and it never has alpha, so very few cases ). png can automatically // interleave an alpha=255 channel, but falls back to this for other cases // // assume data buffer is malloced, so malloc a new one and free that one // only failure mode is malloc failing static uint8 compute_y(int r, int g, int b) { return (uint8) (((r*77) + (g*150) + (29*b)) >> 8); } static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y) { int i,j; unsigned char *good; if (req_comp == img_n) return data; assert(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) malloc(req_comp * x * y); if (good == NULL) { free(data); return epuc("outofmem", "Out of memory"); } for (j=0; j < (int) y; ++j) { unsigned char *src = data + j * x * img_n ; unsigned char *dest = good + j * x * req_comp; #define COMBO(a,b) ((a)*8+(b)) #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b) // convert source image with img_n components to one with req_comp components; // avoid switch per pixel, so use switch per scanline and massive macros switch(COMBO(img_n, req_comp)) { CASE(1,2) dest[0]=src[0], dest[1]=255; break; CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; CASE(2,1) dest[0]=src[0]; break; CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break; CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break; CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; default: assert(0); } #undef CASE } free(data); return good; } #ifndef STBI_NO_HDR static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp) { int i,k,n; float *output = (float *) malloc(x * y * comp * sizeof(float)); if (output == NULL) { free(data); return epf("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale; } if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; } free(data); return output; } #define float2int(x) ((int) (x)) static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp) { int i,k,n; stbi_uc *output = (stbi_uc *) malloc(x * y * comp); if (output == NULL) { free(data); return epuc("outofmem", "Out of memory"); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) { for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255; output[i*comp + k] = float2int(z); } } free(data); return output; } #endif ////////////////////////////////////////////////////////////////////////////// // // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation) // // simple implementation // - channel subsampling of at most 2 in each dimension // - doesn't support delayed output of y-dimension // - simple interface (only one output format: 8-bit interleaved RGB) // - doesn't try to recover corrupt jpegs // - doesn't allow partial loading, loading multiple at once // - still fast on x86 (copying globals into locals doesn't help x86) // - allocates lots of intermediate memory (full size of all components) // - non-interleaved case requires this anyway // - allows good upsampling (see next) // high-quality // - upsampled channels are bilinearly interpolated, even across blocks // - quality integer IDCT derived from IJG's 'slow' // performance // - fast huffman; reasonable integer IDCT // - uses a lot of intermediate memory, could cache poorly // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4 // stb_jpeg: 1.34 seconds (MSVC6, default release build) // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro) // IJL11.dll: 1.08 seconds (compiled by intel) // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG) // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro) // huffman decoding acceleration #define FAST_BITS 9 // larger handles more cases; smaller stomps less cache typedef struct { uint8 fast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win uint16 code[256]; uint8 values[256]; uint8 size[257]; unsigned int maxcode[18]; int delta[17]; // old 'firstsymbol' - old 'firstcode' } huffman; typedef struct { #if STBI_SIMD unsigned short dequant2[4][64]; #endif stbi s; huffman huff_dc[4]; huffman huff_ac[4]; uint8 dequant[4][64]; // sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h; // definition of jpeg image component struct { int id; int h,v; int tq; int hd,ha; int dc_pred; int x,y,w2,h2; uint8 *data; void *raw_data; uint8 *linebuf; } img_comp[4]; uint32 code_buffer; // jpeg entropy-coded buffer int code_bits; // number of valid bits unsigned char marker; // marker seen while filling entropy buffer int nomore; // flag if we saw a marker so must stop int scan_n, order[4]; int restart_interval, todo; } jpeg; static int build_huffman(huffman *h, int *count) { int i,j,k=0,code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i) for (j=0; j < count[i]; ++j) h->size[k++] = (uint8) (i+1); h->size[k] = 0; // compute actual symbols (from jpeg spec) code = 0; k = 0; for(j=1; j <= 16; ++j) { // compute delta to add to code to compute symbol id h->delta[j] = k - code; if (h->size[k] == j) { while (h->size[k] == j) h->code[k++] = (uint16) (code++); if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG"); } // compute largest code + 1 for this size, preshifted as needed later h->maxcode[j] = code << (16-j); code <<= 1; } h->maxcode[j] = 0xffffffff; // build non-spec acceleration table; 255 is flag for not-accelerated memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) { int s = h->size[i]; if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) { h->fast[c+j] = (uint8) i; } } } return 1; } static void grow_buffer_unsafe(jpeg *j) { do { int b = j->nomore ? 0 : get8(&j->s); if (b == 0xff) { int c = get8(&j->s); if (c != 0) { j->marker = (unsigned char) c; j->nomore = 1; return; } } j->code_buffer = (j->code_buffer << 8) | b; j->code_bits += 8; } while (j->code_bits <= 24); } // (1 << n) - 1 static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; // decode a jpeg huffman value from the bitstream __forceinline static int decode(jpeg *j, huffman *h) { unsigned int temp; int c,k; if (j->code_bits < 16) grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (j->code_bits - FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c]; if (k < 255) { if (h->size[k] > j->code_bits) return -1; j->code_bits -= h->size[k]; return h->values[k]; } // naive test is to shift the code_buffer down so k bits are // valid, then test against maxcode. To speed this up, we've // preshifted maxcode left so that it has (16-k) 0s at the // end; in other words, regardless of the number of bits, it // wants to be compared against something shifted to have 16; // that way we don't need to shift inside the loop. if (j->code_bits < 16) temp = (j->code_buffer << (16 - j->code_bits)) & 0xffff; else temp = (j->code_buffer >> (j->code_bits - 16)) & 0xffff; for (k=FAST_BITS+1 ; ; ++k) if (temp < h->maxcode[k]) break; if (k == 17) { // error! code not found j->code_bits -= 16; return -1; } if (k > j->code_bits) return -1; // convert the huffman code to the symbol id c = ((j->code_buffer >> (j->code_bits - k)) & bmask[k]) + h->delta[k]; assert((((j->code_buffer) >> (j->code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c]); // convert the id to a symbol j->code_bits -= k; return h->values[c]; } // combined JPEG 'receive' and JPEG 'extend', since baseline // always extends everything it receives. __forceinline static int extend_receive(jpeg *j, int n) { unsigned int m = 1 << (n-1); unsigned int k; if (j->code_bits < n) grow_buffer_unsafe(j); k = (j->code_buffer >> (j->code_bits - n)) & bmask[n]; j->code_bits -= n; // the following test is probably a random branch that won't // predict well. I tried to table accelerate it but failed. // maybe it's compiling as a conditional move? if (k < m) return (-1 << n) + k + 1; else return k; } // given a value that's at position X in the zigzag stream, // where does it appear in the 8x8 matrix coded as row-major? static uint8 dezigzag[64+15] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, // let corrupt input sample past end 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }; // decode one 64-entry block-- static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int b) { int diff,dc,k; int t = decode(j, hdc); if (t < 0) return e("bad huffman code","Corrupt JPEG"); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; j->img_comp[b].dc_pred = dc; data[0] = (short) dc; // decode AC components, see JPEG spec k = 1; do { int r,s; int rs = decode(j, hac); if (rs < 0) return e("bad huffman code","Corrupt JPEG"); s = rs & 15; r = rs >> 4; if (s == 0) { if (rs != 0xf0) break; // end block k += 16; } else { k += r; // decode into unzigzag'd location data[dezigzag[k++]] = (short) extend_receive(j,s); } } while (k < 64); return 1; } // take a -128..127 value and clamp it and convert to 0..255 __forceinline static uint8 clamp(int x) { x += 128; // trick to use a single test to catch both cases if ((unsigned int) x > 255) { if (x < 0) return 0; if (x > 255) return 255; } return (uint8) x; } #define f2f(x) (int) (((x) * 4096 + 0.5)) #define fsh(x) ((x) << 12) // derived from jidctint -- DCT_ISLOW #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \ int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ p2 = s2; \ p3 = s6; \ p1 = (p2+p3) * f2f(0.5411961f); \ t2 = p1 + p3*f2f(-1.847759065f); \ t3 = p1 + p2*f2f( 0.765366865f); \ p2 = s0; \ p3 = s4; \ t0 = fsh(p2+p3); \ t1 = fsh(p2-p3); \ x0 = t0+t3; \ x3 = t0-t3; \ x1 = t1+t2; \ x2 = t1-t2; \ t0 = s7; \ t1 = s5; \ t2 = s3; \ t3 = s1; \ p3 = t0+t2; \ p4 = t1+t3; \ p1 = t0+t3; \ p2 = t1+t2; \ p5 = (p3+p4)*f2f( 1.175875602f); \ t0 = t0*f2f( 0.298631336f); \ t1 = t1*f2f( 2.053119869f); \ t2 = t2*f2f( 3.072711026f); \ t3 = t3*f2f( 1.501321110f); \ p1 = p5 + p1*f2f(-0.899976223f); \ p2 = p5 + p2*f2f(-2.562915447f); \ p3 = p3*f2f(-1.961570560f); \ p4 = p4*f2f(-0.390180644f); \ t3 += p1+p4; \ t2 += p2+p3; \ t1 += p2+p4; \ t0 += p1+p3; #if !STBI_SIMD // .344 seconds on 3*anemones.jpg static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize) { int i,val[64],*v=val; uint8 *o,*dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } #else static void idct_block(uint8 *out, int out_stride, short data[64], unsigned short *dequantize) { int i,val[64],*v=val; uint8 *o; unsigned short *dq = dequantize; short *d = data; // columns for (i=0; i < 8; ++i,++d,++dq, ++v) { // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { // no shortcut 0 seconds // (1|2|3|4|5|6|7)==0 0 seconds // all separate -0.047 seconds // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds int dcterm = d[0] * dq[0] << 2; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; } else { IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24], d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56]) // constants scaled things up by 1<<12; let's bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10; v[56] = (x0-t3) >> 10; v[ 8] = (x1+t2) >> 10; v[48] = (x1-t2) >> 10; v[16] = (x2+t1) >> 10; v[40] = (x2-t1) >> 10; v[24] = (x3+t0) >> 10; v[32] = (x3-t0) >> 10; } } for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { // no fast case since the first 1D IDCT spread components out IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7]) // constants scaled things up by 1<<12, plus we had 1<<2 from first // loop, plus horizontal and vertical each scale by sqrt(8) so together // we've got an extra 1<<3, so 1<<17 total we need to remove. x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; o[0] = clamp((x0+t3) >> 17); o[7] = clamp((x0-t3) >> 17); o[1] = clamp((x1+t2) >> 17); o[6] = clamp((x1-t2) >> 17); o[2] = clamp((x2+t1) >> 17); o[5] = clamp((x2-t1) >> 17); o[3] = clamp((x3+t0) >> 17); o[4] = clamp((x3-t0) >> 17); } } static stbi_idct_8x8 stbi_idct_installed = idct_block; extern void stbi_install_idct(stbi_idct_8x8 func) { stbi_idct_installed = func; } #endif #define MARKER_none 0xff // if there's a pending marker from the entropy stream, return that // otherwise, fetch from the stream and get a marker. if there's no // marker, return 0xff, which is never a valid marker value static uint8 get_marker(jpeg *j) { uint8 x; if (j->marker != MARKER_none) { x = j->marker; j->marker = MARKER_none; return x; } x = get8u(&j->s); if (x != 0xff) return MARKER_none; while (x == 0xff) x = get8u(&j->s); return x; } // in each scan, we'll have scan_n components, and the order // of the components is specified by order[] #define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) // after a restart interval, reset the entropy decoder and // the dc prediction static void reset(jpeg *j) { j->code_bits = 0; j->code_buffer = 0; j->nomore = 0; j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; j->marker = MARKER_none; j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, // since we don't even allow 1<<30 pixels } static int parse_entropy_coded_data(jpeg *z) { reset(z); if (z->scan_n == 1) { int i,j; #if STBI_SIMD __declspec(align(16)) #endif short data[64]; int n = z->order[0]; // non-interleaved data, we just need to process one block at a time, // in trivial scanline order // number of blocks to do just depends on how many actual "pixels" this // component has, independent of interleaved MCU blocking and such int w = (z->img_comp[n].x+7) >> 3; int h = (z->img_comp[n].y+7) >> 3; for (j=0; j < h; ++j) { for (i=0; i < w; ++i) { if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif // every data block is an MCU, so countdown the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } else { // interleaved! int i,j,k,x,y; short data[64]; for (j=0; j < z->img_mcu_y; ++j) { for (i=0; i < z->img_mcu_x; ++i) { // scan an interleaved mcu... process scan_n components in order for (k=0; k < z->scan_n; ++k) { int n = z->order[k]; // scan out an mcu's worth of this component; that's just determined // by the basic H and V specified for the component for (y=0; y < z->img_comp[n].v; ++y) { for (x=0; x < z->img_comp[n].h; ++x) { int x2 = (i*z->img_comp[n].h + x)*8; int y2 = (j*z->img_comp[n].v + y)*8; if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; #if STBI_SIMD stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); #else idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); #endif } } } // after all interleaved components, that's an interleaved MCU, // so now count down the restart interval if (--z->todo <= 0) { if (z->code_bits < 24) grow_buffer_unsafe(z); // if it's NOT a restart, then just bail, so we get corrupt data // rather than no data if (!RESTART(z->marker)) return 1; reset(z); } } } } return 1; } static int process_marker(jpeg *z, int m) { int L; switch (m) { case MARKER_none: // no marker found return e("expected marker","Corrupt JPEG"); case 0xC2: // SOF - progressive return e("progressive jpeg","JPEG format not supported (progressive)"); case 0xDD: // DRI - specify restart interval if (get16(&z->s) != 4) return e("bad DRI len","Corrupt JPEG"); z->restart_interval = get16(&z->s); return 1; case 0xDB: // DQT - define quantization table L = get16(&z->s)-2; while (L > 0) { int q = get8(&z->s); int p = q >> 4; int t = q & 15,i; if (p != 0) return e("bad DQT type","Corrupt JPEG"); if (t > 3) return e("bad DQT table","Corrupt JPEG"); for (i=0; i < 64; ++i) z->dequant[t][dezigzag[i]] = get8u(&z->s); #if STBI_SIMD for (i=0; i < 64; ++i) z->dequant2[t][i] = z->dequant[t][i]; #endif L -= 65; } return L==0; case 0xC4: // DHT - define huffman table L = get16(&z->s)-2; while (L > 0) { uint8 *v; int sizes[16],i,m=0; int q = get8(&z->s); int tc = q >> 4; int th = q & 15; if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG"); for (i=0; i < 16; ++i) { sizes[i] = get8(&z->s); m += sizes[i]; } L -= 17; if (tc == 0) { if (!build_huffman(z->huff_dc+th, sizes)) return 0; v = z->huff_dc[th].values; } else { if (!build_huffman(z->huff_ac+th, sizes)) return 0; v = z->huff_ac[th].values; } for (i=0; i < m; ++i) v[i] = get8u(&z->s); L -= m; } return L==0; } // check for comment block or APP blocks if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { skip(&z->s, get16(&z->s)-2); return 1; } return 0; } // after we see SOS static int process_scan_header(jpeg *z) { int i; int Ls = get16(&z->s); z->scan_n = get8(&z->s); if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s.img_n) return e("bad SOS component count","Corrupt JPEG"); if (Ls != 6+2*z->scan_n) return e("bad SOS len","Corrupt JPEG"); for (i=0; i < z->scan_n; ++i) { int id = get8(&z->s), which; int q = get8(&z->s); for (which = 0; which < z->s.img_n; ++which) if (z->img_comp[which].id == id) break; if (which == z->s.img_n) return 0; z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG"); z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG"); z->order[i] = which; } if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); get8(&z->s); // should be 63, but might be 0 if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG"); return 1; } static int process_frame_header(jpeg *z, int scan) { stbi *s = &z->s; int Lf,p,i,q, h_max=1,v_max=1,c; Lf = get16(s); if (Lf < 11) return e("bad SOF len","Corrupt JPEG"); // JPEG p = get8(s); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline s->img_y = get16(s); if (s->img_y == 0) return e("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG s->img_x = get16(s); if (s->img_x == 0) return e("0 width","Corrupt JPEG"); // JPEG requires c = get8(s); if (c != 3 && c != 1) return e("bad component count","Corrupt JPEG"); // JFIF requires s->img_n = c; for (i=0; i < c; ++i) { z->img_comp[i].data = NULL; z->img_comp[i].linebuf = NULL; } if (Lf != 8+3*s->img_n) return e("bad SOF len","Corrupt JPEG"); for (i=0; i < s->img_n; ++i) { z->img_comp[i].id = get8(s); if (z->img_comp[i].id != i+1) // JFIF requires if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files! return e("bad component ID","Corrupt JPEG"); q = get8(s); z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return e("bad H","Corrupt JPEG"); z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return e("bad V","Corrupt JPEG"); z->img_comp[i].tq = get8(s); if (z->img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG"); } if (scan != SCAN_load) return 1; if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); for (i=0; i < s->img_n; ++i) { if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; } // compute interleaved mcu info z->img_h_max = h_max; z->img_v_max = v_max; z->img_mcu_w = h_max * 8; z->img_mcu_h = v_max * 8; z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; for (i=0; i < s->img_n; ++i) { // number of effective pixels (e.g. for non-interleaved MCU) z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; // to simplify generation, we'll allocate enough memory to decode // the bogus oversized data from using interleaved MCUs and their // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't // discard the extra data until colorspace conversion z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); if (z->img_comp[i].raw_data == NULL) { for(--i; i >= 0; --i) { free(z->img_comp[i].raw_data); z->img_comp[i].data = NULL; } return e("outofmem", "Out of memory"); } // align blocks for installable-idct using mmx/sse z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); z->img_comp[i].linebuf = NULL; } return 1; } // use comparisons since in some cases we handle more than one case (e.g. SOF) #define DNL(x) ((x) == 0xdc) #define SOI(x) ((x) == 0xd8) #define EOI(x) ((x) == 0xd9) #define SOF(x) ((x) == 0xc0 || (x) == 0xc1) #define SOS(x) ((x) == 0xda) static int decode_jpeg_header(jpeg *z, int scan) { int m; z->marker = MARKER_none; // initialize cached marker to empty m = get_marker(z); if (!SOI(m)) return e("no SOI","Corrupt JPEG"); if (scan == SCAN_type) return 1; m = get_marker(z); while (!SOF(m)) { if (!process_marker(z,m)) return 0; m = get_marker(z); while (m == MARKER_none) { // some files have extra padding after their blocks, so ok, we'll scan if (at_eof(&z->s)) return e("no SOF", "Corrupt JPEG"); m = get_marker(z); } } if (!process_frame_header(z, scan)) return 0; return 1; } static int decode_jpeg_image(jpeg *j) { int m; j->restart_interval = 0; if (!decode_jpeg_header(j, SCAN_load)) return 0; m = get_marker(j); while (!EOI(m)) { if (SOS(m)) { if (!process_scan_header(j)) return 0; if (!parse_entropy_coded_data(j)) return 0; } else { if (!process_marker(j, m)) return 0; } m = get_marker(j); } return 1; } // static jfif-centered resampling (across block boundaries) typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1, int w, int hs); #define div4(x) ((uint8) ((x) >> 2)) static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { return in_near; } static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples vertically for every one in input int i; for (i=0; i < w; ++i) out[i] = div4(3*in_near[i] + in_far[i] + 2); return out; } static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate two samples horizontally for every one in input int i; uint8 *input = in_near; if (w == 1) { // if only one sample, can't do any interpolation out[0] = out[1] = input[0]; return out; } out[0] = input[0]; out[1] = div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) { int n = 3*input[i]+2; out[i*2+0] = div4(n+input[i-1]); out[i*2+1] = div4(n+input[i+1]); } out[i*2+0] = div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; return out; } #define div16(x) ((uint8) ((x) >> 4)) static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // need to generate 2x2 samples for every one in input int i,t0,t1; if (w == 1) { out[0] = out[1] = div4(3*in_near[0] + in_far[0] + 2); return out; } t1 = 3*in_near[0] + in_far[0]; out[0] = div4(t1+2); for (i=1; i < w; ++i) { t0 = t1; t1 = 3*in_near[i]+in_far[i]; out[i*2-1] = div16(3*t0 + t1 + 8); out[i*2 ] = div16(3*t1 + t0 + 8); } out[w*2-1] = div4(t1+2); return out; } static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) { // resample with nearest-neighbor int i,j; for (i=0; i < w; ++i) for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out; } #define float2fixed(x) ((int) ((x) * 65536 + 0.5)) // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro) // VC6 without processor=Pro is generating multiple LEAs per multiply! static void YCbCr_to_RGB_row(uint8 *out, const uint8 *y, const uint8 *pcb, const uint8 *pcr, int count, int step) { int i; for (i=0; i < count; ++i) { int y_fixed = (y[i] << 16) + 32768; // rounding int r,g,b; int cr = pcr[i] - 128; int cb = pcb[i] - 128; r = y_fixed + cr*float2fixed(1.40200f); g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f); b = y_fixed + cb*float2fixed(1.77200f); r >>= 16; g >>= 16; b >>= 16; if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } out[0] = (uint8)r; out[1] = (uint8)g; out[2] = (uint8)b; out[3] = 255; out += step; } } #if STBI_SIMD static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row; void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func) { stbi_YCbCr_installed = func; } #endif // clean up the temporary component buffers static void cleanup_jpeg(jpeg *j) { int i; for (i=0; i < j->s.img_n; ++i) { if (j->img_comp[i].data) { free(j->img_comp[i].raw_data); j->img_comp[i].data = NULL; } if (j->img_comp[i].linebuf) { free(j->img_comp[i].linebuf); j->img_comp[i].linebuf = NULL; } } } typedef struct { resample_row_func resample; uint8 *line0,*line1; int hs,vs; // expansion factor in each axis int w_lores; // horizontal pixels pre-expansion int ystep; // how far through vertical expansion we are int ypos; // which pre-expansion row we're on } stbi_resample; static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) { int n, decode_n; // validate req_comp if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); z->s.img_n = 0; // load a jpeg image from whichever source if (!decode_jpeg_image(z)) { cleanup_jpeg(z); return NULL; } // determine actual number of components to generate n = req_comp ? req_comp : z->s.img_n; if (z->s.img_n == 3 && n < 3) decode_n = 1; else decode_n = z->s.img_n; // resample and color-convert { int k; uint i,j; uint8 *output; uint8 *coutput[4]; stbi_resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (uint8 *) malloc(z->s.img_x + 3); if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } r->hs = z->img_h_max / z->img_comp[k].h; r->vs = z->img_v_max / z->img_comp[k].v; r->ystep = r->vs >> 1; r->w_lores = (z->s.img_x + r->hs-1) / r->hs; r->ypos = 0; r->line0 = r->line1 = z->img_comp[k].data; if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; else if (r->hs == 1 && r->vs == 2) r->resample = resample_row_v_2; else if (r->hs == 2 && r->vs == 1) r->resample = resample_row_h_2; else if (r->hs == 2 && r->vs == 2) r->resample = resample_row_hv_2; else r->resample = resample_row_generic; } // can't error after this so, this is safe output = (uint8 *) malloc(n * z->s.img_x * z->s.img_y + 1); if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); } // now go ahead and resample for (j=0; j < z->s.img_y; ++j) { uint8 *out = output + n * z->s.img_x * j; for (k=0; k < decode_n; ++k) { stbi_resample *r = &res_comp[k]; int y_bot = r->ystep >= (r->vs >> 1); coutput[k] = r->resample(z->img_comp[k].linebuf, y_bot ? r->line1 : r->line0, y_bot ? r->line0 : r->line1, r->w_lores, r->hs); if (++r->ystep >= r->vs) { r->ystep = 0; r->line0 = r->line1; if (++r->ypos < z->img_comp[k].y) r->line1 += z->img_comp[k].w2; } } if (n >= 3) { uint8 *y = coutput[0]; if (z->s.img_n == 3) { #if STBI_SIMD stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n); #else YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s.img_x, n); #endif } else for (i=0; i < z->s.img_x; ++i) { out[0] = out[1] = out[2] = y[i]; out[3] = 255; // not used if n==3 out += n; } } else { uint8 *y = coutput[0]; if (n == 1) for (i=0; i < z->s.img_x; ++i) out[i] = y[i]; else for (i=0; i < z->s.img_x; ++i) *out++ = y[i], *out++ = 255; } } cleanup_jpeg(z); *out_x = z->s.img_x; *out_y = z->s.img_y; if (comp) *comp = z->s.img_n; // report original components, not output return output; } } #ifndef STBI_NO_STDIO unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { jpeg j; start_file(&j.s, f); return load_jpeg_image(&j, x,y,comp,req_comp); } unsigned char *stbi_jpeg_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { jpeg j; start_mem(&j.s, buffer,len); return load_jpeg_image(&j, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_jpeg_test_file(FILE *f) { int n,r; jpeg j; n = ftell(f); start_file(&j.s, f); r = decode_jpeg_header(&j, SCAN_type); fseek(f,n,SEEK_SET); return r; } #endif int stbi_jpeg_test_memory(stbi_uc const *buffer, int len) { jpeg j; start_mem(&j.s, buffer,len); return decode_jpeg_header(&j, SCAN_type); } // @TODO: #ifndef STBI_NO_STDIO extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); // public domain zlib decode v0.2 Sean Barrett 2006-11-18 // simple implementation // - all input must be provided in an upfront buffer // - all output is written to a single output buffer (can malloc/realloc) // performance // - fast huffman // fast-way is faster to check than jpeg huffman, but slow way is slower #define ZFAST_BITS 9 // accelerate all cases in default tables #define ZFAST_MASK ((1 << ZFAST_BITS) - 1) // zlib-style huffman encoding // (jpegs packs from left, zlib from right, so can't share code) typedef struct { uint16 fast[1 << ZFAST_BITS]; uint16 firstcode[16]; int maxcode[17]; uint16 firstsymbol[16]; uint8 size[288]; uint16 value[288]; } zhuffman; __forceinline static int bitreverse16(int n) { n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); return n; } __forceinline static int bit_reverse(int v, int bits) { assert(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return bitreverse16(v) >> (16-bits); } static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num) { int i,k=0; int code, next_code[16], sizes[17]; // DEFLATE spec for generating codes memset(sizes, 0, sizeof(sizes)); memset(z->fast, 255, sizeof(z->fast)); for (i=0; i < num; ++i) ++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i) assert(sizes[i] <= (1 << i)); code = 0; for (i=1; i < 16; ++i) { next_code[i] = code; z->firstcode[i] = (uint16) code; z->firstsymbol[i] = (uint16) k; code = (code + sizes[i]); if (sizes[i]) if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG"); z->maxcode[i] = code << (16-i); // preshift for inner loop code <<= 1; k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel for (i=0; i < num; ++i) { int s = sizelist[i]; if (s) { int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; z->size[c] = (uint8)s; z->value[c] = (uint16)i; if (s <= ZFAST_BITS) { int k = bit_reverse(next_code[s],s); while (k < (1 << ZFAST_BITS)) { z->fast[k] = (uint16) c; k += (1 << s); } } ++next_code[s]; } } return 1; } // zlib-from-memory implementation for PNG reading // because PNG allows splitting the zlib stream arbitrarily, // and it's annoying structurally to have PNG call ZLIB call PNG, // we require PNG read all the IDATs and combine them into a single // memory buffer typedef struct { uint8 *zbuffer, *zbuffer_end; int num_bits; uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; zhuffman z_length, z_distance; } zbuf; __forceinline static int zget8(zbuf *z) { if (z->zbuffer >= z->zbuffer_end) return 0; return *z->zbuffer++; } static void fill_bits(zbuf *z) { do { assert(z->code_buffer < (1U << z->num_bits)); z->code_buffer |= zget8(z) << z->num_bits; z->num_bits += 8; } while (z->num_bits <= 24); } __forceinline static unsigned int zreceive(zbuf *z, int n) { unsigned int k; if (z->num_bits < n) fill_bits(z); k = z->code_buffer & ((1 << n) - 1); z->code_buffer >>= n; z->num_bits -= n; return k; } __forceinline static int zhuffman_decode(zbuf *a, zhuffman *z) { int b,s,k; if (a->num_bits < 16) fill_bits(a); b = z->fast[a->code_buffer & ZFAST_MASK]; if (b < 0xffff) { s = z->size[b]; a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } // not resolved by fast table, so compute it the slow way // use jpeg approach, which requires MSbits at top k = bit_reverse(a->code_buffer, 16); for (s=ZFAST_BITS+1; ; ++s) if (k < z->maxcode[s]) break; if (s == 16) return -1; // invalid code! // code size is s, so: b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; assert(z->size[b] == s); a->code_buffer >>= s; a->num_bits -= s; return z->value[b]; } static int expand(zbuf *z, int n) // need to make room for n bytes { char *q; int cur, limit; if (!z->z_expandable) return e("output buffer limit","Corrupt PNG"); cur = (int) (z->zout - z->zout_start); limit = (int) (z->zout_end - z->zout_start); while (cur + n > limit) limit *= 2; q = (char *) realloc(z->zout_start, limit); if (q == NULL) return e("outofmem", "Out of memory"); z->zout_start = q; z->zout = q + cur; z->zout_end = q + limit; return 1; } static int length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static int length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static int dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static int parse_huffman_block(zbuf *a) { for(;;) { int z = zhuffman_decode(a, &a->z_length); if (z < 256) { if (z < 0) return e("bad huffman code","Corrupt PNG"); // error in huffman codes if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0; *a->zout++ = (char) z; } else { uint8 *p; int len,dist; if (z == 256) return 1; z -= 257; len = length_base[z]; if (length_extra[z]) len += zreceive(a, length_extra[z]); z = zhuffman_decode(a, &a->z_distance); if (z < 0) return e("bad huffman code","Corrupt PNG"); dist = dist_base[z]; if (dist_extra[z]) dist += zreceive(a, dist_extra[z]); if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; p = (uint8 *) (a->zout - dist); while (len--) *a->zout++ = *p++; } } } static int compute_huffman_codes(zbuf *a) { static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; zhuffman z_codelength; uint8 lencodes[286+32+137];//padding for maximum single op uint8 codelength_sizes[19]; int i,n; int hlit = zreceive(a,5) + 257; int hdist = zreceive(a,5) + 1; int hclen = zreceive(a,4) + 4; memset(codelength_sizes, 0, sizeof(codelength_sizes)); for (i=0; i < hclen; ++i) { int s = zreceive(a,3); codelength_sizes[length_dezigzag[i]] = (uint8) s; } if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < hlit + hdist) { int c = zhuffman_decode(a, &z_codelength); assert(c >= 0 && c < 19); if (c < 16) lencodes[n++] = (uint8) c; else if (c == 16) { c = zreceive(a,2)+3; memset(lencodes+n, lencodes[n-1], c); n += c; } else if (c == 17) { c = zreceive(a,3)+3; memset(lencodes+n, 0, c); n += c; } else { assert(c == 18); c = zreceive(a,7)+11; memset(lencodes+n, 0, c); n += c; } } if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG"); if (!zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; if (!zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; return 1; } static int parse_uncompressed_block(zbuf *a) { uint8 header[4]; int len,nlen,k; if (a->num_bits & 7) zreceive(a, a->num_bits & 7); // discard // drain the bit-packed data into header k = 0; while (a->num_bits > 0) { header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns? a->code_buffer >>= 8; a->num_bits -= 8; } assert(a->num_bits == 0); // now fill header the normal way while (k < 4) header[k++] = (uint8) zget8(a); len = header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG"); if (a->zbuffer + len > a->zbuffer_end) return e("read past buffer","Corrupt PNG"); if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; memcpy(a->zout, a->zbuffer, len); a->zbuffer += len; a->zout += len; return 1; } static int parse_zlib_header(zbuf *a) { int cmf = zget8(a); int cm = cmf & 15; /* int cinfo = cmf >> 4; */ int flg = zget8(a); if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG"); // zlib spec if (flg & 32) return e("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png if (cm != 8) return e("bad compression","Corrupt PNG"); // DEFLATE required for png // window = 1 << (8 + cinfo)... but who cares, we fully buffer output return 1; } // @TODO: should statically initialize these for optimal thread safety static uint8 default_length[288], default_distance[32]; static void init_defaults(void) { int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) default_length[i] = 8; for ( ; i <= 255; ++i) default_length[i] = 9; for ( ; i <= 279; ++i) default_length[i] = 7; for ( ; i <= 287; ++i) default_length[i] = 8; for (i=0; i <= 31; ++i) default_distance[i] = 5; } int stbi_png_partial; // a quick hack to only allow decoding some of a PNG... I should implement real streaming support instead static int parse_zlib(zbuf *a, int parse_header) { int final, type; if (parse_header) if (!parse_zlib_header(a)) return 0; a->num_bits = 0; a->code_buffer = 0; do { final = zreceive(a,1); type = zreceive(a,2); if (type == 0) { if (!parse_uncompressed_block(a)) return 0; } else if (type == 3) { return 0; } else { if (type == 1) { // use fixed code lengths if (!default_distance[31]) init_defaults(); if (!zbuild_huffman(&a->z_length , default_length , 288)) return 0; if (!zbuild_huffman(&a->z_distance, default_distance, 32)) return 0; } else { if (!compute_huffman_codes(a)) return 0; } if (!parse_huffman_block(a)) return 0; } if (stbi_png_partial && a->zout - a->zout_start > 65536) break; } while (!final); return 1; } static int do_zlib(zbuf *a, char *obuf, int olen, int exp, int parse_header) { a->zout_start = obuf; a->zout = obuf; a->zout_end = obuf + olen; a->z_expandable = exp; return parse_zlib(a, parse_header); } char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) { zbuf a; char *p = (char *) malloc(initial_size); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer + len; if (do_zlib(&a, p, initial_size, 1, 1)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) { return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); } int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 1)) return (int) (a.zout - a.zout_start); else return -1; } char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) { zbuf a; char *p = (char *) malloc(16384); if (p == NULL) return NULL; a.zbuffer = (uint8 *) buffer; a.zbuffer_end = (uint8 *) buffer+len; if (do_zlib(&a, p, 16384, 1, 0)) { if (outlen) *outlen = (int) (a.zout - a.zout_start); return a.zout_start; } else { free(a.zout_start); return NULL; } } int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) { zbuf a; a.zbuffer = (uint8 *) ibuffer; a.zbuffer_end = (uint8 *) ibuffer + ilen; if (do_zlib(&a, obuffer, olen, 0, 0)) return (int) (a.zout - a.zout_start); else return -1; } // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 // simple implementation // - only 8-bit samples // - no CRC checking // - allocates lots of intermediate memory // - avoids problem of streaming data between subsystems // - avoids explicit window management // performance // - uses stb_zlib, a PD zlib implementation with fast huffman decoding typedef struct { uint32 length; uint32 type; } chunk; #define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) static chunk get_chunk_header(stbi *s) { chunk c; c.length = get32(s); c.type = get32(s); return c; } static int check_png_header(stbi *s) { static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 }; int i; for (i=0; i < 8; ++i) if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG"); return 1; } typedef struct { stbi s; uint8 *idata, *expanded, *out; } png; enum { F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4, F_avg_first, F_paeth_first, }; static uint8 first_row_filter[5] = { F_none, F_sub, F_none, F_avg_first, F_paeth_first }; static int paeth(int a, int b, int c) { int p = a + b - c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } // create the png data from post-deflated data static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, uint32 x, uint32 y) { stbi *s = &a->s; uint32 i,j,stride = x*out_n; int k; int img_n = s->img_n; // copy it into a local for later assert(out_n == s->img_n || out_n == s->img_n+1); if (stbi_png_partial) y = 1; a->out = (uint8 *) malloc(x * y * out_n); if (!a->out) return e("outofmem", "Out of memory"); if (!stbi_png_partial) { if (s->img_x == x && s->img_y == y) if (raw_len != (img_n * x + 1) * y) return e("not enough pixels","Corrupt PNG"); else // interlaced: if (raw_len < (img_n * x + 1) * y) return e("not enough pixels","Corrupt PNG"); } for (j=0; j < y; ++j) { uint8 *cur = a->out + stride*j; uint8 *prior = cur - stride; int filter = *raw++; if (filter > 4) return e("invalid filter","Corrupt PNG"); // if first row, use special filter that doesn't sample previous row if (j == 0) filter = first_row_filter[filter]; // handle first pixel explicitly for (k=0; k < img_n; ++k) { switch(filter) { case F_none : cur[k] = raw[k]; break; case F_sub : cur[k] = raw[k]; break; case F_up : cur[k] = raw[k] + prior[k]; break; case F_avg : cur[k] = raw[k] + (prior[k]>>1); break; case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break; case F_avg_first : cur[k] = raw[k]; break; case F_paeth_first: cur[k] = raw[k]; break; } } if (img_n != out_n) cur[img_n] = 255; raw += img_n; cur += out_n; prior += out_n; // this is a little gross, so that we don't switch per-pixel or per-component if (img_n == out_n) { #define CASE(f) \ case f: \ for (i=x-1; i >= 1; --i, raw+=img_n,cur+=img_n,prior+=img_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break; } #undef CASE } else { assert(img_n+1 == out_n); #define CASE(f) \ case f: \ for (i=x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ for (k=0; k < img_n; ++k) switch(filter) { CASE(F_none) cur[k] = raw[k]; break; CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break; CASE(F_up) cur[k] = raw[k] + prior[k]; break; CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break; CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break; CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break; } #undef CASE } } return 1; } static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int interlaced) { uint8 *final; int p; int save; if (!interlaced) return create_png_image_raw(a, raw, raw_len, out_n, a->s.img_x, a->s.img_y); save = stbi_png_partial; stbi_png_partial = 0; // de-interlacing final = (uint8 *) malloc(a->s.img_x * a->s.img_y * out_n); for (p=0; p < 7; ++p) { int xorig[] = { 0,4,0,2,0,1,0 }; int yorig[] = { 0,0,4,0,2,0,1 }; int xspc[] = { 8,8,4,4,2,2,1 }; int yspc[] = { 8,8,8,4,4,2,2 }; int i,j,x,y; // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 x = (a->s.img_x - xorig[p] + xspc[p]-1) / xspc[p]; y = (a->s.img_y - yorig[p] + yspc[p]-1) / yspc[p]; if (x && y) { if (!create_png_image_raw(a, raw, raw_len, out_n, x, y)) { free(final); return 0; } for (j=0; j < y; ++j) for (i=0; i < x; ++i) memcpy(final + (j*yspc[p]+yorig[p])*a->s.img_x*out_n + (i*xspc[p]+xorig[p])*out_n, a->out + (j*x+i)*out_n, out_n); free(a->out); raw += (x*out_n+1)*y; raw_len -= (x*out_n+1)*y; } } a->out = final; stbi_png_partial = save; return 1; } static int compute_transparency(png *z, uint8 tc[3], int out_n) { stbi *s = &z->s; uint32 i, pixel_count = s->img_x * s->img_y; uint8 *p = z->out; // compute color-based transparency, assuming we've // already got 255 as the alpha value in the output assert(out_n == 2 || out_n == 4); if (out_n == 2) { for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2; } } else { for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) p[3] = 0; p += 4; } } return 1; } static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n) { uint32 i, pixel_count = a->s.img_x * a->s.img_y; uint8 *p, *temp_out, *orig = a->out; p = (uint8 *) malloc(pixel_count * pal_img_n); if (p == NULL) return e("outofmem", "Out of memory"); // between here and free(out) below, exitting would leak temp_out = p; if (pal_img_n == 3) { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3; } } else { for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n ]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4; } } free(a->out); a->out = temp_out; return 1; } static int parse_png_file(png *z, int scan, int req_comp) { uint8 palette[1024], pal_img_n=0; uint8 has_trans=0, tc[3]; uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k,interlace=0; stbi *s = &z->s; if (!check_png_header(s)) return 0; if (scan == SCAN_type) return 1; for(;;first=0) { chunk c = get_chunk_header(s); if (first && c.type != PNG_TYPE('I','H','D','R')) return e("first not IHDR","Corrupt PNG"); switch (c.type) { case PNG_TYPE('I','H','D','R'): { int depth,color,comp,filter; if (!first) return e("multiple IHDR","Corrupt PNG"); if (c.length != 13) return e("bad IHDR len","Corrupt PNG"); s->img_x = get32(s); if (s->img_x > (1 << 24)) return e("too large","Very large image (corrupt?)"); s->img_y = get32(s); if (s->img_y > (1 << 24)) return e("too large","Very large image (corrupt?)"); depth = get8(s); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only"); color = get8(s); if (color > 6) return e("bad ctype","Corrupt PNG"); if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG"); comp = get8(s); if (comp) return e("bad comp method","Corrupt PNG"); filter= get8(s); if (filter) return e("bad filter method","Corrupt PNG"); interlace = get8(s); if (interlace>1) return e("bad interlace method","Corrupt PNG"); if (!s->img_x || !s->img_y) return e("0-pixel image","Corrupt PNG"); if (!pal_img_n) { s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode"); if (scan == SCAN_header) return 1; } else { // if paletted, then pal_n is our final components, and // img_n is # components to decompress/filter. s->img_n = 1; if ((1 << 30) / s->img_x / 4 < s->img_y) return e("too large","Corrupt PNG"); // if SCAN_header, have to scan to see if we have a tRNS } break; } case PNG_TYPE('P','L','T','E'): { if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG"); pal_len = c.length / 3; if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG"); for (i=0; i < pal_len; ++i) { palette[i*4+0] = get8u(s); palette[i*4+1] = get8u(s); palette[i*4+2] = get8u(s); palette[i*4+3] = 255; } break; } case PNG_TYPE('t','R','N','S'): { if (z->idata) return e("tRNS after IDAT","Corrupt PNG"); if (pal_img_n) { if (scan == SCAN_header) { s->img_n = 4; return 1; } if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG"); if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG"); pal_img_n = 4; for (i=0; i < c.length; ++i) palette[i*4+3] = get8u(s); } else { if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG"); if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG"); has_trans = 1; for (k=0; k < s->img_n; ++k) tc[k] = (uint8) get16(s); // non 8-bit images will be larger } break; } case PNG_TYPE('I','D','A','T'): { if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG"); if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; } if (ioff + c.length > idata_limit) { uint8 *p; if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; while (ioff + c.length > idata_limit) idata_limit *= 2; p = (uint8 *) realloc(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory"); z->idata = p; } #ifndef STBI_NO_STDIO if (s->img_file) { if (fread(z->idata+ioff,1,c.length,s->img_file) != c.length) return e("outofdata","Corrupt PNG"); } else #endif { memcpy(z->idata+ioff, s->img_buffer, c.length); s->img_buffer += c.length; } ioff += c.length; break; } case PNG_TYPE('I','E','N','D'): { uint32 raw_len; if (scan != SCAN_load) return 1; if (z->idata == NULL) return e("no IDAT","Corrupt PNG"); z->expanded = (uint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len); if (z->expanded == NULL) return 0; // zlib should set error free(z->idata); z->idata = NULL; if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) s->img_out_n = s->img_n+1; else s->img_out_n = s->img_n; if (!create_png_image(z, z->expanded, raw_len, s->img_out_n, interlace)) return 0; if (has_trans) if (!compute_transparency(z, tc, s->img_out_n)) return 0; if (pal_img_n) { // pal_img_n == 3 or 4 s->img_n = pal_img_n; // record the actual colors we had s->img_out_n = pal_img_n; if (req_comp >= 3) s->img_out_n = req_comp; if (!expand_palette(z, palette, pal_len, s->img_out_n)) return 0; } free(z->expanded); z->expanded = NULL; return 1; } default: // if critical, fail if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = "XXXX chunk not known"; invalid_chunk[0] = (uint8) (c.type >> 24); invalid_chunk[1] = (uint8) (c.type >> 16); invalid_chunk[2] = (uint8) (c.type >> 8); invalid_chunk[3] = (uint8) (c.type >> 0); #endif return e(invalid_chunk, "PNG not supported: unknown chunk type"); } skip(s, c.length); break; } // end of chunk, read and skip CRC get32(s); } } static unsigned char *do_png(png *p, int *x, int *y, int *n, int req_comp) { unsigned char *result=NULL; p->expanded = NULL; p->idata = NULL; p->out = NULL; if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error"); if (parse_png_file(p, SCAN_load, req_comp)) { result = p->out; p->out = NULL; if (req_comp && req_comp != p->s.img_out_n) { result = convert_format(result, p->s.img_out_n, req_comp, p->s.img_x, p->s.img_y); p->s.img_out_n = req_comp; if (result == NULL) return result; } *x = p->s.img_x; *y = p->s.img_y; if (n) *n = p->s.img_n; } free(p->out); p->out = NULL; free(p->expanded); p->expanded = NULL; free(p->idata); p->idata = NULL; return result; } #ifndef STBI_NO_STDIO unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { png p; start_file(&p.s, f); return do_png(&p, x,y,comp,req_comp); } unsigned char *stbi_png_load(char const *filename, int *x, int *y, int *comp, int req_comp) { unsigned char *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_png_load_from_file(f,x,y,comp,req_comp); fclose(f); return data; } #endif unsigned char *stbi_png_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { png p; start_mem(&p.s, buffer,len); return do_png(&p, x,y,comp,req_comp); } #ifndef STBI_NO_STDIO int stbi_png_test_file(FILE *f) { png p; int n,r; n = ftell(f); start_file(&p.s, f); r = parse_png_file(&p, SCAN_type,STBI_default); fseek(f,n,SEEK_SET); return r; } #endif int stbi_png_test_memory(stbi_uc const *buffer, int len) { png p; start_mem(&p.s, buffer, len); return parse_png_file(&p, SCAN_type,STBI_default); } // TODO: load header from png #ifndef STBI_NO_STDIO int stbi_png_info (char const *filename, int *x, int *y, int *comp) { png p; FILE *f = fopen(filename, "rb"); if (!f) return 0; start_file(&p.s, f); if (parse_png_file(&p, SCAN_header, 0)) { if(x) *x = p.s.img_x; if(y) *y = p.s.img_y; if (comp) *comp = p.s.img_n; fclose(f); return 1; } fclose(f); return 0; } extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); #endif extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); // Microsoft/Windows BMP image static int bmp_test(stbi *s) { int sz; if (get8(s) != 'B') return 0; if (get8(s) != 'M') return 0; get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved get32le(s); // discard data offset sz = get32le(s); if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1; return 0; } #ifndef STBI_NO_STDIO int stbi_bmp_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s,f); r = bmp_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_bmp_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return bmp_test(&s); } // returns 0..31 for the highest set bit static int high_bit(unsigned int z) { int n=0; if (z == 0) return -1; if (z >= 0x10000) n += 16, z >>= 16; if (z >= 0x00100) n += 8, z >>= 8; if (z >= 0x00010) n += 4, z >>= 4; if (z >= 0x00004) n += 2, z >>= 2; if (z >= 0x00002) n += 1, z >>= 1; return n; } static int bitcount(unsigned int a) { a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits a = (a + (a >> 8)); // max 16 per 8 bits a = (a + (a >> 16)); // max 32 per 8 bits return a & 0xff; } static int shiftsigned(int v, int shift, int bits) { int result; int z=0; if (shift < 0) v <<= -shift; else v >>= shift; result = v; z = bits; while (z < 8) { result += v >> z; z += bits; } return result; } static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp) { uint8 *out; unsigned int mr=0,mg=0,mb=0,ma=0, fake_a=0; stbi_uc pal[256][4]; int psize=0,i,j,compress=0,width; int bpp, flip_vertically, pad, target, offset, hsz; if (get8(s) != 'B' || get8(s) != 'M') return epuc("not BMP", "Corrupt BMP"); get32le(s); // discard filesize get16le(s); // discard reserved get16le(s); // discard reserved offset = get32le(s); hsz = get32le(s); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown"); failure_reason = "bad BMP"; if (hsz == 12) { s->img_x = get16le(s); s->img_y = get16le(s); } else { s->img_x = get32le(s); s->img_y = get32le(s); } if (get16le(s) != 1) return 0; bpp = get16le(s); if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit"); flip_vertically = ((int) s->img_y) > 0; s->img_y = abs((int) s->img_y); if (hsz == 12) { if (bpp < 24) psize = (offset - 14 - 24) / 3; } else { compress = get32le(s); if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE"); get32le(s); // discard sizeof get32le(s); // discard hres get32le(s); // discard vres get32le(s); // discard colorsused get32le(s); // discard max important if (hsz == 40 || hsz == 56) { if (hsz == 56) { get32le(s); get32le(s); get32le(s); get32le(s); } if (bpp == 16 || bpp == 32) { mr = mg = mb = 0; if (compress == 0) { if (bpp == 32) { mr = 0xff << 16; mg = 0xff << 8; mb = 0xff << 0; ma = 0xff << 24; fake_a = 1; // @TODO: check for cases like alpha value is all 0 and switch it to 255 } else { mr = 31 << 10; mg = 31 << 5; mb = 31 << 0; } } else if (compress == 3) { mr = get32le(s); mg = get32le(s); mb = get32le(s); // not documented, but generated by photoshop and handled by mspaint if (mr == mg && mg == mb) { // ?!?!? return NULL; } } else return NULL; } } else { assert(hsz == 108); mr = get32le(s); mg = get32le(s); mb = get32le(s); ma = get32le(s); get32le(s); // discard color space for (i=0; i < 12; ++i) get32le(s); // discard color space parameters } if (bpp < 16) psize = (offset - 14 - hsz) >> 2; } s->img_n = ma ? 4 : 3; if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 target = req_comp; else target = s->img_n; // if they want monochrome, we'll post-convert out = (stbi_uc *) malloc(target * s->img_x * s->img_y); if (!out) return epuc("outofmem", "Out of memory"); if (bpp < 16) { int z=0; if (psize == 0 || psize > 256) { free(out); return epuc("invalid", "Corrupt BMP"); } for (i=0; i < psize; ++i) { pal[i][2] = get8(s); pal[i][1] = get8(s); pal[i][0] = get8(s); if (hsz != 12) get8(s); pal[i][3] = 255; } skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4)); if (bpp == 4) width = (s->img_x + 1) >> 1; else if (bpp == 8) width = s->img_x; else { free(out); return epuc("bad bpp", "Corrupt BMP"); } pad = (-width)&3; for (j=0; j < (int) s->img_y; ++j) { for (i=0; i < (int) s->img_x; i += 2) { int v=get8(s),v2=0; if (bpp == 4) { v2 = v & 15; v >>= 4; } out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; if (i+1 == (int) s->img_x) break; v = (bpp == 8) ? get8(s) : v2; out[z++] = pal[v][0]; out[z++] = pal[v][1]; out[z++] = pal[v][2]; if (target == 4) out[z++] = 255; } skip(s, pad); } } else { int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; int z = 0; int easy=0; skip(s, offset - 14 - hsz); if (bpp == 24) width = 3 * s->img_x; else if (bpp == 16) width = 2*s->img_x; else /* bpp = 32 and pad = 0 */ width=0; pad = (-width) & 3; if (bpp == 24) { easy = 1; } else if (bpp == 32) { if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000) easy = 2; } if (!easy) { if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP"); // right shift amt to put high bit in position #7 rshift = high_bit(mr)-7; rcount = bitcount(mr); gshift = high_bit(mg)-7; gcount = bitcount(mr); bshift = high_bit(mb)-7; bcount = bitcount(mr); ashift = high_bit(ma)-7; acount = bitcount(mr); } for (j=0; j < (int) s->img_y; ++j) { if (easy) { for (i=0; i < (int) s->img_x; ++i) { int a; out[z+2] = get8(s); out[z+1] = get8(s); out[z+0] = get8(s); z += 3; a = (easy == 2 ? get8(s) : 255); if (target == 4) out[z++] = a; } } else { for (i=0; i < (int) s->img_x; ++i) { uint32 v = (bpp == 16 ? get16le(s) : get32le(s)); int a; out[z++] = shiftsigned(v & mr, rshift, rcount); out[z++] = shiftsigned(v & mg, gshift, gcount); out[z++] = shiftsigned(v & mb, bshift, bcount); a = (ma ? shiftsigned(v & ma, ashift, acount) : 255); if (target == 4) out[z++] = a; } } skip(s, pad); } } if (flip_vertically) { stbi_uc t; for (j=0; j < (int) s->img_y>>1; ++j) { stbi_uc *p1 = out + j *s->img_x*target; stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; for (i=0; i < (int) s->img_x*target; ++i) { t = p1[i], p1[i] = p2[i], p2[i] = t; } } } if (req_comp && req_comp != target) { out = convert_format(out, target, req_comp, s->img_x, s->img_y); if (out == NULL) return out; // convert_format frees input on failure } *x = s->img_x; *y = s->img_y; if (comp) *comp = target; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_bmp_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return bmp_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return bmp_load(&s, x,y,comp,req_comp); } // Targa Truevision - TGA // by Jonathan Dummer static int tga_test(stbi *s) { int sz; get8u(s); // discard Offset sz = get8u(s); // color type if( sz > 1 ) return 0; // only RGB or indexed allowed sz = get8u(s); // image type if( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE get16(s); // discard palette start get16(s); // discard palette length get8(s); // discard bits per palette color entry get16(s); // discard x origin get16(s); // discard y origin if( get16(s) < 1 ) return 0; // test width if( get16(s) < 1 ) return 0; // test height sz = get8(s); // bits per pixel if( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed return 1; // seems to have passed everything } #ifndef STBI_NO_STDIO int stbi_tga_test_file (FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = tga_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_tga_test_memory (stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return tga_test(&s); } static stbi_uc *tga_load(stbi *s, int *x, int *y, int *comp, int req_comp) { // read in the TGA header stuff int tga_offset = get8u(s); int tga_indexed = get8u(s); int tga_image_type = get8u(s); int tga_is_RLE = 0; int tga_palette_start = get16le(s); int tga_palette_len = get16le(s); int tga_palette_bits = get8u(s); int tga_x_origin = get16le(s); int tga_y_origin = get16le(s); int tga_width = get16le(s); int tga_height = get16le(s); int tga_bits_per_pixel = get8u(s); int tga_inverted = get8u(s); // image data unsigned char *tga_data; unsigned char *tga_palette = NULL; int i, j; unsigned char raw_data[4]; unsigned char trans_data[4]; int RLE_count = 0; int RLE_repeating = 0; int read_next_pixel = 1; // do a tiny bit of precessing if( tga_image_type >= 8 ) { tga_image_type -= 8; tga_is_RLE = 1; } /* int tga_alpha_bits = tga_inverted & 15; */ tga_inverted = 1 - ((tga_inverted >> 5) & 1); // error check if( //(tga_indexed) || (tga_width < 1) || (tga_height < 1) || (tga_image_type < 1) || (tga_image_type > 3) || ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) && (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32)) ) { return NULL; } // If I'm paletted, then I'll use the number of bits from the palette if( tga_indexed ) { tga_bits_per_pixel = tga_palette_bits; } // tga info *x = tga_width; *y = tga_height; if( (req_comp < 1) || (req_comp > 4) ) { // just use whatever the file was req_comp = tga_bits_per_pixel / 8; *comp = req_comp; } else { // force a new number of components *comp = tga_bits_per_pixel/8; } tga_data = (unsigned char*)malloc( tga_width * tga_height * req_comp ); // skip to the data's starting position (offset usually = 0) skip(s, tga_offset ); // do I need to load a palette? if( tga_indexed ) { // any data to skip? (offset usually = 0) skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)malloc( tga_palette_len * tga_palette_bits / 8 ); getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 ); } // load the data for( i = 0; i < tga_width * tga_height; ++i ) { // if I'm in RLE mode, do I need to get a RLE chunk? if( tga_is_RLE ) { if( RLE_count == 0 ) { // yep, get the next byte as a RLE command int RLE_cmd = get8u(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7; read_next_pixel = 1; } else if( !RLE_repeating ) { read_next_pixel = 1; } } else { read_next_pixel = 1; } // OK, if I need to read a pixel, do it now if( read_next_pixel ) { // load however much data we did have if( tga_indexed ) { // read in 1 byte, then perform the lookup int pal_idx = get8u(s); if( pal_idx >= tga_palette_len ) { // invalid index pal_idx = 0; } pal_idx *= tga_bits_per_pixel / 8; for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = tga_palette[pal_idx+j]; } } else { // read in the data raw for( j = 0; j*8 < tga_bits_per_pixel; ++j ) { raw_data[j] = get8u(s); } } // convert raw to the intermediate format switch( tga_bits_per_pixel ) { case 8: // Luminous => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 16: // Luminous,Alpha => RGBA trans_data[0] = raw_data[0]; trans_data[1] = raw_data[0]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[1]; break; case 24: // BGR => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = 255; break; case 32: // BGRA => RGBA trans_data[0] = raw_data[2]; trans_data[1] = raw_data[1]; trans_data[2] = raw_data[0]; trans_data[3] = raw_data[3]; break; } // clear the reading flag for the next pixel read_next_pixel = 0; } // end of reading a pixel // convert to final format switch( req_comp ) { case 1: // RGBA => Luminance tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); break; case 2: // RGBA => Luminance,Alpha tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); tga_data[i*req_comp+1] = trans_data[3]; break; case 3: // RGBA => RGB tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; break; case 4: // RGBA => RGBA tga_data[i*req_comp+0] = trans_data[0]; tga_data[i*req_comp+1] = trans_data[1]; tga_data[i*req_comp+2] = trans_data[2]; tga_data[i*req_comp+3] = trans_data[3]; break; } // in case we're in RLE mode, keep counting down --RLE_count; } // do I need to invert the image? if( tga_inverted ) { for( j = 0; j*2 < tga_height; ++j ) { int index1 = j * tga_width * req_comp; int index2 = (tga_height - 1 - j) * tga_width * req_comp; for( i = tga_width * req_comp; i > 0; --i ) { unsigned char temp = tga_data[index1]; tga_data[index1] = tga_data[index2]; tga_data[index2] = temp; ++index1; ++index2; } } } // clear my palette, if I had one if( tga_palette != NULL ) { free( tga_palette ); } // the things I do to get rid of an error message, and yet keep // Microsoft's C compilers happy... [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; // OK, done return tga_data; } #ifndef STBI_NO_STDIO stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_tga_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return tga_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return tga_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB static int psd_test(stbi *s) { if (get32(s) != 0x38425053) return 0; // "8BPS" else return 1; } #ifndef STBI_NO_STDIO int stbi_psd_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = psd_test(&s); fseek(f,n,SEEK_SET); return r; } #endif int stbi_psd_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return psd_test(&s); } static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp) { int pixelCount; int channelCount, compression; int channel, i, count, len; int w,h; uint8 *out; // Check identifier if (get32(s) != 0x38425053) // "8BPS" return epuc("not PSD", "Corrupt PSD image"); // Check file type version. if (get16(s) != 1) return epuc("wrong version", "Unsupported version of PSD image"); // Skip 6 reserved bytes. skip(s, 6 ); // Read the number of channels (R, G, B, A, etc). channelCount = get16(s); if (channelCount < 0 || channelCount > 16) return epuc("wrong channel count", "Unsupported number of channels in PSD image"); // Read the rows and columns of the image. h = get32(s); w = get32(s); // Make sure the depth is 8 bits. if (get16(s) != 8) return epuc("unsupported bit depth", "PSD bit depth is not 8 bit"); // Make sure the color mode is RGB. // Valid options are: // 0: Bitmap // 1: Grayscale // 2: Indexed color // 3: RGB color // 4: CMYK color // 7: Multichannel // 8: Duotone // 9: Lab color if (get16(s) != 3) return epuc("wrong color format", "PSD is not in RGB color format"); // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) skip(s,get32(s) ); // Skip the image resources. (resolution, pen tool paths, etc) skip(s, get32(s) ); // Skip the reserved data. skip(s, get32(s) ); // Find out if the data is compressed. // Known values: // 0: no compression // 1: RLE compressed compression = get16(s); if (compression > 1) return epuc("bad compression", "PSD has an unknown compression format"); // Create the destination image. out = (stbi_uc *) malloc(4 * w*h); if (!out) return epuc("outofmem", "Out of memory"); pixelCount = w*h; // Initialize the data to zero. //memset( out, 0, pixelCount * 4 ); // Finally, the image data. if (compression) { // RLE as used by .PSD and .TIFF // Loop until you get the number of unpacked bytes you are expecting: // Read the next source byte into n. // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. // Else if n is 128, noop. // Endloop // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, // which we're going to just skip. skip(s, h * channelCount * 2 ); // Read the RLE data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out+channel; if (channel >= channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4; } else { // Read the RLE data. count = 0; while (count < pixelCount) { len = get8(s); if (len == 128) { // No-op. } else if (len < 128) { // Copy next len+1 bytes literally. len++; count += len; while (len) { *p = get8(s); p += 4; len--; } } else if (len > 128) { uint32 val; // Next -len+1 bytes in the dest are replicated from next source byte. // (Interpret len as a negative 8-bit int.) len ^= 0x0FF; len += 2; val = get8(s); count += len; while (len) { *p = val; p += 4; len--; } } } } } } else { // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) // where each channel consists of an 8-bit value for each pixel in the image. // Read the data by channel. for (channel = 0; channel < 4; channel++) { uint8 *p; p = out + channel; if (channel > channelCount) { // Fill this channel with default data. for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4; } else { // Read the data. count = 0; for (i = 0; i < pixelCount; i++) *p = get8(s), p += 4; } } } if (req_comp && req_comp != 4) { out = convert_format(out, 4, req_comp, w, h); if (out == NULL) return out; // convert_format frees input on failure } if (comp) *comp = channelCount; *y = h; *x = w; return out; } #ifndef STBI_NO_STDIO stbi_uc *stbi_psd_load(char const *filename, int *x, int *y, int *comp, int req_comp) { stbi_uc *data; FILE *f = fopen(filename, "rb"); if (!f) return NULL; data = stbi_psd_load_from_file(f, x,y,comp,req_comp); fclose(f); return data; } stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s, f); return psd_load(&s, x,y,comp,req_comp); } #endif stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s, buffer, len); return psd_load(&s, x,y,comp,req_comp); } // ************************************************************************************************* // Radiance RGBE HDR loader // originally by Nicolas Schulz #ifndef STBI_NO_HDR static int hdr_test(stbi *s) { char *signature = "#?RADIANCE\n"; int i; for (i=0; signature[i]; ++i) if (get8(s) != signature[i]) return 0; return 1; } int stbi_hdr_test_memory(stbi_uc const *buffer, int len) { stbi s; start_mem(&s, buffer, len); return hdr_test(&s); } #ifndef STBI_NO_STDIO int stbi_hdr_test_file(FILE *f) { stbi s; int r,n = ftell(f); start_file(&s, f); r = hdr_test(&s); fseek(f,n,SEEK_SET); return r; } #endif #define HDR_BUFLEN 1024 static char *hdr_gettoken(stbi *z, char *buffer) { int len=0; char *s = buffer, c = '\0'; c = get8(z); while (!at_eof(z) && c != '\n') { buffer[len++] = c; if (len == HDR_BUFLEN-1) { // flush to end of line while (!at_eof(z) && get8(z) != '\n') ; break; } c = get8(z); } buffer[len] = 0; return buffer; } static void hdr_convert(float *output, stbi_uc *input, int req_comp) { if( input[3] != 0 ) { float f1; // Exponent f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3; else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1; } if (req_comp == 2) output[1] = 1; if (req_comp == 4) output[3] = 1; } else { switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break; } } } static float *hdr_load(stbi *s, int *x, int *y, int *comp, int req_comp) { char buffer[HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; // Check identifier if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) return epf("not HDR", "Corrupt HDR image"); // Parse header while(1) { token = hdr_gettoken(s,buffer); if (token[0] == 0) break; if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; } if (!valid) return epf("unsupported format", "Unsupported HDR format"); // Parse width and height // can't use sscanf() if we're not using stdio! token = hdr_gettoken(s,buffer); if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; height = strtol(token, &token, 10); while (*token == ' ') ++token; if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format"); token += 3; width = strtol(token, NULL, 10); *x = width; *y = height; *comp = 3; if (req_comp == 0) req_comp = 3; // Read data hdr_data = (float *) malloc(height * width * req_comp * sizeof(float)); // Load image data // image data is stored as some number of sca if( width < 8 || width >= 32768) { // Read flat data for (j=0; j < height; ++j) { for (i=0; i < width; ++i) { stbi_uc rgbe[4]; main_decode_loop: getn(s, rgbe, 4); hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); } } } else { // Read RLE-encoded data scanline = NULL; for (j = 0; j < height; ++j) { c1 = get8(s); c2 = get8(s); len = get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) { // not run-length encoded, so we have to actually use THIS data as a decoded // pixel (note this can't be a valid pixel--one of RGB must be >= 128) stbi_uc rgbe[4] = { c1,c2,len, get8(s) }; hdr_convert(hdr_data, rgbe, req_comp); i = 1; j = 0; free(scanline); goto main_decode_loop; // yes, this is fucking insane; blame the fucking insane format } len <<= 8; len |= get8(s); if (len != width) { free(hdr_data); free(scanline); return epf("invalid decoded scanline length", "corrupt HDR"); } if (scanline == NULL) scanline = (stbi_uc *) malloc(width * 4); for (k = 0; k < 4; ++k) { i = 0; while (i < width) { count = get8(s); if (count > 128) { // Run value = get8(s); count -= 128; for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else { // Dump for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = get8(s); } } } for (i=0; i < width; ++i) hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); } free(scanline); } return hdr_data; } #ifndef STBI_NO_STDIO float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) { stbi s; start_file(&s,f); return hdr_load(&s,x,y,comp,req_comp); } #endif float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) { stbi s; start_mem(&s,buffer, len); return hdr_load(&s,x,y,comp,req_comp); } #endif // STBI_NO_HDR /////////////////////// write image /////////////////////// #ifndef STBI_NO_WRITE static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); } static void writefv(FILE *f, char *fmt, va_list v) { while (*fmt) { switch (*fmt++) { case ' ': break; case '1': { uint8 x = va_arg(v, int); write8(f,x); break; } case '2': { int16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; } case '4': { int32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; } default: assert(0); va_end(v); return; } } } static void writef(FILE *f, char *fmt, ...) { va_list v; va_start(v, fmt); writefv(f,fmt,v); va_end(v); } static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) { uint8 bg[3] = { 255, 0, 255}, px[3]; uint32 zero = 0; int i,j,k, j_end; if (vdir < 0) j_end = -1, j = y-1; else j_end = y, j = 0; for (; j != j_end; j += vdir) { for (i=0; i < x; ++i) { uint8 *d = (uint8 *) data + (j*x+i)*comp; if (write_alpha < 0) fwrite(&d[comp-1], 1, 1, f); switch (comp) { case 1: case 2: writef(f, "111", d[0],d[0],d[0]); break; case 4: if (!write_alpha) { for (k=0; k < 3; ++k) px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; writef(f, "111", px[1-rgb_dir],px[1],px[1+rgb_dir]); break; } /* FALLTHROUGH */ case 3: writef(f, "111", d[1-rgb_dir],d[1],d[1+rgb_dir]); break; } if (write_alpha > 0) fwrite(&d[comp-1], 1, 1, f); } fwrite(&zero,scanline_pad,1,f); } } static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, char *fmt, ...) { FILE *f = fopen(filename, "wb"); if (f) { va_list v; va_start(v, fmt); writefv(f, fmt, v); va_end(v); write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); fclose(f); } return f != NULL; } int stbi_write_bmp(char const *filename, int x, int y, int comp, void *data) { int pad = (-x*3) & 3; return outfile(filename,-1,-1,x,y,comp,data,0,pad, "11 4 22 4" "4 44 22 444444", 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header } int stbi_write_tga(char const *filename, int x, int y, int comp, void *data) { int has_alpha = !(comp & 1); return outfile(filename, -1,-1, x, y, comp, data, has_alpha, 0, "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); } // any other image formats that do interleaved rgb data? // PNG: requires adler32,crc32 -- significant amount of code // PSD: no, channels output separately // TIFF: no, stripwise-interleaved... i think #endif // STBI_NO_WRITE #endif // STBI_HEADER_FILE_ONLY
the_stack_data/112890.c
#include <stdio.h> #include <math.h> int convertBinaryToDecimal(long long n); int main(void) { long long n; printf("Please enter an integer: "); scanf("%lld", &n); printf("\2 %lld --> \10 %d \n", n, convertBinaryToDecimal(n)); return 0; } int convertBinaryToDecimal(long long n) { int decimalNumber = 0, i=0, remainder; while (n!=0) { remainder = n%10; n /= 10; decimalNumber += remainder*pow(2, i); ++i; } return decimalNumber; }
the_stack_data/12637715.c
# 1 "benchmarks/ds-07-impl1.c" # 1 "<built-in>" # 1 "<command-line>" # 1 "/usr/include/stdc-predef.h" 1 3 4 # 1 "<command-line>" 2 # 1 "benchmarks/ds-07-impl1.c" # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" 1 # 132 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" int X_SIZE_VALUE = 0; int overflow_mode = 1; int rounding_mode = 0; # 155 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" typedef struct { double a[100]; int a_size; double b[100]; int b_size; double sample_time; double a_uncertainty[100]; double b_uncertainty[100]; } digital_system; typedef struct { double A[4][4]; double B[4][4]; double C[4][4]; double D[4][4]; double states[4][4]; double outputs[4][4]; double inputs[4][4]; double K[4][4]; unsigned int nStates; unsigned int nInputs; unsigned int nOutputs; } digital_system_state_space; typedef struct { int int_bits; int frac_bits; double max; double min; int default_realization; double delta; int scale; double max_error; } implementation; typedef struct { int push; int in; int sbiw; int cli; int out; int std; int ldd; int subi; int sbci; int lsl; int rol; int add; int adc; int adiw; int rjmp; int mov; int sbc; int ld; int rcall; int cp; int cpc; int ldi; int brge; int pop; int ret; int st; int brlt; int cpi; } instructions; typedef struct { long clock; int device; double cycle; instructions assembly; } hardware; typedef struct{ float Ap, Ar, Ac; float wp, wc, wr; int type; }filter_parameters; # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" # 1 "/usr/include/stdlib.h" 1 3 4 # 25 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 33 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 3 4 # 1 "/usr/include/features.h" 1 3 4 # 461 "/usr/include/features.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 1 3 4 # 452 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 453 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4 # 454 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4 # 462 "/usr/include/features.h" 2 3 4 # 485 "/usr/include/features.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/gnu/stubs-64.h" 1 3 4 # 11 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 2 3 4 # 486 "/usr/include/features.h" 2 3 4 # 34 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 2 3 4 # 26 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 # 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 typedef long unsigned int size_t; # 321 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 typedef int wchar_t; # 32 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 1 3 4 # 52 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 3 4 typedef enum { P_ALL, P_PID, P_PGID } idtype_t; # 40 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/waitstatus.h" 1 3 4 # 41 "/usr/include/stdlib.h" 2 3 4 # 55 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 1 3 4 # 120 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4 # 25 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 2 3 4 # 121 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 2 3 4 # 56 "/usr/include/stdlib.h" 2 3 4 typedef struct { int quot; int rem; } div_t; typedef struct { long int quot; long int rem; } ldiv_t; __extension__ typedef struct { long long int quot; long long int rem; } lldiv_t; # 97 "/usr/include/stdlib.h" 3 4 extern size_t __ctype_get_mb_cur_max (void) __attribute__ ((__nothrow__ , __leaf__)) ; extern double atof (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern int atoi (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern long int atol (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; __extension__ extern long long int atoll (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern double strtod (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern float strtof (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long double strtold (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 176 "/usr/include/stdlib.h" 3 4 extern long int strtol (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern unsigned long int strtoul (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtouq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoll (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtoull (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 385 "/usr/include/stdlib.h" 3 4 extern char *l64a (long int __n) __attribute__ ((__nothrow__ , __leaf__)) ; extern long int a64l (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; # 1 "/usr/include/x86_64-linux-gnu/sys/types.h" 1 3 4 # 27 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types.h" 1 3 4 # 27 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 28 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/timesize.h" 1 3 4 # 29 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 typedef unsigned char __u_char; typedef unsigned short int __u_short; typedef unsigned int __u_int; typedef unsigned long int __u_long; typedef signed char __int8_t; typedef unsigned char __uint8_t; typedef signed short int __int16_t; typedef unsigned short int __uint16_t; typedef signed int __int32_t; typedef unsigned int __uint32_t; typedef signed long int __int64_t; typedef unsigned long int __uint64_t; typedef __int8_t __int_least8_t; typedef __uint8_t __uint_least8_t; typedef __int16_t __int_least16_t; typedef __uint16_t __uint_least16_t; typedef __int32_t __int_least32_t; typedef __uint32_t __uint_least32_t; typedef __int64_t __int_least64_t; typedef __uint64_t __uint_least64_t; typedef long int __quad_t; typedef unsigned long int __u_quad_t; typedef long int __intmax_t; typedef unsigned long int __uintmax_t; # 141 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/typesizes.h" 1 3 4 # 142 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/time64.h" 1 3 4 # 143 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 typedef unsigned long int __dev_t; typedef unsigned int __uid_t; typedef unsigned int __gid_t; typedef unsigned long int __ino_t; typedef unsigned long int __ino64_t; typedef unsigned int __mode_t; typedef unsigned long int __nlink_t; typedef long int __off_t; typedef long int __off64_t; typedef int __pid_t; typedef struct { int __val[2]; } __fsid_t; typedef long int __clock_t; typedef unsigned long int __rlim_t; typedef unsigned long int __rlim64_t; typedef unsigned int __id_t; typedef long int __time_t; typedef unsigned int __useconds_t; typedef long int __suseconds_t; typedef int __daddr_t; typedef int __key_t; typedef int __clockid_t; typedef void * __timer_t; typedef long int __blksize_t; typedef long int __blkcnt_t; typedef long int __blkcnt64_t; typedef unsigned long int __fsblkcnt_t; typedef unsigned long int __fsblkcnt64_t; typedef unsigned long int __fsfilcnt_t; typedef unsigned long int __fsfilcnt64_t; typedef long int __fsword_t; typedef long int __ssize_t; typedef long int __syscall_slong_t; typedef unsigned long int __syscall_ulong_t; typedef __off64_t __loff_t; typedef char *__caddr_t; typedef long int __intptr_t; typedef unsigned int __socklen_t; typedef int __sig_atomic_t; # 30 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __u_char u_char; typedef __u_short u_short; typedef __u_int u_int; typedef __u_long u_long; typedef __quad_t quad_t; typedef __u_quad_t u_quad_t; typedef __fsid_t fsid_t; typedef __loff_t loff_t; typedef __ino_t ino_t; # 59 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 typedef __dev_t dev_t; typedef __gid_t gid_t; typedef __mode_t mode_t; typedef __nlink_t nlink_t; typedef __uid_t uid_t; typedef __off_t off_t; # 97 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 typedef __pid_t pid_t; typedef __id_t id_t; typedef __ssize_t ssize_t; typedef __daddr_t daddr_t; typedef __caddr_t caddr_t; typedef __key_t key_t; # 1 "/usr/include/x86_64-linux-gnu/bits/types/clock_t.h" 1 3 4 typedef __clock_t clock_t; # 127 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/clockid_t.h" 1 3 4 typedef __clockid_t clockid_t; # 129 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/time_t.h" 1 3 4 typedef __time_t time_t; # 130 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/timer_t.h" 1 3 4 typedef __timer_t timer_t; # 131 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 144 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 145 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef unsigned long int ulong; typedef unsigned short int ushort; typedef unsigned int uint; # 1 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 3 4 typedef __int8_t int8_t; typedef __int16_t int16_t; typedef __int32_t int32_t; typedef __int64_t int64_t; # 156 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __uint8_t u_int8_t; typedef __uint16_t u_int16_t; typedef __uint32_t u_int32_t; typedef __uint64_t u_int64_t; typedef int register_t __attribute__ ((__mode__ (__word__))); # 176 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/endian.h" 1 3 4 # 24 "/usr/include/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/endian.h" 1 3 4 # 35 "/usr/include/x86_64-linux-gnu/bits/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/endianness.h" 1 3 4 # 36 "/usr/include/x86_64-linux-gnu/bits/endian.h" 2 3 4 # 25 "/usr/include/endian.h" 2 3 4 # 35 "/usr/include/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 1 3 4 # 33 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4 static __inline __uint16_t __bswap_16 (__uint16_t __bsx) { return __builtin_bswap16 (__bsx); } static __inline __uint32_t __bswap_32 (__uint32_t __bsx) { return __builtin_bswap32 (__bsx); } # 69 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4 __extension__ static __inline __uint64_t __bswap_64 (__uint64_t __bsx) { return __builtin_bswap64 (__bsx); } # 36 "/usr/include/endian.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 1 3 4 # 32 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 3 4 static __inline __uint16_t __uint16_identity (__uint16_t __x) { return __x; } static __inline __uint32_t __uint32_identity (__uint32_t __x) { return __x; } static __inline __uint64_t __uint64_identity (__uint64_t __x) { return __x; } # 37 "/usr/include/endian.h" 2 3 4 # 177 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/sys/select.h" 1 3 4 # 30 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/select.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/select.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/select.h" 2 3 4 # 31 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 1 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__sigset_t.h" 1 3 4 typedef struct { unsigned long int __val[(1024 / (8 * sizeof (unsigned long int)))]; } __sigset_t; # 5 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 2 3 4 typedef __sigset_t sigset_t; # 34 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timeval.h" 1 3 4 struct timeval { __time_t tv_sec; __suseconds_t tv_usec; }; # 38 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4 struct timespec { __time_t tv_sec; __syscall_slong_t tv_nsec; # 26 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4 }; # 40 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 typedef __suseconds_t suseconds_t; typedef long int __fd_mask; # 59 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 typedef struct { __fd_mask __fds_bits[1024 / (8 * (int) sizeof (__fd_mask))]; } fd_set; typedef __fd_mask fd_mask; # 91 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 101 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 extern int select (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, struct timeval *__restrict __timeout); # 113 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 extern int pselect (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, const struct timespec *__restrict __timeout, const __sigset_t *__restrict __sigmask); # 126 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 180 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __blksize_t blksize_t; typedef __blkcnt_t blkcnt_t; typedef __fsblkcnt_t fsblkcnt_t; typedef __fsfilcnt_t fsfilcnt_t; # 227 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 1 3 4 # 44 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 1 3 4 # 21 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 2 3 4 # 45 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 typedef struct __pthread_internal_list { struct __pthread_internal_list *__prev; struct __pthread_internal_list *__next; } __pthread_list_t; typedef struct __pthread_internal_slist { struct __pthread_internal_slist *__next; } __pthread_slist_t; # 74 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4 struct __pthread_mutex_s { int __lock; unsigned int __count; int __owner; unsigned int __nusers; int __kind; short __spins; short __elision; __pthread_list_t __list; # 53 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4 }; # 75 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 # 87 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4 struct __pthread_rwlock_arch_t { unsigned int __readers; unsigned int __writers; unsigned int __wrphase_futex; unsigned int __writers_futex; unsigned int __pad3; unsigned int __pad4; int __cur_writer; int __shared; signed char __rwelision; unsigned char __pad1[7]; unsigned long int __pad2; unsigned int __flags; # 55 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4 }; # 88 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 struct __pthread_cond_s { __extension__ union { __extension__ unsigned long long int __wseq; struct { unsigned int __low; unsigned int __high; } __wseq32; }; __extension__ union { __extension__ unsigned long long int __g1_start; struct { unsigned int __low; unsigned int __high; } __g1_start32; }; unsigned int __g_refs[2] ; unsigned int __g_size[2]; unsigned int __g1_orig_size; unsigned int __wrefs; unsigned int __g_signals[2]; }; # 24 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 2 3 4 typedef unsigned long int pthread_t; typedef union { char __size[4]; int __align; } pthread_mutexattr_t; typedef union { char __size[4]; int __align; } pthread_condattr_t; typedef unsigned int pthread_key_t; typedef int pthread_once_t; union pthread_attr_t { char __size[56]; long int __align; }; typedef union pthread_attr_t pthread_attr_t; typedef union { struct __pthread_mutex_s __data; char __size[40]; long int __align; } pthread_mutex_t; typedef union { struct __pthread_cond_s __data; char __size[48]; __extension__ long long int __align; } pthread_cond_t; typedef union { struct __pthread_rwlock_arch_t __data; char __size[56]; long int __align; } pthread_rwlock_t; typedef union { char __size[8]; long int __align; } pthread_rwlockattr_t; typedef volatile int pthread_spinlock_t; typedef union { char __size[32]; long int __align; } pthread_barrier_t; typedef union { char __size[4]; int __align; } pthread_barrierattr_t; # 228 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 395 "/usr/include/stdlib.h" 2 3 4 extern long int random (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srandom (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern char *initstate (unsigned int __seed, char *__statebuf, size_t __statelen) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern char *setstate (char *__statebuf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct random_data { int32_t *fptr; int32_t *rptr; int32_t *state; int rand_type; int rand_deg; int rand_sep; int32_t *end_ptr; }; extern int random_r (struct random_data *__restrict __buf, int32_t *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srandom_r (unsigned int __seed, struct random_data *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int initstate_r (unsigned int __seed, char *__restrict __statebuf, size_t __statelen, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 4))); extern int setstate_r (char *__restrict __statebuf, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int rand (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srand (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern int rand_r (unsigned int *__seed) __attribute__ ((__nothrow__ , __leaf__)); extern double drand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern double erand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int lrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int nrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int mrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int jrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void srand48 (long int __seedval) __attribute__ ((__nothrow__ , __leaf__)); extern unsigned short int *seed48 (unsigned short int __seed16v[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void lcong48 (unsigned short int __param[7]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct drand48_data { unsigned short int __x[3]; unsigned short int __old_x[3]; unsigned short int __c; unsigned short int __init; __extension__ unsigned long long int __a; }; extern int drand48_r (struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int erand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int nrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int mrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int jrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srand48_r (long int __seedval, struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int seed48_r (unsigned short int __seed16v[3], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lcong48_r (unsigned short int __param[7], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *malloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1))) ; extern void *calloc (size_t __nmemb, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1, 2))) ; extern void *realloc (void *__ptr, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)) __attribute__ ((__alloc_size__ (2))); extern void *reallocarray (void *__ptr, size_t __nmemb, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)) __attribute__ ((__alloc_size__ (2, 3))); extern void free (void *__ptr) __attribute__ ((__nothrow__ , __leaf__)); # 1 "/usr/include/alloca.h" 1 3 4 # 24 "/usr/include/alloca.h" 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 25 "/usr/include/alloca.h" 2 3 4 extern void *alloca (size_t __size) __attribute__ ((__nothrow__ , __leaf__)); # 569 "/usr/include/stdlib.h" 2 3 4 extern void *valloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1))) ; extern int posix_memalign (void **__memptr, size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern void *aligned_alloc (size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (2))) ; extern void abort (void) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern int atexit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int at_quick_exit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int on_exit (void (*__func) (int __status, void *__arg), void *__arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void quick_exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void _Exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern char *getenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 647 "/usr/include/stdlib.h" 3 4 extern int putenv (char *__string) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int setenv (const char *__name, const char *__value, int __replace) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int unsetenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int clearenv (void) __attribute__ ((__nothrow__ , __leaf__)); # 675 "/usr/include/stdlib.h" 3 4 extern char *mktemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 688 "/usr/include/stdlib.h" 3 4 extern int mkstemp (char *__template) __attribute__ ((__nonnull__ (1))) ; # 710 "/usr/include/stdlib.h" 3 4 extern int mkstemps (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) ; # 731 "/usr/include/stdlib.h" 3 4 extern char *mkdtemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 784 "/usr/include/stdlib.h" 3 4 extern int system (const char *__command) ; # 800 "/usr/include/stdlib.h" 3 4 extern char *realpath (const char *__restrict __name, char *__restrict __resolved) __attribute__ ((__nothrow__ , __leaf__)) ; typedef int (*__compar_fn_t) (const void *, const void *); # 820 "/usr/include/stdlib.h" 3 4 extern void *bsearch (const void *__key, const void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 2, 5))) ; extern void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 4))); # 840 "/usr/include/stdlib.h" 3 4 extern int abs (int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern long int labs (long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern long long int llabs (long long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern div_t div (int __numer, int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern ldiv_t ldiv (long int __numer, long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern lldiv_t lldiv (long long int __numer, long long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; # 872 "/usr/include/stdlib.h" 3 4 extern char *ecvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *fcvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *gcvt (double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern char *qecvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qfcvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qgcvt (long double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern int ecvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int fcvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qecvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qfcvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int mblen (const char *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int mbtowc (wchar_t *__restrict __pwc, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int wctomb (char *__s, wchar_t __wchar) __attribute__ ((__nothrow__ , __leaf__)); extern size_t mbstowcs (wchar_t *__restrict __pwcs, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern size_t wcstombs (char *__restrict __s, const wchar_t *__restrict __pwcs, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int rpmatch (const char *__response) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 957 "/usr/include/stdlib.h" 3 4 extern int getsubopt (char **__restrict __optionp, char *const *__restrict __tokens, char **__restrict __valuep) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2, 3))) ; # 1003 "/usr/include/stdlib.h" 3 4 extern int getloadavg (double __loadavg[], int __nelem) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 1013 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdlib-float.h" 1 3 4 # 1014 "/usr/include/stdlib.h" 2 3 4 # 1023 "/usr/include/stdlib.h" 3 4 # 18 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 1 "/usr/include/assert.h" 1 3 4 # 66 "/usr/include/assert.h" 3 4 extern void __assert_fail (const char *__assertion, const char *__file, unsigned int __line, const char *__function) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void __assert_perror_fail (int __errnum, const char *__file, unsigned int __line, const char *__function) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void __assert (const char *__assertion, const char *__file, int __line) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 1 "/usr/include/stdio.h" 1 3 4 # 27 "/usr/include/stdio.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 28 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 34 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 1 3 4 # 40 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 3 4 typedef __builtin_va_list __gnuc_va_list; # 37 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 1 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 1 3 4 # 13 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 3 4 typedef struct { int __count; union { unsigned int __wch; char __wchb[4]; } __value; } __mbstate_t; # 6 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 2 3 4 typedef struct _G_fpos_t { __off_t __pos; __mbstate_t __state; } __fpos_t; # 40 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 3 4 typedef struct _G_fpos64_t { __off64_t __pos; __mbstate_t __state; } __fpos64_t; # 41 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__FILE.h" 1 3 4 struct _IO_FILE; typedef struct _IO_FILE __FILE; # 42 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/FILE.h" 1 3 4 struct _IO_FILE; typedef struct _IO_FILE FILE; # 43 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 1 3 4 # 35 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 3 4 struct _IO_FILE; struct _IO_marker; struct _IO_codecvt; struct _IO_wide_data; typedef void _IO_lock_t; struct _IO_FILE { int _flags; char *_IO_read_ptr; char *_IO_read_end; char *_IO_read_base; char *_IO_write_base; char *_IO_write_ptr; char *_IO_write_end; char *_IO_buf_base; char *_IO_buf_end; char *_IO_save_base; char *_IO_backup_base; char *_IO_save_end; struct _IO_marker *_markers; struct _IO_FILE *_chain; int _fileno; int _flags2; __off_t _old_offset; unsigned short _cur_column; signed char _vtable_offset; char _shortbuf[1]; _IO_lock_t *_lock; __off64_t _offset; struct _IO_codecvt *_codecvt; struct _IO_wide_data *_wide_data; struct _IO_FILE *_freeres_list; void *_freeres_buf; size_t __pad5; int _mode; char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)]; }; # 44 "/usr/include/stdio.h" 2 3 4 # 52 "/usr/include/stdio.h" 3 4 typedef __gnuc_va_list va_list; # 84 "/usr/include/stdio.h" 3 4 typedef __fpos_t fpos_t; # 133 "/usr/include/stdio.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdio_lim.h" 1 3 4 # 134 "/usr/include/stdio.h" 2 3 4 extern FILE *stdin; extern FILE *stdout; extern FILE *stderr; extern int remove (const char *__filename) __attribute__ ((__nothrow__ , __leaf__)); extern int rename (const char *__old, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); extern int renameat (int __oldfd, const char *__old, int __newfd, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); # 173 "/usr/include/stdio.h" 3 4 extern FILE *tmpfile (void) ; # 187 "/usr/include/stdio.h" 3 4 extern char *tmpnam (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; extern char *tmpnam_r (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; # 204 "/usr/include/stdio.h" 3 4 extern char *tempnam (const char *__dir, const char *__pfx) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern int fclose (FILE *__stream); extern int fflush (FILE *__stream); # 227 "/usr/include/stdio.h" 3 4 extern int fflush_unlocked (FILE *__stream); # 246 "/usr/include/stdio.h" 3 4 extern FILE *fopen (const char *__restrict __filename, const char *__restrict __modes) ; extern FILE *freopen (const char *__restrict __filename, const char *__restrict __modes, FILE *__restrict __stream) ; # 279 "/usr/include/stdio.h" 3 4 extern FILE *fdopen (int __fd, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; # 292 "/usr/include/stdio.h" 3 4 extern FILE *fmemopen (void *__s, size_t __len, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; extern FILE *open_memstream (char **__bufloc, size_t *__sizeloc) __attribute__ ((__nothrow__ , __leaf__)) ; extern void setbuf (FILE *__restrict __stream, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)); extern int setvbuf (FILE *__restrict __stream, char *__restrict __buf, int __modes, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern void setbuffer (FILE *__restrict __stream, char *__restrict __buf, size_t __size) __attribute__ ((__nothrow__ , __leaf__)); extern void setlinebuf (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int fprintf (FILE *__restrict __stream, const char *__restrict __format, ...); extern int printf (const char *__restrict __format, ...); extern int sprintf (char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__)); extern int vfprintf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg); extern int vprintf (const char *__restrict __format, __gnuc_va_list __arg); extern int vsprintf (char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)); extern int snprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, ...) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 4))); extern int vsnprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 0))); # 379 "/usr/include/stdio.h" 3 4 extern int vdprintf (int __fd, const char *__restrict __fmt, __gnuc_va_list __arg) __attribute__ ((__format__ (__printf__, 2, 0))); extern int dprintf (int __fd, const char *__restrict __fmt, ...) __attribute__ ((__format__ (__printf__, 2, 3))); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) ; extern int scanf (const char *__restrict __format, ...) ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__ , __leaf__)); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) __asm__ ("" "__isoc99_fscanf") ; extern int scanf (const char *__restrict __format, ...) __asm__ ("" "__isoc99_scanf") ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __asm__ ("" "__isoc99_sscanf") __attribute__ ((__nothrow__ , __leaf__)) ; # 432 "/usr/include/stdio.h" 3 4 extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vfscanf") __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vscanf") __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vsscanf") __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); # 485 "/usr/include/stdio.h" 3 4 extern int fgetc (FILE *__stream); extern int getc (FILE *__stream); extern int getchar (void); extern int getc_unlocked (FILE *__stream); extern int getchar_unlocked (void); # 510 "/usr/include/stdio.h" 3 4 extern int fgetc_unlocked (FILE *__stream); # 521 "/usr/include/stdio.h" 3 4 extern int fputc (int __c, FILE *__stream); extern int putc (int __c, FILE *__stream); extern int putchar (int __c); # 537 "/usr/include/stdio.h" 3 4 extern int fputc_unlocked (int __c, FILE *__stream); extern int putc_unlocked (int __c, FILE *__stream); extern int putchar_unlocked (int __c); extern int getw (FILE *__stream); extern int putw (int __w, FILE *__stream); extern char *fgets (char *__restrict __s, int __n, FILE *__restrict __stream) ; # 603 "/usr/include/stdio.h" 3 4 extern __ssize_t __getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getline (char **__restrict __lineptr, size_t *__restrict __n, FILE *__restrict __stream) ; extern int fputs (const char *__restrict __s, FILE *__restrict __stream); extern int puts (const char *__s); extern int ungetc (int __c, FILE *__stream); extern size_t fread (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __s); # 673 "/usr/include/stdio.h" 3 4 extern size_t fread_unlocked (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite_unlocked (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream); extern int fseek (FILE *__stream, long int __off, int __whence); extern long int ftell (FILE *__stream) ; extern void rewind (FILE *__stream); # 707 "/usr/include/stdio.h" 3 4 extern int fseeko (FILE *__stream, __off_t __off, int __whence); extern __off_t ftello (FILE *__stream) ; # 731 "/usr/include/stdio.h" 3 4 extern int fgetpos (FILE *__restrict __stream, fpos_t *__restrict __pos); extern int fsetpos (FILE *__stream, const fpos_t *__pos); # 757 "/usr/include/stdio.h" 3 4 extern void clearerr (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void clearerr_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void perror (const char *__s); # 1 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 1 3 4 # 26 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 3 4 extern int sys_nerr; extern const char *const sys_errlist[]; # 782 "/usr/include/stdio.h" 2 3 4 extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; # 800 "/usr/include/stdio.h" 3 4 extern FILE *popen (const char *__command, const char *__modes) ; extern int pclose (FILE *__stream); extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__)); # 840 "/usr/include/stdio.h" 3 4 extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); # 858 "/usr/include/stdio.h" 3 4 extern int __uflow (FILE *); extern int __overflow (FILE *, int); # 873 "/usr/include/stdio.h" 3 4 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" void __DSVERIFIER_assume(_Bool expression){ __ESBMC_assume(expression); # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" } void __DSVERIFIER_assert(_Bool expression){ # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ((void) sizeof (( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ; else __assert_fail ( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" "expression" # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 36, __extension__ __PRETTY_FUNCTION__); })) # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" ; } void __DSVERIFIER_assert_msg(_Bool expression, char * msg){ printf("%s", msg); # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ((void) sizeof (( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ; else __assert_fail ( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" "expression" # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 41, __extension__ __PRETTY_FUNCTION__); })) # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" ; } # 22 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 1 # 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 1 3 4 # 9 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 3 4 # 1 "/usr/include/stdint.h" 1 3 4 # 26 "/usr/include/stdint.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 27 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wchar.h" 1 3 4 # 29 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 30 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4 typedef __uint8_t uint8_t; typedef __uint16_t uint16_t; typedef __uint32_t uint32_t; typedef __uint64_t uint64_t; # 38 "/usr/include/stdint.h" 2 3 4 typedef __int_least8_t int_least8_t; typedef __int_least16_t int_least16_t; typedef __int_least32_t int_least32_t; typedef __int_least64_t int_least64_t; typedef __uint_least8_t uint_least8_t; typedef __uint_least16_t uint_least16_t; typedef __uint_least32_t uint_least32_t; typedef __uint_least64_t uint_least64_t; typedef signed char int_fast8_t; typedef long int int_fast16_t; typedef long int int_fast32_t; typedef long int int_fast64_t; # 71 "/usr/include/stdint.h" 3 4 typedef unsigned char uint_fast8_t; typedef unsigned long int uint_fast16_t; typedef unsigned long int uint_fast32_t; typedef unsigned long int uint_fast64_t; # 87 "/usr/include/stdint.h" 3 4 typedef long int intptr_t; typedef unsigned long int uintptr_t; # 101 "/usr/include/stdint.h" 3 4 typedef __intmax_t intmax_t; typedef __uintmax_t uintmax_t; # 10 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 2 3 4 # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2 # 1 "/usr/include/inttypes.h" 1 3 4 # 34 "/usr/include/inttypes.h" 3 4 typedef int __gwchar_t; # 266 "/usr/include/inttypes.h" 3 4 typedef struct { long int quot; long int rem; } imaxdiv_t; # 290 "/usr/include/inttypes.h" 3 4 extern intmax_t imaxabs (intmax_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern imaxdiv_t imaxdiv (intmax_t __numer, intmax_t __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern intmax_t strtoimax (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t strtoumax (const char *__restrict __nptr, char ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern intmax_t wcstoimax (const __gwchar_t *__restrict __nptr, __gwchar_t **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t wcstoumax (const __gwchar_t *__restrict __nptr, __gwchar_t ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); # 432 "/usr/include/inttypes.h" 3 4 # 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2 # 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" extern implementation impl; typedef int64_t fxp_t; fxp_t _fxp_one; fxp_t _fxp_half; fxp_t _fxp_minus_one; fxp_t _fxp_min; fxp_t _fxp_max; double _dbl_max; double _dbl_min; fxp_t _fxp_fmask; fxp_t _fxp_imask; static const double scale_factor[31] = { 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0, 65536.0, 131072.0, 262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0, 8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0, 268435456.0, 536870912.0, 1073741824.0 }; static const double scale_factor_inv[31] = { 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125, 0.00006103515625, 0.000030517578125, 0.000015258789063, 0.000007629394531, 0.000003814697266, 0.000001907348633, 0.000000953674316, 0.000000476837158, 0.000000238418579, 0.000000119209290, 0.000000059604645, 0.000000029802322, 0.000000014901161, 0.000000007450581, 0.000000003725290, 0.000000001862645, 0.000000000931323 }; static const float rand_uni[10000] = { -0.486240329978498f, -0.0886462298529236f, -0.140307596103306f, 0.301096597450952f, 0.0993171079928659f, 0.971751769763271f, 0.985173975730828f, 0.555993645184930f, 0.582088652691427f, -0.153377496651175f, 0.383610009058905f, -0.335724126391271f, 0.978768141636516f, -0.276250018648572f, 0.390075705739569f, -0.179022404038782f, 0.690083827115783f, -0.872530132490992f, -0.970585763293203f, -0.581476053441704f, -0.532614615674888f, -0.239699306693312f, -0.678183014035494f, 0.349502640932782f, -0.210469890686263f, 0.841262085391842f, -0.473585465151401f, 0.659383565443701f, -0.651160036945754f, -0.961043527561335f, -0.0814927639199137f, 0.621303110569702f, -0.784529166943541f, 0.0238464770757800f, 0.392694728594110f, 0.776848735202001f, 0.0870059709310509f, 0.880563655271790f, 0.883457036977564f, -0.249235082877382f, -0.691040749216870f, 0.578731120064320f, -0.973932858000832f, -0.117699105431720f, -0.723831748151088f, -0.483149657477524f, -0.821277691383664f, -0.459725618100875f, 0.148175952221864f, 0.444306875534854f, -0.325610376336498f, 0.544142311404910f, -0.165319440455435f, 0.136706800705517f, 0.543312481350682f, 0.467210959764607f, -0.349266618228534f, -0.660110730565862f, 0.910332331495431f, 0.961049802789367f, -0.786168905164629f, 0.305648402726554f, 0.510815258508885f, 0.0950733260984060f, 0.173750645487898f, 0.144488668408672f, 0.0190031984466126f, -0.299194577636724f, 0.302411647442273f, -0.730462524226212f, 0.688646006554796f, 0.134948379722118f, 0.533716723458894f, -0.00226300779660438f, -0.561340777806718f, 0.450396313744017f, -0.569445876566955f, 0.954155246557698f, -0.255403882430676f, -0.759820984120828f, -0.855279790307514f, -0.147352581758156f, -0.302269055643746f, -0.642038024364086f, -0.367405981107491f, 0.491844011712164f, -0.542191710121194f, -0.938294043323732f, 0.683979894338020f, 0.294728290855287f, 0.00662691839443919f, -0.931040350582855f, 0.152356209974418f, 0.678620860551457f, -0.534989269238408f, 0.932096367913226f, -0.0361062818028513f, -0.847189697149530f, -0.975903030160255f, 0.623293205784014f, -0.661289688031659f, 0.724486055119603f, 0.307504095172835f, 0.00739266163731767f, -0.393681596442097f, 0.0313739422974388f, 0.0768157689673350f, -0.652063346886817f, 0.864188030044388f, -0.588932092781034f, 0.496015896758580f, -0.872858269231211f, 0.978780599551039f, -0.504887732991147f, -0.462378791937628f, 0.0141726829338038f, 0.769610007653591f, 0.945233033188923f, -0.782235375325016f, -0.832206533738799f, 0.745634368088673f, -0.696969510157151f, -0.0674631869948374f, -0.123186450806584f, -0.359158959141949f, -0.393882649464391f, 0.441371446689899f, -0.829394270569736f, -0.301502651277431f, -0.996215501187289f, 0.934634037393066f, -0.282431114746289f, -0.927550795619590f, -0.437037530043415f, -0.360426812995980f, 0.949549724575862f, 0.502784616197919f, 0.800771681422909f, -0.511398929004089f, 0.309288504642554f, -0.207261227890933f, 0.930587995125773f, -0.777029876696670f, -0.489329175755640f, -0.134595132329858f, 0.285771358983518f, 0.182331373854387f, -0.544110494560697f, 0.278439882883985f, -0.556325158102182f, 0.579043806545889f, 0.134648133801916f, 0.602850725479294f, -0.151663563868883f, 0.180694361855878f, -0.651591295315595f, 0.281129147768056f, -0.580047306475484f, 0.687883075491433f, 0.279398670804288f, -0.853428128249503f, -0.532609367372680f, -0.821156786377917f, -0.181273229058573f, -0.983898569846882f, -0.0964374318311501f, 0.880923372124250f, 0.102643371392389f, 0.893615387135596f, -0.259276649383649f, 0.699287743639363f, 0.402940604635828f, -0.110721596226581f, 0.0846246472582877f, 0.820733021865405f, 0.795578903285308f, -0.495144122011537f, 0.273150029257472f, -0.268249949701437f, 0.231982193341980f, 0.694211299124074f, 0.859950868718233f, 0.959483382623794f, -0.422972626833543f, -0.109621798738360f, 0.433094703426531f, 0.694025903378851f, 0.374478987547435f, -0.293668545105608f, -0.396213864190828f, -0.0632095887099047f, -0.0285139536748673f, 0.831794132192390f, -0.548543088139238f, 0.791869201724680f, 0.325211484201845f, 0.155274810721772f, -0.112383643064821f, -0.674403070297721f, 0.642801068229810f, -0.615712048835242f, -0.322576771285566f, -0.409336818836595f, 0.548069973193770f, -0.386353709407947f, -0.0741664985357784f, 0.619639599324983f, -0.815703814931314f, 0.965550307223862f, 0.623407852683828f, -0.789634372832984f, 0.736750050047572f, -0.0269443926793700f, 0.00545706093721488f, -0.315712479832091f, -0.890110021644720f, -0.869390443173846f, -0.381538869981866f, -0.109498998005949f, 0.131433952330613f, -0.233452413139316f, 0.660289822785465f, 0.543381186340023f, -0.384712418750451f, -0.913477554164890f, 0.767102957655267f, -0.115129944521936f, -0.741161985822647f, -0.0604180020782450f, -0.819131535144059f, -0.409539679760029f, 0.574419252943637f, -0.0440704617157433f, 0.933173744590532f, 0.261360623390448f, -0.880290575543046f, 0.329806293425492f, 0.548915621667952f, 0.635187167795234f, -0.611034070318967f, 0.458196727901944f, 0.397377226781023f, 0.711941361933987f, 0.782147744383368f, -0.00300685339552631f, 0.384687233450957f, 0.810102466029521f, 0.452919847968424f, -0.183164257016897f, -0.755603185485427f, -0.604334477365858f, -0.786222413488860f, -0.434887500763099f, -0.678845635625581f, -0.381200370488331f, -0.582350534916068f, -0.0444427346996734f, 0.116237247526397f, -0.364680921206275f, -0.829395404347498f, -0.258574590032613f, -0.910082114298859f, 0.501356900925997f, 0.0295361922006900f, -0.471786618165219f, 0.536352925101547f, -0.316120662284464f, -0.168902841718737f, 0.970850119987976f, -0.813818666854395f, -0.0861183123848732f, 0.866784827877161f, 0.535966478165739f, -0.806958669103425f, -0.627307415616045f, -0.686618354673079f, 0.0239165685193152f, 0.525427699287402f, 0.834079334357391f, -0.527333932295852f, 0.130970034225907f, -0.790218350377199f, 0.399338640441987f, 0.133591886379939f, -0.181354311053254f, 0.420121912637914f, -0.625002202728601f, -0.293296669160307f, 0.0113819513424340f, -0.882382002895096f, -0.883750159690028f, 0.441583656876336f, -0.439054135454480f, 0.873049498123622f, 0.660844523562817f, 0.0104240153103699f, 0.611420248331623f, -0.235926309432748f, 0.207317724918460f, 0.884691834560657f, 0.128302402592277f, -0.283754448219060f, 0.237649901255856f, 0.610200763264703f, -0.625035441247926f, -0.964609592118695f, -0.323146562743113f, 0.961529402270719f, -0.793576233735450f, -0.843916713821003f, 0.314105102728384f, -0.204535560653294f, 0.753318789613803f, 0.160678386635821f, -0.647065919861379f, -0.202789866826280f, 0.648108234268198f, -0.261292621025902f, 0.156681828732770f, 0.405377351820066f, 0.228465381497500f, 0.972348516671163f, 0.288346037401522f, -0.0799068604307178f, 0.916939290109587f, -0.279220972402209f, -0.203447523864279f, -0.533640046855273f, 0.543561961674653f, 0.880711097286889f, -0.549683064687774f, 0.0130107219236368f, -0.554838164576024f, -0.379442406201385f, -0.00500104610043062f, 0.409530122826868f, -0.580423080726061f, 0.824555731914455f, -0.254134502966922f, 0.655609706875230f, 0.629093866184236f, -0.690033250889974f, -0.652346551677826f, 0.169820593515952f, 0.922459552232043f, 0.351812083539940f, 0.876342426613034f, -0.513486005850680f, -0.626382302780497f, -0.734690688861027f, 0.245594886018314f, -0.875740935105191f, -0.388580462918006f, 0.0127041754106421f, -0.0330962560066819f, -0.425003146474193f, 0.0281641353527495f, 0.261441358666622f, 0.949781327102773f, 0.919646340564270f, 0.504503377003781f, 0.0817071051871894f, 0.319968570729658f, 0.229065413577318f, -0.0512608414259468f, -0.0740848540944785f, -0.0974457038582892f, 0.532775710298005f, -0.492913317622840f, 0.492871078783642f, -0.289562388384881f, 0.229149968879593f, 0.697586903105899f, 0.900855243684925f, 0.969700445892771f, -0.618162745501349f, -0.533241431614228f, -0.937955908995453f, 0.886669636523452f, 0.498748076602594f, 0.974106016180519f, -0.199411214757595f, 0.725270392729083f, -0.0279932700005097f, -0.889385821767448f, -0.452211028905500f, -0.487216271217731f, -0.577105004471439f, 0.777405674160298f, 0.390121144627092f, -0.595062864225581f, -0.844712795815575f, -0.894819796738658f, 0.0556635002662202f, 0.200767245646242f, 0.481227096067452f, -0.0854169009474664f, 0.524532943920022f, -0.880292014538901f, -0.127923833629789f, -0.929275628802356f, 0.233276357260949f, -0.776272194935070f, 0.953325886548014f, -0.884399921036004f, -0.504227548828417f, -0.546526107689276f, 0.852622421886067f, 0.947722695551154f, -0.668635552599119f, 0.768739709906834f, 0.830755876586102f, -0.720579994994166f, 0.761613532216491f, 0.340510345777526f, 0.335046764810816f, 0.490102926886310f, -0.568989013749608f, -0.296018470377601f, 0.979838924243657f, 0.624231653632879f, 0.553904401851075f, -0.355359451941014f, 0.267623165480721f, 0.985914275634075f, -0.741887849211797f, 0.560479100333108f, -0.602590162007993f, -0.874870765077352f, -0.0306218773384892f, 0.963145768131215f, 0.544824028787036f, -0.133990816021791f, 0.0679964588712787f, -0.156401335214901f, -0.0802554171832672f, 0.856386218492912f, 0.143013580527942f, 0.403921859374840f, -0.179029058044097f, 0.770723540077919f, -0.183650969350452f, -0.340718434629824f, 0.217166124261387f, -0.171159949445977f, 0.127493767348173f, -0.649649349141405f, -0.0986978180993434f, 0.301786606637125f, 0.942172200207855f, 0.0323236270151113f, -0.579853744301016f, -0.964413060851558f, 0.917535782777861f, 0.442144649483292f, -0.684960854610878f, -0.418908715566712f, 0.617844265088789f, 0.897145578082386f, 0.235463167636481f, 0.0166312355859484f, 0.948331447443040f, -0.961085640409103f, -0.0386086809179784f, -0.949138997977665f, 0.738211385880427f, 0.613757309091864f, -0.606937832993426f, 0.825253298062192f, 0.932609757667859f, -0.169023247637751f, -0.411237965787391f, 0.550590803600950f, -0.0561729280137304f, -0.559663108323671f, -0.718592671237337f, 0.885889621415361f, -0.364207826334344f, -0.839614660327507f, 0.265502694339344f, 0.394329270534417f, -0.270184577808578f, -0.865353487778069f, -0.528848754655393f, -0.179961524561963f, 0.571721065613544f, -0.774363220756696f, 0.251123315200792f, -0.217722762975159f, 0.0901359910328954f, -0.329445470667965f, 0.366410356722994f, -0.777512662632715f, 0.654844363477267f, -0.882409911562713f, -0.613612530795153f, -0.926517759636550f, 0.111572665207194f, 0.0729846382226607f, 0.789912813274098, 0.784452109264882f, -0.949766989295825f, 0.318378232675431f, 0.732077593075111f, 0.786829143208386f, -0.134682559823644f, 0.733164743374965f, 0.978410877665941f, 0.992008491438409f, -0.319064303035495f, 0.958430683602029f, 0.514518212363212f, 0.101876224417090f, 0.642655735778237f, -0.170746516901312f, 0.252352078365623f, -0.761327278132210f, 0.724119717129199f, 0.889374997869224f, -0.785987369200692f, -0.594670344572584f, 0.805192297495935f, -0.990523259595814f, 0.483998949026664f, 0.747350619254878f, -0.824845161088780f, 0.543009506581798f, -0.208778528683094f, -0.314149951901368f, 0.943576771177672f, -0.102633559170861f, -0.947663019606703f, -0.557033071578968f, 0.419150797499848f, 0.251214274356296f, 0.565717763755325f, 0.126676667925064f, -0.0213369479214840f, 0.342212953426240f, -0.288015274572288f, 0.121313363277304f, 0.452832374494206f, 0.545420403121955f, -0.616024063400938f, -0.0320352392995826f, -0.400581850938279f, 0.0642433474653812f, -0.673966224453150f, 0.951962939602010f, -0.241906012952983f, 0.0322060960995099f, -0.449185553826233f, -0.709575766146540f, 0.0283340814242898f, 0.234237103593580f, -0.285526615094797f, -0.793192668153991f, -0.437130485497140f, -0.956132143306919f, 0.601158367473616f, 0.238689691528783f, 0.173709925321432f, 0.437983847738997f, 0.397380645202102f, 0.432093344086237f, -0.0338869881121104f, -0.966303269542493f, 0.875351570183604f, -0.0584554089652962f, 0.294207497692552f, 0.200323088145182f, 0.826642387259759f, 0.284806025494260f, -0.00660991970522007f, 0.682493772727303f, -0.151980775670668f, 0.0470705546940635f, -0.236378427235531f, -0.844780853112247f, 0.134166207564174f, -0.586842667384924f, 0.0711866699414370f, 0.311698821368897f, -0.361229767252053f, 0.750924311039976f, 0.0764323989785694f, 0.898463708247144f, 0.398232179543916f, -0.515644913011399f, -0.189067061520362f, -0.567430593060929f, -0.641924269747436f, -0.0960378699625619f, -0.792054031692334f, 0.803891878854351f, -0.233518627249889f, -0.892523453249154f, 0.707550017996875f, -0.782288435525895f, -0.156166443894764f, -0.543737876329167f, 0.565637809380957f, -0.757689989749326f, -0.612543942167974f, -0.766327195073259f, 0.587626843767440f, -0.280769385897397f, -0.457487372245825f, 0.0862799426622438f, -0.616867284053547f, 0.121778903484808f, -0.451988651573766f, -0.618146087265495f, -0.285868777534354f, 0.108999472244014f, -0.620755183347358f, -0.268563184810196f, -0.721678169615489f, -0.146060198874409f, -0.661506858070617f, 0.901707853998409f, 0.222488776533930f, 0.679599685031679f, 0.974760448601209f, 0.535485953830496f, -0.562345697123585f, 0.369219363331071f, -0.0282801684694869f, -0.0734880727832297f, 0.733216287314358f, -0.514352095765627f, -0.850813063545195f, 0.642458447327163f, 0.118661521915783f, -0.907015526838341f, 0.789277766886329f, -0.719864125961721f, 0.274329068829509f, 0.830124687647056f, 0.719352367261587f, -0.821767317737384f, -0.840153496829227f, 0.650796781936517f, 0.381065387870166f, 0.341870564586224f, -0.00174423702285131f, -0.216348832349188f, 0.678010477635713f, -0.748695103596683f, -0.819659325555269f, 0.620922373008647f, 0.471659250504894f, 0.417848292160984f, -0.990577315445198f, -0.509842007818877f, 0.705761459091187f, 0.723072116074702f, -0.606476484252158f, -0.871593699865195f, -0.662059658667501f, -0.207267692377271f, -0.274706370444270f, 0.317047325063391f, 0.329780707114887f, -0.966325651181920f, -0.666131009799803f, 0.118609206658210f, 0.232960448350140f, -0.139134616436389f, -0.936412642687343f, -0.554985387484625f, -0.609914445911143f, -0.371023087262482f, -0.461044793696911f, 0.0277553171809701f, -0.241589304772568f, -0.990769995548029f, 0.114245771600061f, -0.924483328431436f, 0.237901450206836f, -0.615461633242452f, 0.201497106528945f, -0.599898812620374f, 0.982389910778332f, 0.125701388874024f, -0.892749115498369f, 0.513592673006880f, 0.229316745749793f, 0.422997355912517f, 0.150920221978738f, 0.447743452078441f, 0.366767059168664f, -0.605741985891581f, 0.274905013892524f, -0.861378867171578f, -0.731508622159258f, 0.171187057183023f, 0.250833501952177f, -0.609814068526718f, -0.639397597618127f, -0.712497631420166f, -0.539831932321101f, -0.962361328901384f, 0.799060001548069f, 0.618582550608426f, -0.603865594092701f, -0.750840334759883f, -0.432368099184739f, -0.581021252111797f, 0.134711953024238f, 0.331863889421602f, -0.172907726656169f, -0.435358718118896f, -0.689326993725649f, 0.415840315809038f, -0.333576262820904f, 0.279343777676723f, -0.0393098862927832f, 0.00852090010085194f, -0.853705195692250f, 0.526006696633762f, -0.478653377052437f, -0.584840261391485f, 0.679261003071696f, 0.0367484618219474f, -0.616340335633997f, -0.912843423145420f, -0.221248732289686f, -0.477921890680232f, -0.127369625511666f, 0.865190146410824f, 0.817916456258544f, 0.445973590438029f, -0.621435280140991f, -0.584264056171687f, 0.718712277931876f, -0.337835985469843f, 0.00569064504159345f, -0.546546294846311f, 0.101653624648361f, -0.795498735829364f, -0.249043531299132f, -0.112839395737321f, -0.350305425122331f, -0.910866368205041f, 0.345503177966105f, -0.549306515692918f, 0.711774722622726f, 0.283368922297518f, 0.0401988801224620f, 0.269228967910704f, 0.408165826013612f, -0.306571373865680f, 0.937429053394878f, 0.992154362395068f, 0.679431847774404f, 0.660561953302554f, 0.903254489326130f, -0.939312119455540f, -0.211194531611303f, 0.401554296146757f, -0.0373187111351370f, -0.209143098987164f, -0.483955198209448f, -0.860858509666882f, 0.847006442151417f, 0.287950263267018f, 0.408253171937961f, -0.720812569529331f, 0.623305171273525f, 0.543495760078790f, -0.364025150023839f, -0.893335585394842f, -0.757545415624741f, -0.525417020183382f, -0.985814550271000f, -0.571551008375522f, 0.930716377819686f, -0.272863385293023f, 0.982334910750391f, 0.297868844366342f, 0.922428080219044f, 0.917194773824871f, 0.846964493212884f, 0.0641834146212110f, 0.279768184306094f, 0.591959126556958f, 0.355630573995206f, 0.839818707895839f, 0.219674727597944f, -0.174518904670883f, 0.708669864813752f, -0.224562931791369f, 0.677232454840133f, -0.904826802486527f, -0.627559033402838f, 0.263680517444611f, 0.121902314059156f, -0.704881790282995f, 0.242825089229032f, -0.309373554231866f, -0.479824461459095f, -0.720536286348018f, -0.460418173937526f, 0.774174710513849f, 0.452001499049874f, -0.316992092650694f, 0.153064869645527f, -0.209558599627989f, 0.685508351648252f, -0.508615450383790f, 0.598109567185095f, 0.391177475074196f, 0.964444988755186f, 0.336277292954506f, -0.0367817159101076f, -0.668752640081528f, 0.169621732437504f, -0.440925495294537f, 0.352359477392856f, 0.300517139597811f, 0.464188724292127f, 0.342732840629593f, -0.772028689116952f, 0.523987886508557f, 0.920723209445309f, 0.325634245623597f, 0.999728757965472f, -0.108202444213629f, -0.703463061246440f, -0.764321104361266f, 0.153478091277821f, 0.400776808520781f, 0.0362608595686520f, 0.602660289034871f, -0.00396673312072204f, 0.296881393918662f, 0.563978362789779f, 0.849699999703012f, 0.699481370949461f, -0.517318771826836f, 0.488696839410786f, -0.863267084031406f, 0.0353144039838211f, 0.346060763700543f, 0.964270355001567f, 0.354899825242107f, 0.806313705199543f, 0.675286452110240f, 0.0873918818789949f, -0.595319879813140f, 0.768247284622921f, 0.424433552458434f, -0.308023836359512f, 0.802163480612923f, -0.348151008192881f, -0.889061130591849f, -0.593277042719599f, -0.669426232128590f, 0.758542808803890f, 0.515943031751579f, -0.359688459650311f, 0.568175936707751f, 0.741304023515212f, 0.260283681057109f, 0.957668849401749f, -0.665096753421305f, 0.769229664798946f, -0.0871019488695104f, -0.362662093346394f, -0.411439775739547f, 0.700347493632751f, 0.593221225653487f, 0.712841887456470f, 0.413663813878195f, -0.868002281057698f, -0.704419248587642f, 0.497097875881516f, -0.00234623694758684f, 0.690202361192435f, -0.850266199595343f, 0.315244026446767f, 0.709124123964306f, 0.438047076925768f, 0.798239617424585f, 0.330853072912708f, 0.581059745965701f, 0.449755612947191f, -0.462738032798907f, 0.607731925865227f, 0.0898348455002427f, -0.762827831849901f, 0.895598896497952f, -0.752254194382105f, -0.0916186048978613f, -0.906243795607547f, 0.229263971313788f, 0.401148319671400f, -0.699999035942240f, 0.949897297168705f, 0.442965954562621f, -0.836602533575693f, 0.960460356865877f, -0.588638958628591f, -0.826876652501322f, 0.358883606332526f, 0.963216314331105f, -0.932992215875777f, -0.790078242370583f, 0.402080896170037f, -0.0768348888017805f, 0.728030138891631f, -0.259252300581205f, -0.239039520569651f, -0.0343187629251645f, -0.500656851699075f, 0.213230170834557f, -0.806162554023268f, -0.346741158269134f, 0.593197383681288f, -0.874207905790597f, 0.396896283395687f, -0.899758892162590f, 0.645625478431829f, 0.724064646901595f, 0.505831437483414f, -0.592809028527107f, 0.191058921738261f, 0.329699861086760f, 0.637747614705911f, 0.228492417185859f, 0.350565075483143f, 0.495645634191973f, 0.0378873636406241f, -0.558682871042752f, -0.0463515226573312f, -0.699882077624744f, -0.727701564368345f, -0.185876979038391f, 0.969357227041006f, -0.0396554302826258f, 0.994123321254905f, -0.103700411263859f, -0.122414150286554f, -0.952967253268750f, -0.310113557790019f, 0.389885130024049f, 0.698109781822753f, -0.566884614177461f, -0.807731715569885f, 0.295459359747620f, 0.353911434620388f, -0.0365360121873806f, -0.433710246410727f, -0.112374658849445f, -0.710362620548396f, -0.750188568899340f, -0.421921409270312f, -0.0946825033112555f, -0.207114343395422f, -0.712346704375406f, -0.762905208265238f, 0.668705185793373f, 0.874811836887758f, 0.734155331047614f, 0.0717699959166771f, -0.649642655211151f, 0.710177200600726f, -0.790892796708330f, -0.609051316139055f, 0.158155751049403f, 0.273837117392194f, 0.101461674737037f, -0.341978434311156f, 0.358741707078855f, 0.415990974906378f, 0.760270133083538f, 0.164383469371383f, 0.559847879549422f, 0.209104118141764f, -0.265721227148806f, 0.165407943936551f, 0.611035396421350f, -0.626230501208063f, -0.116714293310250f, -0.696697517286888f, 0.0545261414014888f, 0.440139257477096f, 0.202311640602444f, -0.369311356303593f, 0.901884565342531f, 0.256026357399272f, -0.673699547202088f, 0.108550667621349f, -0.961092940829968f, -0.254802826645023f, 0.553897912330318f, 0.110751075533042f, -0.587445414043347f, 0.786722059164009, 0.182042556749386f, 0.398835909383655f, 0.431324012457533f, 0.587021142157922f, -0.644072183989352f, 0.187430090296218f, 0.516741122998546f, -0.275250933267487f, -0.933673413249875f, -0.767709448823879f, 0.00345814033609182f, -0.585884382069128f, 0.463549040471035f, 0.666537178805293f, -0.393605927315148f, -0.260156573858491f, -0.298799291489529f, -0.246398415746503f, 0.970774181159203f, -0.485708631308223f, -0.456571313115555f, -0.264210030877189f, -0.442583504871362f, 0.0585567697312368f, 0.955769232723545f, 0.651822742221258f, 0.667605490119116f, -0.178564750516287f, 0.744464599638885f, -0.0962758978504710f, -0.538627454923738f, -0.844634654117462f, 0.109151162611125f, -0.862255427201396f, -0.478955305843323f, 0.645965860697344f, 0.345569271369828f, 0.930605011671297f, -0.195523686135506f, 0.927940875293964f, 0.0529927450986318f, -0.537243314646225f, 0.0815400161801159f, -0.528889663721737f, -0.0803965087898244f, 0.722188412643543f, -0.115173100460772f, 0.391581967064874f, 0.609102624309301f, -0.726409099849031f, -0.924071529212721f, -0.424370859730340f, -0.932399086010354f, -0.679903916227243f, 0.398593637781810f, -0.395942610474455f, 0.911017267923838f, 0.830660098751580f, 0.485689056693942f, -0.634874052918746f, 0.558342102044082f, 0.153345477027740f, -0.418797532948752f, -0.962412446404476f, 0.499334884055701f, 0.772755578982235f, 0.486905718186221f, -0.680415982465391f, -0.983589696155766f, 0.0802707365440833f, -0.108186099494932f, 0.272227706025405f, 0.651170828846750f, -0.804713753056757f, 0.778076504684911f, 0.869094633196957f, -0.213764089899489f, -0.289485853647921f, -0.248376169846176f, -0.273907386272412f, -0.272735585352615f, -0.851779302143109f, 0.777935500545070f, 0.610526499062369f, -0.825926925832998f, -0.00122853287679647f, -0.250920102747366f, -0.0333860483260329f, 0.562878228390427f, 0.685359102189134f, 0.909722844787783f, -0.686791591637469f, 0.700018932525581f, -0.975597558640926f, 0.111273045778084f, 0.0313167229308478f, -0.185767397251192f, -0.587922465203314f, -0.569364866257444f, -0.433710470415537f, 0.744709870476354f, 0.812284989338678f, -0.835936210940005f, 0.409175739115410f, 0.364745324015946f, -0.526496413512530f, -0.0949041293633228f, -0.710914623019602f, -0.199035360261516f, 0.249903358254580f, 0.799197892184193f, -0.974131439735146f, -0.962913228246770f, -0.0584067290846062f, 0.0678080882131218f, 0.619989552612058f, 0.600692636138022f, -0.325324145536173f, 0.00758797937831957f, -0.133193608214778f, -0.312408219890363f, -0.0752971209304969f, 0.764751638735404f, 0.207290375565515f, -0.965680055629168f, 0.526346325957267f, 0.365879948128040f, -0.899713698342006f, 0.300806506284083f, 0.282047017067903f, -0.464418831301796f, -0.793644005532544f, -0.338781149582286f, 0.627059412508279f, -0.624056896643864f, -0.503708045945915f, 0.339203903916317f, -0.920899287490514f, -0.753331218450680f, -0.561190137775443f, 0.216431106588929f, -0.191601189620092f, 0.613179188721972f, 0.121381145781083f, -0.477139741951367f, 0.606347924649253f, 0.972409497819530f, 0.00419185232258634f, 0.786976564006247f, 0.716984027373809f, -0.577296880358192f, 0.336508364109364f, -0.837637061538727f, -0.706860533591818f, 0.655351330285695f, -0.799458036429467f, 0.804951754011505f, 0.405471126911303f, 0.485125485165526f, 0.0354103156047567f, 0.774748847269929f, 0.396581375869036f, 0.420464745452802f, -0.544531741676535f, -0.779088258182329f, -0.129534599431145f, 0.228882319223921f, 0.669504936432777f, -0.158954596495398f, -0.171927546721685f, 0.675107968066445f, -0.201470217862098f, -0.185894687796509f, 0.244174688826684f, 0.310288210346694f, -0.0674603586289346f, 0.138103839181198f, 0.269292861340219f, 0.121469813317732f, 0.168629748875041f, 0.581112629873687f, 0.499508530746584f, -0.741772433024897f, -0.311060071316150f, -0.263697352439521f, 0.180487383518774f, -0.800786488742242f, -0.949903966987338f, 0.134975524166410f, 0.213364683193138f, -0.684441197699222f, -0.254697287796379f, -0.260521050814253f, -0.757605554637199f, -0.134324873215927f, -0.699675596579060f, 0.136000646890289f, 0.355272520354523f, -0.712620797948690f, -0.729995036352282f, 0.323100037780915f, -0.718364487938777f, 0.807709622188084f, 0.289336059472722f, -0.558738026311145f, -0.591811756545896f, -0.894952978489225f, -0.354996929975694f, -0.142213103464027f, -0.651950180085633f, 0.182694586161578f, -0.193492058009904f, -0.540079537334588f, -0.300927433533712f, 0.119585035086049f, 0.895807833710939f, -0.413843745301811f, -0.209041322713332f, 0.808094803654324f, 0.0792829008489782f, 0.314806980452270f, 0.502591873175427f, -0.0474189387090473f, -0.407131047818007f, 0.797117088440354f, 0.902395237588928f, -0.783327055804990f, -0.591709085168646f, 0.628191184754911f, -0.454649879692076f, -0.588819444306752f, 0.250889716959370f, -0.582306627010669f, -0.145495766591841f, -0.634137346823528f, 0.667934845545285f, 0.873756470938530f, 0.425969845715827f, -0.779543910541245f, -0.265210219994391f, 0.781530681845886f, 0.304461599274577f, 0.211087853085430f, 0.281022407596766f, 0.0701313665097776f, 0.342337400087349f, -0.0618264046031387f, 0.177147380816613f, 0.751693209867024f, -0.279073264607508f, 0.740459307255654f, -0.352163564204507f, -0.726238685136937f, -0.565819729501492f, -0.779416133306559f, -0.783925450697670f, 0.542612245021260f, -0.810510148278478f, -0.693707081804938f, 0.918862988543900f, -0.368717045271828f, 0.0654919784331340f, -0.438514219239944f, -0.923935138084824f, 0.913316783811291f, -0.961646539574340f, 0.734888382653474f, -0.464102713631586f, -0.896154678819649f, 0.349856565392685f, 0.646610836502422f, -0.104378701809970f, 0.347319102015858f, -0.263947819351090f, 0.343722186197186f, 0.825747554146473f, 0.0661865525544676f, 0.918864908112419f, -0.999160312662909f, -0.904953244747070f, 0.246613032125664f, 0.123426960800262f, -0.294364203503845f, -0.150056966431615f, 0.904179479721301f, 0.517721252782648f, 0.661473373608678f, -0.784276966825964f, -0.984631287069650f, 0.239695484607744f, -0.499150590123099f, 0.00153518224500027f, -0.817955534401114f, 0.221240310713583f, 0.114442325207070f, -0.717650856748245f, -0.722902799253535f, -0.962998380704103f, 0.214092155997873f, -0.226370691123970f, 0.536806140446569f, 0.111745807092858f, 0.657580594136395f, -0.239950592200226f, 0.0981270621736083f, -0.173398466414235f, 0.414811672195735f, 0.147604904291238f, -0.649219724907210f, 0.907797399703411f, -0.496097071857490f, -0.0958082520749422f, -0.700618145301611f, 0.238049932994406f, 0.946616020659334f, 0.143538494511824f, 0.0641076718667677f, 0.377873848622552f, -0.413854028741624f, -0.838831021130186f, 0.0208044297354626f, 0.476712667979210f, 0.850908020233298f, 0.0692454021020814f, 0.841788714865238f, -0.251777041865926f, 0.512215668857165f, 0.827988589806208f, -0.399200428030715f, 0.999219950547600f, -0.00465542086542259f, 0.279790771964531f, -0.683125623289052f, 0.988128867315143f, 0.00697090775456410f, -0.409501680375786f, -0.190812202162744f, -0.154565639467601f, 0.305734586628079f, -0.922825484202279f, -0.0622811516391562f, -0.502492855870975f, 0.358550513844403f, 0.678271216185703f, -0.940222215291861f, 0.568581934651071f, 0.953835466578938f, -0.476569789986603f, 0.0141049472573418f, 0.722262461730185f, -0.128913572076972f, -0.583948340870808f, -0.254358587904773f, -0.390569309413304f, -0.0495119137883056f, -0.486356443935695f, -0.112768011009410f, -0.608763417511343f, -0.145843822867367f, 0.767829603838659f, 0.791239479733126f, 0.0208376062066382f, -0.524291005204912f, -0.200159553848628f, -0.835647719235620f, -0.222774380961612f, 0.0617292533934060f, 0.233433696650208f, -0.543969878951657f, -0.628168009147650f, -0.725602523060817f, -0.273904472034828f, 0.320527317085229f, -0.556961185821848f, 0.261533413201255f, 0.696617398495973f, 0.200506775746016f, -0.395581923906907f, 0.0196423782530712f, -0.0552577396777472f, -0.594078139517501f, -0.816132673139052f, -0.898431571909616f, 0.879105843430143f, 0.949666380003024f, -0.245578843355682f, 0.528960018663897f, 0.201586039072583f, -0.651684706542954f, 0.596063456431086f, -0.659712784781056f, -0.213702651629353f, -0.629790163054887f, -0.0572029778771013f, 0.645291034768991f, -0.453266855343461f, -0.581253959024410f, 0.632682730071992f, 0.991406037765467f, 0.701390336150136f, -0.879037255220971f, -0.304180069776406f, 0.0969095808767941f, -0.465682778651712f, 0.815108046274786f, -0.532850846043973f, 0.950550134670033f, 0.296008118726089f, -0.198390447541329f, 0.159049143352201f, 0.105169964332594f, -0.482506131358523f, 0.493753482281684f, 0.292058685647414f, 0.283730532860951f, 0.00323819209092657f, 0.765838273699203f, -0.0753176377562099f, -0.679824808630431f, 0.548180003463159f, -0.996048798712591f, 0.782768288046545f, 0.396509190560532f, 0.848686742379558f, 0.750049741585178f, 0.730186188655936f, -0.0220701180542726f, -0.487618042364281f, -0.403562199756249f, -0.0693129490117646f, 0.947019452953246f, -0.731947366410442f, 0.198175872470120f, -0.329413252854837f, -0.641319161749268f, 0.186271826190842f, -0.0739989831663739f, -0.334046268448298f, -0.191676071751509f, -0.632573515889708f, -0.999115061914042f, -0.677989795015932f, 0.289828136337821f, 0.696081747094487f, 0.965765319961706f, -0.203649463803737f, -0.195384468978610f, 0.746979659338745f, 0.701651229142588f, -0.498361303522421f, 0.289120104962302f, 0.270493509228559f, -0.132329670835432f, 0.385545665843914f, -0.265371843427444f, 0.306155119003788f, -0.859790373316264f, -0.0198057838521546f, 0.233572324299025f, 0.426354273793125f, -0.510901479579029f, -0.600001464460011f, -0.972316846268671f, 0.531678082677910f, -0.0543913028234813f, -0.860333915321655f, 0.0717414549918496f, -0.992726205437930f, 0.587189647572868f, -0.710120198811545f, -0.712433353767817f, 0.000905613890617163f, 0.323638959833707f, -0.148002344942812f, 0.422217478090035f, -0.512122539396176f, -0.652032513920892f, -0.0749826795945674f, 0.689725543651565f, 0.00708142459169103f, 0.612282380092436f, -0.182868915402510f, -0.478704046524703f, 0.630078231167476f, -0.201694106935605f, 0.471080354222778f, 0.705764111397718f, 0.504296612895499f, -0.245442802115836f, -0.0255433216413170f, 0.244606720514349f, -0.620852691611321f, 0.130333792055452f, -0.0404066268217753f, 0.533698497858480f, 0.569324696850915f, -0.0208385747745345f, -0.344454279574176f, 0.697793551353488f, 0.223740789443046, 0.0819835387259940f, -0.378565059057637f, 0.265230570199009f, -0.654654047270763f, -0.959845479426107f, -0.524706200047066f, -0.320773238900823f, 0.133125806793072f, 0.204919719422386f, 0.781296208272529f, 0.357447172843949f, -0.295741363322007f, -0.531151992759176f, -0.928760461863525f, -0.492737999698919f, 0.185299312597934f, 0.0308933157463984f, 0.0940868629278078f, -0.223134180713975f, -0.728994909644464f, 0.748645378716214f, 0.602424843862873f, 0.939628558971957f, -0.601577015562304f, -0.178714119359324f, 0.812720866753088f, -0.864296642561293f, 0.448439532249340f, 0.423570043689909f, 0.883922405988390f, -0.121889129001415f, -0.0435604321758833f, -0.823641147317994f, -0.775345608718704f, -0.621149628042832f, 0.532395431283659f, -0.803045105215129f, 0.897460124955135f, 0.432615281777583f, -0.0245386640589920f, -0.822321626075771f, -0.992080038736755f, -0.829220327319793f, 0.125841786813822f, 0.277412627470833f, 0.623989234604340f, -0.207977347981346f, -0.666564975567417f, 0.419758053880881f, -0.146809205344117f, 0.702495819380827f, 0.802212477505035f, 0.161529115911938f, 0.987832568197053f, -0.885776673164970f, -0.608518024629661f, -0.126430573784758f, 0.168260422890915f, -0.517060428948049f, -0.766296586196077f, -0.827624510690858f, -0.149091785188351f, -0.643782325842734f, 0.768634567718711f, 0.815278279059715f, -0.648037361329720f, -0.480742843535214f, 0.983809287193308f, -0.701958358623791f, 0.0797427982273327f, 0.903943825454071f, 0.980486658260621f, 0.207436790541324f, -0.536781321571165f, -0.885473392956838f, -0.626744905152131f, 0.279917970592554f, -0.489532633799085f, 0.402084958261836f, -0.566738134593205f, -0.0990017532286025f, 0.458891753618823f, 0.893734110503312f, 0.541822126435773f, -0.856210577956263f, -0.0354679151809227f, -0.868531503535520f, 0.150589222911699f, 0.611651396802303f, 0.524911319413221f, 0.555472734209632f, -0.723626819813614f, -0.162106613127807f, 0.602405197560299f, 0.903198408993777f, 0.329150411562290f, -0.806468536757339f, -0.671787125844359f, -0.707262852044556f, 0.474934689940169f, -0.379636706541612f, 0.404933387269815f, 0.332303761521238f, 0.394233678536033f, -0.0366067593524413f, 0.904405677123363f, -0.356597686978725f, -0.623034135107067f, 0.572040316921149f, 0.799160684670195f, -0.507817199545094f, -0.533380730448667f, -0.884507921224020f, -0.00424735629746076f, 0.647537115339283f, 0.456309536956504f, -0.766102127867730f, -0.625121831714406f, 0.341487890703535f, -0.360549668352997f, -0.229900108098778f, -0.666760418812903f, 0.813282715359911f, 0.115522674116703f, -0.221360306077384f, 0.0297293679340875f, 0.00682810040637105f, 0.0115235719886584f, 0.887989949086462f, 0.792212187398941f, 0.415172771519484f, -0.600202208047434f, 0.949356119962045f, -0.526700730890731f, 0.946712583567682f, -0.392771116330410f, 0.0144823046999243f, -0.649518061223406f, 0.724776068810104f, 0.00920735790862981f, -0.461670796134611f, 0.217703889787716f, 0.846151165623083f, -0.202702970245097f, 0.314177560430781f, -0.761102867343919f, 0.0528399640076420f, -0.986438508940994f, -0.595548022863232f, -0.430067198426456f, 0.150038004203120f, 0.738795383589380f, -0.605707072657181f, -0.597976219376529f, 0.375792542283657f, -0.321042914446039f, 0.902243988712398f, 0.463286578609220f, -0.739643422607773f, 0.210980536147575f, -0.539210294582617f, 0.405318056313257f, -0.876865698043818f, -0.0883135270940518f, 0.0300580586347285f, -0.657955040210154f, 0.159261648552234f, 0.288659459148804f, 0.274488527537659f, 0.646615145281349f, 0.431532024055095f, -0.982045186676854f, -0.777285361097106f, -0.124875006659614f, 0.503004910525253f, 0.824987340852061f, -0.859357943951028f, -0.894837450578304f, 0.744772864540654f, 0.415263521487854f, 0.337833126081168f, -0.612498979721313f, 0.391475686177086f, 0.573982630935632f, -0.391044576636065f, 0.669493459114130f, -0.763807443372196f, -0.898924075896803f, -0.969897663976237f, -0.266947396046322f, 0.198506503481333f, -0.355803387868922f, 0.787375525807664f, 0.655019979695179f, -0.266247398074148f, -0.665577607941915f, 0.0617617780742654f, -0.303207459096743f, 0.807119242186051f, -0.864431193732911f, 0.711808914065391f, 0.267969697417500f, -0.643939259651104f, -0.723685356192067f, 0.887757759160107f, -0.318420101532538f, -0.984559057628900f, -0.123118506428834f, 0.264872379685241f, 0.258477870902406f, -0.727462993670953f, -0.223845786938221f, 0.683462211502638f, -0.989811504909606f, 0.292644294487220f, -0.926087081411227f, -0.801377664261936f, -0.337757621052903f, 0.356167431525877f, 0.974619379699180f, 0.456124311183874f, 0.664192098344107f, -0.910993234571633f, -0.484097468631090f, -0.128534589958108f, -0.770879324529314f, 0.320053414246682f, 0.249818479771296f, 0.0153345543766990f, 0.696352481669035f, -0.397719804512483f, 0.670333638147646f, -0.678192291329959f, 0.190143924397131f, 0.342035884244954f, -0.350791038317704f, 0.0218450632953668f, 0.437133719806156f, 0.659960895652910f, 0.903378806323159f, 0.855089775229062f, 0.946706092624795f, 0.335540975081955f, 0.838337968455111f, -0.102693592034237f, -0.702102376052106f, 0.409624309223486f, -0.654483499569910f, 0.886576641430416f, -0.200573725141884f, -0.461284656727627f, 0.262661770963709f, 0.867505406245483f, -0.0688648080253220f, -0.707487995489326f, -0.248871627068848f, -0.197869870234198f, -0.243745607075197f, -0.244106806741608f, 0.489848112299788f, -0.0909708869175492f, -0.377678949786167f, 0.0385783576998284f, -0.470361956031595f, 0.802403491439449f, -0.408319987166305f, 0.345170991986463f, -0.433455880962420f, 0.00950587287655291f, -0.441888155900165f, -0.817874450719479f, 0.818308133775667f, 0.931915253798354f, 0.818494801634479f, 0.787941704188320f, 0.882012210451449f, 0.0749985961399193f, 0.259772455233352f, -0.655786948552735f, 0.0824323575519799f, 0.980211564632039f, -0.798619050684746f, 0.496019643929772f, -0.727312997781404f, -0.999839600489443f, 0.625938920414345f, -0.561059012154101f, 0.215650518505246f, 0.121571798563274f, 0.161863493108371f, -0.340322748036792f, 0.521792371708641f, 0.655248389359818f, -0.180967013066484f, 0.936797969156762f, 0.523749660366580f, 0.764744126333943f, 0.384701560810431f, -0.744092118301334f, 0.719721922905938f, 0.365931545158250f, -0.720202871171563f, 0.121662048491076f, -0.355501954289222f, 0.379420491208481f, -0.593818415223405f, -0.433690576121147f, -0.766763563509045f, -0.377445104709670f, -0.955638620720410f, 0.309622585052195f, -0.613767678153186f, 0.0177719922394908f, 0.362917537485277f, -0.297613292472489f, 0.0275561832152067f, -0.962345352767599f, 0.452866577068408f, -0.307485159523065f, 0.931778412136845f, 0.639592220588070f, 0.00782144244951311f, -0.0466407334447796f, -0.134392603781566f, 0.895314655361308f, -0.537785271016286f, 0.663926391064792f, -0.886126633268266f, -0.0975129470189278f, -0.429791706025144f, -0.440337831994928f, -0.00156267573188829f, 0.933113069253665f, -0.560704402651437f, -0.201658150324907f, 0.465819560354530f, 0.0701448781871696f, 0.859597672251104f, -0.525851890358272f, -0.992674038068357f, -0.0846761339576128f, -0.401686794568758f, -0.886069686075370f, -0.480254412625133f, 0.432758053902000f, 0.168651590377605f, -0.453397134906684f, 0.340250287733381f, -0.972972507965963f, 0.0560333167197302f, -0.180812774382952f, -0.689848943619717f, -0.427945332505659f, 0.771841237806370f, 0.329334772795521f, 0.573083591606505f, 0.280711890938316f, -0.265074342340277f, -0.166538165045598f, -0.0612128221482104f, 0.458392746490372f, 0.199475931235870f, 0.681819191997175f, 0.356837960840067f, 0.756968760265553f, 0.763288512531608f, -0.890082643508294f, -0.322752448111365f, 0.799445915816577f, -0.956403501496524f, 0.723055987751969f, 0.943900989848643f, -0.217092255585658f, -0.426893469064855f, 0.834596828462842f, 0.723793256883097f, 0.781491391875921f, 0.928040296363564f, -0.468095417622644f, 0.758584798435784f, 0.589732897992602f, 0.929077658343636f, 0.829643041135239f, 0.0947252609994522f, 0.554884923338572f, -0.513740258764285f, -0.221798194292427f, 0.499855133319165f, -0.0237986912033636f, 0.559618648100625f, -0.509812142428963f, -0.444047241791607f, 0.678274420898738f, -0.983706185790147f, -0.295400077545522f, -0.688769625375228f, 0.729259863393412f, 0.889478872450658f, 0.928277502215167f, -0.429388564745762f, -0.790568684428380f, 0.930220908227667f, -0.796970618648576f, -0.980240003047008f, 0.0372716153521411f, -0.290828043433527f, -0.303854123029680f, 0.160774056645456f, -0.712081432630280f, 0.390787025293754f, 0.981202442873064f, -0.679439021090013f, 0.183053153027806f, 0.665002789261745f, -0.708708782620398f, 0.254574948166343f, 0.0575397183305137f, -0.723713533137924f, -0.732816726186887f, 0.501983534740534f, 0.879998734527489f, 0.825871571001792f, 0.920880943816000f, 0.311565022703289f, -0.788226302840017f, -0.223197800016568f, 0.850662847422425f, -0.365181128095578f, 0.958907951854379f, -0.0421327708909884f, -0.153860389403659f, -0.219620959578892f, -0.469076971423126f, -0.523348925540362f, -0.287762354299832f, -0.913332930679763f, 0.403264134926789f, 0.725849051303960f, 0.743650157693605f, -0.382580349065687f, -0.297138545454038f, -0.480092092629432f, 0.0412697614821378f, -0.396203822475830f, -0.0721078217568973f, 0.979038611510460f, -0.766187876085830f, -0.344262922592081f, 0.943351952071948f, -0.219460259008486f, 0.115393587800227f, -0.342675526066015f, 0.926460460401492f, -0.486133445041596f, 0.0722019534490863f, -0.571069005453629f, -0.0854568609959852f, 0.370182934471805f, -0.554007448618166f, 0.899885956615126f, -0.188476209845590f, -0.548132066932086f, 0.0559544259937872f, -0.161750926638529f, -0.532342080900202f, 0.585205009957713f, -0.374876171959848f, -0.169253952741901f, -0.473665572804341f, 0.942267543457416f, -0.515867520277168f, -0.706362509002908f, -0.320672724679343f, -0.398410016134417f, 0.733774712982205f, 0.449599271169282f, 0.109119420842892f, -0.285090495549516f, 0.0854116107702212f, 0.0603189331827261f, -0.943780826189008f, 0.0679186452322331f, 0.0975973769951632f, -0.870728474197789f, -0.153122881744074f, -0.519939625069588f, -0.633620207951748f, -0.767551214057718f, -0.905802311420298f, -0.841350087901049f, -0.271805404203346f, 0.282221543099561f, -0.0874121080198842f, 0.0634591013505281f, 0.318965595714934f, -0.865047622711268f, -0.401960840475322f, 0.637557181177199f, -0.664578054110050f, -0.871253510227744, -0.893972634695541f, 0.442396058421524f, -0.427901040556135f, -0.740186385510743f, 0.788155411447006f, -0.541278113339818f, 0.509586521956676f, -0.461159620800394f, 0.664671981848839f, 0.880365181842209f, -0.0831685214800200f, 0.952827020902887f, 0.183226454466898f, -0.176729350626920f, 0.851946105206441f, -0.361976142339276f, 0.357209010683668f, 0.982462882042961f, -0.690757734204635f, 0.178681657923363f, -0.0804395784672956f, 0.971787623805611f, 0.875217157810758f, 0.160844021450331f, -0.359951755747351f, 0.0178495935461525f, 0.0203610854761294f, 0.413933338290502f, -0.676038601090005f, -0.111093077131977f, -0.381792206260952f, -0.459903351782575f, 0.308522841938619f, 0.324961267942541f, 0.365201262605939f, 0.732543185546895f, -0.559558093250200f, 0.848266528378337f, -0.185546299813159f, 0.997052205707190f, -0.932554828383249f, -0.106322273904826f, -0.0690562674587807f, 0.919489002936141f, 0.137210930163322f, -0.664517238270193f, -0.985856844408119f, -0.0719443995256963f, -0.602400574547167f, -0.398979518518077f, -0.581117055144305f, -0.0626081333075188f, -0.0372763806643306f, -0.688808592854889f, 0.703980953746103f, -0.480647539644480f, 0.615510592326288f, -0.940226159289884f, -0.953483236094818f, -0.300312284206625f, -0.819419230573751f, 0.657560634657022f, -0.0500336389233971f, 0.628589817614501f, 0.717012803783103f, -0.0315450822394920f, -0.445526173532186f, 0.521475917548504f, -0.479539088650145f, 0.695075897089419f, -0.0365115706205694f, 0.0256264409967832f, -0.0121306374106025f, -0.817618774100623f, 0.375407640753000f, 0.944299492219378f, -0.717119961760812f, -0.120740746804286f, 0.995225399986245f, -0.460846026818625f, 0.904552069467540f, 0.807270804870602f, -0.842962924665094f, -0.923108139392625f, -0.130295037856512f, 0.760624035683226f, 0.986419847047289f, -0.959218334866074f, -0.203345611185410f, -0.474420035241129f, -0.872329912560413f, 0.485994152094788f, -0.515456811755484f, -0.948541161235413f, 0.509659433909651f, 0.783030335970347f, -4.41004028146619e-05f, -0.664795573083349f, 0.917509788523214f, -0.824045573084530f, -0.461857767121051f, -0.667434409929092f, -0.00822974230444418f, 0.825606347148302f, -0.396378080991589f, 0.0161379983198293f, -0.940751675506308f, -0.520997013834332f, -0.239727035024153f, -0.354546027474561f, 0.430652211989940f, -0.557416557692462f, -0.357117274957257f, -0.891975448321656f, -0.0775302131779423f, 0.716775563686830f, -0.903453980341467f, 0.946455001410598f, -0.615060907661003f, 0.964288374469340f, 0.0506144897273089f, 0.720601612869967f, -0.991323837622476f, 0.647403093538608f, -0.400304988135589f, -0.883732066109751f, -0.792060477777513f, 0.710867542231890f, -0.840766000234525f, 0.460362174479788f, -0.834771343071341f, -0.329399142231491f, -0.139853203297018f, -0.760035442359396f, -0.546795911275364f, -0.598172518777125f, 0.244198671304740f, 0.0816980976432087f, -0.978470883754859f, -0.425173722072458f, -0.469868865988971f, 0.847396146045236f, 0.0513388454446360f, -0.545662072513986f, -0.130534232821355f, -0.654100097045099f, 0.0409163969999120f, 0.573001152600502f, 0.706046270983569f, 0.587208280138624f, 0.237670099964068f, 0.848355476872244f, -0.318971649676775f, -0.659343733364940f, 0.321817022392701f, -0.595779268050966f, -0.114109784140171f, 0.998897482902424f, -0.615792624357560f, -0.384232465470235f, 0.156963634764123f, 0.499645454164798f, -0.627603624482829f, 0.169440948996654f, 0.109888994819522f, -0.492231461622548f, -0.463014567947703f, 0.825436145613203f, -0.0271223123229367f, 0.497887971992266f, 0.811868354230459f, -0.192668816770168f, 0.287930938097264f, 0.0283112173817568f, 0.791359470942568f, 0.365100854153897f, -0.566922537281877f, 0.915510517906894f, 0.674211624006981f, 0.505848146007678f, 0.509348889158374f, -0.0477364348461706f, 0.409703628204478f, -0.820970358007873f, -0.565377675052345f, 0.810052924776160f, -0.448904038826591f, -0.830251135876445f, -0.660589978662428f, -0.890196028167542f, 0.130526506200048f, 0.924600157422957f, 0.587215078998604f, 0.727552064386916f, -0.224172021948978f, -0.182984019951690f, 0.308546229024235f, 0.971188035736775f, 0.0229902398155457f, 0.0608728749867729f, -0.0712317776940203f, 0.549832674352445f, -0.600015690750697f, -0.0495103483291919f, -0.564669458296125f, 0.726873201108802f, -0.197851942682556f, -0.983422510445155f, -0.905314463127421f, 0.453289030588920f, 0.792504915504518f, -0.840826310621539f, 0.0979339624518987f, -0.506416975007688f, -0.143310751135128f, -0.451251909709310f, -0.356156486602212f, -0.430777119656356f, -0.593002001098269f, -0.212505135257792f, -0.378005313269430f, 0.516460778234704f, -0.574171750919822f, -0.702870049350445f, 0.190454765104412f, 0.694962035659523f, 0.177498499962424f, -0.00126954773922439f, -0.766110586126502f, -0.769862303237397f, -0.208905136673906f, 0.0728026097773338f, -0.467480087700933f, -0.368839893652514f, -0.608806955889496f, -0.531329879815774f, 0.411920547737697f, -0.407318902586407f, 0.922406353838750f, -0.0272310683929855f, 0.781051179942937f, 0.860271807949640f, -0.703736733439623f, -0.285650334863399f, -0.466904334435873f, -0.716816768536707f, 0.0869377378786880f, -0.280331892461309f, 0.773946156883160f, -0.139856444064730f, 0.575680110908147f, -0.887887626173303f, 0.314286545048942f, 0.673119170729964f, 0.520399233930039f, 0.581347801663144f, 0.731708017815653f, 0.672583525027818f, -0.0534590776637494f, -0.880572908687369f, 0.171150522778545f, -0.377041265530122f, -0.478003213002057f, 0.458602883802583f, 0.836824527658741f, -0.0686622680764437f, -0.301000630566919f, -0.652562984155554f, 0.604631263268903f, 0.791770979838877f, 0.0790491584346489f, 0.812646960034949f, 0.138794042671596f, 0.709411730079774f, 0.226484869016811f, 0.797388098554019f, -0.162225991160828f, -0.0295749256270541f, 0.218242165083417f, 0.442845427695148f, -0.480622209857766f, 0.873464432574125f, -0.868017543466245f, -0.435489784247438f, 0.0589001507244313f, 0.829134536020168f, 0.614063504046069f, -0.0498036542372153f, -0.803122689381969f, -0.495207870035615f, -0.126836582496751f, -0.0715271574335641f, -0.600815700055194f, 0.434993547671690f, -0.891665893518364f, 0.515259516482513f, 0.475325173737397f, -0.716548558025405f, -0.881097306400870f, 0.738462585443836f, -0.244486212870867f, -0.750368936394211f, 0.303496411011494f, -0.602701428305057f, -0.400346153635480f, -0.300002744969481f, -0.518552440201900f, 0.437964598712580f, -0.816689813412280f, -0.814392666138757f, -0.888568091915377f, 0.449416911306476f, -0.231889259488176f, 0.589775175288682f, 0.817224890217553f, 0.518646001325967f, -0.406046689874425f, -0.822100925750380f, 0.0528571826460145f, 0.502410576690672f, -0.795964394123106f, 0.0587614583641718f, -0.960750994569408f, 0.0366871534513058f, 0.723018804498087f, 0.0607565140068052f, 0.337380735516841f, 0.810682513202583f, -0.636743814403438f, 0.287171363373943f, -0.651998050401509f, -0.913606366413836f, 0.642186273694795f, -0.197674788034638f, -0.261253290776174f, 0.696450222503413f, -0.178859131737947f, -0.388167582041093f, -0.0593965887764258f, -0.638517356081890f, 0.804955770174156f, 0.220726627737384f, 0.263712659676167f, -0.214285245576410f, -0.267640297291737f, -0.268009369634837f, -0.957726158424482f, 0.708674977585603f, 0.336764494287156f, -0.985742981232916f, -0.883053422617300f, 0.560301189759340f, -0.692967747323003f, 0.977419052658484f, 0.0749830817523358f, 0.916618822945019f, 0.941660769630849f, 0.454145712080114f, 0.176036352526593f, 0.103229925297037f, 0.936507745325933f, -0.870159095287666f, -0.106465234217744f, 0.684178938709319f, 0.669775326656340f, -0.620857222834950f, 0.939074959093680f, -0.592224920792423f, 0.620706594809134f, 0.0456831422421473f, 0.738727999152789f, -0.751090911501446f, 0.683669216540363f, 0.153825621938168f, -0.255671723273688f, -0.773772764499189f, -0.667753952059522f, 0.887641972124558f, -0.664358118222428f, 0.512196622998674f, -0.0234362604874272f, 0.942878420215240f, -0.406617487191566f, -0.140379594627198f, -0.0587253931185765f, 0.419570878799757f, 0.533674656399007f, 0.108777047479414f, -0.695880604462579f, 0.481525582104998f, 0.511165135231064f, 0.136105196996658f, -0.481918536916982f, 0.757546893769363f, 0.957648176032083f, -0.908743619686586f, -0.395640537583668f, 0.0493439519763970f, 0.293569612893396f, 0.387420368421925f, 0.0928482742403196f, 0.407302666835821f, -0.787979245337637f, -0.968269218296593f, -0.409517247978962f, 0.775076200793689f, -0.217738166217447f, -0.370002483875998f, -0.570975789421316f, 0.844070553036478f, 0.668620483679341f, 0.00139813137293987f, -0.0912495442122028f, -0.0375370940595317f, 0.723007849224616f, 0.369999774115317f, 0.862240371150479f, 0.749525689790910f, 0.742992309993137f, -0.495813719545874f, -0.101947508108870f, -0.152536889610560f, 0.0598123624723883f, -0.436496899502871f, 0.520026918467263f, 0.241005798945400f, 0.970456690492966f, -0.376417224463442f, 0.614223236672359f, 0.336733945081746f, 0.376602027190701f, 0.00373987228923456f, -0.415425448787442f, 0.330560415319813f, -0.277250467297048f, 0.861008806111330f, -0.00655914035278493f, 0.810375656135324f, -0.0113631690466840f, -0.191699616402287f, -0.808952204107388f, 0.813180054552450f, 0.472985418265257f, 0.180147510998781f, -0.262580568975063f, 0.211152909221457f, -0.882514639604489f, -0.575589191561861f, 0.106927561961233f, 0.964591320892138f, 0.738192954342001f, 0.687649298588472f, -0.229142519883570f, -0.354434619656716f, -0.420522788056562f, 0.684638470896597f, -0.608080686160634f, 0.172668231197353f, 0.571295073068563f, -0.202258974457565f, 0.183035733721930f, -0.425589835248751f, -0.181955831301366f, 0.798193178080558f, -0.719799491928433f, -0.376418218727565f, 0.100370714244854f, -0.674685331738723f, -0.528950922374114f, 0.480443520097694f, 0.432497368954013f, 0.887439714903326f, 0.598241701759478f, -0.250064970303242f, -0.743111010477448f, 0.936189907099845f, -0.867383557331633f, 0.852536175309851f, -0.426378707286007f, 0.793838638663137f, 0.856262917294594f, 0.734157059815547f, 0.00452009494051664f, -0.884258713402709f, -0.0835595438259760f, -0.735457210599502f, -0.710727075357488f, 0.858050351034768f, -0.626070522205317f, -0.848201957131499f, 0.0180933910837406f, -0.0350884878366737f, -0.893836321618480f, -0.0682788306189803f, -0.539993219329871f, -0.557660404374917f, 0.268969847256868f, 0.505363999910409f, -0.0464757944714727f, -0.529689906951922, -0.138445378586710f, 0.992531054118938f, 0.974585450054910f, 0.940349645687053f, 0.648085319100986f, -0.410736404028701f, 0.804131759246012f, -0.774897101314247f, 0.178246382655493f, -0.361699623232501f, -0.836093509684016f, 0.806309487627613f, -0.758182371322663f, 0.718410035716663f, -0.213136487421868f, -0.0563465521625497f, 0.0411192849612654f, -0.532497330327019f, -0.0419839515250475f, 0.769432068229678f, 0.253556234192255f, -0.745131216530268f, -0.890639235422577f, -0.140643637034330f, 0.318127074868768f, -0.497415632768561f, -0.383508820416842f, -0.468783454456628f, -0.289531078129000f, -0.0831555730758713f, 0.0107128404847427f, -0.567754537918270f, 0.926366772604370f, -0.600154724486768f, -0.0920759547805206f, 0.889582307602381f, -0.0710437157605615f, -0.182724716112986f, 0.228135065644420f, 0.851015495602628f, 0.653035806598961f, -0.986676404958677f, -0.871714951288816f, -0.824734086356281f, -0.490239304888267f, 0.244318295619814f, -0.923794688606381f, 0.670566388343457f, 0.849438492633058f, -0.225318912425116f, 0.461075616917687f, 0.656436404012820f, -0.416403369651597f, 0.205630417444150f, -0.163509095777762f, -0.0670299490212758f, -0.315561491397908f, -0.0952855008191476f, -0.377993693497066f, 0.860172853824826f, -0.669622978211317f, 0.595058880455053f, -0.425661849490015f, -0.0405359106780283f, 0.129968697438974f, -0.156244199842099f, 0.996996665434629f, -0.888570357356090f, -0.925646614993414f, -0.753998082238076f, 0.714491335460749f, -0.307849905639463f, 0.536274323586448f, -0.462944722411129f, 0.622202376598447f, -0.215582012734053f, -0.115115003363232f, 0.128168110175570f, -0.556263623663708f, 0.921813264386344f, -0.288173574121268f, -0.175054002159610f, 0.0621862747516269f, -0.468862899314091f, 0.976184545317535f, 0.468469061953779f, 0.679394669665911f, -0.0651943232114096f, 0.872740953203360f, -0.917720162541254f, 0.271535917769933f, 0.265441861283112f, 0.542190484993772f, -0.0208550501604048f, 0.983272473294640f, -0.522164666401537f, 0.833823680455458f, 0.414337644113416f, 0.588576354535126f, 0.318369292694380f, 0.870442561030567f, -0.422722224743553f, -0.200185003922166f, -0.770185495487048f, -0.878134057034045f, -0.712873198675798f, 0.647706512601268f, 0.593648188899773f, 0.126171748161942f, -0.189622212946038f, 0.707877641788638f, 0.790070498218410f, 0.698576567863428f, 0.594748885238005f, 0.567439045931572f, -0.591839707769224f, -0.632709967090349f, 0.415471238430617f, 0.115403276784208f, -0.375797954748234f, 0.123611001678020f, -0.864109581464288f, 0.115346512920739f, -0.515581940111704f, 0.880606114362175f, 0.356011740142007f, -0.318112820131587f, 0.765766689783476f, -0.226772670084743f, 0.442067390135885f, 0.348547568069751f, 0.862154389627291f, -0.894863284060244f, 0.475714942110286f, 0.552377629980789f, -0.0838875341374268f, -0.227654706745770f, 0.0998522598030438f, 0.870812229993830f, -0.518250234958224f, -0.0635791579471283f, -0.284101882205902f, -0.454751668241269f, 0.720773434493943f, 0.0756117818245317f, -0.0572317848090118f, -0.692584830354208f, 0.776250173796276f, 0.514052484701885f, 0.00770839936587864f, 0.775668871262837f, 0.933055956393907f, 0.0501713700022097f, -0.922194089981246f, 0.266653852930886f, -0.408584553416038f, 0.797066793752635f, -0.785570848747099f, 0.931403610887599f, 0.660859952465710f, -0.630963871875185f, -0.673000673345695f, 0.518897255252506f, -0.342041914345720f, 0.405613809903414f, -0.373516504843492f, -0.208292396009356f, 0.0510871025610438f, 0.396765368381847f, 0.00537609874241829f, 0.935717099427788f, -0.564801066383885f, -0.907523685862547f, 0.670551481631625f, -0.457309616171932f, 0.364001526470449f, 0.140805524345232f, -0.349945327329409f, -0.0361532758624807f, -0.304268551311720f, 0.618482952755668f, -0.0120110524971313f, 0.106364353621731f, -0.427587198043230f, 0.464249033810121f, -0.808297048471569f, 0.675277128303038f, -0.0663762607268352f, -0.431951364170808f, 0.953951718476660f, -0.725934553905574f, -0.685163723789561f, 0.164132617720945f, 0.934798872032034f, -0.695343627424553f, -0.420317401094920f, -0.689247558220342f, -0.605894279765940f, -0.693832779320227f, 0.455037128281788f, 0.968645000038447f, -0.0839147410947130f, 0.603463489419899f, 0.776913738299999f, -0.491560292499776f, 0.692235227850848f, 0.0824017593921889f, 0.459024952691847f, -0.918050509352710f, -0.777463066447746f, -0.161045596440278f, 0.982603547894360f, 0.700884888820475f, 0.998304481713913f, -0.362488733430088f, 0.171493948866881f, 0.565871153533442f, -0.965620428705067f, -0.835532968802398f, 0.885598629033760f, 0.609604257914327f, 0.725300244775050f, 0.153524048564152f, -0.662541112390878f, 0.912145212201290f, 0.135610445338421f, -0.0813934125800109f, 0.242209063597546f, -0.264886126609115f, -0.335070345839122f, 0.823958964903978f, -0.313110855907701f, -0.354068037633970f, -0.0381190024996405f, 0.117794735211134f, -0.604442743379238f, 0.524930955656444f, -0.754959642694882f, -0.359151666678207f, -0.247910739722172f, 0.573570999369016f, 0.543167570010806f, -0.718553346110069f, 0.202415372555816f, -0.860091438569300f, -0.0125446132328610f, 0.509348782140749f, 0.349261188228469f, 0.424395913611831f, 0.0557092265870811f, 0.740276822496471f, 0.479158001215769f, -0.221873518706244f, -0.744883456979009f, 0.393114117430743f, -0.733203119089531f, -0.506531269498885f, -0.505532097672033f, -0.509440981371663f, 0.666118722468113f, 0.0164067375520756f, -0.530276655546078f, 0.786338654343788f, -0.985008085364936f, 0.479988836226036f, -0.233652481382475f, 0.838641098910395f, -0.407379719374768f, -0.314266358910263f, -0.938033692224531f, -0.627320971378707f, -0.229174127295511f, 0.642505983671691f, -0.387855473250297f, 0.360324209821339f, -0.900766206699468f, 0.176676285751262f, 0.833894117554548f, -0.0207873177403817f, -0.202625183820044f, 0.706644325019314f, -0.817922707040537f, -0.242742059004419f, 0.282109349674866f, 0.0164603911954744f, -0.504625902855950f, 0.0415496120997125f, -0.787777778295785f, 0.362588721999523f, -0.371357162843751f, -0.818375262182416f, 0.727779997467707f, -0.836502839702384f, 0.0423869176265037f, -0.283934686546853f, 0.665864224978728f, -0.0428162304637920f, 0.243534621880753f, -0.803789304599586f, 0.570866852088607f, 0.340615579467880f, -0.323456502239327f, 0.403242371952148f, -0.0679158901587793f, -0.866985651416456f, -0.439873628406335f, -0.246357367033863f, 0.436234859832243f, 0.560714706225535f, -0.632564381913014f, -0.316451076258298f, -0.977122780282003f, 0.0741405862954117f, -0.217862250253606f, 0.887093089232476f, -0.418281865182365f, -0.638553415535034f, -0.262631979211197f, -0.567499176465252f, 0.676178859605923f, 0.933551699581608f, -0.0139735129263516f, -0.610719575803582f, 0.565123751720690f, 0.230672823422021f, 0.323935439339366f, 0.635142215896104f, 0.981184609133698f, 0.883668802319366f, -0.281281673616891f, 0.583204242495555f, 0.150854689098149f, -0.775890223139644f, 0.419951701513177f, -0.565767744791652f, -0.855232478054420f, 0.472188579901153f, -0.501463211798228f, 0.727960518524943f, 0.977187851385321f, 0.908113737694915f, -0.570200931535418f, 0.716036980035073f, 0.147838037485588f, 0.218820342222622f, -0.0673193461152677f, 0.433612519652386f, 0.449601736390411f, 0.556458722303960f, 0.417345590820787f, -0.783345413347895f, 0.858903187230710f, 0.178354025272247f, -0.130619018471658f, 0.858282827806003f, 0.508916167873459f, 0.139535936201634f, 0.240400109521332f, -0.102942705407161f, 0.841682417072375f, -0.696350979494975f, -0.793644449061670f, -0.698273636720141f, -0.228676865074326f, -0.195917865828574f, -0.306483109792438f, -0.865320326812636f, 0.659185969805107f, -0.368847387975239f, 0.337343722359231f, 0.0723822170210744f, 0.907475280998826f, 0.515168301614856f, 0.0790167120323961f, -0.756697420780699f, 0.966477562469936f, -0.663190129982788f, 0.145761851826854f, 0.376079225193173f, 0.631883071958707f, -0.956568110802436f, -0.735990864315730f, -0.795999578321461f, 0.958459465243432f, 0.319180429028702f, -0.907664654881857f, 0.992381284978014f, -0.511208110440365f, -0.714797966909523f, -0.717021870210999f, 0.545775837604423f, -0.0443828768329362f, 0.333311879948434f, 0.617237628406207f, -0.0895192882305207f, 0.506491005527430f, -0.354205929841282f, 0.777993157224477f, -0.667532693120319f, -0.105006112097613f, -0.337191911902220f, -0.337964429160738f, 0.609014812897482f, -0.368922911475613f, 0.889184378947484f, -0.676392242654630f, 0.429716870038086f, 0.916751115281822f, -0.655611878274175f, 0.538928395264007f, 0.382674384886170f, 0.0580742902089004f, -0.0124611362991478f, -0.0240388340005702f, -0.726296501832402f, -0.805701334732693f, 0.945344279474230f, -0.668066000378724f, 0.761436128738929f, -0.314275650172792f, -0.394331510439346f, 0.262887592668013f, 0.155064800148016f, -0.561829218656134f, -0.491542446753775f, 0.922248338472926f, 0.574575887413700f, 0.631722295929094f, -0.368854197209698f, 0.984780657580794f, 0.845286034922662f, -0.965631634115590f, -0.435710392440405f, -0.616488688868478f, 0.885865616625930f, 0.425733070487506f, 0.776721663555227f, -0.0652930284860209f, -0.734431875923792f, 0.725517937762654f, -0.474146253075108f, 0.895357779508529f, -0.0725048758018345f, -0.360185856190223f, 0.559350280666427f, 0.363695103660096f, 0.152231254765544f, 0.698196273442671f, 0.0518001104801953f, -0.139037096279713f, 0.340637636595997f, 0.584243998596814f, -0.442304329829130f, -0.501574294329747f, 0.250155103662225f, 0.320493999001502f, -0.150217982700108f, -0.0381390799255577f, 0.734760815545772f, -0.574574233376749f, 0.593440338163725f, 0.408049858247104f, -0.0845023181203484f, -0.855507806920297f, -0.473198309372409f, 0.331033392104072f, 0.196445364460658f, -0.799745050834061f, -0.973517526224363f, 0.333748727500822f, -0.772356831553232f, -0.430793038424357f, 0.649852557262489f, 0.504357958431509f, 0.779588082810134f, 0.0111847677569461f, -0.995526851285634f, -0.676007517368195f, 0.216774012875664f, -0.618928775636485f, -0.418043155155598f, -0.532063904545563f, -0.566979013994587f, 0.246319907266774f, 0.868651379198082f, -0.0433430896891542f, 0.463004686009427f, -0.162112430964754f, 0.285379745117090f, 0.901512987149549f, -0.706916206313139f, 0.685678130935725f, -0.673017501666538f, 0.0616272859909088f, 0.147532779463338f, -0.0108539826652629f, 0.960841184863269f, -0.950190006701182f, 0.992171414792924f, 0.715577145884581, 0.975908103138584f, -0.769014520827696f, -0.463212420186382f, -0.0761813427220397f, -0.704830850508594f, -0.220579724380686f, 0.840893269946637f, -0.432181989863148f, -0.956790418498701f, 0.122344784859397f, -0.242133592220528f, 0.908514497715246f, 0.303653521236872f, 0.756500828196849f, -0.752207807361831f, 0.367894642791072f, -0.702474131286247f, 0.189226989057138f, 0.401804209353236f, 0.608493473010907f, -0.437378101171900f, -0.158801297891213f, -0.381027984311046f, -0.949403985394057f, 0.370189685252539f, -0.872655295458655f, -0.337934909993878f, -0.0619622888328213f, 0.352094440420005f, 0.128759637109350f, 0.432413186229881f, -0.497474226759161f, 0.552933107875735f, 0.332665936587804f, -0.559261497212156f, -0.886188834336549f, 0.0170548801295034f, 0.192729852728271f, -0.674432365770129f, -0.526014722983374f, 0.425009223123802f, -0.186164676538888f, 0.190362042383007f, -0.0930204201587825f, 0.794188212052413f, -0.243549629178106f, 0.118970185744958f, -0.216230226310237f, 0.412570247218594f, 0.659556685538155f, -0.150540425515543f, -0.850858266540316f, -0.843827815842486f, 0.629298164439457f, 0.944304062363374f, -0.117764731240517f, 0.558568737697335f, 0.731745392387362f, -0.00413812760139165f, -0.251933493011685f, -0.473346352965658f, 0.178783613032362f, 0.547769344759580f, -0.414330113592064f, -0.550251453379012f, -0.925253680779905f, 0.623832825809309f, -0.494251081521428f, 0.0643361026845244f, 0.727107898350051f, 0.814864886916156f, 0.0177325632172460f, 0.749324691554934f, -0.266301024849295f, 0.675202550635588f, -0.0748462128620644f, -0.747853513216831f, -0.222563643557406f, -0.608884446788701f, -0.0374135649675464f, 0.852579123003940f, -0.585927920129879f, 0.604065857569210f, 0.573072924781108f, 0.816831955879520f, 0.723975232584095f, 0.367887024581694f, 0.765292601085641f, 0.836490699448589f, 0.623434131440044f, 0.743568762340577f, 0.140474444458222f, -0.746327891490507f, 0.700496422194197f, 0.549693846244016f, 0.729372970291116f, 0.728185563682229f, -0.614909046853182f, -0.756209631211223f, -0.530222413502955f, -0.312453162783936f, -0.752364704008701f, -0.634475515424180f, -0.133239439768175f, 0.252790153178337f, 0.760626105409900f, -0.838262213452153f, -0.266093046689486f, 0.549339088324875f, -0.278178592347115f, 0.190458706141960f, 0.906814275056971f, -0.579827980376046f, -0.134191470195968f, 0.244720998349483f, 0.795502128014338f, 0.287019836683889f, -0.906277889518234f, -0.817071933038363f, 0.613378274793081f, 0.518208081766432f, -0.388902790616382f, -0.785778461147273f, 0.574976429920521f, -0.283168065839246f, -0.857322381041868f, 0.424932015236353f, 0.919756642423073f, 0.412896759578072f, -0.976511020897041f, 0.157825653359643f, -0.0606591903280758f, 0.508438714729350f, -0.513115001652116f, 0.881391940997543f, -0.129708782033534f, 0.382462819411800f, -0.538751535594113f, 0.816770663497783f, 0.869013288394013f, -0.728381721932439f, -0.956736333819522f, -0.839107107637575f, 0.394821058517234f, 0.721983518815999f, -0.0847231453556103f, 0.0206545030491683f, 0.414707730497861f, 0.246591855656934f, -0.546187573590839f, -0.578957978692654f, 0.162844799084821f, 0.493731081270802f, -0.765815587549615f, 0.151613093585910f, -0.112883397239635f, 0.879319928900002f, 0.295375250614654f, -0.505370201033860f, -0.635319167339584f, -0.309818465920078f, 0.768627024018538f, -0.544374452091825f, 0.758974060573473f, -0.106050973670013f, 0.508616501970226f, -0.207224226211215f, 0.616842248601645f, 0.688381226662374f, 0.643728558619948f, -0.906982649598668f, 0.526262112978799f, -0.666644270400075f, 0.314806313630502f, -0.292000096972562f, -0.358353880616007f, 0.156344541906829f, 0.637606941586786f, -0.199572501073669f, -0.669369278061572f, 0.237513395315133f, -0.576741807179552f, 0.0750117203638310f, -0.633877533594996f, 0.829285089669934f, 0.622345234313277f, -0.892617583855908f, -0.280449892200797f, 0.241147361581176f, -0.0784016295955696f, 0.414945819313502f, 0.287238318044040f, -0.691458270387106f, 0.597656137422422f, 0.549022082569726f, -0.590776624040652f, 0.666740423918019f, -0.743115212424850f, 0.164036350785269f, -0.229427480781113f, 0.283602991107853f, -0.533993445778340f, 0.185806116700093f, -0.317953364055307f, 0.140412503708198f, 0.280706883979940f, 0.0439806827213221f, 0.176471515460512f, -0.614144204292693f, 0.314194083857125f, 0.519572839644130f, -0.850547081260782f, -0.515460990713008f, 0.353087995032390f, -0.0241014119925820f, 0.269453276643829f, -0.608515317887958f, -0.777818225534647f, -0.834277444316067f, -0.842707175235771f, -0.929547602540323f, -0.884691870945475f, 0.710591809809692f, 0.143423776629673f, 0.797136471728128f, 0.233311155245426f, -0.923169961754164f, 0.627911916101674f, -0.338187201367212f, 0.211044396110784f, -0.443699655795038f, 0.256593551969761f, -0.406688684034041f, 0.364900889856600f, 0.900530571350288f, -0.160476177153537f, 0.0634217008071056f, 0.709241599309354f, -0.789562037599596f, 0.00891621061029158f, 0.801674768895422f, -0.704378031949125f, 0.430576706378041f, 0.796937507044124f, -0.193348850174576f, -0.493924902919358f, -0.935781577118986f, 0.468142331108629f, 0.00965840085728753f, 0.0834398764999438f, 0.599712941235232f, -0.735675950275295f, 0.200152501800787f, -0.751603779675650f, 0.0697488403240092f, 0.300634243862625f, -0.901969784333300f, -0.958816237033024f, -0.754976119377363f, 0.719702182489622f, -0.338038642556184f, -0.703280944186943f, -0.579148694005994f, 0.556115731092296f, -0.920710928208685f, -0.278178108839470f, -0.793795308512285f, 0.916547680808212f, 0.419467216101691f, 0.177932177026735f, 0.682833725334600f, -0.926849803428705f, 0.179045225389745f, -0.209414969718359f, -0.889551871881532f, 0.961659420127890f, -0.250341627298645f, 0.105606170554974f, -0.547860346689080f, 0.845704098204057f, 0.886892635683680f, 0.768134466622042f, -0.954777823503721f, -0.718106389777233f, -0.580779231998609f, -0.0241800476518665f, 0.815063484178525f, -0.351971452344303f, 0.770369263680192f, 0.520886146470712f, -0.236456125482696f, 0.0900173391919312f, -0.00610611501589697f, 0.0986788038317752f, 0.277083194173223f, 0.0877085076786761f, 0.695814138412262f, 0.281021332783082f, -0.701468161850407f, -0.785496560046616f, -0.805623403379156f, -0.0524204125046179f, 0.0836418099696601f, 0.467252832788807f, 0.148967572323544f, 0.314141193557124f, -0.722297309069329f, 0.147068590429361f, -0.868307069306109f, 0.118712645744921f, 0.737896544941878f, 0.897526485681248f, 0.842207508585120f, 0.817408479766998f, 0.522315328909182f, -0.409136979179218f, 0.580654760034574f, -0.384701243761730f, -0.769398544059918f, -0.791317178699730f, 0.357020281620118f, -0.235410423267782f, -0.326332500533018f, -0.416891876268284f, -0.863029987000052f, 0.505171215727166f, -0.728709553380428f, 0.554546891580919f, 0.737429989077498f, -0.355088598334119f, 0.911987317939763f, 0.525846127625130f, 0.851549830104189f, -0.772303673276796f, 0.0421942169353806f, -0.521836640530782f, 0.995279650924240f, -0.186831960875832f, 0.421233670121556f, -0.0891583750230474f, 0.661100169663965f, 0.393809652414978f, 0.346165179707090f, 0.384203760628548f, -0.329281932973211f, 0.446133401546675f, -0.748200766224366f, -0.0275154142375615f, 0.771701580845288f, -0.0177829993094090f, 0.406813206251131f, 0.606021648140155f, 0.218435152341115f, 0.236571855064013f, -0.513495776515847f, 0.729086381137554f, -0.137775825035815f, 0.0320966747364262f, -0.313487802206023f, 0.105472520924239f, 0.423606700821375f, -0.231301628369264f, 0.465218832919270f, 0.379671652150568f, -0.00497780485272159f, 0.509290230688327f, 0.467240127182068f, 0.353587964503845f, 0.390455232684039f, 0.721536288927627f, -0.838922323815237f, 0.827628029266859f, 0.768844149796201f, -0.813963144642386f, -0.797054297232628f, -0.933039367361175f, -0.0723957249866136f, -0.664824147893300f, 0.695914840901794f, -0.206071660300270f, 0.879389414398409f, 0.181872681691416f, -0.582831210733033f, 0.624249199449935f, 0.204959730900228f, 0.354831594370532f, 0.337152636438178f, 0.596132114241829f, -0.295619496794481f, -0.443402055665686f, 0.743995051028396f, 0.543706744165365f, 0.825846155044062f, -0.764982315603181f, -0.0355223730700034f, -0.682467026736627f, -0.914037445162109f, -0.222823484413727f, 0.825323277024566f, 0.0769459194171547f, 0.696453968928934f, 0.760786120466962f, -0.525470048583831f, 0.764981036001869f, 0.458525204937000f, -0.612703584870878f, 0.626016142683351f, 0.284799326870320f, -0.130410894642153f, -0.730659587111424f, 0.0251896513929686f, 0.744421417725379f, 0.481278905427271f, -0.718686189713675f, -0.972110566787501f, -0.178005803066219f, -0.761536801353512f, 0.675177569459847f, -0.613068600254845f, -0.854757540148688f, 0.641823580903407f, 0.112536000301536f, 0.201235170163357f, -0.332623522893231f, 0.602028236317460f, 0.487529253813741f, -0.936537443253385f, 0.932862477850079f, -0.0977461167435834f, -0.485449569929182f, -0.575807340541437f, -0.920527242558033f, -0.938208754460503f, 0.890054000488493f, -0.154888511872567f, -0.106629818916523f, 0.323343252623500f, 0.105328135407289f, -0.837197492121459f, 0.497769113944639f, -0.234127101891878f, 0.840922493788059f, -0.994297350473539f, 0.241966031396186f, -0.241143860453769f, -0.598953146106117f, 0.839112451637864f, -0.639567866338402f, -0.219908091959649f, -0.778137266578287f, -0.201424793310289f, -0.486105622640452f, 0.874947034932591f, -0.131437343585340f, -0.674427373037920f, -0.161007203320351f, 0.215285933912207f, -0.963047650748652f, -0.841020847986178f, 0.259702280444602f, -0.165325097679823f, 0.572379756389254f, -0.435802768396928f, -0.0776125194906274f, -0.0293182206559168f, -0.847945015803839f, -0.576891917046364f, 0.728544652294888f, 0.110676857648527f, 0.760459056611184f, 0.486936926897001f, 0.680603035572503f, 0.330358411271561f, 0.901153157113818f, -0.893323547516767f, 0.268679990552354f, 0.794615743189695f, 0.221637368947158f, -0.0207579360252996f, -0.585634995914835f, 0.587646126395593f, -0.317780705107399f, 0.790321547328449f, 0.251610679655279f, -0.0386445267248654f, 0.881542790650722f, -0.469258891944944f, -0.900544881246558f, -0.344978220866601f, -0.271404539202745f, 0.863631450621357f, 0.805892242474368f, -0.325004362330199f, -0.649692260224921f, 0.535815472185538f, 0.427767946389023f, 0.924517987543855f, 0.571059970962007f, 0.549923246060706f, -0.639468249016352, 0.307213071097954f, -0.885892976847170f, -0.526002656640427f, 0.733743042788359f, 0.186919211020217f, 0.322167483598106f, -0.933484010727969f, 0.307181642341518f, -0.391959805653480f, -0.892298105797306f, 0.100065710151584f, -0.932962740784651f, -0.643536993204857f, 0.200747180046148f, 0.310831344540979f, -0.923416823619512f, 0.440768799148345f, -0.666930667413366f, -0.485487251971431f, -0.0627811951952384f, -0.331082293469460f, 0.0335811939608148f, -0.653610782697787f, -0.320586426505716f, 0.559163070852115f, -0.497363452770543f, -0.329886484503569f, -0.146612217140156f, -0.0265272745798242f, -0.288663397675155f, -0.996138396801714f, 0.705746028666908f, 0.634215549629091f, 0.165248482682243f, -0.110791752682943f, -0.0583711657160508f, 0.704663932851230f, 0.105987046073574f, -0.674234600022039f, -0.852792911043127f, 0.779458558047699f, -0.506163961277651f, 0.661431789813829f, 0.362986600662932f, 0.677673397902417f, 0.909704544299484f, -0.678129611146149f, -0.700854916363125f, -0.954905799366644f, 0.819329178422143f, -0.278866438326573f, 0.240572863896085f, -0.597973444252616f, 0.520707363092687f, -0.891796539359942f, -0.0707113684027092f, 0.730270237241197f, -0.202809887987925f, 0.712903235793333f, 0.815918058519912f, -0.619284883130692f, 0.620432327799984f, 0.215462902206797f, 0.913706499476201f, -0.284266999538807f, 0.137669223817851f, -0.320599930994154f, -0.279885143029947f, 0.0759863610502050f, 0.362519848337183f, 0.0897184432777523f, 0.730407126330006f, -0.715664883515070f, -0.964294244830797f, 0.337668374417089f, 0.563780948124681f, 0.534272089774928f, 0.670003495251274f, 0.976582736706313f, -0.576021162432801f, 0.318863740329612f, 0.374838616807691f, 0.437628782275460f, 0.629331465907672f, 0.800673318445353f, -0.964950925853698f, -0.115288102568929f, 0.581179798077059f, 0.892103220665649f, -0.224009831257430f, -0.486848659265476f, 0.768601825625188f, -0.478996958061453f, 0.987216084861456f, -0.00828256241998737f, 0.443388113322642f, -0.209225960405120f, 0.784392408672073f, -0.821157008960409f, 0.169088259578466f, 0.188648958653604f, 0.796321723736402f, 0.804915614204973f, -0.947435972579018f, -0.320368366702004f, -0.0857043727442930f, -0.229914128505395f, -0.802013870592427f, 0.497444368231634f, 0.791040716463223f, 0.586369970276563f, 0.871236424247704f, 0.770091868124107f, -0.458396647683594f, 0.871149873224889f, 0.753895449519495f, 0.295832468734546f, 0.574616471536691f, 0.384408809311353f, -0.978021020306570f, 0.0397482936794495f, 0.628095200786834f, -0.968059492217325f, -0.404306711220928f, 0.659301030460980f, -0.345766174675525f, -0.0517956907600681f, -0.640289082986305f, 0.965202733073502f, 0.909703156044274f, -0.744545066259015f, -0.676836498528477f, 0.0507393165493961f, 0.394673166210436f, 0.250366706754377f, -0.287411651947684f, -0.521760552601739f, 0.214487178617345f, -0.922260536787078f, -0.970217444063294f, -0.632705652784150f, -0.720016326822300f, -0.506393579710801f, 0.774172771450182f, 0.891546338793249f, 0.559706491124446f, -0.513481979527671f, 0.735727350850420f, -0.207760672132971f, 0.956672164225499f, -0.516696999265124f, -0.846015525317730f, -0.199370940530009f, 0.927580907007946f, 0.669786891276299f, -0.208316500739886f, -0.349932032863852f, 0.382722440637189f, -0.455635180187178f, -0.573852668753046f, 0.237990995216907f, -0.00210628303929439f, 0.846035951941252f, 0.921932267818374f, 0.141873820779935f, 0.871317167610738f, -0.632607355185838f, -0.565801401210940f, -0.959881482283947f, -0.732559764685905f, -0.655277252471118f, 0.136770193226314f, 0.206392768880907f, 0.0946932052352707f, -0.147722827344946f, 0.142504821799194f, -0.891443939735724f, -0.660161817562772f, -0.918683225740157f, 0.524851053279394f, -0.841532325411647f, -0.662931925252737f, 0.450018807591706f, 0.157794014139767f, -0.562525486647545f, 0.604051451992330f, 0.859220943805127f, 0.943321402026900f, 0.511188518123118f, -0.332990520726740f, 0.904709059147998f, -0.336911302156504f, -0.0329301811082998f, 0.307263624236174f, -0.640655394434152f, 0.791676792853669f, 0.450137270831791f, 0.746000232170803f, -0.915436267533878f, 0.976514418439799f, 0.828073391112522f, 0.990695018409237f, 0.419713963781614f, -0.286897378037841f, 0.111527193084439f, -0.956913449095442f, 0.263769440437253f, 0.534739246489713f, -0.918314908283506f, 0.680501951418845f, -0.0258330390798596f, -0.696521999550769f, 0.274590593565720f, -0.821334538131451f, 0.104139627465949f, -0.790104923997319f, 0.399265830301725f, 0.118854169469537f, 0.309552488812324f, -0.961100729890863f, -0.665645274594184f, -0.125767140532335f, 0.377154316156289f, -0.971986633153292f, -0.148225730575294f, -0.801072242848910f, 0.735673216754228f, 0.247753694178141f, 0.759093842520115f, -0.529946694334253f, 0.594235069164038f, -0.801015868726278f, 0.141962211231124f, 0.135473683510959f, -0.0431660672944612f, -0.437176231417910f, 0.467008031415084f, 0.324675317141816f, 0.122578305547357f, -0.0351479470228342f, -0.437236315511244f, -0.822621846670407f, 0.989461679354308f, -0.242059902390237f, 0.800837521050356f, -0.387832478851607f, 0.316362161826139f, 0.602440060427024f, 0.890992007298149f, 0.319686042477150f, 0.930326885903916f, -0.170779817104763f, -0.437602177375177f, 0.835764105962134f, 0.522922752459604f, 0.295156847627349f, -0.857646277751538f, -0.451421990712551f, 0.752856133268497f, -0.826193868550830f, -0.906961130052697f, 0.118621494342013f, -0.627099634988204f, 0.163256363060383f, -0.719362770410877f, -0.576563943780491f, -0.369939711177846f, -0.294180430088591f, 0.868430622614485f, 0.945955651201780f, -0.879259966782947f, 0.376142233233261f, -0.549019623646418f, -0.366403875933169f, -0.631308623984507f, -0.398270064613022f, 0.631780765950599f, -0.497821177556814f, -0.0754938097555216f, 0.358298259390762f, -0.438971283619577f, -0.835962846436280f, 0.771544885338102f, 0.132031497593111f, 0.0964144932127649f, -0.171144812197942f, 0.734241841669664f, 0.773828279651661f, 0.591442573315395f, 0.449840299498767f, -0.249196666141921f, 0.910274822633449f, -0.623687862912847f, -0.954398427932048f, 0.700975370671540f, -0.128268698036002f, 0.723971772247224f, -0.239872317271662f, 0.599101633280873f, 0.323504979356466f, 0.726076237951951f, 0.775013638477775f, -0.736157118505210f, 0.681129332563739f, -0.989456914597076f, -0.860559243921100f, -0.652547050354339f, 0.227533741410917f, 0.263244425371628f, -0.412800042549063f, -0.774547399227093f, 0.959749220773555f, 0.0285018454625012f, 0.0260964660594436f, -0.817249773797516f, -0.275510098931589f, -0.957071090655421f, 0.755874233806472f, 0.0601247360044190f, 0.155148678178749f, 0.744458452388040f, 0.206143083045583f, 0.405575258734775f, 0.591273066531951f, -0.286358679634110f, 0.168522523380964f, -0.0740663582251186f, 0.991796969736415f, 0.00304472789286958f, 0.0955103281360055f, 0.595292305224677f, -0.633460800851610f, 0.969720344590438f, -0.788939516987962f, -0.690852963213444f, -0.751849610482179f, -0.454105756229298f, 0.527652178438853f, -0.249156091787771f, -0.395486634371019f, -0.586329259469701f, 0.774216673365643f, 0.000796185912973479f, 0.753872935709907f, 0.691883261316931f, -0.599798140130743f, 0.140718954973018f, 0.400016581571111f, -0.412934563119652f, 0.782683275869451f, -0.837415681080234f, 0.503344297140354f, 0.443222186121185f, -0.869067764953740f, 0.891507832007671f, -0.258782538717313f, -0.592111951047753f, 0.542828422857983f, -0.959476625230936f, -0.373353196174649f, 0.558975637763876f, 0.848608638566440f, -0.861701716955403f, -0.937645215971517f, 0.0456695238513540f, -0.643462752057364f, -0.194887894642735f, 0.576940690214110f, -0.889414400002951f, -0.120401270393403f, 0.581976128201341f, -0.914549817300516f, 0.619675229253819f, -0.446355411157033f, -0.686510097388917f, 0.199022704414501f, 0.0679083509214176f, 0.939286059873160f, 0.919854436895475f, -0.921420499961796f, -0.933865152326639f, -0.173428453947994f, 0.0481843697148709f, 0.282408667923603f, 0.411093542307595f, 0.332739798472214f, -0.539048264159821f, -0.704491312083244f, -0.502163632960363f, 0.955228344617550f, 0.620064399129425f, -0.470222569036376f, 0.754614931250763f, -0.616308595262807f, -0.914574682979899f, 0.624066330640082f, 0.836911269770582f, 0.913639510454430f, 0.653228461676548f, -0.269928008555249f, 0.313006679186127f, 0.984676487220296f, -0.492012769698267f, 0.956868299674771f, 0.291679581317590f, 0.0391808383867289f, 0.572884371819903f, 0.0424011452585180f, 0.955486550514640f, -0.402317209279260f, -0.606465037288902f, 0.547296561663929f, -0.262634118959448f, -0.555413611714328f, -0.328781770154915f, 0.145794994289916f, 0.141260540582646f, -0.451655981927315f, 0.305553535897825f, 0.828724940454557f, 0.263943455052409f, -0.609183422737396f, 0.691170220321907f, -0.372701931956834f, 0.750237424665146f, -0.249353280856890f, 0.379870697565802f, 0.385751069018950f, -0.515117494253264f, 0.716937491491901f, 0.343749563024118f, -0.462962268225808f, -0.542579750084113f, 0.865163879545508f, 0.348358741505572f, -0.309602240547849f, -0.0504864877295679f, -0.822856269672862f, 0.199343960697129f, -0.790668167630170f, -0.0910655952543342f, -0.0243531696455832f, 0.832501734319368f, 0.604933598167068f, 0.899053047900036f, 0.270668041381131f, 0.523691409964688f, -0.0841567002292820f, -0.844392287920523f, -0.910987838261586f, -0.470654231510287f, -0.103828495683496f, 0.253788695977573f, -0.103172947809401f, -0.339896741661867f, -0.447251997825083f, 0.217200476817515f, -0.474840886373359f, 0.227876267254650f, -0.851351819181938f, -0.902078585170911f, 0.445464427415683f, -0.842484493463611f, -0.141606736723087f, 0.104224619207891f, -0.554900879859470f, 0.818556374444811f, -0.832710463532413f, -0.284760316465868f, 0.697962734672817f, 0.235137001970259f, 0.538298155374871f, -0.598477541924834f, -0.833959821954974f, -0.164556670763502f, -0.443902305525605f, 0.484290717235912f, 0.319356252041167f, 0.0834544406255109f, -0.839174383593280f, -0.514784811627172f, 0.466424623987191f, 0.597641402168886f, -0.344706573843316f, 0.346954604803744f, 0.150560726232471f, -0.963838773301094f, -0.210406119881130f, 0.740751216241446f, -0.519896828058978f, 0.882277568799242f, 0.982734995306564f, -0.691486807580351f, -0.120653164608028f, 0.263039860106709f, -0.472131671311566f, -0.469155525952548f, -0.562705921604020f, -0.737502946123759f, 0.151863404645485, -0.367233093688652f, 0.149585386378220f, -0.152980596399920f, 0.572826412281344f, -0.498718037086228f, -0.0794332639424211f, 0.659760386972575f, -0.574814983564964f, 0.451329484188896f, 0.473066930128670f, -0.135151886005125f, 0.379571405476121f, -0.308712078323501f, -0.136843563834117f, 0.395667583713552f, 0.196238140324408f, 0.588147058383512f, 0.770505301611929f, -0.865188840370228f, 0.266437694165002f, -0.428134513764013f, 0.661967260527446f, -0.752421375452379f, -0.556389852423621f, 0.424944298468302f, -0.480554454112605f, 0.916159659428765f, -0.112147362457396f, 0.363475545209813f, 0.698805683596358f, -0.862382341730295f, -0.489415523853276f, 0.453056404353730f, -0.606183761884457f, -0.00869682692408680f, -0.288739722701460f, 0.487988005841341f, 0.566870040344668f, 0.0894575138005909f, 0.887832293799319f, -0.0981274237649674f, -0.279935090781560f, 0.506891141525948f, 0.952901245338457f, 0.458002767525373f, -0.569410776125351f, 0.849518291873527f, -0.585020953514368f, 0.676037258640625f, 0.299076264841081f, 0.911385441491479f, -0.954959555659035f, -0.681285607891366f, 0.631368118385947f, 0.522268523899537f, 0.900701101674748f, -0.647701850365577f, 0.567960815808216f, -0.138958982219446f, 0.267024801687456f, -0.975771109955874f, 0.314682157086949f, -0.378801381286130f, 0.665990927256163f, -0.573674360032848f, -0.860450785684384f, 0.516581474078532f, -0.190844183471714f, -0.451971355445856f, -0.808113003973650f, 0.860446168028895f, 0.377778958059242f, 0.126949039950121f, -0.892203650250330f, 0.572503460980517f, 0.975224974978800f, -0.202312370945465f, 0.500665599343084f, -0.0510413720986291f, 0.353231752436633f, -0.805555931906752f, -0.199761377956955f, -0.829487282239605f, 0.0282459088867508f, 0.814545057118991f, 0.557652277921578f, 0.613951716518862f, -0.678811366342345f, 0.896500288318877f, -0.627622562398925f, 0.802545092571611f, 0.211382709497062f, -0.979380222642662f, 0.826784411456488f, -0.670689878657734f, 0.788878029765924f, 0.137070906151783f, 0.901907287859132f, -0.526217367070263f, -0.545043827128876f, 0.494756249972086f, 0.236657948774128f, 0.156603327087660f, 0.516397244064118f, -0.325837179590292f, 0.460683385171580f, -0.196022953760504f, -0.441996357332195f, -0.808932369852494f, 0.291980108741838f, -0.833583979826152f, 0.365574438479475f, -0.797139524158001f, -0.0649288183732912f, -0.000696491493834994f, 0.100125393693922f, 0.598035350719377f, -0.312548404453564f, 0.0414605409182345f, -0.675913083156432f, 0.236245026389435f, 0.550464243484224f, 0.193366907856750f, -0.903654015709839f, -0.00993172527377806f, 0.0180900754210873f, 0.880678290110106f, 0.166539520562349f, -0.984509466189118f, 0.810283124477894f, -0.925371921448173f, 0.193528916069728f, -0.748644561903135f, 0.534508666819454f, 0.364436869280188f, -0.386979667637943f, 0.427958998441480f, 0.362750270039032f, 0.420886957715891f, 0.0300301961707390f, -0.655220626875711f, 0.0504522662127427f, 0.472640818703213f, -0.417745816013639f, 0.0689992794158720f, 0.461232479061866f, -0.483517586427718f, -0.411463769964024f, 0.622740736364726f, 0.659687134578680f, 0.243900134982579f, -0.684356227282321f, -0.688699031115733f, -0.316032121634021f, -0.644296362948831f, -0.236133265458216f, 0.880259454885881f, -0.956880609581177f, 0.737775899964131f, -0.529059297472703f, 0.794119601436042f, -0.375698158660466f, 0.493447663117292f, -0.752511119115434f, -0.941143365329844f, 0.610101048864035f, 0.253791011658991f, -0.369994602049336f, -0.697364270085742f, -0.681360550250048f, -0.571943442128960f, -0.749697324128684f, 0.611997629275096f, 0.892727938106141f, -0.440225399106758f, 0.00196047981855352f, 0.951252158369648f, 0.0351885308766962f, -0.471806546113710f, -0.657231535594911f, -0.0873481442406481f, -0.0341288006282565f, 0.579184398564974f, -0.224334624306026f, -0.298557652719061f, -0.509401519638379f, 0.188853505083675f, -0.321619146497229f, -0.613159956450671f, 0.570042044631281f, 0.699213203307007f, 0.537439231469861f, 0.529440733283839f, -0.744527226912905f, 0.362949055807175f, 0.529758698714545f, -0.114804719889245f, 0.991089489396930f, -0.186716454683287f, -0.218189173574106f, -0.0493780858124198f, -0.928812411399224f, -0.101855573638590f, 0.454268528366586f, 0.617591620012079f, -0.197519518988231f, 0.0973277590468935f, -0.185672509894105f, 0.649922648337967f, -0.896862900376972f, 0.594999589349510f, -0.746978997769556f, 0.590642952628647f, 0.935109901616311f, -0.293310684054096f, 0.783281817912060f, -0.189898897214222f, 0.414859016240278f, -0.0858574647662298f, 0.0810260863380805f, -0.633024441577653f, 0.248442861097829f, 0.984586601784679f, 0.982811638387854f, 0.547456083836220f, 0.476239638753291f, -0.897709902882279f, -0.208045489357872f, -0.860637131636973f, -0.496740558564284f, -0.944185351410090f, 0.157610983944341f, 0.975214099838643f, 0.550265718083095f, -0.630360326400067f, 0.672420341653334f, -0.897139264107564f, -0.670556423663785f, 0.298764071000339f, -0.310465384759529f, -0.978153640586955f, 0.189785151994709f, 0.929291975296760f, 0.758271912876084f, 0.806829662560108f, -0.472787451147715f, -0.802032434276146f, 0.455809631085663f, 0.985520713417984f, 0.739637167649794f, 0.311705106454777f, -0.120539152808323f, 0.977785717545631f, -0.848554870988208f, -0.281179241544089f, 0.931102239520177f, -0.255243432382956f, -0.284952242030900f, -0.189341152192864f, 0.647573166562597f, -0.474203015584843f, -0.545915610099538f, 0.672696420688916f, -0.239274489717776f, 0.956544960216021f, -0.0858024073600807f, -0.758223415922611f, -0.00817763648068581f, -0.500893489164054f, -0.669386983409311f, -0.344450617815217f, -0.728051392792875f, 0.804121117816188f, 0.00718436691280910f, 0.195237363230272f, -0.472485206728796f, 0.642070241911164f, -0.272384993247314f, -0.731715323915071f, -0.791266589031733f, 0.0339783427570857f, 0.0696513783219659f, -0.894169486972683f, 0.00234016305501483f, -0.0403382685361653f, -0.943600572111266f, -0.788181603936192f, 0.851406365407377f, -0.100015982664501f, 0.145502229793638f, -0.528736628076536f, -0.0313760382570432f, -0.662221611141088f, -0.885722031379862f, -0.744257140212482f, 0.524976313116033f, 0.186092035304635f, 0.181669793648209f, -0.606482674165339f, 0.849303544554227f, 0.226118051135263f, -0.690025550727719f, -0.256543384397548f, -0.207714017766381f, -0.447913202664626f, 0.375270273897879f, -0.884312586292038f, -0.0838720085819762f, 0.969898436757285f, -0.736808033249456f, 0.668875150485586f, -0.599937439969920f, 0.470077288925414f, 0.903135367105719f, -0.895619185450694f, -0.637694108244489f, 0.572669535020987f, -0.696211470281632f, -0.820577518545193f, 0.937364674938455f, 0.422458818039761f, -0.593964370461091f, -0.586264791612426f, 0.0282373486927521f, 0.298051147134121f, 0.592825359583763f, 0.716195674857467f, -0.684008410968338f, -0.167523841045924f, -0.370794208549223f, 0.768054740581884f, 0.997835641681024f, -0.366262133888883f, -0.523114034556271f, -0.457946740456489f, -0.530941146838744f, 0.298744841822404f, 0.390761228562591f, 0.0871171594445448f, 0.764002674223649f, 0.233966808661423f, -0.116573523634048f, 0.426118986433559f, -0.255934695328716f, 0.302314199650152f, -0.254971729124577f, -0.330865677738578f, -0.0840307537517577f, -0.711910586170446f, 0.622585361690409f, 0.367595248366733f, 0.422102667722561f, 0.269580206097961f, 0.707083822001774f, 0.625367208198523f, -0.729594790471199f, 0.708679674727951f, 0.00355767003560614f, 0.379158300246371f, -0.688791438249760f, 0.261637457245975f, 0.704008781391790f, -0.917586017594177f, 0.886443038824615f, -0.923559496787343f, 0.360365726214756f, 0.547058288460181f, -0.279853192856989f, -0.996331953899586f, -0.323735921605962f, -0.618788277975037f, 0.314597206161166f, 0.106380963133907f, -0.235044228453968f, 0.0406899091091886f, 0.687339428801573f, 0.344837805924860f, 0.123214914005620f, -0.735264225932133f, 0.0396243248944774f, 0.270602083588730f, -0.316104623194235f, 0.201800731173529f, -0.348987679395254f, 0.994312100135549f, -0.986073454140000f, -0.787571177818193f, 0.508460947811657f, -0.443663972776222f, 0.800303477136838f, 0.712158443474503f, 0.958364684407633f, -0.0512343510942759f, -0.391095518504938f, -0.291911155637644f, 0.721770656984705f, -0.163541232110535f, 0.0366644501980513f, 0.700853097239887f, -0.508089885354834f, -0.375072588159867f, 0.161585369564288f, 0.686325557438797f, -0.113188612544717f, 0.859354598908873f, -0.723198679696606f, 0.398879124170303f, 0.139357627051752f, 0.484780500073663f, -0.0437501438537016f, -0.868783676783105f, -0.147865612288567f, -0.116480069295514f, -0.986846049950927f, -0.859405305954576f, -0.631359938031082f, -0.0310065270390489f, -0.288382201791710f, -0.500960878568203f, -0.805633068309090f, -0.837604329816134f, 0.0325253228618525f, -0.538953832190091f, 0.913844038280417f, 0.681967460199437f, -0.656775429658090f, 0.922492558885196f, -0.689527254640680f, 0.688263898240070f, -0.225450858342925f, 0.0287239965989763f, -0.407744573364816f, -0.477326718671529f, -0.780374037627418f, 0.500400378743065f, -0.532646941279704f, 0.999679272201893f, 0.136003002234441f, -0.811267727922649f, -0.585019862511894f, 0.125465493193590f, 0.203160759437510f, -0.101322607820275f, 0.543784310894398f, 0.630139383695983f, 0.775322422120693f, 0.229262447827729f, -0.656821799421711f, 0.795940998463793f, 0.263281283116320f, -0.377237794697631f, -0.714267543277316f, -0.161924029976839f, 0.804294011825499f, -0.500488029613262f, 0.716655543045374f, -0.709565530287520f, -0.260746944768714f, -0.496886497176178f, -0.896154699339640f, -0.891352204187934f, 0.0589172685048254f, -0.952496908556348f, -0.543314015084183f, 0.0724005345282401f, -0.132089156895576f, 0.694937364018361f, -0.884509342587775f, -0.944587795707932f, 0.346949362800262f, -0.587900264454839f, 0.531217960795664f, 0.404240620498887f, 0.182769547944683f, 0.804826966991636f, 0.601398794220406f, -0.767933817870427f, -0.329693990599177f, -0.880648189418561f, 0.0370834298504716f, -0.405270662847564f, -0.551993194163015f, 0.357335885219159f, -0.442910616174561f, -0.978355051725551f, -0.638907517841606f, 0.266841057307734f, 0.778698832906031f, -0.967180516636130f, -0.772940622039654f, -0.268706136695081f, -0.326082261974967f, 0.0386785617389067f, 0.576293286973562f, 0.446884000380730f, 0.396703264915684f, -0.718633572608705f, 0.586041202195072f, -0.791039546767268f, 0.556638124682382, 0.728711593864679f, -0.576551104247230f, 0.690227524206044f, 0.0451432373341216f, -0.0569690667958747f, 0.877674150343795f, -0.268602876493051f, -0.770720641807978f, 0.630269600593677f, 0.801702094819180f, 0.177071915997341f, -0.0764831522886398f, -0.476930347674815f, 0.0196833210809626f, -0.566188434097295f, 0.309890567123613f, -0.642682312350471f, -0.645839718540077f, -0.985031719881713f, 0.153028235575708f, -0.446724738384881f, -0.616280949001367f, -0.306418078463084f, 0.313048512921978f, 0.944732667717825f, -0.292311689238647f, 0.263616032352334f, 0.776777395064071f, -0.529182830991988f, -0.418996105801001f, 0.286960890623362f, 0.588336822287104f, 0.268219370126612f, -0.696727535489037f, 0.806089151192541f, 0.0396168299208206f, -0.613570658239778f, 0.358002315998429f, -0.0576147175733950f, -0.859664908314368f, 0.930793190364908f, -0.108955403960031f, 0.640347446939098f, 0.0301817512477458f, 0.508435547839785f, -0.774928250619894f, 0.254548271045827f, -0.192551571812315f, -0.401867317012389f, -0.136220787532581f, -0.480363308055205f, 0.146599399729624f, 0.225767301672040f, -0.207158678688912f, 0.763491487133281f, 0.161192803873192f, -0.574968151683314f, -0.454043408746924f, 0.427131132989065f, 0.170648543751820f, 0.0690597676805780f, 0.0360172652133248f, -0.244429817416531f, -0.973014074152018f, -0.172642279134011f, -0.798684796670922f, -0.622626145444778f, -0.743408670602069f, -0.316057396003030f, 0.908608689971065f, 0.948356574904685f, 0.573858539226522f, 0.457065605245418f, -0.246203048690671f, -0.750525340546383f, 0.612971646035183f, 0.951528788403619f, -0.529776510809815f, 0.0886901849846271f, -0.0254136796699882f, 0.978897595553096f, 0.293893753097695f, 0.620217642132267f, 0.862352989549627f, -0.379040515436326f, 0.790157871471479f, 0.147151952442201f, 0.688271487774812f, -0.897847532497188f, -0.0355337105008888f, -0.850253422176695f, -0.0354384862653523f, -0.625796807949394f, 0.851730076897135f, 0.294773618291289f, 0.834287219330433f, 0.0758749738551283f, 0.912613321307355f, -0.326698079590551f, -0.844748577890143f, -0.685263599922107f, -0.197029963909655f, 0.591416614029013f, -0.130921826828109f, -0.524292687689084f, 0.356220524225632f, -0.150091552835503f, -0.935232109847821f, -0.302103008478127f, -0.998557516519010f, -0.477012685701094f, -0.882343341754284f, 0.210797034143964f, -0.963566378978947f, -0.855600913755685f, -0.790231379847513f, -0.625235937382084f, 0.106405105589857f, -0.760544427202586f, 0.0103124858505332f, -0.610157345750845f, 0.968354521575116f, 0.602472069136318f, -0.216458111191680f, 0.935180184275450f, -0.369261245032360f, -0.289325139062185f, -0.772389696964545f, -0.345513639348744f, 0.135539262008296f, -0.747409495863324f, -0.849724942811800f, -0.739393030129744f, -0.0301380087411172f, 0.373808817820448f, 0.760444548005323f, -0.365739960428504f, 0.121859476627292f, -0.719257541809299f, -0.136914676340304f, -0.178479405732130f, -0.336676444507223f, -0.795056125367297f, -0.0872862684496700f, -0.950510559362909f, -0.395266512078238f, 0.636773305385949f, -0.150667208767723f, 0.534401287220298f, -0.349371424663528f, -0.784729313810243f, -0.0510904599006878f, -0.938702345462904f, 0.616929636007953f, -0.228578318449040f, 0.239101663221907f, 0.0390879233281141f, -0.294705782740043f, -0.847928516841798f, -0.0480433695823821f, 0.487351505367245f, -0.820736333448301f, 0.128692585024021f, -0.305133215914817f, 0.344900079505924f, -0.764316168982242f, 0.717529584295197f, 0.655848670831377f, 0.479849611138232f, -0.107624564628078f, -0.345816374073252f, 0.0822414215758816f, -0.0120870567528208f, 0.475870901669481f, -0.00594923432583361f, 0.869227669945672f, -0.262862047504512f, 0.272430399676396f, -0.734262318791166f, 0.980593493214018f, 0.110413869658192f, -0.732486564250777f, 0.470756873196238f, 0.897133387901917f, -0.151953973158384f, -0.591296220619271f, -0.113167158942796f, -0.103020520738423f, 0.220384226627647f, -0.0570027879342681f, 0.0923157145066511f, -0.523010309215342f, 0.385053964060568f, -0.223938668105458f, -0.0566497019068211f, 0.636390081595965f, -0.753651530578004f, -0.765450358896516f, 0.790370075460245f, 0.622949415286967f, -0.0947634056426396f, 0.122381201893998f, -0.138573523511105f, -0.544298107235542f, 0.535416341314523f, -0.341107295330707f, 0.266262786345860f, 0.620108481133049f, 0.190424987800150f, 0.978559599202704f, -0.925772919482004f, -0.300038300695816f, 0.963372836978511f, -0.501235224357981f, 0.828375446308031f, -0.595716120481773f, -0.889271354193173f, -0.389843123593065f, 0.659433696092409f, -0.633476165557619f, -0.708607689555741f, -0.737738480460783f, 0.985245299432648f, 0.976853985813928f, -0.863072444190232f, -0.785830171723126f, 0.309433061520758f, 0.166813366328975f, -0.552916412621405f, 0.0385101740167735f, 0.445866961855263f, 0.222557362424800f, 0.0710515871571971f, -0.368563489700928f, 0.317406114361191f, 0.326902000037272f, 0.868261309598320f, -0.897838476369198f, 0.664364291232529f, -0.373333343843574f, -0.599809263387549f, -0.411236387818613f, -0.118186587264933f, 0.544960929851182f, 0.395925813072269f, 0.337332244255533f, -0.0195528742963547f, -0.580383437020279f, 0.0779554182143842f, -0.902635825594202f, -0.821554429188969f, 0.869996816042779f, 0.646142135585380f, -0.0824693320525758f, 0.643317857725100f, -0.903892480205129f, -0.457595546004975f, 0.540461917564665f, -0.467530238695992f, 0.107497588388074f, -0.122360487746121f, -0.276968072230331f, -0.436413500733568f, 0.0719555518906898f, -0.794937479672675f, -0.641344733876686f, -0.934734152781945f, -0.0610463967348016f, -0.302623058375597f, 0.281116298309257f, 0.557459622053789f, -0.350054779110337f, 0.681853624031498f, -0.0454067482892435f, -0.897204174835461f, 0.0289327275291300f, 0.664312739864751f, -0.368814604980581f, -0.576946854776660f, -0.187886132141311f, 0.424385580259236f, 0.257994303715228f, -0.567650112011742f, -0.0453371545575014f, -0.362909825264387f, 0.450095578912812f, -0.713870209574945f, -0.956583539581944f, -0.969891699048729f, -0.417755773448598f, -0.230738535348142f, -0.153353095644968f, 0.539368458440622f, 0.591116036659417f, 0.779095541288385f, -0.578525766017613f, -0.587777137316663f, -0.301051260910212f, -0.319655538885669f, -0.343495369437935f, 0.908167583226333f, 0.764220052027033f, 0.0536418758245909f, -0.0529753241803754f, 0.249066042857931f, -0.840152142252005f, -0.529971459254312f, -0.449462194610696f, 0.467144819001113f, -0.500103828192601f, -0.758390449663076f, 0.369740436821770f, 0.189153926151852f, -0.188283227959439f, -0.427563759945909f, -0.186773725840825f, -0.00989853573399446f, -0.783648829817413f, -0.626450875837851f, -0.328015817185970f, 0.760383401930071f, -0.00804531008117837f, -0.982799468341000f, 0.392730506677802f, 0.117799138097530f, 0.351088974844522f, -0.259750164530173f, 0.776495358243216f, -0.703059519879109f, -0.362866233240751f, -0.421345310205860f, -0.818968876330675f, 0.936887497269786f, 0.713300632813635f, 0.916608801523944f, -0.147818975792564f, 0.317064988534009f, 0.885779227314381f, -0.897706599297367f, 0.685423132064732f, 0.907830438936990f, 0.0636614655685575f, -0.423018627861747f, 0.411565657893159f, 0.911060408474647f, -0.617833142759668f, -0.709543522964145f, -0.817633731247023f, -0.252433983274424f, 0.160456393103956f, -0.160765428576997f, -0.622001061437904f, -0.470257555319641f, 0.790643274059634f, -0.648181378655916f, -0.828694900506363f, -0.0234091767546987f, -0.562865077760768f, 0.369299949506391f, -0.423850142805423f, 0.520699811923658f, -0.877662359466779f, -0.739844704434180f, 0.300520939787139f, 0.0655718600121620f, 0.970843358712180f, -0.634231195336845f, 0.324880041395596f, -0.479089635857354f, -0.196422753715449f, 0.568762754402869f, 0.699215376070842f, 0.445741923102597f, 0.679868900756090f, 0.107609859752086f, -0.980983474461865f, -0.788419140653730f, 0.0696289436185713f, 0.00330944186568516f, 0.392265626672398f, 0.803469542460994f, 0.131029913648810f, -0.845408454497170f, -0.754797811352229f, -0.824208086798235f, 0.510072775586974f, -0.809491727769575f, -0.0228491196350333f, 0.920014947791232f, 0.441066319826495f, 0.969846842038360f, -0.199024726691046f, 0.886564290041856f, 0.203997575245743f, 0.481547443573126f, -0.637742489331117f, 0.0664642070998316f, 0.109187062068770f, -0.952676759642045f, 0.309247049771982f, 0.880534651306060f, -0.269363005485603f, 0.280012695899358f, 0.853031642671923f, -0.216236966392235f, 0.903180305900435f, 0.837949615815047f, 0.748563816043584f, 0.266735542018788f, -0.685176037557414f, 0.505893787666761f, 0.977721983069541f, -0.667151469253569f, -0.451774081267849f, -0.385755850727233f, 0.681037251596535f, 0.550130384863457f, 0.704080312734731f, 0.519624533199220f, 0.789651392050294f, 0.176325856625025f, 0.684011432098839f, -0.469125761119035f, -0.841814129063957f, -0.901473334652527f, -0.117747872709914f, -0.608533033968273f, 0.199709646080986f, -0.349430401438670f, -0.435162733168206f, -0.368150014673779f, 0.699084004342174f, -0.446068942643995f, 0.197420740774886f, 0.524893584115327f, 0.706475758890142f, 0.912020785879679f, -0.820472223153770f, -0.334742316079635f, -0.851724976994477f, -0.702164662784812f, -0.649654462810552f, 0.411435475616403f, -0.0438368033650360f, 0.799231452421757f, 0.713371883779316f, 0.252437083518609f, -0.685658163265283f, 0.0734649179831324f, -0.400549431226783f, -0.415602545578540f, 0.233864615718965f, 0.828846528739923f, 0.606577491175688f, -0.266016048272811f, -0.619106744484090f, -0.690853262778644f, -0.503499724631377f, -0.409761822901473f, 0.0576293548519007f, 0.551582021066584f, 0.132631452787255f, -0.838228405334512f, -0.107475742619267f, -0.875306852866273f, -0.184700469068763f, -0.317074087896838f, -0.580912620700556f, 0.453916157844897f, 0.690470988649940f, 0.712835197480083f, 0.314786689622726f, 0.759835688452120f, -0.671090442836235f, -0.408277610289776f, -0.815988422173708f, 0.227854929660384f, -0.0482646895577266f, 0.968141192561708f, 0.373896367655818f, 0.820435826598941f, 0.817746838197885f, -0.0970819110331989f, 0.679170154451559f, -0.577986561676471f, -0.0523570914231941f, -0.776930151133931f, -0.560456597170701f, 0.927747720961181f, 0.0350177837302503f, 0.844938034137843f, 0.00849044473190053f, 0.325089161670337f, -0.851825175889265f, 0.835251667623832f, -0.266397917890485f, 0.108463887056499f, -0.817868888235156f, 0.590399913800720f, 0.699274619715208, 0.200782223352391f, -0.936155874445214f, 0.218471971175575f, -0.890402779861849f, 0.268496441855317f, 0.881231954583528f, 0.279360358017994f, -0.492400368838405f, -0.894376670076375f, 0.585129064098519f, 0.340135248071744f, 0.455880107692993f, -0.861081993524584f, -0.303321115935151f, -0.562781799622214f, -0.526041750296426f, 0.999581943964160f, 0.249814139040315f, -0.0537475603822974f, -0.845239239849439f, -0.874024176808607f, 0.997751771128387f, -0.861617607547820f, 0.671357923629889f, -0.687974310115279f, -0.969462039056016f, -0.448304961870341f, 0.713064428261850f, -0.00718668165564318f, -0.450608596544700f, -0.106059234376561f, -0.591961308554238f, 0.588633089685867f, -0.755341317752403f, -0.542715401462936f, 0.759199260356047f, 0.0297710796506234f, -0.997343196630657f, 0.574076752994254f, -0.696719940193256f, -0.852227517176613f, 0.906332566627663f, -0.171801252847090f, -0.925131151948528f, -0.0212194634560026f, -0.940316444070044f, 0.262965279952363f, 0.902198615594563f, -0.265057066430189f, 0.161983092277652f, 0.0181345459457500f, 0.467973650469608f, 0.857351800575040f, -0.889882538061811f, 0.728868283859490f, 0.671187732362764f, -0.296882575397444f, -0.793099233276668f, 0.335561922676737f, 0.0671874495572633f, -0.0857142329385701f, -0.352870876674233f, -0.119927139078065f, 0.814127111105761f, -0.323910302649634f, -0.313495077982818f, 0.0690526899468447f, 0.877155536890319f, 0.768040884649443f, 0.158910636324140f, -0.824414709871474f, 0.00718921022841235f, -0.868917281154898f, -0.564967532196669f, 0.206261416621150f, -0.0699574404456100f, -0.0547095858591442f, 0.811674902353136f, -0.562993920383635f, 0.441212008804309f, 0.917951119557396f, 0.915571961092301f, 0.0901952529553498f, 0.614118141118295f, 0.760473529905706f, -0.566505475760865f, 0.00880029006400429f, 0.975626259597421f, 0.370738159620831f, -0.0242162976348563f, 0.828887690189252f, -0.665240810020082f, 0.00123256686221063f, 0.184020074202841f, 0.829917510366750f, -0.447854906466885f, 0.529356328938248f, -0.995192699858126f, -0.843748622724646f, -0.422765372440245f, -0.386179414096638f, 0.206325400140261f, -0.369817591904938f, 0.266933785902425f, 0.892617584642659f, 0.740018647415220f, -0.481907279471296f, 0.248268418729551f, -0.382770749117505f, 0.974424303757207f, -0.879320252286332f, -0.0294961755317245f, 0.638693329623790f, -0.765127178629299f, -0.160881380476610f, -0.725001019123526f, 0.00294709357263234f, -0.701949969294570f, -0.708933381768328f, -0.463893635537772f, 0.476650147791524f, -0.206043208566879f, 0.223011684523516f, -0.258637160422673f, 0.206325908651728f, -0.432336904344548f, 0.921979975841259f, -0.944396630315761f, -0.00680582426415510f, 0.319263487872783f, -0.836389324192867f, 0.111532890274445f, -0.938142383682239f, -0.637288670131655f, -0.834211558255576f, 0.251969378874330f, -0.970874587083192f, 0.831662411079802f, -0.446568187924869f, -0.659109068071113f, -0.877869176622375f, -0.890670252448197f, 0.477602927742628f, 0.324737705007923f, -0.147513413112549f, -0.186594638422632f, -0.282864808082840f, 0.745093922271927f, 0.915500859154332f, 0.0421588655873384f, -0.483320910754088f, 0.00503734690385604f, 0.555792895688253f, 0.129412601050279f, -0.229347983583150f, -0.680101211823600f, -0.866063899229274f, 0.437769924839021f, 0.133958234316391f, 0.589233411145099f, -0.498053917701437f, 0.180863681584405f, 0.525955777469479f, -0.581250985307273f, -0.327934857804250f, 0.482381204171926f, -0.867703472610278f, 0.833733008515087f, -0.607761820334944f, -0.758512235503178f, 0.0380785706067470f, 0.719862150842292f, 0.651283470517919f, -0.614218162858801f, -0.239754124815405f, -0.733992057859951f, -0.422541764223845f, 0.951215428883086f, 0.882569470276544f, 0.937054481646402f, 0.184532408731968f, -0.104097666585483f, 0.693277433170057f, 0.800241936558839f, -0.998230532922071f, 0.259835639125661f, 0.562745639592536f, 0.220441127510705f, 0.313735993201991f, 0.330940415696351f, -0.602872424656300f, 0.841677792852844f, 0.749701489563795f, 0.266727039860087f, 0.696379094133993f, -0.430719144952456f, -0.276768289732264f, -0.0872580230244173f, -0.722033206227688f, -0.837309584159114f, -0.629739366225350f, -0.185692585028452f, -0.110619837317415f, 0.515881116042359f, -0.105875685978079f, -0.513700186568578f, 0.961245417898430f, 0.655513716233953f, -0.0921704793645632f, -0.694925472850399f, -0.872174817305748f, 0.0307133806779607f, 0.531120672076921f, 0.965271277398122f, -0.00974420246777163f, -0.497322783064087f, 0.693565685926388f, 0.546918707342947f, -0.230039497490898f, -0.316024461029338f, 0.684231559582941f, -0.306362794944468f, 0.861366189035942f, 0.378922635334764f, 0.259443877770437f, -0.838617128408830f, -0.205350631644011f, -0.139772960377519f, -0.192918167939180f, 0.602404904043886f, -0.537407583974730f, -0.877007125624351f, 0.361539942609439f, -0.732030207831016f, -0.488792995226420f, 0.612591017966442f, 0.567185560938756f, 0.195543595335781f, -0.428955670554558f, -0.666590144318038f, -0.702467396810860f, -0.894350832807439f, -0.0620405855731709f, -0.583114546325259f, -0.482155957064968f, 0.212152442925647f, 0.112603107288251f, 0.0683986906619714f, 0.639176340917929f, 0.642610005510521f, -0.708605273163374f, 0.739594669131005f, -0.492786220480274f, -0.308196102291547f, 0.918748221553053f, 0.186736140989674f, 0.438437026242591f, 0.638769573344929f, 0.928896220524135f, 0.579945520523175f, 0.218608554904045f, -0.526070140579576f, -0.140303420071590f, 0.304347769360423f, 0.488123173638490f, 0.987207018313181f, -0.536397951752998f, -0.553296120219359f, 0.184294880372153f, -0.101502970339396f, 0.287041514309517f, 0.658172721877726f, -0.270141883431914f, -0.0196021946303913f, 0.000779126872975988f, -0.0500294515684538f, -0.588505226599557f, 0.550916571982769f, 0.703271386531766f, 0.982335628009701f, 0.942133544852489f, 0.690741953320684f, 0.0466423349204477f, -0.941178278727504f, 0.121655023640973f, 0.777925151322362f, 0.132430336075323f, -0.114812120408198f, -0.694094073965245f, -0.441397675924967f, -0.187253074701348f, -0.672248118097589f, -0.688869123609503f, -0.0723581859661586f, 0.553779536791160f, 0.380610143087564f, -0.392032089052147f, -0.709403552653908f, -0.607184251637473f, 0.698227587629545f, -0.272885954851784f, 0.0736609147840435f, 0.687106303730018f, -0.230362931709251f, 0.393640839382244f, -0.846905732907407f, 0.0727598538725249f, -0.0119849190815611f, 0.470122652313157f, -0.171681529301612f, -0.329268850654460f, -0.433013841687086f, -0.943499527192280f, -0.123404693276305f, -0.0861435714812342f, -0.228816973160929f, 0.0531549757963279f, 0.901446101051298f, 0.470738280922993f, 0.238383552115632f, 0.292841887198914f, -0.617423653544601f, -0.865786115828523f, 0.586332203179351f, 0.267618252846898f, 0.888575002575769f, -0.0220649407038027f, -0.946385428026066f, 0.317436113017866f, -0.277195072909682f, -0.207326502081016f, 0.735387675940421f, 0.961386190882120f, -0.564038045970629f, 0.840007249305217f, -0.262593952346269f, -0.556378761937190f, -0.346529850864238f, 0.00895460576800877f, -0.695431082536551f, -0.105261635693881f, -0.658342101938401f, -0.631093613961188f, 0.601639903111316f, 0.886830692209879f, -0.600591324826329f, -0.350296019796741f, 0.294348102011741f, 0.555826495708193f, 0.216370653207427f, -0.672654026881445f, -0.572202359802723f, 0.202776438466314f, -0.490708964058038f, 0.0148723360197853f, -0.799031226692943f, -0.221164759306209f, 0.0323674121757880f, -0.130290693568615f, 0.613592603765503f, 0.372755498065474f, -0.540502917956863f, -0.740021877141017f, 0.652888612951242f, -0.666157898478327f, 0.476156241264794f, -0.632081251666311f, -0.538341981270842f, -0.275717185193560f, 0.332983363477103f, -0.989659450166330f, 0.212868816589688f, -0.238985653168422f, -0.453005976359810f, -0.805975530848911f, -0.948192632970312f, -0.291329963979224f, 0.549811667826684f, 0.291147979443248f, 0.909805561757383f, 0.0728533843443158f, 0.737767652888933f, 0.605331616290165f, 0.274826946403577f, 0.710517586349601f, 0.666670055891909f, 0.522059053677516f, -0.553398792071804f, -0.406610321679562f, -0.893232547853708f, 0.549587730399741f, 0.714498083720551f, 0.281833380830291f, 0.652788061587949f, 0.825163748516741f, 0.381299333971584f, -0.485549061474930f, -0.881961689917888f, 0.308937809723222f, -0.524542880617761f, 0.329114405956449f, 0.434631551667457f, -0.894732322264538f, -0.831528385961058f, 0.669760583803638f, -0.674650675537928f, -0.373119878846435f, 0.456602566684508f, 0.387804792569985f, -0.556983911869482f, 0.000826745899317194f, 0.687973801099889f, 0.0471935422816141f, 0.0768302380434509f, 0.317557055919800f, -0.823316513699125f, 0.394699119350099f, 0.609556161256400f, -0.0413041171293194f, -0.244100882405517f, -0.939678976894569f, 0.403390183804743f, -0.933567523933859f, -0.331149894636631f, -0.0265881324103010f, 0.224249195386459f, 0.888271870759308f, -0.119845268644579f, -0.357275416804345f, -0.597001288429956f, -0.486847206619720f, -0.181232488650601f, 0.115441291842326f, -0.599055795186955f, 0.213179364205327f, -0.205238322081458f, -0.373942142629613f, -0.610680997090469f, -0.495737765362772f, -0.257634306994249f, 0.583708320566486f, -0.372047136603982f, 0.953878668619925f, -0.632595987923462f, 0.452049761997455f, 0.166602807787896f, 0.773555002555059f, -0.277154387560832f, -0.557129156714301f, -0.985242402457283f, -0.441173064787937f, 0.561221765682284f, -0.352004972295446f, 0.970292440826449f, 0.855523836321424f, -0.528113079339624f, 0.685454746939680f, 0.322200261898966f, 0.953249967336372f, 0.825673980624808f, 0.177229970128320f, -0.728281956776614f, -0.479030792350269f, -0.00697019557862144f, 0.851652517094715f, 0.853865750362844f, 0.514736989335681f, -0.943509205199198f, -0.0524009027225623f, -0.0798997671509367f, -0.355414349557791f, -0.366273957594958f, -0.565729285138989f, -0.931573923976439f, 0.345119269147864f, 0.638375370217726f, 0.711524360229150f, 0.331664704859388f, -0.986788646426241f, 0.521200596781614f, 0.656290865944842f, -0.436907564088290f, 0.305075696150381f, -0.848337345127939f, 0.354044695448027f, 0.690691708552038f, 0.900352213238582f, 0.475181192463882f, 0.219103309687964f, 0.885437995493547f, 0.421455288320496f, -0.879874221804522f, 0.893371290952196f, -0.545214090169942f, 0.800731783168682f, 0.249421864783476f, 0.0766192343033301f, -0.745747520609971f, -0.613575150364454f, -0.700199720327423, 0.0694373671332735f, 0.759953164582251f, -0.0973030480378387f, -0.298615297250225f, 0.0176506580013247f, -0.269562553201540f, -0.405489169051539f, -0.00491991297033256f, -0.0327449030548885f, -0.688168836745951f, 0.703014457338754f, -0.0909491575673764f, 0.738417882180070f, 0.202377973915515f, 0.338436193625848f, -0.408790267504483f, 0.611776208408261f, -0.711043784659083f, 0.841495665411188f, -0.0445715899008592f, -0.127281559164749f, -0.778797832908623f, 0.210344625249896f, 0.287086540530447f, -0.703702357088620f, -0.151146112491418f, -0.785180444786487f, 0.427963227387140f, 0.873814130606035f, -0.344356753075357f, -0.755726746591465f, 0.846013365191461f, 0.126678120904524f, 0.166687962199295f, -0.148273386834835f, -0.770559345875477f, -0.999129219024862f, -0.223692721084046f, -0.652712854614213f, 0.468054498362978f, -0.911782175948953f, 0.555084850374905f, 0.103972972463380f, -0.414021910330282f, 0.938793897617340f, 0.515461292224815f, -0.127677414947037f, 0.510661477088580f, 0.898409443447962f, 0.528096097102698f, -0.444620870908750f, -0.275909952832928f, -0.516074838791812f, 0.110104492330694f, -0.293114842926621f, -0.596621371059734f, 0.152807456749103f, -0.592864305196648f, 0.948295231208874f, -0.575278847840010f, -0.312463646261757f, 0.664597237604897f, -0.177619554099550f, -0.932259652303036f, -0.295074750863924f, 0.731539128777660f, 0.860409131570119f, -0.0947206503071862f, 0.106073387018718f, -0.235389180430490f, -0.494787189603633f, -0.536357147973158f, -0.680862001049455f, 0.618979489665256f, 0.613893487415732f, -0.308605775713246f, 0.694789556987429f, -0.440049894326668f, 0.908690328690240f, 0.233612239829512f, -0.190662564463532f, -0.344799878911344f, -0.185877286582818f, -0.553543917790750f, -0.859543533414720f, -0.996044831818542f, 0.0388505104043095f, 0.650508591477642f, -0.425233346101631f, -0.576839967180874f, 0.378730359294024f, 0.531713629917424f, 0.506096660522796f, 0.854779196325727f, 0.725302682547051f, -0.414685510902716f, 0.654208477287561f, 0.580368151427426f, -0.000356066597174687f, -0.897393734991154f, -0.845565244312410f, 0.615044057364182f, 0.0434592638759266f, 0.342119048500289f, -0.696414680186901f, -0.713269554140146f, -0.580866925323696f, -0.290886355957456f, -0.473082507703548f, 0.517942229000179f, -0.846159512055215f, -0.715410253368047f, -0.526272663742330f, 0.114004124940380f, -0.207397773975621f, -0.920379649009572f, -0.277970833475531f, -0.636533427057722f, -0.972531734576472f, -0.687000156900366f, 0.872752357637196f, 0.617872391924648f, -0.835274231587444f, -0.383282792481497f, 0.399233665040770f, -0.191230601890140f, 0.620222785371960f, 0.106379326744619f, 0.987222511696630f, 0.219022023664391f, 0.179689082166371f, -0.961619514581522f, 0.570178582343486f, -0.811091514477978f, 0.924484469376845f, 0.744507591138529f, 0.272936430096096f, 0.0646316580619510f, 0.314005111302676f, 0.558833629327024f, -0.329744916784918f, -0.544045568909541f, 0.895769679770795f, 0.798125821580789f, 0.877473384028199f, 0.616163339432501f, 0.441057381106904f, -0.642498173762053f, 0.989059595616979f, -0.374771110304453f, 0.480877593471524f, 0.904941689893360f, 0.428742160807762f, -0.430483645585549f, 0.0830560957640680f, 0.694220841170708f, -0.602964792788891f, -0.522672782287498f, 0.717494777479591f, -0.918002255923909f, -0.454075191574169f, -0.378662039464110f, 0.221482629450150f, 0.750918040362614f, -0.636211037178780f, -0.254529141198887f, -0.944623201010144f, -0.720775773991847f, -0.674641067104323f, -0.208243950413264f, -0.959488786545901f, -0.619966503980330f, 0.599486634018692f, -0.0955439064236721f, -0.458181000169795f, 0.736914498713083f, -0.176789993854223f, 0.676652697410790f, -0.967275583857650f, 0.319377813603719f, -0.427030468653864f, 0.0670640089595258f, 0.769945699222976f, 0.767923203047440f, 0.985790354694142f, -0.207111795449682f, 0.219134401666738f, 0.548513609112215f, 0.977227384558063f, -0.198131173309759f, 0.914163808432723f, 0.178214485462450f, -0.240590252223318f, 0.356128697574950f, 0.453093488702627f, -0.0401152114159198f, 0.818060948361957f, -0.880551400213416f, 0.631519794065582f, 0.658832307703964f, -0.179752451562622f, -0.237844011105596f, 0.739834592198990f, 0.711355594921083f, 0.774856912009109f, 0.321864249971600f, 0.470574585274056f, 0.261964793641569f, -0.634481134262705f, 0.461363065389595f, 0.0879014163867016f, 0.698353456328335f, 0.0611830044908546f, 0.918599000791453f, -0.147822590771951f, -0.208296009525534f, 0.775436805889909f, 0.0380914463017457f, -0.954468558268744f, -0.620451283908529f, -0.770251739379244f, 0.772246778681563f, 0.326462458587915f, 0.417738473564738f, 0.0942643452092895f, 0.486153909005530f, -0.720202618855819f, 0.0172425211828453f, -0.460430186764708f, -0.582933725313246f, -0.439721219285309f, -0.694337374508112f, 0.493516461453915f, -0.993527345413430f, -0.562763570629586f, -0.0644937992008268f, 0.741476357523546f, -0.668588797988340f, 0.594184164979780f, -0.605220767543645f, 0.110074204567278f, -0.599398769115359f, 0.723882026196765f, 0.678747828159456f, -0.608589528492249f, -0.881419419882399f, -0.139357674240927f, 0.873828011683502f, 0.314798068434754f, -0.457017849147976f, -0.526003289738433f, -0.411404919696823f, -0.792254466556923f, -0.299635866135236f, 0.0102316480137963f, 0.161921266554201f, 0.981427028530907f, -0.647351555346480f, -0.183312260273700f, -0.348651484808239f, -0.198142718294920f, 0.589869434168343f, -0.201926511662287f, 0.0337896878721506f, -0.0276515055864679f, 0.236943449722327f, -0.473103622922213f, 0.954358213176107f, -0.536519478008862f, -0.603363977756898f, 0.776267386457251f, 0.780662223932714f, 0.289187291033147f, -0.439954328280331f, 0.0429585232791456f, 0.457321950803212f, 0.236810565417317f, 0.167393310927116f, 0.634521586990289f, 0.154409349572581f, -0.750588956901316f, 0.862647670558265f, 0.800182258889404f, -0.342011510602950f, -0.102697321575297f, -0.797254530582515f, -0.718599505627591f, -0.729105921762328f, -0.152424255231618f, -0.702781451563249f, -0.0212710413372206f, 0.961258625954530f, -0.598484979483616f, 0.188043416567111f, -0.511990501189325f, -0.437449883017104f, -0.352443017251219f, 0.0991554004559394f, -0.663282401319921f, -0.835139403797870f, 0.587602722898819f, -0.939771062270554f, 0.613878515061637f, -0.523857415147229f, 0.444842501987166f, -0.297001528475358f, -0.914581150341453f, 0.554844832376064f, -0.816400014706997f, 0.823726509832068f, 0.704425080572720f, -0.819397910034912f, 0.999003444973468f, -0.968751535943602f, 0.0311500939174130f, 0.247867291448898f, 0.835560943875924f, 0.169794916341582f, -0.302041142019408f, 0.289549413666482f, 0.672141268085176f, 0.947060095876251f, 0.324754171403184f, 0.800014020753458f, -0.785428883146460f, -0.463092135879982f, 0.659192831110219f, 0.118301326248760f, -0.542297334341874f, -0.335957421787428f, 0.794808066256455f, 0.625133567458879f, 0.227917183877260f, 0.533557157748932f, -0.948877884679630f, 0.186417887458649f, 0.859592912781013f, -0.0183320237921572f, 0.967066787435574f, -0.141349529637213f, 0.958107445094614f, 0.264359167622140f, -0.631325355674829f, 0.684598042547604f, -0.527467468151933f, 0.294659298854560f, -0.439220168509424f, 0.391038218778621f, 0.0155669207052447f, -0.681384294454809f, 0.146739459198561f, -0.756404876084652f, 0.381192113543008f, 0.442850940158445f, 0.964002016096921f, -0.0507253848694798f, 0.563462880019551f, 0.190980650425415f, 0.482598778123453f, -0.273426091300166f, 0.980640722167518f, 0.198298590133615f, 0.678100193958147f, 0.530416610025615f, 0.196483886579908f, -0.00515783872303177f, 0.0273438459465027f, -0.257248394117661f, -0.576964504105195f, -0.331030677719652f, 0.389178134459083f, 0.0714066784585938f, 0.915179137858455f, 0.529738860096996f, -0.0851681338619263f, -0.692212896293625f, 0.0786352959300358f, -0.122712774017974f, -0.154641019547052f, -0.487537192251297f, 0.0435645872670241f, 0.856938631597551f, 0.351874085305670f, 0.708100804109985f, -0.701200509799317f, 0.0804479422214388f, -0.0794375302823220f, 0.543751723132725f, 0.346144383452864f, -0.680373368944156f, -0.572281173045994f, 0.237981706511708f, 0.0671482960376590f, 0.852393956008547f, -0.301262907769845f, 0.523762878044853f, 0.0885512158718469f, 0.885168455552951f, -0.333351382431635f, -0.914187358461713f, 0.657220242471575f, 0.202238670865175f, -0.660684692864216f, 0.641271628674064f, 0.795923699912913f, -0.332641448887164f, -0.297595219329770f, 0.427283618553541f, 0.601893958036382f, 0.355248259075043f, -0.420766820174961f, 0.355159952778514f, -0.806733697216087f, -0.694403711049608f, -0.719250654428532f, 0.580487742419744f, 0.959156165420351f, -0.941898541689400f, 0.960568821753178f, 0.119007749103819f, -0.973468502734443f, -0.627534816021182f, 0.331394418445345f, -0.415230278112412f, 0.225355270950915f, -0.216818510922154f, 0.716553646689289f, 0.149097723527982f, -0.212491921692561f, 0.681645638056938f, 0.675358683729395f, 0.0591550775861416f, -0.221626142364110f, -0.235878877821190f, 0.168188057112471f, -0.709738432254387f, 0.842890391064944f, -0.331175752377862f, 0.231375360302226f, -0.714989093452242f, -0.492645353426504f, 0.552424848261518f, -0.436987392663331f, -0.336155191719795f, 0.137666231065822f, 0.739347397348610f, 0.493222787180627f, 0.283646543313800f, -0.603522923409923f, -0.474181275984451f, 0.249315354427624f, 0.323736714335287f, 0.933612934150728f, -0.651555022796413f, -0.743229221575077f, -0.648309364385349f, 0.115117716036212f, -0.0689988553878600f, 0.0394979772968704f, 0.732729774997258f, 0.487584669162102f, 0.808754952095239f, 0.827617962775983f, 0.550826738558347f, 0.890858298785235f, 0.152998196795770f, 0.401198245071198f, 0.187173931669199f, 0.576387011979054f, -0.464903903379260f, 0.735172244343599f, -0.0393734341215035f, -0.501927105416023f, -0.852926247859480f, 0.384774001880198f, 0.723957370923565f, 0.869614310250896f, 0.698124990202440f, -0.0618370378422302f, -0.273879540781302f, -0.0745005910544518f, -0.754408143155094f, -0.859084370639359f, -0.709011936778905f, -0.883595552533659f, 0.326386065122049f, 0.756686513420982f, -0.639817612043620f, -0.536531544653662f, -0.596858657734988f, -0.187117983404806f, 0.760208405412209f, 0.191383034225783f, -0.771443976174702f, -0.371171018178012f, 0.723338724416329f, -0.325113980261468f, -0.652823731845602f, -0.902765567501679f, -0.109945188610355, 0.863727536109734f, 0.762531987550249f, 0.484671237555863f, -0.376731181566557f, -0.961176245257487f, 0.374503763045540f, -0.275274129954644f, 0.947951135663002f, 0.891610575724484f, 0.233179187366345f, 0.868694446846928f, -0.201812205484274f, -0.676342903796604f, 0.962133604967067f, 0.0941637112283598f, -0.0856261317646829f, 0.375061189807232f, -0.275342940020193f, 0.0614298144531287f, -0.183234253182376f, 0.146964792162229f, -0.307180215012337f, -0.139123531176191f, 0.130840221889238f, -0.0654726742084248f, 0.988722897887987f, -0.805684911622576f, 0.763299463922693f, 0.148136188784880f, -0.432183160161832f, -0.592185939638987f, -0.593835208842770f, -0.366135084813261f, 0.840566739882685f, 0.572052978307971f, -0.825682529425410f, -0.970222226210689f, -0.554421263584439f, 0.324648156825255f, 0.0472246837302466f, 0.168098848238140f, 0.00634984653176796f, 0.850237261066903f, 0.286624344510407f, 0.196043215794080f, 0.289161416244007f, 0.334801090322515f, 0.871286740072183f, -0.754609531300255f, 0.623871003889383f, 0.0843430009639772f, -0.736369938040848f, 0.400507674511444f, 0.816325383600297f, -0.500667496861800f, 0.453092855162135f, 0.281798170796444f, 0.631969623501011f, 0.472467114651372f, 0.525988741184527f, -0.124862967293674f, -0.882904489381606f, -0.501090007558747f, 0.631622297793485f, -0.0234210285578584f, -0.521093811962915f, -0.0402368492672573f, -0.762999364505356f, 0.948716268452360f, -0.572740830308272f, -0.261042904339051f, -0.506108365537530f, 0.585933508412429f, -0.362463094458446f, -0.885375028242576f, -0.835757117571791f, 0.337250829139564f, 0.298618238243588f, -0.744903291826588f, -0.979848674056393f, -0.488518944548476f, -0.000297116577397283f, -0.137863396173336f, -0.627207234158244f, -0.970417810284170f, -0.601487862773028f, -0.999527775716382f, 0.116672274325216f, -0.786330829714504f, 0.740118245374718f, 0.856485463622646f, -0.555144930193560f, -0.0168912375666686f, -0.774544329159697f, -0.782767315598991f, -0.600844843420598f, 0.885816107471180f, 0.577075799078571f, 0.663829997048111f, -0.359000184287277f, -0.390009578642891f, 0.202240602818017f, -0.0191477232064394f, -0.566459499064884f, 0.288883557382261f, 0.962583478738218f, 0.782123756762393f, -0.312311582870785f, -0.749354208187204f, 0.205679267602357f, 0.804004517387718f, -0.733078779233144f, -0.426195645938973f, 0.686872484317089f, -0.398704803137823f, -0.267786412313359f, -0.374306263341615f, 0.632992513422251f, -0.972217744254910f, -0.167080739523409f, 0.608176739669718f, -0.935550125875275f, -0.422451600932096f, 0.499643952974426f, -0.491034978653149f, -0.0256130378373849f, -0.158669355267388f, 0.360503946885584f, 0.227714934784132f, -0.138648043280479f, -0.0707461296301128f, 0.0638330442765616f, -0.168811643868974f, -0.575670642767690f, -0.162143785491822f, 0.528621079903453f, 0.581283330394272f, 0.444430744183000f, 0.859288341846780f, -0.170487584890459f, -0.440175706710406f, -0.184806402672108f, 0.676010805169568f, -0.0117535553470483f, -0.231606756742133f, -0.210042044569361f, -0.517950708003565f, -0.805772781723687f, 0.156938933772370f, 0.892075905739393f, 0.403874478002384f, 0.572031508558373f, -0.604145909072008f, -0.330076696654475f, 0.0314560087228033f, 0.683787496948704f, -0.788582181996934f, 0.835276281386949f, -0.0644658492206380f, 0.938270191882745f, -0.344927907293928f, -0.976720519493346f, 0.906264084343827f, -0.648152742145255f, -0.776984965421811f, -0.299470572593974f, -0.423690646950321f, 0.749911693814570f, -0.701929894551648f, -0.665191316321370f, -0.568359320650352f, -0.957309362369509f, 0.914088966355983f, 0.770952996203681f, 0.0924190787439159f, 0.844599990803978f, -0.613336716591875f, -0.683270165308367f, 0.358563204319583f, 0.934597169812267f, 0.236596595813630f, -0.895964332479994f, -0.673302324943916f, 0.454883302340070f, -0.473926010524343f, -0.576000657136217f, -0.644850950007290f, -0.980218836434995f, 0.321620362364719f, -0.799924718666919f, 0.0619872524925393f, -0.609255645268410f, 0.159243124858648f, -0.339764623434603f, 0.379865023026277f, -0.923132229333074f, -0.0300494021321296f, -0.183835365297645f, 0.122648511393234f, 0.887652015676064f, -0.616448517838488f, -0.920600866006207f, 0.352861591267815f, -0.930578364778234f, -0.378819076263050f, 0.775423778544869f, 0.836977798656885f, 0.0472244767469148f, 0.484934339557912f, -0.939155187409193f, 0.261555270800537f, 0.143595058480400f, -0.323517719771947f, 0.483466454684928f, -0.423163689969697f, 0.356966814701025f, -0.843907304366205f, 0.945903563730962f, -0.495952298317153f, 0.972277051575873f, 0.153052037173145f, -0.715894882755676f, -0.617028915483254f, -0.332307224095366f, -0.171207102890728f, 0.841771328272651f, -0.0308707743261867f, -0.626480028747696f, -0.729235538916864f, -0.743517330301179f, -0.733868915239511f, -0.449192858200231f, 0.362286468575150f, 0.327436676142902f, 0.609768663831898f, -0.147499187968100f, -0.470195300907973f, -0.232167856443943f, 0.225074905574485f, -0.0818541072414634f, 0.793403933843056f, 0.267628199755028f, -0.391701371806294f, -0.846991992740029f, -0.776221590294324f, 0.121351482320532f, -0.189789365942677f, -0.894392208695015f, -0.632864319945356f, 0.927817761109627f, -0.732454610273421f, 0.260011686544283f, -0.713973491605344f, 0.469764032416604f, -0.608895265807545f, -0.684992974060601f, -0.745556289276139f, -0.536308213076133f, 0.586581187207818f, 0.149804345860779f, 0.401576742698496f, -0.719670291046630f, 0.618659855530024f, -0.256639783379370f, -0.862966031725668f, 0.893866512913152f, 0.861800793529066f, -0.704895723095590f, 0.154163397540805f, -0.0775797186536984f, -0.252297335448882f, 0.869851864160888f, 0.428747373815147f, -0.818372805928921f, -0.739117647833389f, -0.697378012429133f, 0.182997863108567f, 0.689563104159966f, -0.0506114067037338f, -0.705077813920782f, 0.452892458862023f, -0.365069844049503f, -0.889224821648518f, 0.0194889225677406f, 0.847743515500726f, -0.0650338075825718f, -0.108889937983496f, -0.168485037502421f, 0.912533003086865f, 0.428132366084106f, 0.692652998111620f, 0.130599999674344f, 0.411245435867244f, -0.194909473459497f, 0.562152151569866f, 0.503795293326445f, 0.801805532943245f, 0.795718119772331f, -0.327975015537058f, 0.771389506217327f, 0.237139782375987f, -0.793798852884360f, 0.537824655594807f, -0.0767253125021830f, 0.444538451472890f, 0.623473048970629f, -0.500663871860675f, -0.890399840538612f, 0.389528755348857f, -0.915832255765501f, 0.000652855725217894f, -0.121310443088642f, 0.206662014558968f, -0.409513641801496f, -0.0496262665388731f, -0.313314447256644f, -0.994839397423865f, 0.344513198428247f, 0.250828855150578f, 0.845438302422055f, -0.728803841305459f, 0.249670562418639f, 0.543601559270672f, 0.0138774767713057f, -0.0667600054234216f, -0.803421294778238f, -0.222729734665659f, 0.461896933387103f, -0.378537171475208f, -0.464200027877777f, -0.363170335357481f, 0.616070694104851f, -0.316407896795124f, 0.131719997218670f, 0.0622146037260092f, -0.881713850066484f, 0.400811652868418f, 0.163777537634682f, -0.528768052383715f, 0.553072310703894f, 0.931393033749660f, 0.410062835546529f, -0.190904471223264f, 0.0533617852685424f, -0.911780226731855f, 0.823696403963215f, 0.756735978125573f, -0.849701310148249f, 0.106070214350541f, 0.747890454578944f, -0.559823302095172f, 0.976181619002882f, 0.506524051225122f, -0.0735228576098872f, 0.635610640336510f, 0.607728217052133f, -0.383443012662118f, -0.640835123345673f, 0.0897243696426577f, 0.722421963278953f, -0.368833835044170f, 0.684790387373836f, -0.0336846755494535f, 0.199819176553169f, 0.351822803019512f, -0.433387005248570f, 0.709401898386598f, -0.0149217994364210f, -0.549115733466769f, -0.774049259429836f, 0.440376751789406f, 0.740171176715015f, -0.322301969056869f, -0.148261856544327f, 0.724527166150266f, -0.744178178219827f, -0.743031462890542f, -0.00997727490160383f, 0.550074849063942f, 0.147825200269716f, 0.777182602759074f, -0.625412073440604f, -0.0614214671235789f, -0.400121310797195f, 0.864511820640236f, 0.327656445569618f, 0.765838911283705f, -0.906185069285438f, 0.543656228031101f, -0.527337383463707f, 0.544932532036177f, 0.453966596910417f, -0.422906847383216f, 0.803455668330395f, 0.496651297123425f, -0.254890927444284f, -0.940902660088963f, -0.0691448074129200f, 0.0165534278793877f, 0.510199004798987f, -0.0286331020627788f, -0.141471298460923f, 0.872000980716430f, -0.752995088893842f, 0.167696515625982f, -0.181673581299286f, 0.496236252387172f, 0.854022562040503f, 0.388320660177419f, 0.499320363074588f, 0.173522726183149f, 0.0334192536945390f, 0.631347719906229f, -0.832803059709609f, -0.523826088751894f, 0.322557683663180f, 0.0263621365506006f, 0.948982322858062f, -0.253991680115490f, -0.165970359640120f, 0.331700483099733f, 0.808731855823033f, 0.159862831431822f, -0.438178259673022f, -0.943749594272300f, -0.967819867274861f, 0.263403865531262f, 0.710981741513574f, -0.274597382335371f, 0.929606564147885f, 0.125943272920181f, 0.691306164809532f, -0.607946869004681f, 0.284352421048012f, -0.421663515398071f, -0.409479725854699f, -0.152265311389352f, 0.630868673855242f, 0.123144840061153f, -0.645105689918733f, 0.360153393247973f, 0.683885744053582f, 0.752598814717991f, -0.581494857182821f, -0.469116962448560f, -0.0691726199196117f, 0.174679188611332f, 0.351269328558955f, 0.394815335607621f, 0.710281940645013f, -0.618593505217632f, -0.721546422551907f, -0.974088703589852f, 0.939556772536401f, 0.599407011070674f, -0.342213391542906f, -0.387135346574836f, -0.572027944718123f, -0.622717582512866f, -0.676949872287677f, 0.993953153886700f, -0.784539234625462f, 0.788778188174951f, -0.0652679971583152f, -0.988740647590182f, 0.748989697777310f, 0.412949190397683f, 0.206661198525718f, 0.573116044772809f, 0.938498079842984f, 0.743167714677278f, 0.755679122637903f, -0.295095987460132f, 0.217166189740252f, 0.230160404687938f, -0.504654557405015f, 0.472402206737240f, -0.867751757044285f, 0.869050101160567f, -0.905285205825199f, -0.0698843699947245f, 0.762379282963140f, 0.634191197174691f, -0.498487028811837f, -0.284257632541078f, 0.224245853978976f, 0.412950901773606f, -0.831984679101472f, -0.375663639002356f, 0.153699995838016f, -0.953997055484851f, -0.545360745186449f, 0.637687001020610f, 0.465459355638311f, 0.0769011654935299f, 0.267123343048604f, 0.545842501706277f, 0.778890986545214f, -0.363432183057524f, 0.479786652022207, -0.600912698239979f, -0.738845504293020f, -0.775987143750184f, -0.705559714187038f, -0.310523750352236f, -0.576081829930414f, -0.0341897834633795f, -0.388414434291246f, -0.790681299048144f, -0.169440674711419f, 0.219815472280053f, -0.323451599202462f, 0.835623141427806f, -0.932446301638351f, -0.831480966559550f, -0.185050128422203f, 0.946045240208487f, 0.864740749402213f, 0.916918979039328f, -0.204049261822351f, -0.807183358636872f, -0.484543897885746f, 0.974235382435000f, -0.208019257024664f, 0.647411336652954f, 0.0961385231960816f, -0.800258527388060f, 0.352982142334643f, 0.917274278881503f, -0.733934252997685f, -0.229420044045673f, -0.358499183112933f, 0.469156578609832f, -0.859359096702447f, -0.937762141277625f, 0.389776419837803f, 0.458425599271073f, 0.542973137971009f, 0.675023236195573f, 0.944029213696263f, -0.774027667733194f, 0.262984845114612f, 0.842689106929982f, 0.349251854560315f, 0.815938991679117f, -0.226283690374971f, 0.144356327986477f, -0.610588223452142f, 0.539695204296007f, 0.655759463021729f, -0.725805170479948f, -0.194977831685847f, -0.306105075607822f, 0.725461617920836f, 0.678283785172857f, 0.250577882812283f, -0.571672652704059f, 0.112132856850530f, -0.236412229648694f, 0.768173015701816f, -0.799251028098975f, 0.100723381526471f, 0.113856811781171f, -0.0281630563735495f, -0.0727902548617043f, -0.515248547261805f, 0.795765010992038f, 0.505540143557856f, -0.496124371632015f, -0.363010091302494f, -0.302067159683438f, 0.941309812688142f, 0.0564765277142674f, 0.733027295879568f, 0.582734217224559f, -0.159007222603058f, 0.827637470837748f, -0.163060519537145f, 0.352357500273427f, 0.920405360379926f, -0.280691553157313f, -0.401974149240862f, -0.131353114797667f, 0.0719728276882135f, 0.795795661384902f, -0.348203323368113f, 0.946184663961743f, -0.188400643814906f, 0.979319203447783f, -0.132195434304746f, 0.585832597473452f, -0.894730397941282f, -0.998045985412111f, -0.717844040997160f, -0.706372640246558f, 0.237517748136224f, 0.767232946579208f, -0.246080656591091f, -0.767887803661775f, 0.139501344992184f, -0.545658806327887f, 0.480755550666584f, -0.355750609145607f, -0.493518864013929f, 0.832011102158605f, 0.122542855024589f, 0.179356501845966f, 0.630805165349165f, -0.888557403477561f, 0.861375782261841f, 0.963467658712489f, -0.00498707715217361f, 0.341894517453263f, 0.654808049991043f, -0.826909952854692f, 0.101446328788119f, 0.401514152845232f, -0.830556985096328f, 0.832187560444347f, -0.657254039822149f, 0.0304197382717133f, -0.718462386339415f, -0.592343549551534f, -0.356333235896531f, 0.674135547073730f, 0.606490641440102f, -0.707328770155748f, 0.0251846271186025f, 0.763024927861424f, -0.258224600040528f, 0.456384203436896f, 0.626482995304888f, 0.162353458245830f, 0.964280614412026f, 0.869262296229816f, -0.0659501568862260f, -0.712869755397848f, -0.946968242335746f, -0.852822740386429f, 0.791522782900379f, 0.824530390150335f, -0.369383609091590f, 0.118366422602132f, -0.713278848975255f, 0.549165545117801f, -0.00201102645336770f, 0.748955154405439f, -0.173689412898754f, 0.175162399203493f, 0.0819730422177463f, -0.804833155982895f, 0.972966530563786f, -0.0614871820303859f, -0.293463394754661f, 0.885919261783643f, 0.498531250561504f, -0.808874001349436f, 0.364344357769432f, -0.945616638616975f, -0.285864129675031f, -0.0438177789332626f, 0.303981486324719f, 0.362653007142366f, -0.543157427730716f, 0.174551703296805f, 0.140105048664068f, -0.704163993684247f, -0.647461975308389f, 0.831243960763754f, -0.364954329841192f, -0.730289885595360f, 0.0119708019435723f, 0.796338505809816f, -0.227851954967331f, -0.927330125804492f, 0.0602265250934577f, -0.485204061877453f, 0.198319346525046f, -0.529723177394882f, -0.321493822700232f, -0.839566193416413f, -0.187812484529161f, -0.396142329367383f, 0.367600156667632f, -0.922657847865138f, 0.893508892950972f, -0.504434314314017f, 0.663184814192863f, 0.887813887366393f, 0.267103483259066f, 0.984313142773772f, -0.667515321448428f, 0.0718416862496054f, -0.733363156570869f, 0.00186343206374962f, -0.316531364321301f, -0.467549697367438f, 0.569865535259013f, -0.556502178434536f, -0.650896672234238f, 0.564462797319346f, 0.585276582729153f, -0.433005641153548f, 0.847012427243871f, -0.462088105064984f, -0.379468633087939f, -0.0104892833799723f, 0.654191676584918f, -0.893278846859767f, -0.689350274835588f, -0.333220721049179f, -0.0461703436190983f, -0.463411501818667f, -0.995085073808794f, 0.526075522777196f, -0.0686703698159610f, -0.855908120278260f, -0.239774384006192f, -0.524142243888286f, 0.119526621106050f, -0.838266471869898f, -0.459366707886497f, -0.974921205300089f, -0.680517660007036f, 0.507695286553230f, 0.0920009889477380f, -0.674459855090400f, 0.554585280302756f, 0.357871391273056f, 0.453052004120624f, -0.991707675828263f, 0.144725488641274f, 0.0886535789688503f, 0.708257184179799f, 0.579351194763774f, 0.902098539548710f, 0.0104715251706708f, 0.112677648152527f, 0.0513772996762050f, -0.647561525299580f, 0.321958856072156f, -0.433510239079594f, -0.481493822802105f, 0.651663699618654f, 0.922649363108760f, -0.751799312011289f, -0.0336105332513619f, 0.236872038257485f, -0.0434863841224971f, 0.150810692021768f, -0.217629544451037f, 0.345890414626050f, -0.471941673338326f, 0.675001035054686f, -0.986585320322202f, -0.784679789758475f, 0.270727429189404f, 0.595792127677512f, -0.485969146811564f, 0.222507692419212f, -0.850070310429306f, -0.575184466843042f, -0.220860571657717f, -0.749449040845746f, 0.743039624335149f, 0.463892797640518f, 0.224829531690830f, 0.935410439714992f, 0.00609595972560872f, 0.830877831388658f, 0.0270299847557276f, -0.648763861115704f, 0.471982277585509f, -0.145722971031426f, 0.650947186397952f, -0.266164907037466f, -0.962378355156458f, 0.354855353373398f, -0.184127215272909f, -0.825621979621661f, 0.595495186093792f, 0.448679578752395f, -0.839671989567806f, 0.302158874138200f, -0.735484620769119f, -0.891040803749876f, 0.880298595525880f, -0.281199581528421f, 0.0195033020490396f, -0.511515485794419f, 0.447303195702203f, 0.375317547074287f, 0.964442757731427f, 0.167643569291013f, 0.0118587246816413f, 0.958187068873858f, 0.315395458761821f, 0.188852872643367f, 0.417450657662866f, -0.540566147670448f, -0.422709015019828f, 0.101425586029329f, -0.235465301656357f, -0.806044548641562f, -0.617153815671298f, 0.350658348898447f, -0.738540593521098f, 0.291893065415692f, 0.335435501842245f, 0.832048727909480f, -0.609539777284250f, -0.436992256701542f, -0.685315947977391f, -0.502107715051164f, -0.893460699283628f, -0.262263680492396f, 0.454417031133778f, 0.223227655510993f, 0.605288383003966f, -0.698800586984034f, 0.864843125666124f, 0.363752223710394f, -0.354571459375900f, -0.575008718239530f, 0.423061550052490f, -0.272459660313524f, -0.116932919064239f, 0.547073367599225f, -0.890822451422250f, -0.884262586749836f, -0.889803003239001f, 0.217660629852574f, 0.154863581361214f, -0.333284425759330f, -0.826087281020982f, -0.958198419703014f, 0.850114828540176f, -0.391190814837661f, 0.956578087128909f, 0.0541599967910713f, 0.0988550815990206f, 0.851903747125444f, 0.361959550717838f, -0.901818125706440f, -0.0561477675277424f, 0.522090821863134f, 0.263383912024089f, -0.161061362097086f, -0.983707460720128f, -0.333128836619106f, -0.546535222349413f, 0.627261888412583f, 0.408731616102241f, 0.754700916401496f, 0.869772826180715f, 0.362242883540519f, 0.853587698951791f, -0.698910717068557f, -0.671945256263701f, 0.802655941071284f, 0.338701009518668f, -0.0297818698247327f, -0.881311052338108f, -0.296717226328950f, -0.965699941652671f, -0.737164428831818f, 0.00804554422537485f, 0.989716933531351f, -0.832438692682457f, 0.454553001515962f, -0.933801685729775f, -0.644562445615081f, 0.104508389084640f, -0.535426180524709f, -0.937041822784313f, 0.599911275476691f, -0.789109397888652f, 0.821293320968620f, 0.818032308067912f, -0.838306491947354f, -0.172883985566904f, -0.185775969502745f, -0.672256019841514f, -0.412525056012874f, 0.142272136963196f, 0.792136721788200f, -0.726314486042219f, -0.445981475954073f, -0.857821372905156f, -0.783006950965519f, 0.438776336055643f, 0.400193156140386f, 0.177525578340235f, -0.435380642286229f, 0.547815754835977f, 0.0496394855194708f, -0.442174406426496f, -0.0856142956982360f, -0.0247840885457120f, -0.779016166389253f, -0.511802368745331f, 0.319887353303028f, 0.721806644023428f, 0.770423389111803f, 0.809969588377187f, -0.196191981856391f, -0.105718971622809f, -0.301674515042257f, 0.613622254387482f, -0.969517273103490f, 0.0144576310630131f, -0.668829420461301f, 0.750377960820232f, 0.696858494013122f, -0.563485511352760f, 0.726226115587466f, -0.227540741583116f, 0.665488592033944f, -0.124611809537824f, 0.489550286613580f, -0.579185308695604f, 0.628687311174276f, -0.295770837727116f, 0.240358361854250f, -0.155642183802961f, -0.885945841456110f, 0.388592282428421f, -0.663862196774143f, 0.363779469451472f, -0.371285870971327f, 0.563159689631810f, 0.102725415308920f, -0.320909176496511f, 0.334328794247963f, -0.401664407219370f, 0.726728495517480f, -0.192310060924823f, -0.107973316004269f, 0.898177814643418f, 0.456682306673978f, 0.890742303266606f, -0.742770990765425f, 0.0337493848747046f, 0.786190819119190f, 0.911503487800545f, 0.288384155888888f, -0.249479393879906f, -0.431949793185094f, -0.0847659302921913f, -0.475416985100444f, -0.362720571751962f, 0.676910741300893f, 0.00488530543559529f, -0.227678010632002f, -0.0632947771540859f, -0.990261099329279f, -0.708485805011827f, -0.304846597458441f, -0.480289782580152f, -0.593254971635338f, -0.656335976085053f, 0.584373334310954f, -0.493268395245234f, -0.00212668034894836f, -0.480221591678953f, 0.622365041709782f, -0.258845071515928f, 0.943825418665593f, -0.716642329101759f, -0.765317239111819f, 0.324487844009035f, 0.108158868464706f, -0.790583201992229f, -0.649218622127061f, 0.751409704126257f, 0.301455204388007f, 0.620482350165047f, 0.411016780608874f, -0.878843779367281f, -0.779673415191805f, 0.616508572699874f, 0.0750844738292273f, 0.341011338533919f, -0.553376665552953f, 0.277561087965059f, 0.527499935800293f, -0.489644680144407f, 0.514353996113782f, 0.229842524701725f, 0.139172928186734f, 0.793753206591897f, 0.835555341130211f, 0.794120687009671f, -0.0994745468343306f, 0.109098970584400f, 0.383123470993648f, 0.272549010931094f, 0.683070582699418f, 0.522823199313615f, 0.235903759158310, -0.269490013000195f, -0.103775744391749f, -0.994083979953753f, 0.754983594207459f, 0.806308398378106f, -0.997543362839150f, -0.00396367603607373f, -0.873768378178592f, -0.755907732827809f, 0.703713206520365f, -0.0716773056166142f, 0.0792968663717508f, -0.113760825029016f, 0.828188140127672f, -0.103062543982628f, 0.0455017026983378f, 0.330658414568756f, -0.615810862221588f, 0.827890015477212f, -0.507551960954374f, -0.371044788092612f, 0.723489294741891f, 0.169072478802524f, 0.885612989356318f, -0.496475905980558f, 0.114400438991609f, 0.427961880327008f, -0.0456714004002505f, 0.0246660859589438f, 0.175616122301987f, -0.349777838484285f, -0.939474935533562f, -0.215061649130134f, 0.907049169335834f, -0.0553600192559760f, -0.982464152311714f, 0.405919915647442f, 0.755952405091542f, -0.695422520039876f, 0.373280568864688f, 0.483909023765611f, 0.784896384994620f, 0.978722132488262f, -0.113866140463085f, -0.630016943176703f, 0.512742627309861f, -0.829104067044703f, -0.240982431155520f, 0.0107361024967163f, -0.438682584788413f, 0.935730031472303f, -0.953447901200043f, -0.984218956474073f, -0.745077052885218f, -0.466232938128846f, 0.0326267564209573f, 0.303877586274065f, -0.199843777507458f, 0.674317529952029f, 0.448678903834397f, -0.681863209154081f, 0.273397524216090f, 0.193101955704959f, -0.342858479278718f, -0.485179713360910f, -0.586067050491890f, 0.393099777352274f, -0.982324485510343f, -0.852553426343700f, 0.773613825101220f, -0.590256032959421f, 0.837952413540589f, -0.643137731235821f, -0.311955662956384f, -0.888588599835619f, 0.304629859477166f, -0.810098957400030f, -0.534291626181040f, 0.878601703692302f, 0.362706441157764f, -0.254447668911795f, 0.604309282304246f, -0.977266419340276f, 0.250927873824064f, 0.549600558999971f, -0.796155833245480f, 0.226373301058549f, 0.0137578302483823f, 0.819708534464965f, 0.185662636424304f, -0.450456459548662f, 0.0953849597308440f, 0.736872088617975f, -0.582024306116842f, -0.0522261513001507f, 0.394348349710790f, -0.461023913227183f, 0.139996201153565f, -0.790168851966909f, 0.692544084408690f, -0.580603732841955f, -0.584540773580447f, -0.967062276813525f, -0.00886260208554912f, -0.0520831218167985f, -0.999614949922684f, -0.965820736077636f, 0.366390034326646f, 0.0323069925013668f, 0.164651515113853f, 0.300260003499445f, -0.340634856317630f, -0.238157231550037f, -0.291645957143165f, -0.773881882387456f, -0.144494053860223f, 0.660329619628580f, -0.626727996257997f, -0.994965090982706f, 0.161018019917379f, -0.327211572176153f, 0.0410991278573425f, 0.0123663905917732f, 0.747176159655312f, -0.485981637435718f, 0.00667961234248971f, 0.631625759154389f, -0.831294487064668f, 0.449606477050286f, 0.768845094514142f, 0.928354534843426f, 0.812647997969340f, 0.353418126917875f, -0.872184763557736f, -0.579130598386915f, -0.912928075675835f, -0.779484407508668f, 0.534916834944041f, 0.326353225230543f, 0.395431557674662f, -0.842103899863317f, 0.196590107332985f, -0.261317824893025f, 0.750190543523333f, -0.103409967857074f, -0.201452426430379f, -0.213633615009587f, 0.578822104214576f, -0.130809161238349f, -0.774608769872343f, -0.0222201705228122f, 0.126990738965544f, 0.785780586747108f, 0.0379484317527632f, 0.837140835706189f, -0.191007948387153f, 0.106781679021568f, 0.990298140861558f, 0.618337701073777f, 0.460255491901774f, 0.716379796730692f, -0.159421014009881f, -0.560212468621569f, -0.147263014783522f, -0.962301694075771f, -0.327702010262213f, -0.773959532468388f, 0.351239668535113f, -0.682281479449518f, 0.342188824054257f, -0.743039216419066f, 0.700710268270439f, 0.919651386092770f, 0.626343233048871f, -0.157189576636596f, 0.781882574006976f, 0.349953565654219f, 0.361235312853466f, 0.313242228422046f, 0.582185182102266f, 0.554504358491139f, 0.711217954194576f, 0.332473377627418f, 0.165078226255772f, -0.228349029389292f, 0.899730713958153f, 0.653894503448836f, -0.0452904440925501f, 0.0328806142413372f, 0.793701315832839f, -0.703826261467540f, -0.901648894320192f, -0.195631966969018f, -0.0470590812056508f, 0.487185699934959f, 0.175961644103331f, 0.818028721319245f, -0.224389104974946f, 0.901974203693823f, -0.153212477843726f, -0.472747796173897f, -0.587471692952684f, 0.452340198339707f, 0.996443894349412f, -0.849126217374502f, -0.403800337277983f, 0.923427876645159f, -0.0516037992113898f, -0.380335341989182f, -0.299914673109747f, 0.764492139190834f, 0.773463290027243f, 0.0175454601261817f, -0.400742340353541f, 0.912354892189422f, 0.999766609328281f, -0.521321752061712f, -0.365769506846305f, 0.477612405338644f, -0.0522578739905535f, -0.479259238587280f, 0.645161410912429f, -0.702546085166056f, 0.359736398041538f, 0.638130894056863f, 0.115633419893101f, -0.674410360620500f, -0.150824943737990f, -0.824854463897591f, -0.504410162129685f, 0.560317574021813f, -0.159611666752889f, 0.997647540626334f, 0.702777895178414f, -0.946494281691535f, -0.0109619562916898f, -0.383756482005404f, 0.872670066971334f, -0.453527506439184f, -0.635719199113957f, 0.932852122005178f, -0.800755479140234f, -0.225213334363716f, 0.251163542389519f, -0.598147625383133f, -0.155241293946661f, 0.967736510890644f, -0.0157250628103103f, 0.250570924071858f, 0.209749651169078f, -0.381016062687537f, -0.679300447230592f, 0.160197663113971f, -0.749803147200800f, 0.596917045783617f, -0.0878737681749431f, 0.642402180339789f, 0.261614973684270f, -0.111833224093973f, 0.300170844971678f, 0.317966800167647f, 0.0585375534708252f, -0.842709435910728f, 0.760207701069839f, -0.979366191145221f, 0.940703569377911f, 0.866488078693979f, 0.553497107695259f, 0.127260247084497f, 0.530106152060111f, 0.725171359852920f, 0.356742729430045f, -0.209841680046178f, -0.164239817187855f, -0.888858150931758f, 0.0367561852378047f, 0.803496113779956f, -0.594927045375575f, -0.00347281985657166f, 0.114118941713783f, -0.427864462568672f, 0.719021423892768f, 0.335845790828654f, 0.0207216235296064f, -0.523146933862102f, -0.145001077781793f, 0.490566784879983f, 0.461904660734682f, -0.897010089735077f, -0.895737903861849f, 0.343397505472310f, -0.684377591381862f, -0.0154016881290400f, -0.462987614871549f, 0.884045010701589f, 0.192617174725234f, 0.226497290324550f, -0.788151335932529f, -0.190538526746651f, -0.556614046330326f, -0.139480186854974f, 0.196785300148418f, 0.978844132512627f, -0.290726060479808f, -0.591813978495167f, -0.0769033757443105f, -0.467044929381376f, 0.171585053083057f, 0.408215527269010f, -0.818706013465989f, -0.328144984930982f, 0.790275356337217f, -0.977491163139178f, -0.979679268318504f, -0.524875121608236f, -0.263859024168277f, 0.0180787743488171f, -0.984390626106750f, 0.952274619010224f, -0.851400664579601f, 0.692959439369046f, -0.150312001943653f, 0.712066554169562f, -0.492336226254660f, -0.453559897031351f, -0.159679763180474f, 0.745834647687870f, -0.725963425297178f, -0.720341794596050f, 0.370674334928492f, -0.845974926208293f, -0.00448769398027360f, -0.595973105115042f, 0.967372249596385f, 0.512949503724102f, 0.889619262804735f, 0.990718232652913f, -0.662246751886904f, 0.333846293708563f, -0.423114421367372f, 0.549637439543149f, -0.987876053136374f, -0.782714958794276f, 0.294868983681807f, 0.931284560597614f, 0.445522387300861f, -0.388400162488578f, -0.182673246109423f, -0.773488958971573f, 0.438788569593725f, 0.578106509978236f, -0.373449127435319f, -0.301996528814967f, -0.227124771031239f, 0.700176189695036f, -0.910948938567526f, 0.733412403327578f, 0.486154072292544f, -0.974058632864456f, 0.216693355653246f, 0.147564301397678f, -0.715192277853558f, -0.366996833259925f, 0.568909126406069f, -0.0810069456450131f, -0.371253841044151f, 0.254736918036059f, -0.868966383080701f, 0.190312518076662f, 0.457253801337437f, 0.941043431633233f, -0.297470749600241f, 0.244270515950156f, -0.240122562119888f, -0.766384662307300f, 0.765045432900429f, -0.608250739173787f, -0.733052557932594f, -0.268433000443065f, 0.733598123424154f, -0.0550005774741753f, 0.273893221740822f, -0.659641650983149f, 0.967032725204337f, 0.390126626361090f, 0.518740746381756f, -0.859387560527806f, 0.554117289841284f, 0.648904904654236f, -0.755880975555381f, 0.834231592524942f, -0.137512395743275f, 0.0477027353535724f, -0.880364563062979f, 0.458763614093086f, 0.650036413308116f, 0.496385905878033f, -0.418537115548864f, -0.565561960782851f, -0.227941684691245f, -0.165031891659812f, 0.204464989908300f, -0.688093624763916f, -0.678874848552394f, 0.813764873880514f, -0.561723359541237f, -0.575805702297063f, -0.288097000970518f, 0.950119107184838f, 0.709879842972902f, 0.730067219897393f, 0.710813066057284f, -0.192333836978130f, -0.190446300563246f, 0.872679304648751f, 0.134143163657763f, -0.979443835407234f, -0.103872104041761f, -0.0568328979324004f, -0.863020133862081f, -0.0257801722427251f, -0.577962771617033f, -0.0500056799801032f, 0.191817418291914f, -0.799853775410853f, -0.110019424741421f, 0.840753817223395f, 0.355588322976119f, 0.274501278628024f, 0.757538306972136f, 0.771547320156202f, 0.0394143752709530f, 0.120744072764658f, 0.324337882930581f, -0.380086709776951f, -0.772025774284869f, 0.473986846199588f, 0.703247561676381f, 0.734667480205300f, -0.594290184210087f, 0.760158653782445f, 0.624553744314883f, -0.941053266957965f, -0.165913770936962f, -0.0497972870738055f, -0.0435608680908517f, -0.663165366083943f, -0.570972482385751f, 0.427845034528880f, 0.0897903148165149f, -0.481825010950428f, -0.0901127105939594f, 0.887770435656611f, 0.770985476674623f, 0.00966158758316293f, -0.331059327378268f, -0.286033645163736f, -0.0698945910210471f, 0.834392309773299f, 0.875537383319608f, -0.657919190548359f, 0.583890957562885f, -0.418481077359384f, -0.282242397022386f, 0.864577023994874f, -0.898367126143440f, 0.815804441243808f, 0.616061408588373f, 0.132365642864798f, -0.221099752471970f, -0.852722283680675f, -0.269499596712950f, 0.360828136129415f, -0.120022743070141f, -0.0354652134632905f, -0.718389836602256f, 0.973490047219112f, -0.201775047168341f, 0.348769511760972f, -0.338750368577880f, -0.269769414088757f, 0.498910931428472f, -0.787648791515347f, 0.508408064858444f, -0.904215976374529f, -0.778575029821227f, -0.662889546847757f, -0.787503064261069f, -0.915166838630178f, -0.415784802770356f, 0.731806835017609f, -0.903922155472207f, 0.0872811033112211f, -0.452516774501827f, 0.577942533813694f, -0.200909337658770f, 0.866167939661793f, 0.982552542055944f, -0.332277333696961f, 0.201673960342839, 0.881239812364993f, -0.0293753746942893f, 0.0967170348490725f, -0.765573023404242f, -0.179225339525953f, -0.931530757069740f, -0.702596334762137f, 0.439106079307245f, -0.469364154277323f, 0.211063395888038f, -0.245858633045693f, 0.936376071219385f, 0.0334087380010875f, 0.0765265939183459f, 0.417091701258078f, 0.962467059286170f, -0.180698008768999f, -0.129816441691123f, -0.833694435146788f, -0.800582099046532f, 0.736376297618233f, 0.0164704176688124f, 0.207462305741760f, 0.300555292898496f, 0.777154212278295f, -0.0804533056660695f, -0.279940128908185f, 0.203101811030871f, 0.447496959357837f, 0.508353359025257f, 0.644333822521829f, 0.897259297488483f, -0.675785952117501f, 0.149337263319588f, 0.350953290584184f, 0.600296681944338f, -0.606098182955297f, -0.418312129297725f, 0.792551232171214f, -0.944025948110651f, -0.923106441737020f, 0.508989820072736f, 0.101554011154237f, -0.799369609980037f, -0.229001813644938f, 0.196367996268564f, -0.634078446275840f, 0.267446716753553f, 0.943765754688567f, 0.329924442019441f, -0.898235312442524f, 0.563592978494850f, -0.976934293161001f, -0.609744819901837f, 0.498989633313589f, -0.105680058480959f, -0.400730747241191f, 0.264919109340783f, -0.313066735594123f, -0.465399967597728f, -0.425123918113080f, -0.609514085808810f, 0.916560800692384f, 0.0173757138934230f, 0.147814399202503f, 0.594152503614559f, -0.145681097751433f, -0.427232299718493f, 0.233460382614713f, 0.337361272635241f, 0.376106438004541f, 0.900277274651600f, 0.424547631957395f, -0.710790444715071f, 0.0846761090154495f, -0.0122707338404220f, 0.119989812955904f, -0.239774389963524f, -0.692300891031819f, -0.735109129583214f, 0.802276300301071f, 0.348982047806247f, 0.916302084278941f, -0.0838164783829127f, -0.989134997097880f, 0.832909602224562f, -0.701363449605445f, -0.150487976031971f, -0.728594035984111f, -0.144393031996783f, -0.458856761770637f, 0.733295441303064f, -0.405608670768629f, 0.522871610912813f, 0.468223399458939f, -0.575139530810903f, -0.241684287862418f, -0.499140599234906f, -0.395586476697394f, 0.692745485195348f, -0.125142235859546f, -0.342212246193052f, 0.133841188490164f, -0.539478395228865f, -0.887973984329817f, -0.474033882236453f, -0.837114132429830f, 0.773392302912611f, 0.117697651876253f, -0.461595011213406f, -0.528669601602068f, -0.957799577987062f, -0.468654423525192f, -0.0602288998398475f, 0.154553704272891f, -0.422854231304259f, -0.496136532114270f, -0.348154983723668f, 0.0576478341707483f, 0.542088962901856f, -0.0465812136931592f, -0.280128217727361f, -0.900695482510248f, 0.525110685457899f, -0.957266165874283f, 0.136490670826643f, -0.213221811269364f, 0.690040133288898f, 0.269408771473479f, -0.0488994830172422f, -0.837526616586426f, -0.289127052660601f, 0.149325279006459f, -0.694169700971401f, -0.0230547571616897f, -0.368313297034846f, 0.344434270521740f, 0.859135365902404f, 0.839336654691204f, -0.511783987355355f, -0.0349625753049687f, 0.935857929664427f, 0.820032045433520f, -0.0394079346656324f, -0.656352913407746f, -0.874383371678169f, -0.425836335156061f, 0.208600154889275f, -0.135596548598733f, 0.566430757256762f, 0.820840891306264f, 0.735746624790780f, -0.765482927015804f, -0.0195537720748045f, 0.606216172027628f, 0.436027839798869f, -0.609233580289002f, -0.963547951222316f, -0.575271468261977f, 0.692873344771925f, 0.143031668657597f, 0.890157114774225f, 0.762299295692265f, 0.653618249618643f, -0.957258626549595f, 0.521895225378123f, -0.607922211531407f, -0.956795748110572f, 0.477633684273092f, 0.794301967670603f, 0.139753218894595f, 0.371726372555490f, -0.804791987531745f, 0.837080126047059f, -0.440992020192054f, 0.584986017638085f, 0.950442046050057f, 0.613109120495913f, 0.633948971396891f, -0.581246845000116f, 0.730290176291093f, 0.599119212595240f, 0.120096101936515f, -0.144169383323758f, 0.930776406826440f, -0.0209712926465206f, 0.572995665695966f, 0.924623298379120f, -0.751832867985678f, 0.630196806059302f, 0.506634179395662f, 0.0388997263873157f, -0.311041196366299f, -0.729049093325017f, -0.918815504666740f, -0.103935429478766f, -0.000623544124330300f, 0.102880227280474f, -0.563637096166535f, -0.332148269587814f, 0.472114131256244f, 0.295717126494164f, 0.246944592105312f, -0.713191555660498f, 0.160410320426559f, 0.110992936470077f, 0.213877527744528f, 0.541660996543375f, -0.872405734998843f, 0.388515073094269f, -0.840811647524440f, -0.968008592072007f, 0.669947948420772f, -0.122943215855172f, 0.565929115911552f, -0.695408966310186f, 0.361296950635219f, 0.574282481983669f, 0.0877180513263536f, -0.694316083550519f, 0.327696487191071f, 0.289746985823208f, -0.241476327174879f, 0.605084742574250f, 0.0929272338220821f, -0.391399761658219f, -0.612928183827531f, 0.0471987261466311f, 0.157388702609590f, 0.575695018001234f, 0.450453491026024f, 0.876623108212541f, -0.456500163180038f, 0.436901006801809f, 0.796734433864345f, 0.771008396172517f, -0.784740610155705f, 0.405172719255834f, 0.958393667559228f, 0.787380105147761f, -0.262826016234054f, 0.773327117333271f, 0.482142068916266f, -0.461607549022954f, -0.153993688218026f, -0.129280134980317f, 0.901812622560630f, -0.111520793491644f, -0.0973214524989203f, -0.293695817178366f, -0.190045093887485f, -0.204792515844396f, 0.501086384719391f, 0.755953359112033f, -0.425886872154604f, -0.0883029298084141f, 0.763071371252921f, -0.556289447935984f, 0.577370462369201f, 0.0480599614417476f, -0.794423686623353f, 0.756645959967545f, 0.570538730848462f, 0.872575422156333f, -0.443572567528656f, -0.0487937634747691f, 0.283986553648095f, -0.170910821134099f, -0.329867000423004f, -0.982322841409943f, 0.555344201026651f, -0.351964643393940f, 0.776172688776518f, -0.148102477734717f, 0.889532618676503f, -0.310979434517253f, 0.711839903052208f, -0.646385596147085f, 0.145592596381502f, 0.233949589173221f, -0.825471565980294f, -0.370248763132654f, -0.777194557275684f, -0.224658064754195f, 0.263281286751478f, 0.849661910468068f, 0.271261490445121f, -0.915885420717958f, -0.947144520818678f, 0.227960459606299f, 0.784463828083640f, 0.995882406349565f, -0.987273766396493f, 0.0792453274840108f, -0.788403526960056f, -0.619975942121645f, 0.801181796307713f, 0.967884377026145f, -0.781223064263388f, -0.300716486479280f, 0.994748932974184f, -0.200152360574411f, -0.101898131541608f, 0.542914585925881f, 0.407729967031792f, -0.105215843903154f, 0.638066037611924f, -0.563777780161298f, 0.134189395993685f, -0.503320561486155f, -0.0379170306314711f, 0.723638115686875f, 0.747948383928228f, 0.928239905995551f, -0.736883772878758f, 0.892242913709735f, 0.468998243295705f, -0.224406388545097f, 0.758754382878863f, 0.994739001052496f, -0.749837906573089f, -0.938777322178786f, -0.619168635741936f, 0.827875717654585f, 0.294033159230782f, -0.372766318349126f, -0.292752124932124f, 0.396629951868878f, -0.986760927173237f, -0.0841834195975009f, 0.999760803826313f, 0.0142305924173638f, -0.820393900206961f, 0.409972278573230f, 0.227315924377402f, -0.641500351639361f, -0.470788010535406f, -0.486171076557593f, -0.758140688442947f, -0.971539708794928f, -0.949039718833189f, -0.146844988902767f, -0.0183627478820223f, 0.402918762093981f, 0.0620266698060286f, -0.182527786403967f, -0.374395326540229f, 0.566584207940253f, 0.879546558847970f, 0.853360173786566f, -0.515321950652696f, 0.511692631053674f, 0.342152084355850f, 0.374686420595610f, -0.794372980760555f, -0.648670375991101f, 0.761192158420166f, 0.223791993225057f, -0.342720055148453f, 0.965612513218950f, -0.796193009647904f, 0.215057114709867f, -0.0459498239576994f, 0.871047701509015f, 0.664672380241520f, -0.546301701630944f, -0.939910946986200f, -0.213195706858966f, 0.559543622118596f, -0.255844807516886f, 0.509576048776352f, -0.699005089750431f, -0.520317652140772f, -0.924306703712950f, -0.923814193467638f, 0.868401299001930f, -0.571229497763863f, 0.984740691690212f, -0.911782692220985f, -0.265295471266664f, 0.0479848731515942f, -0.195328058836883f, 0.758281465939343f, -0.418177229854869f, -0.263323557662932f, 0.0230762644115943f, 0.382605016442608f, -0.576209059863238f, -0.739785100410209f, 0.0956412509899256f, 0.0369702493097637f, 0.0738922616872486f, 0.589371657036664f, 0.548586250623500f, 0.996096574632666f, -0.574178408335425f, -0.827059309028347f, 0.600283403682961f, -0.0651062813338117f, 0.985857002071398f, 0.982700721670305f, 0.777628710286989f, -0.139415722014730f, 0.951156387462424f, 0.806391217144736f, 0.135433009714206f, 0.252388414319270f, 0.485541324740928f, 0.270688932431637f, 0.892850103229909f, 0.440168171407923f, 0.515384398158669f, 0.600884162546465f, 0.947986221531091f, 0.339440884303404f, 0.403857490690436f, -0.937015609644647f, 0.729529495316627f, -0.389601866986821f, -0.420712615666380f, -0.763003723744745f, -0.0619534667970105f, 0.486654476027536f, -0.943536854881494f, 0.471171699317719f, 0.996886209046820f, -0.945316270673373f, 0.230772742042993f, -0.621222111022648f, 0.838934157721328f, 0.124035987915113f, 0.737576768711407f, -0.217898078842006f, 0.0429859145211120f, 0.223685413947773f, 0.820073956039170f, -0.378381145423743f, -0.335672684173821f, 0.649791267584388f, -0.457253860252872f, -0.664776842833046f, 0.150429615666837f, 0.974812973893170f, 0.00119972362050369f, 0.140744912838368f, -0.252632269055503f, -0.124205752907507f, -0.383194456927254f, -0.356455432479067f, 0.0694989880525767f, 0.188230048541949f, -0.854592697407303f, -0.902559387772971f, 0.454054169179423f, 0.534684767654295f, 0.806837289706952f, 0.274203715752641f, -0.765433763984323f, 0.459365005291520f, -0.896797218412250f, 0.382900474341852f, 0.169400421233177f, -0.184111368111075f, 0.0323514487432812f, 0.621015577938758f, 0.139872518806323f, 0.480965263781330f, 0.0649386999855643f, 0.815365754221614f, 0.761990264098834f, -0.0927412249348933f, -0.580853742457387f, 0.211615321410605f, 0.165159968106305f, 0.305515629345863f, 0.725748395743965f, -0.667649812347274f, -0.621843189978885f, -0.939317191264789f, -0.197108718554958f, 0.902152006895939f, -0.889744652803018f, 0.667113256888905f, 0.929471703711725f, 0.660025836042506f, -0.0712223078913006f, 0.416152292126436f, -0.602223852277700f, -0.828462878627106f, -0.956915163338265f, 0.298196541541469f, -0.933863927954050f, -0.198745190221695f, 0.749101206471011f, -0.922366396086261f, 0.769953026855636f, 0.971459582749177f, -0.226637139032289f, -0.593509265485619f, -0.635649447577657, -0.443127775644156f, 0.350464269654307f, 0.379979516655134f, 0.896282784801247f, 0.00871209446887344f, 0.401818712823609f, 0.815422566258939f, 0.215868289995843f, 0.682217845700443f, 0.508819667108007f, -0.988484263336122f, 0.216656890144568f, -0.185777888700071f, 0.522106353117928f, 0.894211314619113f, -0.779300881699217f, 0.137801937535128f, -0.818740955579722f, 0.637214461095055f, 0.187867696634722f, 0.184985729971243f, 0.315323389557324f, -0.0312525033775366f, 0.498559120407008f, 0.855778208118391f, 0.936851170962385f, -0.0524308158818188f, 0.257087262622978f, 0.816141818246927f, -0.147192803443011f, 0.194545158383538f, -0.655428449892669f, -0.650441844539509f, 0.536015423540886f, 0.0250060573607953f, -0.863380305825989f, 0.0605420782823460f, -0.963662464088496f, 0.689136717877590f, -0.929664162821947f, -0.327349437742288f, 0.713122240487331f, 0.765587094162777f, -0.314350325341316f, 0.409992519686522f, 0.753377832105546f, -0.756848529995586f, 0.760787899507869f, 0.512213162407276f, -0.674820237484644f, 0.560776719592082f, -0.874905891603855f, 0.925202682923872f, -0.907405002733482f, -0.575836335118172f, -0.248173888600965f, -0.187923239740639f, 0.230951002247789f, -0.540190666146588f, 0.390890663320481f, -0.705511708249712f, 0.0980457138183717f, 0.879979753648798f, -0.378326046226794f, -0.645363625221967f, 0.883365508962968f, 0.728720763588748f, -0.191571576393619f, -0.941989254130187f, 0.944312154950866f, -0.367184985473008f, -0.974124559264444f, -0.579946765132286f, 0.509825236656578f, 0.952047194261820f, -0.0955445631918663f, -0.00500764501201401f, -0.00111382665477655f, -0.0404281661495578f, -0.265706359102834f, 0.865881843285797f, -0.947915521623861f, -0.820337973623839f, 0.0843747524022067f, -0.948599514028391f, -0.464018526769358f, 0.600790429663803f, -0.0779017384430381f, 0.756949801920938f, -0.955436496929340f, -0.553346424499498f, -0.401256107066610f, 0.569624108543687f, 0.179455179577041f, -0.189386842296675f, -0.467166492259358f, 0.367644583467601f, -0.722338735126514f, 0.863903729827081f, 0.0631027352569811f, -0.982269235503679f, -0.837788470642698f, 0.421730643738386f, -0.671745211565315f, 0.858467932275763f, -0.745298219348761f, -0.659594977600028f, 0.403238381269873f, 0.951987904652099f, 0.228887404582426f, -0.331665752024408f, 0.794789885033899f, 0.669978127515269f, 0.977583870328654f, -0.346398989178462f, 0.692053246433782f, -0.159407706019695f, 0.710808563527500f, -0.555701359319642f, 0.625665798239905f, -0.711048329414687f, -0.672431532474912f, -0.474897384314332f, -0.196250611816064f, 0.902140605659856f, -0.459732035217428f, 0.651412290305649f, -0.686137550630920f, -0.803228611526547f, 0.371120664039117f, 0.289869860968561f, -0.720979161638185f, -0.0940498575417996f, 0.185025844935128f, 0.401524077274769f, 0.811721346556136f, 0.224659861626089f, 0.106438807548742f, -0.117458956991326f, -0.407361487623449f, 0.683891165426988f, -0.216582410631386f, 0.710644530504861f, 0.867797453793643f, 0.626683550176870f, 0.115061097783331f, 0.976742668387085f, 0.250700864990527f, 0.272723539841862f, 0.159923684669346f, 0.167713264013185f, -0.445764377935606f, -0.489538472614810f, 0.227880894824940f, 0.670702116476237f, 0.610361511284318f, 0.503801949624464f, -0.687816091694902f, -0.0413765153535617f, 0.155769004545734f, 0.921910233366689f, -0.467299226678025f, -0.991984541712805f, -0.527009262324220f, 0.248157897392517f, 0.661145853979517f, -0.975947426744844f, -0.242453990684693f, -0.277956284573619f, 0.162010437415540f, 0.889456199489152f, -0.171259539670729f, -0.0636124576727060f, 0.311318764402696f, -0.227771282875219f, -0.567702050585727f, -0.132881625149059f, 0.870846950418812f, 0.440078398779761f, -0.0908818839265000f, 0.410077545060762f, 0.917678125288724f, 0.975295290129489f, 0.736514272579886f, 0.653896379317074f, -0.166512942888681f, -0.218665383726096f, -0.0688642360506688f, -0.596589868100824f, -0.180873413844075f, 0.229002598511067f, -0.647630976455599f, 0.722615884501717f, 0.760194030884127f, 0.253262836539679f, 0.0734191803957118f, -0.941427952376035f, 0.224118866807764f, 0.634990976599086f, 0.538622500570355f, -0.591487367587299f, 0.829253069890529f, 0.426659996899884f, -0.562435396124737f, 0.924178169394878f, -0.693964899988321f, -0.520472617448914f, 0.845157115508053f, 0.162984246343684f, -0.212032053476592f, 0.0482566706558292f, 0.820584028875367f, 0.676120066619505f, 0.590174358812695f, -0.457289938956925f, -0.351282540371674f, 0.322162683499620f, -0.683726196205246f, -0.279636659553935f, -0.186133028676429f, 0.965481755833750f, -0.0550172560314044f, -0.437844829991532f, -0.448670532146325f, -0.438916826946834f, 0.830205353164842f, -0.0125988502002286f, 0.733716462327519f, 0.870000673588185f, -0.189915082276716f, -0.676269331249200f, -0.336432931956768f, -0.288892891213265f, -0.912569275291884f, 0.509853767908707f, -0.658452317958678f, -0.562848133961047f, -0.102082581799095f, 0.904062026055565f, 0.473339990381854f, 0.210234896873676f, -0.0884007008398613f, 0.720872020499257f, 0.538315255331760f, -0.884485227439286f, 0.160844002639634f, 0.625863524205804f, -0.947487159926400f, 0.362643826956149f, -0.189913270725334f, -0.110428721523612f, -0.666510263156819f, -0.214827103263521f, 0.912669747474334f, -0.973896103049543f, 0.665373714127588f, 0.148135031012834f, 0.126524689644449f, 0.00283763548841764f, 0.312700495893193f, 0.579520771033243f, 0.677583023476560f, -0.779567427807191f, 0.0694994546110597f, -0.298762697062437f, 0.655210050716681f, 0.435909078048151f, 0.322095567178671f, 0.764827170021089f, -0.713736794113842f, 0.992844460358584f, -0.735915506109616f, 0.280204875392391f, 0.584446532772711f, 0.796955505835788f, 0.742508124239176f, 0.0785523490091065f, -0.562359397016753f, 0.874448473576734f, -0.794251927759664f, -0.658767152705445f, 0.120015806343044f, 0.662372174700575f, -0.719334975225296f, -0.663474261357014f, -0.637663874969148f, 0.706137632813821f, 0.734790814693796f, -0.449118755654663f, -0.758125670003823f, 0.719059339327447f, -0.228679956701166f, -0.0782671261690160f, 0.637830522744746f, -0.178696376536345f, -0.848273935253246f, 0.840882430630200f, 0.977813953976437f, 0.565474986185913f, -0.807314895274907f, -0.100534840844589f, -0.436186956483089f, 0.854663592026441f, -0.547576146320248f, -0.621784076386717f, 0.688687549426321f, -0.688962085987764f, -0.998914668418794f, 0.751493418398842f, -0.203018738091861f, -0.881317097659280f, -0.422480898609404f, -0.321074554557095f, -0.759379357125740f, -0.806503084491033f, -0.496837315822352f, 0.217087355208111f, -0.776801484423500f, -0.445747498145286f, 0.710204776554782f, 0.274276964033182f, 0.650397224484409f, -0.709395921248168f, 0.862663541330686f, -0.946166202558813f, 0.826638502366159f, -0.450587332736099f, -0.808257632193740f, -0.414360554482101f, -0.471118187583276f, 0.981592919290155f, 0.192794908371370f, -0.314979855997427f, 0.722518962804398f, -0.795914669179603f, 0.121447532644509f, 0.0446893237592363f, 0.651720955387594f, 0.897128141094619f, 0.283834144643742f, 0.369570391543943f, -0.163784005163726f, -0.799144231493300f, 0.338136741961422f, 0.795991730702685f, 0.601735561139351f, -0.556654767533027f, 0.907044495725416f, -0.374604065784494f, 0.814308532452677f, -0.254295412850351f, 0.443103437041340f, -0.0218296619602199f, 0.826728672505738f, 0.773205771668962f, 0.171909022893217f, 0.497670481959597f, 0.954178712898056f, 0.0840098577761919f, -0.705861127301893f, 0.145663865959608f, -0.436204975766037f, 0.479359595998989f, -0.719493824988072f, -0.523146212355768f, -0.917822711649927f, -0.610003715217602f, -0.192266667446473f, -0.377507163265653f, -0.250419291332051f, 0.873627391381727f, 0.922899703740095f, -0.902411671519496f, 0.285830821349708f, -0.577368595723736f, -0.598296174995687f, -0.0152478418690674f, 0.503725955636280f, 0.946501779740920f, 0.261108140547963f, 0.206258978593364f, -0.887022338332430f, 0.989187042741485f, 0.461764104690670f, 0.305280284664753f, 0.243972878436235f, -0.573704516784209f, 0.111805651228880f, -0.373590027525854f, 0.574564836347642f, -0.712884790778729f, -0.0570130063179222f, 0.244209425500712f, -0.717492787619277f, -0.476920207759357f, -0.444169983027413f, -0.254851417015366f, -0.505678630542571f, -0.953549022234155f, -0.0316841901798541f, 0.198256779602804f, 0.151938229162240f, -0.0259028503944394f, -0.799645893003010f, -0.889308912372168f, 0.339221517072804f, 0.904784479404768f, -0.367330903112591f, 0.866281762131661f, 0.112765232993802f, -0.0852946527317187f, -0.283538359072154f, -0.734951426632046f, 0.502970854898684f, -0.541434927857400f, 0.881496286285600f, -0.227404039639917f, -0.636983936776183f, -0.0799774217214970f, -0.833780310813424f, -0.222787370954425f, 0.433143783060434f, 0.0953330524947187f, 0.965400264971588f, 0.308927931247299f, 0.344316393259575f, 0.122880788538352f, -0.898509922382301f, -0.187062523329053f, 0.705352247460646f, -0.817811000761718f, 0.303714513401701f, 0.714863075518907f, -0.00862372607283035f, -0.842715848975590f, 0.816504077307885f, 0.924594085591125f, 0.334618732730041f, -0.212414743241377f, -0.758289625449925f, 0.586405661412351f, 0.909247363444287f, -0.800422609846793f, 0.397430897916299f, -0.408827454151232f, -0.411913213123543f, -0.602703152770135f, -0.893591462026327f, 0.417648762458765f, -0.766362696266534f, -0.166060103951854f, 0.883234167729589f, -0.0741908774062401f, 0.113912882075078f, -0.268248292164738f, -0.825585719915457f, 0.885446166477969f, -0.996523379251940f, -0.000841720632677401f, 0.940286529247477f, -0.528330498750176f, 0.0938880690147421f, -0.966296878893937f, 0.891956527154360f, -0.483384605653306f, 0.257210342748458f, -0.820220338820906f, 0.363913841603935f, 0.0364865250689275f, 0.0619156958713947f, -0.645447937080250f, 0.548279343062761f, -0.289526240449473f, -0.506780094171335f, -0.901771170107367f, -0.437874075223813f, 0.748512212111141f, -0.529884246718074f, 0.924062132675193f, -0.365432219122282f, -0.263296006595835f, -0.927083881647913f, -0.192737974697553f, -0.450051159199964f, -0.543528645806642f, 0.834976909049276f, -0.426975046433596f, -0.361056079272416f, 0.883880063360531f, 0.680380429911630f, -0.553642515320953f, 0.548847108935282f, -0.357430246936948f, 0.210445016993628f, 0.949511601115471f, -0.611278947360487f, 0.344744934459962f, 0.0684247970496175f, -0.877154656281116f, -0.521992702610556, -0.0303764312006813f, -0.647220068176984f, 0.693175336224119f, -0.0955602614554496f, -0.765579758912278f, -0.821318118938906f, -0.220936603794347f, 0.159013709512021f, 0.0222743973539492f, 0.569438412513281f, 0.896083437551563f, 0.973699071868637f, -0.403438951991928f, -0.976931032127622f, -0.0720613180573018f, 0.0788813367661694f, -0.430781354548607f, 0.580378296309349f, -0.175446689199481f, -0.256743557012462f, -0.696667845393283f, 0.870473046831235f, 0.146660713923108f, 0.277741407197705f, 0.502075064404417f, 0.396530064046844f, -0.000209092342246420f, -0.977003947244262f, 0.451457326960000f, 0.420509664462095f, -0.0826395067671402f, 0.461120688156973f, 0.786867285802415f, 0.429254905841222f, 0.894426863739026f, -0.670297281923597f, -0.833650409296060f, -0.908588009702110f, 0.516311115539149f, 0.975234001829324f, -0.532953533466378f, 0.775291582519158f, -0.0136022600428900f, 0.654817093112596f, 0.363512141498233f, 0.624779024037534f, 0.0237004661473674f, -0.172570506046968f, 0.401807838319043f, 0.997391258152958f, -0.553969395939123f, -0.415425175833161f, -0.758032843655304f, -0.482766088920005f, 0.637574309072414f, -0.729000055114342f, 0.699851428676091f, -0.827508053421131f, 0.900655803848482f, -0.431149800814228f, 0.0369409101983413f, -0.378608101457895f, 0.237564147838841f, 0.533020461112441f, -0.280269627508005f, -0.864065787343603f, -0.0381481642453043f, -0.566886547530062f, 0.539727700361167f, 0.166859339425035f, 0.850080295054718f, 0.384690146030125f, -0.384995288415294f, 0.303656036600558f, -0.580297619022502f, 0.0649069482840878f, -0.162922327392773f, -0.235019427063355f, -0.265468718118809f, -0.121827312187455f, 0.0416628805824146f, 0.343481543012411f, -0.251429566892972f, -0.868100204320718f, -0.802636407512128f, -0.549547579028752f, -0.570017983863503f, -0.853634311513627f, -0.564570567173235f, 0.955944215494794f, -0.0930750790375956f, -0.160319122401953f, -0.640886790354213f, 0.798634607857513f, 0.503051518023559f, 0.765247226736789f, 0.909476811674882f, 0.677590253114963f, -0.110641683440517f, -0.336445241915220f, -0.684064840782028f, 0.962285048920031f, 0.883303701653897f, 0.981819291389659f, -0.597290928759656f, 0.215792997443025f, -0.847656608719347f, 0.679887992445640f, 0.299901700372808f, -0.677306526467426f, -0.348340058872692f, 0.651490451411335f, -0.133387041637395f, 0.718311240322040f, 0.0869279817052975f, 0.155413706090559f, -0.869119988858735f, -0.566773040844476f, -0.0513826414151206f, -0.368087669232071f, -0.978175512831125f, -0.229213501073727f, 0.344608572405871f, -0.663307667219997f, 0.437238632879575f, 0.00205230197288353f, -0.0897076092856746f, 0.834529513214144f, 0.131872357342232f, 0.113081940417244f, -0.418620232731326f, -0.317993033651213f, -0.740303025960662f, 0.423423655701288f, -0.300833032468860f, -0.458960388256530f, 0.692670405117589f, -0.559944357561921f, 0.0168623577148430f, 0.568661331088367f, -0.385055363002398f, -0.356055436463140f, -0.794446573681063f, 0.908870080953069f, -0.295500656666577f, 0.800625150733729f, 0.206307902542489f, 0.729591183391974f, -0.0655746333947396f, -0.261707022686154f, -0.802380330579914f, 0.0812359238243023f, -0.00528231140765212f, -0.725740453383981f, 0.919076065030463f, -0.896497189839174f, 0.861919731820265f, -0.804273875755869f, 0.230339021648310f, 0.296779613186519f, -0.349872572510143f, -0.270230381483447f, 0.0368924200249658f, 0.581340248642417f, 0.943620537648739f, 0.715012058065301f, 0.528414993233909f, 0.695917111744314f, -0.634354198968852f, -0.483786223099716f, 0.565405035681248f, -0.530076864213017f, 0.363019522302994f, -0.825556544716473f, 0.891096876998683f, -0.990692760548295f, -0.450641405862313f, -0.597008073985341f, -0.464377765418678f, -0.942926913464693f, -0.871399725569805f, 0.232335933943403f, 0.858786794807406f, -0.528589179815518f, -0.324757177062634f, 0.595880088750788f, -0.976574570427974f, -0.423824220654658f, -0.832990206908489f, 0.198704682807118f, -0.168244652325292f, 0.843066822744011f, 0.0912498543932607f, 0.485570815146582f, -0.104653316420662f, -0.623461298489716f, -0.807713596811018f, 0.737782734425857f, 0.456364368166532f, -0.430703367862900f, -0.188953991637209f, -0.827984282695373f, 0.0246267653665548f, 0.891225605267640f, 0.910600867999638f, 0.345236086687552f, -0.600682365520065f, 0.833182106437698f, 0.213749250288017f, -0.0866339102562885f, -0.618385082289017f, 0.859527120927500f, 0.749978780964161f, -0.334770513867011f, 0.242140166670949f, -0.196268320459958f, 0.611789869603675f, 0.655057159657307f, -0.603759576722096f, 0.614654509385217f, 0.144145218488192f, 0.959930150756613f, 0.485009777784726f, -0.564230295010912f, -0.404716165405314f, 0.0442672151313601f, 0.929486639423805f, 0.409386317338224f, 0.527053707674182f, 0.899087569745327f, -0.933259779365388f, 0.265159475034860f, -0.858300862890810f, -0.870994388031662f, 0.354868177430506f, 0.00956840260511749f, 0.429740959889133f, 0.649668163567379f, -0.744532888765288f, -0.967499901569196f, 0.556703631745254f, 0.535130550118618f, -0.639502350153040f, -0.604586469532735f, 0.0799683564329623f, -0.156074786599444f, -0.348308700325411f, 0.217829052228100f, 0.545642400171123f, -0.303317700019152f, -0.473220675222451f, -0.239688108834945f, 0.0998500862725149f, -0.962734081833842f, 0.870743993144299f, 0.464578557934316f, 0.184511089576136f, 0.559729843314504f, 0.0702052363354577f, 0.632714874625648f, 0.212930743289312f, -0.454606863365109f, -0.592679055778218f, 0.287649993384466f, -0.457293694071368f, -0.423493046785686f, -0.0674763327876298f, 0.242131064298176f, 0.488581911885965f, -0.464567743213882f, -0.387515661812354f, -0.914585596974616f, -0.255803162310627f, 0.941267268311980f, 0.690278917089395f, 0.302397314111962f, -0.178461434689705f, -0.949279941481428f, 0.160440202901122f, -0.970582196769486f, -0.0119478205074164f, -0.206440255898676f, 0.221640403444713f, -0.819801447827624f, 0.263614394802488f, 0.616376195532700f, -0.596859494305351f, -0.118659509995453f, 0.458168997595326f, -0.0400474705134108f, 0.934465050133603f, -0.852936731989621f, 0.0191637795580570f, 0.298534793677081f, -0.857491630206749f, -0.0141198383157879f, -0.365027350962024f, 0.450964838023674f, 0.351383095290905f, -0.387039947149600f, -0.983994933095116f, 0.610531582220017f, -0.0446025524732094f, 0.216718014780746f, -0.676819246943449f, 0.0385619292249610f, 0.192482456707739f, -0.288809653393521f, 0.241774557042318f, -0.444638770943313f, 0.535319194413803f, 0.374773141606987f, 0.186364279454450f, 0.0701814972821988f, -0.452753172654203f, -0.350918291268194f, -0.332963791049667f, 0.179301863965318f, 0.954101654404080f, -0.687960044344130f, 0.611454049205213f, -0.696789567124132f, -0.551566492897529f, 0.656434797122885f, -0.601779335396959f, -0.265656331560395f, -0.528821434638507f, 0.153601151147409f, 0.514739334540489f, -0.0517769842323894f, -0.659246830986894f, -0.453055366696259f, -0.0515886000780059f, 0.958478845408115f, 0.0221452906045994f, -0.159960643390796f, 0.816263632871352f, 0.245244170325114f, -0.0919839688704780f, 0.947170598807362f, 0.846772793441790f, 0.247105133025056f, -0.801972939368103f, -0.224977420586025f, 0.130099925027197f, 0.497816036746753f, 0.308139730113712f, -0.0536876417759813f, -0.492022090866895f, 0.188938438822753f, -0.400894058284033f, 0.314370104391157f, 0.618580768947071f, 0.830051263404639f, -0.228700130023340f, 0.811855169643177f, 0.0924092179787017f, 0.273652523319809f, -0.0624274843235475f, -0.503696982048589f, 0.510545161203341f, 0.341823133345436f, -0.437486933663093f, 0.0134072800031224f, 0.613837993234983f, 0.740945655313894f, 0.135311460882606f, 0.464832228842466f, -0.973962843371452f, -0.519388256678232f, 0.631469277357519f, -0.936937468616713f, 0.208677911871604f, -0.0946010975796272f, 0.560587233611855f, 0.230925763372331f, -0.637408482848184f, -0.679175194353885f, -0.408696637706987f, -0.0837464598184048f, -0.911070817707239f, 0.985815432104941f, -0.208807972878988f, 0.741966810464688f, 0.162772839973564f, 0.717702638881939f, 0.490767958961575f, -0.835565390813677f, -0.878516167634055f, -0.956727838876563f, -0.00772081382858891f, 0.355227897612178f, 0.202889185809854f, -0.431078767653467f, 0.106936101717808f, 0.354494042302258f, -0.619623833602791f, 0.193065593078352f, -0.105803087758606f, 0.151828327005194f, -0.141094922099930f, 0.847569902283069f, -0.656683924792181f, -0.880754505470701f, -0.421714047610595f, 0.681762288858050f, 0.633712681698887f, 0.947060360650644f, -0.959122611588459f, -0.0690574969687099f, -0.805062392278087f, 0.226501754467861f, -0.414732397455275f, 0.242398867364043f, -0.831838824773804f, 0.00787391802290793f, -0.860692119913991f, -0.391321299589110f, -0.0548681430681355f, -0.992920640472037f, 0.0975642331777702f, 0.894630836703243f, 0.767919825689366f, -0.260878774442215f, 0.407457430171103f, 0.140688657702825f, 0.737494845272763f, -0.650969054257040f, 0.230613259000797f, -0.0986876345046772f, 0.0996951163848971f, -0.679173062298700f, -0.760174222364469f, -0.613840714529317f, -0.692138390397415f, -0.0919103790884603f, 0.0259548517830916f, 0.463763807478796f, -0.859327137970617f, 0.298600182982665f, -0.591236092977368f, -0.994984881037264f, -0.0533840054951049f, 0.544979189292485f, 0.652482875230260f, 0.897548627394727f, -0.340241293753474f, 0.508237349558163f, -0.611986702936889f, -0.399952468536369f, -0.758494484998191f, -0.148960755782999f, 0.895231513826071f, -0.870487943961511f, -0.172763884748068f, -0.652702954266129f, 0.784450103085903f, -0.428504279168614f, -0.347266234450861f, -0.0897193897382391f, 0.760686883857503f, -0.0863659842493281f, -0.453544362916610f, 0.713112885874267f, -0.529914378597266f, -0.134507787695203f, -0.590955798880753f, -0.372583442870916f, 0.646730663631020f, -0.809515553972267f, 0.0226873348847205f, -0.209338539804651f, -0.737170063193136f, 0.365916689978321f, 0.658019395382111f, 0.733982378695990f, -0.579926149814113f, 0.973814182111372f, 0.933875763922095f, -0.985234946636757f, -0.103124599698243f, -0.798304574918884f, -0.119705341414667f, 0.205941898284561f, 0.111088288053652f, 0.418598493379981f, 0.309112287901667f, 0.0865232803642195f, -0.281174085998345f, -0.158426951248790f, 0.156672456990889f, 0.608691108739118f, -0.124654784531448f, -0.372060827503666f, 0.555750853569654f, -0.481715370485256f, 0.411012047999522f, 0.265636511301544f, 0.164466400718006f, 0.427292785417094, -0.407665783814271f, 0.0463239131527564f, 0.0109249300633605f, 0.0949704798708169f, 0.223291931618591f, 0.708651599857453f, 0.810927407452143f, -0.298811874805995f, 0.347215272448441f, 0.778225160999446f, -0.981258755328673f, -0.629231280170021f, -0.948786159268210f, -0.0530522786747270f, -0.665046033882002f, 0.776993795678436f, -0.604492154463805f, -0.906360689482177f, 0.543616910115371f, -0.501547360013149f, 0.571784796850774f, 0.868511495621889f, 0.783008382563488f, 0.571870376568081f, 0.0471150346240308f, 0.402433510592678f, 0.661353159662286f, 0.0253381317208246f, 0.720141243708461f, -0.478805385943742f, 0.989639021624774f, 0.538614599364854f, -0.282810721919526f, 0.888399971333007f, 0.118572990347886f, 0.564528382703688f, 0.988296121763412f, 0.509638594649021f, -0.797738059997026f, 0.0363326380089621f, 0.978315833815278f, -0.483368013204689f, 0.879051054425480f, 0.632539830439323f, 0.722677742708361f, 0.578919286433726f, -0.250721628167261f, 0.534435049744896f, -0.0404568429105234f, 0.00805525426120179f, 0.841210870775473f, -0.731771544679396f, 0.713758914490801f, 0.830250762535296f, 0.436563669872217f, 0.567024378980237f, 0.983941121609744f, -0.253548560865555f, 0.647105012325159f, 0.434994339049196f, 0.130837710207442f, -0.775136733344706f, 0.234917279141211f, -0.498429841761386f, -0.273571256415041f, 0.247467425899991f, -0.970396693506149f, 0.975835855884816f, -0.347896516486866f, -0.552856369180847f, -0.887336234316568f, -0.573271015958957f, 0.910862901097874f, -0.807236601077904f, -0.523971593712952f, -0.263589563369279f, 0.591056276091253f, -0.320168527954128f, 0.726795865615521f, -0.731502115921006f, -0.942225519371229f, 0.268573107637337f, 0.380348127119473f, -0.284539943611895f, 0.117478291379931f, -0.817442486350524f, 0.0734705767013011f, -0.626880755668906f, -0.873066996524459f, -0.528675805715351f, 0.490255491577847f, 0.398142666604162f, -0.911320079669940f, -0.870350237514323f, 0.854587452657144f, 0.736349579728106f, 0.948232845958681f, -0.00126774478569258f, 0.905641169934000f, -0.965500575551565f, 0.0831330388550517f, -0.892713267782484f, -0.277958019172831f, 0.312987842344813f, 0.484268977417485f, -0.365960524226328f, 0.177956605738091f, 0.913776767689874f, -0.897537691614058f, 0.473075982698961f, 0.913190042662185f, -0.00843862630950820f, 0.972679442298938f, -0.856058592202917f, 0.264007224067230f, -0.138444823656136f, -0.386195416368251f, -0.286657907928107f, -0.231200657384828f, 0.917365701941188f, -0.271317547281263f, -0.252691685075831f, 0.893742787021399f, 0.512463051119608f, 0.979155111008605f, -0.472272776864686f, 0.238767541974988f, -0.672234403865928f, -0.846783135777377f, 0.0877594573148737f, 0.493055606176910f, -0.289012308379085f, 0.416463895880697f, -0.0795051375851281f, -0.476692131327163f, -0.430471976159529f, -0.701875030095239f, 0.724684336417516f, 0.984802039066595f, 0.798285421773762f, 0.000509924988974175f, -0.0852199551444761f, -0.709724122158260f, -0.332735158942919f, -0.741119907407496f, 0.729608513555970f, 0.500578022862182f, 0.520862987462710f, 0.565678561009731f, -0.393741545311224f, -0.568866018100912f, 0.571654318026290f, -0.817900961532165f, -0.793268461448962f, 0.614914392385859f, 0.763415306986536f, 0.450074180772758f, -0.737435729799608f, 0.841185794339245f, 0.894276069286366f, -0.276262284222369f, -0.798623475612628f, -0.280994234105732f, 0.821175230597885f, -0.474251640366966f, -0.190039801864015f, 0.0663032720971493f, 0.884162053156770f, -0.162023139878049f, -0.963135153785511f, -0.582213329804047f, -0.328536493809765f, -0.938405687658462f, -0.0171569611327957f, -0.727260847907578f, 0.419920927745257f, -0.361592243835530f, 0.476989471873569f, -0.146161675185107f, 0.431817832405826f, -0.371528849369885f, -0.940567978751516f, 0.165203770962029f, 0.781321525273307f, 0.0585592625092357f, 0.573299596753579f, -0.378869924017182f, 0.523139576520889f, 0.385605607116478f, -0.235893429970747f, 0.285814921067909f, -0.121941292771133f, 0.621558611608942f, -0.0860979132283732f, -0.627097832687809f, -0.312083243705910f, -0.494490796681559f, -0.987187334387934f, -0.0804474888246625f, 0.496400656176795f, -0.851811189314651f, -0.791398271297849f, -0.868174317799275f, -0.226794668997878f, -0.335339474552766f, -0.276765924750817f, -0.395876032147377f, -0.740529136126816f, -0.167799472110453f, 0.593129248263724f, 0.336783120133436f, 0.248892158925787f, 0.950120283075237f, -0.795216613504226f, -0.574731116508357f, -0.822689608026685f, 0.973698546284335f, 0.125166556654624f, 0.588150318080073f, 0.128654744345192f, -0.219207714307262f, -0.271053050307713f, 0.124071241265810f, -0.618209718015327f, -0.766619799595349f, -0.478340220431165f, -0.446873929629545f, 0.978019432749647f, -0.627041040766022f, 0.169323691066764f, -0.714079827532216f, 0.386101296128268f, -0.360225804976135f, -0.236797717782837f, -0.311635747131794f, 0.0482888201705840f, -0.477302740867809f, -0.427349080854399f, 0.390352470816329f, 0.611790541936623f, -0.648292156214605f, -0.345871618789073f, 0.509300603302844f, -0.0142202703124219f, -0.570248077753979f, -0.0629178211029751f, -0.737806048037047f, 0.497750084049821f, -0.761650107803135f, -0.788756591098617f, -0.994497286039420f, -0.987344273533962f, 0.657151987467984f, -0.763708299084062f, -0.0729359162118841f, 0.0455275633022023f, -0.101919187896584f, 0.457804242981095f, 0.0117715388281796f, -0.274125197027132f, -0.949738804931191f, 0.762108173886486f, 0.405150754308562f, -0.733330375873553f, -0.712774896799572f, -0.791947616412901f, 0.444023894424500f, 0.00507562975249609f, -0.900698136223538f, -0.576055334977054f, -0.948895529956106f, -0.832665060374124f, -0.992753953473078f, -0.0674086978315183f, 0.569494111501383f, -0.962269067721443f, -0.489700810475570f, 0.972626508328545f, -0.777400448149780f, 0.115588644128954f, 0.0730469703310024f, 0.523584488072518f, 0.659055312807301f, 0.134198234373838f, -0.797833055125151f, -0.167842823235145f, -0.662347837139732f, -0.537544370279756f, -0.622353549740796f, -0.789789664448618f, 0.985300123665319f, 0.862449845163424f, 0.973193986256980f, 0.148883268671144f, 0.283619537155083f, 0.508503183151258f, -0.246167305966866f, -0.259543094514413f, -0.778029136807597f, 0.128978622849116f, -0.920978818238085f, -0.116324837544276f, -0.261472397833253f, 0.772449038068069f, -0.696754008784325f, 0.980778877985902f, -0.227636956328402f, -0.472493776528032f, -0.568519858000960f, -0.151689463117960f, -0.102997587484899f, 0.464752146042376f, -0.839114793935065f, -0.0325074343587592f, -0.180618880765978f, 0.0132253638432844f, -0.646173464496730f, 0.821983901071593f, 0.657453744559881f, 0.786315172070382f, -0.438718096604728f, 0.702691078885442f, 0.859957412428682f, -0.505281395658564f, -0.236722160990303f, -0.698465568366759f, -0.746418979540090f, -0.218205126412646f, -0.808715244840435f, -0.949813739800491f, 0.176975348790769f, 0.723960974918154f, -0.139253733704369f, -0.387224393658603f, -0.869945438924443f, -0.396979039594941f, 0.0256060022407458f, -0.566074790002811f, -0.161564565183606f, -0.736189868188370f, -0.205593811665825f, -0.628996407588712f, -0.0266462623004120f, -0.344127255771429f, -0.229003801178142f, -0.469786561635510f, 0.258249378153965f, 0.160442939158622f, 0.0528817242116550f, 0.261960766261548f, -0.571069557415276f, 0.411333771884545f, -0.145205354714326f, 0.249324532476397f, 0.163889600722793f, 0.649915677347011f, 0.147077371087195f, -0.227104208942068f, 0.867390199578604f, -0.0734153565896754f, 0.0491208061060167f, 0.0360590744216485f, 0.181620126101180f, 0.0567549454976457f, -0.856976992549465f, -0.242511192726339f, -0.624770508991394f, -0.793161214564285f, -0.251208532727981f, -0.833192309869275f, 0.368166434661069f, 0.939730260791580f, 0.305796202211942f, -0.598830491282818f, -0.0575368190467946f, 0.371329658849021f, -0.227872714677810f, 0.707539568196379f, 0.795186297468385f, 0.475847791658551f, 0.829361555893632f, 0.405386540930889f, 0.213282954068900f, 0.767339023510319f, 0.525055513018554f, 0.259437496637378f, -0.524342591286100f, -0.731515526086696f, -0.233118783725590f, 0.237972339628935f, -0.933985285078109f, 0.537013420173496f, 0.498819465200784f, -0.407713459607516f, 0.382821417923595f, -0.416894700661466f, 0.0787266904103943f, -0.0627973593192392f, -0.320105342653426f, -0.844066834407447f, 0.138221622417319f, -0.676665423871596f, -0.961043785105959f, 0.832268610130385f, -0.905530890441773f, -0.114191325652611f, -0.376697124207843f, 0.390323137798417f, 0.953143142925101f, 0.983427991280007f, -0.0895687386326503f, -0.681543125061097f, 0.677131540142176f, -0.867715848764628f, -0.812718786220309f, -0.212509939486840f, -0.990002327123638f, -0.0682855560011961f, 0.129310729289606f, -0.623746296335073f, -0.285580241032587f, 0.235626081900812f, -0.611973228709249f, 0.539189737955466f, 0.970058678533189f, 0.901944358898624f, 0.168094826408153f, -0.666711281252260f, 0.965612752173968f, 0.651034558458719f, 0.687501917067508f, 0.758614314567106f, -0.839396045781239f, -0.552775028233564f, -0.528941743867256f, 0.174761156721889f, 0.243585712774679f, 0.588913151268911f, -0.306898192880627f, 0.921540023069231f, -0.0223654942298541f, -0.102408576957649f, 0.612577852207921f, 0.835809058447089f, -0.437118459197839f, 0.455316033239981f, 0.311435507416257f, -0.648992336007256f, 0.346823844785409f, -0.632080213667648f, -0.599678627679202f, -0.653822991854328f, 0.484305292443427f, 0.782046295685087f, 0.960987598814982f, 0.627169162605570f, 0.948092598306120f, -0.185268381817018f, 0.602489977060513f, -0.885827813790617f, -0.00179203147433582f, -0.175476447614991f, 0.0461282236560925f, -0.898013889602944f, 0.256310837914276f, -0.733422110056865f, -0.740091677658095f, 0.966724540497493f, 0.328056986822768f, -0.267854591449557f, 0.670545831663244f, -0.356204313297688f, 0.0729865206358908f, -0.594530723723669f, 0.519965324048968f, 0.0632129606097647f, -0.878434885663544f, -0.497945943395010f, 0.0151854050905818f, -0.218036856012343f, 0.547721213710874f, -0.0915514918588898f, -0.279344098401951f, -0.228654882218650f, 0.100432155997130f, 0.802024600677294f, 0.175832345686877f, 0.0551231013299744f, 0.938247319394824f, 0.639298571360036f, -0.291461603371678f, -0.853503115314794f, -0.604829242631156f, 0.0291571486740745f, -0.932575328418390f, -0.621235088415116f, 0.403040314052094f, -0.809695618266849f, 0.966605888732736f, -0.199254401023053, -0.540808222970056f, -0.0141840769249790f, 0.114579158224093f, 0.466889318471371f, -0.145415211797766f, -0.846707387707480f, -0.881237200733915f, -0.410798723199712f, -0.637697860299854f, -0.196366036081372f, 0.193267531425712f, -0.258591200841940f, -0.173003722066551f, 0.478121376006132f, 0.953819951501542f, 0.969916001975448f, 0.131515861287576f, -0.499829658784781f, 0.320952777516193f, -0.226980682212371f, 0.766886115655233f, 0.647310434110803f, -0.772594685974992f, 0.772645949480187f, -0.936357605801364f, -0.671842916281206f, -0.595127074295355f, 0.335132581825520f, 0.648964430112689f, -0.793376819398441f, -0.963663232647360f, 0.914308824314478f, -0.397663128784982f, 0.803240040231588f, -0.291039120047626f, -0.339918835846510f, -0.208620988780609f, 0.278177231697424f, -0.833157746552451f, 0.260554706029473f, -0.580537744139231f, 0.918561093477862f, 0.641368468308093f, 0.827379039283645f, -0.412231303854834f, -0.518315486749742f, 0.423356687848085f, 0.0777277584993787f, 0.394127392657178f, 0.609705410002715f, 0.264669032561337f, -0.460555696512027f, -0.0858908123066196f, -0.281781559603429f, -0.179777723960362f, -0.00449990348855067f, 0.803703377739133f, -0.155074032314596f, -0.00206139428833696f, 0.0661730930565525f, -0.737509215752079f, 0.620182143819587f, 0.114750705414661f, 0.545663051433958f, 0.661601724477194f, -0.592280382351976f, 0.609240020031149f, -0.968781019917808f, -0.668068368389875f, 0.206915551463500f, 0.0951453192552747f, 0.268580107578401f, -0.0450052302342363f, -0.933589842483940f, 0.236570492858402f, 0.0688734168318912f, 0.930163232697303f, 0.435953476823146f, 0.533759385687075f, 0.368282038662015f, -0.602312961473778f, 0.709516631712345f, -0.168303926671961f, 0.130670870119294f, -0.657736111745007f, 0.115028598388756f, 0.173728026281032f, -0.681671363429886f, -0.538786035950873f, 0.481457671665448f, 0.0136795278434168f, -0.570065342244344f, 0.188187050857249f, -0.352869308173680f, -0.979175308628854f, 0.223702879460018f, 0.994220466087713f, -0.147795166105729f, 0.218427535879435f, -0.120050826084179f, -0.0124939247430063f, -0.645134875027126f, -0.503122688484778f, 0.534123007328982f, 0.619710972635444f, -0.234248243706177f, 0.987144458053815f, 0.261284702576427f, 0.851827092094236f, 0.750019654249059f, -0.926154630610335f, 0.449356103243440f, 0.783011320523296f, -0.459228158107270f, -0.228877816937867f, 0.271108937592868f, -0.676085611673506f, 0.783114428240160f, 0.636093784021493f, -0.754110314308629f, -0.546386104880684f, 0.0385811136139234f, -0.768951137117397f, -0.644624743947807f, 0.00890157035391148f, -0.0792572116273387f, -0.989980668770044f, 0.603057533157075f, 0.280835727469123f, -0.634716709420524f, -0.712669415138995f, -0.424129916157595f, -0.436923748487354f, 0.467366013559791f, 0.907740481011987f, 0.788617065944311f, -0.152237692069130f, -0.963044404518533f, 0.907393322909416f, 0.806867676446313f, 0.699270310021791f, 0.107867603776547f, 0.127360747415417f, -0.502645789696788f, -0.511744166872327f, -0.121672719343072f, -0.596527146770249f, 0.410180172377510f, -0.852889849908704f, 0.278972213674154f, 0.0260156356783650f, 0.997558501949683f, -0.499245840292893f, -0.451169267624132f, -0.881643497362337f, 0.986957209874262f, -0.129608292321380f, 0.935829016346258f, -0.649021465281634f, 0.550436689069794f, 0.278888743082679f, 0.0137769346664500f, -0.660666060213522f, -0.416709136728042f, -0.302903068397225f, 0.180657445835459f, -0.908195955986293f, 0.280056533234627f, -0.660025789034158f, -0.798207438952561f, 0.901575224780405f, -0.608702932295102f, 0.318860199910414f, 0.874005722023406f, -0.0816057579181704f, 0.981671341873017f, -0.339234700161323f, 0.559717959858931f, 0.390363525109105f, -0.309384476087470f, 0.956563156784297f, -0.623734354817613f, -0.196627375289105f, -0.702076014509088f, 0.293098766889643f, -0.617152224560368f, 0.859117491438645f, 0.661015739867647f, 0.0747554166353739f, -0.282417009682732f, -0.667461537762524f, -0.451029960388404f, -0.464518668674360f, 0.591389440503293f, 0.552648871601186f, -0.242406315814918f, 0.147876771864331f, -0.00605730052917419f, -0.850648363553678f, -0.659957159486993f, -0.165475362851332f, 0.204150315434812f, -0.665767311591476f, -0.716154682563576f, 0.417487456932076f, 0.448184990956287f, 0.733843802413198f, -0.170228277851921f, -0.346809954182150f, 0.956058632188011f, 0.0315623945930987f, 0.509027121691627f, -0.147826185909834f, 0.717423768198044f, -0.153258078639530f, -0.586190749016474f, 0.122228033051868f, -0.884999045468193f, -0.364729711773548f, 0.0869976154696972f, -0.793532199218799f, 0.533748273468951f, -0.852754376244435f, 0.294752047699830f, 0.136764278163013f, 0.838074791168389f, 0.795224598541123f, -0.778005568697498f, -0.260924769562304f, -0.303759147861313f, 0.273726011325558f, 0.530476779331216f, 0.0866801234357086f, 0.0677702376031544f, 0.724353404182035f, -0.974710312543683f, 0.791838170482991f, 0.247768259921660f, 0.979431048271259f, -0.386992541899814f, 0.0640038231299192f, -0.00457726816166693f, 0.371455553726539f, 0.647649995487707f, 0.268304945808406f, -0.320428608173924f, 0.0927511620029309f, 0.256010036486838f, 0.740396212690346f, -0.656873241472848f, 0.823534292439413f, -0.820380362458844f, -0.453300307443023f, 0.784238355222248f, 0.912791840124321f, 0.0999478035440859f, -0.212620916988855f, 0.0170290625008669f, -0.589062380565879f, -0.171833624145497f, -0.524918122866141f, 0.961528292650892f, 0.101262818636430f, 0.941455114569308f, -0.967226220138929f, 0.616781547648562f, -0.913823148383971f, 0.274508821885917f, 0.924653374107756f, -0.866302908989783f, 0.227541907715857f, 0.0907574361370582f, -0.127499097943315f, -0.942071371521895f, -0.119419163649152f, 0.674284088819523f, 0.881328505929745f, 0.246290207551702f, 0.0547607254148590f, -0.462882918359077f, 0.888969728230585f, 0.666583509571921f, 0.238417203582380f, -0.279842248122727f, 0.855260336845903f, 0.314306869401155f, -0.188654877893078f, -0.609304918228150f, 0.169453885325888f, 0.265617874907016f, -0.943423537926184f, 0.493118676869450f, -0.386147750024858f, 0.0103920154342951f, 0.753677832518483f, 0.363353012331066f, -0.286620106520429f, -0.623332994906295f, 0.183966714365642f, -0.124278942882867f, -0.687889346448110f, -0.509002319646341f, -0.705769785650865f, 0.600586126467172f, 0.814989294939922f, 0.198959025256652f, 0.477897007911356f, 0.757957814363899f, 0.617755921094230f, -0.353589871947529f, 0.419688673189503f, -0.860584865805600f, -0.0232779635193843f, -0.789951030889387f, -0.893196700185750f, 0.610996462535201f, 0.847373590985131f, -0.989553358501822f, -0.367651771428081f, 0.741563712056747f, -0.923595352848971f, -0.580174215739367f, 0.577092000574232f, -0.910872910110270f, -0.907499077314190f, 0.692372247654077f, 0.810694134592084f, -0.608596332548047f, 0.761254615051625f, 0.0546240611947364f, -0.393956427117691f, -0.116127831535139f, -0.0352014590913388f, 0.374742194768889f, -0.927344099730091f, 0.939301337232488f, -0.969831716293845f, -0.0489333404770240f, -0.586719398908953f, 0.0235541378462407f, 0.388882981728285f, -0.0728483242295113f, 0.418280445244943f, -0.574289337805456f, -0.779962057565259f, -0.835190719754123f, 0.918717316922657f, -0.765889988109173f, -0.935310664146932f, -0.0750906135370848f, -0.256246546197534f, 0.693865929543926f, 0.592800255527084f, 0.836743344551035f, -0.801953470827580f, 0.0595524153568945f, 0.158376549012192f, -0.429364776412726f, -0.450531184162532f, -0.169317185285268f, 0.420344570579195f, -0.902838087574441f, -0.654676904337469f, 0.941802178622893f, -0.411034608875500f, -0.455381371659872f, 0.582371240315256f, -0.276150504466756f, 0.164276403376185f, -0.960238817086774f, 0.590055303394028f, -0.995185688656226f, -0.285809748360467f, -0.792066171752882f, -0.456123303649101f, -0.864169187700384f, 0.798745251308383f, -0.517673464079948f, 0.523086536900369f, 0.398784615211052f, 0.908677185333852f, -0.434846969584770f, -0.277024535706464f, 0.575800013122065f, -0.0423952171673019f, -0.327530749916683f, -0.401220909875065f, -0.232577533032385f, 0.577630268254944f, -0.733290201484409f, -0.297499739456838f, 0.166541885572822f, -0.646828619904039f, 0.0312662656272755f, 0.754145050600965f, -0.908499825108811f, 0.315379190361296f, 0.366242661082351f, 0.867903806940678f, -0.613391940567782f, 0.00760147209048068f, 0.953424134034927f, -0.812551125910811f, 0.734998935207065f, 0.781720854678504f, -0.653974423413561f, 0.612587888218526f, -0.297359914095386f, -0.409559158758694f, -0.143962230212734f, -0.814888102841114f, 0.359131810502055f, 0.356924557741016f, -0.872415989401612f, 0.716849887848809f, -0.374916928585818f, -0.0702264435280595f, 0.329843438660215f, 0.0956097573088677f, -0.937528128860310f, -0.322293489817529f, 0.781444964993177f, -0.810141738751828f, -0.150295079242497f, 0.846909181293597f, -0.128124277517711f, -0.752611695817661f, 0.839996835828451f, -0.0705685941510277f, 0.000366462394740585f, 0.0788016995849923f, -0.246053200655556f, -0.156645099915028f, -0.460752333796863f, 0.622021359864204f, 0.722871957583123f, -0.257873353238499f, -0.309810184480446f, 0.765248644407833f, -0.553316047243663f, -0.612742789838491f, 0.354017349601509f, 0.923293368553697f, 0.630695912377860f, -0.148750121613537f, -0.821801680234240f, 0.368247966228196f, 0.405416044101496f, -0.803232509711354f, -0.429778551911399f, -0.723837414527446f, -0.963925147452133f, 0.190882872226757f, 0.477008077263598f, -0.661282403679070f, 0.271643442525556f, -0.915994079618801f, 0.196564556546175f, 0.378359035245796f, 0.584016730657668f, -0.0377864332655202f, -0.327376192853106f, 0.850744189707984f, 0.799571679043808f, -0.111126908452029f, 0.525587242291601f, -0.404486180733535f, -0.134496922397279f, 0.0890128096708100f, -0.815560643303157f, -0.920166023598312f, -0.360079578314899f, -0.556238898466371f, -0.220978103133838f, -0.571530268052405f, 0.573332217175226f, -0.133862258696460f, -0.982130330352248f, -0.352538465285082f, 0.318683937697894f, -0.790927430842686f, 0.691168535237102f, 0.806014327242002f, -0.981639450008060f, 0.407200095027265f, 0.918249921845949f, 0.776880149695420f, -0.437773083955269f, -0.385117533333437f, 0.0115152415796460f, 0.687224538003991f, 0.992524870612626f, 0.471003324792228f, -0.873541777412034f, -0.560923118634380f, -0.726151823613842f, -0.538941951730010f, 0.772057551475325f, 0.858490725829641f, -0.168849338472479f }; # 102 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t wrap(fxp_t kX, fxp_t kLowerBound, fxp_t kUpperBound) { int32_t range_size = kUpperBound - kLowerBound + 1; if (kX < kLowerBound){ kX += range_size * ((kLowerBound - kX) / range_size + 1); } return kLowerBound + (kX - kLowerBound) % range_size; } fxp_t fxp_get_int_part(fxp_t in) { return ((in < 0) ? -((-in) & _fxp_imask) : in & _fxp_imask); } fxp_t fxp_get_frac_part(fxp_t in) { return ((in < 0) ? -((-in) & _fxp_fmask) : in & _fxp_fmask); } float fxp_to_float(fxp_t fxp); fxp_t fxp_quantize(fxp_t aquant) { if (overflow_mode == 2) { if(aquant < _fxp_min) { return _fxp_min; } else if(aquant > _fxp_max) { return _fxp_max; } } else if (overflow_mode == 3) { if(aquant < _fxp_min || aquant > _fxp_max) { return wrap(aquant, _fxp_min, _fxp_max); } } return (fxp_t) aquant; } void fxp_verify_overflow(fxp_t value){ fxp_quantize(value); printf("An Overflow Occurred in system's output"); __DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min); } void fxp_verify_overflow_node(fxp_t value, char* msg){ if (1 == 2) { printf("%s",msg); __DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min); } } void fxp_verify_overflow_array(fxp_t array[], int n){ int i=0; for(i=0; i<n;i++){ fxp_verify_overflow(array[i]); } } fxp_t fxp_int_to_fxp(int in) { fxp_t lin; lin = (fxp_t) in*_fxp_one; return lin; } int fxp_to_int(fxp_t fxp) { if(fxp >= 0){ fxp += _fxp_half; } else { fxp -= _fxp_half; } fxp >>= impl.frac_bits; return (int) fxp; } fxp_t fxp_float_to_fxp(float f) { fxp_t tmp; double ftemp; ftemp = f * scale_factor[impl.frac_bits]; if(f >= 0) { tmp = (fxp_t)(ftemp + 0.5); } else { tmp = (fxp_t)(ftemp - 0.5); } return tmp; } fxp_t fxp_double_to_fxp(double value) { fxp_t tmp; double ftemp = value * scale_factor[impl.frac_bits]; if (rounding_mode == 0){ if(value >= 0) { tmp = (fxp_t)(ftemp + 0.5); } else { tmp = (fxp_t)(ftemp - 0.5); } } else if(rounding_mode == 1){ tmp = (fxp_t) ftemp; double residue = ftemp - tmp; if ((value < 0) && (residue != 0)){ ftemp = ftemp - 1; tmp = (fxp_t) ftemp; } } else if (rounding_mode == 0){ tmp = (fxp_t) ftemp; } return tmp; } void fxp_float_to_fxp_array(float f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { r[i] = fxp_float_to_fxp(f[i]); } } void fxp_double_to_fxp_array(double f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { r[i] = fxp_double_to_fxp(f[i]); } } # 275 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" float fxp_to_float(fxp_t fxp) { float f; int f_int = (int) fxp; f = f_int * scale_factor_inv[impl.frac_bits]; return f; } double fxp_to_double(fxp_t fxp) { double f; int f_int = (int) fxp; f = f_int * scale_factor_inv[impl.frac_bits]; return f; } void fxp_to_float_array(float f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { f[i] = fxp_to_float(r[i]); } } void fxp_to_double_array(double f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { f[i] = fxp_to_double(r[i]); } } fxp_t fxp_abs(fxp_t a) { fxp_t tmp; tmp = ((a < 0) ? -(fxp_t)(a) : a); tmp = fxp_quantize(tmp); return tmp; } fxp_t fxp_add(fxp_t aadd, fxp_t badd) { fxp_t tmpadd; tmpadd = ((fxp_t)(aadd) + (fxp_t)(badd)); tmpadd = fxp_quantize(tmpadd); return tmpadd; } fxp_t fxp_sub(fxp_t asub, fxp_t bsub) { fxp_t tmpsub; tmpsub = (fxp_t)((fxp_t)(asub) - (fxp_t)(bsub)); tmpsub = fxp_quantize(tmpsub); return tmpsub; } fxp_t fxp_mult(fxp_t amult, fxp_t bmult) { fxp_t tmpmult, tmpmultprec; tmpmult = (fxp_t)((fxp_t)(amult)*(fxp_t)(bmult)); if (tmpmult >= 0) { tmpmultprec = (tmpmult + ((tmpmult & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits; } else { tmpmultprec = -(((-tmpmult) + (((-tmpmult) & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits); } tmpmultprec = fxp_quantize(tmpmultprec); return tmpmultprec; } # 372 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t fxp_div(fxp_t a, fxp_t b){ __DSVERIFIER_assume( b!=0 ); fxp_t tmpdiv = ((a << impl.frac_bits) / b); tmpdiv = fxp_quantize(tmpdiv); return tmpdiv; } fxp_t fxp_neg(fxp_t aneg) { fxp_t tmpneg; tmpneg = -(fxp_t)(aneg); tmpneg = fxp_quantize(tmpneg); return tmpneg; } # 398 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t fxp_sign(fxp_t a) { return ((a == 0) ? 0 : ((a < 0) ? _fxp_minus_one : _fxp_one) ); } fxp_t fxp_shrl(fxp_t in, int shift) { return (fxp_t) (((unsigned int) in) >> shift); } fxp_t fxp_square(fxp_t a) { return fxp_mult(a, a); } void fxp_print_int(fxp_t a) { printf("\n%i", (int32_t)a); } void fxp_print_float(fxp_t a) { printf("\n%f", fxp_to_float(a)); } void fxp_print_float_array(fxp_t a[], int N) { int i; for(i = 0; i < N; ++i) { printf("\n%f", fxp_to_float(a[i])); } } void print_fxp_array_elements(char * name, fxp_t * v, int n){ printf("%s = {", name); int i; for(i=0; i < n; i++){ printf(" %jd ", v[i]); } printf("}\n"); } # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 1 # 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" void initialize_array(double v[], int n){ int i; for(i=0; i<n; i++){ v[i] = 0; } } void revert_array(double v[], double out[], int n){ initialize_array(out,n); int i; for(i=0; i<n; i++){ out[i] = v[n-i-1]; } } double internal_pow(double a, double b){ int i; double acc = 1; for (i=0; i < b; i++){ acc = acc*a; } return acc; } double internal_abs(double a){ return a < 0 ? -a : a; } int fatorial(int n){ return n == 0 ? 1 : n * fatorial(n-1); } int check_stability(double a[], int n){ int lines = 2 * n - 1; int columns = n; double m[lines][n]; int i,j; double current_stability[n]; for (i=0; i < n; i++){ current_stability[i] = a[i]; } double sum = 0; for (i=0; i < n; i++){ sum += a[i]; } if (sum <= 0){ printf("[DEBUG] the first constraint of Jury criteria failed: (F(1) > 0)"); return 0; } sum = 0; for (i=0; i < n; i++){ sum += a[i] * internal_pow(-1, n-1-i); } sum = sum * internal_pow(-1, n-1); if (sum <= 0){ printf("[DEBUG] the second constraint of Jury criteria failed: (F(-1)*(-1)^n > 0)"); return 0; } if (internal_abs(a[n-1]) > a[0]){ printf("[DEBUG] the third constraint of Jury criteria failed: (abs(a0) < a_{n}*z^{n})"); return 0; } for (i=0; i < lines; i++){ for (j=0; j < columns; j++){ m[i][j] = 0; } } for (i=0; i < lines; i++){ for (j=0; j < columns; j++){ if (i == 0){ m[i][j] = a[j]; continue; } if (i % 2 != 0 ){ int x; for(x=0; x<columns;x++){ m[i][x] = m[i-1][columns-x-1]; } columns = columns - 1; j = columns; }else{ m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j]; } } } int first_is_positive = m[0][0] >= 0 ? 1 : 0; for (i=0; i < lines; i++){ if (i % 2 == 0){ int line_is_positive = m[i][0] >= 0 ? 1 : 0; if (first_is_positive != line_is_positive){ return 0; } continue; } } return 1; } void poly_sum(double a[], int Na, double b[], int Nb, double ans[], int Nans){ int i; Nans = Na>Nb? Na:Nb; for (i=0; i<Nans; i++){ if (Na>Nb){ ans[i]=a[i]; if (i > Na-Nb-1){ ans[i]=ans[i]+b[i-Na+Nb]; } }else { ans[i]=b[i]; if (i> Nb - Na -1){ ans[i]=ans[i]+a[i-Nb+Na]; } } } } void poly_mult(double a[], int Na, double b[], int Nb, double ans[], int Nans){ int i; int j; int k; Nans = Na+Nb-1; for (i=0; i<Na; i++){ for (j=0; j<Nb; j++){ k= Na + Nb - i - j - 2; ans[k]=0; } } for (i=0; i<Na; i++){ for (j=0; j<Nb; j++){ k= Na + Nb - i - j - 2; ans[k]=ans[k]+a[Na - i - 1]*b[Nb - j - 1]; } } } void double_check_oscillations(double * y, int y_size){ __DSVERIFIER_assume(y[0] != y[y_size - 1]); int window_timer = 0; int window_count = 0; int i, j; for (i = 2; i < y_size; i++){ int window_size = i; for(j=0; j<y_size; j++){ if (window_timer > window_size){ window_timer = 0; window_count = 0; } int window_index = j + window_size; if (window_index < y_size){ if (y[j] == y[window_index]){ window_count++; # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ((void) sizeof (( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" !(window_count == window_size) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" !(window_count == window_size) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ) ; else __assert_fail ( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" "!(window_count == window_size)" # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h", 209, __extension__ __PRETTY_FUNCTION__); })) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" ; } }else{ break; } window_timer++; } } } void double_check_limit_cycle(double * y, int y_size){ double reference = y[y_size - 1]; int idx = 0; int window_size = 1; for(idx = (y_size-2); idx >= 0; idx--){ if (y[idx] != reference){ window_size++; }else{ break; } } __DSVERIFIER_assume(window_size != y_size && window_size != 1); printf("window_size %d\n", window_size); int desired_elements = 2 * window_size; int found_elements = 0; for(idx = (y_size-1); idx >= 0; idx--){ if (idx > (y_size-window_size-1)){ printf("%.0f == %.0f\n", y[idx], y[idx-window_size]); int cmp_idx = idx - window_size; if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){ found_elements = found_elements + 2; }else{ break; } } } printf("desired_elements %d\n", desired_elements); printf("found_elements %d\n", found_elements); __DSVERIFIER_assert(desired_elements != found_elements); } void double_check_persistent_limit_cycle(double * y, int y_size){ int idy = 0; int count_same = 0; int window_size = 0; double reference = y[0]; for(idy = 0; idy < y_size; idy++){ if (y[idy] != reference){ window_size++; } else if (window_size != 0){ break; } else { count_same++; } } window_size += count_same; __DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2); double lco_elements[window_size]; for(idy = 0; idy < y_size; idy++){ if (idy < window_size){ lco_elements[idy] = y[idy]; } } idy = 0; int lco_idy = 0; _Bool is_persistent = 0; while (idy < y_size){ if(y[idy++] == lco_elements[lco_idy++]){ is_persistent = 1; }else{ is_persistent = 0; break; } if (lco_idy == window_size){ lco_idy = 0; } } __DSVERIFIER_assert(is_persistent == 0); } void print_array_elements(char * name, double * v, int n){ printf("%s = {", name); int i; for(i=0; i < n; i++){ printf(" %.32f ", v[i]); } printf("}\n"); } void double_add_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ result[i][j] = m1[i][j] + m2[i][j]; } } } void double_sub_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ result[i][j] = m1[i][j] - m2[i][j]; } } } void double_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, double m1[4][4], double m2[4][4], double m3[4][4]){ unsigned int i, j, k; if (j1 == i2) { for (i=0; i<i1; i++) { for (j=0; j<j2; j++) { m3[i][j] = 0; } } for (i=0;i<i1; i++) { for (j=0; j<j2; j++) { for (k=0; k<j1; k++) { double mult = (m1[i][k] * m2[k][j]); m3[i][j] = m3[i][j] + (m1[i][k] * m2[k][j]); } } } } else { printf("\nError! Operation invalid, please enter with valid matrices.\n"); } } void fxp_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t m3[4][4]){ unsigned int i, j, k; if (j1 == i2) { for (i=0; i<i1; i++) { for (j=0; j<j2; j++) { m3[i][j] = 0; } } for (i=0;i<i1; i++) { for (j=0; j<j2; j++) { for (k=0; k<j1; k++) { m3[i][j] = fxp_add( m3[i][j], fxp_mult(m1[i][k] , m2[k][j])); } } } } else { printf("\nError! Operation invalid, please enter with valid matrices.\n"); } } void fxp_exp_matrix(unsigned int lines, unsigned int columns, fxp_t m1[4][4], unsigned int expNumber, fxp_t result[4][4]){ unsigned int i, j, l, k; fxp_t m2[4][4]; if(expNumber == 0){ for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ if(i == j){ result[i][j] = fxp_double_to_fxp(1.0); } else { result[i][j] = 0.0; } } } return; } for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = m1[i][j]; if(expNumber == 1){ return; } for(l = 1; l < expNumber; l++){ for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) m2[i][j] = result[i][j]; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = 0; for (i=0;i<lines; i++) { for (j=0; j<columns; j++) { for (k=0; k<columns; k++) { result[i][j] = fxp_add( result[i][j], fxp_mult(m2[i][k] , m1[k][j])); } } } } } void double_exp_matrix(unsigned int lines, unsigned int columns, double m1[4][4], unsigned int expNumber, double result[4][4]){ unsigned int i, j, k, l; double m2[4][4]; if(expNumber == 0){ for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ if(i == j){ result[i][j] = 1.0; } else { result[i][j] = 0.0; } } } return; } for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = m1[i][j]; if(expNumber == 1){ return; } for(l = 1; l < expNumber; l++){ for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) m2[i][j] = result[i][j]; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = 0; for (i=0;i<lines; i++) { for (j=0; j<columns; j++) { for (k=0; k<columns; k++) { result[i][j] = result[i][j] + (m2[i][k] * m1[k][j]); } } } } } void fxp_add_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) { result[i][j] = fxp_add(m1[i][j] , m2[i][j]); } } void fxp_sub_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = fxp_sub(m1[i][j] , m2[i][j]); } void print_matrix(double matrix[4][4], unsigned int lines, unsigned int columns){ printf("\nMatrix\n=====================\n\n"); unsigned int i, j; for (i=0; i<lines; i++) { for (j=0; j<columns; j++) { printf("#matrix[%d][%d]: %2.2f ", i,j,matrix[i][j]); } printf("\n"); } printf("\n"); } double determinant(double a[4][4],int n) { int i,j,j1,j2; double det = 0; double m[4][4]; if (n < 1) { } else if (n == 1) { det = a[0][0]; } else if (n == 2) { det = a[0][0] * a[1][1] - a[1][0] * a[0][1]; } else { det = 0; for (j1=0;j1<n;j1++) { for (i=0;i<n-1;i++) for (i=1;i<n;i++) { j2 = 0; for (j=0;j<n;j++) { if (j == j1) continue; m[i-1][j2] = a[i][j]; j2++; } } det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1); } } return(det); } double fxp_determinant(fxp_t a_fxp[4][4],int n) { int i,j,j1,j2; double a[4][4]; for(i=0; i<n;i++){ for(j=0; j<n;j++){ a[i][j]= fxp_to_double(a_fxp[i][j]); } } double det = 0; double m[4][4]; if (n < 1) { } else if (n == 1) { det = a[0][0]; } else if (n == 2) { det = a[0][0] * a[1][1] - a[1][0] * a[0][1]; } else { det = 0; for (j1=0;j1<n;j1++) { for (i=0;i<n-1;i++) for (i=1;i<n;i++) { j2 = 0; for (j=0;j<n;j++) { if (j == j1) continue; m[i-1][j2] = a[i][j]; j2++; } } det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1); } } return(det); } void transpose(double a[4][4], double b[4][4],int n, int m) { int i,j; for (i=0;i<n;i++) { for (j=0;j<m;j++) { b[j][i] = a[i][j]; } } } void fxp_transpose(fxp_t a[4][4], fxp_t b[4][4],int n, int m) { int i,j; for (i=0;i<n;i++) { for (j=0;j<m;j++) { b[j][i] = a[i][j]; } } } # 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" extern int generic_timer; extern hardware hw; double generic_timing_shift_l_double(double zIn, double z[], int N) { generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std)); int i; double zOut; zOut = z[0]; generic_timer += ((5 * hw.assembly.ldd) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.ld)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (i = 0; i < N - 1; i++) { generic_timer += ((17 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (6 * hw.assembly.mov) + (2 * hw.assembly.adiw) + (5 * hw.assembly.std) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbc)+ (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); z[i] = z[i + 1]; } z[N - 1] = zIn; generic_timer += ((12 * hw.assembly.ldd) + (6 * hw.assembly.mov) + (3 * hw.assembly.std) + (2 * hw.assembly.lsl) + (2 * hw.assembly.rol) + (1 * hw.assembly.adc) + (1 * hw.assembly.add) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in)+ (1 * hw.assembly.cli)); generic_timer += ((3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret)); return (zOut); } double generic_timing_shift_r_double(double zIn, double z[], int N) { generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std)); int i; double zOut; zOut = z[N - 1]; generic_timer += ((7 * hw.assembly.ldd) + (2 * hw.assembly.rol) + (2 * hw.assembly.lsl) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.add) + (1 * hw.assembly.adc) + (1 * hw.assembly.ld) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci)); generic_timer += ((2 * hw.assembly.ldd) + (2 * hw.assembly.std) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.rjmp)); for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; generic_timer += ((15 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (4 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); } z[0] = zIn; generic_timer += ((10 * hw.assembly.ldd) + (5 * hw.assembly.mov) + (3 * hw.assembly.std) + (3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret) + (1 * hw.assembly.ret) + (1 * hw.assembly.cli) + (1 * hw.assembly.in) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw)); return zOut; } fxp_t shiftL(fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } fxp_t shiftR(fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } float shiftLfloat(float zIn, float z[], int N) { int i; float zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } float shiftRfloat(float zIn, float z[], int N) { int i; float zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } double shiftRDdouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } double shiftRdouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } double shiftLDouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } void shiftLboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; float zfOut; zOut = z[0]; zfOut = zf[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; zf[i] = zf[i + 1]; } z[N - 1] = zIn; zf[N - 1] = zfIn; } void shiftRboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; float zfOut; zOut = z[N - 1]; zfOut = zf[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; zf[i] = zf[i - 1]; } z[0] = zIn; zf[0] = zfIn; } int order(int Na, int Nb) { return Na > Nb ? Na - 1 : Nb - 1; } void fxp_check_limit_cycle(fxp_t y[], int y_size){ fxp_t reference = y[y_size - 1]; int idx = 0; int window_size = 1; for(idx = (y_size-2); idx >= 0; idx--){ if (y[idx] != reference){ window_size++; }else{ break; } } __DSVERIFIER_assume(window_size != y_size && window_size != 1); printf("window_size %d\n", window_size); int desired_elements = 2 * window_size; int found_elements = 0; for(idx = (y_size-1); idx >= 0; idx--){ if (idx > (y_size-window_size-1)){ printf("%.0f == %.0f\n", y[idx], y[idx-window_size]); int cmp_idx = idx - window_size; if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){ found_elements = found_elements + 2; }else{ break; } } } __DSVERIFIER_assume(found_elements > 0); printf("desired_elements %d\n", desired_elements); printf("found_elements %d\n", found_elements); __DSVERIFIER_assume(found_elements == desired_elements); __DSVERIFIER_assert(0); } void fxp_check_persistent_limit_cycle(fxp_t * y, int y_size){ int idy = 0; int count_same = 0; int window_size = 0; fxp_t reference = y[0]; for(idy = 0; idy < y_size; idy++){ if (y[idy] != reference){ window_size++; } else if (window_size != 0){ break; } else { count_same++; } } window_size += count_same; __DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2); fxp_t lco_elements[window_size]; for(idy = 0; idy < y_size; idy++){ if (idy < window_size){ lco_elements[idy] = y[idy]; } } idy = 0; int lco_idy = 0; _Bool is_persistent = 0; while (idy < y_size){ if(y[idy++] == lco_elements[lco_idy++]){ is_persistent = 1; }else{ is_persistent = 0; break; } if (lco_idy == window_size){ lco_idy = 0; } } __DSVERIFIER_assert(is_persistent == 0); } void fxp_check_oscillations(fxp_t y[] , int y_size){ __DSVERIFIER_assume((y[0] != y[y_size - 1]) && (y[y_size - 1] != y[y_size - 2])); int window_timer = 0; int window_count = 0; int i, j; for (i = 2; i < y_size; i++){ int window_size = i; for(j=0; j<y_size; j++){ if (window_timer > window_size){ window_timer = 0; window_count = 0; } int window_index = j + window_size; if (window_index < y_size){ if (y[j] == y[window_index]){ window_count++; __DSVERIFIER_assert(!(window_count == window_size)); } }else{ break; } window_timer++; } } } int fxp_ln(int x) { int t, y; y = 0xa65af; if (x < 0x00008000) x <<= 16, y -= 0xb1721; if (x < 0x00800000) x <<= 8, y -= 0x58b91; if (x < 0x08000000) x <<= 4, y -= 0x2c5c8; if (x < 0x20000000) x <<= 2, y -= 0x162e4; if (x < 0x40000000) x <<= 1, y -= 0x0b172; t = x + (x >> 1); if ((t & 0x80000000) == 0) x = t, y -= 0x067cd; t = x + (x >> 2); if ((t & 0x80000000) == 0) x = t, y -= 0x03920; t = x + (x >> 3); if ((t & 0x80000000) == 0) x = t, y -= 0x01e27; t = x + (x >> 4); if ((t & 0x80000000) == 0) x = t, y -= 0x00f85; t = x + (x >> 5); if ((t & 0x80000000) == 0) x = t, y -= 0x007e1; t = x + (x >> 6); if ((t & 0x80000000) == 0) x = t, y -= 0x003f8; t = x + (x >> 7); if ((t & 0x80000000) == 0) x = t, y -= 0x001fe; x = 0x80000000 - x; y -= x >> 15; return y; } double fxp_log10_low(double x) { int xint = (int) (x * 65536.0 + 0.5); int lnum = fxp_ln(xint); int lden = fxp_ln(655360); return ((double) lnum / (double) lden); } double fxp_log10(double x) { if (x > 32767.0) { if (x > 1073676289.0) { x = x / 1073676289.0; return fxp_log10_low(x) + 9.030873362; } x = x / 32767.0; return fxp_log10_low(x) + 4.515436681; } return fxp_log10_low(x); } float snrVariance(float s[], float n[], int blksz) { int i; double sm = 0, nm = 0, sv = 0, nv = 0, snr; for (i = 0; i < blksz; i++) { sm += s[i]; nm += n[i]; } sm /= blksz; nm /= blksz; for (i = 0; i < blksz; i++) { sv += (s[i] - sm) * (s[i] - sm); nv += (n[i] - nm) * (n[i] - nm); } if (nv != 0.0f) { # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "sv >= nv" # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 373, __extension__ __PRETTY_FUNCTION__); })) # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; snr = sv / nv; return snr; } else { return 9999.9f; } } float snrPower(float s[], float n[], int blksz) { int i; double sv = 0, nv = 0, snr; for (i = 0; i < blksz; i++) { sv += s[i] * s[i]; nv += n[i] * n[i]; } if (nv != 0.0f) { # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "sv >= nv" # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 394, __extension__ __PRETTY_FUNCTION__); })) # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; snr = sv / nv; return snr; } else { return 9999.9f; } } float snrPoint(float s[], float n[], int blksz) { int i; double ratio = 0, power = 0; for (i = 0; i < blksz; i++) { if(n[i] == 0) continue; ratio = s[i] / n[i]; if(ratio > 150.0f || ratio < -150.0f) continue; power = ratio * ratio; # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" power >= 1.0f # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" power >= 1.0f # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "power >= 1.0f" # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 412, __extension__ __PRETTY_FUNCTION__); })) # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; } return 9999.9f; } unsigned long next = 1; int rand(void) { next = next*1103515245 + 12345; return (unsigned int)(next/65536) % 32768; } void srand(unsigned int seed) { next = seed; } float iirIIOutTime(float w[], float x, float a[], float b[], int Na, int Nb) { int timer1 = 0; float *a_ptr, *b_ptr, *w_ptr; float sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; timer1 += 71; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; timer1 += 54; } w[0] += x; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; timer1 += 46; } timer1 += 38; # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 450, __extension__ __PRETTY_FUNCTION__); })) # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return sum; } float iirIItOutTime(float w[], float x, float a[], float b[], int Na, int Nb) { int timer1 = 0; float *a_ptr, *b_ptr; float yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 477, __extension__ __PRETTY_FUNCTION__); })) # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return yout; } double iirIItOutTime_double(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 504, __extension__ __PRETTY_FUNCTION__); })) # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return yout; } void iirOutBoth(float yf[], float xf[], float af[], float bf[], float *sumf_ref, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t *sum_ref, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; fxp_t sum = 0; float sumf = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; af_ptr = &af[1]; yf_ptr = &yf[Na - 1]; bf_ptr = &bf[0]; xf_ptr = &xf[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--)); sumf += *bf_ptr++ * *xf_ptr--; } for (j = 1; j < Na; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--)); sumf -= *af_ptr++ * *yf_ptr--; } *sum_ref = sum; *sumf_ref = sumf; } fxp_t iirOutFixedL(fxp_t y[], fxp_t x[], fxp_t xin, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[j] = y[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[Na - 1] = sum; return sum; } float iirOutFloatL(float y[], float x[], float xin, float a[], float b[], int Na, int Nb) { float *a_ptr, *y_ptr, *b_ptr, *x_ptr; float sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum += *b_ptr-- * *x_ptr++; } x[Nb - 1] = xin; sum += *b_ptr-- * *x_ptr++; for (j = 1; j < Na - 1; j++) { sum -= *a_ptr-- * *y_ptr++; y[j] = y[j+1]; } if(Na>1) sum -= *a_ptr-- * *y_ptr++; y[Na - 1] = sum; return sum; } float iirOutBothL(float yf[], float xf[], float af[], float bf[], float xfin, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; float sumf = 0; af_ptr = &af[Na - 1]; yf_ptr = &yf[1]; bf_ptr = &bf[Nb - 1]; xf_ptr = &xf[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); xf[i] = xf[i+1]; sumf += *bf_ptr-- * *xf_ptr++; } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); xf[Nb - 1] = xfin; sumf += *bf_ptr-- * *xf_ptr++; for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[j] = y[j+1]; sumf -= *af_ptr-- * *yf_ptr++; yf[j] = yf[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[Na - 1] = sum; if(Na>1) sumf -= *af_ptr-- * *yf_ptr++; yf[Na - 1] = sumf; return fxp_to_float(sum) - sumf; } float iirOutBothL2(float yf[], float xf[], float af[], float bf[], float xfin, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; float sumf = 0; af_ptr = &af[Na - 1]; yf_ptr = &yf[1]; bf_ptr = &bf[Nb - 1]; xf_ptr = &xf[0]; int i=0, j=1; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i])); xf[i] = xf[i+1]; sumf += bf[Nb - 1 - i] * xf[i]; } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i])); xf[Nb - 1] = xfin; sumf += bf[Nb - 1 - i] * xf[i]; for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j])); y[j] = y[j+1]; sumf -= af[Na - j] * yf[j]; yf[j] = yf[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j])); y[Na - 1] = sum; if(Na>1) sumf -= af[Na - j] * yf[j]; yf[Na - 1] = sumf; return fxp_to_float(sum) - sumf; } # 25 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" extern digital_system ds; extern hardware hw; extern int generic_timer; fxp_t fxp_direct_form_1(fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--)); } for (j = 1; j < Na; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--)); } fxp_verify_overflow_node(sum, "An Overflow Occurred in the node a0"); sum = fxp_div(sum,a[0]); return fxp_quantize(sum); } fxp_t fxp_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *b_ptr, *w_ptr; fxp_t sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] = fxp_sub(w[0], fxp_mult(*a_ptr++, *w_ptr++)); } w[0] = fxp_add(w[0], x); w[0] = fxp_div(w[0], a[0]); fxp_verify_overflow_node(w[0], "An Overflow Occurred in the node b0"); w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *w_ptr++)); } return fxp_quantize(sum); } fxp_t fxp_transposed_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *b_ptr; fxp_t yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = fxp_add(fxp_mult(*b_ptr++, x), w[0]); yout = fxp_div(yout, a[0]); int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] = fxp_sub(w[j], fxp_mult(*a_ptr++, yout)); } if (j < Nb - 1) { w[j] = fxp_add(w[j], fxp_mult(*b_ptr++, x)); } } fxp_verify_overflow_node(w[j], "An Overflow Occurred in the node a0"); return fxp_quantize(yout); } double double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb) { double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum += *b_ptr++ * *x_ptr--; } for (j = 1; j < Na; j++) { sum -= *a_ptr++ * *y_ptr--; } sum = (sum / a[0]); return sum; } double double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; } return sum; } double double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; yout = yout / a[0]; int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } } return yout; } float float_direct_form_1(float y[], float x[], float a[], float b[], int Na, int Nb) { float *a_ptr, *y_ptr, *b_ptr, *x_ptr; float sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum += *b_ptr++ * *x_ptr--; } for (j = 1; j < Na; j++) { sum -= *a_ptr++ * *y_ptr--; } sum = (sum / a[0]); return sum; } float float_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) { float *a_ptr, *b_ptr, *w_ptr; float sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; } return sum; } float float_transposed_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) { float *a_ptr, *b_ptr; float yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; yout = yout / a[0]; int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } } return yout; } double double_direct_form_1_MSP430(double y[], double x[], double a[], double b[], int Na, int Nb){ int timer1 = 0; double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na-1]; b_ptr = &b[0]; x_ptr = &x[Nb-1]; int i, j; timer1 += 91; for (i = 0; i < Nb; i++){ sum += *b_ptr++ * *x_ptr--; timer1 += 47; } for (j = 1; j < Na; j++){ sum -= *a_ptr++ * *y_ptr--; timer1 += 57; } timer1 += 3; # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 235, __extension__ __PRETTY_FUNCTION__); })) # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return sum; } double double_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; timer1 += 71; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; timer1 += 54; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; timer1 += 46; } timer1 += 38; # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 262, __extension__ __PRETTY_FUNCTION__); })) # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return sum; } double double_transposed_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 291, __extension__ __PRETTY_FUNCTION__); })) # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return yout; } double generic_timing_double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb){ generic_timer += ((6 * hw.assembly.push) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (12 * hw.assembly.std)); double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na-1]; b_ptr = &b[0]; x_ptr = &x[Nb-1]; generic_timer += ((12 * hw.assembly.std) + (12 * hw.assembly.ldd) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (1 * hw.assembly.adiw)); int i, j; generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (i = 0; i < Nb; i++){ generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.sbc) + (10 * hw.assembly.std) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); sum += *b_ptr++ * *x_ptr--; } generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 1; j < Na; j++){ generic_timer += ((22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (8 * hw.assembly.std) + (1 * hw.assembly.sbci) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.sbc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); sum -= *a_ptr++ * *y_ptr--; } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (6 * hw.assembly.pop) + (1 * hw.assembly.ret)); return sum; } double generic_timing_double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli)); double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; generic_timer += ((10 * hw.assembly.std) + (6 * hw.assembly.ldd) + (2 * hw.assembly.adiw)); generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; generic_timer += ((23 * hw.assembly.ldd) + (32 * hw.assembly.mov) + (9 * hw.assembly.std) + (2 * hw.assembly.subi) + (3 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (2 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge)); } w[0] += x; w_ptr = &w[0]; generic_timer += ((13 * hw.assembly.ldd) + (12 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.st) + (1 * hw.assembly.ld) + (1 * hw.assembly.rcall)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (10 * hw.assembly.std) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (8 * hw.assembly.pop) + (1 * hw.assembly.ret)); return sum; } double generic_timing_double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli)); double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; generic_timer += ((15 * hw.assembly.std) + (22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.brge) + (1 * hw.assembly.adiw)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } generic_timer += ((70 * hw.assembly.mov) + (65 * hw.assembly.ldd) + (12 * hw.assembly.lsl) + (12 * hw.assembly.rol) + (15 * hw.assembly.std) + (6 * hw.assembly.add) + (6 * hw.assembly.adc) + (2 * hw.assembly.adiw) + (3 * hw.assembly.cpc) + (3 * hw.assembly.cp) + (5 * hw.assembly.ld) + (4 * hw.assembly.rcall) + (5 * hw.assembly.subi) + (3 * hw.assembly.rjmp) + (2 * hw.assembly.brlt) + (3 * hw.assembly.st) + (2 * hw.assembly.sbci) + (3 * hw.assembly.sbc) + (1 * hw.assembly.brge)); } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (8 * hw.assembly.pop) + (3 * hw.assembly.out) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (1 * hw.assembly.adiw) + (1 * hw.assembly.ret)); return yout; } void double_direct_form_1_impl2(double x[], int x_size, double b[], int b_size, double a[], int a_size, double y[]){ int i = 0; int j = 0; double v[x_size]; for(i = 0; i < x_size; i++){ v[i] = 0; for(j = 0; j < b_size; j++){ if (j > i) break; v[i] = v[i] + x[i-j] * b[j]; } } y[0] = v[0]; for(i = 1; i < x_size; i++){ y[i] = 0; y[i] = y[i] + v[i]; for(j = 1; j < a_size; j++){ if (j > i) break; y[i] = y[i] + y[i-j] * ((-1) * a[j]); } } } void fxp_direct_form_1_impl2(fxp_t x[], int x_size, fxp_t b[], int b_size, fxp_t a[], int a_size, fxp_t y[]){ int i = 0; int j = 0; fxp_t v[x_size]; for(i = 0; i < x_size; i++){ v[i] = 0; for(j = 0; j < b_size; j++){ if (j > i) break; v[i] = fxp_add(v[i], fxp_mult(x[i-j], b[j])); } } y[0] = v[0]; for(i = 1; i < x_size; i++){ y[i] = 0; y[i] = fxp_add(y[i], v[i]); for(j = 1; j < a_size; j++){ if (j > i) break; y[i] = fxp_add(y[i], fxp_mult(y[i-j] , -a[j])); } } } # 26 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" # 1 "/usr/include/assert.h" 1 3 4 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2 # 1 "/usr/include/assert.h" 1 3 4 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2 int nchoosek(int n, int k){ if (k == 0) return 1; return (n * nchoosek(n - 1, k - 1)) / k; } void generate_delta_coefficients(double vetor[], double out[], int n, double delta){ int i,j; int N = n - 1; double sum_delta_operator; for(i=0; i<=N; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + vetor[j]*nchoosek(N-j,i-j); } out[i] = internal_pow(delta,N-i)*sum_delta_operator; } } void get_delta_transfer_function(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){ generate_delta_coefficients(b, b_out, b_size, delta); generate_delta_coefficients(a, a_out, a_size, delta); } void get_delta_transfer_function_with_base(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){ int i,j; int N = a_size - 1; int M = b_size - 1; double sum_delta_operator; for(i=0; i<=N; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + a[j]*nchoosek(N-j,i-j); } a_out[i] = internal_pow(delta,N-i)*sum_delta_operator; } for(i=0; i<=M; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + b[j]*nchoosek(M-j,i-j); } b_out[i] = internal_pow(delta,M-i)*sum_delta_operator; } } # 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h" 1 # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h" void ft_closedloop_series(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ Nans_num = Nc_num + Nmodel_num - 1; Nans_den = Nc_den + Nmodel_den - 1 ; double den_mult [Nans_den]; poly_mult(c_num, Nc_num, model_num, Nmodel_num, ans_num, Nans_num); poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den ); poly_sum(ans_num, Nans_num , den_mult, Nans_den , ans_den, Nans_den); } void ft_closedloop_sensitivity(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ int Nans_num_p = Nc_num + Nmodel_num-1; Nans_den = Nc_den + Nmodel_den-1; Nans_num = Nc_den + Nmodel_den-1; double num_mult [Nans_num_p]; poly_mult(c_den, Nc_den, model_den, Nmodel_den, ans_num, Nans_num); poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nans_num_p); poly_sum(ans_num, Nans_num, num_mult, Nans_num_p, ans_den, Nans_den); } void ft_closedloop_feedback(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ Nans_num = Nc_den + Nmodel_num - 1; Nans_den = Nc_den + Nmodel_den - 1; int Nnum_mult = Nc_num + Nmodel_num - 1; double den_mult [Nans_den]; double num_mult [Nnum_mult]; poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nnum_mult); poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den); poly_sum(num_mult, Nnum_mult, den_mult, Nans_den, ans_den, Nans_den); poly_mult(c_den, Nc_den, model_num, Nmodel_num, ans_num, Nans_num); } int check_stability_closedloop(double a[], int n, double plant_num[], int p_num_size, double plant_den[], int p_den_size){ int columns = n; double m[2 * n - 1][n]; int i,j; int first_is_positive = 0; double * p_num = plant_num; double * p_den = plant_den; double sum = 0; for (i=0; i < n; i++){ sum += a[i]; } __DSVERIFIER_assert(sum > 0); sum = 0; for (i=0; i < n; i++){ sum += a[i] * internal_pow(-1, n-1-i); } sum = sum * internal_pow(-1, n-1); __DSVERIFIER_assert(sum > 0); __DSVERIFIER_assert(internal_abs(a[n-1]) < a[0]); for (i=0; i < 2 * n - 1; i++){ for (j=0; j < columns; j++){ m[i][j] = 0; if (i == 0){ m[i][j] = a[j]; continue; } if (i % 2 != 0 ){ int x; for(x=0; x<columns;x++){ m[i][x] = m[i-1][columns-x-1]; } columns = columns - 1; j = columns; }else{ __DSVERIFIER_assert(m[i-2][0] > 0); m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j]; __DSVERIFIER_assert((m[0][0] >= 0) && (m[i][0] >= 0)); } } } return 1; } # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" extern digital_system ds; extern digital_system plant; extern digital_system control; extern implementation impl; extern filter_parameters filter; extern hardware hw; void initialization(){ if (impl.frac_bits >= 32){ printf("impl.frac_bits must be less than word width!\n"); } if (impl.int_bits >= 32 - impl.frac_bits){ printf("impl.int_bits must be less than word width subtracted by precision!\n"); # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ((void) sizeof (( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 0 # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 0 # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ) ; else __assert_fail ( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" "0" # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h", 33, __extension__ __PRETTY_FUNCTION__); })) # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" ; } if(impl.frac_bits >= 31){ _fxp_one = 0x7fffffff; }else{ _fxp_one = (0x00000001 << impl.frac_bits); } _fxp_half = (0x00000001 << (impl.frac_bits - 1)); _fxp_minus_one = -(0x00000001 << impl.frac_bits); _fxp_min = -(0x00000001 << (impl.frac_bits + impl.int_bits - 1)); _fxp_max = (0x00000001 << (impl.frac_bits + impl.int_bits - 1)) - 1; _fxp_fmask = ((((int32_t) 1) << impl.frac_bits) - 1); _fxp_imask = ((0x80000000) >> (32 - impl.frac_bits - 1)); _dbl_min = _fxp_min; _dbl_min /= (1 << impl.frac_bits); _dbl_max = _fxp_max; _dbl_max /= (1 << impl.frac_bits); if ((impl.scale == 0) || (impl.scale == 1)){ impl.scale = 1; return; } if (impl.min != 0){ impl.min = impl.min / impl.scale; } if (impl.max != 0){ impl.max = impl.max / impl.scale; } # 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" } # 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h" extern digital_system_state_space _controller; extern int nStates; extern int nInputs; extern int nOutputs; double double_state_space_representation(void){ double result1[4][4]; double result2[4][4]; int i, j; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); return _controller.outputs[0][0]; } double fxp_state_space_representation(void){ fxp_t result1[4][4]; fxp_t result2[4][4]; int i, j; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } fxp_t A_fpx[4][4]; fxp_t B_fpx[4][4]; fxp_t C_fpx[4][4]; fxp_t D_fpx[4][4]; fxp_t states_fpx[4][4]; fxp_t inputs_fpx[4][4]; fxp_t outputs_fpx[4][4]; for(i=0; i<4;i++){ for(j=0; j<4;j++){ A_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ B_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ C_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ D_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ states_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ inputs_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ outputs_fpx[i][j]=0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ D_fpx[i][j]= fxp_double_to_fxp(_controller.D[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ states_fpx[i][j]= fxp_double_to_fxp(_controller.states[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ inputs_fpx[i][j]= fxp_double_to_fxp(_controller.inputs[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ outputs_fpx[i][j]= fxp_double_to_fxp(_controller.outputs[i][j]); } } fxp_matrix_multiplication(nOutputs,nStates,nStates,1,C_fpx,states_fpx,result1); fxp_matrix_multiplication(nOutputs,nInputs,nInputs,1,D_fpx,inputs_fpx,result2); fxp_add_matrix(nOutputs, 1, result1, result2, outputs_fpx); fxp_matrix_multiplication(nStates,nStates,nStates,1,A_fpx,states_fpx,result1); fxp_matrix_multiplication(nStates,nInputs,nInputs,1,B_fpx,inputs_fpx,result2); fxp_add_matrix(nStates, 1, result1, result2, states_fpx); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= fxp_to_double(states_fpx[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ _controller.outputs[i][j]= fxp_to_double(outputs_fpx[i][j]); } } return _controller.outputs[0][0]; } # 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h" double sinTyl(double x, int precision){ double sine; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; sine = aux; if (precision >= 1) { aux = x; sine += aux; if (precision >= 2) { aux = aux*xsquared; sine -= aux/6; if (precision >= 3) { aux = aux*xsquared; sine +=aux/120; if(precision >=4) { aux = aux*xsquared; sine -=aux/5040; if(precision >= 5) { aux = aux*xsquared; sine +=aux/362880; if(precision >= 6) { aux = aux*xsquared; sine -=aux/39916800; if (precision >= 7) printf("Warning: Function sinTyl " "from bmc/core/filter_functions.h: Precision " "representation exceeded. Assuming maximum precision of 6\n"); } } } } } } } return sine; } double cosTyl(double x, int precision){ double cosine; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function cosTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; cosine = aux; if (precision >= 1) { aux = 1; cosine = 1; if (precision >= 2) { aux = xsquared; cosine -= aux/2; if (precision >= 3) { aux = aux*xsquared; cosine += aux/24; if(precision >=4) { aux = aux*xsquared; cosine -=aux/720; if(precision >= 5) { aux = aux*xsquared; cosine +=aux/40320; if(precision >= 6) { aux = aux*xsquared; cosine -=aux/3628800; if (precision >= 7) printf("Warning: Function sinTyl " "from bmc/core/filter_functions.h: Precision " "representation exceeded. Assuming maximum precision of 6\n"); } } } } } } } return cosine; } double atanTyl(double x, int precision){ double atangent; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; atangent = aux; if (precision >= 1) { aux = x; atangent = aux; if (precision >= 2) { aux = xsquared; atangent -= aux/3; if (precision >= 3) { aux = aux*xsquared; atangent += aux/5; if(precision >=4) { aux = aux*xsquared; atangent -=aux/7; if (precision >= 7) printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision representation exceeded. Assuming maximum precision of 4\n"); } } } } } return atangent; } float sqrt1(const float x) { const float xhalf = 0.5f*x; union { float x; int i; } u; u.x = x; u.i = 0x5f3759df - (u.i >> 1); return x*u.x*(1.5f - xhalf*u.x*u.x); } float sqrt2(const float x) { union { int i; float x; } u; u.x = x; u.i = (1<<29) + (u.i >> 1) - (1<<22); return u.x; } float fabsolut(float x) { if (x < 0) x = -x; return x; } static float sqrt3(float val) { float x = val/10; float dx; double diff; double min_tol = 0.00001; int i, flag; flag = 0; if (val == 0 ) x = 0; else { for (i=1;i<20;i++) { if (!flag) { dx = (val - (x*x)) / (2.0 * x); x = x + dx; diff = val - (x*x); if (fabsolut(diff) <= min_tol) flag = 1; } else x =x; } } return (x); } # 31 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; int verify_overflow(void) { fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 73 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_int(); __DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; int j; for (i = 0; i < X_SIZE_VALUE; ++i) { shiftL(x[i], xaux, ds.b_size); y[i] = fxp_direct_form_1(yaux, xaux, a_fxp, b_fxp, ds.a_size, ds.b_size); shiftL(y[i], yaux, ds.a_size); # 174 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" } overflow_mode = 1; fxp_verify_overflow_array(y, X_SIZE_VALUE); return 0; } # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 1 # 15 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" extern digital_system ds; extern implementation impl; extern digital_system_state_space _controller; extern int nStates; extern int nInputs; extern int nOutputs; int verify_limit_cycle_state_space(void){ double stateMatrix[4][4]; double outputMatrix[4][4]; double arrayLimitCycle[4]; double result1[4][4]; double result2[4][4]; int i, j, k; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; stateMatrix[i][j]=0; outputMatrix[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); k = 0; for (i = 1; i < 0; i++) { double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); int l; for(l = 0; l < nStates; l++){ stateMatrix[l][k] = _controller.states[l][0]; } for(l = 0; l < nOutputs; l++){ stateMatrix[l][k] = _controller.outputs[l][0]; } k++; } printf("#matrix STATES -------------------------------"); print_matrix(stateMatrix,nStates,0); printf("#matrix OUTPUTS -------------------------------"); print_matrix(outputMatrix,nOutputs,0); # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ((void) sizeof (( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" "0" # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 93, __extension__ __PRETTY_FUNCTION__); })) # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" ; for(i=0; i<nStates;i++){ for(j=0; j<0;j++){ arrayLimitCycle[j] = stateMatrix[i][j]; } double_check_persistent_limit_cycle(arrayLimitCycle,0); } for(i=0; i<nOutputs;i++){ for(j=0; j<0;j++){ arrayLimitCycle[j] = outputMatrix[i][j]; } double_check_persistent_limit_cycle(arrayLimitCycle,0); } # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ((void) sizeof (( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" "0" # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 110, __extension__ __PRETTY_FUNCTION__); })) # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" ; } int verify_limit_cycle(void){ overflow_mode = 3; int i; int Set_xsize_at_least_two_times_Na = 2 * ds.a_size; printf("X_SIZE must be at least 2 * ds.a_size"); __DSVERIFIER_assert(X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na); fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 168 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t xaux[ds.b_size]; int nondet_constant_input = nondet_int(); __DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp); for (i = 0; i < X_SIZE_VALUE; ++i) { x[i] = nondet_constant_input; y[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = nondet_constant_input; } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t y0[ds.a_size]; fxp_t waux[Nw]; fxp_t w0[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = nondet_int(); __DSVERIFIER_assume(yaux[i] >= min_fxp && yaux[i] <= max_fxp); y0[i] = yaux[i]; } # 213 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; int j; for(i=0; i<X_SIZE_VALUE; ++i){ shiftL(x[i], xaux, ds.b_size); y[i] = fxp_direct_form_1(yaux, xaux, a_fxp, b_fxp, ds.a_size, ds.b_size); shiftL(y[i], yaux, ds.a_size); # 278 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" } fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 34 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" extern digital_system ds; extern implementation impl; int verify_error(void){ overflow_mode = 2; double a_cascade[100]; int a_cascade_size; double b_cascade[100]; int b_cascade_size; fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 69 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; double yf[X_SIZE_VALUE]; double xf[X_SIZE_VALUE]; int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; double yfaux[ds.a_size]; double xfaux[ds.b_size]; double wfaux[Nw]; int i; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; yfaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; xfaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; wfaux[i] = 0; } for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_int(); __DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp); yf[i] = 0.0f; xf[i] = fxp_to_double(x[i]); } for (i = 0; i < X_SIZE_VALUE; ++i) { shiftL(x[i], xaux, ds.b_size); y[i] = fxp_direct_form_1(yaux, xaux, a_fxp, b_fxp, ds.a_size, ds.b_size); shiftL(y[i], yaux, ds.a_size); shiftLDouble(xf[i], xfaux, ds.b_size); yf[i] = double_direct_form_1(yfaux, xfaux, ds.a, ds.b, ds.a_size, ds.b_size); shiftLDouble(yf[i], yfaux, ds.a_size); # 169 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" double absolute_error = yf[i] - fxp_to_double(y[i]); __DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error)); } return 0; } # 35 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 1 # 13 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" extern digital_system ds; extern implementation impl; int verify_zero_input_limit_cycle(void){ overflow_mode = 3; int i,j; int Set_xsize_at_least_two_times_Na = 2 * ds.a_size; printf("X_SIZE must be at least 2 * ds.a_size"); # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ((void) sizeof (( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" "X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na" # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h", 23, __extension__ __PRETTY_FUNCTION__); })) # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" ; fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 71 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = 0; } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; fxp_t y0[ds.a_size]; fxp_t w0[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = nondet_int(); __DSVERIFIER_assume(yaux[i] >= min_fxp && yaux[i] <= max_fxp); y0[i] = yaux[i]; } # 111 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; for(i=0; i<X_SIZE_VALUE; ++i){ shiftL(x[i], xaux, ds.b_size); y[i] = fxp_direct_form_1(yaux, xaux, a_fxp, b_fxp, ds.a_size, ds.b_size); shiftL(y[i], yaux, ds.a_size); # 188 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" } fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; extern hardware hw; int generic_timer = 0; int verify_generic_timing(void) { double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_float(); __DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; double yaux[ds.a_size]; double xaux[ds.b_size]; double waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); double initial_timer = generic_timer; for (i = 0; i < X_SIZE_VALUE; ++i) { generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.adiw) + (2 * hw.assembly.std)); generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.cpi) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); generic_timing_shift_l_double(x[i], xaux, ds.b_size); y[i] = generic_timing_double_direct_form_1(yaux, xaux, ds.a, ds.b, ds.a_size, ds.b_size); generic_timing_shift_l_double(y[i], yaux, ds.a_size); # 88 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" double spent_time = (((double) generic_timer) * hw.cycle); # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ((void) sizeof (( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" spent_time <= ds.sample_time # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" spent_time <= ds.sample_time # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ) ; else __assert_fail ( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" "spent_time <= ds.sample_time" # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h", 89, __extension__ __PRETTY_FUNCTION__); })) # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" ; generic_timer = initial_timer; } return 0; } # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; int verify_timing_msp_430(void) { double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_float(); __DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; double yaux[ds.a_size]; double xaux[ds.b_size]; double waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; for (i = 0; i < X_SIZE_VALUE; ++i) { shiftL(x[i], xaux, ds.b_size); y[i] = double_direct_form_1_MSP430(yaux, xaux, ds.a, ds.b, ds.a_size, ds.b_size); shiftL(y[i], yaux, ds.a_size); # 121 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" } return 0; } # 38 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 1 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" extern digital_system ds; extern implementation impl; int verify_stability(void){ overflow_mode = 0; fxp_t a_fxp[ds.a_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); double _a[ds.a_size]; fxp_to_double_array(_a, a_fxp, ds.a_size); # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ((void) sizeof (( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" check_stability(_a, ds.a_size) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" check_stability(_a, ds.a_size) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ) ; else __assert_fail ( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" "check_stability(_a, ds.a_size)" # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h", 37, __extension__ __PRETTY_FUNCTION__); })) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" ; # 83 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" return 0; } # 39 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" 1 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" extern digital_system ds; extern implementation impl; int verify_minimum_phase(void){ overflow_mode = 0; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); double _b[ds.b_size]; fxp_to_double_array(_b, b_fxp, ds.b_size); __DSVERIFIER_assert(check_stability(_b, ds.b_size)); # 85 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" return 0; } # 40 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; int verify_stability_closedloop_using_dslib(void){ double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den[100]; int ans_den_size = controller.a_size + plant.a_size - 1; # 68 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" printf("Verifying stability for closedloop function\n"); __DSVERIFIER_assert(check_stability_closedloop(ans_den, ans_den_size, p_num, p_num_size, p_den, p_den_size)); return 0; } # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" 1 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; double nondet_double(); int verify_limit_cycle_closed_loop(void){ overflow_mode = 3; double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den[100]; int ans_den_size = controller.a_size + plant.a_size - 1; int i; double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; double xaux[ans_num_size]; double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max); for (i = 0; i < X_SIZE_VALUE; ++i) { x[i] = nondet_constant_input; y[i] = 0; } for (i = 0; i < ans_num_size; ++i) { xaux[i] = nondet_constant_input; } double yaux[ans_den_size]; double y0[ans_den_size]; int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size; double waux[Nw]; double w0[Nw]; for (i = 0; i < ans_den_size; ++i) { yaux[i] = nondet_int(); __DSVERIFIER_assume(yaux[i] >= impl.min && yaux[i] <= impl.max); y0[i] = yaux[i]; } # 112 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; for(i=0; i<X_SIZE_VALUE; ++i){ shiftLDouble(x[i], xaux, ans_num_size); y[i] = double_direct_form_1(yaux, xaux, ans_den, ans_num, ans_den_size, ans_num_size); shiftLDouble(y[i], yaux, ans_den_size); # 137 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" } double_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 42 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" 1 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; int verify_error_closedloop(void){ overflow_mode = 3; double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num_double[100]; double ans_num_qtz[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den_qtz[100]; double ans_den_double[100]; int ans_den_size = controller.a_size + plant.a_size - 1; # 77 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" int i; double y_qtz[X_SIZE_VALUE]; double y_double[X_SIZE_VALUE]; double x_qtz[X_SIZE_VALUE]; double x_double[X_SIZE_VALUE]; double xaux_qtz[ans_num_size]; double xaux_double[ans_num_size]; double xaux[ans_num_size]; double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max); for (i = 0; i < X_SIZE_VALUE; ++i) { x_qtz[i] = nondet_constant_input; x_double[i] = nondet_constant_input; y_qtz[i] = 0; y_double[i] = 0; } for (i = 0; i < ans_num_size; ++i) { xaux_qtz[i] = nondet_constant_input; xaux_double[i] = nondet_constant_input; } double yaux_qtz[ans_den_size]; double yaux_double[ans_den_size]; double y0_qtz[ans_den_size]; double y0_double[ans_den_size]; int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size; double waux_qtz[Nw]; double waux_double[Nw]; double w0_qtz[Nw]; double w0_double[Nw]; for (i = 0; i < ans_den_size; ++i) { yaux_qtz[i] = 0; yaux_double[i] = 0; } for(i=0; i<X_SIZE_VALUE; ++i){ shiftLDouble(x_qtz[i], xaux_qtz, ans_num_size); y_qtz[i] = double_direct_form_1(yaux_qtz, xaux_qtz, ans_den_qtz, ans_num_qtz, ans_den_size, ans_num_size); shiftLDouble(y_qtz[i], yaux_qtz, ans_den_size); shiftLDouble(x_double[i], xaux_double, ans_num_size); y_double[i] = double_direct_form_1(yaux_double, xaux_double, ans_den_double, ans_num_double, ans_den_size, ans_num_size); shiftLDouble(y_double[i], yaux_double, ans_den_size); # 156 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" double absolute_error = y_double[i] - fxp_to_double(y_qtz[i]); __DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error)); } return 0; } # 43 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" extern digital_system_state_space _controller; extern double error_limit; extern int closed_loop; double new_state[4][4]; double new_stateFWL[4][4]; digital_system_state_space _controller_fxp; digital_system_state_space _controller_double; double ss_system_quantization_error(fxp_t inputs){ digital_system_state_space __backupController; int i; int j; _controller.inputs[0][0] = inputs; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ __backupController.A[i][j]= (_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ __backupController.B[i][j]= (_controller.B[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ __backupController.C[i][j]= (_controller.C[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ __backupController.D[i][j]= (_controller.D[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ __backupController.states[i][j]= (_controller.states[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ __backupController.inputs[i][j]= (_controller.inputs[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ __backupController.outputs[i][j]= (_controller.outputs[i][j]); } } double __quant_error = 0.0; for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= (new_state[i][j]); } } double output_double = double_state_space_representation(); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_state[i][j]= (_controller.states[i][j]); } } __backupController.inputs[0][0] = inputs; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ _controller.A[i][j] = __backupController.A[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ _controller.B[i][j] = __backupController.B[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ _controller.C[i][j] = __backupController.C[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ _controller.D[i][j] = __backupController.D[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j] = __backupController.states[i][j]; } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ _controller.inputs[i][j] = __backupController.inputs[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ _controller.outputs[i][j] = __backupController.outputs[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= (new_stateFWL[i][j]); } } double output_fxp = fxp_state_space_representation(); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_stateFWL[i][j]= (_controller.states[i][j]); } } __quant_error = output_double - output_fxp; return __quant_error; } double fxp_ss_closed_loop_quantization_error(double reference){ double reference_aux[4][4]; double result1[4][4]; double temp_result1[4][4]; double result2[4][4]; double temp_states[4][4]; fxp_t K_fxp[4][4]; fxp_t states_fxp[4][4]; fxp_t result_fxp[4][4]; unsigned int i; unsigned int j; unsigned int k; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller_fxp.D[i][j] != 0){ flag = 1; } } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ reference_aux[i][j]=0; K_fxp[i][j] = 0; } } for(i=0; i<nInputs;i++){ reference_aux[i][0]= reference; } for(i=0; i<4;i++){ states_fxp[i][0]=0; } for(i=0; i<nStates;i++){ K_fxp[0][i]= fxp_double_to_fxp(_controller_fxp.K[0][i]); } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } for(k=0; k<nStates;k++) { states_fxp[k][0]= fxp_double_to_fxp(_controller_fxp.states[k][0]); } fxp_matrix_multiplication(nOutputs,nStates,nStates,1,K_fxp,states_fxp,result_fxp); fxp_t reference_fxp[4][4]; fxp_t result_fxp2[4][4]; for(k=0;k<nInputs;k++) { reference_fxp[k][0] =fxp_double_to_fxp(fxp_quantize(reference_aux[k][0])); } fxp_sub_matrix(nInputs,1, reference_fxp, result_fxp, result_fxp2); for(k=0; k<nInputs;k++) { _controller_fxp.inputs[k][0] = fxp_to_double(fxp_quantize(result_fxp2[k][0])); } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_fxp.C,_controller_fxp.states,result1); if(flag == 1) { double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_fxp.D,_controller_fxp.inputs,result2); } double_add_matrix(nOutputs,1,result1,result2,_controller_fxp.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller_fxp.A,_controller_fxp.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_fxp.B,_controller_fxp.inputs,result2); double_add_matrix(nStates,1,result1,result2,_controller_fxp.states); return _controller_fxp.outputs[0][0]; } double ss_closed_loop_quantization_error(double reference){ double reference_aux[4][4]; double result1[4][4]; double result2[4][4]; unsigned int i; unsigned int j; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller_double.D[i][j] != 0){ flag = 1; } } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ reference_aux[i][j]= reference; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.K,_controller_double.states,result1); double_sub_matrix(nInputs,1,reference_aux,result1, _controller_double.inputs); double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.C,_controller_double.states,result1); if(flag == 1) double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_double.D,_controller_double.inputs,result2); double_add_matrix(nOutputs,1,result1,result2,_controller_double.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller_double.A,_controller_double.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_double.B,_controller_double.inputs,result2); double_add_matrix(nStates,1,result1,result2,_controller_double.states); return _controller_double.outputs[0][0]; } int verify_error_state_space(void){ int i,j; for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_state[i][j]= (_controller.states[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_stateFWL[i][j]= (_controller.states[i][j]); } } _controller_fxp = _controller; _controller_double = _controller; overflow_mode = 0; fxp_t x[0]; fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp); for (i = 0; i < 0; ++i) { x[i] = nondet_constant_input; } double __quant_error; if(closed_loop){ for (i = 0; i < 0; ++i) { __quant_error = ss_closed_loop_quantization_error(x[i]) - fxp_ss_closed_loop_quantization_error(x[i]); # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ((void) sizeof (( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ; else __assert_fail ( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" "__quant_error < error_limit && __quant_error > ((-1)*error_limit)" # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 354, __extension__ __PRETTY_FUNCTION__); })) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" ; } } else { for (i=0; i < 0; i++) { __quant_error = ss_system_quantization_error(x[i]); # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ((void) sizeof (( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ; else __assert_fail ( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" "__quant_error < error_limit && __quant_error > ((-1)*error_limit)" # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 361, __extension__ __PRETTY_FUNCTION__); })) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" ; } } return 0; } # 44 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" extern digital_system_state_space _controller; extern double error_limit; extern int closed_loop; double fxp_ss_closed_loop_safety(){ double reference[4][4]; double result1[4][4]; double result2[4][4]; fxp_t K_fpx[4][4]; fxp_t outputs_fpx[4][4]; fxp_t result_fxp[4][4]; unsigned int i; unsigned int j; unsigned int k; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller.D[i][j] != 0){ flag = 1; } } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ reference[i][j]= (_controller.inputs[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<nOutputs;j++){ K_fpx[i][j]=0; } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ outputs_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result_fxp[i][j]=0; } } for(i=0; i<nInputs;i++){ for(j=0; j<nOutputs;j++){ K_fpx[i][j]= fxp_double_to_fxp(_controller.K[i][j]); } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } for (i = 1; i < 0; i++) { double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); if(flag == 1){ double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); } double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); for(k=0; k<nOutputs;k++){ for(j=0; j<1;j++){ outputs_fpx[k][j]= fxp_double_to_fxp(_controller.outputs[k][j]); } } fxp_matrix_multiplication(nInputs,nOutputs,nOutputs,1,K_fpx,outputs_fpx,result_fxp); for(k=0; k<nInputs;k++){ for(j=0; j<1;j++){ result1[k][j]= fxp_to_double(result_fxp[k][j]); } } printf("### fxp: U (before) = %.9f", _controller.inputs[0][0]); printf("### fxp: reference = %.9f", reference[0][0]); printf("### fxp: result1 = %.9f", result1[0][0]); printf("### fxp: reference - result1 = %.9f", (reference[0][0] - result1[0][0])); double_sub_matrix(nInputs, 1, reference, result1, _controller.inputs); printf("### fxp: Y = %.9f", _controller.outputs[0][0]); printf("### fxp: U (after) = %.9f \n### \n### ", _controller.inputs[0][0]); double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); } return _controller.outputs[0][0]; } int verify_safety_state_space(void){ fxp_t output_fxp = fxp_ss_closed_loop_safety(); double output_double = fxp_to_double(output_fxp); # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ((void) sizeof (( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" output_double <= error_limit # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" output_double <= error_limit # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ) ; else __assert_fail ( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" "output_double <= error_limit" # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h", 140, __extension__ __PRETTY_FUNCTION__); })) # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" ; return 0; } # 45 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 1 # 14 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" extern digital_system_state_space _controller; int verify_controllability(void){ int i; int j; fxp_t A_fpx[4][4]; fxp_t B_fpx[4][4]; fxp_t controllabilityMatrix[4][4]; fxp_t backup[4][4]; fxp_t backupSecond[4][4]; double controllabilityMatrix_double[4][4]; for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ A_fpx[i][j] = 0.0; B_fpx[i][j] = 0.0; controllabilityMatrix[i][j] = 0.0; backup[i][j] = 0.0; backupSecond[i][j] = 0.0; controllabilityMatrix_double[i][j] = 0.0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]); } } if(nInputs > 1){ int l = 0; for(j=0; j<(nStates*nInputs);){ fxp_exp_matrix(nStates,nStates,A_fpx,l,backup); l++; fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond); for(int k = 0; k < nInputs; k++){ for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][k]; } j++; } } for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ backup[i][j]= 0.0; } } fxp_transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs)); fxp_t mimo_controllabilityMatrix_fxp[4][4]; fxp_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_fxp); for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ controllabilityMatrix_double[i][j]= fxp_to_double(mimo_controllabilityMatrix_fxp[i][j]); } } # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix_double,nStates) != 0" # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 91, __extension__ __PRETTY_FUNCTION__); })) # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } else { for(j=0; j<nStates;j++){ fxp_exp_matrix(nStates,nStates,A_fpx,j,backup); fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond); for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][0]; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ controllabilityMatrix_double[i][j]= fxp_to_double(controllabilityMatrix[i][j]); } } # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix_double,nStates) != 0" # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 113, __extension__ __PRETTY_FUNCTION__); })) # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } return 0; } int verify_controllability_double(void){ int i; int j; double controllabilityMatrix[4][4]; double backup[4][4]; double backupSecond[4][4]; double controllabilityMatrix_double[4][4]; if(nInputs > 1){ int l = 0; for(j=0; j<(nStates*nInputs);){ double_exp_matrix(nStates,nStates,_controller.A,l,backup); l++; double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond); for(int k = 0; k < nInputs; k++){ for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][k]; } j++; } } for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ backup[i][j]= 0.0; } } transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs)); double mimo_controllabilityMatrix_double[4][4]; double_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_double); # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(mimo_controllabilityMatrix_double,nStates) != 0 # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(mimo_controllabilityMatrix_double,nStates) != 0 # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(mimo_controllabilityMatrix_double,nStates) != 0" # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 154, __extension__ __PRETTY_FUNCTION__); })) # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } else { for(j=0; j<nStates;j++){ double_exp_matrix(nStates,nStates,_controller.A,j,backup); double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond); for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][0]; } } # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix,nStates) != 0 # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix,nStates) != 0 # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix,nStates) != 0" # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 163, __extension__ __PRETTY_FUNCTION__); })) # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } return 0; } # 46 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" extern digital_system_state_space _controller; int verify_observability(void){ int i; int j; fxp_t A_fpx[4][4]; fxp_t C_fpx[4][4]; fxp_t observabilityMatrix[4][4]; fxp_t backup[4][4]; fxp_t backupSecond[4][4]; double observabilityMatrix_double[4][4]; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix[i][j]= 0; A_fpx[i][j]=0; C_fpx[i][j]= 0; backup[i][j]= 0; backupSecond[i][j]= 0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]); } } if(nOutputs > 1){ int l; j = 0; for(l=0; l<nStates;){ fxp_exp_matrix(nStates,nStates,A_fpx,l,backup); l++; fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond); for(int k = 0; k < nOutputs; k++){ for(i = 0; i<nStates;i++){ observabilityMatrix[j][i]= backupSecond[k][i]; } j++; } } # 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nOutputs);j++){ backup[i][j]= 0.0; } } fxp_transpose(observabilityMatrix,backup,(nStates*nOutputs),nStates); # 99 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" fxp_t mimo_observabilityMatrix_fxp[4][4]; fxp_matrix_multiplication(nStates,(nStates*nOutputs),(nStates*nOutputs),nStates,backup,observabilityMatrix,mimo_observabilityMatrix_fxp); # 112 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix_double[i][j]= fxp_to_double(mimo_observabilityMatrix_fxp[i][j]); } } # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ((void) sizeof (( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ; else __assert_fail ( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" "determinant(observabilityMatrix_double,nStates) != 0" # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 119, __extension__ __PRETTY_FUNCTION__); })) # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" ; }else{ for(i=0; i<nStates;i++){ fxp_exp_matrix(nStates,nStates,A_fpx,i,backup); fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond); for(j = 0; j<nStates;j++){ observabilityMatrix[i][j]= backupSecond[0][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix_double[i][j]= fxp_to_double(observabilityMatrix[i][j]); } } # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ((void) sizeof (( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ; else __assert_fail ( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" "determinant(observabilityMatrix_double,nStates) != 0" # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 134, __extension__ __PRETTY_FUNCTION__); })) # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" ; } return 0; } # 47 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" extern filter_parameters filter; extern implementation impl; extern digital_system ds; # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" void resp_mag(double* num, int lnum, double* den, int lden, double* res, int N) { double w; int m, i; double out_numRe[N + 1]; double out_numIm[N + 1]; double out_denRe[N + 1]; double out_denIm[N + 1]; double old_out_Re; double zero_test; for (w = 0, i = 0; w <= 3.14159265358979323846; w += 3.14159265358979323846 / N, ++i) { out_numRe[i] = num[0]; out_numIm[i] = 0; for (m = 1; m < lnum; ++m) { old_out_Re = out_numRe[i]; out_numRe[i] = cosTyl(w, 6) * out_numRe[i] - sinTyl(w, 6) * out_numIm[i] + num[m]; out_numIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_numIm[i]; } out_denRe[i] = den[0]; out_denIm[i] = 0; for (m = 1; m < lden; ++m) { old_out_Re = out_denRe[i]; out_denRe[i] = cosTyl(w, 6) * out_denRe[i] - sinTyl(w, 6) * out_denIm[i] + den[m]; out_denIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_denIm[i]; } res[i] = sqrt3(out_numRe[i] * out_numRe[i] + out_numIm[i] * out_numIm[i]); zero_test = sqrt3(out_denRe[i] * out_denRe[i] + out_denIm[i] * out_denIm[i]); __DSVERIFIER_assume(zero_test != 0); res[i] = res[i] / zero_test; } } int verify_magnitude(void) { int freq_response_samples = 100; double w; double w_incr = 1.0 / freq_response_samples; double res[freq_response_samples+1]; int i,j; fxp_t a_fxp[ds.a_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); double _a[ds.a_size]; fxp_to_double_array(_a, a_fxp, ds.a_size); fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); double _b[ds.b_size]; fxp_to_double_array(_b, b_fxp, ds.b_size); resp_mag(ds.b, ds.b_size, ds.a, ds.a_size, res, freq_response_samples); if (filter.type == 1) { for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) { if (w <= filter.wp) { __DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|"); } else if (w == filter.wc) { __DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|"); } else if ((w >= filter.wr) && (w <= 1)) { __DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|"); } } } else if (filter.type == 2) { for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) { if (w <= filter.wr) { __DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|"); } else if (w == filter.wc) { __DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|"); } else if ((w > filter.wp) && (w <= 1)) { __DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|"); } } } else { __DSVERIFIER_assert(0); } return 0; } # 48 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 extern digital_system ds; extern digital_system plant; digital_system plant_cbmc; extern digital_system controller; extern implementation impl; extern hardware hw; extern digital_system_state_space _controller; extern filter_parameters filter; unsigned int nondet_uint(); extern void initials(); void validation(); void call_verification_task(void * verification_task); void call_closedloop_verification_task(void * closedloop_verification_task); float nondet_float(); double nondet_double(); int main(){ initialization(); validation(); if (1 == 0) rounding_mode = 0; else if (1 == 1) rounding_mode = 1; else if (1 == 2) rounding_mode = 2; if (2 == 3) { call_verification_task(&verify_overflow); } else if (2 == 2) { call_verification_task(&verify_limit_cycle); } else if (2 == 6) { call_verification_task(&verify_error); } else if (2 == 1) { call_verification_task(&verify_zero_input_limit_cycle); } else if (2 == 4) { call_verification_task(&verify_timing_msp_430); } else if (2 == 5) { call_verification_task(&verify_generic_timing); } else if (2 == 7) { call_verification_task(&verify_stability); } else if (2 == 8) { call_verification_task(&verify_minimum_phase); } else if (2 == 9) { call_closedloop_verification_task(&verify_stability_closedloop_using_dslib); } else if (2 == 10) { call_closedloop_verification_task(&verify_limit_cycle_closed_loop); } else if (2 == 11) { call_closedloop_verification_task(&verify_error_closedloop); } else if (2 == 12) { verify_error_state_space(); } else if (2 == 16) { verify_safety_state_space(); } else if (2 == 13) { verify_controllability(); } else if (2 == 14) { verify_observability(); } else if (2 == 15) { verify_limit_cycle_state_space(); } else if (2 == 18) { call_verification_task(&verify_magnitude); } return 0; } void validation() { if (2 == 12 || 2 == 16 || 2 == 15 || 2 == 13 || 2 == 14) { if (0 == 0) { printf("\n\n********************************************************************************************\n"); printf("* set a K_SIZE to use this property in DSVerifier (use: -DK_SIZE=VALUE) *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); exit(1); } initials(); return; } if (((2 != 9) && (2 != 10) && (2 != 11)) && (ds.a_size == 0 || ds.b_size == 0)) { printf("\n\n****************************************************************************\n"); printf("* set (ds and impl) parameters to check with DSVerifier *\n"); printf("****************************************************************************\n"); __DSVERIFIER_assert(0); } if ((2 == 9) || (2 == 10) || (2 == 11)) { if (controller.a_size == 0 || plant.b_size == 0 || impl.int_bits == 0 ) { printf("\n\n*****************************************************************************************************\n"); printf("* set (controller, plant, and impl) parameters to check CLOSED LOOP with DSVerifier *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } else { printf("\n\n*****************************************************************************************************\n"); printf("* set (controller and impl) parameters so that they do not overflow *\n"); printf("*****************************************************************************************************\n"); unsigned j; for (j = 0; j < controller.a_size; ++j) { const double value=controller.a[j]; __DSVERIFIER_assert(value <= _dbl_max); __DSVERIFIER_assert(value >= _dbl_min); } for (j = 0; j < controller.b_size; ++j) { const double value=controller.b[j]; __DSVERIFIER_assert(value <= _dbl_max); __DSVERIFIER_assert(value >= _dbl_min); } } if (controller.b_size > 0) { unsigned j, zeros=0; for (j = 0; j < controller.b_size; ++j) { if (controller.b[j]==0) ++zeros; } if (zeros == controller.b_size) { printf("\n\n*****************************************************************************************************\n"); printf("* The controller numerator must not be zero *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (controller.a_size > 0) { unsigned j, zeros=0; for (j = 0; j < controller.a_size; ++j) { if (controller.a[j]==0) ++zeros; } if (zeros == controller.a_size) { printf("\n\n*****************************************************************************************************\n"); printf("* The controller denominator must not be zero *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (0 == 0) { printf("\n\n***************************************************************************************************************\n"); printf("* set a connection mode to check CLOSED LOOP with DSVerifier (use: --connection-mode TYPE) *\n"); printf("***************************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (2 == 0) { printf("\n\n***************************************************************************************\n"); printf("* set the property to check with DSVerifier (use: --property NAME) *\n"); printf("***************************************************************************************\n"); __DSVERIFIER_assert(0); } if ((2 == 3) || (2 == 2) || (2 == 1) || (2 == 10) || (2 == 11) || (2 == 4 || 2 == 5) || 2 == 6) { if ((5 == 0) && !(0 == 1)) { printf("\n\n********************************************************************************************\n"); printf("* set a X_SIZE to use this property in DSVerifier (use: --x-size VALUE) *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); } else if (0 == 1) { X_SIZE_VALUE = nondet_uint(); __DSVERIFIER_assume( X_SIZE_VALUE > (2 * ds.a_size)); } else if (5 < 0) { printf("\n\n********************************************************************************************\n"); printf("* set a X_SIZE > 0 *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); } else { X_SIZE_VALUE = 5; } } if ((1 == 0) && (2 != 9) && (2 != 18)) { printf("\n\n*********************************************************************************************\n"); printf("* set the realization to check with DSVerifier (use: --realization NAME) *\n"); printf("*********************************************************************************************\n"); __DSVERIFIER_assert(0); } if (2 == 6 || 2 == 11) { if (impl.max_error == 0) { printf("\n\n***********************************************************************\n"); printf("* provide the maximum expected error (use: impl.max_error) *\n"); printf("***********************************************************************\n"); __DSVERIFIER_assert(0); } } if (2 == 4 || 2 == 5) { if (2 == 5 || 2 == 4) { if (hw.clock == 0l) { printf("\n\n***************************\n"); printf("* Clock could not be zero *\n"); printf("***************************\n"); __DSVERIFIER_assert(0); } hw.cycle = ((double) 1.0 / hw.clock); if (hw.cycle < 0) { printf("\n\n*********************************************\n"); printf("* The cycle time could not be representable *\n"); printf("*********************************************\n"); __DSVERIFIER_assert(0); } if (ds.sample_time == 0) { printf("\n\n*****************************************************************************\n"); printf("* provide the sample time of the digital system (ds.sample_time) *\n"); printf("*****************************************************************************\n"); __DSVERIFIER_assert(0); } } } if (2 == 18) { if (!((filter.Ap > 0) && (filter.Ac >0) && (filter.Ar >0))) { printf("\n\n*****************************************************************************\n"); printf("* set values bigger than 0 for Ap, Ac and Ar* \n"); printf("*****************************************************************************\n"); __DSVERIFIER_assert(0); } } if ((1 == 7) || (1 == 8) || (1 == 9) || (1 == 10) || (1 == 11) || (1 == 12)) { printf("\n\n******************************************\n"); printf("* Temporarily the cascade modes are disabled *\n"); printf("**********************************************\n"); __DSVERIFIER_assert(0); } } void call_verification_task(void * verification_task) { int i = 0; _Bool base_case_executed = 0; if (0 == 2) { for(i=0; i<ds.b_size; i++) { if (ds.b_uncertainty[i] > 0) { double factor = ds.b_uncertainty[i]; factor = factor < 0 ? factor * (-1) : factor; double min = ds.b[i] - factor; double max = ds.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.b[i] = nondet_double(); __DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max)); } } for(i=0; i<ds.a_size; i++) { if (ds.a_uncertainty[i] > 0) { double factor = ds.a_uncertainty[i]; factor = factor < 0 ? factor * (-1) : factor; double min = ds.a[i] - factor; double max = ds.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.a[i] = nondet_double(); __DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max)); } } } else { int i=0; for(i=0; i<ds.b_size; i++) { if (ds.b_uncertainty[i] > 0) { double factor = ((ds.b[i] * ds.b_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = ds.b[i] - factor; double max = ds.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.b[i] = nondet_double(); __DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max)); } } for(i=0; i<ds.a_size; i++) { if (ds.a_uncertainty[i] > 0) { double factor = ((ds.a[i] * ds.a_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = ds.a[i] - factor; double max = ds.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.a[i] = nondet_double(); __DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max)); } } } ((void(*)())verification_task)(); } void call_closedloop_verification_task(void * closedloop_verification_task) { _Bool base_case_executed = 0; int i=0; for(i=0; i<plant.b_size; i++) { if (plant.b_uncertainty[i] > 0) { double factor = ((plant.b[i] * plant.b_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = plant.b[i] - factor; double max = plant.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } plant.b[i] = nondet_double(); __DSVERIFIER_assume((plant.b[i] >= min) && (plant.b[i] <= max)); }else{ } } for(i=0; i<plant.a_size; i++) { if (plant.a_uncertainty[i] > 0) { double factor = ((plant.a[i] * plant.a_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = plant.a[i] - factor; double max = plant.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } plant.a[i] = nondet_double(); __DSVERIFIER_assume((plant.a[i] >= min) && (plant.a[i] <= max)); } else { } } ((void(*)())closedloop_verification_task)(); } # 2 "benchmarks/ds-07-impl1.c" 2 digital_system ds = { .b = { 0.1, -0.09998 }, .b_size = 2, .a = { 1.0, -1.0 }, .a_size = 2, .sample_time = 0.02 }; implementation impl = { .int_bits = 4, .frac_bits = 12, .max = 1.0, .min = -1.0 };
the_stack_data/674651.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #define ADD_ITEM_TO_BOUGHT 0 #define ADD_ITEM_YOU_BOUGHT 1 #define QUIT_PROGRAM 2 int main() { int ch = 0; int choice = -1; char item[50] = {0}; char person_name[50] = {0}; int quantity = 0; printf("********************welcome to splitwise********************\n"); do { printf("select option\n"); printf("To add item to bought, press 0\n"); printf("To add Expenses (items you have bought), press 1\n"); printf("to quit, press 2\n"); scanf("%d", &ch); switch(ch) { case ADD_ITEM_TO_BOUGHT: do { printf("please mention items\n"); memset(item, 0, sizeof(item)); scanf("%s", item); printf("please mention quantity\n"); scanf("%d", &quantity); printf("want to end more? press 1 otherwise add 0\n"); scanf("%d", &choice); } while(choice != 0); break; case ADD_ITEM_YOU_BOUGHT: printf("add person to split with\n"); do { scanf("%s", person_name ); printf("want to add more person? press 1 else press 0\n"); scanf("%d", &choice); } while( choice != 0 ); break; case QUIT_PROGRAM: break; default: printf("wrong choice\n"); break; } } while(ch != 2); return 0; }
the_stack_data/55025.c
double power(double x, int n) { if(n==0) return 1; else if ((n%2)==0) return power(x*x,n/2); else return x*power(x*x, (n-1)/2); }
the_stack_data/218893577.c
#include <math.h> #include <stdio.h> long sieve(long n, long o) { long i = 0; long j = 0; long k = 0; int is_prime[n + 1]; is_prime[2] = 1; is_prime[3] = 1; long lim = ceil(sqrt(n)); for(i = 5; i < n; i++) is_prime[i] = 0; for (i = 1; i <= lim; i++) { for (j = 1; j <= lim; j++) { long num = (4 * i * i + j * j); if (num <= n && (num % 12 == 1 || num % 12 == 5)) is_prime[num] = 1; num = (3 * i * i + j * j); if (num <= n && (num % 12 == 7)) is_prime[num] = 1; if (i > j) { num = (3 * i * i - j * j); if (num <= n && (num % 12 == 11)) is_prime[num] = 1; } } } for (i = 5; i <= lim; i++) if (is_prime[i]) for (j = i * i; j <= n; j += i) is_prime[j] = 0; for (i = 2; i <= n; i++) { if (is_prime[i]) k++; if(k == o) return i; } return sieve(n * 2, o); } void main() { printf("%d", sieve(1, 10001)); }
the_stack_data/72763.c
#include <stdio.h> #include <stdlib.h> void insere(); int main() { insere(); int opcao; printf("Deseja inserir mais um aluno? (1-SIM Outro-NAO\n"); scanf("%d", &opcao); while(opcao == 1){ insere(); printf("Deseja inserir mais um aluno? (1-SIM Outro-NAO\n"); scanf("%d", &opcao); } return 0; } void insere(){ int i, quantidade; float *pnotas; float soma=0.0, media; printf("Informe a quantidade de notas que deseja inserir: "); scanf("%d", &quantidade); pnotas = (float *) malloc(sizeof(float) * quantidade); if(pnotas != NULL){ for(i=0;i<quantidade; i++){ scanf("%f", &pnotas[i]); soma +=pnotas[i]; } } printf("As notas sao: \n"); for(i=0; i<quantidade; i++){ printf("%.2f\n", pnotas[i]); } media = soma/(float)quantidade; printf("A media e: %.2f\n", media); }
the_stack_data/694317.c
/* This testcase is part of GDB, the GNU debugger. Copyright 2019-2021 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ int xxx1 = 123; struct S { int a; int b; int c; }; struct S g_s = {1, 2, 3}; static void inc () { g_s.a++;; } int main () { inc (); return 0; }
the_stack_data/225142066.c
int native_int = 13; int native_func() { return 14; }
the_stack_data/15763583.c
// Server C code to reverse a // string by sent from client #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <unistd.h> #define PORT 8090 // Driver code int main() { int server_fd, new_socket, valread; struct sockaddr_in address; char str[100]; int addrlen = sizeof(address); char buffer[1024] = { 0 }; char* hello = "Hello from server"; // Creating socket file descriptor if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) { perror("socket failed"); exit(EXIT_FAILURE); } address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons(PORT); // Forcefully attaching socket to // the port 8090 if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) { perror("bind failed"); exit(EXIT_FAILURE); } // puts the server socket in passive mode if (listen(server_fd, 3) < 0) { perror("listen"); exit(EXIT_FAILURE); } if ((new_socket = accept(server_fd, (struct sockaddr*)&address, (socklen_t*)&addrlen)) < 0) { perror("accept"); exit(EXIT_FAILURE); } // read string send by client valread = read(new_socket, str, sizeof(str)); int i, j, temp; int l = strlen(str); printf("\nString sent by client:%s\n", str); // loop to reverse the string for (i = 0, j = l - 1; i < j; i++, j--) { temp = str[i]; str[i] = str[j]; str[j] = temp; } // send reversed string to client // by send system call send(new_socket, str, sizeof(str), 0); printf("\nModified string sent to client\n"); return 0; }
the_stack_data/50138689.c
int printf (const char *, ...); int foo (unsigned long long a, unsigned char b, float f, double d) { return printf ("%llu, %u, %f, %f\n", a, b, f, d); } int main (void) { int i = -3; float f = 3.14f; double d = 2.71; return foo (i, i, d, f); }
the_stack_data/143750.c
//Write C program to find the sum of even and odd numbers in the given array // array[10]={1,2,3,4,5,6,7,8,9,10} #include <stdio.h> int main() { int array[10]={1,2,3,4,5,6,7,8,9,10}; int even_sum=0, odd_sum=0, i; for(i=0;i<10;i++) { if(array[i]%2==0) even_sum+=array[i]; else odd_sum+=array[i]; } printf("The sum of even numbers in the given array is %d \n", even_sum); printf("The sum of odd numbers in the given array is %d \n", odd_sum); }
the_stack_data/37636872.c
/* -*-c-*- */ /********************************************************************** thread_pthread.c - $Author$ Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION #include "gc.h" #include "mjit.h" #ifdef HAVE_SYS_RESOURCE_H #include <sys/resource.h> #endif #ifdef HAVE_THR_STKSEGMENT #include <thread.h> #endif #if HAVE_FCNTL_H #include <fcntl.h> #elif HAVE_SYS_FCNTL_H #include <sys/fcntl.h> #endif #ifdef HAVE_SYS_PRCTL_H #include <sys/prctl.h> #endif #if defined(HAVE_SYS_TIME_H) #include <sys/time.h> #endif #if defined(__HAIKU__) #include <kernel/OS.h> #endif #include <time.h> #include <signal.h> #if defined(HAVE_SYS_EVENTFD_H) && defined(HAVE_EVENTFD) # define USE_EVENTFD (1) # include <sys/eventfd.h> #else # define USE_EVENTFD (0) #endif #if defined(SIGVTALRM) && !defined(__CYGWIN__) && !defined(__EMSCRIPTEN__) # define USE_UBF_LIST 1 #endif /* * UBF_TIMER and ubf_list both use SIGVTALRM. * * UBF_TIMER has NOTHING to do with thread timeslices (TIMER_INTERRUPT_MASK) * * UBF_TIMER is to close TOCTTOU signal race on programs where we * cannot rely on GVL contention (vm->gvl.timer) to perform wakeups * while a thread is doing blocking I/O on sockets or pipes. With * rb_thread_call_without_gvl and similar functions: * * (1) Check interrupts. * (2) release GVL. * (2a) signal received * (3) call func with data1 (blocks for a long time without ubf_timer) * (4) acquire GVL. * Other Ruby threads can not run in parallel any more. * (5) Check interrupts. * * We need UBF_TIMER to break out of (3) if (2a) happens. * * ubf_list wakeups may be triggered on gvl_yield. * * If we have vm->gvl.timer (on GVL contention), we don't need UBF_TIMER * as it can perform the same tasks while doing timeslices. */ #define UBF_TIMER_NONE 0 #define UBF_TIMER_POSIX 1 #define UBF_TIMER_PTHREAD 2 #ifndef UBF_TIMER # if defined(HAVE_TIMER_SETTIME) && defined(HAVE_TIMER_CREATE) && \ defined(CLOCK_MONOTONIC) && defined(USE_UBF_LIST) /* preferred */ # define UBF_TIMER UBF_TIMER_POSIX # elif defined(USE_UBF_LIST) /* safe, but inefficient */ # define UBF_TIMER UBF_TIMER_PTHREAD # else /* we'll be racy without SIGVTALRM for ubf_list */ # define UBF_TIMER UBF_TIMER_NONE # endif #endif enum rtimer_state { /* alive, after timer_create: */ RTIMER_DISARM, RTIMER_ARMING, RTIMER_ARMED, RTIMER_DEAD }; #if UBF_TIMER == UBF_TIMER_POSIX static const struct itimerspec zero; static struct { rb_atomic_t state_; /* rtimer_state */ rb_pid_t owner; timer_t timerid; } timer_posix = { /* .state = */ RTIMER_DEAD, }; #define TIMER_STATE_DEBUG 0 static const char * rtimer_state_name(enum rtimer_state state) { switch (state) { case RTIMER_DISARM: return "disarm"; case RTIMER_ARMING: return "arming"; case RTIMER_ARMED: return "armed"; case RTIMER_DEAD: return "dead"; default: rb_bug("unreachable"); } } static enum rtimer_state timer_state_exchange(enum rtimer_state state) { enum rtimer_state prev = ATOMIC_EXCHANGE(timer_posix.state_, state); if (TIMER_STATE_DEBUG) fprintf(stderr, "state (exc): %s->%s\n", rtimer_state_name(prev), rtimer_state_name(state)); return prev; } static enum rtimer_state timer_state_cas(enum rtimer_state expected_prev, enum rtimer_state state) { enum rtimer_state prev = ATOMIC_CAS(timer_posix.state_, expected_prev, state); if (TIMER_STATE_DEBUG) { if (prev == expected_prev) { fprintf(stderr, "state (cas): %s->%s\n", rtimer_state_name(prev), rtimer_state_name(state)); } else { fprintf(stderr, "state (cas): %s (expected:%s)\n", rtimer_state_name(prev), rtimer_state_name(expected_prev)); } } return prev; } #elif UBF_TIMER == UBF_TIMER_PTHREAD static void *timer_pthread_fn(void *); static struct { int low[2]; rb_atomic_t armed; /* boolean */ rb_pid_t owner; pthread_t thid; } timer_pthread = { { -1, -1 }, }; #endif static const rb_hrtime_t *sigwait_timeout(rb_thread_t *, int sigwait_fd, const rb_hrtime_t *, int *drained_p); static void ubf_timer_disarm(void); static void threadptr_trap_interrupt(rb_thread_t *); static void clear_thread_cache_altstack(void); static void ubf_wakeup_all_threads(void); static int ubf_threads_empty(void); #define TIMER_THREAD_CREATED_P() (signal_self_pipe.owner_process == getpid()) /* for testing, and in case we come across a platform w/o pipes: */ #define BUSY_WAIT_SIGNALS (0) /* * sigwait_th is the thread which owns sigwait_fd and sleeps on it * (using ppoll). MJIT worker can be sigwait_th==0, so we initialize * it to THREAD_INVALID at startup and fork time. It is the ONLY thread * allowed to read from sigwait_fd, otherwise starvation can occur. */ #define THREAD_INVALID ((const rb_thread_t *)-1) static const rb_thread_t *sigwait_th; #ifdef HAVE_SCHED_YIELD #define native_thread_yield() (void)sched_yield() #else #define native_thread_yield() ((void)0) #endif #if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && \ defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && \ defined(HAVE_CLOCK_GETTIME) static pthread_condattr_t condattr_mono; static pthread_condattr_t *condattr_monotonic = &condattr_mono; #else static const void *const condattr_monotonic = NULL; #endif /* 100ms. 10ms is too small for user level thread scheduling * on recent Linux (tested on 2.6.35) */ #define TIME_QUANTUM_MSEC (100) #define TIME_QUANTUM_USEC (TIME_QUANTUM_MSEC * 1000) #define TIME_QUANTUM_NSEC (TIME_QUANTUM_USEC * 1000) static rb_hrtime_t native_cond_timeout(rb_nativethread_cond_t *, rb_hrtime_t); static int native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const rb_hrtime_t *abs); /* * Designate the next gvl.timer thread, favor the last thread in * the waitq since it will be in waitq longest */ static int designate_timer_thread(rb_global_vm_lock_t *gvl) { native_thread_data_t *last; last = list_tail(&gvl->waitq, native_thread_data_t, node.ubf); if (last) { rb_native_cond_signal(&last->cond.gvlq); return TRUE; } return FALSE; } /* * We become designated timer thread to kick vm->gvl.owner * periodically. Continue on old timeout if it expired. */ static void do_gvl_timer(rb_global_vm_lock_t *gvl, rb_thread_t *th) { rb_vm_t *vm = GET_VM(); static rb_hrtime_t abs; native_thread_data_t *nd = &th->native_thread_data; gvl->timer = th; /* take over wakeups from UBF_TIMER */ ubf_timer_disarm(); if (gvl->timer_err == ETIMEDOUT) { abs = native_cond_timeout(&nd->cond.gvlq, TIME_QUANTUM_NSEC); } gvl->timer_err = native_cond_timedwait(&nd->cond.gvlq, &gvl->lock, &abs); ubf_wakeup_all_threads(); ruby_sigchld_handler(vm); if (UNLIKELY(rb_signal_buff_size())) { if (th == vm->ractor.main_thread) { RUBY_VM_SET_TRAP_INTERRUPT(th->ec); } else { threadptr_trap_interrupt(vm->ractor.main_thread); } } /* * Timeslice. Warning: the process may fork while this * thread is contending for GVL: */ if (gvl->owner) { // strictly speaking, accessing "gvl->owner" is not thread-safe RUBY_VM_SET_TIMER_INTERRUPT(gvl->owner->ec); } gvl->timer = 0; } static void gvl_acquire_common(rb_global_vm_lock_t *gvl, rb_thread_t *th) { if (gvl->owner) { native_thread_data_t *nd = &th->native_thread_data; VM_ASSERT(th->unblock.func == 0 && "we must not be in ubf_list and GVL waitq at the same time"); list_add_tail(&gvl->waitq, &nd->node.gvl); do { if (!gvl->timer) { do_gvl_timer(gvl, th); } else { rb_native_cond_wait(&nd->cond.gvlq, &gvl->lock); } } while (gvl->owner); list_del_init(&nd->node.gvl); if (gvl->need_yield) { gvl->need_yield = 0; rb_native_cond_signal(&gvl->switch_cond); } } else { /* reset timer if uncontended */ gvl->timer_err = ETIMEDOUT; } gvl->owner = th; if (!gvl->timer) { if (!designate_timer_thread(gvl) && !ubf_threads_empty()) { rb_thread_wakeup_timer_thread(-1); } } } static void gvl_acquire(rb_global_vm_lock_t *gvl, rb_thread_t *th) { rb_native_mutex_lock(&gvl->lock); gvl_acquire_common(gvl, th); rb_native_mutex_unlock(&gvl->lock); } static const native_thread_data_t * gvl_release_common(rb_global_vm_lock_t *gvl) { native_thread_data_t *next; gvl->owner = 0; next = list_top(&gvl->waitq, native_thread_data_t, node.ubf); if (next) rb_native_cond_signal(&next->cond.gvlq); return next; } static void gvl_release(rb_global_vm_lock_t *gvl) { rb_native_mutex_lock(&gvl->lock); gvl_release_common(gvl); rb_native_mutex_unlock(&gvl->lock); } static void gvl_yield(rb_global_vm_lock_t *gvl, rb_thread_t *th) { const native_thread_data_t *next; /* * Perhaps other threads are stuck in blocking region w/o GVL, too, * (perhaps looping in io_close_fptr) so we kick them: */ ubf_wakeup_all_threads(); rb_native_mutex_lock(&gvl->lock); next = gvl_release_common(gvl); /* An another thread is processing GVL yield. */ if (UNLIKELY(gvl->wait_yield)) { while (gvl->wait_yield) rb_native_cond_wait(&gvl->switch_wait_cond, &gvl->lock); } else if (next) { /* Wait until another thread task takes GVL. */ gvl->need_yield = 1; gvl->wait_yield = 1; while (gvl->need_yield) rb_native_cond_wait(&gvl->switch_cond, &gvl->lock); gvl->wait_yield = 0; rb_native_cond_broadcast(&gvl->switch_wait_cond); } else { rb_native_mutex_unlock(&gvl->lock); native_thread_yield(); rb_native_mutex_lock(&gvl->lock); rb_native_cond_broadcast(&gvl->switch_wait_cond); } gvl_acquire_common(gvl, th); rb_native_mutex_unlock(&gvl->lock); } void rb_gvl_init(rb_global_vm_lock_t *gvl) { rb_native_mutex_initialize(&gvl->lock); rb_native_cond_initialize(&gvl->switch_cond); rb_native_cond_initialize(&gvl->switch_wait_cond); list_head_init(&gvl->waitq); gvl->owner = 0; gvl->timer = 0; gvl->timer_err = ETIMEDOUT; gvl->need_yield = 0; gvl->wait_yield = 0; } static void gvl_destroy(rb_global_vm_lock_t *gvl) { /* * only called once at VM shutdown (not atfork), another thread * may still grab vm->gvl.lock when calling gvl_release at * the end of thread_start_func_2 */ if (0) { rb_native_cond_destroy(&gvl->switch_wait_cond); rb_native_cond_destroy(&gvl->switch_cond); rb_native_mutex_destroy(&gvl->lock); } clear_thread_cache_altstack(); } #if defined(HAVE_WORKING_FORK) static void thread_cache_reset(void); static void gvl_atfork(rb_global_vm_lock_t *gvl) { thread_cache_reset(); rb_gvl_init(gvl); gvl_acquire(gvl, GET_THREAD()); } #endif #define NATIVE_MUTEX_LOCK_DEBUG 0 static void mutex_debug(const char *msg, void *lock) { if (NATIVE_MUTEX_LOCK_DEBUG) { int r; static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER; if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);} fprintf(stdout, "%s: %p\n", msg, lock); if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);} } } void rb_native_mutex_lock(pthread_mutex_t *lock) { int r; mutex_debug("lock", lock); if ((r = pthread_mutex_lock(lock)) != 0) { rb_bug_errno("pthread_mutex_lock", r); } } void rb_native_mutex_unlock(pthread_mutex_t *lock) { int r; mutex_debug("unlock", lock); if ((r = pthread_mutex_unlock(lock)) != 0) { rb_bug_errno("pthread_mutex_unlock", r); } } int rb_native_mutex_trylock(pthread_mutex_t *lock) { int r; mutex_debug("trylock", lock); if ((r = pthread_mutex_trylock(lock)) != 0) { if (r == EBUSY) { return EBUSY; } else { rb_bug_errno("pthread_mutex_trylock", r); } } return 0; } void rb_native_mutex_initialize(pthread_mutex_t *lock) { int r = pthread_mutex_init(lock, 0); mutex_debug("init", lock); if (r != 0) { rb_bug_errno("pthread_mutex_init", r); } } void rb_native_mutex_destroy(pthread_mutex_t *lock) { int r = pthread_mutex_destroy(lock); mutex_debug("destroy", lock); if (r != 0) { rb_bug_errno("pthread_mutex_destroy", r); } } void rb_native_cond_initialize(rb_nativethread_cond_t *cond) { int r = pthread_cond_init(cond, condattr_monotonic); if (r != 0) { rb_bug_errno("pthread_cond_init", r); } } void rb_native_cond_destroy(rb_nativethread_cond_t *cond) { int r = pthread_cond_destroy(cond); if (r != 0) { rb_bug_errno("pthread_cond_destroy", r); } } /* * In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return * EAGAIN after retrying 8192 times. You can see them in the following page: * * http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c * * The following rb_native_cond_signal and rb_native_cond_broadcast functions * need to retrying until pthread functions don't return EAGAIN. */ void rb_native_cond_signal(rb_nativethread_cond_t *cond) { int r; do { r = pthread_cond_signal(cond); } while (r == EAGAIN); if (r != 0) { rb_bug_errno("pthread_cond_signal", r); } } void rb_native_cond_broadcast(rb_nativethread_cond_t *cond) { int r; do { r = pthread_cond_broadcast(cond); } while (r == EAGAIN); if (r != 0) { rb_bug_errno("rb_native_cond_broadcast", r); } } void rb_native_cond_wait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex) { int r = pthread_cond_wait(cond, mutex); if (r != 0) { rb_bug_errno("pthread_cond_wait", r); } } static int native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const rb_hrtime_t *abs) { int r; struct timespec ts; /* * An old Linux may return EINTR. Even though POSIX says * "These functions shall not return an error code of [EINTR]". * http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html * Let's hide it from arch generic code. */ do { rb_hrtime2timespec(&ts, abs); r = pthread_cond_timedwait(cond, mutex, &ts); } while (r == EINTR); if (r != 0 && r != ETIMEDOUT) { rb_bug_errno("pthread_cond_timedwait", r); } return r; } void rb_native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, unsigned long msec) { rb_hrtime_t hrmsec = native_cond_timeout(cond, RB_HRTIME_PER_MSEC * msec); native_cond_timedwait(cond, mutex, &hrmsec); } static rb_hrtime_t native_cond_timeout(rb_nativethread_cond_t *cond, const rb_hrtime_t rel) { if (condattr_monotonic) { return rb_hrtime_add(rb_hrtime_now(), rel); } else { struct timespec ts; rb_timespec_now(&ts); return rb_hrtime_add(rb_timespec2hrtime(&ts), rel); } } #define native_cleanup_push pthread_cleanup_push #define native_cleanup_pop pthread_cleanup_pop #ifdef RB_THREAD_LOCAL_SPECIFIER static RB_THREAD_LOCAL_SPECIFIER rb_thread_t *ruby_native_thread; #else static pthread_key_t ruby_native_thread_key; #endif static void null_func(int i) { /* null */ } static rb_thread_t * ruby_thread_from_native(void) { #ifdef RB_THREAD_LOCAL_SPECIFIER return ruby_native_thread; #else return pthread_getspecific(ruby_native_thread_key); #endif } static int ruby_thread_set_native(rb_thread_t *th) { if (th && th->ec) { rb_ractor_set_current_ec(th->ractor, th->ec); } #ifdef RB_THREAD_LOCAL_SPECIFIER ruby_native_thread = th; return 1; #else return pthread_setspecific(ruby_native_thread_key, th) == 0; #endif } static void native_thread_init(rb_thread_t *th); void Init_native_thread(rb_thread_t *th) { #if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) if (condattr_monotonic) { int r = pthread_condattr_init(condattr_monotonic); if (r == 0) { r = pthread_condattr_setclock(condattr_monotonic, CLOCK_MONOTONIC); } if (r) condattr_monotonic = NULL; } #endif #ifndef RB_THREAD_LOCAL_SPECIFIER if (pthread_key_create(&ruby_native_thread_key, 0) == EAGAIN) { rb_bug("pthread_key_create failed (ruby_native_thread_key)"); } if (pthread_key_create(&ruby_current_ec_key, 0) == EAGAIN) { rb_bug("pthread_key_create failed (ruby_current_ec_key)"); } #endif th->thread_id = pthread_self(); ruby_thread_set_native(th); fill_thread_id_str(th); native_thread_init(th); posix_signal(SIGVTALRM, null_func); } static void native_thread_init(rb_thread_t *th) { native_thread_data_t *nd = &th->native_thread_data; #ifdef USE_UBF_LIST list_node_init(&nd->node.ubf); #endif rb_native_cond_initialize(&nd->cond.gvlq); if (&nd->cond.gvlq != &nd->cond.intr) rb_native_cond_initialize(&nd->cond.intr); } #ifndef USE_THREAD_CACHE #define USE_THREAD_CACHE 1 #endif static void native_thread_destroy(rb_thread_t *th) { native_thread_data_t *nd = &th->native_thread_data; rb_native_cond_destroy(&nd->cond.gvlq); if (&nd->cond.gvlq != &nd->cond.intr) rb_native_cond_destroy(&nd->cond.intr); /* * prevent false positive from ruby_thread_has_gvl_p if that * gets called from an interposing function wrapper */ if (USE_THREAD_CACHE) ruby_thread_set_native(0); } #if USE_THREAD_CACHE static rb_thread_t *register_cached_thread_and_wait(void *); #endif #if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP #define STACKADDR_AVAILABLE 1 #elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP #define STACKADDR_AVAILABLE 1 #undef MAINSTACKADDR_AVAILABLE #define MAINSTACKADDR_AVAILABLE 1 void *pthread_get_stackaddr_np(pthread_t); size_t pthread_get_stacksize_np(pthread_t); #elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP #define STACKADDR_AVAILABLE 1 #elif defined HAVE_PTHREAD_GETTHRDS_NP #define STACKADDR_AVAILABLE 1 #elif defined __HAIKU__ #define STACKADDR_AVAILABLE 1 #endif #ifndef MAINSTACKADDR_AVAILABLE # ifdef STACKADDR_AVAILABLE # define MAINSTACKADDR_AVAILABLE 1 # else # define MAINSTACKADDR_AVAILABLE 0 # endif #endif #if MAINSTACKADDR_AVAILABLE && !defined(get_main_stack) # define get_main_stack(addr, size) get_stack(addr, size) #endif #ifdef STACKADDR_AVAILABLE /* * Get the initial address and size of current thread's stack */ static int get_stack(void **addr, size_t *size) { #define CHECK_ERR(expr) \ {int err = (expr); if (err) return err;} #ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */ pthread_attr_t attr; size_t guard = 0; STACK_GROW_DIR_DETECTION; CHECK_ERR(pthread_getattr_np(pthread_self(), &attr)); # ifdef HAVE_PTHREAD_ATTR_GETSTACK CHECK_ERR(pthread_attr_getstack(&attr, addr, size)); STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size)); # else CHECK_ERR(pthread_attr_getstackaddr(&attr, addr)); CHECK_ERR(pthread_attr_getstacksize(&attr, size)); # endif # ifdef HAVE_PTHREAD_ATTR_GETGUARDSIZE CHECK_ERR(pthread_attr_getguardsize(&attr, &guard)); *size -= guard; # else *size -= getpagesize(); # endif pthread_attr_destroy(&attr); #elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */ pthread_attr_t attr; CHECK_ERR(pthread_attr_init(&attr)); CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr)); # ifdef HAVE_PTHREAD_ATTR_GETSTACK CHECK_ERR(pthread_attr_getstack(&attr, addr, size)); # else CHECK_ERR(pthread_attr_getstackaddr(&attr, addr)); CHECK_ERR(pthread_attr_getstacksize(&attr, size)); # endif STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size)); pthread_attr_destroy(&attr); #elif (defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP) /* MacOS X */ pthread_t th = pthread_self(); *addr = pthread_get_stackaddr_np(th); *size = pthread_get_stacksize_np(th); #elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP stack_t stk; # if defined HAVE_THR_STKSEGMENT /* Solaris */ CHECK_ERR(thr_stksegment(&stk)); # else /* OpenBSD */ CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk)); # endif *addr = stk.ss_sp; *size = stk.ss_size; #elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */ pthread_t th = pthread_self(); struct __pthrdsinfo thinfo; char reg[256]; int regsiz=sizeof(reg); CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL, &thinfo, sizeof(thinfo), &reg, &regsiz)); *addr = thinfo.__pi_stackaddr; /* Must not use thinfo.__pi_stacksize for size. It is around 3KB smaller than the correct size calculated by thinfo.__pi_stackend - thinfo.__pi_stackaddr. */ *size = thinfo.__pi_stackend - thinfo.__pi_stackaddr; STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size)); #elif defined __HAIKU__ thread_info info; STACK_GROW_DIR_DETECTION; CHECK_ERR(get_thread_info(find_thread(NULL), &info)); *addr = info.stack_base; *size = (uintptr_t)info.stack_end - (uintptr_t)info.stack_base; STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size)); #else #error STACKADDR_AVAILABLE is defined but not implemented. #endif return 0; #undef CHECK_ERR } #endif static struct { rb_nativethread_id_t id; size_t stack_maxsize; VALUE *stack_start; } native_main_thread; #ifdef STACK_END_ADDRESS extern void *STACK_END_ADDRESS; #endif enum { RUBY_STACK_SPACE_LIMIT = 1024 * 1024, /* 1024KB */ RUBY_STACK_SPACE_RATIO = 5 }; static size_t space_size(size_t stack_size) { size_t space_size = stack_size / RUBY_STACK_SPACE_RATIO; if (space_size > RUBY_STACK_SPACE_LIMIT) { return RUBY_STACK_SPACE_LIMIT; } else { return space_size; } } #ifdef __linux__ static __attribute__((noinline)) void reserve_stack(volatile char *limit, size_t size) { # ifdef C_ALLOCA # error needs alloca() # endif struct rlimit rl; volatile char buf[0x100]; enum {stack_check_margin = 0x1000}; /* for -fstack-check */ STACK_GROW_DIR_DETECTION; if (!getrlimit(RLIMIT_STACK, &rl) && rl.rlim_cur == RLIM_INFINITY) return; if (size < stack_check_margin) return; size -= stack_check_margin; size -= sizeof(buf); /* margin */ if (IS_STACK_DIR_UPPER()) { const volatile char *end = buf + sizeof(buf); limit += size; if (limit > end) { /* |<-bottom (=limit(a)) top->| * | .. |<-buf 256B |<-end | stack check | * | 256B | =size= | margin (4KB)| * | =size= limit(b)->| 256B | | * | | alloca(sz) | | | * | .. |<-buf |<-limit(c) [sz-1]->0> | | */ size_t sz = limit - end; limit = alloca(sz); limit[sz-1] = 0; } } else { limit -= size; if (buf > limit) { /* |<-top (=limit(a)) bottom->| * | .. | 256B buf->| | stack check | * | 256B | =size= | margin (4KB)| * | =size= limit(b)->| 256B | | * | | alloca(sz) | | | * | .. | buf->| limit(c)-><0> | | */ size_t sz = buf - limit; limit = alloca(sz); limit[0] = 0; } } } #else # define reserve_stack(limit, size) ((void)(limit), (void)(size)) #endif #undef ruby_init_stack /* Set stack bottom of Ruby implementation. * * You must call this function before any heap allocation by Ruby implementation. * Or GC will break living objects */ void ruby_init_stack(volatile VALUE *addr) { native_main_thread.id = pthread_self(); #if MAINSTACKADDR_AVAILABLE if (native_main_thread.stack_maxsize) return; { void* stackaddr; size_t size; if (get_main_stack(&stackaddr, &size) == 0) { native_main_thread.stack_maxsize = size; native_main_thread.stack_start = stackaddr; reserve_stack(stackaddr, size); goto bound_check; } } #endif #ifdef STACK_END_ADDRESS native_main_thread.stack_start = STACK_END_ADDRESS; #else if (!native_main_thread.stack_start || STACK_UPPER((VALUE *)(void *)&addr, native_main_thread.stack_start > addr, native_main_thread.stack_start < addr)) { native_main_thread.stack_start = (VALUE *)addr; } #endif { #if defined(HAVE_GETRLIMIT) #if defined(PTHREAD_STACK_DEFAULT) # if PTHREAD_STACK_DEFAULT < RUBY_STACK_SPACE*5 # error "PTHREAD_STACK_DEFAULT is too small" # endif size_t size = PTHREAD_STACK_DEFAULT; #else size_t size = RUBY_VM_THREAD_VM_STACK_SIZE; #endif size_t space; int pagesize = getpagesize(); struct rlimit rlim; STACK_GROW_DIR_DETECTION; if (getrlimit(RLIMIT_STACK, &rlim) == 0) { size = (size_t)rlim.rlim_cur; } addr = native_main_thread.stack_start; if (IS_STACK_DIR_UPPER()) { space = ((size_t)((char *)addr + size) / pagesize) * pagesize - (size_t)addr; } else { space = (size_t)addr - ((size_t)((char *)addr - size) / pagesize + 1) * pagesize; } native_main_thread.stack_maxsize = space; #endif } #if MAINSTACKADDR_AVAILABLE bound_check: #endif /* If addr is out of range of main-thread stack range estimation, */ /* it should be on co-routine (alternative stack). [Feature #2294] */ { void *start, *end; STACK_GROW_DIR_DETECTION; if (IS_STACK_DIR_UPPER()) { start = native_main_thread.stack_start; end = (char *)native_main_thread.stack_start + native_main_thread.stack_maxsize; } else { start = (char *)native_main_thread.stack_start - native_main_thread.stack_maxsize; end = native_main_thread.stack_start; } if ((void *)addr < start || (void *)addr > end) { /* out of range */ native_main_thread.stack_start = (VALUE *)addr; native_main_thread.stack_maxsize = 0; /* unknown */ } } } #define CHECK_ERR(expr) \ {int err = (expr); if (err) {rb_bug_errno(#expr, err);}} static int native_thread_init_stack(rb_thread_t *th) { rb_nativethread_id_t curr = pthread_self(); if (pthread_equal(curr, native_main_thread.id)) { th->ec->machine.stack_start = native_main_thread.stack_start; th->ec->machine.stack_maxsize = native_main_thread.stack_maxsize; } else { #ifdef STACKADDR_AVAILABLE void *start; size_t size; if (get_stack(&start, &size) == 0) { uintptr_t diff = (uintptr_t)start - (uintptr_t)&curr; th->ec->machine.stack_start = (VALUE *)&curr; th->ec->machine.stack_maxsize = size - diff; } #else rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread"); #endif } return 0; } #ifndef __CYGWIN__ #define USE_NATIVE_THREAD_INIT 1 #endif static void * thread_start_func_1(void *th_ptr) { rb_thread_t *th = th_ptr; RB_ALTSTACK_INIT(void *altstack, th->altstack); #if USE_THREAD_CACHE thread_start: #endif { #if !defined USE_NATIVE_THREAD_INIT VALUE stack_start; #endif fill_thread_id_str(th); #if defined USE_NATIVE_THREAD_INIT native_thread_init_stack(th); #endif native_thread_init(th); /* run */ #if defined USE_NATIVE_THREAD_INIT thread_start_func_2(th, th->ec->machine.stack_start); #else thread_start_func_2(th, &stack_start); #endif } #if USE_THREAD_CACHE /* cache thread */ if ((th = register_cached_thread_and_wait(RB_ALTSTACK(altstack))) != 0) { goto thread_start; } #else RB_ALTSTACK_FREE(altstack); #endif return 0; } struct cached_thread_entry { rb_nativethread_cond_t cond; rb_nativethread_id_t thread_id; rb_thread_t *th; void *altstack; struct list_node node; }; #if USE_THREAD_CACHE static rb_nativethread_lock_t thread_cache_lock = RB_NATIVETHREAD_LOCK_INIT; static LIST_HEAD(cached_thread_head); # if defined(HAVE_WORKING_FORK) static void thread_cache_reset(void) { rb_native_mutex_initialize(&thread_cache_lock); list_head_init(&cached_thread_head); } # endif /* * number of seconds to cache for, I think 1-5s is sufficient to obviate * the need for thread pool in many network programs (taking into account * worst case network latency across the globe) without wasting memory */ #ifndef THREAD_CACHE_TIME # define THREAD_CACHE_TIME ((rb_hrtime_t)3 * RB_HRTIME_PER_SEC) #endif static rb_thread_t * register_cached_thread_and_wait(void *altstack) { rb_hrtime_t end = THREAD_CACHE_TIME; struct cached_thread_entry entry; rb_native_cond_initialize(&entry.cond); entry.altstack = altstack; entry.th = NULL; entry.thread_id = pthread_self(); end = native_cond_timeout(&entry.cond, end); rb_native_mutex_lock(&thread_cache_lock); { list_add(&cached_thread_head, &entry.node); native_cond_timedwait(&entry.cond, &thread_cache_lock, &end); if (entry.th == NULL) { /* unused */ list_del(&entry.node); } } rb_native_mutex_unlock(&thread_cache_lock); rb_native_cond_destroy(&entry.cond); if (!entry.th) { RB_ALTSTACK_FREE(entry.altstack); } return entry.th; } #else # if defined(HAVE_WORKING_FORK) static void thread_cache_reset(void) { } # endif #endif static int use_cached_thread(rb_thread_t *th) { #if USE_THREAD_CACHE struct cached_thread_entry *entry; rb_native_mutex_lock(&thread_cache_lock); entry = list_pop(&cached_thread_head, struct cached_thread_entry, node); if (entry) { entry->th = th; /* th->thread_id must be set before signal for Thread#name= */ th->thread_id = entry->thread_id; fill_thread_id_str(th); rb_native_cond_signal(&entry->cond); } rb_native_mutex_unlock(&thread_cache_lock); return !!entry; #endif return 0; } static void clear_thread_cache_altstack(void) { #if USE_THREAD_CACHE struct cached_thread_entry *entry; rb_native_mutex_lock(&thread_cache_lock); list_for_each(&cached_thread_head, entry, node) { void MAYBE_UNUSED(*altstack) = entry->altstack; entry->altstack = 0; RB_ALTSTACK_FREE(altstack); } rb_native_mutex_unlock(&thread_cache_lock); #endif } static int native_thread_create(rb_thread_t *th) { int err = 0; if (use_cached_thread(th)) { thread_debug("create (use cached thread): %p\n", (void *)th); } else { pthread_attr_t attr; const size_t stack_size = th->vm->default_params.thread_machine_stack_size + th->vm->default_params.thread_vm_stack_size; const size_t space = space_size(stack_size); #ifdef USE_SIGALTSTACK th->altstack = rb_allocate_sigaltstack(); #endif th->ec->machine.stack_maxsize = stack_size - space; CHECK_ERR(pthread_attr_init(&attr)); # ifdef PTHREAD_STACK_MIN thread_debug("create - stack size: %lu\n", (unsigned long)stack_size); CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size)); # endif # ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED)); # endif CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)); err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th); thread_debug("create: %p (%d)\n", (void *)th, err); /* should be done in the created thread */ fill_thread_id_str(th); CHECK_ERR(pthread_attr_destroy(&attr)); } return err; } #if USE_NATIVE_THREAD_PRIORITY static void native_thread_apply_priority(rb_thread_t *th) { #if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0) struct sched_param sp; int policy; int priority = 0 - th->priority; int max, min; pthread_getschedparam(th->thread_id, &policy, &sp); max = sched_get_priority_max(policy); min = sched_get_priority_min(policy); if (min > priority) { priority = min; } else if (max < priority) { priority = max; } sp.sched_priority = priority; pthread_setschedparam(th->thread_id, policy, &sp); #else /* not touched */ #endif } #endif /* USE_NATIVE_THREAD_PRIORITY */ static int native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th) { return rb_fd_select(n, readfds, writefds, exceptfds, timeout); } static void ubf_pthread_cond_signal(void *ptr) { rb_thread_t *th = (rb_thread_t *)ptr; thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th); rb_native_cond_signal(&th->native_thread_data.cond.intr); } static void native_cond_sleep(rb_thread_t *th, rb_hrtime_t *rel) { rb_nativethread_lock_t *lock = &th->interrupt_lock; rb_nativethread_cond_t *cond = &th->native_thread_data.cond.intr; /* Solaris cond_timedwait() return EINVAL if an argument is greater than * current_time + 100,000,000. So cut up to 100,000,000. This is * considered as a kind of spurious wakeup. The caller to native_sleep * should care about spurious wakeup. * * See also [Bug #1341] [ruby-core:29702] * http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html */ const rb_hrtime_t max = (rb_hrtime_t)100000000 * RB_HRTIME_PER_SEC; GVL_UNLOCK_BEGIN(th); { rb_native_mutex_lock(lock); th->unblock.func = ubf_pthread_cond_signal; th->unblock.arg = th; if (RUBY_VM_INTERRUPTED(th->ec)) { /* interrupted. return immediate */ thread_debug("native_sleep: interrupted before sleep\n"); } else { if (!rel) { rb_native_cond_wait(cond, lock); } else { rb_hrtime_t end; if (*rel > max) { *rel = max; } end = native_cond_timeout(cond, *rel); native_cond_timedwait(cond, lock, &end); } } th->unblock.func = 0; rb_native_mutex_unlock(lock); } GVL_UNLOCK_END(th); thread_debug("native_sleep done\n"); } #ifdef USE_UBF_LIST static LIST_HEAD(ubf_list_head); static rb_nativethread_lock_t ubf_list_lock = RB_NATIVETHREAD_LOCK_INIT; static void ubf_list_atfork(void) { list_head_init(&ubf_list_head); rb_native_mutex_initialize(&ubf_list_lock); } /* The thread 'th' is registered to be trying unblock. */ static void register_ubf_list(rb_thread_t *th) { struct list_node *node = &th->native_thread_data.node.ubf; if (list_empty((struct list_head*)node)) { rb_native_mutex_lock(&ubf_list_lock); list_add(&ubf_list_head, node); rb_native_mutex_unlock(&ubf_list_lock); } } /* The thread 'th' is unblocked. It no longer need to be registered. */ static void unregister_ubf_list(rb_thread_t *th) { struct list_node *node = &th->native_thread_data.node.ubf; /* we can't allow re-entry into ubf_list_head */ VM_ASSERT(th->unblock.func == 0); if (!list_empty((struct list_head*)node)) { rb_native_mutex_lock(&ubf_list_lock); list_del_init(node); if (list_empty(&ubf_list_head) && !rb_signal_buff_size()) { ubf_timer_disarm(); } rb_native_mutex_unlock(&ubf_list_lock); } } /* * send a signal to intent that a target thread return from blocking syscall. * Maybe any signal is ok, but we chose SIGVTALRM. */ static void ubf_wakeup_thread(rb_thread_t *th) { thread_debug("thread_wait_queue_wakeup (%"PRI_THREAD_ID")\n", thread_id_str(th)); pthread_kill(th->thread_id, SIGVTALRM); } static void ubf_select(void *ptr) { rb_thread_t *th = (rb_thread_t *)ptr; rb_global_vm_lock_t *gvl = rb_ractor_gvl(th->ractor); const rb_thread_t *cur = ruby_thread_from_native(); /* may be 0 */ register_ubf_list(th); /* * ubf_wakeup_thread() doesn't guarantee to wake up a target thread. * Therefore, we repeatedly call ubf_wakeup_thread() until a target thread * exit from ubf function. We must have a timer to perform this operation. * We use double-checked locking here because this function may be called * while vm->gvl.lock is held in do_gvl_timer. * There is also no need to start a timer if we're the designated * sigwait_th thread, otherwise we can deadlock with a thread * in unblock_function_clear. */ if (cur != gvl->timer && cur != sigwait_th) { /* * Double-checked locking above was to prevent nested locking * by the SAME thread. We use trylock here to prevent deadlocks * between DIFFERENT threads */ if (rb_native_mutex_trylock(&gvl->lock) == 0) { if (!gvl->timer) { rb_thread_wakeup_timer_thread(-1); } rb_native_mutex_unlock(&gvl->lock); } } ubf_wakeup_thread(th); } static int ubf_threads_empty(void) { return list_empty(&ubf_list_head); } static void ubf_wakeup_all_threads(void) { rb_thread_t *th; native_thread_data_t *dat; if (!ubf_threads_empty()) { rb_native_mutex_lock(&ubf_list_lock); list_for_each(&ubf_list_head, dat, node.ubf) { th = container_of(dat, rb_thread_t, native_thread_data); ubf_wakeup_thread(th); } rb_native_mutex_unlock(&ubf_list_lock); } } #else /* USE_UBF_LIST */ #define register_ubf_list(th) (void)(th) #define unregister_ubf_list(th) (void)(th) #define ubf_select 0 static void ubf_wakeup_all_threads(void) { return; } static int ubf_threads_empty(void) { return 1; } #define ubf_list_atfork() do {} while (0) #endif /* USE_UBF_LIST */ #define TT_DEBUG 0 #define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0) static struct { /* pipes are closed in forked children when owner_process does not match */ int normal[2]; /* [0] == sigwait_fd */ int ub_main[2]; /* unblock main thread from native_ppoll_sleep */ /* volatile for signal handler use: */ volatile rb_pid_t owner_process; } signal_self_pipe = { {-1, -1}, {-1, -1}, }; /* only use signal-safe system calls here */ static void rb_thread_wakeup_timer_thread_fd(int fd) { #if USE_EVENTFD const uint64_t buff = 1; #else const char buff = '!'; #endif ssize_t result; /* already opened */ if (fd >= 0) { retry: if ((result = write(fd, &buff, sizeof(buff))) <= 0) { int e = errno; switch (e) { case EINTR: goto retry; case EAGAIN: #if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif break; default: async_bug_fd("rb_thread_wakeup_timer_thread: write", e, fd); } } if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n"); } else { /* ignore wakeup */ } } /* * This ensures we get a SIGVTALRM in TIME_QUANTUM_MSEC if our * process could not react to the original signal in time. */ static void ubf_timer_arm(rb_pid_t current) /* async signal safe */ { #if UBF_TIMER == UBF_TIMER_POSIX if ((!current || timer_posix.owner == current) && timer_state_cas(RTIMER_DISARM, RTIMER_ARMING) == RTIMER_DISARM) { struct itimerspec it; it.it_interval.tv_sec = it.it_value.tv_sec = 0; it.it_interval.tv_nsec = it.it_value.tv_nsec = TIME_QUANTUM_NSEC; if (timer_settime(timer_posix.timerid, 0, &it, 0)) rb_async_bug_errno("timer_settime (arm)", errno); switch (timer_state_cas(RTIMER_ARMING, RTIMER_ARMED)) { case RTIMER_DISARM: /* somebody requested a disarm while we were arming */ /* may race harmlessly with ubf_timer_destroy */ (void)timer_settime(timer_posix.timerid, 0, &zero, 0); case RTIMER_ARMING: return; /* success */ case RTIMER_ARMED: /* * it is possible to have another thread disarm, and * a third thread arm finish re-arming before we get * here, so we wasted a syscall with timer_settime but * probably unavoidable in a signal handler. */ return; case RTIMER_DEAD: /* may race harmlessly with ubf_timer_destroy */ (void)timer_settime(timer_posix.timerid, 0, &zero, 0); return; default: rb_async_bug_errno("UBF_TIMER_POSIX unknown state", ERANGE); } } #elif UBF_TIMER == UBF_TIMER_PTHREAD if (!current || current == timer_pthread.owner) { if (ATOMIC_EXCHANGE(timer_pthread.armed, 1) == 0) rb_thread_wakeup_timer_thread_fd(timer_pthread.low[1]); } #endif } void rb_thread_wakeup_timer_thread(int sig) { rb_pid_t current; /* non-sighandler path */ if (sig <= 0) { rb_thread_wakeup_timer_thread_fd(signal_self_pipe.normal[1]); if (sig < 0) { ubf_timer_arm(0); } return; } /* must be safe inside sighandler, so no mutex */ current = getpid(); if (signal_self_pipe.owner_process == current) { rb_thread_wakeup_timer_thread_fd(signal_self_pipe.normal[1]); /* * system_working check is required because vm and main_thread are * freed during shutdown */ if (system_working > 0) { volatile rb_execution_context_t *ec; rb_vm_t *vm = GET_VM(); rb_thread_t *mth; /* * FIXME: root VM and main_thread should be static and not * on heap for maximum safety (and startup/shutdown speed) */ if (!vm) return; mth = vm->ractor.main_thread; if (!mth || system_working <= 0) return; /* this relies on GC for grace period before cont_free */ ec = ACCESS_ONCE(rb_execution_context_t *, mth->ec); if (ec) { RUBY_VM_SET_TRAP_INTERRUPT(ec); ubf_timer_arm(current); /* some ubfs can interrupt single-threaded process directly */ if (vm->ubf_async_safe && mth->unblock.func) { (mth->unblock.func)(mth->unblock.arg); } } } } } #define CLOSE_INVALIDATE_PAIR(expr) \ close_invalidate_pair(expr,"close_invalidate: "#expr) static void close_invalidate(int *fdp, const char *msg) { int fd = *fdp; *fdp = -1; if (close(fd) < 0) { async_bug_fd(msg, errno, fd); } } static void close_invalidate_pair(int fds[2], const char *msg) { if (USE_EVENTFD && fds[0] == fds[1]) { close_invalidate(&fds[0], msg); fds[1] = -1; } else { close_invalidate(&fds[0], msg); close_invalidate(&fds[1], msg); } } static void set_nonblock(int fd) { int oflags; int err; oflags = fcntl(fd, F_GETFL); if (oflags == -1) rb_sys_fail(0); oflags |= O_NONBLOCK; err = fcntl(fd, F_SETFL, oflags); if (err == -1) rb_sys_fail(0); } /* communication pipe with timer thread and signal handler */ static int setup_communication_pipe_internal(int pipes[2]) { int err; if (pipes[0] >= 0 || pipes[1] >= 0) { VM_ASSERT(pipes[0] >= 0); VM_ASSERT(pipes[1] >= 0); return 0; } /* * Don't bother with eventfd on ancient Linux 2.6.22..2.6.26 which were * missing EFD_* flags, they can fall back to pipe */ #if USE_EVENTFD && defined(EFD_NONBLOCK) && defined(EFD_CLOEXEC) pipes[0] = pipes[1] = eventfd(0, EFD_NONBLOCK|EFD_CLOEXEC); if (pipes[0] >= 0) { rb_update_max_fd(pipes[0]); return 0; } #endif err = rb_cloexec_pipe(pipes); if (err != 0) { rb_warn("pipe creation failed for timer: %s, scheduling broken", strerror(errno)); return -1; } rb_update_max_fd(pipes[0]); rb_update_max_fd(pipes[1]); set_nonblock(pipes[0]); set_nonblock(pipes[1]); return 0; } #if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME) # define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name) #endif enum { THREAD_NAME_MAX = #if defined(__linux__) 16 #elif defined(__APPLE__) /* Undocumented, and main thread seems unlimited */ 64 #else 16 #endif }; static VALUE threadptr_invoke_proc_location(rb_thread_t *th); static void native_set_thread_name(rb_thread_t *th) { #ifdef SET_CURRENT_THREAD_NAME VALUE loc; if (!NIL_P(loc = th->name)) { SET_CURRENT_THREAD_NAME(RSTRING_PTR(loc)); } else if ((loc = threadptr_invoke_proc_location(th)) != Qnil) { char *name, *p; char buf[THREAD_NAME_MAX]; size_t len; int n; name = RSTRING_PTR(RARRAY_AREF(loc, 0)); p = strrchr(name, '/'); /* show only the basename of the path. */ if (p && p[1]) name = p + 1; n = snprintf(buf, sizeof(buf), "%s:%d", name, NUM2INT(RARRAY_AREF(loc, 1))); rb_gc_force_recycle(loc); /* acts as a GC guard, too */ len = (size_t)n; if (len >= sizeof(buf)) { buf[sizeof(buf)-2] = '*'; buf[sizeof(buf)-1] = '\0'; } SET_CURRENT_THREAD_NAME(buf); } #endif } static void native_set_another_thread_name(rb_nativethread_id_t thread_id, VALUE name) { #if defined SET_ANOTHER_THREAD_NAME || defined SET_CURRENT_THREAD_NAME char buf[THREAD_NAME_MAX]; const char *s = ""; # if !defined SET_ANOTHER_THREAD_NAME if (!pthread_equal(pthread_self(), thread_id)) return; # endif if (!NIL_P(name)) { long n; RSTRING_GETMEM(name, s, n); if (n >= (int)sizeof(buf)) { memcpy(buf, s, sizeof(buf)-1); buf[sizeof(buf)-1] = '\0'; s = buf; } } # if defined SET_ANOTHER_THREAD_NAME SET_ANOTHER_THREAD_NAME(thread_id, s); # elif defined SET_CURRENT_THREAD_NAME SET_CURRENT_THREAD_NAME(s); # endif #endif } static void ubf_timer_invalidate(void) { #if UBF_TIMER == UBF_TIMER_PTHREAD CLOSE_INVALIDATE_PAIR(timer_pthread.low); #endif } static void ubf_timer_pthread_create(rb_pid_t current) { #if UBF_TIMER == UBF_TIMER_PTHREAD int err; if (timer_pthread.owner == current) return; if (setup_communication_pipe_internal(timer_pthread.low) < 0) return; err = pthread_create(&timer_pthread.thid, 0, timer_pthread_fn, GET_VM()); if (!err) timer_pthread.owner = current; else rb_warn("pthread_create failed for timer: %s, signals racy", strerror(err)); #endif } static void ubf_timer_create(rb_pid_t current) { #if UBF_TIMER == UBF_TIMER_POSIX # if defined(__sun) # define UBF_TIMER_CLOCK CLOCK_REALTIME # else /* Tested Linux and FreeBSD: */ # define UBF_TIMER_CLOCK CLOCK_MONOTONIC # endif struct sigevent sev; sev.sigev_notify = SIGEV_SIGNAL; sev.sigev_signo = SIGVTALRM; sev.sigev_value.sival_ptr = &timer_posix; if (!timer_create(UBF_TIMER_CLOCK, &sev, &timer_posix.timerid)) { rb_atomic_t prev = timer_state_exchange(RTIMER_DISARM); if (prev != RTIMER_DEAD) { rb_bug("timer_posix was not dead: %u\n", (unsigned)prev); } timer_posix.owner = current; } else { rb_warn("timer_create failed: %s, signals racy", strerror(errno)); } #endif if (UBF_TIMER == UBF_TIMER_PTHREAD) ubf_timer_pthread_create(current); } static void rb_thread_create_timer_thread(void) { /* we only create the pipe, and lazy-spawn */ rb_pid_t current = getpid(); rb_pid_t owner = signal_self_pipe.owner_process; if (owner && owner != current) { CLOSE_INVALIDATE_PAIR(signal_self_pipe.normal); CLOSE_INVALIDATE_PAIR(signal_self_pipe.ub_main); ubf_timer_invalidate(); } if (setup_communication_pipe_internal(signal_self_pipe.normal) < 0) return; if (setup_communication_pipe_internal(signal_self_pipe.ub_main) < 0) return; ubf_timer_create(current); if (owner != current) { /* validate pipe on this process */ sigwait_th = THREAD_INVALID; signal_self_pipe.owner_process = current; } } static void ubf_timer_disarm(void) { #if UBF_TIMER == UBF_TIMER_POSIX rb_atomic_t prev; prev = timer_state_cas(RTIMER_ARMED, RTIMER_DISARM); switch (prev) { case RTIMER_DISARM: return; /* likely */ case RTIMER_ARMING: return; /* ubf_timer_arm will disarm itself */ case RTIMER_ARMED: if (timer_settime(timer_posix.timerid, 0, &zero, 0)) { int err = errno; if (err == EINVAL) { prev = timer_state_cas(RTIMER_DISARM, RTIMER_DISARM); /* main thread may have killed the timer */ if (prev == RTIMER_DEAD) return; rb_bug_errno("timer_settime (disarm)", err); } } return; case RTIMER_DEAD: return; /* stay dead */ default: rb_bug("UBF_TIMER_POSIX bad state: %u\n", (unsigned)prev); } #elif UBF_TIMER == UBF_TIMER_PTHREAD ATOMIC_SET(timer_pthread.armed, 0); #endif } static void ubf_timer_destroy(void) { #if UBF_TIMER == UBF_TIMER_POSIX if (timer_posix.owner == getpid()) { rb_atomic_t expect = RTIMER_DISARM; size_t i, max = 10000000; /* prevent signal handler from arming: */ for (i = 0; i < max; i++) { switch (timer_state_cas(expect, RTIMER_DEAD)) { case RTIMER_DISARM: if (expect == RTIMER_DISARM) goto done; expect = RTIMER_DISARM; break; case RTIMER_ARMING: native_thread_yield(); /* let another thread finish arming */ expect = RTIMER_ARMED; break; case RTIMER_ARMED: if (expect == RTIMER_ARMED) { if (timer_settime(timer_posix.timerid, 0, &zero, 0)) rb_bug_errno("timer_settime (destroy)", errno); goto done; } expect = RTIMER_ARMED; break; case RTIMER_DEAD: rb_bug("RTIMER_DEAD unexpected"); } } rb_bug("timed out waiting for timer to arm"); done: if (timer_delete(timer_posix.timerid) < 0) rb_sys_fail("timer_delete"); VM_ASSERT(timer_state_exchange(RTIMER_DEAD) == RTIMER_DEAD); } #elif UBF_TIMER == UBF_TIMER_PTHREAD int err; timer_pthread.owner = 0; ubf_timer_disarm(); rb_thread_wakeup_timer_thread_fd(timer_pthread.low[1]); err = pthread_join(timer_pthread.thid, 0); if (err) { rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err); } #endif } static int native_stop_timer_thread(void) { int stopped; stopped = --system_working <= 0; if (stopped) ubf_timer_destroy(); if (TT_DEBUG) fprintf(stderr, "stop timer thread\n"); return stopped; } static void native_reset_timer_thread(void) { if (TT_DEBUG) fprintf(stderr, "reset timer thread\n"); } #ifdef HAVE_SIGALTSTACK int ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr) { void *base; size_t size; const size_t water_mark = 1024 * 1024; STACK_GROW_DIR_DETECTION; #ifdef STACKADDR_AVAILABLE if (get_stack(&base, &size) == 0) { # ifdef __APPLE__ if (pthread_equal(th->thread_id, native_main_thread.id)) { struct rlimit rlim; if (getrlimit(RLIMIT_STACK, &rlim) == 0 && rlim.rlim_cur > size) { size = (size_t)rlim.rlim_cur; } } # endif base = (char *)base + STACK_DIR_UPPER(+size, -size); } else #endif if (th) { size = th->ec->machine.stack_maxsize; base = (char *)th->ec->machine.stack_start - STACK_DIR_UPPER(0, size); } else { return 0; } size /= RUBY_STACK_SPACE_RATIO; if (size > water_mark) size = water_mark; if (IS_STACK_DIR_UPPER()) { if (size > ~(size_t)base+1) size = ~(size_t)base+1; if (addr > base && addr <= (void *)((char *)base + size)) return 1; } else { if (size > (size_t)base) size = (size_t)base; if (addr > (void *)((char *)base - size) && addr <= base) return 1; } return 0; } #endif int rb_reserved_fd_p(int fd) { /* no false-positive if out-of-FD at startup */ if (fd < 0) return 0; #if UBF_TIMER == UBF_TIMER_PTHREAD if (fd == timer_pthread.low[0] || fd == timer_pthread.low[1]) goto check_pid; #endif if (fd == signal_self_pipe.normal[0] || fd == signal_self_pipe.normal[1]) goto check_pid; if (fd == signal_self_pipe.ub_main[0] || fd == signal_self_pipe.ub_main[1]) goto check_pid; return 0; check_pid: if (signal_self_pipe.owner_process == getpid()) /* async-signal-safe */ return 1; return 0; } rb_nativethread_id_t rb_nativethread_self(void) { return pthread_self(); } #if USE_MJIT /* A function that wraps actual worker function, for pthread abstraction. */ static void * mjit_worker(void *arg) { void (*worker_func)(void) = (void(*)(void))arg; #ifdef SET_CURRENT_THREAD_NAME SET_CURRENT_THREAD_NAME("ruby-mjitworker"); /* 16 byte including NUL */ #endif worker_func(); return NULL; } /* Launch MJIT thread. Returns FALSE if it fails to create thread. */ int rb_thread_create_mjit_thread(void (*worker_func)(void)) { pthread_attr_t attr; pthread_t worker_pid; int ret = FALSE; if (pthread_attr_init(&attr) != 0) return ret; /* jit_worker thread is not to be joined */ if (pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0 && pthread_create(&worker_pid, &attr, mjit_worker, (void *)worker_func) == 0) { ret = TRUE; } pthread_attr_destroy(&attr); return ret; } #endif int rb_sigwait_fd_get(const rb_thread_t *th) { if (signal_self_pipe.normal[0] >= 0) { VM_ASSERT(signal_self_pipe.owner_process == getpid()); /* * no need to keep firing the timer if any thread is sleeping * on the signal self-pipe */ ubf_timer_disarm(); if (ATOMIC_PTR_CAS(sigwait_th, THREAD_INVALID, th) == THREAD_INVALID) { return signal_self_pipe.normal[0]; } } return -1; /* avoid thundering herd and work stealing/starvation */ } void rb_sigwait_fd_put(const rb_thread_t *th, int fd) { const rb_thread_t *old; VM_ASSERT(signal_self_pipe.normal[0] == fd); old = ATOMIC_PTR_EXCHANGE(sigwait_th, THREAD_INVALID); if (old != th) assert(old == th); } #ifndef HAVE_PPOLL /* TODO: don't ignore sigmask */ static int ruby_ppoll(struct pollfd *fds, nfds_t nfds, const struct timespec *ts, const sigset_t *sigmask) { int timeout_ms; if (ts) { int tmp, tmp2; if (ts->tv_sec > INT_MAX/1000) timeout_ms = INT_MAX; else { tmp = (int)(ts->tv_sec * 1000); /* round up 1ns to 1ms to avoid excessive wakeups for <1ms sleep */ tmp2 = (int)((ts->tv_nsec + 999999L) / (1000L * 1000L)); if (INT_MAX - tmp < tmp2) timeout_ms = INT_MAX; else timeout_ms = (int)(tmp + tmp2); } } else timeout_ms = -1; return poll(fds, nfds, timeout_ms); } # define ppoll(fds,nfds,ts,sigmask) ruby_ppoll((fds),(nfds),(ts),(sigmask)) #endif void rb_sigwait_sleep(rb_thread_t *th, int sigwait_fd, const rb_hrtime_t *rel) { struct pollfd pfd; struct timespec ts; pfd.fd = sigwait_fd; pfd.events = POLLIN; if (!BUSY_WAIT_SIGNALS && ubf_threads_empty()) { (void)ppoll(&pfd, 1, rb_hrtime2timespec(&ts, rel), 0); check_signals_nogvl(th, sigwait_fd); } else { rb_hrtime_t to = RB_HRTIME_MAX, end; int n = 0; if (rel) { to = *rel; end = rb_hrtime_add(rb_hrtime_now(), to); } /* * tricky: this needs to return on spurious wakeup (no auto-retry). * But we also need to distinguish between periodic quantum * wakeups, so we care about the result of consume_communication_pipe * * We want to avoid spurious wakeup for Mutex#sleep compatibility * [ruby-core:88102] */ for (;;) { const rb_hrtime_t *sto = sigwait_timeout(th, sigwait_fd, &to, &n); if (n) return; n = ppoll(&pfd, 1, rb_hrtime2timespec(&ts, sto), 0); if (check_signals_nogvl(th, sigwait_fd)) return; if (n || (th && RUBY_VM_INTERRUPTED(th->ec))) return; if (rel && hrtime_update_expire(&to, end)) return; } } } /* * we need to guarantee wakeups from native_ppoll_sleep because * ubf_select may not be going through ubf_list if other threads * are all sleeping. */ static void ubf_ppoll_sleep(void *ignore) { rb_thread_wakeup_timer_thread_fd(signal_self_pipe.ub_main[1]); } /* * Single CPU setups benefit from explicit sched_yield() before ppoll(), * since threads may be too starved to enter the GVL waitqueue for * us to detect contention. Instead, we want to kick other threads * so they can run and possibly prevent us from entering slow paths * in ppoll() or similar syscalls. * * Confirmed on FreeBSD 11.2 and Linux 4.19. * [ruby-core:90417] [Bug #15398] */ #define GVL_UNLOCK_BEGIN_YIELD(th) do { \ const native_thread_data_t *next; \ rb_global_vm_lock_t *gvl = rb_ractor_gvl(th->ractor); \ RB_GC_SAVE_MACHINE_CONTEXT(th); \ rb_native_mutex_lock(&gvl->lock); \ next = gvl_release_common(gvl); \ rb_native_mutex_unlock(&gvl->lock); \ if (!next && rb_ractor_living_thread_num(th->ractor) > 1) { \ native_thread_yield(); \ } /* * This function does not exclusively acquire sigwait_fd, so it * cannot safely read from it. However, it can be woken up in * 4 ways: * * 1) ubf_ppoll_sleep (from another thread) * 2) rb_thread_wakeup_timer_thread (from signal handler) * 3) any unmasked signal hitting the process * 4) periodic ubf timer wakeups (after 3) */ static void native_ppoll_sleep(rb_thread_t *th, rb_hrtime_t *rel) { rb_native_mutex_lock(&th->interrupt_lock); th->unblock.func = ubf_ppoll_sleep; rb_native_mutex_unlock(&th->interrupt_lock); GVL_UNLOCK_BEGIN_YIELD(th); if (!RUBY_VM_INTERRUPTED(th->ec)) { struct pollfd pfd[2]; struct timespec ts; pfd[0].fd = signal_self_pipe.normal[0]; /* sigwait_fd */ pfd[1].fd = signal_self_pipe.ub_main[0]; pfd[0].events = pfd[1].events = POLLIN; if (ppoll(pfd, 2, rb_hrtime2timespec(&ts, rel), 0) > 0) { if (pfd[1].revents & POLLIN) { (void)consume_communication_pipe(pfd[1].fd); } } /* * do not read the sigwait_fd, here, let uplevel callers * or other threads that, otherwise we may steal and starve * other threads */ } unblock_function_clear(th); GVL_UNLOCK_END(th); } static void native_sleep(rb_thread_t *th, rb_hrtime_t *rel) { int sigwait_fd = rb_sigwait_fd_get(th); rb_ractor_blocking_threads_inc(th->ractor, __FILE__, __LINE__); if (sigwait_fd >= 0) { rb_native_mutex_lock(&th->interrupt_lock); th->unblock.func = ubf_sigwait; rb_native_mutex_unlock(&th->interrupt_lock); GVL_UNLOCK_BEGIN_YIELD(th); if (!RUBY_VM_INTERRUPTED(th->ec)) { rb_sigwait_sleep(th, sigwait_fd, rel); } else { check_signals_nogvl(th, sigwait_fd); } unblock_function_clear(th); GVL_UNLOCK_END(th); rb_sigwait_fd_put(th, sigwait_fd); rb_sigwait_fd_migrate(th->vm); } else if (th == th->vm->ractor.main_thread) { /* always able to handle signals */ native_ppoll_sleep(th, rel); } else { native_cond_sleep(th, rel); } rb_ractor_blocking_threads_dec(th->ractor, __FILE__, __LINE__); } #if UBF_TIMER == UBF_TIMER_PTHREAD static void * timer_pthread_fn(void *p) { rb_vm_t *vm = p; pthread_t main_thread_id = vm->ractor.main_thread->thread_id; struct pollfd pfd; int timeout = -1; int ccp; pfd.fd = timer_pthread.low[0]; pfd.events = POLLIN; while (system_working > 0) { (void)poll(&pfd, 1, timeout); ccp = consume_communication_pipe(pfd.fd); if (system_working > 0) { if (ATOMIC_CAS(timer_pthread.armed, 1, 1)) { pthread_kill(main_thread_id, SIGVTALRM); if (rb_signal_buff_size() || !ubf_threads_empty()) { timeout = TIME_QUANTUM_MSEC; } else { ATOMIC_SET(timer_pthread.armed, 0); timeout = -1; } } else if (ccp) { pthread_kill(main_thread_id, SIGVTALRM); ATOMIC_SET(timer_pthread.armed, 0); timeout = -1; } } } return 0; } #endif /* UBF_TIMER_PTHREAD */ static VALUE ubf_caller(void *ignore) { rb_thread_sleep_forever(); return Qfalse; } /* * Called if and only if one thread is running, and * the unblock function is NOT async-signal-safe * This assumes USE_THREAD_CACHE is true for performance reasons */ static VALUE rb_thread_start_unblock_thread(void) { return rb_thread_create(ubf_caller, 0); } #endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */
the_stack_data/11075364.c
#include <stdio.h> int main(void) { int n,m; double t,max; scanf("%d",&n); while(n--) { scanf("%d",&m); max=0.00; while(m--) { scanf("%lf",&t); max=max>t?max:t; } printf("%.2lf\n",max); } return 0; }
the_stack_data/7951285.c
// KASAN: use-after-free Read in blkdev_get // https://syzkaller.appspot.com/bug?id=a07dfbb85dbe2ea8062f074a934a490dd927f68a // status:open // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include <arpa/inet.h> #include <dirent.h> #include <endian.h> #include <errno.h> #include <fcntl.h> #include <net/if.h> #include <net/if_arp.h> #include <netinet/in.h> #include <pthread.h> #include <sched.h> #include <setjmp.h> #include <signal.h> #include <stdarg.h> #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mount.h> #include <sys/prctl.h> #include <sys/resource.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/time.h> #include <sys/types.h> #include <sys/uio.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> #include <linux/capability.h> #include <linux/futex.h> #include <linux/genetlink.h> #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_link.h> #include <linux/if_tun.h> #include <linux/in6.h> #include <linux/ip.h> #include <linux/neighbour.h> #include <linux/net.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <linux/tcp.h> #include <linux/veth.h> unsigned long long procid; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i; for (i = 0; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[1024]; }; static struct nlmsg nlmsg; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static void netlink_nest(struct nlmsg* nlmsg, int typ) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_type = typ; nlmsg->pos += sizeof(*attr); nlmsg->nested[nlmsg->nesting++] = attr; } static void netlink_done(struct nlmsg* nlmsg) { struct nlattr* attr = nlmsg->nested[--nlmsg->nesting]; attr->nla_len = nlmsg->pos - (char*)attr; } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; unsigned n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != hdr->nlmsg_len) exit(1); n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (hdr->nlmsg_type == NLMSG_DONE) { *reply_len = 0; return 0; } if (n < sizeof(struct nlmsghdr)) exit(1); if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr)) exit(1); if (hdr->nlmsg_type != NLMSG_ERROR) exit(1); return -((struct nlmsgerr*)(hdr + 1))->error; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL); } static int netlink_next_msg(struct nlmsg* nlmsg, unsigned int offset, unsigned int total_len) { struct nlmsghdr* hdr = (struct nlmsghdr*)(nlmsg->buf + offset); if (offset == total_len || offset + hdr->nlmsg_len > total_len) return -1; return hdr->nlmsg_len; } static void netlink_add_device_impl(struct nlmsg* nlmsg, const char* type, const char* name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); netlink_init(nlmsg, RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); if (name) netlink_attr(nlmsg, IFLA_IFNAME, name, strlen(name)); netlink_nest(nlmsg, IFLA_LINKINFO); netlink_attr(nlmsg, IFLA_INFO_KIND, type, strlen(type)); } static void netlink_add_device(struct nlmsg* nlmsg, int sock, const char* type, const char* name) { netlink_add_device_impl(nlmsg, type, name); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_veth(struct nlmsg* nlmsg, int sock, const char* name, const char* peer) { netlink_add_device_impl(nlmsg, "veth", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_nest(nlmsg, VETH_INFO_PEER); nlmsg->pos += sizeof(struct ifinfomsg); netlink_attr(nlmsg, IFLA_IFNAME, peer, strlen(peer)); netlink_done(nlmsg); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_hsr(struct nlmsg* nlmsg, int sock, const char* name, const char* slave1, const char* slave2) { netlink_add_device_impl(nlmsg, "hsr", name); netlink_nest(nlmsg, IFLA_INFO_DATA); int ifindex1 = if_nametoindex(slave1); netlink_attr(nlmsg, IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1)); int ifindex2 = if_nametoindex(slave2); netlink_attr(nlmsg, IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2)); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_linked(struct nlmsg* nlmsg, int sock, const char* type, const char* name, const char* link) { netlink_add_device_impl(nlmsg, type, name); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_vlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16_t id, uint16_t proto) { netlink_add_device_impl(nlmsg, "vlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_VLAN_ID, &id, sizeof(id)); netlink_attr(nlmsg, IFLA_VLAN_PROTOCOL, &proto, sizeof(proto)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_macvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link) { netlink_add_device_impl(nlmsg, "macvlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); uint32_t mode = MACVLAN_MODE_BRIDGE; netlink_attr(nlmsg, IFLA_MACVLAN_MODE, &mode, sizeof(mode)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_add_geneve(struct nlmsg* nlmsg, int sock, const char* name, uint32_t vni, struct in_addr* addr4, struct in6_addr* addr6) { netlink_add_device_impl(nlmsg, "geneve", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_GENEVE_ID, &vni, sizeof(vni)); if (addr4) netlink_attr(nlmsg, IFLA_GENEVE_REMOTE, addr4, sizeof(*addr4)); if (addr6) netlink_attr(nlmsg, IFLA_GENEVE_REMOTE6, addr6, sizeof(*addr6)); netlink_done(nlmsg); netlink_done(nlmsg); int err = netlink_send(nlmsg, sock); (void)err; } #define IFLA_IPVLAN_FLAGS 2 #define IPVLAN_MODE_L3S 2 #undef IPVLAN_F_VEPA #define IPVLAN_F_VEPA 2 static void netlink_add_ipvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16_t mode, uint16_t flags) { netlink_add_device_impl(nlmsg, "ipvlan", name); netlink_nest(nlmsg, IFLA_INFO_DATA); netlink_attr(nlmsg, IFLA_IPVLAN_MODE, &mode, sizeof(mode)); netlink_attr(nlmsg, IFLA_IPVLAN_FLAGS, &flags, sizeof(flags)); netlink_done(nlmsg); netlink_done(nlmsg); int ifindex = if_nametoindex(link); netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(nlmsg, sock); (void)err; } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); (void)err; } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); (void)err; } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); (void)err; } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); (void)err; } static int tunfd = -1; static int tun_frags_enabled; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 #define IFF_NAPI_FRAGS 0x0020 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) exit(1); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) exit(1); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } const int kInitNetNsFd = 239; #define DEVLINK_FAMILY_NAME "devlink" #define DEVLINK_CMD_PORT_GET 5 #define DEVLINK_CMD_RELOAD 37 #define DEVLINK_ATTR_BUS_NAME 1 #define DEVLINK_ATTR_DEV_NAME 2 #define DEVLINK_ATTR_NETDEV_NAME 7 #define DEVLINK_ATTR_NETNS_FD 138 static int netlink_devlink_id_get(struct nlmsg* nlmsg, int sock) { struct genlmsghdr genlhdr; struct nlattr* attr; int err, n; uint16_t id = 0; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, DEVLINK_FAMILY_NAME, strlen(DEVLINK_FAMILY_NAME) + 1); err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n); if (err) { return -1; } attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); /* recv ack */ return id; } static void netlink_devlink_netns_move(const char* bus_name, const char* dev_name, int netns_fd) { struct genlmsghdr genlhdr; int sock; int id, err; sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock == -1) exit(1); id = netlink_devlink_id_get(&nlmsg, sock); if (id == -1) goto error; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = DEVLINK_CMD_RELOAD; netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1); netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1); netlink_attr(&nlmsg, DEVLINK_ATTR_NETNS_FD, &netns_fd, sizeof(netns_fd)); err = netlink_send(&nlmsg, sock); if (err) { } error: close(sock); } static struct nlmsg nlmsg2; static void initialize_devlink_ports(const char* bus_name, const char* dev_name, const char* netdev_prefix) { struct genlmsghdr genlhdr; int len, total_len, id, err, offset; uint16_t netdev_index; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock == -1) exit(1); int rtsock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (rtsock == -1) exit(1); id = netlink_devlink_id_get(&nlmsg, sock); if (id == -1) goto error; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = DEVLINK_CMD_PORT_GET; netlink_init(&nlmsg, id, NLM_F_DUMP, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1); netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1); err = netlink_send_ext(&nlmsg, sock, id, &total_len); if (err) { goto error; } offset = 0; netdev_index = 0; while ((len = netlink_next_msg(&nlmsg, offset, total_len)) != -1) { struct nlattr* attr = (struct nlattr*)(nlmsg.buf + offset + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg.buf + offset + len; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == DEVLINK_ATTR_NETDEV_NAME) { char* port_name; char netdev_name[IFNAMSIZ]; port_name = (char*)(attr + 1); snprintf(netdev_name, sizeof(netdev_name), "%s%d", netdev_prefix, netdev_index); netlink_device_change(&nlmsg2, rtsock, port_name, true, 0, 0, 0, netdev_name); break; } } offset += len; netdev_index++; } error: close(rtsock); close(sock); } static void initialize_devlink_pci(void) { int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) exit(1); int ret = setns(kInitNetNsFd, 0); if (ret == -1) exit(1); netlink_devlink_netns_move("pci", "0000:00:10.0", netns); ret = setns(netns, 0); if (ret == -1) exit(1); close(netns); initialize_devlink_ports("pci", "0000:00:10.0", "netpci"); } #define DEV_IPV4 "172.20.20.%d" #define DEV_IPV6 "fe80::%02x" #define DEV_MAC 0x00aaaaaaaaaa static void netdevsim_add(unsigned int addr, unsigned int port_count) { char buf[16]; sprintf(buf, "%u %u", addr, port_count); if (write_file("/sys/bus/netdevsim/new_device", buf)) { snprintf(buf, sizeof(buf), "netdevsim%d", addr); initialize_devlink_ports("netdevsim", buf, "netdevsim"); } } static void initialize_netdevices(void) { char netdevsim[16]; sprintf(netdevsim, "netdevsim%d", (int)procid); struct { const char* type; const char* dev; } devtypes[] = { {"ip6gretap", "ip6gretap0"}, {"bridge", "bridge0"}, {"vcan", "vcan0"}, {"bond", "bond0"}, {"team", "team0"}, {"dummy", "dummy0"}, {"nlmon", "nlmon0"}, {"caif", "caif0"}, {"batadv", "batadv0"}, {"vxcan", "vxcan1"}, {"netdevsim", netdevsim}, {"veth", 0}, {"xfrm", "xfrm0"}, }; const char* devmasters[] = {"bridge", "bond", "team", "batadv"}; struct { const char* name; int macsize; bool noipv6; } devices[] = { {"lo", ETH_ALEN}, {"sit0", 0}, {"bridge0", ETH_ALEN}, {"vcan0", 0, true}, {"tunl0", 0}, {"gre0", 0}, {"gretap0", ETH_ALEN}, {"ip_vti0", 0}, {"ip6_vti0", 0}, {"ip6tnl0", 0}, {"ip6gre0", 0}, {"ip6gretap0", ETH_ALEN}, {"erspan0", ETH_ALEN}, {"bond0", ETH_ALEN}, {"veth0", ETH_ALEN}, {"veth1", ETH_ALEN}, {"team0", ETH_ALEN}, {"veth0_to_bridge", ETH_ALEN}, {"veth1_to_bridge", ETH_ALEN}, {"veth0_to_bond", ETH_ALEN}, {"veth1_to_bond", ETH_ALEN}, {"veth0_to_team", ETH_ALEN}, {"veth1_to_team", ETH_ALEN}, {"veth0_to_hsr", ETH_ALEN}, {"veth1_to_hsr", ETH_ALEN}, {"hsr0", 0}, {"dummy0", ETH_ALEN}, {"nlmon0", 0}, {"vxcan0", 0, true}, {"vxcan1", 0, true}, {"caif0", ETH_ALEN}, {"batadv0", ETH_ALEN}, {netdevsim, ETH_ALEN}, {"xfrm0", ETH_ALEN}, {"veth0_virt_wifi", ETH_ALEN}, {"veth1_virt_wifi", ETH_ALEN}, {"virt_wifi0", ETH_ALEN}, {"veth0_vlan", ETH_ALEN}, {"veth1_vlan", ETH_ALEN}, {"vlan0", ETH_ALEN}, {"vlan1", ETH_ALEN}, {"macvlan0", ETH_ALEN}, {"macvlan1", ETH_ALEN}, {"ipvlan0", ETH_ALEN}, {"ipvlan1", ETH_ALEN}, {"veth0_macvtap", ETH_ALEN}, {"veth1_macvtap", ETH_ALEN}, {"macvtap0", ETH_ALEN}, {"macsec0", ETH_ALEN}, {"veth0_to_batadv", ETH_ALEN}, {"veth1_to_batadv", ETH_ALEN}, {"batadv_slave_0", ETH_ALEN}, {"batadv_slave_1", ETH_ALEN}, {"geneve0", ETH_ALEN}, {"geneve1", ETH_ALEN}, }; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) netlink_add_device(&nlmsg, sock, devtypes[i].type, devtypes[i].dev); for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) { char master[32], slave0[32], veth0[32], slave1[32], veth1[32]; sprintf(slave0, "%s_slave_0", devmasters[i]); sprintf(veth0, "veth0_to_%s", devmasters[i]); netlink_add_veth(&nlmsg, sock, slave0, veth0); sprintf(slave1, "%s_slave_1", devmasters[i]); sprintf(veth1, "veth1_to_%s", devmasters[i]); netlink_add_veth(&nlmsg, sock, slave1, veth1); sprintf(master, "%s0", devmasters[i]); netlink_device_change(&nlmsg, sock, slave0, false, master, 0, 0, NULL); netlink_device_change(&nlmsg, sock, slave1, false, master, 0, 0, NULL); } netlink_device_change(&nlmsg, sock, "bridge_slave_0", true, 0, 0, 0, NULL); netlink_device_change(&nlmsg, sock, "bridge_slave_1", true, 0, 0, 0, NULL); netlink_add_veth(&nlmsg, sock, "hsr_slave_0", "veth0_to_hsr"); netlink_add_veth(&nlmsg, sock, "hsr_slave_1", "veth1_to_hsr"); netlink_add_hsr(&nlmsg, sock, "hsr0", "hsr_slave_0", "hsr_slave_1"); netlink_device_change(&nlmsg, sock, "hsr_slave_0", true, 0, 0, 0, NULL); netlink_device_change(&nlmsg, sock, "hsr_slave_1", true, 0, 0, 0, NULL); netlink_add_veth(&nlmsg, sock, "veth0_virt_wifi", "veth1_virt_wifi"); netlink_add_linked(&nlmsg, sock, "virt_wifi", "virt_wifi0", "veth1_virt_wifi"); netlink_add_veth(&nlmsg, sock, "veth0_vlan", "veth1_vlan"); netlink_add_vlan(&nlmsg, sock, "vlan0", "veth0_vlan", 0, htons(ETH_P_8021Q)); netlink_add_vlan(&nlmsg, sock, "vlan1", "veth0_vlan", 1, htons(ETH_P_8021AD)); netlink_add_macvlan(&nlmsg, sock, "macvlan0", "veth1_vlan"); netlink_add_macvlan(&nlmsg, sock, "macvlan1", "veth1_vlan"); netlink_add_ipvlan(&nlmsg, sock, "ipvlan0", "veth0_vlan", IPVLAN_MODE_L2, 0); netlink_add_ipvlan(&nlmsg, sock, "ipvlan1", "veth0_vlan", IPVLAN_MODE_L3S, IPVLAN_F_VEPA); netlink_add_veth(&nlmsg, sock, "veth0_macvtap", "veth1_macvtap"); netlink_add_linked(&nlmsg, sock, "macvtap", "macvtap0", "veth0_macvtap"); netlink_add_linked(&nlmsg, sock, "macsec", "macsec0", "veth1_macvtap"); char addr[32]; sprintf(addr, DEV_IPV4, 14 + 10); struct in_addr geneve_addr4; if (inet_pton(AF_INET, addr, &geneve_addr4) <= 0) exit(1); struct in6_addr geneve_addr6; if (inet_pton(AF_INET6, "fc00::01", &geneve_addr6) <= 0) exit(1); netlink_add_geneve(&nlmsg, sock, "geneve0", 0, &geneve_addr4, 0); netlink_add_geneve(&nlmsg, sock, "geneve1", 1, 0, &geneve_addr6); netdevsim_add((int)procid, 4); for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) { char addr[32]; sprintf(addr, DEV_IPV4, i + 10); netlink_add_addr4(&nlmsg, sock, devices[i].name, addr); if (!devices[i].noipv6) { sprintf(addr, DEV_IPV6, i + 10); netlink_add_addr6(&nlmsg, sock, devices[i].name, addr); } uint64_t macaddr = DEV_MAC + ((i + 10ull) << 40); netlink_device_change(&nlmsg, sock, devices[i].name, true, 0, &macaddr, devices[i].macsize, NULL); } close(sock); } static void initialize_netdevices_init(void) { int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); struct { const char* type; int macsize; bool noipv6; bool noup; } devtypes[] = { {"nr", 7, true}, {"rose", 5, true, true}, }; unsigned i; for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) { char dev[32], addr[32]; sprintf(dev, "%s%d", devtypes[i].type, (int)procid); sprintf(addr, "172.30.%d.%d", i, (int)procid + 1); netlink_add_addr4(&nlmsg, sock, dev, addr); if (!devtypes[i].noipv6) { sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1); netlink_add_addr6(&nlmsg, sock, dev, addr); } int macsize = devtypes[i].macsize; uint64_t macaddr = 0xbbbbbb + ((unsigned long long)i << (8 * (macsize - 2))) + (procid << (8 * (macsize - 1))); netlink_device_change(&nlmsg, sock, dev, !devtypes[i].noup, 0, &macaddr, macsize, NULL); } close(sock); } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; if (errno == EBADFD) return -1; exit(1); } return rv; } static void flush_tun() { char data[1000]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #define MAX_FDS 30 #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } else { } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } #define NF_BR_NUMHOOKS 6 #define EBT_TABLE_MAXNAMELEN 32 #define EBT_CHAIN_MAXNAMELEN 32 #define EBT_BASE_CTL 128 #define EBT_SO_SET_ENTRIES (EBT_BASE_CTL) #define EBT_SO_GET_INFO (EBT_BASE_CTL) #define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1) #define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1) #define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1) struct ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; unsigned int valid_hooks; unsigned int nentries; unsigned int entries_size; struct ebt_entries* hook_entry[NF_BR_NUMHOOKS]; unsigned int num_counters; struct ebt_counter* counters; char* entries; }; struct ebt_entries { unsigned int distinguisher; char name[EBT_CHAIN_MAXNAMELEN]; unsigned int counter_offset; int policy; unsigned int nentries; char data[0] __attribute__((aligned(__alignof__(struct ebt_replace)))); }; struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->replace.entries_size > sizeof(table->entrytable)) exit(1); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) exit(1); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) exit(1); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) exit(1); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void setup_cgroups() { if (mkdir("/syzcgroup", 0777)) { } if (mkdir("/syzcgroup/unified", 0777)) { } if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) { } if (chmod("/syzcgroup/unified", 0777)) { } write_file("/syzcgroup/unified/cgroup.subtree_control", "+cpu +memory +io +pids +rdma"); if (mkdir("/syzcgroup/cpu", 0777)) { } if (mount("none", "/syzcgroup/cpu", "cgroup", 0, "cpuset,cpuacct,perf_event,hugetlb")) { } write_file("/syzcgroup/cpu/cgroup.clone_children", "1"); if (chmod("/syzcgroup/cpu", 0777)) { } if (mkdir("/syzcgroup/net", 0777)) { } if (mount("none", "/syzcgroup/net", "cgroup", 0, "net_cls,net_prio,devices,freezer")) { } if (chmod("/syzcgroup/net", 0777)) { } } static void setup_cgroups_loop() { int pid = getpid(); char file[128]; char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/pids.max", cgroupdir); write_file(file, "32"); snprintf(file, sizeof(file), "%s/memory.low", cgroupdir); write_file(file, "%d", 298 << 20); snprintf(file, sizeof(file), "%s/memory.high", cgroupdir); write_file(file, "%d", 299 << 20); snprintf(file, sizeof(file), "%s/memory.max", cgroupdir); write_file(file, "%d", 300 << 20); snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); } static void setup_cgroups_test() { char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (symlink(cgroupdir, "./cgroup")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.cpu")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.net")) { } } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } setup_cgroups(); } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); int netns = open("/proc/self/ns/net", O_RDONLY); if (netns == -1) exit(1); if (dup2(netns, kInitNetNsFd) < 0) exit(1); close(netns); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); drop_caps(); initialize_netdevices_init(); if (unshare(CLONE_NEWNET)) { } initialize_devlink_pci(); initialize_tun(); initialize_netdevices(); loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { DIR* dp; struct dirent* ep; int iter = 0; retry: while (umount2(dir, MNT_DETACH) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, MNT_DETACH)) exit(1); } } closedir(dp); int i; for (i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, MNT_DETACH)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_loop() { setup_cgroups_loop(); checkpoint_net_namespace(); } static void reset_loop() { reset_net_namespace(); } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setup_cgroups_test(); write_file("/proc/self/oom_score_adj", "1000"); flush_tun(); } static void close_fds() { int fd; for (fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_binfmt_misc() { if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) { } write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:"); write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC"); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; for (call = 0; call < 8; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 45); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { setup_loop(); int iter; for (iter = 0;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); reset_loop(); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5 * 1000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[1] = {0xffffffffffffffff}; void execute_call(int call) { intptr_t res; switch (call) { case 0: syscall(__NR_getsockopt, -1, 1ul, 0x11ul, 0ul, 0ul); break; case 1: syscall(__NR_socket, 0xaul, 3ul, 0x3aul); break; case 2: syscall(__NR_perf_event_open, 0ul, 0, -1ul, -1, 0ul); break; case 3: NONFAILING(*(uint32_t*)0x2001d000 = 1); NONFAILING(*(uint32_t*)0x2001d004 = 0x70); NONFAILING(*(uint8_t*)0x2001d008 = 0); NONFAILING(*(uint8_t*)0x2001d009 = 0); NONFAILING(*(uint8_t*)0x2001d00a = 0); NONFAILING(*(uint8_t*)0x2001d00b = 0); NONFAILING(*(uint32_t*)0x2001d00c = 0); NONFAILING(*(uint64_t*)0x2001d010 = 0x41c1); NONFAILING(*(uint64_t*)0x2001d018 = 0); NONFAILING(*(uint64_t*)0x2001d020 = 0); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 0, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 1, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 2, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 4, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 5, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 6, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 7, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 8, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 9, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 10, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 11, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 12, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 13, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 14, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 15, 2)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 17, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 18, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 19, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 20, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 21, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 22, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 23, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 24, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 25, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 26, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 27, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 28, 1)); NONFAILING(STORE_BY_BITMASK(uint64_t, , 0x2001d028, 0, 29, 35)); NONFAILING(*(uint32_t*)0x2001d030 = 0); NONFAILING(*(uint32_t*)0x2001d034 = 0); NONFAILING(*(uint64_t*)0x2001d038 = 0); NONFAILING(*(uint64_t*)0x2001d040 = 0); NONFAILING(*(uint64_t*)0x2001d048 = 0); NONFAILING(*(uint64_t*)0x2001d050 = 0); NONFAILING(*(uint32_t*)0x2001d058 = 0); NONFAILING(*(uint32_t*)0x2001d05c = 0); NONFAILING(*(uint64_t*)0x2001d060 = 0); NONFAILING(*(uint32_t*)0x2001d068 = 0); NONFAILING(*(uint16_t*)0x2001d06c = 0); NONFAILING(*(uint16_t*)0x2001d06e = 0); syscall(__NR_perf_event_open, 0x2001d000ul, 0, -1ul, -1, 0ul); break; case 4: syscall(__NR_clone, 0x2102001ffcul, 0ul, 0x9999999999999999ul, 0ul, -1ul); break; case 5: NONFAILING(memcpy((void*)0x20000080, "/dev/md0\000", 9)); res = syscall(__NR_openat, 0xffffffffffffff9cul, 0x20000080ul, 0ul, 0ul); if (res != -1) r[0] = res; break; case 6: NONFAILING(*(uint32_t*)0x20001200 = 0); NONFAILING(*(uint32_t*)0x20001204 = 8); NONFAILING(*(uint32_t*)0x20001208 = 3); NONFAILING(*(uint64_t*)0x20001210 = 0); syscall(__NR_ioctl, r[0], 0x40140921ul, 0x20001200ul); break; case 7: syscall(__NR_openat, 0xffffffffffffff9cul, 0ul, 1ul, 0ul); break; } } int main(void) { syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 3ul, 0x32ul, -1, 0); setup_binfmt_misc(); install_segv_handler(); for (procid = 0; procid < 6; procid++) { if (fork() == 0) { use_temporary_dir(); do_sandbox_none(); } } sleep(1000000); return 0; }
the_stack_data/1157390.c
#define __VERIFIER_assert(cond) do { if (!(cond)) __VERIFIER_error();} while (0) /** * Red-black list, i.e. a list with coloured nodes (black or red) that satisfies * the condition B . (B + RB)* * * Part of Forester benchmark. */ #include <stdlib.h> extern int __VERIFIER_nondet_int(void); extern void __VERIFIER_error() __attribute__ ((__noreturn__)); typedef enum {RED, BLACK} Colour; typedef struct TSLL { struct TSLL* next; Colour colour; } SLL; int main() { // create the head SLL* list = malloc(sizeof(SLL)); list->next = NULL; list->colour = BLACK; SLL* end = list; // create an arbitrarily long tail while (__VERIFIER_nondet_int()) { // create a node end->next = malloc(sizeof(SLL)); end = end->next; end->next = NULL; if (__VERIFIER_nondet_int()) { // mark the node as black end->colour = BLACK; } else { // mark the node as red and follow it by a black node end->colour = RED; end->next = malloc(sizeof(SLL)); end = end->next; end->next = NULL; end->colour = BLACK; } } end = NULL; end = list; // check the invariant __VERIFIER_assert(NULL != end); __VERIFIER_assert(BLACK == end->colour); while (NULL != end) { if (RED == end->colour) { end = end->next; __VERIFIER_assert(NULL != end); __VERIFIER_assert(BLACK == end->colour); } end = end->next; } // destroy the list while (NULL != list) { if (RED == list->colour) { // we can remove two nodes at once end = list->next; free(list); list = end->next; free(end); } else { // we can remove only one node end = list->next; free(list); list = end; } } return 0; }
the_stack_data/125139428.c
// RUN: clang-tidy -checks=-*,modernize-redundant-void-arg %s -- -x c | count 0 #define NULL 0 extern int i; int foo2() { return 0; } int j = 1; int foo(void) { return 0; } typedef unsigned int my_uint; typedef void my_void; // A function taking void and returning a pointer to function taking void // and returning int. int (*returns_fn_void_int(void))(void); typedef int (*returns_fn_void_int_t(void))(void); int (*returns_fn_void_int(void))(void) { return NULL; } // A function taking void and returning a pointer to a function taking void // and returning a pointer to a function taking void and returning void. void (*(*returns_fn_returns_fn_void_void(void))(void))(void); typedef void (*(*returns_fn_returns_fn_void_void_t(void))(void))(void); void (*(*returns_fn_returns_fn_void_void(void))(void))(void) { return NULL; } void bar() { int i; int *pi = NULL; void *pv = (void *) pi; float f; float *fi; double d; double *pd; } void (*f1)(void); void (*f2)(void) = NULL; void (*f3)(void) = bar; void (*fa)(); void (*fb)() = NULL; void (*fc)() = bar; typedef void (function_ptr)(void);
the_stack_data/934360.c
/* This software was developed at the National Institute of Standards and * Technology by employees of the Federal Government in the course of their * official duties. Pursuant to title 17 Section 105 of the United States * Code this software is not subject to copyright protection and is in the * public domain. NIST assumes no responsibility whatsoever for its use by * other parties, and makes no guarantees, expressed or implied, about its * quality, reliability, or any other characteristic. * We would appreciate acknowledgement if the software is used. * The SAMATE project website is: http://samate.nist.gov * */ #include <stdlib.h> #include <string.h> #include <stdio.h> void free(void* n){ return; } static char shellcode[] = "\xeb\x0cjump12chars_\x90\x90\x90\x90\x90\x90\x90\x90"; int main(void) { int size = sizeof(shellcode); char *shellcode_location; shellcode_location = (char *)malloc(size); if (shellcode_location == NULL) {printf("Memory allocation problem"); return (1);} strcpy(shellcode_location, shellcode); printf("%s", shellcode_location); free(shellcode_location); free(shellcode_location); /* FLAW */ return 0; }
the_stack_data/20678.c
#include <stdio.h> int main (){ int n, prod=1, x; scanf("%i", &n); for(x=1 ; x<=n; x++){ printf("%d\n", x); prod= prod*x; } printf("\nO FATORIAL E: %d\n", prod); }
the_stack_data/520869.c
// KASAN: use-after-free Read in __netif_receive_skb_core // https://syzkaller.appspot.com/bug?id=479d6cbadd1e0f9effe7ffaaf3ce63cc14459988 // status:invalid // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include <errno.h> #include <pthread.h> #include <signal.h> #include <stdarg.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/prctl.h> #include <sys/syscall.h> #include <sys/time.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> const int kFailStatus = 67; const int kRetryStatus = 69; __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } __attribute__((noreturn)) static void fail(const char* msg, ...) { int e = errno; fflush(stdout); va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } __attribute__((noreturn)) static void exitf(const char* msg, ...) { int e = errno; fflush(stdout); va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kRetryStatus); } static uint64_t current_time_ms() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) fail("clock_gettime failed"); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void test(); void loop() { int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) fail("clone failed"); if (pid == 0) { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); test(); doexit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { int res = waitpid(-1, &status, __WALL | WNOHANG); if (res == pid) break; usleep(1000); if (current_time_ms() - start > 5 * 1000) { kill(-pid, SIGKILL); kill(pid, SIGKILL); while (waitpid(-1, &status, __WALL) != pid) { } break; } } } } long r[20]; void* thr(void* arg) { switch ((long)arg) { case 0: r[0] = syscall(__NR_mmap, 0x20000000ul, 0xfff000ul, 0x3ul, 0x32ul, 0xfffffffffffffffful, 0x0ul); break; case 1: *(uint32_t*)0x20196000 = (uint32_t)0x0; r[2] = syscall(__NR_accept4, 0xfffffffffffffffful, 0x20000000ul, 0x20196000ul, 0x80800ul); break; case 2: r[3] = syscall(__NR_setsockopt, r[2], 0x107ul, 0x5ul, 0x20000000ul, 0x0ul); break; case 3: *(uint32_t*)0x207e5f0f = (uint32_t)0x0; *(uint32_t*)0x207e5f13 = (uint32_t)0x0; *(uint32_t*)0x20368ffc = (uint32_t)0x8; r[7] = syscall(__NR_getsockopt, 0xfffffffffffffffful, 0x84ul, 0x1bul, 0x207e5f0ful, 0x20368ffcul); break; case 4: r[8] = syscall(__NR_setsockopt, 0xfffffffffffffffful, 0x1ul, 0x0ul, 0x0ul, 0x0ul); break; case 5: *(uint32_t*)0x20001000 = (uint32_t)0x10000; *(uint32_t*)0x20001004 = (uint32_t)0x4; *(uint32_t*)0x20001008 = (uint32_t)0x10000; *(uint32_t*)0x2000100c = (uint32_t)0x4; r[13] = syscall(__NR_setsockopt, 0xfffffffffffffffful, 0x84ul, 0x0ul, 0x20001000ul, 0x10ul); break; case 6: r[14] = syscall(__NR_socket, 0x11ul, 0x80003ul, 0x8ul); break; case 7: *(uint16_t*)0x20cdeffc = (uint16_t)0x8001; *(uint8_t*)0x20cdeffe = (uint8_t)0x3; *(uint8_t*)0x20cdefff = (uint8_t)0x1000; r[18] = syscall(__NR_setsockopt, r[14], 0x107ul, 0x12ul, 0x20cdeffcul, 0x4ul); break; case 8: r[19] = syscall(__NR_setsockopt, r[14], 0x107ul, 0x5ul, 0x20001000ul, 0x47eul); break; } return 0; } void test() { long i; pthread_t th[18]; memset(r, -1, sizeof(r)); for (i = 0; i < 9; i++) { pthread_create(&th[i], 0, thr, (void*)i); usleep(rand() % 10000); } usleep(rand() % 100000); } int main() { int i; for (i = 0; i < 8; i++) { if (fork() == 0) { loop(); return 0; } } sleep(1000000); return 0; }
the_stack_data/148577496.c
#include <stdio.h> #include <stdlib.h> #define N 500 double A[N][N]; double L[N][N]; double U[N][N]; void init_array() { int i, j, k; for (i=0; i<N; i++) for (j=0; j<N; j++) { L[i][j] = 0.0; U[i][j] = 0.0; } for (i=0; i<N; i++) for (j=0; j<=i; j++) { L[i][j] = i+j+1; U[j][i] = i+j+1; } for (i=0; i<N; i++) for (j=0; j<N; j++) for (k=0; k<N; k++) A[i][j] += L[i][k]*U[k][j]; } int main() { init_array(); /*@ profiled code @*/ return A[0][0]; //needed to avoid dead code elimination }
the_stack_data/129041.c
/*numPass=5, numTotal=5 Verdict:ACCEPTED, Visibility:1, Input:"3 23", ExpOutput:"3 5 7 11 13 17 19 23 ", Output:"3 5 7 11 13 17 19 23 " Verdict:ACCEPTED, Visibility:1, Input:"5 31", ExpOutput:"5 7 11 13 17 19 23 29 31 ", Output:"5 7 11 13 17 19 23 29 31 " Verdict:ACCEPTED, Visibility:1, Input:"1 20", ExpOutput:"2 3 5 7 11 13 17 19 ", Output:"2 3 5 7 11 13 17 19 " Verdict:ACCEPTED, Visibility:0, Input:"23 57", ExpOutput:"23 29 31 37 41 43 47 53 ", Output:"23 29 31 37 41 43 47 53 " Verdict:ACCEPTED, Visibility:0, Input:"31 47", ExpOutput:"31 37 41 43 47 ", Output:"31 37 41 43 47 " */ #include<stdio.h> int check_prime(int num) {int i; for(i=2;i<num;i++) { if(num%i==0) return 0; } return 1; } int main(){ int n1,n2,i; scanf("%d %d",&n1,&n2); for(i=n1;i<=n2;i++) { if (check_prime(i)==1&&i!=1) { printf("%d ",i); } } return 0; }
the_stack_data/190767795.c
#include <stdio.h> int main(){ float fraction ; printf("请输入分数: "); scanf("%f",&fraction); if (fraction >= 90 && fraction <= 100){ printf("A"); } else if(fraction >= 80 && fraction < 90){ // 多条件判断 printf("B"); } else if(fraction >= 60 && fraction <80){ printf("C"); } else{ printf("D"); } return 0; }
the_stack_data/234519396.c
// @desc-start // Given an array A of integers, return true if and only if it is a valid mountain array. // Recall that A is a mountain array if and only if: // // A.length >= 3 // There exists some i with 0 < i < A.length - 1 such that: // // A[0] < A[1] < ... A[i-1] < A[i] // A[i] > A[i+1] > ... > A[A.length - 1] // // // // // //   // Example 1: // // Input: [2,1] // Output: false // // // Example 2: // // Input: [3,5,5] // Output: false // // // Example 3: // // Input: [0,3,2,1] // Output: true // // //   // Note: // // 0 <= A.length <= 10000 // 0 <= A[i] <= 10000  // // //   // //   // // // @desc-end #define bool int // @code-start bool validMountainArray(int* A, int ASize){ if(ASize <= 2) return 0; int up = -1; int slow = 0; int fast = 1; while(fast < ASize) { int n1 = *(A + slow); int n2 = *(A + fast); if(n1 == n2) { return 0; } else if(n1 > n2) { if(up == -1) { return 0; } else if(up == 1) { up = 0; } else if(up == 0) { } } else { if(up == -1) { up = 1; } else if(up == 1) { } else if(up == 0) { return 0; } } slow ++; fast ++; } if(up != 0) { return 0; } else { return 1; } } // @code-end
the_stack_data/350791.c
#include <event.h> #include <stdio.h> int main() { char ** methods = event_get_supported_methods();//获取libevent后端支持的方法 int i =0; for(i = 0;methods[i] != NULL ;i++) { printf("%s\n",methods[i]); } struct event_base * base = event_base_new(); printf("%s\n",event_base_get_method(base)); return 0; }
the_stack_data/137285.c
#include <stdio.h> #include <stdlib.h> #define ARCH ".\\bin.dat" struct a{ char nombre[31]; int edad; }; int main (void) { FILE * bin; struct a pers; int cant; system("cls"); if ((bin=fopen(ARCH,"rb"))==NULL) { printf("No se pudo abrir el archivo"); exit(1); } while(!feof(bin)) { cant = fread(&pers,sizeof(pers),1,bin); if(cant!=1) { if(feof(bin)) break; else { printf("No leyo el ultimo registro"); break; } } printf("%s\t%d\n",pers.nombre,pers.edad); } fclose(bin); getch(); return 0; }
the_stack_data/18072.c
#include <stdio.h> int main() { int *p, q; p = &q; q = 1; printf("%p ", p); *p++; // this will not increment q; printf("%d %p\n", q, p); return 0; }
the_stack_data/36074288.c
/** * @Author ZhangGJ * @Date 2021/01/27 21:37 */ #include <stdio.h> double average(double a, double b) { return (a + b) / 2; } int main(void) { double x, y, z; printf("Enter three numbers: "); scanf("%lf%lf%lf", &x, &y, &z); printf("Average of %g and %g: %g\n", x, y, average(x, y)); printf("Average of %g and %g: %g\n", y, z, average(y, z)); printf("Average of %g and %g: %g\n", x, z, average(x, z)); }
the_stack_data/248579685.c
const unsigned char st_clip_vert_spv[] = { 0x03, 0x02, 0x23, 0x07, 0x00, 0x00, 0x01, 0x00, 0x07, 0x00, 0x08, 0x00, 0x4A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x00, 0x02, 0x00, 0x20, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x06, 0x00, 0x01, 0x00, 0x00, 0x00, 0x47, 0x4C, 0x53, 0x4C, 0x2E, 0x73, 0x74, 0x64, 0x2E, 0x34, 0x35, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0E, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6D, 0x61, 0x69, 0x6E, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x42, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x02, 0x00, 0x00, 0x00, 0xC2, 0x01, 0x00, 0x00, 0x05, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6D, 0x61, 0x69, 0x6E, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x03, 0x00, 0x09, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x05, 0x00, 0x05, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x69, 0x6E, 0x5F, 0x70, 0x6F, 0x73, 0x69, 0x74, 0x69, 0x6F, 0x6E, 0x00, 0x05, 0x00, 0x06, 0x00, 0x16, 0x00, 0x00, 0x00, 0x67, 0x6C, 0x5F, 0x50, 0x65, 0x72, 0x56, 0x65, 0x72, 0x74, 0x65, 0x78, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x67, 0x6C, 0x5F, 0x50, 0x6F, 0x73, 0x69, 0x74, 0x69, 0x6F, 0x6E, 0x00, 0x06, 0x00, 0x07, 0x00, 0x16, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x67, 0x6C, 0x5F, 0x50, 0x6F, 0x69, 0x6E, 0x74, 0x53, 0x69, 0x7A, 0x65, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x07, 0x00, 0x16, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x67, 0x6C, 0x5F, 0x43, 0x6C, 0x69, 0x70, 0x44, 0x69, 0x73, 0x74, 0x61, 0x6E, 0x63, 0x65, 0x00, 0x06, 0x00, 0x07, 0x00, 0x16, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x67, 0x6C, 0x5F, 0x43, 0x75, 0x6C, 0x6C, 0x44, 0x69, 0x73, 0x74, 0x61, 0x6E, 0x63, 0x65, 0x00, 0x05, 0x00, 0x03, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x54, 0x72, 0x61, 0x6E, 0x73, 0x66, 0x6F, 0x72, 0x6D, 0x00, 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x63, 0x6C, 0x69, 0x70, 0x5F, 0x73, 0x70, 0x61, 0x63, 0x65, 0x5F, 0x78, 0x66, 0x6F, 0x72, 0x6D, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x07, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x65, 0x79, 0x65, 0x5F, 0x73, 0x70, 0x61, 0x63, 0x65, 0x5F, 0x78, 0x66, 0x6F, 0x72, 0x6D, 0x00, 0x06, 0x00, 0x07, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x63, 0x6C, 0x69, 0x70, 0x70, 0x69, 0x6E, 0x67, 0x5F, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x00, 0x00, 0x05, 0x00, 0x03, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x05, 0x00, 0x27, 0x00, 0x00, 0x00, 0x63, 0x6C, 0x69, 0x70, 0x5F, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x00, 0x00, 0x05, 0x00, 0x05, 0x00, 0x40, 0x00, 0x00, 0x00, 0x66, 0x72, 0x61, 0x67, 0x5F, 0x63, 0x6F, 0x6C, 0x6F, 0x72, 0x00, 0x00, 0x05, 0x00, 0x05, 0x00, 0x42, 0x00, 0x00, 0x00, 0x69, 0x6E, 0x5F, 0x63, 0x6F, 0x6C, 0x6F, 0x72, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x46, 0x00, 0x00, 0x00, 0x66, 0x72, 0x61, 0x67, 0x5F, 0x74, 0x65, 0x78, 0x5F, 0x63, 0x6F, 0x6F, 0x72, 0x64, 0x30, 0x00, 0x05, 0x00, 0x06, 0x00, 0x48, 0x00, 0x00, 0x00, 0x69, 0x6E, 0x5F, 0x74, 0x65, 0x78, 0x5F, 0x63, 0x6F, 0x6F, 0x72, 0x64, 0x30, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x16, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x16, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x16, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x47, 0x00, 0x03, 0x00, 0x16, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x48, 0x00, 0x04, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x04, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x47, 0x00, 0x03, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x27, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x40, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x42, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x46, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x47, 0x00, 0x04, 0x00, 0x48, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x13, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x21, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x16, 0x00, 0x03, 0x00, 0x06, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x17, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x08, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x17, 0x00, 0x04, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x0B, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3F, 0x15, 0x00, 0x04, 0x00, 0x13, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x13, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x1C, 0x00, 0x04, 0x00, 0x15, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x06, 0x00, 0x16, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x17, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x17, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x15, 0x00, 0x04, 0x00, 0x19, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x19, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x04, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x18, 0x00, 0x04, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x05, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x20, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x25, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x32, 0x00, 0x04, 0x00, 0x19, 0x00, 0x00, 0x00, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x02, 0x00, 0x28, 0x00, 0x00, 0x00, 0x34, 0x00, 0x06, 0x00, 0x28, 0x00, 0x00, 0x00, 0x29, 0x00, 0x00, 0x00, 0xAB, 0x00, 0x00, 0x00, 0x27, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x19, 0x00, 0x00, 0x00, 0x2C, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x2D, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x19, 0x00, 0x00, 0x00, 0x31, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x32, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x3B, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x2B, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x25, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x41, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x41, 0x00, 0x00, 0x00, 0x42, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x17, 0x00, 0x04, 0x00, 0x44, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x45, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x45, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x20, 0x00, 0x04, 0x00, 0x47, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x47, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x36, 0x00, 0x05, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x02, 0x00, 0x05, 0x00, 0x00, 0x00, 0x3B, 0x00, 0x04, 0x00, 0x08, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x50, 0x00, 0x07, 0x00, 0x07, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x0E, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x09, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x41, 0x00, 0x05, 0x00, 0x20, 0x00, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x1B, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x91, 0x00, 0x05, 0x00, 0x07, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x41, 0x00, 0x05, 0x00, 0x25, 0x00, 0x00, 0x00, 0x26, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x26, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0xF7, 0x00, 0x03, 0x00, 0x2B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFA, 0x00, 0x04, 0x00, 0x29, 0x00, 0x00, 0x00, 0x2A, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x02, 0x00, 0x2A, 0x00, 0x00, 0x00, 0x41, 0x00, 0x05, 0x00, 0x2D, 0x00, 0x00, 0x00, 0x2E, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x2C, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x00, 0x2F, 0x00, 0x00, 0x00, 0x2E, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x41, 0x00, 0x05, 0x00, 0x32, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x31, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x90, 0x00, 0x05, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x37, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x51, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x50, 0x00, 0x07, 0x00, 0x07, 0x00, 0x00, 0x00, 0x39, 0x00, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x37, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x0E, 0x00, 0x00, 0x00, 0x94, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x3A, 0x00, 0x00, 0x00, 0x2F, 0x00, 0x00, 0x00, 0x39, 0x00, 0x00, 0x00, 0x41, 0x00, 0x06, 0x00, 0x3B, 0x00, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x2C, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x3C, 0x00, 0x00, 0x00, 0x3A, 0x00, 0x00, 0x00, 0xF9, 0x00, 0x02, 0x00, 0x2B, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x02, 0x00, 0x3D, 0x00, 0x00, 0x00, 0x41, 0x00, 0x06, 0x00, 0x3B, 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x2C, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x00, 0x00, 0xF9, 0x00, 0x02, 0x00, 0x2B, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x02, 0x00, 0x2B, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x00, 0x43, 0x00, 0x00, 0x00, 0x42, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x40, 0x00, 0x00, 0x00, 0x43, 0x00, 0x00, 0x00, 0x3D, 0x00, 0x04, 0x00, 0x44, 0x00, 0x00, 0x00, 0x49, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0x00, 0x46, 0x00, 0x00, 0x00, 0x49, 0x00, 0x00, 0x00, 0xFD, 0x00, 0x01, 0x00, 0x38, 0x00, 0x01, 0x00 }; const int st_clip_vert_spv_size = 2216;
the_stack_data/14201494.c
#include<stdio.h> void main() { float b; b = 15/2; printf("%f\t",b); b=(float)15/2 + 15/2; printf("%f\n",b); }
the_stack_data/212644219.c
void pcshft(double a, double b, double d[], int n) { int k,j; double fac,cnst; cnst=2.0/(b-a); fac=cnst; for (j=1;j<n;j++) { d[j] *= fac; fac *= cnst; } cnst=0.5*(a+b); for (j=0;j<=n-2;j++) for (k=n-2;k>=j;k--) d[k] -= cnst*d[k+1]; } /* (C) Copr. 1986-92 Numerical Recipes Software 9.1-5i. */
the_stack_data/36075100.c
#include<stdio.h> float principle, rate, time, si; void main() { printf("Enter the Principle \n"); scanf("%f", &principle); printf("Enter the Rate (per annum) \n"); scanf("%f", &rate); printf("Enter the time(in years) \n"); scanf("%f", &time); if((principle>=0)&&(rate>=0)&&(time>=0)) { si=((principle*time*rate)/100); printf("Simple Intrest =%0.2f \n", si); } else { printf("Invalid \n"); } }
the_stack_data/98574777.c
//sample:input n numbers,then print the sum of them; int getint(); int putint(int x); int putchar(int i); int n; int a[10]; int main() { n = getint(); if (n > 10) return 1; int s; int i; i = 0; s = i; while (i < n) { a[i] = getint(); s = s + a[i]; i=i+1; } n=putint(s); int newline; newline = 10; n=putchar(newline); return s; }
the_stack_data/28262740.c
#include<stdio.h> #include<stdlib.h> #define MAX 5 int LQ[100]; int front =0,rear=-1; void enqueue(int x) { if(rear==MAX-1) { printf("Queue is full \n"); return ; } LQ[++rear]=x; } int dequeue() { int x; if(front>rear) { printf("Queue is empty \n"); return 0; } x=LQ[front++]; return x; } void display() { int i; for(i=front;i<=rear;i++) { printf("%d\n",LQ[i]); } } int main() { int ch,x; while(1) { printf("\nPress 1 to insert elements in queue"); printf("\nPress 2 to delete elements in queue"); printf("\nPress 3 to display"); printf("\nPress 4 to exit : "); scanf("%d",&ch); switch(ch) { case 1: printf("\nenter new element"); scanf("%d",&x); enqueue(x); break; case 2: dequeue(); break; case 3: display(); break; case 4: exit(0); } } return 0; }
the_stack_data/730673.c
/* * Copyright 2016 WebAssembly Community Group participants * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #define MODULE "stdio" #if defined(__linux__) #define PREFIX "." #elif defined(__APPLE__) #define PREFIX "_." #else #error "Unsupported platform" #endif #define EXPORT(retty, id, name, ...) \ retty id(__VA_ARGS__) asm(PREFIX MODULE "." name); \ retty id(__VA_ARGS__) EXPORT(void, print, "print", int n) { printf("%d\n", n); }
the_stack_data/104070.c
// electric.c -- calculate electricity fare #include <stdio.h> #define RATE1 0.13230 #define RATE2 0.15040 #define RATE3 0.30025 #define RATE4 0.34025 #define BREAK1 360.0 #define BREAK2 468.0 #define BREAK3 720.0 #define BASE1 (RATE1 * BREAK1) #define BASE2 (BASE1 + (RATE2 * (BREAK2 - BREAK1))) #define BASE3 (BASE1 + BASE2 + (RATE3 * (BREAK3 - BREAK2))) int main(void) { double kwh; // kwh used double bill; // electricity fare printf("Please enter the kwh used.\n"); scanf("%lf", &kwh); // %lf relates to double type if (kwh <= BREAK1) bill = RATE1 * kwh; else if (kwh <= BREAK2) // 360~468 kwh bill = BASE1 + (RATE2 * (kwh - BREAK1)); else if (kwh <= BREAK3) // 468~720 kwh bill = BASE2 + (RATE3 * (kwh - BREAK2)); else // exceed 720 kwh bill = BASE3 + (RATE4 * (kwh - BREAK3)); printf("The charge for %.1f kwh is $%1.2f.\n", kwh, bill); return 0; }
the_stack_data/192329616.c
#include <stdio.h> int main(void){ long num; long sum = 0L; int status; printf("Please enter an integer to be summed"); printf("(q to quit) : "); status = scanf("%ld", &sum); while (status == 1){ printf("%d\n", status); sum += num; printf("Please enter next integer (q to quit):"); status = scanf("%ld", &num); } printf("Those integers sum to %ld.\n", sum); return 0; }
the_stack_data/90764228.c
#include <stdio.h> int recursiva_iterativa(int); void main(){ int n, resp; printf("Ingrese el valor n: "); scanf("%d",&n); resp = recursiva_iterativa(n); printf("RESPUESTA: %d\n\n",resp); } int recursiva_iterativa(int n){ int sal; for(int i=n;i>0;i--){ sal +=i; } return sal; }
the_stack_data/123736.c
/* ************************************************************************** */ /* */ /* ::: :::::::: */ /* parse.c :+: :+: :+: */ /* +:+ +:+ +:+ */ /* By: cacharle <[email protected]> +#+ +:+ +#+ */ /* +#+#+#+#+#+ +#+ */ /* Created: 2019/07/17 08:05:59 by cacharle #+# #+# */ /* Updated: 2019/07/18 10:40:34 by cacharle ### ########.fr */ /* */ /* ************************************************************************** */ #include <unistd.h> int parse(int argc, char **argv) { int i; if (argc != 4) return (-1); if (argv[2][0] == '+') i = 0; else if (argv[2][0] == '-') i = 1; else if (argv[2][0] == '*') i = 2; else if (argv[2][0] == '/') i = 3; else if (argv[2][0] == '%') i = 4; else i = -2; return (i); } int check_floating_point_error(int operator_index, int y) { if (operator_index == 3 && y == 0) { write(1, "Stop : division by zero\n", 24); return (-1); } if (operator_index == 4 && y == 0) { write(1, "Stop : modulo by zero\n", 22); return (-1); } return (0); }
the_stack_data/117327811.c
#include <stdio.h> int main() { printf("oka oka\n"); return 0; }
the_stack_data/231393260.c
// nested loops extern void echo(int); int main() { do { for(int x = 0; x < 3; x = x + 1) { echo(x); } } while (0); return 0; }
the_stack_data/878966.c
#include <elf.h> #include <stdio.h> #include <stdlib.h> #include <stdint.h> #define SFPVK_INDENT " " #define SFPVK_STREAM stderr __attribute__((no_instrument_function)) static uintptr_t get_base() { FILE *f = fopen("/proc/self/maps", "r"); if (! f) return 0; void *base; int res = fscanf(f, "%p", &base); fclose(f); if (res < 1) return 0; return (uintptr_t)base; } __attribute__((no_instrument_function)) static const char *address_to_name(void *fn, int *o_local) { static uintptr_t gdb_base_address = 0; static Elf64_Sym *sym_table = 0; static int symtab_sz = 0; static const char *string_sec = 0; static void *elf_buf; static enum { uninit, ok, error }state = uninit; switch (state) { case error: return 0; case ok: break; default: { FILE *f = fopen("/proc/self/exe", "r"); if (! (gdb_base_address = get_base())) goto err_label; { //block if (! f || fseek(f, 0, SEEK_END)) goto err_label; size_t fsz = (size_t)ftell(f); fseek(f, 0, SEEK_SET); if (! (elf_buf = malloc(fsz)) || fread(elf_buf, 1, fsz, f) != fsz) goto err_label; fclose(f), f = 0; Elf64_Ehdr *head = (Elf64_Ehdr*)elf_buf; Elf64_Shdr *sec_head = (Elf64_Shdr*)((char*)elf_buf + head->e_shoff); for (int i = 0; i < head->e_shnum; ++ i) { if (sec_head[i].sh_type == SHT_SYMTAB) { sym_table = (Elf64_Sym*)((char*)elf_buf + sec_head[i].sh_offset); symtab_sz = sec_head[i].sh_size; } else if (sym_table && sec_head[i].sh_type == SHT_STRTAB) { string_sec = (char*)elf_buf + sec_head[i].sh_offset; break; } } if (! sym_table || ! string_sec) goto err_label; state = ok; break; } err_label: if (f != 0) fclose(f); state = error; return 0; } } for (Elf64_Sym *it = sym_table; (char*)it < (char*)sym_table+symtab_sz; ++ it) { if (fn == (char*)it->st_value + gdb_base_address) { *o_local = ELF64_ST_BIND(it->st_info) == STB_LOCAL ? 1 : 0; return string_sec + it->st_name; } } return 0; } static int nest_level = 0; static enum {open, close} last_type = close; #ifdef __cplusplus extern "C" { #endif __attribute__((no_instrument_function)) void __cyg_profile_func_enter (void *this_fn, void *call_site) { int local; const char * name = address_to_name(this_fn, &local); if (last_type == open) fprintf(SFPVK_STREAM, "\n"); fprintf(SFPVK_STREAM, "%s", local ? "L " : "G "); for (int i = 0; i != nest_level; ++ i) fprintf(SFPVK_STREAM, SFPVK_INDENT); fprintf(SFPVK_STREAM, "%s {", name); ++ nest_level; last_type = open; } __attribute__((no_instrument_function)) void __cyg_profile_func_exit (void *this_fn, void *call_site) { -- nest_level; if (last_type == close) { fprintf(SFPVK_STREAM, " "); for (int i = 0; i != nest_level; ++ i) fprintf(SFPVK_STREAM, SFPVK_INDENT); fprintf(SFPVK_STREAM, "}\n"); } else fprintf(SFPVK_STREAM, "}\n"); last_type = close; } #ifdef __cplusplus } #endif
the_stack_data/473323.c
/* Crie um programa que receba dois valores inteiros X e Y, e imprima todos os valores �mpares entre eles, incluindo os valores de X e Y, caso sejam �mpares.*/ #include<stdio.h> int main() { int a,b,i; printf("Digite dois valores:\n"); scanf("%d %d", &a, &b); printf("Numeros impares entre %d e %d:\n", a, b); for(i=a; i<=b; i++) { if(i%2 != 0) { printf("%d ", i); } } printf("\n"); return 0; }
the_stack_data/6387656.c
#include <stdio.h> #include <stdlib.h> int main(void) { puts("Basic Test Cases."); return EXIT_SUCCESS; }// end of function main
the_stack_data/454465.c
/* ------------------------------------------------------------------------------- lookup3.c, by Bob Jenkins, May 2006, Public Domain. These are functions for producing 32-bit hashes for hash table lookup. hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() are externally useful functions. Routines to test the hash are included if SELF_TEST is defined. You can use this free for any purpose. It's in the public domain. It has no warranty. You probably want to use hashlittle(). hashlittle() and hashbig() hash byte arrays. hashlittle() is is faster than hashbig() on little-endian machines. Intel and AMD are little-endian machines. On second thought, you probably want hashlittle2(), which is identical to hashlittle() except it returns two 32-bit hashes for the price of one. You could implement hashbig2() if you wanted but I haven't bothered here. If you want to find a hash of, say, exactly 7 integers, do a = i1; b = i2; c = i3; mix(a,b,c); a += i4; b += i5; c += i6; mix(a,b,c); a += i7; final(a,b,c); then use c as the hash value. If you have a variable length array of 4-byte integers to hash, use hashword(). If you have a byte array (like a character string), use hashlittle(). If you have several byte arrays, or a mix of things, see the comments above hashlittle(). Why is this so big? I read 12 bytes at a time into 3 4-byte integers, then mix those integers. This is fast (you can do a lot more thorough mixing with 12*3 instructions on 3 integers than you can with 3 instructions on 1 byte), but shoehorning those bytes into integers efficiently is messy. ------------------------------------------------------------------------------- */ #define SELF_TEST 1 #include <stdio.h> /* defines printf for tests */ #include <time.h> /* defines time_t for timings in the test */ #include <stdint.h> /* defines uint32_t etc */ #include <sys/param.h> /* attempt to define endianness */ #ifdef linux # include <endian.h> /* attempt to define endianness */ #endif /* * My best guess at if you are big-endian or little-endian. This may * need adjustment. */ #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ __BYTE_ORDER == __LITTLE_ENDIAN) || \ (defined(i386) || defined(__i386__) || defined(__i486__) || \ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) # define HASH_LITTLE_ENDIAN 1 # define HASH_BIG_ENDIAN 0 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ __BYTE_ORDER == __BIG_ENDIAN) || \ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 1 #else # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 0 #endif #define hashsize(n) ((uint32_t)1<<(n)) #define hashmask(n) (hashsize(n)-1) #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) /* ------------------------------------------------------------------------------- mix -- mix 3 32-bit values reversibly. This is reversible, so any information in (a,b,c) before mix() is still in (a,b,c) after mix(). If four pairs of (a,b,c) inputs are run through mix(), or through mix() in reverse, there are at least 32 bits of the output that are sometimes the same for one pair and different for another pair. This was tested for: * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that satisfy this are 4 6 8 16 19 4 9 15 3 18 27 15 14 9 3 7 17 3 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ" defined as + with a one-bit base and a two-bit delta. I used http://burtleburtle.net/bob/hash/avalanche.html to choose the operations, constants, and arrangements of the variables. This does not achieve avalanche. There are input bits of (a,b,c) that fail to affect some output bits of (a,b,c), especially of a. The most thoroughly mixed value is c, but it doesn't really even achieve avalanche in c. This allows some parallelism. Read-after-writes are good at doubling the number of bits affected, so the goal of mixing pulls in the opposite direction as the goal of parallelism. I did what I could. Rotates seem to cost as much as shifts on every machine I could lay my hands on, and rotates are much kinder to the top and bottom bits, so I used rotates. ------------------------------------------------------------------------------- */ #define mix(a,b,c) \ { \ a -= c; a ^= rot(c, 4); c += b; \ b -= a; b ^= rot(a, 6); a += c; \ c -= b; c ^= rot(b, 8); b += a; \ a -= c; a ^= rot(c,16); c += b; \ b -= a; b ^= rot(a,19); a += c; \ c -= b; c ^= rot(b, 4); b += a; \ } /* ------------------------------------------------------------------------------- final -- final mixing of 3 32-bit values (a,b,c) into c Pairs of (a,b,c) values differing in only a few bits will usually produce values of c that look totally different. This was tested for * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. These constants passed: 14 11 25 16 4 14 24 12 14 25 16 4 14 24 and these came close: 4 8 15 26 3 22 24 10 8 15 26 3 22 24 11 8 15 26 3 22 24 ------------------------------------------------------------------------------- */ #define final(a,b,c) \ { \ c ^= b; c -= rot(b,14); \ a ^= c; a -= rot(c,11); \ b ^= a; b -= rot(a,25); \ c ^= b; c -= rot(b,16); \ a ^= c; a -= rot(c,4); \ b ^= a; b -= rot(a,14); \ c ^= b; c -= rot(b,24); \ } /* -------------------------------------------------------------------- This works on all machines. To be useful, it requires -- that the key be an array of uint32_t's, and -- that the length be the number of uint32_t's in the key The function hashword() is identical to hashlittle() on little-endian machines, and identical to hashbig() on big-endian machines, except that the length has to be measured in uint32_ts rather than in bytes. hashlittle() is more complicated than hashword() only because hashlittle() has to dance around fitting the key bytes into registers. -------------------------------------------------------------------- */ uint32_t hashword( const uint32_t *k, /* the key, an array of uint32_t values */ size_t length, /* the length of the key, in uint32_ts */ uint32_t initval) /* the previous hash, or an arbitrary value */ { uint32_t a,b,c; /* Set up the internal state */ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; /*------------------------------------------------- handle most of the key */ while (length > 3) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 3; k += 3; } /*------------------------------------------- handle the last 3 uint32_t's */ switch(length) /* all the case statements fall through */ { case 3 : c+=k[2]; case 2 : b+=k[1]; case 1 : a+=k[0]; final(a,b,c); case 0: /* case 0: nothing left to add */ break; } /*------------------------------------------------------ report the result */ return c; } /* -------------------------------------------------------------------- hashword2() -- same as hashword(), but take two seeds and return two 32-bit values. pc and pb must both be nonnull, and *pc and *pb must both be initialized with seeds. If you pass in (*pb)==0, the output (*pc) will be the same as the return value from hashword(). -------------------------------------------------------------------- */ void hashword2 ( const uint32_t *k, /* the key, an array of uint32_t values */ size_t length, /* the length of the key, in uint32_ts */ uint32_t *pc, /* IN: seed OUT: primary hash value */ uint32_t *pb) /* IN: more seed OUT: secondary hash value */ { uint32_t a,b,c; /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; c += *pb; /*------------------------------------------------- handle most of the key */ while (length > 3) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 3; k += 3; } /*------------------------------------------- handle the last 3 uint32_t's */ switch(length) /* all the case statements fall through */ { case 3 : c+=k[2]; case 2 : b+=k[1]; case 1 : a+=k[0]; final(a,b,c); case 0: /* case 0: nothing left to add */ break; } /*------------------------------------------------------ report the result */ *pc=c; *pb=b; } /* ------------------------------------------------------------------------------- hashlittle() -- hash a variable-length key into a 32-bit value k : the key (the unaligned variable-length array of bytes) length : the length of the key, counting by bytes initval : can be any 4-byte value Returns a 32-bit value. Every bit of the key affects every bit of the return value. Two keys differing by one or two bits will have totally different hash values. The best hash table sizes are powers of 2. There is no need to do mod a prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask. For example, if you need only 10 bits, do h = (h & hashmask(10)); In which case, the hash table should have hashsize(10) elements. If you are hashing n strings (uint8_t **)k, do it like this: for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); By Bob Jenkins, 2006. [email protected]. You may use this code any way you wish, private, educational, or commercial. It's free. Use for hash table lookup, or anything where one collision in 2^^32 is acceptable. Do NOT use for cryptographic purposes. ------------------------------------------------------------------------------- */ uint32_t hashlittle( const void *key, size_t length, uint32_t initval) { uint32_t a,b,c; /* internal state */ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; u.ptr = key; if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ const uint8_t *k8; /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 12; k += 3; } /*----------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticably faster for short strings (like English words). */ #ifndef VALGRIND switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; case 0 : return c; /* zero length strings require no mixing */ } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]; break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ case 1 : a+=k8[0]; break; case 0 : return c; } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*--------------- all but last block: aligned reads and different mixing */ while (length > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); mix(a,b,c); length -= 12; k += 6; } /*----------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; case 0 : return c; /* zero length requires no mixing */ } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; mix(a,b,c); length -= 12; k += 12; } /*-------------------------------- last block: affect all 32 bits of (c) */ switch(length) /* all the case statements fall through */ { case 12: c+=((uint32_t)k[11])<<24; case 11: c+=((uint32_t)k[10])<<16; case 10: c+=((uint32_t)k[9])<<8; case 9 : c+=k[8]; case 8 : b+=((uint32_t)k[7])<<24; case 7 : b+=((uint32_t)k[6])<<16; case 6 : b+=((uint32_t)k[5])<<8; case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3])<<24; case 3 : a+=((uint32_t)k[2])<<16; case 2 : a+=((uint32_t)k[1])<<8; case 1 : a+=k[0]; break; case 0 : return c; } } final(a,b,c); return c; } /* * hashlittle2: return 2 32-bit hash values * * This is identical to hashlittle(), except it returns two 32-bit hash * values instead of just one. This is good enough for hash table * lookup with 2^^64 buckets, or if you want a second hash if you're not * happy with the first, or if you want a probably-unique 64-bit ID for * the key. *pc is better mixed than *pb, so use *pc first. If you want * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". */ void hashlittle2( const void *key, /* the key to hash */ size_t length, /* length of the key */ uint32_t *pc, /* IN: primary initval, OUT: primary hash */ uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ { uint32_t a,b,c; /* internal state */ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; c += *pb; u.ptr = key; if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ const uint8_t *k8; /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 12; k += 3; } /*----------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticably faster for short strings (like English words). */ #ifndef VALGRIND switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]; break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ case 1 : a+=k8[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*--------------- all but last block: aligned reads and different mixing */ while (length > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); mix(a,b,c); length -= 12; k += 6; } /*----------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; mix(a,b,c); length -= 12; k += 12; } /*-------------------------------- last block: affect all 32 bits of (c) */ switch(length) /* all the case statements fall through */ { case 12: c+=((uint32_t)k[11])<<24; case 11: c+=((uint32_t)k[10])<<16; case 10: c+=((uint32_t)k[9])<<8; case 9 : c+=k[8]; case 8 : b+=((uint32_t)k[7])<<24; case 7 : b+=((uint32_t)k[6])<<16; case 6 : b+=((uint32_t)k[5])<<8; case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3])<<24; case 3 : a+=((uint32_t)k[2])<<16; case 2 : a+=((uint32_t)k[1])<<8; case 1 : a+=k[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } } final(a,b,c); *pc=c; *pb=b; } /* * hashbig(): * This is the same as hashword() on big-endian machines. It is different * from hashlittle() on all machines. hashbig() takes advantage of * big-endian byte ordering. */ uint32_t hashbig( const void *key, size_t length, uint32_t initval) { uint32_t a,b,c; union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; u.ptr = key; if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ const uint8_t *k8; /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 12; k += 3; } /*----------------------------- handle the last (probably partial) block */ /* * "k[2]<<8" actually reads beyond the end of the string, but * then shifts out the part it's not allowed to read. Because the * string is aligned, the illegal read is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticably faster for short strings (like English words). */ #ifndef VALGRIND switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; case 5 : b+=k[1]&0xff000000; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff00; break; case 2 : a+=k[0]&0xffff0000; break; case 1 : a+=k[0]&0xff000000; break; case 0 : return c; /* zero length strings require no mixing */ } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch(length) /* all the case statements fall through */ { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ case 4 : a+=k[0]; break; case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ case 1 : a+=((uint32_t)k8[0])<<24; break; case 0 : return c; } #endif /* !VALGRIND */ } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ while (length > 12) { a += ((uint32_t)k[0])<<24; a += ((uint32_t)k[1])<<16; a += ((uint32_t)k[2])<<8; a += ((uint32_t)k[3]); b += ((uint32_t)k[4])<<24; b += ((uint32_t)k[5])<<16; b += ((uint32_t)k[6])<<8; b += ((uint32_t)k[7]); c += ((uint32_t)k[8])<<24; c += ((uint32_t)k[9])<<16; c += ((uint32_t)k[10])<<8; c += ((uint32_t)k[11]); mix(a,b,c); length -= 12; k += 12; } /*-------------------------------- last block: affect all 32 bits of (c) */ switch(length) /* all the case statements fall through */ { case 12: c+=k[11]; case 11: c+=((uint32_t)k[10])<<8; case 10: c+=((uint32_t)k[9])<<16; case 9 : c+=((uint32_t)k[8])<<24; case 8 : b+=k[7]; case 7 : b+=((uint32_t)k[6])<<8; case 6 : b+=((uint32_t)k[5])<<16; case 5 : b+=((uint32_t)k[4])<<24; case 4 : a+=k[3]; case 3 : a+=((uint32_t)k[2])<<8; case 2 : a+=((uint32_t)k[1])<<16; case 1 : a+=((uint32_t)k[0])<<24; break; case 0 : return c; } } final(a,b,c); return c; } #ifdef SELF_TEST /* used for timings */ void driver1() { uint8_t buf[256]; uint32_t i; uint32_t h=0; time_t a,z; time(&a); for (i=0; i<256; ++i) buf[i] = 'x'; for (i=0; i<1; ++i) { h = hashlittle(&buf[0],1,h); } time(&z); if (z-a > 0) printf("time %d %.8x\n", z-a, h); } /* check that every input bit changes every output bit half the time */ #define HASHSTATE 1 #define HASHLEN 1 #define MAXPAIR 60 #define MAXLEN 70 void driver2() { uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; uint32_t x[HASHSTATE],y[HASHSTATE]; uint32_t hlen; printf("No more than %d trials should ever be needed \n",MAXPAIR/2); for (hlen=0; hlen < MAXLEN; ++hlen) { z=0; for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ { for (j=0; j<8; ++j) /*------------------------ for each input bit, */ { for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */ { for (l=0; l<HASHSTATE; ++l) e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); /*---- check that every output bit is affected by that input bit */ for (k=0; k<MAXPAIR; k+=2) { uint32_t finished=1; /* keys have one bit different */ for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} /* have a and b be two keys differing in only one bit */ a[i] ^= (k<<j); a[i] ^= (k>>(8-j)); c[0] = hashlittle(a, hlen, m); b[i] ^= ((k+1)<<j); b[i] ^= ((k+1)>>(8-j)); d[0] = hashlittle(b, hlen, m); /* check every bit is 1, 0, set, and not set at least once */ for (l=0; l<HASHSTATE; ++l) { e[l] &= (c[l]^d[l]); f[l] &= ~(c[l]^d[l]); g[l] &= c[l]; h[l] &= ~c[l]; x[l] &= d[l]; y[l] &= ~d[l]; if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; } if (finished) break; } if (k>z) z=k; if (k==MAXPAIR) { printf("Some bit didn't change: "); printf("%.8x %.8x %.8x %.8x %.8x %.8x ", e[0],f[0],g[0],h[0],x[0],y[0]); printf("i %d j %d m %d len %d\n", i, j, m, hlen); } if (z==MAXPAIR) goto done; } } } done: if (z < MAXPAIR) { printf("Mix success %2d bytes %2d initvals ",i,m); printf("required %d trials\n", z/2); } } printf("\n"); } /* Check for reading beyond the end of the buffer and alignment problems */ void driver3() { uint8_t buf[MAXLEN+20], *b; uint32_t len; uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; uint32_t h; uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; uint32_t i; uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; uint32_t j; uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; uint32_t ref,x,y; uint8_t *p; printf("Endianness. These lines should all be the same (for values filled in):\n"); printf("%.8x %.8x %.8x\n", hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); p = q; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); p = &qq[1]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); p = &qqq[2]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); p = &qqqq[3]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); printf("\n"); /* check that hashlittle2 and hashlittle produce the same results */ i=47; j=0; hashlittle2(q, sizeof(q), &i, &j); if (hashlittle(q, sizeof(q), 47) != i) printf("hashlittle2 and hashlittle mismatch\n"); /* check that hashword2 and hashword produce the same results */ len = 0xdeadbeef; i=47, j=0; hashword2(&len, 1, &i, &j); if (hashword(&len, 1, 47) != i) printf("hashword2 and hashword mismatch %x %x\n", i, hashword(&len, 1, 47)); /* check hashlittle doesn't read before or after the ends of the string */ for (h=0, b=buf+1; h<8; ++h, ++b) { for (i=0; i<MAXLEN; ++i) { len = i; for (j=0; j<i; ++j) *(b+j)=0; /* these should all be equal */ ref = hashlittle(b, len, (uint32_t)1); *(b+i)=(uint8_t)~0; *(b-1)=(uint8_t)~0; x = hashlittle(b, len, (uint32_t)1); y = hashlittle(b, len, (uint32_t)1); if ((ref != x) || (ref != y)) { printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, h, i); } } } } /* check for problems with nulls */ void driver4() { uint8_t buf[1]; uint32_t h,i,state[HASHSTATE]; buf[0] = ~0; for (i=0; i<HASHSTATE; ++i) state[i] = 1; printf("These should all be different\n"); for (i=0, h=0; i<8; ++i) { h = hashlittle(buf, 0, h); printf("%2ld 0-byte strings, hash is %.8x\n", i, h); } } void driver5() { uint32_t b,c; b=0, c=0, hashlittle2("", 0, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */ b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */ b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */ b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */ b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */ b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b); printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */ c = hashlittle("Four score and seven years ago", 30, 0); printf("hash is %.8lx\n", c); /* 17770551 */ c = hashlittle("Four score and seven years ago", 30, 1); printf("hash is %.8lx\n", c); /* cd628161 */ } int main() { driver1(); /* test that the key is hashed: used for timings */ driver2(); /* test that whole key is hashed thoroughly */ driver3(); /* test that nothing but the key is hashed */ driver4(); /* test hashing multiple buffers (all buffers are null) */ driver5(); /* test the hash against known vectors */ return 1; } #endif /* SELF_TEST */
the_stack_data/614637.c
#include<stdio.h> #include<string.h> #define MAXLINE 1000 main(argc, argv) /* find pattern from first argument */ int argc; char *argv[]; { char line[MAXLINE]; if (argc != 2) printf("Usage: find pattern\n"); else while (get_line(line, MAXLINE) > 0) if (index(line, argv[1]) >= 0) printf("%s", line); }
the_stack_data/87638426.c
/* * Copyright 2021 The CFU-Playground Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> /* Currently, we use libc++ from the toolchain. This library expects readchar and putsnonl to be symbols, while picolibc defines those as macros. The following code works sround this */ #undef readchar #undef putsnonl extern int readchar_nonblock(void); char readchar(void) { return (char) getchar(); } void putsnonl(const char *s) { while(*s) { putchar(*s); s++; } }
the_stack_data/159515360.c
int titleToNumber(char * s) { int i,num=0; for(i=0;s[i]!='\0';i++) num=(26*num)+(s[i]-64); return num; }
the_stack_data/12705.c
extern void abort (void); extern void exit (int); typedef short fract16; int main () { fract16 f = 0x1234, g; int a; a = __builtin_bfin_norm_fr1x16 (f); g = f << a; if (g != (fract16) 0x48d0) abort (); exit (0); }
the_stack_data/35043.c
/*#include <stdio.h> int main () { return 0; }*/ #include <stdio.h> int main (void) { for (int i = 1; i <= 10; ++i) { printf(" Volta %i\n", i); for (int j = 1; j <= 10; j++) printf("Ponto %i\n", j); printf("\n"); } printf("\n"); return 0; }
the_stack_data/253093.c
// #include <bteifgl.h> #ifdef _WIN32 #include <windows.h> #include <commctrl.h> #include <GL/GL.h> HWND mainwindow; HGLRC mainrc; HDC maindc; RECT mainrect; HINSTANCE gfxdrv_hInstance; int gfxdrv_nCmdShow; int *gfxdrv_rkill; int gfxdrv_kill=0; volatile int gfxdrv_waitdc=0; volatile int gfxdrv_waitok=0; volatile int gfxdrv_dt_swap=0; void *gfxdrv_mutex=NULL; int gfxdrv_dtt_swap; int window_center_x; int window_center_y; int window_mouse_buttons; int window_width; int window_height; int window_active; int window_lastactive; int window_fullscreen; // int window_def_width=640; // int window_def_height=480; //int window_def_width=1024; //int window_def_height=768; //int window_def_width=1280; //int window_def_height=960; int window_def_width=960; int window_def_height=720; char *window_def_label="BTEIFGL"; int window_def_fullscreen=0; int window_fullscreen_width=0; int window_fullscreen_height=0; int window_desktop_width=1680; int window_desktop_height=1050; int window_max_width=0; int window_max_height=0; char *gl_vendor, *gl_renderer, *gl_version, *gl_extensions; void GfxDrv_V_HandleMessages(); void FRGL_EndInputFrame(); void gfxdrv_lock() { // thLockFastMutex(gfxdrv_mutex); } void gfxdrv_unlock() { // thUnlockFastMutex(gfxdrv_mutex); } void gfxdrv_sleep(int ms) { } static int gfxdrv_log2up(int v) { int i, j; i=v; j=0; while(i>1) { i=(i+1)>>1; j++; } return(j); } void GfxDrv_GetWindowSize(int *xs, int *ys) { *xs=window_width; *ys=window_height; } void GfxDrv_GetWindowTexSize(int *xs, int *ys) { *xs=1<<gfxdrv_log2up(window_width); *ys=1<<gfxdrv_log2up(window_height); } void GfxDrv_GetWindowMaxSize(int *xs, int *ys) { *xs=window_max_width; *ys=window_max_height; } void GfxDrv_GetWindowMaxTexSize(int *xs, int *ys) { *xs=1<<gfxdrv_log2up(window_max_width); *ys=1<<gfxdrv_log2up(window_max_height); } bool GfxDrv_WindowIsActiveP(void) { return(window_active); } bool GfxDrv_WindowIsFullActiveP(void) { return(window_active && window_lastactive); } bool GfxDrv_WindowIsFullscreenP(void) { return(window_fullscreen); } void GfxDrv_BeginDrawing() { int t0, t1; gfxdrv_dtt_swap=0; t0=clock(); GfxDrv_V_HandleMessages(); glViewport(0, 0, window_width, window_height); glClearColor(0, 0, 0, 1); // glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); t1=clock(); gfxdrv_dtt_swap+=t1-t0; } void GfxDrv_KeyEvent(int key, int down) { GfxDev_Key_Event(key, down); } void GfxDrv_EndDrawing(void) { int w1, h1; int t0, t1; t0=clock(); // if(btesh2_gfxcon_framebuf && btesh2_gfxcon_fb_dirty) // if(btesh2_gfxcon_framebuf) if(btesh2_gfxcon_framebuf && (btesh2_gfxcon_fb_dirty>0)) { glViewport(0, 0, window_width, window_height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); // w1=window_width/2; // h1=window_height/2; w1=btesh2_gfxcon_fbxs/2; h1=btesh2_gfxcon_fbys/2; glOrtho(-w1, w1, -h1, h1, -999999999, 999999999); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // glRasterPos2i(0, 0); // glWindowPos2i(0, 0); glRasterPos2i(-btesh2_gfxcon_fbxs/2, btesh2_gfxcon_fbys/2); // glRasterPos2i(-btesh2_gfxcon_fbxs/2, 0); // glWindowPos2i(0, btesh2_gfxcon_fbys); // glPixelZoom(1, -1); glPixelZoom((float)window_width/btesh2_gfxcon_fbxs, -(float)window_height/btesh2_gfxcon_fbys); glDrawPixels(btesh2_gfxcon_fbxs, btesh2_gfxcon_fbys, GL_RGBA, GL_UNSIGNED_BYTE, btesh2_gfxcon_framebuf); btesh2_gfxcon_fb_dirty--; } // glFinish(); SwapBuffers(maindc); FRGL_EndInputFrame(); window_lastactive=window_active; if(gfxdrv_waitdc) { gfxdrv_lock(); wglMakeCurrent(NULL, NULL); gfxdrv_waitok=1; gfxdrv_unlock(); while(gfxdrv_waitdc>0) gfxdrv_sleep(10); gfxdrv_waitok=0; gfxdrv_sleep(10); gfxdrv_lock(); wglMakeCurrent(maindc, mainrc); gfxdrv_unlock(); } t1=clock(); gfxdrv_dtt_swap+=t1-t0; gfxdrv_dt_swap=gfxdrv_dtt_swap; } void GfxDrv_V_HandleMessages() { MSG msg; while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { TranslateMessage(&msg); DispatchMessage(&msg); } } void GfxDrv_V_CenterWindow(HWND hWnd, int width, int height) //AH:ignore { RECT rect; int cx, cy; cx=GetSystemMetrics(SM_CXSCREEN); cy=GetSystemMetrics(SM_CYSCREEN); cx=(cx-width)/2; cy=(cy-height)/2; if(cx>cy*2)cx/=2; if(cx<0)cx=0; if(cy<0)cy=0; SetWindowPos(hWnd, NULL, cx, cy, 0, 0, SWP_NOSIZE|SWP_NOZORDER|SWP_SHOWWINDOW|SWP_DRAWFRAME); // SetWindowPos(hWnd, NULL, cx, cy, width, height, // SWP_NOZORDER|SWP_SHOWWINDOW|SWP_DRAWFRAME); window_center_x=cx+(width/2); window_center_y=cy+(height/2)+24; window_width=width; window_height=height; } int GfxDrv_V_SetWindowedMode() { static DWORD ws= WS_OVERLAPPED|WS_BORDER|WS_CAPTION|WS_SYSMENU|WS_MINIMIZEBOX; RECT rect; ChangeDisplaySettings (NULL, 0); window_fullscreen=0; SetWindowLong(mainwindow, GWL_STYLE, ws); SetWindowPos(mainwindow, NULL, 0, 0, 0, 0, SWP_NOSIZE|SWP_NOZORDER|SWP_SHOWWINDOW| SWP_DRAWFRAME|SWP_FRAMECHANGED); rect.top=rect.left=0; rect.right=window_def_width; rect.bottom=window_def_height; AdjustWindowRectEx(&rect, ws, FALSE, 0); window_width=rect.right-rect.left; window_height=rect.bottom-rect.top; MoveWindow(mainwindow, 0, 0, window_width, window_height, TRUE ); GfxDrv_V_CenterWindow(mainwindow, window_width, window_height); return(0); } int GfxDrv_V_GetDesktopSize() { DEVMODE devmode; EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &devmode); window_desktop_width=devmode.dmPelsWidth; window_desktop_height=devmode.dmPelsHeight; if(window_fullscreen_width<=0) { window_fullscreen_width=window_desktop_width; window_fullscreen_height=window_desktop_height; } window_max_width=window_def_width; window_max_height=window_def_height; if(window_fullscreen_width>window_max_width) { window_max_width=window_fullscreen_width; } if(window_fullscreen_height>window_max_height) { window_max_height=window_fullscreen_height; } return(0); } int GfxDrv_V_SetFullscreenMode() { DEVMODE devmode; RECT rect; DWORD ws; int width, height; int i; // EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &devmode); // width=devmode.dmPelsWidth; // height=devmode.dmPelsHeight; // width=window_def_width; // height=window_def_height; width=window_fullscreen_width; height=window_fullscreen_height; devmode.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT; devmode.dmBitsPerPel=32; devmode.dmPelsWidth=width; devmode.dmPelsHeight=height; devmode.dmSize=sizeof(devmode); i=ChangeDisplaySettingsEx(NULL, &devmode, NULL, CDS_FULLSCREEN, NULL); // if(ChangeDisplaySettings(&devmode, CDS_FULLSCREEN)!= // DISP_CHANGE_SUCCESSFUL) if(i!=DISP_CHANGE_SUCCESSFUL) { printf("GfxDrv_V_SetFullscreenMode: Failed To Set Fullscreen\n"); window_fullscreen=0; return(-1); } rect.top=rect.left=0; rect.right=width; rect.bottom=height; ws=WS_POPUP; AdjustWindowRectEx(&rect, ws, FALSE, 0); SetWindowLong(mainwindow, GWL_STYLE, ws); SetWindowPos(mainwindow, NULL, 0, 0, 0, 0, SWP_NOSIZE|SWP_NOZORDER|SWP_SHOWWINDOW|SWP_FRAMECHANGED); window_width=rect.right-rect.left; window_height=rect.bottom-rect.top; MoveWindow(mainwindow, 0, 0, window_width, window_height, TRUE ); window_center_x=window_width/2; window_center_y=window_height/2; return(1); } void GfxDrv_UpdateMode() { #if 0 gfxdrv_lock(); wglMakeCurrent(NULL, NULL); // gfxdrv_waitok=1; gfxdrv_unlock(); if(maindc && mainwindow) { ReleaseDC(mainwindow, maindc); maindc=NULL; } #endif if(window_fullscreen) { GfxDrv_V_SetFullscreenMode(); }else { GfxDrv_V_SetWindowedMode(); } #if 0 GfxDrv_SetupMainDC(); gfxdrv_lock(); wglMakeCurrent(maindc, mainrc); gfxdrv_unlock(); #endif } int GfxDrv_V_SetupWindow() { // static DWORD ws= // WS_OVERLAPPED|WS_BORDER|WS_CAPTION|WS_SYSMENU|WS_MINIMIZEBOX; static DWORD ws=WS_POPUP; HDC hdc; RECT rect; int lastmodestate, width, height; GfxDrv_V_GetDesktopSize(); mainrect.top=mainrect.left=0; // mainrect.right=window_def_width; // mainrect.bottom=window_def_height; // mainrect.right=window_desktop_width; // mainrect.bottom=window_desktop_height; mainrect.right=window_max_width; mainrect.bottom=window_max_height; rect=mainrect; AdjustWindowRectEx(&rect, ws, FALSE, 0); width=rect.right-rect.left; height=rect.bottom-rect.top; mainwindow=CreateWindowEx( 0, "bgbui", window_def_label, ws, rect.left, rect.top, width, height, NULL, NULL, gfxdrv_hInstance, NULL); GfxDrv_V_CenterWindow(mainwindow, mainrect.right-mainrect.left, mainrect.bottom-mainrect.top); ShowWindow(mainwindow, SW_SHOWDEFAULT); UpdateWindow(mainwindow); // hdc=GetDC(mainwindow); // PatBlt(hdc, 0, 0, mainrect.right, mainrect.bottom, BLACKNESS); // ReleaseDC(mainwindow, hdc); GfxDrv_V_HandleMessages(); Sleep(100); SetWindowPos(mainwindow, HWND_TOP, 0, 0, 0, 0, SWP_DRAWFRAME | SWP_NOMOVE | SWP_NOSIZE | SWP_SHOWWINDOW | SWP_NOCOPYBITS); SetForegroundWindow(mainwindow); return(-1); } void GfxDrv_InitGL() { gl_vendor=(char *)glGetString(GL_VENDOR); gl_renderer=(char *)glGetString(GL_RENDERER); gl_version=(char *)glGetString(GL_VERSION); gl_extensions=(char *)glGetString(GL_EXTENSIONS); printf("OpenGL Vendor=%s\n", gl_vendor); printf("OpenGL Renderer=%s\n", gl_renderer); printf("OpenGL Version=%s\n", gl_version); // printf("OpenGL Extensions=%s\n", gl_extensions); // BGBBTJ_SetGlExtensions(gl_extensions); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glShadeModel(GL_SMOOTH); glClearColor(0, 0, 0, 1); glCullFace(GL_FRONT); glEnable(GL_TEXTURE_2D); glAlphaFunc(GL_GREATER, 0.75); glDisable(GL_ALPHA_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glShadeModel(GL_SMOOTH); } void GfxDrv_InitGL2() { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glShadeModel(GL_SMOOTH); glClearColor(0, 0, 0, 1); glCullFace(GL_FRONT); glEnable(GL_TEXTURE_2D); glAlphaFunc(GL_GREATER, 0.75); glDisable(GL_ALPHA_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } void GfxDrv_Shutdown() { HGLRC hrc; HDC hdc; if(window_fullscreen) { ChangeDisplaySettings (NULL, 0); } hrc=wglGetCurrentContext(); hdc=wglGetCurrentDC(); wglMakeCurrent(NULL, NULL); if(hrc) wglDeleteContext(hrc); if(hdc && mainwindow) ReleaseDC(mainwindow, hdc); if(maindc && mainwindow) ReleaseDC(mainwindow, maindc); } static int scantokey[128]= { 0, K_ESC, '1','2','3','4','5','6', '7','8','9','0','-','=', K_BACKSPACE, 9, 'q','w','e','r','t','y','u','i', 'o','p','[',']',13 , K_CTRL, 'a','s', 'd','f','g','h','j','k','l',';', '\'', '`', K_SHIFT,'\\', 'z','x','c','v', 'b','n','m',',','.',K_NUMPAD_DIV, K_SHIFT,'*', K_ALT, ' ', K_CAPSLOCK, K_F1, K_F2, K_F3, K_F4, K_F5, K_F6, K_F7, K_F8, K_F9, K_F10, K_PAUSE, K_SCROLL, K_HOME, K_UPARROW, K_PGUP, '-', K_LEFTARROW,'5', K_RIGHTARROW, '+', K_END, K_DOWNARROW, K_PGDN, K_INS, K_DEL, 0, 0, 0, K_F11, K_F12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static int scantokeyb[128]= { 0, K_ESC, '1','2','3','4','5','6', '7','8','9','0','-','=', K_BACKSPACE, 9, 'q','w','e','r','t','y','u','i', 'o','p','[',']',13 , K_CTRL, 'a','s', 'd','f','g','h','j','k','l',';', '\'', '`', K_SHIFT,'\\', 'z','x','c','v', 'b','n','m',',','.','/', K_SHIFT, K_NUMPAD_MUL, K_ALT, ' ', 0, K_F1, K_F2, K_F3, K_F4, K_F5, K_F6, K_F7, K_F8, K_F9, K_F10, K_PAUSE, 0, K_NUMPAD7, K_NUMPAD8, K_NUMPAD9, K_NUMPAD_SUB, K_NUMPAD4, K_NUMPAD5, K_NUMPAD6, K_NUMPAD_ADD, K_NUMPAD1, K_NUMPAD2, K_NUMPAD3, K_NUMPAD0, K_DEL, 0, 0, 0, K_F11, K_F12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int GfxDrv_MapKey(int key) { int al, val; // frgl_printf("Key: 0x%08X\n", key); al=(key>>24)&1; key=(key>>16)&255; if(key>127) return 0; // if(!scantokey[key]) // frgl_printf("no mapping for key 0x%02X\n", key); val=scantokey[key]; if(!al) val=scantokeyb[key]; // frgl_printf("Map Key: %d\n", val); return(val); } void GfxDrv_AppActivate(bool active, bool minimized) { window_active=active&&(!minimized); if(window_fullscreen) { if(window_active) { GfxDrv_V_SetFullscreenMode(); }else { ChangeDisplaySettings(NULL, 0); } } } LONG WINAPI GfxDrv_MainWndProc( HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) //AH:ignore { LONG ret; int xp, yp; int i, j; ret=1; switch(uMsg) { case WM_CREATE: break; case WM_SYSCHAR: break; case WM_ACTIVATE: i = LOWORD(wParam); j = (BOOL) HIWORD(wParam); GfxDrv_AppActivate(i!=WA_INACTIVE, j); break; case WM_MOVE: if(!window_fullscreen) { xp=(int) LOWORD(lParam); yp=(int) HIWORD(lParam); window_center_x=xp+(window_width/2); window_center_y=yp+(window_height/2); } break; case WM_SYSKEYDOWN: if(wParam==0xFF)break; if(wParam==0x0D) { window_fullscreen=!window_fullscreen; GfxDrv_UpdateMode(); } if(wParam==0x3E) { if(gfxdrv_rkill)*gfxdrv_rkill=1; gfxdrv_kill=1; } GfxDrv_KeyEvent(GfxDrv_MapKey(lParam),-1); break; case WM_KEYDOWN: // case WM_SYSKEYDOWN: if(wParam==0xFF)break; GfxDrv_KeyEvent(GfxDrv_MapKey(lParam),-1); break; case WM_KEYUP: case WM_SYSKEYUP: if(wParam==0xFF)break; GfxDrv_KeyEvent(GfxDrv_MapKey(lParam), 0); break; case WM_LBUTTONDOWN: case WM_LBUTTONUP: case WM_RBUTTONDOWN: case WM_RBUTTONUP: case WM_MBUTTONDOWN: case WM_MBUTTONUP: case WM_MOUSEMOVE: i=0; if(wParam&MK_LBUTTON)i|=1; if(wParam&MK_RBUTTON)i|=4; if(wParam&MK_MBUTTON)i|=2; j=window_mouse_buttons^i; window_mouse_buttons=i; if(j&1)GfxDrv_KeyEvent(K_MOUSE1, (i&1)?(-1):0); if(j&2)GfxDrv_KeyEvent(K_MOUSE2, (i&2)?(-1):0); if(j&4)GfxDrv_KeyEvent(K_MOUSE3, (i&4)?(-1):0); // if(FRGL_CvarGetInt("hide_os_cursor")) // SetCursor(NULL); break; case WM_MOUSEWHEEL: if(((short)HIWORD(wParam))>0) { GfxDrv_KeyEvent(K_MWHEELUP, -1); GfxDrv_KeyEvent(K_MWHEELUP, 0); }else { GfxDrv_KeyEvent(K_MWHEELDOWN, -1); GfxDrv_KeyEvent(K_MWHEELDOWN, 0); } break; case WM_SIZE: xp=(int)LOWORD(lParam); yp=(int)HIWORD(lParam); window_width=xp; window_height=yp; break; case WM_CLOSE: if(gfxdrv_rkill)*gfxdrv_rkill=1; gfxdrv_kill=1; break; case WM_DESTROY: if(mainwindow) DestroyWindow(mainwindow); PostQuitMessage(0); break; default: ret=DefWindowProc(hWnd, uMsg, wParam, lParam); break; } return(ret); } void GfxDrv_SetDefaults(char *label, int width, int height) { if(label)window_def_label=label; window_def_width=width; window_def_height=height; } void GfxDrv_SetDefaultFullscreen(int fs) { window_def_fullscreen=fs; } void GfxDrv_SetFullscreenResolution(int width, int height) { window_fullscreen_width=width; window_fullscreen_height=height; } int GfxDrv_SetupMainDC() { PIXELFORMATDESCRIPTOR pfd; int i; #if 1 maindc=GetDC(mainwindow); memset(&pfd, 0, sizeof(PIXELFORMATDESCRIPTOR)); pfd.nSize=sizeof(PIXELFORMATDESCRIPTOR); pfd.nVersion=1; pfd.dwFlags=PFD_DRAW_TO_WINDOW|PFD_SUPPORT_OPENGL|PFD_DOUBLEBUFFER; pfd.iPixelType=PFD_TYPE_RGBA; pfd.cColorBits=24; pfd.cDepthBits=32; pfd.cStencilBits=16; pfd.iLayerType=PFD_MAIN_PLANE; i=ChoosePixelFormat(maindc, &pfd); if(!i)return(-1); i=SetPixelFormat(maindc, i, &pfd); if(!i)return(-1); #endif return(0); } int GfxDrv_Start() { // PIXELFORMATDESCRIPTOR pfd; WNDCLASS wc; HDC hdc; int i; // FRGL_CvarSetDefault("hide_os_cursor", "0"); // MessageBox(NULL, "GL Init failed", "Error", MB_OK); // gfxdrv_mutex=thFastMutex(); if(!gfxdrv_hInstance) gfxdrv_hInstance=GetModuleHandle(NULL); memset(&wc, 0, sizeof(WNDCLASS)); wc.lpfnWndProc=(WNDPROC)GfxDrv_MainWndProc; wc.hInstance=gfxdrv_hInstance; wc.lpszClassName="bgbui"; i=RegisterClass(&wc); if(!i)return(-1); hdc=GetDC(NULL); if(GetDeviceCaps(hdc, RASTERCAPS) & RC_PALETTE) return(-1); ReleaseDC(NULL, hdc); GfxDrv_V_SetupWindow(); if(window_def_fullscreen) { window_fullscreen=1; GfxDrv_V_SetFullscreenMode(); } GfxDrv_SetupMainDC(); mainrc=wglCreateContext(maindc); if(!mainrc)return(-1); i=wglMakeCurrent(maindc, mainrc); if(!i)return(-1); // if(FRGL_CvarGetInt("hide_os_cursor")) // SetCursor(NULL); GfxDrv_InitGL(); if(!window_def_fullscreen) { GfxDrv_V_SetWindowedMode(); } // btesh2_gfxcon_fbxs=window_width; // btesh2_gfxcon_fbys=window_height; // btesh2_gfxcon_fbsz=btesh2_gfxcon_fbxs*btesh2_gfxcon_fbys; return(0); } int GfxDrv_SetupThreadShareLists() { HGLRC altrc; int i; // *(int *)-1=-1; gfxdrv_waitdc++; while(!gfxdrv_waitok) gfxdrv_sleep(10); gfxdrv_lock(); altrc=wglCreateContext(maindc); if(!altrc) { gfxdrv_unlock(); return(-1); } i=wglShareLists(mainrc, altrc); if(!i) { gfxdrv_unlock(); return(-1); } i=wglMakeCurrent(maindc, altrc); if(!i) { gfxdrv_unlock(); return(-1); } GfxDrv_InitGL2(); gfxdrv_waitdc--; gfxdrv_unlock(); return(0); } int GfxDrv_TeardownThreadShareLists() { HGLRC hrc; hrc=wglGetCurrentContext(); wglMakeCurrent(NULL, NULL); if(hrc) wglDeleteContext(hrc); return(0); } int GfxDrv_Init(void *hInstance, int nCmdShow, int *rkill) { gfxdrv_hInstance=hInstance; gfxdrv_nCmdShow=nCmdShow; gfxdrv_rkill=rkill; return(0); } int GfxDrv_SetInstance(void *hInstance, int nCmdShow) { gfxdrv_hInstance=hInstance; gfxdrv_nCmdShow=nCmdShow; // gfxdrv_rkill=rkill; return(0); } int GfxDrv_SetKill(int *rkill) { gfxdrv_rkill=rkill; return(0); } int GfxDrv_GetDtSwap() { return(gfxdrv_dt_swap); } int GfxDrv_PrepareFramebuf() { btesh2_gfxcon_fb_dirty=3; if(!btesh2_gfxcon_framebuf) { btesh2_gfxcon_framebuf=malloc(window_width*window_height*4); } return(0); } int GfxDrv_MainLoop(void (*fcn)()) { static int lt=0; int ct, dt; ct=FRGL_TimeMS(); while(!gfxdrv_kill) { ct=FRGL_TimeMS(); dt=ct-lt; if((dt>=0) && (dt<10)) { Sleep(1); continue; } fcn(); lt=ct; } } #endif
the_stack_data/140766241.c
#include <stdio.h> #include <stdlib.h> int* productExceptSelf(int* nums, int numsSize, int* returnSize) { *returnSize = numsSize; int* result = malloc(sizeof(int) * numsSize); result[numsSize-1] = 1; for (int i = numsSize-2; i >= 0; i--) { result[i] = result[i+1] * nums[i+1]; } int left = 1; for (int i = 0; i < numsSize; i++) { result[i] = left * result[i]; left *= nums[i]; } return result; } int main() { int nums[] = {1, 2, 3, 4}; int numsSize = 4; int returnSize = 0; int* result = productExceptSelf(nums, numsSize, &returnSize); for (int i = 0; i < returnSize; i++) { printf("%d ", result[i]); } printf("\n"); free(result); return 0; }
the_stack_data/211079742.c
#include <errno.h> #include <stdio.h> #include <stdlib.h> #include <sys/prctl.h> #include <sys/wait.h> #include <unistd.h> #ifndef PR_SET_CHILD_SUBREAPER #define PR_SET_CHILD_SUBREAPER 36 #endif int main(int argc, char** argv) { if(argc < 2) { fprintf(stderr, "usage: fork-wrapper command...\n"); exit(EXIT_FAILURE); } if(prctl(PR_SET_CHILD_SUBREAPER, 1) < 0) { perror("could not set subreaper process attribute"); exit(EXIT_FAILURE); } int rc = fork(); if(rc < 0) { perror("could not fork"); exit(EXIT_FAILURE); } if(rc == 0) { execvp(argv[1], argv + 1); perror("could not exec"); exit(EXIT_FAILURE); } int last_exit_status = 0; while(1) { int stat; int pid = wait(&stat); if(pid < 0) { if(errno == EINTR) { continue; } if(errno == ECHILD) { // there are no more children, exit with the exit value of the // last child to terminate exit(last_exit_status); } // something went terribly wrong... perror("could not wait"); exit(EXIT_FAILURE); } last_exit_status = WEXITSTATUS(stat); } }
the_stack_data/865579.c
#include <math.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <complex.h> #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0]; zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1]; } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0]; zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1]; } } pCf(z) = zdotc; } #else _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } #endif static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Dcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0]; zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1]; } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0]; zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1]; } } pCd(z) = zdotc; } #else _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i])) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } #endif static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0]; zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1]; } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0]; zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1]; } } pCf(z) = zdotc; } #else _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i]) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } #endif static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Dcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0]; zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1]; } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0]; zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1]; } } pCd(z) = zdotc; } #else _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i]) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } #endif /* -- translated by f2c (version 20000121). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* > \brief \b CGGQRF */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CGGQRF + dependencies */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggqrf. f"> */ /* > [TGZ]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggqrf. f"> */ /* > [ZIP]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggqrf. f"> */ /* > [TXT]</a> */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, */ /* LWORK, INFO ) */ /* INTEGER INFO, LDA, LDB, LWORK, M, N, P */ /* COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), */ /* $ WORK( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > CGGQRF computes a generalized QR factorization of an N-by-M matrix A */ /* > and an N-by-P matrix B: */ /* > */ /* > A = Q*R, B = Q*T*Z, */ /* > */ /* > where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, */ /* > and R and T assume one of the forms: */ /* > */ /* > if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, */ /* > ( 0 ) N-M N M-N */ /* > M */ /* > */ /* > where R11 is upper triangular, and */ /* > */ /* > if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, */ /* > P-N N ( T21 ) P */ /* > P */ /* > */ /* > where T12 or T21 is upper triangular. */ /* > */ /* > In particular, if B is square and nonsingular, the GQR factorization */ /* > of A and B implicitly gives the QR factorization of inv(B)*A: */ /* > */ /* > inv(B)*A = Z**H * (inv(T)*R) */ /* > */ /* > where inv(B) denotes the inverse of the matrix B, and Z' denotes the */ /* > conjugate transpose of matrix Z. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of rows of the matrices A and B. N >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of columns of the matrix A. M >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in] P */ /* > \verbatim */ /* > P is INTEGER */ /* > The number of columns of the matrix B. P >= 0. */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is COMPLEX array, dimension (LDA,M) */ /* > On entry, the N-by-M matrix A. */ /* > On exit, the elements on and above the diagonal of the array */ /* > contain the f2cmin(N,M)-by-M upper trapezoidal matrix R (R is */ /* > upper triangular if N >= M); the elements below the diagonal, */ /* > with the array TAUA, represent the unitary matrix Q as a */ /* > product of f2cmin(N,M) elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] TAUA */ /* > \verbatim */ /* > TAUA is COMPLEX array, dimension (f2cmin(N,M)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the unitary matrix Q (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[in,out] B */ /* > \verbatim */ /* > B is COMPLEX array, dimension (LDB,P) */ /* > On entry, the N-by-P matrix B. */ /* > On exit, if N <= P, the upper triangle of the subarray */ /* > B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */ /* > if N > P, the elements on and above the (N-P)-th subdiagonal */ /* > contain the N-by-P upper trapezoidal matrix T; the remaining */ /* > elements, with the array TAUB, represent the unitary */ /* > matrix Z as a product of elementary reflectors (see Further */ /* > Details). */ /* > \endverbatim */ /* > */ /* > \param[in] LDB */ /* > \verbatim */ /* > LDB is INTEGER */ /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */ /* > \endverbatim */ /* > */ /* > \param[out] TAUB */ /* > \verbatim */ /* > TAUB is COMPLEX array, dimension (f2cmin(N,P)) */ /* > The scalar factors of the elementary reflectors which */ /* > represent the unitary matrix Z (see Further Details). */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */ /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= f2cmax(1,N,M,P). */ /* > For optimum performance LWORK >= f2cmax(N,M,P)*f2cmax(NB1,NB2,NB3), */ /* > where NB1 is the optimal blocksize for the QR factorization */ /* > of an N-by-M matrix, NB2 is the optimal blocksize for the */ /* > RQ factorization of an N-by-P matrix, and NB3 is the optimal */ /* > blocksize for a call of CUNMQR. */ /* > */ /* > If LWORK = -1, then a workspace query is assumed; the routine */ /* > only calculates the optimal size of the WORK array, returns */ /* > this value as the first entry of the WORK array, and no error */ /* > message related to LWORK is issued by XERBLA. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup complexOTHERcomputational */ /* > \par Further Details: */ /* ===================== */ /* > */ /* > \verbatim */ /* > */ /* > The matrix Q is represented as a product of elementary reflectors */ /* > */ /* > Q = H(1) H(2) . . . H(k), where k = f2cmin(n,m). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - taua * v * v**H */ /* > */ /* > where taua is a complex scalar, and v is a complex vector with */ /* > v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */ /* > and taua in TAUA(i). */ /* > To form Q explicitly, use LAPACK subroutine CUNGQR. */ /* > To use Q to update another matrix, use LAPACK subroutine CUNMQR. */ /* > */ /* > The matrix Z is represented as a product of elementary reflectors */ /* > */ /* > Z = H(1) H(2) . . . H(k), where k = f2cmin(n,p). */ /* > */ /* > Each H(i) has the form */ /* > */ /* > H(i) = I - taub * v * v**H */ /* > */ /* > where taub is a complex scalar, and v is a complex vector with */ /* > v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in */ /* > B(n-k+i,1:p-k+i-1), and taub in TAUB(i). */ /* > To form Z explicitly, use LAPACK subroutine CUNGRQ. */ /* > To use Z to update another matrix, use LAPACK subroutine CUNMRQ. */ /* > \endverbatim */ /* > */ /* ===================================================================== */ /* Subroutine */ int cggqrf_(integer *n, integer *m, integer *p, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ integer lopt, nb; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer nb1, nb2, nb3; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --taua; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --taub; --work; /* Function Body */ *info = 0; nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "CGERQF", " ", n, p, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = f2cmax(nb1,nb2); nb = f2cmax(i__1,nb3); /* Computing MAX */ i__1 = f2cmax(*n,*m); lwkopt = f2cmax(i__1,*p) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*p < 0) { *info = -3; } else if (*lda < f2cmax(1,*n)) { *info = -5; } else if (*ldb < f2cmax(1,*n)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = f2cmax(1,*n), i__1 = f2cmax(i__1,*m); if (*lwork < f2cmax(i__1,*p) && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGQRF", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* QR factorization of N-by-M matrix A: A = Q*R */ cgeqrf_(n, m, &a[a_offset], lda, &taua[1], &work[1], lwork, info); lopt = work[1].r; /* Update B := Q**H*B. */ i__1 = f2cmin(*n,*m); cunmqr_("Left", "Conjugate Transpose", n, p, &i__1, &a[a_offset], lda, & taua[1], &b[b_offset], ldb, &work[1], lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[1].r; lopt = f2cmax(i__1,i__2); /* RQ factorization of N-by-P matrix B: B = T*Z. */ cgerqf_(n, p, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); /* Computing MAX */ i__2 = lopt, i__3 = (integer) work[1].r; i__1 = f2cmax(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGQRF */ } /* cggqrf_ */
the_stack_data/797415.c
// WARNING in inc_nlink // https://syzkaller.appspot.com/bug?id=a9ac3de1b5de5fb10efc // status:6 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include <endian.h> #include <errno.h> #include <fcntl.h> #include <setjmp.h> #include <signal.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mount.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> #include <linux/loop.h> static unsigned long long procid; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } struct fs_image_segment { void* data; uintptr_t size; uintptr_t offset; }; #define IMAGE_MAX_SEGMENTS 4096 #define IMAGE_MAX_SIZE (129 << 20) #define sys_memfd_create 319 static unsigned long fs_image_segment_check(unsigned long size, unsigned long nsegs, long segments) { unsigned long i; struct fs_image_segment* segs = (struct fs_image_segment*)segments; if (nsegs > IMAGE_MAX_SEGMENTS) nsegs = IMAGE_MAX_SEGMENTS; for (i = 0; i < nsegs; i++) { if (segs[i].size > IMAGE_MAX_SIZE) segs[i].size = IMAGE_MAX_SIZE; segs[i].offset %= IMAGE_MAX_SIZE; if (segs[i].offset > IMAGE_MAX_SIZE - segs[i].size) segs[i].offset = IMAGE_MAX_SIZE - segs[i].size; if (size < segs[i].offset + segs[i].offset) size = segs[i].offset + segs[i].offset; } if (size > IMAGE_MAX_SIZE) size = IMAGE_MAX_SIZE; return size; } static long syz_mount_image(volatile long fsarg, volatile long dir, volatile unsigned long size, volatile unsigned long nsegs, volatile long segments, volatile long flags, volatile long optsarg) { char loopname[64], fs[32], opts[256]; int loopfd, err = 0, res = -1; unsigned long i; NONFAILING(size = fs_image_segment_check(size, nsegs, segments)); int memfd = syscall(sys_memfd_create, "syz_mount_image", 0); if (memfd == -1) { err = errno; goto error; } if (ftruncate(memfd, size)) { err = errno; goto error_close_memfd; } for (i = 0; i < nsegs; i++) { struct fs_image_segment* segs = (struct fs_image_segment*)segments; int res1 = 0; NONFAILING(res1 = pwrite(memfd, segs[i].data, segs[i].size, segs[i].offset)); if (res1 < 0) { } } snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid); loopfd = open(loopname, O_RDWR); if (loopfd == -1) { err = errno; goto error_close_memfd; } if (ioctl(loopfd, LOOP_SET_FD, memfd)) { if (errno != EBUSY) { err = errno; goto error_close_loop; } ioctl(loopfd, LOOP_CLR_FD, 0); usleep(1000); if (ioctl(loopfd, LOOP_SET_FD, memfd)) { err = errno; goto error_close_loop; } } mkdir((char*)dir, 0777); memset(fs, 0, sizeof(fs)); NONFAILING(strncpy(fs, (char*)fsarg, sizeof(fs) - 1)); memset(opts, 0, sizeof(opts)); NONFAILING(strncpy(opts, (char*)optsarg, sizeof(opts) - 32)); if (strcmp(fs, "iso9660") == 0) { flags |= MS_RDONLY; } else if (strncmp(fs, "ext", 3) == 0) { if (strstr(opts, "errors=panic") || strstr(opts, "errors=remount-ro") == 0) strcat(opts, ",errors=continue"); } else if (strcmp(fs, "xfs") == 0) { strcat(opts, ",nouuid"); } if (mount(loopname, (char*)dir, fs, flags, opts)) { err = errno; goto error_clear_loop; } res = 0; error_clear_loop: ioctl(loopfd, LOOP_CLR_FD, 0); error_close_loop: close(loopfd); error_close_memfd: close(memfd); error: errno = err; return res; } uint64_t r[1] = {0xffffffffffffffff}; int main(void) { syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 3ul, 0x32ul, -1, 0ul); install_segv_handler(); intptr_t res = 0; NONFAILING(memcpy((void*)0x20000180, "minix\000", 6)); NONFAILING(memcpy((void*)0x20000140, "./file0\000", 8)); NONFAILING(*(uint64_t*)0x20000000 = 0x20000100); NONFAILING(memcpy((void*)0x20000100, "\x60\x00\x84\xe0\x02\x00\x0a\x00\x90" "\x0c\xda\x40\xff\x1a\xd5\xc9\x8f\x13", 18)); NONFAILING(*(uint64_t*)0x20000008 = 0x12); NONFAILING(*(uint64_t*)0x20000010 = 0x400); NONFAILING(*(uint64_t*)0x20000018 = 0x20000780); NONFAILING(memcpy( (void*)0x20000780, "\xee\x9f\x84\xa4\x3e\xcc\xaf\x13\x15\xbb\x39\x7d\x00\xc1\xb6\xdd\x82\x0d" "\xd1\x39\x16\x18\x1d\xba\x62\x09\x38\xcb\x30\xf1\xc2\x1a\xfe\x3d\x92\x62" "\x98\xb2\x58\x34\xe8\x90\x09\x2d\x64\x2c\xaf\xe5\xdb\x21\xba\x94\x94\xfe" "\xbc\xf6\x60\x79\xb7\x22\xe7\x3b\xe3\xa8\x70\x8a\x36\x24\x25\x0f\x9f\x59" "\xfb\xbe\x94\x29\x97\xc6\xc1\xe8\x3a\x34\xe5\x77\x9e\x8a\x4f\x40\xfd\xb6" "\xff\xe5\x9f\xfe\x49\x03\x50\x0d\x3c\xd8\xc8\xf3\xed\x19\x60\x72\x8f\x2d" "\x94\xcf\x7f\xca\xf2\x92\x2f\x8a\xab\x3b\xec\xc6\x0c\x8d\x39\xdd\xf4\x3c" "\xd6\xd2\xe9\x30\x1d\xa3\xca\xa3\x57\x19\xf2\x5a\x83\x47\x85\x59\xe0\xe8" "\x91\xdc\xb7\x56\xee\x22\x96\x4d\x03\xf3\x75\x61\xf5\x79\x74\x90\xa0\xb9" "\x35\x06\x48\x28\x22\x07\x5b\xa9\x6d\xb3\x5a\x44\x0d\x04\x6e\x44\xeb\x4a" "\x79\x98\x6b\x51\x82\x81\x60\x90\x03\xb6\xfa\xe0\x4a\x18\xbe\x9a\x83\xce" "\x7e\xfa\x2a\xb8\x0f\x75\xc9\x0d\x78\xf0\xb4\x17\x9d\x67\x43\x76\xdb\x1f" "\x7a\xe8\x74\x56\x41\xad\xcd\xe0\xd2\x45\x72\x27\x44\xbc\xea\x2f\xac\x94" "\x45\x01\x4e\xe2\x29\x39\x85\x11\x95\x73\xff\xcc\x0c\x22\xeb\x07\x69\xde" "\x1e\x9e\x5d\xb5\x3a\xa3\x37\x8a\x44\x26\x50\x30\x10\xa7\xc6\x24\x72\x65" "\x83\x82\x11\x52\x7a\x01\x32\xcc\xf8\x83\xee\x08\xa6\xea\x1a\x78\x5e\x47" "\xce\x16\x66\x3f\x1c\x74\x4a\xf4\x92\x00\xd5\xf3\xbc\x32\x6e\x7d\x90\x89" "\xa5\xf1\x7d\x0a\xd0\x4d\xe5\xea\xe8\xd6\xd9\xea\x1a\x71\x4e\x35\xc5\xc3" "\x85\x5f\x06\xe4\x8c\x20\x5f\x9b\x6d\x08\x7b\xa7\xd3\xb6\x74\x5e\x65\x70" "\x0c\x00\x95\x72\xa6\x5b\x4b\xfb\xf6\x68\x78\x21\xbc\x72\x3b\x61\xb5\xab" "\xe7\x35\x7e\x68\xa9\xb0\x64\x0b\xfb\x9c\x01\x00\x00\x80\x00\x00\x00\x00" "\x0e\x84\x0e\xcf\x37\x9c\x57\x6c\x05\x75\x7d\x44\xb1\x9d\xe0\xe2\xaa\x36" "\x4c\x42\x15\x62\x19\xa7\x2c\xc9\x43\xa6\x0f\x04\x10\x89\x1e\xd1\x34\xf3" "\x5f\x5f\xe6\xb4\xcf\x3a\xbb\xcb\x98\x44\x36\x32\x23\x58\xa7\xc9\x39\x37" "\x24\x86\x0d\x87\x25\x39\x81\xf9\xe7\x9d\xbe\xb7\x89\x57\x7e\xad\x0e\xde" "\x31\xe1\x9a\x2b\x11\x4a\x0e\x4d\x82\xb3\xe1\x02\x3d\xd2\x8b\x63\x82\xe6" "\x7e\xbd\x46\xd2\x91\x2e\x55\xcf\x99\x28\xda\x32\xc1\x02\x7c\xef\x7c\x6c" "\x61\x0e\xa8\xfc\xe1\x49\xa7\xaf\x20\x22\x4b\x4e\x02\x86\x01\x93\x6e\xf9" "\xa7\x8d\x80\xff\x55\x67\x08\x4e\xc1\x28\x76\x6e\x82\x2d\x61\x24\x18\x6d" "\x82\xe7\x60\x12\x8d\xd7\xde\x26\x53\x93\x9d\x35\x3c\x12\xf9\x6d\xef\xf3" "\xa2\x8b\x02\x2c\x78\x4b\xd3\x7d\xf7\xf7\x66\x40\xbc\xbc\xb0\x1a\x46\x76" "\xd5\x8b\x3e\x9c\x2b\xaa\xe6\x62\x30\xe5\xf5\x4a\x37\x52\x7e\x81\x29\xd1" "\x61\xb0\xc0\x6f\x25\x64\x8c\x55\xa7\xe5\xb2\xdb\x52\x80\x53\xc3\xe3\x86" "\x4f\x41\x72\x8b\x79\x35\xe5\x75\x56\x8a\xd1\x14\xeb\x8c\x81\x1b\xf1\x9e" "\x07\xa3\x98\xba\xbb\xc6\x4f\xbe\xab\x84\x26\x88\x55\x47\x83\xed\x15\x51" "\x94\x9a\x79\x1e\x33\x79\x9e\x59\xa3\x4b\x6b\xda\xbc\x34\x58\xc3\x79\xc7" "\x35\x19\x82\x92\xe5\xa2\x72\xf5\x73\x49\x24\x9d\x2c\x8a\x9a\xa5\x8f\x38" "\x35\xa3\xe1\x71\x60\x83\xbb\x04\x64\xcb\xe1\x40\xd1\x58\x7a\x21\xe4\xec" "\x2a\xe1\xf3\xad\x81\x13\x4d\xf5\x59\x03\xff\xb8\xe1\x73\x64\x63\x52\x91" "\x5a\x2c\x70\x67\x09\xcf\x46\x53\x89\x78\x22\x4c\x0d\x6d\xc4\x37\xcb\xfc" "\x37\xab\xfb\xd1\xb7\x6f\xeb\x5c\xa3\xae\xb1\xac\x8c\xbd\x40\xd5\xba\x89" "\x6f\x79\xee\x8f\x76\xb0\x80\x9f\x59\xb8\x68\x62\x64\x87\x74\xd2\xac\xe9" "\x8b\x82\x5e\x7a\x46\x5b\x5d\xd8\x0e\x49\x19\x65\x97\x1e\x77\x97\xab\xa3" "\x96\x84\x41", 777)); NONFAILING(*(uint64_t*)0x20000020 = 0x309); NONFAILING(*(uint64_t*)0x20000028 = 0x34f9); syz_mount_image(0x20000180, 0x20000140, 0, 2, 0x20000000, 0, 0); NONFAILING(memcpy((void*)0x20000040, "./file0\000", 8)); res = syscall(__NR_open, 0x20000040ul, 0x2584c0ul, 0ul); if (res != -1) r[0] = res; NONFAILING(memcpy((void*)0x20000080, "syz1\000", 5)); syscall(__NR_mkdirat, r[0], 0x20000080ul, 0x1fful); return 0; }
the_stack_data/243893266.c
/* 4) Implementa uma função que recebe 3 parametros: uma palavra e dois caracteres; e retorna a quantidade de caracteres no alfabeto entre os 2 caracteres que foram passados como parametros. Ex: fun("azbgxbcyhdu", 'b', 'd') retorna 4. */ #include <stdio.h> int Exer04(char s[], char a, char b); int main(void) { char string[] = "skldgnklndfweopjdf"; char x = 'a'; char y = 'e'; printf("String: %s\n", string); printf("A string tem %d letras entre o (%c) e (%c)\n", Exer04(string, x, y), x, y); } int Exer04(char s[], char a, char b) { int cont = 0; int qtde = 0; char maior = b; char menor = a; if (a > b) { maior = a; menor = b; } do { if (s[cont] <= maior && s[cont] >= menor) { qtde++; } cont++; } while (s[cont] != '\0'); return (qtde); }
the_stack_data/154828348.c
/* ************************************************************************** */ /* */ /* ::: :::::::: */ /* ft_isascii.c :+: :+: :+: */ /* +:+ +:+ +:+ */ /* By: juolivei <[email protected]> +#+ +:+ +#+ */ /* +#+#+#+#+#+ +#+ */ /* Created: 2020/01/20 16:40:37 by juolivei #+# #+# */ /* Updated: 2020/01/20 16:41:41 by juolivei ### ########.fr */ /* */ /* ************************************************************************** */ int ft_isascii(int c) { if (c >= 0 && c <= 127) return (1); else return (0); }
the_stack_data/7655.c
/********************************************************************* * RPC for the Windows NT Operating System * 1993 by Martin F. Gergeleit * Users may use, copy or modify Sun RPC for the Windows NT Operating * System according to the Sun copyright below. * * RPC for the Windows NT Operating System COMES WITH ABSOLUTELY NO * WARRANTY, NOR WILL I BE LIABLE FOR ANY DAMAGES INCURRED FROM THE * USE OF. USE ENTIRELY AT YOUR OWN RISK!!! *********************************************************************/ /* * bcopy.c -- * Implements bcopy(2) and bzero(2) byte operations. * * Author: * See-Mong Tan, 6/26/88 */ #include <stdio.h> /* * bcopy(char *s1, char *s2, int len) -- * Copies len bytes from s1 to s2 */ void bcopy(s1, s2, len) char *s1, *s2; int len; { for(; len > 0; len--) *s2++ = *s1++; } /* * bzero(char *s, int len) -- * Places len zero byes in s */ void bzero(s, len) char *s; int len; { for(; len > 0; len--) *s++ = (char) 0; } /* * bcmp() compares byte string b1 against byte string b2, * returning zero if they are identical, non-zero otherwise. * Both strings are assumed to be length bytes long. bcmp() of * length zero bytes always returns zero. */ int bcmp(s1, s2, len) char *s1, *s2; int len; { for(; len > 0; len--, s1++, s2++) if (*s1 != *s2) return 1; return 0; }
the_stack_data/3263345.c
#include "stdlib.h" void modify_int_refs_old_syntax(int* first, int* second) //@ requires integer(first, ?val1) &*& integer(second, ?val2); //@ ensures integer(first, val1 + 1) &*& integer(second, val2 - 1); { (*first)++; (*second)--; } void modify_int_refs_new_syntax(int* first, int* second) //@ requires *first |-> ?val1 &*& *second |-> ?val2; //@ ensures *first |-> val1 + 1 &*& *second |-> val2 - 1; { (*first)++; (*second)--; } //@ predicate intptr_pointsto(int **p; int *v) = *p |-> v; void modify_uint_refs_old_syntax(unsigned int* first, unsigned int* second) //@ requires u_integer(first, ?val1) &*& u_integer(second, ?val2); //@ ensures u_integer(first, val1 + 1) &*& u_integer(second, val2 - 1); { *first = *first + 1; *second = *second - 1; } void modify_uint_refs_new_syntax(unsigned int* first, unsigned int* second) //@ requires *first |-> ?val1 &*& *second |-> ?val2; //@ ensures *first |-> val1 + 1 &*& *second |-> val2 - 1; { *first = *first + 1; *second = *second - 1; } void modify_char_refs_old_syntax(char* first, char* second) //@ requires character(first, ?val1) &*& character(second, ?val2); //@ ensures character(first, (char) (val1 + 1)) &*& character(second, (char) (val2 - 1)); { (*first)++; (*second)--; } void modify_char_refs_new_syntax(char* first, char* second) //@ requires *first |-> ?val1 &*& *second |-> ?val2; //@ ensures *first |-> (char) (val1 + 1) &*& *second |-> (char) (val2 - 1); { (*first)++; (*second)--; } void modify_calculated_address_new_syntax(int* foo) //@ requires *(foo + 1) |-> ?val1 &*& *(foo + 2) |-> ?val2; //@ ensures *(foo + 1) |-> val1 + 5 &*& *(foo + 2) |-> val2 - 5; { *(foo + 1) = *(foo + 1) + 5; *(foo + 2) = *(foo + 2) - 5; } void modify_array_new_syntax(int* foo) //@ requires foo[1] |-> ?val1 &*& foo[2] |-> ?val2; //@ ensures foo[1] |-> val1 + 5 &*& foo[2] |-> val2 - 5; { *(foo + 1) = *(foo + 1) + 5; *(foo + 2) = *(foo + 2) - 5; } int main() //@ : main //@ requires true; //@ ensures true; { int i = -10; int j = 10; unsigned int k = 10; unsigned int l = 20; char m = 'a'; char n = 'z'; int* int_pointer; //@ assert i == -10 && j == 10; modify_int_refs_old_syntax(&i, &j); //@ assert i == -9 && j == 9; modify_int_refs_new_syntax(&i, &j); //@ assert i == -8 && j == 8; //@ assert k == 10 && l == 20; modify_uint_refs_old_syntax(&k, &l); //@ assert k == 11 && l == 19; modify_uint_refs_new_syntax(&k, &l); //@ assert k == 12 && l == 18; //@ assert m == 'a' && n == 'z'; modify_char_refs_old_syntax(&m, &n); //@ assert m == 'b' && n == 'y'; modify_char_refs_new_syntax(&m, &n); //@ assert m == 'c' && n == 'x'; int_pointer = malloc(5 * sizeof(int)); if (int_pointer == 0) abort(); //@ open ints(int_pointer, _, _); *(int_pointer + 1) = 5; *(int_pointer + 2) = 5; //@ assert integer(int_pointer + 1, 5) &*& integer(int_pointer + 2, 5); modify_calculated_address_new_syntax(int_pointer); //@ assert *(int_pointer + 1) |-> 10 &*& *(int_pointer + 2) |-> 0; modify_array_new_syntax(int_pointer); //@ assert int_pointer[1] |-> 15 &*& int_pointer[2] |-> -5; free(int_pointer); return 0; }
the_stack_data/78014.c
#include <stdio.h> #define MAX_WORD_LENGTH 10 main() { int wordcount[MAX_WORD_LENGTH + 1]; int i, j; for(i = 0; i < MAX_WORD_LENGTH + 1; i++) { wordcount[i] = 0; } int length, max; max = 0; length = 0; char c; while ((c = getchar()) != EOF) { if (c == ' ' || c == '\t' || c == '\n') { if (length > 10) { wordcount[0] = wordcount[0] + 1; } else { wordcount[length] = wordcount[length] + 1; } length = 0; } else { ++length; } } for (i = 0; i < MAX_WORD_LENGTH + 1; i++) { if (max < wordcount[i]) { max = wordcount[i]; } } putchar('\n'); printf("histogram with the bars horizontal:\n"); for (i = 1; i < MAX_WORD_LENGTH + 1; i++) { printf("%3d | ", i); for (j = 0; j < wordcount[i]; j++) { putchar('*'); } putchar('\n'); } printf(">10 | "); for (j = 0; j < wordcount[0]; j++) { putchar('*'); } putchar('\n'); printf("histogram with the bars vertical:\n"); for (i = max; i > 0 ; i--) { for (j = 1; j < MAX_WORD_LENGTH + 1; j++ ) { putchar(' '); if(i <= wordcount[j]) { putchar('*'); } else { putchar(' '); } putchar(' '); } putchar(' '); if (i <= wordcount[0]) { putchar('*'); } else { putchar(' '); } putchar(' '); putchar('\n'); } for (i = 1; i < MAX_WORD_LENGTH + 1; i++) { printf("%2d ", i); } printf(">10"); putchar('\n'); }
the_stack_data/72011489.c
/* * original from: * https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/lib/libc/printf.c?h=v2.2 * */ /* * Copyright (c) 2014-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include <stdarg.h> #include <unistd.h> #include <stdint.h> int putchar(int); #define assert(...) #define get_num_va_args(_args, _lcount) \ (((_lcount) > 1) ? va_arg(_args, long long int) : \ (((_lcount) == 1) ? va_arg(_args, long int) : \ va_arg(_args, int))) #define get_unum_va_args(_args, _lcount) \ (((_lcount) > 1) ? va_arg(_args, unsigned long long int) : \ (((_lcount) == 1) ? va_arg(_args, unsigned long int) : \ va_arg(_args, unsigned int))) static int string_print(const char *str) { int count = 0; assert(str != NULL); for ( ; *str != '\0'; str++) { (void)putchar(*str); count++; } return count; } static int unsigned_num_print(unsigned long long int unum, unsigned int radix, char padc, int padn) { /* Just need enough space to store 64 bit decimal integer */ char num_buf[20]; int i = 0, count = 0; unsigned int rem; do { rem = unum % radix; if (rem < 0xa) num_buf[i] = '0' + rem; else num_buf[i] = 'a' + (rem - 0xa); i++; unum /= radix; } while (unum > 0U); if (padn > 0) { while (i < padn) { (void)putchar(padc); count++; padn--; } } while (--i >= 0) { (void)putchar(num_buf[i]); count++; } return count; } /******************************************************************* * Reduced format print for Trusted firmware. * The following type specifiers are supported by this print * %x - hexadecimal format * %s - string format * %d or %i - signed decimal format * %u - unsigned decimal format * %p - pointer format * * The following length specifiers are supported by this print * %l - long int (64-bit on AArch64) * %ll - long long int (64-bit on AArch64) * %z - size_t sized integer formats (64 bit on AArch64) * * The following padding specifiers are supported by this print * %0NN - Left-pad the number with 0s (NN is a decimal number) * * The print exits on all other formats specifiers other than valid * combinations of the above specifiers. *******************************************************************/ int vprintf(const char *fmt, va_list args) { int l_count; long long int num; unsigned long long int unum; char *str; char padc = '\0'; /* Padding character */ int padn; /* Number of characters to pad */ int count = 0; /* Number of printed characters */ while (*fmt != '\0') { l_count = 0; padn = 0; if (*fmt == '%') { fmt++; /* Check the format specifier */ loop: switch (*fmt) { case 'i': /* Fall through to next one */ case 'd': num = get_num_va_args(args, l_count); if (num < 0) { (void)putchar('-'); unum = (unsigned long long int)-num; padn--; } else unum = (unsigned long long int)num; count += unsigned_num_print(unum, 10, padc, padn); break; case 's': str = va_arg(args, char *); count += string_print(str); break; case 'p': unum = (uintptr_t)va_arg(args, void *); if (unum > 0U) { count += string_print("0x"); padn -= 2; } count += unsigned_num_print(unum, 16, padc, padn); break; case 'x': unum = get_unum_va_args(args, l_count); count += unsigned_num_print(unum, 16, padc, padn); break; case 'z': if (sizeof(size_t) == 8U) l_count = 2; fmt++; goto loop; case 'l': l_count++; fmt++; goto loop; case 'u': unum = get_unum_va_args(args, l_count); count += unsigned_num_print(unum, 10, padc, padn); break; case '0': padc = '0'; padn = 0; fmt++; for (;;) { char ch = *fmt; if ((ch < '0') || (ch > '9')) { goto loop; } padn = (padn * 10) + (ch - '0'); fmt++; } assert(0); /* Unreachable */ default: /* Exit on any other format specifier */ return -1; } fmt++; continue; } (void)putchar(*fmt); fmt++; count++; } return count; } int putchar(int); int printf(const char *fmt, ...) { int count; va_list va; va_start(va, fmt); count = vprintf(fmt, va); va_end(va); return count; }
the_stack_data/62638029.c
#include <limits.h> int main(void) { int x = INT_MAX; if (x != 10) { x = x + 1; } }
the_stack_data/242330931.c
/* * Copyright (c) 2001 Markus Friedl. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Preneel, Bosselaers, Dobbertin, "The Cryptographic Hash Function RIPEMD-160", * RSA Laboratories, CryptoBytes, Volume 3, Number 2, Autumn 1997, * ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf */ #include <sys/types.h> #include <endian.h> #include <string.h> #include <rmd160.h> #define PUT_64BIT_LE(cp, value) do { \ (cp)[7] = (value) >> 56; \ (cp)[6] = (value) >> 48; \ (cp)[5] = (value) >> 40; \ (cp)[4] = (value) >> 32; \ (cp)[3] = (value) >> 24; \ (cp)[2] = (value) >> 16; \ (cp)[1] = (value) >> 8; \ (cp)[0] = (value); } while (0) #define PUT_32BIT_LE(cp, value) do { \ (cp)[3] = (value) >> 24; \ (cp)[2] = (value) >> 16; \ (cp)[1] = (value) >> 8; \ (cp)[0] = (value); } while (0) #define H0 0x67452301U #define H1 0xEFCDAB89U #define H2 0x98BADCFEU #define H3 0x10325476U #define H4 0xC3D2E1F0U #define K0 0x00000000U #define K1 0x5A827999U #define K2 0x6ED9EBA1U #define K3 0x8F1BBCDCU #define K4 0xA953FD4EU #define KK0 0x50A28BE6U #define KK1 0x5C4DD124U #define KK2 0x6D703EF3U #define KK3 0x7A6D76E9U #define KK4 0x00000000U /* rotate x left n bits. */ #define ROL(n, x) (((x) << (n)) | ((x) >> (32-(n)))) #define F0(x, y, z) ((x) ^ (y) ^ (z)) #define F1(x, y, z) (((x) & (y)) | ((~x) & (z))) #define F2(x, y, z) (((x) | (~y)) ^ (z)) #define F3(x, y, z) (((x) & (z)) | ((y) & (~z))) #define F4(x, y, z) ((x) ^ ((y) | (~z))) #define R(a, b, c, d, e, Fj, Kj, sj, rj) \ do { \ a = ROL(sj, a + Fj(b,c,d) + X(rj) + Kj) + e; \ c = ROL(10, c); \ } while(0) #define X(i) x[i] static u_int8_t PADDING[RMD160_BLOCK_LENGTH] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void RMD160Init(RMD160_CTX *ctx) { ctx->count = 0; ctx->state[0] = H0; ctx->state[1] = H1; ctx->state[2] = H2; ctx->state[3] = H3; ctx->state[4] = H4; } void RMD160Update(RMD160_CTX *ctx, const u_int8_t *input, size_t len) { size_t have, off, need; have = (ctx->count / 8) % RMD160_BLOCK_LENGTH; need = RMD160_BLOCK_LENGTH - have; ctx->count += 8 * len; off = 0; if (len >= need) { if (have) { memcpy(ctx->buffer + have, input, need); RMD160Transform(ctx->state, ctx->buffer); off = need; have = 0; } /* now the buffer is empty */ while (off + RMD160_BLOCK_LENGTH <= len) { RMD160Transform(ctx->state, input+off); off += RMD160_BLOCK_LENGTH; } } if (off < len) memcpy(ctx->buffer + have, input+off, len-off); } void RMD160Pad(RMD160_CTX *ctx) { u_int8_t size[8]; size_t padlen; PUT_64BIT_LE(size, ctx->count); /* * pad to RMD160_BLOCK_LENGTH byte blocks, at least one byte from * PADDING plus 8 bytes for the size */ padlen = RMD160_BLOCK_LENGTH - ((ctx->count / 8) % RMD160_BLOCK_LENGTH); if (padlen < 1 + 8) padlen += RMD160_BLOCK_LENGTH; RMD160Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ RMD160Update(ctx, size, 8); } void RMD160Final(u_int8_t digest[RMD160_DIGEST_LENGTH], RMD160_CTX *ctx) { int i; RMD160Pad(ctx); for (i = 0; i < 5; i++) PUT_32BIT_LE(digest + i*4, ctx->state[i]); memset(ctx, 0, sizeof (*ctx)); } void RMD160Transform(u_int32_t state[5], const u_int8_t block[RMD160_BLOCK_LENGTH]) { u_int32_t a, b, c, d, e, aa, bb, cc, dd, ee, t, x[16]; #if BYTE_ORDER == LITTLE_ENDIAN memcpy(x, block, RMD160_BLOCK_LENGTH); #else int i; for (i = 0; i < 16; i++) x[i] = (u_int32_t)( (u_int32_t)(block[i*4 + 0]) | (u_int32_t)(block[i*4 + 1]) << 8 | (u_int32_t)(block[i*4 + 2]) << 16 | (u_int32_t)(block[i*4 + 3]) << 24); #endif a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* Round 1 */ R(a, b, c, d, e, F0, K0, 11, 0); R(e, a, b, c, d, F0, K0, 14, 1); R(d, e, a, b, c, F0, K0, 15, 2); R(c, d, e, a, b, F0, K0, 12, 3); R(b, c, d, e, a, F0, K0, 5, 4); R(a, b, c, d, e, F0, K0, 8, 5); R(e, a, b, c, d, F0, K0, 7, 6); R(d, e, a, b, c, F0, K0, 9, 7); R(c, d, e, a, b, F0, K0, 11, 8); R(b, c, d, e, a, F0, K0, 13, 9); R(a, b, c, d, e, F0, K0, 14, 10); R(e, a, b, c, d, F0, K0, 15, 11); R(d, e, a, b, c, F0, K0, 6, 12); R(c, d, e, a, b, F0, K0, 7, 13); R(b, c, d, e, a, F0, K0, 9, 14); R(a, b, c, d, e, F0, K0, 8, 15); /* #15 */ /* Round 2 */ R(e, a, b, c, d, F1, K1, 7, 7); R(d, e, a, b, c, F1, K1, 6, 4); R(c, d, e, a, b, F1, K1, 8, 13); R(b, c, d, e, a, F1, K1, 13, 1); R(a, b, c, d, e, F1, K1, 11, 10); R(e, a, b, c, d, F1, K1, 9, 6); R(d, e, a, b, c, F1, K1, 7, 15); R(c, d, e, a, b, F1, K1, 15, 3); R(b, c, d, e, a, F1, K1, 7, 12); R(a, b, c, d, e, F1, K1, 12, 0); R(e, a, b, c, d, F1, K1, 15, 9); R(d, e, a, b, c, F1, K1, 9, 5); R(c, d, e, a, b, F1, K1, 11, 2); R(b, c, d, e, a, F1, K1, 7, 14); R(a, b, c, d, e, F1, K1, 13, 11); R(e, a, b, c, d, F1, K1, 12, 8); /* #31 */ /* Round 3 */ R(d, e, a, b, c, F2, K2, 11, 3); R(c, d, e, a, b, F2, K2, 13, 10); R(b, c, d, e, a, F2, K2, 6, 14); R(a, b, c, d, e, F2, K2, 7, 4); R(e, a, b, c, d, F2, K2, 14, 9); R(d, e, a, b, c, F2, K2, 9, 15); R(c, d, e, a, b, F2, K2, 13, 8); R(b, c, d, e, a, F2, K2, 15, 1); R(a, b, c, d, e, F2, K2, 14, 2); R(e, a, b, c, d, F2, K2, 8, 7); R(d, e, a, b, c, F2, K2, 13, 0); R(c, d, e, a, b, F2, K2, 6, 6); R(b, c, d, e, a, F2, K2, 5, 13); R(a, b, c, d, e, F2, K2, 12, 11); R(e, a, b, c, d, F2, K2, 7, 5); R(d, e, a, b, c, F2, K2, 5, 12); /* #47 */ /* Round 4 */ R(c, d, e, a, b, F3, K3, 11, 1); R(b, c, d, e, a, F3, K3, 12, 9); R(a, b, c, d, e, F3, K3, 14, 11); R(e, a, b, c, d, F3, K3, 15, 10); R(d, e, a, b, c, F3, K3, 14, 0); R(c, d, e, a, b, F3, K3, 15, 8); R(b, c, d, e, a, F3, K3, 9, 12); R(a, b, c, d, e, F3, K3, 8, 4); R(e, a, b, c, d, F3, K3, 9, 13); R(d, e, a, b, c, F3, K3, 14, 3); R(c, d, e, a, b, F3, K3, 5, 7); R(b, c, d, e, a, F3, K3, 6, 15); R(a, b, c, d, e, F3, K3, 8, 14); R(e, a, b, c, d, F3, K3, 6, 5); R(d, e, a, b, c, F3, K3, 5, 6); R(c, d, e, a, b, F3, K3, 12, 2); /* #63 */ /* Round 5 */ R(b, c, d, e, a, F4, K4, 9, 4); R(a, b, c, d, e, F4, K4, 15, 0); R(e, a, b, c, d, F4, K4, 5, 5); R(d, e, a, b, c, F4, K4, 11, 9); R(c, d, e, a, b, F4, K4, 6, 7); R(b, c, d, e, a, F4, K4, 8, 12); R(a, b, c, d, e, F4, K4, 13, 2); R(e, a, b, c, d, F4, K4, 12, 10); R(d, e, a, b, c, F4, K4, 5, 14); R(c, d, e, a, b, F4, K4, 12, 1); R(b, c, d, e, a, F4, K4, 13, 3); R(a, b, c, d, e, F4, K4, 14, 8); R(e, a, b, c, d, F4, K4, 11, 11); R(d, e, a, b, c, F4, K4, 8, 6); R(c, d, e, a, b, F4, K4, 5, 15); R(b, c, d, e, a, F4, K4, 6, 13); /* #79 */ aa = a ; bb = b; cc = c; dd = d; ee = e; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* Parallel round 1 */ R(a, b, c, d, e, F4, KK0, 8, 5); R(e, a, b, c, d, F4, KK0, 9, 14); R(d, e, a, b, c, F4, KK0, 9, 7); R(c, d, e, a, b, F4, KK0, 11, 0); R(b, c, d, e, a, F4, KK0, 13, 9); R(a, b, c, d, e, F4, KK0, 15, 2); R(e, a, b, c, d, F4, KK0, 15, 11); R(d, e, a, b, c, F4, KK0, 5, 4); R(c, d, e, a, b, F4, KK0, 7, 13); R(b, c, d, e, a, F4, KK0, 7, 6); R(a, b, c, d, e, F4, KK0, 8, 15); R(e, a, b, c, d, F4, KK0, 11, 8); R(d, e, a, b, c, F4, KK0, 14, 1); R(c, d, e, a, b, F4, KK0, 14, 10); R(b, c, d, e, a, F4, KK0, 12, 3); R(a, b, c, d, e, F4, KK0, 6, 12); /* #15 */ /* Parallel round 2 */ R(e, a, b, c, d, F3, KK1, 9, 6); R(d, e, a, b, c, F3, KK1, 13, 11); R(c, d, e, a, b, F3, KK1, 15, 3); R(b, c, d, e, a, F3, KK1, 7, 7); R(a, b, c, d, e, F3, KK1, 12, 0); R(e, a, b, c, d, F3, KK1, 8, 13); R(d, e, a, b, c, F3, KK1, 9, 5); R(c, d, e, a, b, F3, KK1, 11, 10); R(b, c, d, e, a, F3, KK1, 7, 14); R(a, b, c, d, e, F3, KK1, 7, 15); R(e, a, b, c, d, F3, KK1, 12, 8); R(d, e, a, b, c, F3, KK1, 7, 12); R(c, d, e, a, b, F3, KK1, 6, 4); R(b, c, d, e, a, F3, KK1, 15, 9); R(a, b, c, d, e, F3, KK1, 13, 1); R(e, a, b, c, d, F3, KK1, 11, 2); /* #31 */ /* Parallel round 3 */ R(d, e, a, b, c, F2, KK2, 9, 15); R(c, d, e, a, b, F2, KK2, 7, 5); R(b, c, d, e, a, F2, KK2, 15, 1); R(a, b, c, d, e, F2, KK2, 11, 3); R(e, a, b, c, d, F2, KK2, 8, 7); R(d, e, a, b, c, F2, KK2, 6, 14); R(c, d, e, a, b, F2, KK2, 6, 6); R(b, c, d, e, a, F2, KK2, 14, 9); R(a, b, c, d, e, F2, KK2, 12, 11); R(e, a, b, c, d, F2, KK2, 13, 8); R(d, e, a, b, c, F2, KK2, 5, 12); R(c, d, e, a, b, F2, KK2, 14, 2); R(b, c, d, e, a, F2, KK2, 13, 10); R(a, b, c, d, e, F2, KK2, 13, 0); R(e, a, b, c, d, F2, KK2, 7, 4); R(d, e, a, b, c, F2, KK2, 5, 13); /* #47 */ /* Parallel round 4 */ R(c, d, e, a, b, F1, KK3, 15, 8); R(b, c, d, e, a, F1, KK3, 5, 6); R(a, b, c, d, e, F1, KK3, 8, 4); R(e, a, b, c, d, F1, KK3, 11, 1); R(d, e, a, b, c, F1, KK3, 14, 3); R(c, d, e, a, b, F1, KK3, 14, 11); R(b, c, d, e, a, F1, KK3, 6, 15); R(a, b, c, d, e, F1, KK3, 14, 0); R(e, a, b, c, d, F1, KK3, 6, 5); R(d, e, a, b, c, F1, KK3, 9, 12); R(c, d, e, a, b, F1, KK3, 12, 2); R(b, c, d, e, a, F1, KK3, 9, 13); R(a, b, c, d, e, F1, KK3, 12, 9); R(e, a, b, c, d, F1, KK3, 5, 7); R(d, e, a, b, c, F1, KK3, 15, 10); R(c, d, e, a, b, F1, KK3, 8, 14); /* #63 */ /* Parallel round 5 */ R(b, c, d, e, a, F0, KK4, 8, 12); R(a, b, c, d, e, F0, KK4, 5, 15); R(e, a, b, c, d, F0, KK4, 12, 10); R(d, e, a, b, c, F0, KK4, 9, 4); R(c, d, e, a, b, F0, KK4, 12, 1); R(b, c, d, e, a, F0, KK4, 5, 5); R(a, b, c, d, e, F0, KK4, 14, 8); R(e, a, b, c, d, F0, KK4, 6, 7); R(d, e, a, b, c, F0, KK4, 8, 6); R(c, d, e, a, b, F0, KK4, 13, 2); R(b, c, d, e, a, F0, KK4, 6, 13); R(a, b, c, d, e, F0, KK4, 5, 14); R(e, a, b, c, d, F0, KK4, 15, 0); R(d, e, a, b, c, F0, KK4, 13, 3); R(c, d, e, a, b, F0, KK4, 11, 9); R(b, c, d, e, a, F0, KK4, 11, 11); /* #79 */ t = state[1] + cc + d; state[1] = state[2] + dd + e; state[2] = state[3] + ee + a; state[3] = state[4] + aa + b; state[4] = state[0] + bb + c; state[0] = t; }
the_stack_data/98552.c
#include <stdio.h> //03.Write a program that prints if a number is divided by 9, 11 or 13 without remainder. int main() { int n; scanf("%d", &n); if(n % 9 == 0 || n % 11 == 0 || n % 13 == 0) { printf("True.\n"); } else { printf("False.\n"); } return 0; }
the_stack_data/165765075.c
#include <stdio.h> #include <string.h> #include <unistd.h> #include <sys/ipc.h> #include <fcntl.h> #include <sys/msg.h> struct msgbuf{ long msgtype; char msg[256]; }; int main() { struct msgbuf message; key_t key; int msgid, ff; /* ff = open("file", O_RDWR | O_TRUNC | O_CREAT, 0644); if(ff<0) { perror("file"); return 1; } */ key = ftok("msg.c", 'z'); if(key<0) { perror("key"); return 2; } // close(ff); msgid = msgget(key, IPC_CREAT | 0666); if(msgid<0) { perror("msgget"); return 3; } for(;;) { msgrcv(msgid, &message, 256, 1, 0); if(strcmp(message.msg, "q") == 0) break; else printf("Process received: %s", message.msg); } return 0; }
the_stack_data/168892058.c
/** ****************************************************************************** * @file stm32g4xx_ll_rcc.c * @author MCD Application Team * @brief RCC LL module driver. ****************************************************************************** * @attention * * Copyright (c) 2019 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file in * the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. ****************************************************************************** */ #if defined(USE_FULL_LL_DRIVER) /* Includes ------------------------------------------------------------------*/ #include "stm32g4xx_ll_rcc.h" #ifdef USE_FULL_ASSERT #include "stm32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /** @addtogroup STM32G4xx_LL_Driver * @{ */ /** @addtogroup RCC_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup RCC_LL_Private_Macros * @{ */ #define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USART1_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_USART2_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_USART3_CLKSOURCE)) #if defined(RCC_CCIPR_UART5SEL) #define IS_LL_RCC_UART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_UART4_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_UART5_CLKSOURCE)) #elif defined(RCC_CCIPR_UART4SEL) #define IS_LL_RCC_UART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_UART4_CLKSOURCE) #endif /* RCC_CCIPR_UART5SEL*/ #define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE)) #if defined(RCC_CCIPR2_I2C4SEL) #define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_I2C2_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_I2C4_CLKSOURCE)) #else #define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_I2C2_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE)) #endif /* RCC_CCIPR2_I2C4SEL */ #define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE)) #define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_SAI1_CLKSOURCE) #define IS_LL_RCC_I2S_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2S_CLKSOURCE) #define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE)) #define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE)) #if defined(ADC345_COMMON) #define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC12_CLKSOURCE) \ || ((__VALUE__) == LL_RCC_ADC345_CLKSOURCE)) #else #define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC12_CLKSOURCE)) #endif /* ADC345_COMMON */ #if defined(QUADSPI) #define IS_LL_RCC_QUADSPI_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_QUADSPI_CLKSOURCE)) #endif /* QUADSPI */ #if defined(FDCAN1) #define IS_LL_RCC_FDCAN_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_FDCAN_CLKSOURCE)) #endif /* FDCAN1 */ /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup RCC_LL_Private_Functions RCC Private functions * @{ */ static uint32_t RCC_GetSystemClockFreq(void); static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency); static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency); static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency); static uint32_t RCC_PLL_GetFreqDomain_SYS(void); static uint32_t RCC_PLL_GetFreqDomain_ADC(void); static uint32_t RCC_PLL_GetFreqDomain_48M(void); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup RCC_LL_Exported_Functions * @{ */ /** @addtogroup RCC_LL_EF_Init * @{ */ /** * @brief Reset the RCC clock configuration to the default reset state. * @note The default reset state of the clock configuration is given below: * - HSI ON and used as system clock source * - HSE and PLL OFF * - AHB, APB1 and APB2 prescaler set to 1. * - CSS, MCO OFF * - All interrupts disabled * @note This function doesn't modify the configuration of the * - Peripheral clocks * - LSI, LSE and RTC clocks * @retval An ErrorStatus enumeration value: * - SUCCESS: RCC registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_RCC_DeInit(void) { uint32_t vl_mask; /* Set HSION bit and wait for HSI READY bit */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() == 0U) {} /* Set HSITRIM bits to reset value*/ LL_RCC_HSI_SetCalibTrimming(0x40U); /* Reset whole CFGR register but keep HSI as system clock source */ LL_RCC_WriteReg(CFGR, LL_RCC_SYS_CLKSOURCE_HSI); while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {}; /* Reset whole CR register but HSI in 2 steps in case HSEBYP is set */ LL_RCC_WriteReg(CR, RCC_CR_HSION); LL_RCC_WriteReg(CR, RCC_CR_HSION); /* Wait for PLL READY bit to be reset */ while (LL_RCC_PLL_IsReady() != 0U) {} /* Reset PLLCFGR register */ LL_RCC_WriteReg(PLLCFGR, 16U << RCC_PLLCFGR_PLLN_Pos); /* Disable all interrupts */ LL_RCC_WriteReg(CIER, 0x00000000U); /* Clear all interrupt flags */ vl_mask = RCC_CICR_LSIRDYC | RCC_CICR_LSERDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC | RCC_CICR_PLLRDYC | \ RCC_CICR_HSI48RDYC | RCC_CICR_CSSC | RCC_CICR_LSECSSC; LL_RCC_WriteReg(CICR, vl_mask); /* Clear reset flags */ LL_RCC_ClearResetFlags(); return SUCCESS; } /** * @} */ /** @addtogroup RCC_LL_EF_Get_Freq * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks * and different peripheral clocks available on the device. * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***) * or HSI_VALUE(**) multiplied/divided by the PLL factors. * @note (**) HSI_VALUE is a constant defined in this file (default value * 16 MHz) but the real value may vary depending on the variations * in voltage and temperature. * @note (***) HSE_VALUE is a constant defined in this file (default value * 8 MHz), user has to ensure that HSE_VALUE is same as the real * frequency of the crystal used. Otherwise, this function may * have wrong result. * @note The result of this function could be incorrect when using fractional * value for HSE crystal. * @note This function can be used by the user application to compute the * baud-rate for the communication peripherals or configure other parameters. * @{ */ /** * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function * must be called to update structure fields. Otherwise, any * configuration based on this function will be incorrect. * @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies * @retval None */ void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks) { /* Get SYSCLK frequency */ RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq(); /* HCLK clock frequency */ RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency); /* PCLK1 clock frequency */ RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency); /* PCLK2 clock frequency */ RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK_Frequency); } /** * @brief Return USARTx clock frequency * @param USARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE * @arg @ref LL_RCC_USART2_CLKSOURCE * @arg @ref LL_RCC_USART3_CLKSOURCE * * @retval USART clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready */ uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource) { uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource)); if (USARTxSource == LL_RCC_USART1_CLKSOURCE) { /* USART1CLK clock frequency */ switch (LL_RCC_GetUSARTClockSource(USARTxSource)) { case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */ usart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { usart_frequency = HSI_VALUE; } break; case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { usart_frequency = LSE_VALUE; } break; case LL_RCC_USART1_CLKSOURCE_PCLK2: /* USART1 Clock is PCLK2 */ default: usart_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } else if (USARTxSource == LL_RCC_USART2_CLKSOURCE) { /* USART2CLK clock frequency */ switch (LL_RCC_GetUSARTClockSource(USARTxSource)) { case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */ usart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { usart_frequency = HSI_VALUE; } break; case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { usart_frequency = LSE_VALUE; } break; case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */ default: usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } else { if (USARTxSource == LL_RCC_USART3_CLKSOURCE) { /* USART3CLK clock frequency */ switch (LL_RCC_GetUSARTClockSource(USARTxSource)) { case LL_RCC_USART3_CLKSOURCE_SYSCLK: /* USART3 Clock is System Clock */ usart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_USART3_CLKSOURCE_HSI: /* USART3 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { usart_frequency = HSI_VALUE; } break; case LL_RCC_USART3_CLKSOURCE_LSE: /* USART3 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { usart_frequency = LSE_VALUE; } break; case LL_RCC_USART3_CLKSOURCE_PCLK1: /* USART3 Clock is PCLK1 */ default: usart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } } return usart_frequency; } #if defined(RCC_CCIPR_UART4SEL) /** * @brief Return UARTx clock frequency * @param UARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_UART4_CLKSOURCE (*) * @arg @ref LL_RCC_UART5_CLKSOURCE (*) * * (*) value not defined in all devices. * @retval UART clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready */ uint32_t LL_RCC_GetUARTClockFreq(uint32_t UARTxSource) { uint32_t uart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_UART_CLKSOURCE(UARTxSource)); if (UARTxSource == LL_RCC_UART4_CLKSOURCE) { /* UART4CLK clock frequency */ switch (LL_RCC_GetUARTClockSource(UARTxSource)) { case LL_RCC_UART4_CLKSOURCE_SYSCLK: /* UART4 Clock is System Clock */ uart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_UART4_CLKSOURCE_HSI: /* UART4 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { uart_frequency = HSI_VALUE; } break; case LL_RCC_UART4_CLKSOURCE_LSE: /* UART4 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { uart_frequency = LSE_VALUE; } break; case LL_RCC_UART4_CLKSOURCE_PCLK1: /* UART4 Clock is PCLK1 */ default: uart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } #if defined(RCC_CCIPR_UART5SEL) if (UARTxSource == LL_RCC_UART5_CLKSOURCE) { /* UART5CLK clock frequency */ switch (LL_RCC_GetUARTClockSource(UARTxSource)) { case LL_RCC_UART5_CLKSOURCE_SYSCLK: /* UART5 Clock is System Clock */ uart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_UART5_CLKSOURCE_HSI: /* UART5 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { uart_frequency = HSI_VALUE; } break; case LL_RCC_UART5_CLKSOURCE_LSE: /* UART5 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { uart_frequency = LSE_VALUE; } break; case LL_RCC_UART5_CLKSOURCE_PCLK1: /* UART5 Clock is PCLK1 */ default: uart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } #endif /* RCC_CCIPR_UART5SEL */ return uart_frequency; } #endif /* RCC_CCIPR_UART4SEL */ /** * @brief Return I2Cx clock frequency * @param I2CxSource This parameter can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE * @arg @ref LL_RCC_I2C2_CLKSOURCE * @arg @ref LL_RCC_I2C3_CLKSOURCE * @arg @ref LL_RCC_I2C4_CLKSOURCE (*) * * (*) value not defined in all devices. * @retval I2C clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready */ uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource) { uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource)); if (I2CxSource == LL_RCC_I2C1_CLKSOURCE) { /* I2C1 CLK clock frequency */ switch (LL_RCC_GetI2CClockSource(I2CxSource)) { case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */ i2c_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { i2c_frequency = HSI_VALUE; } break; case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */ default: i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } else if (I2CxSource == LL_RCC_I2C2_CLKSOURCE) { /* I2C2 CLK clock frequency */ switch (LL_RCC_GetI2CClockSource(I2CxSource)) { case LL_RCC_I2C2_CLKSOURCE_SYSCLK: /* I2C2 Clock is System Clock */ i2c_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_I2C2_CLKSOURCE_HSI: /* I2C2 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { i2c_frequency = HSI_VALUE; } break; case LL_RCC_I2C2_CLKSOURCE_PCLK1: /* I2C2 Clock is PCLK1 */ default: i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } else { if (I2CxSource == LL_RCC_I2C3_CLKSOURCE) { /* I2C3 CLK clock frequency */ switch (LL_RCC_GetI2CClockSource(I2CxSource)) { case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */ i2c_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { i2c_frequency = HSI_VALUE; } break; case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */ default: i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } #if defined(RCC_CCIPR2_I2C4SEL) else { if (I2CxSource == LL_RCC_I2C4_CLKSOURCE) { /* I2C4 CLK clock frequency */ switch (LL_RCC_GetI2CClockSource(I2CxSource)) { case LL_RCC_I2C4_CLKSOURCE_SYSCLK: /* I2C4 Clock is System Clock */ i2c_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_I2C4_CLKSOURCE_HSI: /* I2C4 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { i2c_frequency = HSI_VALUE; } break; case LL_RCC_I2C4_CLKSOURCE_PCLK1: /* I2C4 Clock is PCLK1 */ default: i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } } #endif /*RCC_CCIPR2_I2C4SEL*/ } return i2c_frequency; } /** * @brief Return LPUARTx clock frequency * @param LPUARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_LPUART1_CLKSOURCE * @retval LPUART clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready */ uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource) { uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource)); /* LPUART1CLK clock frequency */ switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource)) { case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */ lpuart_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { lpuart_frequency = HSI_VALUE; } break; case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { lpuart_frequency = LSE_VALUE; } break; case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */ default: lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } return lpuart_frequency; } /** * @brief Return LPTIMx clock frequency * @param LPTIMxSource This parameter can be one of the following values: * @arg @ref LL_RCC_LPTIM1_CLKSOURCE * @retval LPTIM clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready */ uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource) { uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource)); if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE) { /* LPTIM1CLK clock frequency */ switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource)) { case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */ if (LL_RCC_LSI_IsReady() != 0U) { lptim_frequency = LSI_VALUE; } break; case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */ if (LL_RCC_HSI_IsReady() != 0U) { lptim_frequency = HSI_VALUE; } break; case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */ if (LL_RCC_LSE_IsReady() != 0U) { lptim_frequency = LSE_VALUE; } break; case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */ default: lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; } } return lptim_frequency; } /** * @brief Return SAIx clock frequency * @param SAIxSource This parameter can be one of the following values: * @arg @ref LL_RCC_SAI1_CLKSOURCE * * @retval SAI clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that PLL is not ready */ uint32_t LL_RCC_GetSAIClockFreq(uint32_t SAIxSource) { uint32_t sai_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_SAI_CLKSOURCE(SAIxSource)); if (SAIxSource == LL_RCC_SAI1_CLKSOURCE) { /* SAI1CLK clock frequency */ switch (LL_RCC_GetSAIClockSource(SAIxSource)) { case LL_RCC_SAI1_CLKSOURCE_SYSCLK: /* System clock used as SAI1 clock source */ sai_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { sai_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; case LL_RCC_SAI1_CLKSOURCE_PIN: /* SAI1 Clock is External clock */ sai_frequency = EXTERNAL_CLOCK_VALUE; break; case LL_RCC_SAI1_CLKSOURCE_HSI: /* HSI clock used as SAI1 clock source */ default: if (LL_RCC_HSI_IsReady() != 0U) { sai_frequency = HSI_VALUE; } break; } } return sai_frequency; } /** * @brief Return I2Sx clock frequency * @param I2SxSource This parameter can be one of the following values: * @arg @ref LL_RCC_I2S_CLKSOURCE * @retval I2S clock frequency (in Hz) * @arg @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready */ uint32_t LL_RCC_GetI2SClockFreq(uint32_t I2SxSource) { uint32_t i2s_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_I2S_CLKSOURCE(I2SxSource)); if (I2SxSource == LL_RCC_I2S_CLKSOURCE) { /* I2S CLK clock frequency */ switch (LL_RCC_GetI2SClockSource(I2SxSource)) { case LL_RCC_I2S_CLKSOURCE_SYSCLK: /* I2S Clock is System Clock */ i2s_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_I2S_CLKSOURCE_PLL: /* I2S Clock is PLL"Q" */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { i2s_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; case LL_RCC_I2S_CLKSOURCE_PIN: /* I2S Clock is External clock */ i2s_frequency = EXTERNAL_CLOCK_VALUE; break; case LL_RCC_I2S_CLKSOURCE_HSI: /* I2S Clock is HSI */ default: if (LL_RCC_HSI_IsReady() != 0U) { i2s_frequency = HSI_VALUE; } break; } } return i2s_frequency; } #if defined(FDCAN1) /** * @brief Return FDCAN kernel clock frequency * @param FDCANxSource This parameter can be one of the following values: * @arg @ref LL_RCC_FDCAN_CLKSOURCE * @retval FDCAN kernel clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator is not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetFDCANClockFreq(uint32_t FDCANxSource) { uint32_t fdcan_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_FDCAN_CLKSOURCE(FDCANxSource)); /* FDCAN kernel clock frequency */ switch (LL_RCC_GetFDCANClockSource(FDCANxSource)) { case LL_RCC_FDCAN_CLKSOURCE_HSE: /* HSE clock used as FDCAN kernel clock */ if (LL_RCC_HSE_IsReady() != 0U) { fdcan_frequency = HSE_VALUE; } break; case LL_RCC_FDCAN_CLKSOURCE_PLL: /* PLL clock used as FDCAN kernel clock */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { fdcan_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; case LL_RCC_FDCAN_CLKSOURCE_PCLK1: /* PCLK1 clock used as FDCAN kernel clock */ fdcan_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())); break; default: fdcan_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return fdcan_frequency; } #endif /* FDCAN1 */ /** * @brief Return RNGx clock frequency * @param RNGxSource This parameter can be one of the following values: * @arg @ref LL_RCC_RNG_CLKSOURCE * @retval RNG clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI48) or PLL is not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource) { uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource)); /* RNGCLK clock frequency */ switch (LL_RCC_GetRNGClockSource(RNGxSource)) { case LL_RCC_RNG_CLKSOURCE_PLL: /* PLL clock used as RNG clock source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { rng_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; case LL_RCC_RNG_CLKSOURCE_HSI48: /* HSI48 used as RNG clock source */ if (LL_RCC_HSI48_IsReady() != 0U) { rng_frequency = HSI48_VALUE; } break; default: rng_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return rng_frequency; } /** * @brief Return USBx clock frequency * @param USBxSource This parameter can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE * @retval USB clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI48) or PLL is not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource) { uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_USB_CLKSOURCE(USBxSource)); /* USBCLK clock frequency */ switch (LL_RCC_GetUSBClockSource(USBxSource)) { case LL_RCC_USB_CLKSOURCE_PLL: /* PLL clock used as USB clock source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { usb_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; case LL_RCC_USB_CLKSOURCE_HSI48: /* HSI48 used as USB clock source */ if (LL_RCC_HSI48_IsReady() != 0U) { usb_frequency = HSI48_VALUE; } break; default: usb_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return usb_frequency; } /** * @brief Return ADCx clock frequency * @param ADCxSource This parameter can be one of the following values: * @arg @ref LL_RCC_ADC12_CLKSOURCE * @arg @ref LL_RCC_ADC345_CLKSOURCE (*) * * (*) value not defined in all devices. * @retval ADC clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that PLL is not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource) { uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource)); if (ADCxSource == LL_RCC_ADC12_CLKSOURCE) { /* ADC12CLK clock frequency */ switch (LL_RCC_GetADCClockSource(ADCxSource)) { case LL_RCC_ADC12_CLKSOURCE_PLL: /* PLL clock used as ADC12 clock source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_ADC() != 0U) { adc_frequency = RCC_PLL_GetFreqDomain_ADC(); } } break; case LL_RCC_ADC12_CLKSOURCE_SYSCLK: /* System clock used as ADC12 clock source */ adc_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_ADC12_CLKSOURCE_NONE: /* No clock used as ADC12 clock source */ default: adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } } #if defined(ADC345_COMMON) else { /* ADC345CLK clock frequency */ switch (LL_RCC_GetADCClockSource(ADCxSource)) { case LL_RCC_ADC345_CLKSOURCE_PLL: /* PLL clock used as ADC345 clock source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_ADC() != 0U) { adc_frequency = RCC_PLL_GetFreqDomain_ADC(); } } break; case LL_RCC_ADC345_CLKSOURCE_SYSCLK: /* System clock used as ADC345 clock source */ adc_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_ADC345_CLKSOURCE_NONE: /* No clock used as ADC345 clock source */ default: adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } } #endif /* ADC345_COMMON */ return adc_frequency; } #if defined(QUADSPI) /** * @brief Return QUADSPI clock frequency * @param QUADSPIxSource This parameter can be one of the following values: * @arg @ref LL_RCC_QUADSPI_CLKSOURCE * @retval QUADSPI clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that no clock is configured */ uint32_t LL_RCC_GetQUADSPIClockFreq(uint32_t QUADSPIxSource) { uint32_t quadspi_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_QUADSPI_CLKSOURCE(QUADSPIxSource)); /* QUADSPI clock frequency */ switch (LL_RCC_GetQUADSPIClockSource(QUADSPIxSource)) { case LL_RCC_QUADSPI_CLKSOURCE_SYSCLK: /* SYSCLK used as QUADSPI source */ quadspi_frequency = RCC_GetSystemClockFreq(); break; case LL_RCC_QUADSPI_CLKSOURCE_HSI: /* HSI clock used as QUADSPI source */ if (LL_RCC_HSI_IsReady() != 0U) { quadspi_frequency = HSI_VALUE; } break; case LL_RCC_QUADSPI_CLKSOURCE_PLL: /* PLL clock used as QUADSPI source */ if (LL_RCC_PLL_IsReady() != 0U) { if (LL_RCC_PLL_IsEnabledDomain_48M() != 0U) { quadspi_frequency = RCC_PLL_GetFreqDomain_48M(); } } break; default: /* Nothing to do: quadspi frequency already initilalized to LL_RCC_PERIPH_FREQUENCY_NO */ break; } return quadspi_frequency; } #endif /* QUADSPI */ /** * @} */ /** * @} */ /** @addtogroup RCC_LL_Private_Functions * @{ */ /** * @brief Return SYSTEM clock frequency * @retval SYSTEM clock frequency (in Hz) */ static uint32_t RCC_GetSystemClockFreq(void) { uint32_t frequency; /* Get SYSCLK source -------------------------------------------------------*/ switch (LL_RCC_GetSysClkSource()) { case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ frequency = HSI_VALUE; break; case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ frequency = HSE_VALUE; break; case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */ frequency = RCC_PLL_GetFreqDomain_SYS(); break; default: frequency = HSI_VALUE; break; } return frequency; } /** * @brief Return HCLK clock frequency * @param SYSCLK_Frequency SYSCLK clock frequency * @retval HCLK clock frequency (in Hz) */ static uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency) { /* HCLK clock frequency */ return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler()); } /** * @brief Return PCLK1 clock frequency * @param HCLK_Frequency HCLK clock frequency * @retval PCLK1 clock frequency (in Hz) */ static uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency) { /* PCLK1 clock frequency */ return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler()); } /** * @brief Return PCLK2 clock frequency * @param HCLK_Frequency HCLK clock frequency * @retval PCLK2 clock frequency (in Hz) */ static uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency) { /* PCLK2 clock frequency */ return __LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler()); } /** * @brief Return PLL clock frequency used for system domain * @retval PLL clock frequency (in Hz) */ static uint32_t RCC_PLL_GetFreqDomain_SYS(void) { uint32_t pllinputfreq, pllsource; /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN SYSCLK = PLL_VCO / PLLR */ pllsource = LL_RCC_PLL_GetMainSource(); switch (pllsource) { case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ pllinputfreq = HSI_VALUE; break; case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ pllinputfreq = HSE_VALUE; break; default: pllinputfreq = HSI_VALUE; break; } return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR()); } /** * @brief Return PLL clock frequency used for ADC domain * @retval PLL clock frequency (in Hz) */ static uint32_t RCC_PLL_GetFreqDomain_ADC(void) { uint32_t pllinputfreq, pllsource; /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN ADC Domain clock = PLL_VCO / PLLP */ pllsource = LL_RCC_PLL_GetMainSource(); switch (pllsource) { case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ pllinputfreq = HSI_VALUE; break; case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ pllinputfreq = HSE_VALUE; break; default: pllinputfreq = HSI_VALUE; break; } return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP()); } /** * @brief Return PLL clock frequency used for 48 MHz domain * @retval PLL clock frequency (in Hz) */ static uint32_t RCC_PLL_GetFreqDomain_48M(void) { uint32_t pllinputfreq, pllsource; /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN 48M Domain clock = PLL_VCO / PLLQ */ pllsource = LL_RCC_PLL_GetMainSource(); switch (pllsource) { case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ pllinputfreq = HSI_VALUE; break; case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ pllinputfreq = HSE_VALUE; break; default: pllinputfreq = HSI_VALUE; break; } return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ()); } /** * @} */ /** * @} */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */
the_stack_data/86796.c
int main(void) { int x; while (x < 2) ++x; __CPROVER_assert(x >= 2, "A"); return 0; }
the_stack_data/67158.c
/** * mmap-wx-simple.c * * Simpler version of mmap-wx.c */ #ifndef _GNU_SOURCE # define _GNU_SOURCE /* for MAP_ANONYMOUS, ftruncate, mkstemp */ #endif #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <unistd.h> __attribute__ ((noreturn)) static void perror_exit(const char *s) { perror(s); exit(1); } int main(void) { const char template[] = "./mmap-wx-XXXXXX"; #if defined(__i386__) || defined(__x86_64__) const uint8_t code[] = { 0x31, 0xc0, 0xc3 }; #elif defined(__arm__) const uint32_t code[] = { 0xe3a00000, 0xe12fff1e }; #elif defined(__aarch64__) const uint32_t code[] = { 0xd2800000, 0xd65f03c0 }; #else # error Unsupported architecture #endif char filename[4096]; int fd, result; void *wptr, *xptr; memcpy(filename, template, sizeof(template)); fd = mkstemp(filename); if (fd == -1) perror_exit("mkstemp"); if (unlink(filename) < 0) perror_exit("unlink"); if (ftruncate(fd, sizeof(code)) < 0) perror_exit("ftruncate"); wptr = mmap(NULL, sizeof(code), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (wptr == MAP_FAILED) perror_exit("mmap(RW)"); xptr = mmap(NULL, sizeof(code), PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); if (xptr == MAP_FAILED) perror_exit("mmap(RX)"); printf("RW+RX mmap succeeded at %p and %p in %s\n", wptr, xptr, filename); memcpy(wptr, code, sizeof(code)); if (memcmp(code, xptr, sizeof(code))) { fprintf(stderr, "RW and RX mmaps don't share the same data\n"); return 1; } result = ((int (*)(void))(uintptr_t)xptr) (); if (result != 0) { fprintf(stderr, "Unexpected result: %d\n", result); return 1; } else { printf("Code successfully executed\n"); } if (munmap(xptr, sizeof(code)) < 0) perror_exit("munmap(RX)"); if (munmap(wptr, sizeof(code)) < 0) perror_exit("munmap(RW)"); if (close(fd) < 0) perror_exit("close"); return 0; }
the_stack_data/149027.c
#ifdef CX_COMPLIANCE_141 #undef CX_COMPLIANCE_141 #include "os.h" #include "cx.h" int cx_rng_rfc6979_X(unsigned char *rnd , unsigned int hashID, unsigned char *h1 , unsigned char *x ,unsigned int x_len, unsigned char *q , unsigned int q_len, unsigned char *V , unsigned int V_len) { unsigned int hsz = 0; switch(hashID) { case CX_SHA256: hsz = 32; break; case CX_SHA512: hsz = 64; break; default: THROW(INVALID_PARAMETER); return 0; } return cx_rng_rfc6979(rnd, q_len, hashID, h1, hsz, x, x_len,q,q_len,V,V_len); } int cx_hash_X(cx_hash_t *hash , int mode, unsigned char WIDE *in , unsigned int len, unsigned char *out) { unsigned int hsz = 0; switch (hash->algo) { case CX_RIPEMD160: hsz = 20; break; case CX_SHA224: hsz = 28; break; case CX_SHA256: hsz = 32; break; case CX_SHA384: hsz = 48; break; case CX_SHA512: hsz = 64; break; case CX_SHA3: case CX_KECCAK: case CX_SHA3_XOF: hsz = ((cx_sha3_t*)hash)->output_size; break; case CX_GROESTL: hsz = ((cx_groestl_t*)hash)->output_size; break; case CX_BLAKE2B: hsz = ((cx_blake2b_t*)hash)->output_size; break; default: THROW(INVALID_PARAMETER); return 0; } return cx_hash(hash, mode, in, len, out, hsz); } int cx_hash_sha256_X(unsigned char WIDE *in, unsigned int len, unsigned char *out){ return cx_hash_sha256(in, len, out, 32); } int cx_hash_sha512_X(unsigned char WIDE *in, unsigned int len, unsigned char *out){ return cx_hash_sha512(in, len, out, 64); } int cx_hmac_X(cx_hmac_t *hmac, int mode,unsigned char WIDE *in, unsigned int len, unsigned char *mac) { unsigned int hsz = 0; switch(((cx_hash_t*)hmac)->algo) { case CX_RIPEMD160: hsz = 20; break; case CX_SHA256: hsz = 32; break; case CX_SHA512: hsz = 64; break; default: THROW(INVALID_PARAMETER); return 0; } return cx_hmac(hmac, mode, in, len, mac, hsz); } int cx_hmac_sha256_X(unsigned char WIDE *key, unsigned int key_len, unsigned char WIDE *in, unsigned int len, unsigned char *out){ return cx_hmac_sha256(key, key_len, in, len, out, 32); } int cx_hmac_sha512_X(unsigned char WIDE *key, unsigned int key_len, unsigned char WIDE *in, unsigned int len, unsigned char *out){ return cx_hmac_sha512(key, key_len, in, len, out, 64); } int cx_des_iv_X(cx_des_key_t WIDE *key, int mode,unsigned char WIDE *iv ,unsigned char WIDE *in,unsigned int len,unsigned char *out) { return cx_des_iv(key, mode, iv, 8, in, len, out, UPPER_ALIGN(len+7, 8, unsigned int)); } int cx_des_X(cx_des_key_t WIDE *key , int mode, unsigned char WIDE *in ,unsigned int len, unsigned char *out){ return cx_des(key, mode, in, len, out, UPPER_ALIGN(len+7, 8, unsigned int)); } int cx_aes_iv_X(cx_aes_key_t WIDE *key, int mode,unsigned char WIDE *iv ,unsigned char WIDE *in,unsigned int len,unsigned char *out){ return cx_aes_iv(key, mode, iv, 16, in, len, out, UPPER_ALIGN(len+15, 16, unsigned int)); } int cx_aes_X(cx_aes_key_t WIDE *key , int mode, unsigned char WIDE *in ,unsigned int len, unsigned char *out) { return cx_aes(key, mode, in, len, out, UPPER_ALIGN(len+15, 16, unsigned int)); } int cx_rsa_init_public_key_X(unsigned char WIDE *exponent , unsigned char WIDE *modulus , unsigned int modulus_len, cx_rsa_public_key_t *key) { return cx_rsa_init_public_key(exponent, 4, modulus, modulus_len, key); } int cx_rsa_init_private_key_X(unsigned char WIDE *exponent, unsigned char WIDE *modulus, unsigned int modulus_len, cx_rsa_private_key_t *key){ return cx_rsa_init_private_key(exponent, modulus_len, modulus, modulus_len, key); } int cx_rsa_generate_pair_X(unsigned int modulus_len,cx_rsa_public_key_t *public_key, cx_rsa_private_key_t *private_key, unsigned long int pub_exponent, const unsigned char *externalPQ) { unsigned char exponent[4]; if (pub_exponent == 0) { pub_exponent = 0x00010001; } exponent[0] = pub_exponent>>24; exponent[1] = pub_exponent>>16; exponent[2] = pub_exponent>>8; exponent[3] = pub_exponent>>0; return cx_rsa_generate_pair(modulus_len, public_key, private_key, exponent, 4, externalPQ); } static unsigned int cx_ecfp_get_domain_length(cx_curve_t curve) { switch(curve) { case CX_CURVE_FRP256V1: return 32; case CX_CURVE_SECP256K1: return 32; case CX_CURVE_SECP256R1: return 32; case CX_CURVE_SECP384R1: return 48; case CX_CURVE_SECP521R1: return 66; case CX_CURVE_BrainPoolP256R1: return 32; case CX_CURVE_BrainPoolP256T1: return 32; case CX_CURVE_BrainPoolP320R1: return 40; case CX_CURVE_BrainPoolP320T1: return 40; case CX_CURVE_BrainPoolP384R1: return 48; case CX_CURVE_BrainPoolP384T1: return 48; case CX_CURVE_BrainPoolP512R1: return 64; case CX_CURVE_BrainPoolP512T1: return 64; case CX_CURVE_Ed25519: return 32; case CX_CURVE_Ed448: return 57; case CX_CURVE_Curve25519: return 32; case CX_CURVE_Curve448: return 56; default: break; } THROW(INVALID_PARAMETER); return 0; } int cx_ecfp_is_valid_point_X(cx_curve_t curve, unsigned char WIDE *point) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); return cx_ecfp_is_valid_point(curve, point, 1+2*domain_length); } int cx_ecfp_is_cryptographic_point_X(cx_curve_t curve, unsigned char WIDE *point) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); return cx_ecfp_is_cryptographic_point(curve, point, 1+2*domain_length); } int cx_ecfp_add_point_X(cx_curve_t curve, unsigned char *R ,unsigned char WIDE *P, unsigned char WIDE *Q) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); return cx_ecfp_add_point(curve, R, P, Q, 1+2*domain_length); } int cx_ecfp_scalar_mult_X(cx_curve_t curve, unsigned char *P, unsigned char WIDE *k, unsigned int k_len) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); return cx_ecfp_scalar_mult(curve, P, 1+2*domain_length, k, k_len); } int cx_ecschnorr_sign_X(cx_ecfp_private_key_t WIDE *pv_key, int mode, cx_md_t hashID, unsigned char *msg , unsigned int msg_len, unsigned char *sig , unsigned int *info) { const unsigned int domain_length = cx_ecfp_get_domain_length(pv_key->curve); return cx_ecschnorr_sign(pv_key, mode, hashID, msg, msg_len, sig, 6+2*(domain_length+1), info); } void cx_edward_decompress_point_X(cx_curve_t curve, unsigned char *P) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); return cx_edward_decompress_point(curve, P, 1+2*domain_length); } void cx_edward_compress_point_X(cx_curve_t curve, unsigned char *P) { const unsigned int domain_length = cx_ecfp_get_domain_length(curve); cx_edward_compress_point(curve, P, 1+2*domain_length); } void cx_eddsa_get_public_key_X(cx_ecfp_private_key_t WIDE *pv_key, cx_md_t hashID, cx_ecfp_public_key_t *pu_key, unsigned char* a, unsigned char* h) { const unsigned int domain_length = cx_ecfp_get_domain_length(pu_key->curve); return cx_eddsa_get_public_key(pv_key, hashID, pu_key, a, domain_length, h, domain_length); } int cx_eddsa_sign_X(cx_ecfp_private_key_t WIDE *pv_key, int mode, cx_md_t hashID, unsigned char WIDE *hash, unsigned int hash_len, unsigned char WIDE *ctx, unsigned int ctx_len, unsigned char *sig, unsigned int *info) { const unsigned int domain_length = cx_ecfp_get_domain_length(pv_key->curve); return cx_eddsa_sign(pv_key, mode, hashID, hash, hash_len, ctx, ctx_len, sig, 6+2*(domain_length+1), info); } int cx_ecdsa_sign_X(cx_ecfp_private_key_t WIDE *pv_key, int mode, cx_md_t hashID, unsigned char WIDE *hash, unsigned int hash_len, unsigned char *sig , unsigned int *info) { const unsigned int domain_length = cx_ecfp_get_domain_length(pv_key->curve); return cx_ecdsa_sign(pv_key, mode, hashID, hash, hash_len, sig, 6+2*(domain_length+1), info); } int cx_ecdh_X(cx_ecfp_private_key_t WIDE *key, int mode, unsigned char WIDE *P, unsigned char *secret) { unsigned int sz; const unsigned int domain_length = cx_ecfp_get_domain_length(key->curve); switch (mode & CX_MASK_EC) { case CX_ECDH_POINT: sz = 1+2*domain_length; break; case CX_ECDH_X: sz = domain_length; break; default : THROW(INVALID_PARAMETER); return 0; } return cx_ecdh(key, mode, P, 1+2*domain_length, secret, sz); } #endif
the_stack_data/126704173.c
#include <stdio.h> #include <string.h> #define LEN 30 void invric(char s[], int n); int main(void) { char str[LEN+1]; printf("Inserisci stringa: "); scanf("%s", str); invric(str, strlen(str)-1); return 0; } void invric(char s[], int n) { if(n==0) { printf("%c\n", s[0]); } else { printf("%c", s[n]); invric(s, n-1); } }
the_stack_data/41596.c
#include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <poll.h> #include <signal.h> #include <sys/wait.h> #include <sys/ipc.h> #include <sys/shm.h> #include <sys/sem.h> #include <sys/msg.h> #include <sys/select.h> #include <string.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netinet/ip.h> #include <netinet/tcp.h> #define MAX 1024 int main() { int rsfd = socket(AF_INET,SOCK_RAW,IPPROTO_TCP); if(rsfd<0) { perror("Socket Creation Failed\n"); } struct sockaddr_in addr; memset(&addr,0,sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr("127.0.0.1"); if(bind(rsfd,(struct sockaddr*)&addr,sizeof(addr))<0) { perror("Could not bind");exit(0); } int sz; char buff[1024]; struct sockaddr_in cli_addr; socklen_t clilen = sizeof(clilen); while(1) { if((sz = recvfrom(rsfd,buff,MAX,0,(struct sockaddr *) &cli_addr, &clilen))<0) { perror("Error in Message receipt\n"); break; } struct iphdr* ip; ip = (struct iphdr*)buff; struct tcphdr* tcp; tcp = (struct tcphdr*)(buff+(ip->ihl)*4); printf("***********TCP Header***********\n"); printf("Destination port: %d\n",ntohs(tcp->dest)); printf("Source Port: %d\n",ntohs(tcp->source)); printf("Sequence Number: %d\n",ntohs(tcp->seq)); printf("Acknowledgement No: %d\n",ntohs(tcp->ack_seq)); printf("FIN: %d\n",(int)tcp->fin); printf("ACK: %d\n",(int)tcp->ack); printf("URG: %d\n",(int)tcp->urg); printf("SYN: %d\n",(int)tcp->syn); printf("RESET: %d\n",(int)tcp->rst); printf("PUSH: %d\n",(int)tcp->psh); printf("Window Size: %d\n",(int)tcp->window); printf("The data: %s\n",buff+(ip->ihl)*4+(tcp->doff)*4); printf("***********TCP Header***********\n\n"); } }
the_stack_data/9512322.c
#include <stdio.h> #define ROWS 3 #define COLS 3 int finished(char arr[][COLS], char token) { int chk_1, chk_2; for (int i = 0; i < COLS; i++) { for (int j = 0; j < ROWS; j++) { if (arr[j][i] != token) { break; } else if (j == 2) { return 1; } } for (int k = 0; k < COLS; k++) { if (arr[i][k] != token) { break; } else if (k == 2) { return 1; } } } for (int m = 0; m < ROWS; m++) { if (arr[m][m] == token) { chk_1++; } else if (arr[m][2 - m] == token) { chk_2++; } else if (chk_1 == 3 || chk_2 == 3) { return 1; } } return 0; }
the_stack_data/111077551.c
// RUN: %clang_builtins %s %librt -o %t && %run %t //===-- fixunstfdi_test.c - Test __fixunstfdi -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file tests __fixunstfdi for the compiler_rt library. // //===----------------------------------------------------------------------===// #include <stdio.h> #if _ARCH_PPC || __aarch64__ #include "int_lib.h" // Returns: convert a to a unsigned long long, rounding toward zero. // Negative values all become zero. // Assumption: long double is a 128 bit floating point type // du_int is a 64 bit integral type // value in long double is representable in du_int or is negative // (no range checking performed) COMPILER_RT_ABI du_int __fixunstfdi(long double a); int test__fixunstfdi(long double a, du_int expected) { du_int x = __fixunstfdi(a); if (x != expected) printf("error in __fixunstfdi(%LA) = %llX, expected %llX\n", a, x, expected); return x != expected; } char assumption_1[sizeof(du_int) == 2*sizeof(su_int)] = {0}; char assumption_2[sizeof(du_int)*CHAR_BIT == 64] = {0}; char assumption_3[sizeof(long double)*CHAR_BIT == 128] = {0}; #endif int main() { #if _ARCH_PPC || __aarch64__ if (test__fixunstfdi(0.0, 0)) return 1; if (test__fixunstfdi(0.5, 0)) return 1; if (test__fixunstfdi(0.99, 0)) return 1; if (test__fixunstfdi(1.0, 1)) return 1; if (test__fixunstfdi(1.5, 1)) return 1; if (test__fixunstfdi(1.99, 1)) return 1; if (test__fixunstfdi(2.0, 2)) return 1; if (test__fixunstfdi(2.01, 2)) return 1; if (test__fixunstfdi(-0.5, 0)) return 1; if (test__fixunstfdi(-0.99, 0)) return 1; if (test__fixunstfdi(-1.0, 0)) return 1; if (test__fixunstfdi(-1.5, 0)) return 1; if (test__fixunstfdi(-1.99, 0)) return 1; if (test__fixunstfdi(-2.0, 0)) return 1; if (test__fixunstfdi(-2.01, 0)) return 1; if (test__fixunstfdi(0x1.FFFFFEp+62, 0x7FFFFF8000000000LL)) return 1; if (test__fixunstfdi(0x1.FFFFFCp+62, 0x7FFFFF0000000000LL)) return 1; if (test__fixunstfdi(-0x1.FFFFFEp+62, 0)) return 1; if (test__fixunstfdi(-0x1.FFFFFCp+62, 0)) return 1; if (test__fixunstfdi(0x1.FFFFFFFFFFFFFp+62, 0x7FFFFFFFFFFFFC00LL)) return 1; if (test__fixunstfdi(0x1.FFFFFFFFFFFFEp+62, 0x7FFFFFFFFFFFF800LL)) return 1; if (test__fixunstfdi(-0x1.FFFFFFFFFFFFFp+62, 0)) return 1; if (test__fixunstfdi(-0x1.FFFFFFFFFFFFEp+62, 0)) return 1; if (test__fixunstfdi(0x1.FFFFFFFFFFFFFFFEp+63L, 0xFFFFFFFFFFFFFFFFLL)) return 1; if (test__fixunstfdi(0x1.0000000000000002p+63L, 0x8000000000000001LL)) return 1; if (test__fixunstfdi(0x1.0000000000000000p+63L, 0x8000000000000000LL)) return 1; if (test__fixunstfdi(0x1.FFFFFFFFFFFFFFFCp+62L, 0x7FFFFFFFFFFFFFFFLL)) return 1; if (test__fixunstfdi(0x1.FFFFFFFFFFFFFFF8p+62L, 0x7FFFFFFFFFFFFFFELL)) return 1; if (test__fixunstfdi(0x1.p+64L, 0xFFFFFFFFFFFFFFFFLL)) return 1; if (test__fixunstfdi(-0x1.0000000000000000p+63L, 0)) return 1; if (test__fixunstfdi(-0x1.FFFFFFFFFFFFFFFCp+62L, 0)) return 1; if (test__fixunstfdi(-0x1.FFFFFFFFFFFFFFF8p+62L, 0)) return 1; #else printf("skipped\n"); #endif return 0; }
the_stack_data/20451034.c
/* GIMP RGBA C-Source image dump 1-byte-run-length-encoded (imag_text2.c) */ #define GIMP_TEXT2_RUN_LENGTH_DECODE(image_buf, rle_data, size, bpp) do \ { unsigned int __bpp; unsigned char *__ip; const unsigned char *__il, *__rd; \ __bpp = (bpp); __ip = (image_buf); __il = __ip + (size) * __bpp; \ __rd = (rle_data); if (__bpp > 3) { /* RGBA */ \ while (__ip < __il) { unsigned int __l = *(__rd++); \ if (__l & 128) { __l = __l - 128; \ do { memcpy (__ip, __rd, 4); __ip += 4; } while (--__l); __rd += 4; \ } else { __l *= 4; memcpy (__ip, __rd, __l); \ __ip += __l; __rd += __l; } } \ } else { /* RGB */ \ while (__ip < __il) { unsigned int __l = *(__rd++); \ if (__l & 128) { __l = __l - 128; \ do { memcpy (__ip, __rd, 3); __ip += 3; } while (--__l); __rd += 3; \ } else { __l *= 3; memcpy (__ip, __rd, __l); \ __ip += __l; __rd += __l; } } \ } } while (0) static const struct { unsigned int width; unsigned int height; unsigned int bytes_per_pixel; /* 2:RGB16, 3:RGB, 4:RGBA */ unsigned char rle_pixel_data[99603 + 1]; } gimp_text2 = { 1024, 1024, 4, "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\306\000\000\000\000" "\013\000\000\000\027\000\000\000l\000\000\000\246\000\000\000\326\000\000\000\354\000\000\000\372\000\000\000\352\000\000" "\000\324\000\000\000\245\000\000\000Y\000\000\000\015\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\232\000\000\000\000\013\000\000\000\061\000\000\000}\000\000\000\262\000\000\000\334\000\000\000\355\000\000" "\000\373\000\000\000\361\000\000\000\340\000\000\000\272\000\000\000\201\000\000\000-\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\325\000\000\000\000\003\000\000\000,\000\000\000\256\000\000\000\373\211\000\000\000\377\003" "\000\000\000\350\000\000\000a\000\000\000\001\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\226\000\000\000\000\002\000\000\000M\000\000\000\317\213\000\000\000\377\002\000\000\000\271\000\000\000\036\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\321\000\000\000\000\003\000\000\000\012\000\000\000\226\000\000\000\375" "\215\000\000\000\377\002\000\000\000\230\000\000\000\001\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\223\000\000\000\000\002\000\000\000\014\000\000\000\256\216\000\000\000\377\002\000\000\000\356\000\000\000" "\065\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\317\000\000\000\000\002\000\000\000%\000\000\000\325\220" "\000\000\000\377\001\000\000\000\211\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\222" "\000\000\000\000\002\000\000\000\024\000\000\000\315\220\000\000\000\377\002\000\000\000\344\000\000\000\024\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000\002\000\000\000+\000\000\000\347\221\000\000\000\377" "\002\000\000\000\374\000\000\000/\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\220\000" "\000\000\000\002\000\000\000\003\000\000\000\275\222\000\000\000\377\001\000\000\000\210\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\314\000\000\000\000\002\000\000\000\023\000\000\000\341\223\000\000\000\377\001\000\000\000\271" "\377\000\000\000\000\377\000\000\000\000\255\000\000\000\000\013\000\000\000\030\000\000\000\\\000\000\000\226\000\000\000" "\312\000\000\000\337\000\000\000\361\000\000\000\372\000\000\000\347\000\000\000\267\000\000\000h\000\000\000\014\377" "\000\000\000\000\327\000\000\000\000\001\000\000\000|\223\000\000\000\377\002\000\000\000\360\000\000\000\004\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\260\224\000\000\000\377\002\000\000\000" "\375\000\000\000\032\377\000\000\000\000\346\000\000\000\000\013\000\000\000\006\000\000\000N\000\000\000\225\000\000\000\307" "\000\000\000\351\000\000\000\371\000\000\000\365\000\000\000\344\000\000\000\277\000\000\000\206\000\000\000/\270\000" "\000\000\000\003\000\000\000?\000\000\000\254\000\000\000\373\211\000\000\000\377\002\000\000\000\350\000\000\000Y\377" "\000\000\000\000\325\000\000\000\000\002\000\000\000\030\000\000\000\364\224\000\000\000\377\001\000\000\000\067\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\312\000\000\000\000\001\000\000\000@\226\000\000\000\377\001\000\000\000" "q\377\000\000\000\000\344\000\000\000\000\003\000\000\000\022\000\000\000\206\000\000\000\354\212\000\000\000\377\002" "\000\000\000\275\000\000\000&\264\000\000\000\000\002\000\000\000\031\000\000\000\252\216\000\000\000\377\001\000\000\000" "\210\377\000\000\000\000\324\000\000\000\000\001\000\000\000\216\225\000\000\000\377\001\000\000\000i\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\312\000\000\000\000\001\000\000\000\270\226\000\000\000\377\001\000\000\000" "\253\377\000\000\000\000\342\000\000\000\000\003\000\000\000\001\000\000\000f\000\000\000\360\215\000\000\000\377\002\000" "\000\000\367\000\000\000N\262\000\000\000\000\002\000\000\000A\000\000\000\357\220\000\000\000\377\001\000\000\000\200" "\377\000\000\000\000\322\000\000\000\000\002\000\000\000\004\000\000\000\352\225\000\000\000\377\001\000\000\000}\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\311\000\000\000\000\002\000\000\000\020\000\000\000\374\226\000\000\000" "\377\001\000\000\000\331\377\000\000\000\000\341\000\000\000\000\002\000\000\000\020\000\000\000\263\220\000\000\000\377" "\002\000\000\000\372\000\000\000B\260\000\000\000\000\002\000\000\000X\000\000\000\371\221\000\000\000\377\002\000\000\000" "\376\000\000\000I\377\000\000\000\000\321\000\000\000\000\001\000\000\000K\226\000\000\000\377\001\000\000\000\213\377" "\000\000\000\000\377\000\000\000\000\317\000\000\000\000\013\000\000\000)\000\000\000w\000\000\000\262\000\000\000\333\000\000" "\000\364\000\000\000\373\000\000\000\351\000\000\000\324\000\000\000\241\000\000\000\\\000\000\000\020\356\000\000\000" "\000\001\000\000\000L\227\000\000\000\377\002\000\000\000\375\000\000\000\006\377\000\000\000\000\337\000\000\000\000\002\000" "\000\000\037\000\000\000\330\222\000\000\000\377\002\000\000\000\344\000\000\000\020\256\000\000\000\000\002\000\000\000" "H\000\000\000\375\223\000\000\000\377\002\000\000\000\343\000\000\000\014\377\000\000\000\000\320\000\000\000\000\001" "\000\000\000\231\226\000\000\000\377\001\000\000\000\177\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000" "\002\000\000\000R\000\000\000\310\212\000\000\000\377\003\000\000\000\361\000\000\000\203\000\000\000\017\354\000\000" "\000\000\001\000\000\000~\230\000\000\000\377\001\000\000\000\025\377\000\000\000\000\336\000\000\000\000\002\000\000\000\037" "\000\000\000\344\224\000\000\000\377\001\000\000\000\207\255\000\000\000\000\002\000\000\000'\000\000\000\360\225\000" "\000\000\377\001\000\000\000v\377\000\000\000\000\320\000\000\000\000\001\000\000\000\340\226\000\000\000\377\001\000\000" "\000a\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\002\000\000\000+\000\000\000\305\216\000\000\000\377" "\002\000\000\000\336\000\000\000\063\353\000\000\000\000\001\000\000\000\244\230\000\000\000\377\001\000\000\000\"\377" "\000\000\000\000\335\000\000\000\000\002\000\000\000\021\000\000\000\327\225\000\000\000\377\002\000\000\000\360\000\000\000" "\015\253\000\000\000\000\002\000\000\000\004\000\000\000\320\226\000\000\000\377\002\000\000\000\346\000\000\000\003\377" "\000\000\000\000\316\000\000\000\000\001\000\000\000&\227\000\000\000\377\001\000\000\000=\377\000\000\000\000\377\000\000" "\000\000\312\000\000\000\000\002\000\000\000k\000\000\000\370\220\000\000\000\377\002\000\000\000\370\000\000\000I\352" "\000\000\000\000\001\000\000\000\302\230\000\000\000\377\001\000\000\000/\377\000\000\000\000\335\000\000\000\000\001\000\000" "\000\257\227\000\000\000\377\001\000\000\000W\253\000\000\000\000\001\000\000\000s\230\000\000\000\377\001\000\000\000" "B\377\000\000\000\000\316\000\000\000\000\001\000\000\000i\227\000\000\000\377\001\000\000\000\025\377\000\000\000\000\377" "\000\000\000\000\310\000\000\000\000\002\000\000\000\002\000\000\000\227\223\000\000\000\377\002\000\000\000\365\000\000\000" "\070\351\000\000\000\000\001\000\000\000\332\230\000\000\000\377\001\000\000\000.\377\000\000\000\000\334\000\000\000" "\000\001\000\000\000g\230\000\000\000\377\001\000\000\000\245\252\000\000\000\000\002\000\000\000\032\000\000\000\363\230" "\000\000\000\377\001\000\000\000\224\377\000\000\000\000\316\000\000\000\000\001\000\000\000\253\226\000\000\000\377" "\001\000\000\000\351\377\000\000\000\000\377\000\000\000\000\310\000\000\000\000\002\000\000\000\001\000\000\000\241\225" "\000\000\000\377\002\000\000\000\336\000\000\000\010\350\000\000\000\000\001\000\000\000\354\230\000\000\000\377\001\000" "\000\000(\377\000\000\000\000\333\000\000\000\000\002\000\000\000\032\000\000\000\362\230\000\000\000\377\001\000\000\000" "\344\252\000\000\000\000\001\000\000\000\214\231\000\000\000\377\001\000\000\000\323\377\000\000\000\000\315\000" "\000\000\000\002\000\000\000\001\000\000\000\353\226\000\000\000\377\001\000\000\000\274\377\000\000\000\000\377\000\000" "\000\000\310\000\000\000\000\001\000\000\000\204\227\000\000\000\377\001\000\000\000}\350\000\000\000\000\001\000\000\000\371" "\230\000\000\000\377\001\000\000\000\040\377\000\000\000\000\333\000\000\000\000\001\000\000\000\252\232\000\000\000\377" "\001\000\000\000\025\250\000\000\000\000\002\000\000\000\017\000\000\000\362\231\000\000\000\377\002\000\000\000\376\000" "\000\000\022\377\000\000\000\000\314\000\000\000\000\001\000\000\000,\227\000\000\000\377\001\000\000\000\215\377\000" "\000\000\000\377\000\000\000\000\307\000\000\000\000\002\000\000\000C\000\000\000\376\227\000\000\000\377\002\000\000\000\342" "\000\000\000\001\346\000\000\000\000\001\000\000\000\002\231\000\000\000\377\001\000\000\000\020\377\000\000\000\000\332\000" "\000\000\000\001\000\000\000A\233\000\000\000\377\001\000\000\000A\250\000\000\000\000\001\000\000\000u\233\000\000\000\377" "\001\000\000\000A\377\000\000\000\000\314\000\000\000\000\001\000\000\000k\227\000\000\000\377\001\000\000\000]\377\000\000" "\000\000\377\000\000\000\000\306\000\000\000\000\002\000\000\000\005\000\000\000\332\231\000\000\000\377\001\000\000\000\065" "\346\000\000\000\000\001\000\000\000\006\230\000\000\000\377\002\000\000\000\374\000\000\000\001\377\000\000\000\000\332" "\000\000\000\000\001\000\000\000\312\233\000\000\000\377\001\000\000\000f\247\000\000\000\000\002\000\000\000\001\000\000\000\335" "\233\000\000\000\377\001\000\000\000m\377\000\000\000\000\314\000\000\000\000\001\000\000\000\251\227\000\000\000\377" "\001\000\000\000+\377\000\000\000\000\377\000\000\000\000\306\000\000\000\000\001\000\000\000a\232\000\000\000\377\001\000" "\000\000a\346\000\000\000\000\001\000\000\000\010\230\000\000\000\377\001\000\000\000\353\377\000\000\000\000\332\000" "\000\000\000\001\000\000\000T\234\000\000\000\377\001\000\000\000\210\247\000\000\000\000\001\000\000\000E\234\000\000\000" "\377\001\000\000\000\227\377\000\000\000\000\314\000\000\000\000\001\000\000\000\346\226\000\000\000\377\002\000\000" "\000\365\000\000\000\003\377\000\000\000\000\377\000\000\000\000\306\000\000\000\000\001\000\000\000\307\232\000\000\000" "\377\001\000\000\000{\246\000\000\000\000\013\000\000\000\002\000\000\000B\000\000\000\212\000\000\000\310\000\000\000\342" "\000\000\000\367\000\000\000\357\000\000\000\327\000\000\000\256\000\000\000]\000\000\000\016\265\000\000\000\000\001\000" "\000\000\022\230\000\000\000\377\001\000\000\000\320\377\000\000\000\000\331\000\000\000\000\002\000\000\000\001\000\000\000" "\325\234\000\000\000\377\001\000\000\000\247\247\000\000\000\000\001\000\000\000\253\234\000\000\000\377\001\000" "\000\000\266\377\000\000\000\000\313\000\000\000\000\001\000\000\000#\227\000\000\000\377\001\000\000\000\304\377\000" "\000\000\000\377\000\000\000\000\306\000\000\000\000\002\000\000\000\026\000\000\000\376\232\000\000\000\377\001\000\000\000" "\200\245\000\000\000\000\002\000\000\000U\000\000\000\324\211\000\000\000\377\002\000\000\000\353\000\000\000\\\264" "\000\000\000\000\001\000\000\000\034\230\000\000\000\377\001\000\000\000\265\377\000\000\000\000\331\000\000\000\000\001\000" "\000\000T\235\000\000\000\377\001\000\000\000\303\246\000\000\000\000\002\000\000\000\027\000\000\000\372\234\000\000" "\000\377\001\000\000\000\324\377\000\000\000\000\313\000\000\000\000\001\000\000\000_\227\000\000\000\377\001\000\000\000" "\221\377\000\000\000\000\377\000\000\000\000\306\000\000\000\000\001\000\000\000L\233\000\000\000\377\001\000\000\000n" "\243\000\000\000\000\002\000\000\000\017\000\000\000\256\215\000\000\000\377\001\000\000\000\220\263\000\000\000\000\001" "\000\000\000&\230\000\000\000\377\001\000\000\000\232\377\000\000\000\000\331\000\000\000\000\001\000\000\000\317\235" "\000\000\000\377\001\000\000\000\335\246\000\000\000\000\001\000\000\000x\235\000\000\000\377\001\000\000\000\360\377" "\000\000\000\000\313\000\000\000\000\001\000\000\000\232\227\000\000\000\377\001\000\000\000\\\377\000\000\000\000\377" "\000\000\000\000\306\000\000\000\000\001\000\000\000p\233\000\000\000\377\001\000\000\000F\242\000\000\000\000\002\000\000\000" "\034\000\000\000\332\217\000\000\000\377\001\000\000\000v\262\000\000\000\000\001\000\000\000\060\230\000\000\000\377" "\001\000\000\000y\377\000\000\000\000\330\000\000\000\000\001\000\000\000H\236\000\000\000\377\001\000\000\000\364\245" "\000\000\000\000\002\000\000\000\001\000\000\000\335\236\000\000\000\377\001\000\000\000\005\377\000\000\000\000\312\000\000" "\000\000\001\000\000\000\325\227\000\000\000\377\001\000\000\000&\377\000\000\000\000\377\000\000\000\000\306\000\000\000" "\000\001\000\000\000\177\232\000\000\000\377\002\000\000\000\372\000\000\000\015\241\000\000\000\000\002\000\000\000\024" "\000\000\000\326\220\000\000\000\377\002\000\000\000\370\000\000\000\037\261\000\000\000\000\001\000\000\000<\230\000" "\000\000\377\001\000\000\000V\377\000\000\000\000\330\000\000\000\000\001\000\000\000\272\237\000\000\000\377\001\000\000" "\000\012\244\000\000\000\000\001\000\000\000E\237\000\000\000\377\001\000\000\000\030\377\000\000\000\000\311\000\000\000" "\000\002\000\000\000\021\000\000\000\376\226\000\000\000\377\002\000\000\000\356\000\000\000\001\377\000\000\000\000\377" "\000\000\000\000\306\000\000\000\000\001\000\000\000u\232\000\000\000\377\001\000\000\000\265\242\000\000\000\000\001\000\000" "\000\272\222\000\000\000\377\001\000\000\000\244\261\000\000\000\000\001\000\000\000U\230\000\000\000\377\001\000\000" "\000\063\377\000\000\000\000\327\000\000\000\000\001\000\000\000+\240\000\000\000\377\001\000\000\000\037\244\000\000\000" "\000\001\000\000\000\253\237\000\000\000\377\001\000\000\000+\377\000\000\000\000\311\000\000\000\000\001\000\000\000J\227" "\000\000\000\377\001\000\000\000\270\377\000\000\000\000\377\000\000\000\000\307\000\000\000\000\001\000\000\000\\\232" "\000\000\000\377\001\000\000\000I\241\000\000\000\000\001\000\000\000a\223\000\000\000\377\002\000\000\000\371\000\000\000" "\016\260\000\000\000\000\001\000\000\000q\230\000\000\000\377\001\000\000\000\017\377\000\000\000\000\327\000\000\000\000" "\001\000\000\000\233\240\000\000\000\377\001\000\000\000\062\243\000\000\000\000\002\000\000\000\027\000\000\000\372\237" "\000\000\000\377\001\000\000\000:\377\000\000\000\000\311\000\000\000\000\001\000\000\000\204\227\000\000\000\377\001\000" "\000\000\202\377\000\000\000\000\377\000\000\000\000\307\000\000\000\000\001\000\000\000+\231\000\000\000\377\001\000\000" "\000\301\241\000\000\000\000\002\000\000\000\004\000\000\000\344\224\000\000\000\377\001\000\000\000Z\260\000\000\000\000" "\001\000\000\000\215\227\000\000\000\377\001\000\000\000\345\377\000\000\000\000\327\000\000\000\000\002\000\000\000\021" "\000\000\000\366\240\000\000\000\377\001\000\000\000E\243\000\000\000\000\001\000\000\000x\240\000\000\000\377\001\000" "\000\000E\377\000\000\000\000\311\000\000\000\000\001\000\000\000\275\227\000\000\000\377\001\000\000\000K\377\000\000" "\000\000\377\000\000\000\000\310\000\000\000\000\001\000\000\000\334\227\000\000\000\377\002\000\000\000\366\000\000\000" "'\241\000\000\000\000\001\000\000\000Q\225\000\000\000\377\001\000\000\000\242\260\000\000\000\000\001\000\000\000\250" "\227\000\000\000\377\001\000\000\000\273\377\000\000\000\000\327\000\000\000\000\001\000\000\000q\241\000\000\000\377" "\001\000\000\000V\242\000\000\000\000\002\000\000\000\001\000\000\000\335\240\000\000\000\377\001\000\000\000O\377\000\000" "\000\000\310\000\000\000\000\002\000\000\000\003\000\000\000\363\227\000\000\000\377\001\000\000\000\023\377\000\000\000\000" "\377\000\000\000\000\310\000\000\000\000\001\000\000\000s\227\000\000\000\377\001\000\000\000]\242\000\000\000\000\001\000" "\000\000\243\225\000\000\000\377\001\000\000\000\316\260\000\000\000\000\001\000\000\000\303\227\000\000\000\377" "\001\000\000\000\221\377\000\000\000\000\326\000\000\000\000\002\000\000\000\001\000\000\000\331\241\000\000\000\377\001" "\000\000\000f\242\000\000\000\000\001\000\000\000E\241\000\000\000\377\001\000\000\000Y\377\000\000\000\000\310\000\000\000" "\000\001\000\000\000/\227\000\000\000\377\001\000\000\000\333\377\000\000\000\000\377\000\000\000\000\311\000\000\000\000" "\002\000\000\000\006\000\000\000\334\225\000\000\000\377\001\000\000\000y\243\000\000\000\000\001\000\000\000\330\225\000" "\000\000\377\002\000\000\000\365\000\000\000\002\257\000\000\000\000\001\000\000\000\352\227\000\000\000\377\001\000\000" "\000e\377\000\000\000\000\326\000\000\000\000\001\000\000\000C\242\000\000\000\377\001\000\000\000u\242\000\000\000\000\001" "\000\000\000\253\241\000\000\000\377\001\000\000\000_\377\000\000\000\000\310\000\000\000\000\001\000\000\000g\227\000" "\000\000\377\001\000\000\000\243\377\000\000\000\000\377\000\000\000\000\312\000\000\000\000\002\000\000\000\065\000\000\000" "\365\222\000\000\000\377\002\000\000\000\375\000\000\000q\243\000\000\000\000\002\000\000\000\011\000\000\000\376\226" "\000\000\000\377\001\000\000\000\032\256\000\000\000\000\001\000\000\000\026\230\000\000\000\377\001\000\000\000\066\377" "\000\000\000\000\326\000\000\000\000\001\000\000\000\251\242\000\000\000\377\001\000\000\000\203\241\000\000\000\000\002" "\000\000\000\027\000\000\000\372\241\000\000\000\377\001\000\000\000b\377\000\000\000\000\310\000\000\000\000\001\000\000" "\000\240\227\000\000\000\377\001\000\000\000j\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\002\000\000\000" "O\000\000\000\371\220\000\000\000\377\002\000\000\000\355\000\000\000L\244\000\000\000\000\001\000\000\000'\227\000\000" "\000\377\001\000\000\000(\256\000\000\000\000\001\000\000\000A\227\000\000\000\377\002\000\000\000\374\000\000\000\011\377" "\000\000\000\000\325\000\000\000\000\002\000\000\000\022\000\000\000\370\242\000\000\000\377\001\000\000\000\220\241\000" "\000\000\000\001\000\000\000x\242\000\000\000\377\001\000\000\000f\377\000\000\000\000\310\000\000\000\000\001\000\000\000\330" "\227\000\000\000\377\001\000\000\000\062\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\002\000\000\000\070" "\000\000\000\344\216\000\000\000\377\002\000\000\000\256\000\000\000\033\245\000\000\000\000\001\000\000\000E\227\000" "\000\000\377\001\000\000\000\064\256\000\000\000\000\001\000\000\000m\227\000\000\000\377\001\000\000\000\326\377\000" "\000\000\000\326\000\000\000\000\001\000\000\000l\243\000\000\000\377\001\000\000\000\235\240\000\000\000\000\002\000\000\000" "\001\000\000\000\335\242\000\000\000\377\001\000\000\000i\377\000\000\000\000\307\000\000\000\000\002\000\000\000\020\000" "\000\000\376\226\000\000\000\377\002\000\000\000\365\000\000\000\004\377\000\000\000\000\377\000\000\000\000\315\000" "\000\000\000\003\000\000\000\022\000\000\000\210\000\000\000\364\211\000\000\000\377\003\000\000\000\374\000\000\000\263" "\000\000\000<\247\000\000\000\000\001\000\000\000c\227\000\000\000\377\001\000\000\000?\256\000\000\000\000\001\000\000\000\231" "\227\000\000\000\377\001\000\000\000\245\377\000\000\000\000\326\000\000\000\000\001\000\000\000\315\243\000\000\000" "\377\001\000\000\000\251\240\000\000\000\000\001\000\000\000E\243\000\000\000\377\001\000\000\000k\377\000\000\000\000" "\307\000\000\000\000\001\000\000\000F\227\000\000\000\377\001\000\000\000\300\377\000\000\000\000\377\000\000\000\000\320" "\000\000\000\000\013\000\000\000\021\000\000\000Z\000\000\000\237\000\000\000\311\000\000\000\336\000\000\000\354\000\000\000" "\342\000\000\000\311\000\000\000\237\000\000\000c\000\000\000\027\251\000\000\000\000\001\000\000\000\201\227\000\000" "\000\377\001\000\000\000:\256\000\000\000\000\001\000\000\000\306\227\000\000\000\377\001\000\000\000p\377\000\000\000" "\000\325\000\000\000\000\001\000\000\000.\244\000\000\000\377\001\000\000\000\265\240\000\000\000\000\001\000\000\000\253" "\243\000\000\000\377\001\000\000\000h\377\000\000\000\000\307\000\000\000\000\001\000\000\000}\227\000\000\000\377\001" "\000\000\000\206\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205\000\000\000\000\001\000\000\000\240\227" "\000\000\000\377\001\000\000\000&\255\000\000\000\000\002\000\000\000\006\000\000\000\367\227\000\000\000\377\001\000\000\000" ";\377\000\000\000\000\325\000\000\000\000\001\000\000\000\216\244\000\000\000\377\001\000\000\000\300\237\000\000\000" "\000\002\000\000\000\027\000\000\000\372\243\000\000\000\377\001\000\000\000f\377\000\000\000\000\307\000\000\000\000\001" "\000\000\000\264\227\000\000\000\377\001\000\000\000L\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205" "\000\000\000\000\001\000\000\000\276\227\000\000\000\377\001\000\000\000\014\255\000\000\000\000\001\000\000\000\067\227" "\000\000\000\377\002\000\000\000\373\000\000\000\012\377\000\000\000\000\324\000\000\000\000\002\000\000\000\003\000\000\000\350" "\244\000\000\000\377\001\000\000\000\312\237\000\000\000\000\001\000\000\000x\244\000\000\000\377\001\000\000\000d\377" "\000\000\000\000\307\000\000\000\000\001\000\000\000\353\227\000\000\000\377\001\000\000\000\024\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\205\000\000\000\000\001\000\000\000\334\226\000\000\000\377\001\000\000\000\355\256" "\000\000\000\000\001\000\000\000q\227\000\000\000\377\001\000\000\000\320\377\000\000\000\000\325\000\000\000\000\001\000\000" "\000J\245\000\000\000\377\001\000\000\000\324\236\000\000\000\000\002\000\000\000\001\000\000\000\334\244\000\000\000\377" "\001\000\000\000a\377\000\000\000\000\306\000\000\000\000\001\000\000\000\"\227\000\000\000\377\001\000\000\000\330\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205\000\000\000\000\002\000\000\000\001\000\000\000\370\226\000\000" "\000\377\001\000\000\000\314\256\000\000\000\000\001\000\000\000\252\227\000\000\000\377\001\000\000\000\230\377" "\000\000\000\000\325\000\000\000\000\001\000\000\000\250\245\000\000\000\377\001\000\000\000\335\236\000\000\000\000\001" "\000\000\000C\245\000\000\000\377\001\000\000\000_\377\000\000\000\000\306\000\000\000\000\001\000\000\000Y\227\000\000\000" "\377\001\000\000\000\236\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205\000\000\000\000\001\000\000\000" "\031\227\000\000\000\377\001\000\000\000\251\256\000\000\000\000\001\000\000\000\343\227\000\000\000\377\001\000\000" "\000_\377\000\000\000\000\324\000\000\000\000\002\000\000\000\016\000\000\000\367\245\000\000\000\377\001\000\000\000\346" "\236\000\000\000\000\001\000\000\000\250\245\000\000\000\377\001\000\000\000]\377\000\000\000\000\306\000\000\000\000\001" "\000\000\000\217\227\000\000\000\377\001\000\000\000d\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205" "\000\000\000\000\001\000\000\000\067\227\000\000\000\377\001\000\000\000\204\255\000\000\000\000\001\000\000\000\035\230" "\000\000\000\377\001\000\000\000%\377\000\000\000\000\324\000\000\000\000\001\000\000\000d\246\000\000\000\377\001\000\000" "\000\356\235\000\000\000\000\002\000\000\000\024\000\000\000\371\245\000\000\000\377\001\000\000\000Z\377\000\000\000" "\000\306\000\000\000\000\001\000\000\000\305\227\000\000\000\377\001\000\000\000)\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\205\000\000\000\000\001\000\000\000U\227\000\000\000\377\001\000\000\000^\255\000\000\000\000\001\000" "\000\000]\227\000\000\000\377\001\000\000\000\353\377\000\000\000\000\325\000\000\000\000\001\000\000\000\302\246\000" "\000\000\377\001\000\000\000\367\235\000\000\000\000\001\000\000\000r\246\000\000\000\377\001\000\000\000X\377\000\000" "\000\000\305\000\000\000\000\002\000\000\000\004\000\000\000\366\226\000\000\000\377\002\000\000\000\355\000\000\000\001\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205\000\000\000\000\001\000\000\000s\227\000\000\000\377\001\000\000" "\000\070\255\000\000\000\000\001\000\000\000\235\227\000\000\000\377\001\000\000\000\263\377\000\000\000\000\324\000" "\000\000\000\002\000\000\000!\000\000\000\376\246\000\000\000\377\001\000\000\000\376\235\000\000\000\000\001\000\000\000\327" "\246\000\000\000\377\001\000\000\000V\377\000\000\000\000\305\000\000\000\000\001\000\000\000\060\227\000\000\000\377" "\001\000\000\000\263\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\206\000\000\000\000\001\000\000\000\221" "\227\000\000\000\377\001\000\000\000\020\255\000\000\000\000\001\000\000\000\327\227\000\000\000\377\001\000\000\000|" "\377\000\000\000\000\324\000\000\000\000\001\000\000\000~\250\000\000\000\377\001\000\000\000\005\233\000\000\000\000\001\000" "\000\000>\247\000\000\000\377\001\000\000\000S\377\000\000\000\000\305\000\000\000\000\001\000\000\000f\227\000\000\000\377" "\001\000\000\000x\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\206\000\000\000\000\001\000\000\000\260\226" "\000\000\000\377\001\000\000\000\350\255\000\000\000\000\002\000\000\000\006\000\000\000\374\227\000\000\000\377\001\000" "\000\000D\377\000\000\000\000\324\000\000\000\000\001\000\000\000\333\250\000\000\000\377\001\000\000\000\014\233\000" "\000\000\000\001\000\000\000\245\247\000\000\000\377\001\000\000\000Q\377\000\000\000\000\305\000\000\000\000\001\000\000\000" "\234\227\000\000\000\377\001\000\000\000=\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\206\000\000\000" "\000\001\000\000\000\316\226\000\000\000\377\001\000\000\000\277\255\000\000\000\000\001\000\000\000+\227\000\000\000\377" "\002\000\000\000\376\000\000\000\017\377\000\000\000\000\323\000\000\000\000\001\000\000\000:\251\000\000\000\377\001\000" "\000\000\023\232\000\000\000\000\002\000\000\000\022\000\000\000\370\247\000\000\000\377\001\000\000\000O\377\000\000\000" "\000\245\000\000\000\000\025\000\000\000\014\000\000\000\067\000\000\000_\000\000\000\177\000\000\000\237\000\000\000\272" "\000\000\000\314\000\000\000\337\000\000\000\355\000\000\000\364\000\000\000\372\000\000\000\375\000\000\000\367\000" "\000\000\360\000\000\000\347\000\000\000\322\000\000\000\274\000\000\000\243\000\000\000|\000\000\000T\000\000\000%\213" "\000\000\000\000\001\000\000\000\321\226\000\000\000\377\002\000\000\000\371\000\000\000\010\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\206\000\000\000\000\001\000\000\000\354\226\000\000\000\377\001\000\000\000\226\203" "\000\000\000\000\010\000\000\000\001\000\000\000\020\000\000\000!\000\000\000,\000\000\000(\000\000\000$\000\000\000\034\000\000\000\007" "\242\000\000\000\000\001\000\000\000U\227\000\000\000\377\001\000\000\000\327\377\000\000\000\000\324\000\000\000\000\001" "\000\000\000\230\251\000\000\000\377\001\000\000\000\031\232\000\000\000\000\001\000\000\000q\250\000\000\000\377\001" "\000\000\000M\377\000\000\000\000\241\000\000\000\000\005\000\000\000,\000\000\000i\000\000\000\246\000\000\000\334\000\000\000" "\376\224\000\000\000\377\004\000\000\000\352\000\000\000\256\000\000\000b\000\000\000\022\206\000\000\000\000\002\000" "\000\000\012\000\000\000\374\226\000\000\000\377\001\000\000\000\306\377\000\000\000\000\377\000\000\000\000\362\000" "\000\000\000\021\000\000\000\005\000\000\000G\000\000\000\211\000\000\000\305\000\000\000\336\000\000\000\362\000\000\000\367" "\000\000\000\340\000\000\000\311\000\000\000\262\000\000\000\233\000\000\000\204\000\000\000m\000\000\000V\000\000\000?\000" "\000\000(\000\000\000\021\202\000\000\000\000\001\000\000\000\012\227\000\000\000\377\005\000\000\000\273\000\000\000\227" "\000\000\000\265\000\000\000\330\000\000\000\372\207\000\000\000\377\007\000\000\000\361\000\000\000\333\000\000\000" "\274\000\000\000\231\000\000\000v\000\000\000S\000\000\000\036\233\000\000\000\000\001\000\000\000~\227\000\000\000\377" "\001\000\000\000\245\223\000\000\000\000\023\000\000\000\003\000\000\000\060\000\000\000Y\000\000\000~\000\000\000\243\000\000" "\000\306\000\000\000\327\000\000\000\344\000\000\000\360\000\000\000\374\000\000\000\372\000\000\000\362\000\000\000" "\352\000\000\000\326\000\000\000\277\000\000\000\244\000\000\000|\000\000\000S\000\000\000\033\377\000\000\000\000\255" "\000\000\000\000\002\000\000\000\007\000\000\000\356\251\000\000\000\377\001\000\000\000\037\232\000\000\000\000\001\000\000\000" "\330\250\000\000\000\377\001\000\000\000J\300\000\000\000\000\024\000\000\000\006\000\000\000-\000\000\000X\000\000\000y\000" "\000\000\231\000\000\000\267\000\000\000\313\000\000\000\335\000\000\000\356\000\000\000\365\000\000\000\373\000\000" "\000\374\000\000\000\363\000\000\000\347\000\000\000\316\000\000\000\262\000\000\000\212\000\000\000^\000\000\000*\000" "\000\000\001\310\000\000\000\000\004\000\000\000\005\000\000\000L\000\000\000\231\000\000\000\344\234\000\000\000\377\003\000" "\000\000\373\000\000\000\257\000\000\000@\204\000\000\000\000\001\000\000\000;\227\000\000\000\377\001\000\000\000\213" "\257\000\000\000\000\030\000\000\000\025\000\000\000D\000\000\000i\000\000\000\213\000\000\000\254\000\000\000\302\000\000" "\000\326\000\000\000\350\000\000\000\361\000\000\000\367\000\000\000\375\000\000\000\373\000\000\000\365\000\000\000" "\357\000\000\000\351\000\000\000\332\000\000\000\311\000\000\000\270\000\000\000\245\000\000\000\210\000\000\000i\000" "\000\000J\000\000\000&\000\000\000\002\377\000\000\000\000\377\000\000\000\000\207\000\000\000\000\013\000\000\000\026\000\000" "\000_\000\000\000\245\000\000\000\323\000\000\000\351\000\000\000\372\000\000\000\354\000\000\000\325\000\000\000\236" "\000\000\000X\000\000\000\005\227\000\000\000\000\003\000\000\000\006\000\000\000j\000\000\000\340\220\000\000\000\377\003\000" "\000\000\371\000\000\000\343\000\000\000\323\252\000\000\000\377\003\000\000\000\337\000\000\000~\000\000\000\026\230" "\000\000\000\000\001\000\000\000\247\227\000\000\000\377\001\000\000\000r\220\000\000\000\000\004\000\000\000\063\000\000\000" "v\000\000\000\265\000\000\000\361\222\000\000\000\377\004\000\000\000\335\000\000\000\226\000\000\000?\000\000\000\002" "\377\000\000\000\000\251\000\000\000\000\001\000\000\000T\252\000\000\000\377\001\000\000\000%\231\000\000\000\000\001\000" "\000\000A\251\000\000\000\377\001\000\000\000H\274\000\000\000\000\005\000\000\000\034\000\000\000]\000\000\000\227\000\000" "\000\320\000\000\000\373\222\000\000\000\377\004\000\000\000\355\000\000\000\260\000\000\000e\000\000\000\033\303" "\000\000\000\000\003\000\000\000\065\000\000\000\226\000\000\000\354\242\000\000\000\377\002\000\000\000\311\000\000\000;" "\202\000\000\000\000\001\000\000\000p\227\000\000\000\377\001\000\000\000P\252\000\000\000\000\005\000\000\000\001\000\000\000" ".\000\000\000o\000\000\000\257\000\000\000\344\227\000\000\000\377\005\000\000\000\365\000\000\000\312\000\000\000\231" "\000\000\000[\000\000\000\033\373\000\000\000\000\014\000\000\000\012\000\000\000R\000\000\000\223\000\000\000\313\000\000\000" "\342\000\000\000\367\000\000\000\371\000\000\000\353\000\000\000\314\000\000\000\232\000\000\000Q\000\000\000\005\243" "\000\000\000\000\013\000\000\000\026\000\000\000d\000\000\000\237\000\000\000\322\000\000\000\347\000\000\000\371\000\000\000" "\357\000\000\000\330\000\000\000\254\000\000\000_\000\000\000\016\243\000\000\000\000\014\000\000\000\007\000\000\000J\000" "\000\000\221\000\000\000\277\000\000\000\344\000\000\000\363\000\000\000\373\000\000\000\352\000\000\000\323\000\000" "\000\233\000\000\000V\000\000\000\006\233\000\000\000\000\003\000\000\000\040\000\000\000\230\000\000\000\371\211\000\000" "\000\377\002\000\000\000\341\000\000\000\\\225\000\000\000\000\002\000\000\000!\000\000\000\314\301\000\000\000\377\002" "\000\000\000\356\000\000\000[\227\000\000\000\000\001\000\000\000\321\227\000\000\000\377\001\000\000\000@\215\000\000" "\000\000\003\000\000\000*\000\000\000\203\000\000\000\334\231\000\000\000\377\003\000\000\000\335\000\000\000l\000\000\000" "\012\377\000\000\000\000\247\000\000\000\000\001\000\000\000\261\252\000\000\000\377\001\000\000\000*\231\000\000\000" "\000\001\000\000\000\250\251\000\000\000\377\001\000\000\000F\270\000\000\000\000\004\000\000\000\001\000\000\000<\000\000\000" "\215\000\000\000\325\232\000\000\000\377\004\000\000\000\376\000\000\000\304\000\000\000k\000\000\000\024\275\000" "\000\000\000\003\000\000\000\004\000\000\000[\000\000\000\310\247\000\000\000\377\003\000\000\000\241\000\000\000\015\000\000" "\000\245\227\000\000\000\377\001\000\000\000\025\247\000\000\000\000\004\000\000\000\003\000\000\000C\000\000\000\225\000" "\000\000\345\240\000\000\000\377\003\000\000\000\331\000\000\000\210\000\000\000\064\366\000\000\000\000\003\000\000\000" "\024\000\000\000\204\000\000\000\355\212\000\000\000\377\002\000\000\000\342\000\000\000R\240\000\000\000\000\003\000" "\000\000,\000\000\000\246\000\000\000\371\211\000\000\000\377\003\000\000\000\352\000\000\000d\000\000\000\001\237\000" "\000\000\000\003\000\000\000\007\000\000\000z\000\000\000\351\212\000\000\000\377\003\000\000\000\345\000\000\000o\000\000\000" "\002\230\000\000\000\000\002\000\000\000m\000\000\000\367\215\000\000\000\377\002\000\000\000\233\000\000\000\004\222\000" "\000\000\000\002\000\000\000\065\000\000\000\356\304\000\000\000\377\001\000\000\000n\225\000\000\000\000\002\000\000\000\002" "\000\000\000\367\227\000\000\000\377\001\000\000\000\017\212\000\000\000\000\003\000\000\000\004\000\000\000Y\000\000\000\314" "\236\000\000\000\377\002\000\000\000\342\000\000\000T\377\000\000\000\000\245\000\000\000\000\002\000\000\000\024\000\000" "\000\372\252\000\000\000\377\001\000\000\000/\230\000\000\000\000\002\000\000\000\026\000\000\000\371\251\000\000\000" "\377\001\000\000\000C\266\000\000\000\000\003\000\000\000.\000\000\000\220\000\000\000\345\240\000\000\000\377\003\000" "\000\000\371\000\000\000\247\000\000\000@\271\000\000\000\000\003\000\000\000\004\000\000\000b\000\000\000\335\252\000\000" "\000\377\002\000\000\000\334\000\000\000\346\226\000\000\000\377\001\000\000\000\331\246\000\000\000\000\003\000\000" "\000\040\000\000\000\203\000\000\000\344\246\000\000\000\377\003\000\000\000\334\000\000\000s\000\000\000\021\362\000" "\000\000\000\002\000\000\000Q\000\000\000\351\216\000\000\000\377\001\000\000\000x\235\000\000\000\000\003\000\000\000\007\000" "\000\000\206\000\000\000\372\215\000\000\000\377\002\000\000\000\231\000\000\000\001\235\000\000\000\000\002\000\000\000" "+\000\000\000\327\216\000\000\000\377\002\000\000\000\302\000\000\000\034\225\000\000\000\000\002\000\000\000\012\000\000" "\000\262\220\000\000\000\377\001\000\000\000\226\221\000\000\000\000\002\000\000\000\037\000\000\000\350\305\000\000" "\000\377\002\000\000\000\376\000\000\000<\224\000\000\000\000\001\000\000\000#\227\000\000\000\377\001\000\000\000\337" "\211\000\000\000\000\003\000\000\000\013\000\000\000n\000\000\000\340\242\000\000\000\377\002\000\000\000\242\000\000\000" "\012\377\000\000\000\000\243\000\000\000\000\001\000\000\000m\253\000\000\000\377\001\000\000\000\063\230\000\000\000\000" "\001\000\000\000x\252\000\000\000\377\001\000\000\000A\263\000\000\000\000\003\000\000\000\007\000\000\000b\000\000\000\312\246" "\000\000\000\377\003\000\000\000\317\000\000\000\\\000\000\000\004\265\000\000\000\000\002\000\000\000N\000\000\000\332\304" "\000\000\000\377\001\000\000\000\235\244\000\000\000\000\003\000\000\000\065\000\000\000\253\000\000\000\375\252\000\000" "\000\377\003\000\000\000\366\000\000\000\221\000\000\000\025\356\000\000\000\000\002\000\000\000\001\000\000\000\221\221" "\000\000\000\377\001\000\000\000H\233\000\000\000\000\002\000\000\000\023\000\000\000\304\220\000\000\000\377\001\000\000" "\000\223\234\000\000\000\000\002\000\000\000\062\000\000\000\356\220\000\000\000\377\002\000\000\000\336\000\000\000\035" "\223\000\000\000\000\002\000\000\000\012\000\000\000\276\222\000\000\000\377\001\000\000\000W\220\000\000\000\000\001\000" "\000\000\305\307\000\000\000\377\001\000\000\000\321\224\000\000\000\000\001\000\000\000M\227\000\000\000\377\001\000" "\000\000\261\207\000\000\000\000\003\000\000\000\002\000\000\000b\000\000\000\347\245\000\000\000\377\002\000\000\000\314" "\000\000\000\021\377\000\000\000\000\242\000\000\000\000\001\000\000\000\313\253\000\000\000\377\001\000\000\000\070\227" "\000\000\000\000\002\000\000\000\002\000\000\000\337\252\000\000\000\377\001\000\000\000?\261\000\000\000\000\003\000\000\000\021" "\000\000\000}\000\000\000\350\252\000\000\000\377\003\000\000\000\340\000\000\000a\000\000\000\003\261\000\000\000\000\002" "\000\000\000$\000\000\000\273\306\000\000\000\377\001\000\000\000b\242\000\000\000\000\002\000\000\000/\000\000\000\267\257" "\000\000\000\377\003\000\000\000\363\000\000\000~\000\000\000\006\353\000\000\000\000\002\000\000\000\003\000\000\000\240\222" "\000\000\000\377\001\000\000\000\322\232\000\000\000\000\002\000\000\000\027\000\000\000\331\222\000\000\000\377\001\000" "\000\000A\232\000\000\000\000\002\000\000\000\025\000\000\000\342\222\000\000\000\377\002\000\000\000\325\000\000\000\006" "\221\000\000\000\000\002\000\000\000\001\000\000\000\266\223\000\000\000\377\002\000\000\000\334\000\000\000\004\216\000" "\000\000\000\001\000\000\000R\311\000\000\000\377\001\000\000\000\071\223\000\000\000\000\001\000\000\000v\227\000\000\000\377" "\001\000\000\000\202\206\000\000\000\000\002\000\000\000?\000\000\000\316\250\000\000\000\377\002\000\000\000\313\000\000" "\000\011\377\000\000\000\000\240\000\000\000\000\001\000\000\000)\254\000\000\000\377\001\000\000\000=\227\000\000\000\000" "\001\000\000\000J\253\000\000\000\377\001\000\000\000<\257\000\000\000\000\003\000\000\000\017\000\000\000\200\000\000\000\360" "\256\000\000\000\377\002\000\000\000\330\000\000\000I\256\000\000\000\000\003\000\000\000\002\000\000\000s\000\000\000\366" "\307\000\000\000\377\001\000\000\000&\240\000\000\000\000\003\000\000\000\027\000\000\000\241\000\000\000\375\262\000" "\000\000\377\002\000\000\000\322\000\000\000\062\352\000\000\000\000\001\000\000\000\204\224\000\000\000\377\001\000\000" "\000\063\230\000\000\000\000\002\000\000\000\011\000\000\000\311\223\000\000\000\377\001\000\000\000\303\232\000\000" "\000\000\001\000\000\000\240\224\000\000\000\377\001\000\000\000\177\221\000\000\000\000\001\000\000\000p\225\000\000\000" "\377\001\000\000\000B\216\000\000\000\000\001\000\000\000\306\311\000\000\000\377\001\000\000\000\212\223\000\000\000" "\000\001\000\000\000\237\227\000\000\000\377\001\000\000\000T\204\000\000\000\000\002\000\000\000\017\000\000\000\240\253" "\000\000\000\377\001\000\000\000\234\377\000\000\000\000\240\000\000\000\000\001\000\000\000\207\254\000\000\000\377" "\001\000\000\000A\227\000\000\000\000\001\000\000\000\263\253\000\000\000\377\001\000\000\000<\255\000\000\000\000\003\000" "\000\000\004\000\000\000m\000\000\000\355\262\000\000\000\377\002\000\000\000\253\000\000\000\027\253\000\000\000\000\002" "\000\000\000\034\000\000\000\302\310\000\000\000\377\001\000\000\000\351\237\000\000\000\000\003\000\000\000\001\000\000\000" "f\000\000\000\356\265\000\000\000\377\002\000\000\000\371\000\000\000_\350\000\000\000\000\002\000\000\000E\000\000\000\376" "\224\000\000\000\377\001\000\000\000{\230\000\000\000\000\001\000\000\000\244\225\000\000\000\377\001\000\000\000+\230" "\000\000\000\000\002\000\000\000,\000\000\000\376\224\000\000\000\377\002\000\000\000\355\000\000\000\004\217\000\000\000\000" "\002\000\000\000\035\000\000\000\370\225\000\000\000\377\001\000\000\000\211\215\000\000\000\000\002\000\000\000\024\000" "\000\000\375\311\000\000\000\377\001\000\000\000\275\223\000\000\000\000\001\000\000\000\311\227\000\000\000\377" "\001\000\000\000(\203\000\000\000\000\002\000\000\000C\000\000\000\342\255\000\000\000\377\001\000\000\000H\377\000\000\000" "\000\236\000\000\000\000\002\000\000\000\002\000\000\000\342\254\000\000\000\377\001\000\000\000D\226\000\000\000\000\002\000" "\000\000\037\000\000\000\375\253\000\000\000\377\001\000\000\000<\254\000\000\000\000\002\000\000\000E\000\000\000\327\265" "\000\000\000\377\002\000\000\000\346\000\000\000?\251\000\000\000\000\002\000\000\000K\000\000\000\354\311\000\000\000\377" "\001\000\000\000\257\236\000\000\000\000\002\000\000\000\032\000\000\000\273\271\000\000\000\377\001\000\000\000\203\346" "\000\000\000\000\002\000\000\000\002\000\000\000\325\225\000\000\000\377\001\000\000\000\260\227\000\000\000\000\001\000\000" "\000P\226\000\000\000\377\001\000\000\000~\230\000\000\000\000\001\000\000\000\227\226\000\000\000\377\001\000\000\000" "E\217\000\000\000\000\001\000\000\000\215\226\000\000\000\377\001\000\000\000\256\215\000\000\000\000\001\000\000\000V" "\312\000\000\000\377\001\000\000\000\343\223\000\000\000\000\001\000\000\000\361\226\000\000\000\377\006\000\000\000" "\371\000\000\000\004\000\000\000\000\000\000\000\007\000\000\000\222\000\000\000\376\256\000\000\000\377\002\000\000\000\322" "\000\000\000\002\377\000\000\000\000\235\000\000\000\000\001\000\000\000C\255\000\000\000\377\001\000\000\000H\226\000\000" "\000\000\001\000\000\000\205\225\000\000\000\377\001\000\000\000\371\226\000\000\000\377\001\000\000\000=\252\000\000" "\000\000\002\000\000\000\026\000\000\000\244\270\000\000\000\377\002\000\000\000\374\000\000\000_\247\000\000\000\000\002" "\000\000\000x\000\000\000\375\312\000\000\000\377\001\000\000\000u\235\000\000\000\000\002\000\000\000M\000\000\000\354\273" "\000\000\000\377\001\000\000\000x\345\000\000\000\000\001\000\000\000X\226\000\000\000\377\001\000\000\000\335\226\000" "\000\000\000\002\000\000\000\017\000\000\000\346\226\000\000\000\377\001\000\000\000\305\227\000\000\000\000\002\000\000\000" "\016\000\000\000\363\226\000\000\000\377\001\000\000\000o\216\000\000\000\000\002\000\000\000\007\000\000\000\362\226" "\000\000\000\377\001\000\000\000\303\215\000\000\000\000\001\000\000\000s\312\000\000\000\377\001\000\000\000\362\222" "\000\000\000\000\001\000\000\000\034\227\000\000\000\377\004\000\000\000\322\000\000\000\000\000\000\000\032\000\000\000\310" "\261\000\000\000\377\001\000\000\000N\377\000\000\000\000\235\000\000\000\000\001\000\000\000\241\255\000\000\000\377" "\001\000\000\000L\225\000\000\000\000\002\000\000\000\006\000\000\000\351\225\000\000\000\377\001\000\000\000\226\226\000" "\000\000\377\001\000\000\000=\251\000\000\000\000\002\000\000\000U\000\000\000\355\272\000\000\000\377\002\000\000\000\376" "\000\000\000c\244\000\000\000\000\002\000\000\000\005\000\000\000\242\314\000\000\000\377\001\000\000\000<\233\000\000\000" "\000\003\000\000\000\001\000\000\000\200\000\000\000\376\275\000\000\000\377\001\000\000\000V\344\000\000\000\000\001\000\000" "\000\264\226\000\000\000\377\002\000\000\000\372\000\000\000\002\225\000\000\000\000\001\000\000\000\201\227\000\000" "\000\377\002\000\000\000\367\000\000\000\006\226\000\000\000\000\001\000\000\000l\227\000\000\000\377\001\000\000\000\210" "\216\000\000\000\000\001\000\000\000=\227\000\000\000\377\001\000\000\000\302\215\000\000\000\000\001\000\000\000\210\312" "\000\000\000\377\001\000\000\000\371\222\000\000\000\000\001\000\000\000E\227\000\000\000\377\003\000\000\000\247\000\000" "\000:\000\000\000\347\262\000\000\000\377\001\000\000\000\266\377\000\000\000\000\234\000\000\000\000\002\000\000\000\013" "\000\000\000\363\255\000\000\000\377\001\000\000\000P\225\000\000\000\000\001\000\000\000[\225\000\000\000\377\002\000" "\000\000\347\000\000\000\062\226\000\000\000\377\001\000\000\000>\247\000\000\000\000\002\000\000\000\017\000\000\000\244" "\275\000\000\000\377\002\000\000\000\372\000\000\000:\242\000\000\000\000\002\000\000\000\012\000\000\000\266\314\000" "\000\000\377\002\000\000\000\372\000\000\000\011\232\000\000\000\000\002\000\000\000\011\000\000\000\256\277\000\000\000" "\377\002\000\000\000\356\000\000\000\033\342\000\000\000\000\002\000\000\000\011\000\000\000\366\227\000\000\000\377" "\001\000\000\000\030\224\000\000\000\000\002\000\000\000\021\000\000\000\361\230\000\000\000\377\001\000\000\000.\226\000" "\000\000\000\001\000\000\000\325\227\000\000\000\377\001\000\000\000}\216\000\000\000\000\001\000\000\000z\227\000\000\000" "\377\001\000\000\000\252\215\000\000\000\000\001\000\000\000\213\312\000\000\000\377\001\000\000\000\344\222\000" "\000\000\000\001\000\000\000n\227\000\000\000\377\002\000\000\000\320\000\000\000\371\263\000\000\000\377\002\000\000\000" "\374\000\000\000\022\377\000\000\000\000\233\000\000\000\000\001\000\000\000]\256\000\000\000\377\001\000\000\000T\225" "\000\000\000\000\001\000\000\000\306\225\000\000\000\377\002\000\000\000y\000\000\000*\226\000\000\000\377\001\000\000\000" ">\246\000\000\000\000\002\000\000\000\064\000\000\000\336\277\000\000\000\377\002\000\000\000\330\000\000\000\004\240" "\000\000\000\000\002\000\000\000\016\000\000\000\304\315\000\000\000\377\001\000\000\000\312\232\000\000\000\000\002\000\000" "\000\021\000\000\000\304\301\000\000\000\377\001\000\000\000\252\342\000\000\000\000\001\000\000\000:\230\000\000\000" "\377\001\000\000\000*\224\000\000\000\000\001\000\000\000\202\231\000\000\000\377\001\000\000\000W\225\000\000\000\000" "\001\000\000\000A\230\000\000\000\377\001\000\000\000X\216\000\000\000\000\001\000\000\000\246\227\000\000\000\377\001" "\000\000\000\212\215\000\000\000\000\001\000\000\000z\312\000\000\000\377\001\000\000\000\315\222\000\000\000\000\001\000" "\000\000\230\315\000\000\000\377\001\000\000\000W\377\000\000\000\000\233\000\000\000\000\001\000\000\000\273\227\000" "\000\000\377\001\000\000\000\340\226\000\000\000\377\001\000\000\000Y\224\000\000\000\000\001\000\000\000\061\225\000" "\000\000\377\003\000\000\000\364\000\000\000\021\000\000\000)\226\000\000\000\377\001\000\000\000B\245\000\000\000\000\002" "\000\000\000k\000\000\000\371\301\000\000\000\377\001\000\000\000b\237\000\000\000\000\002\000\000\000\013\000\000\000\303" "\316\000\000\000\377\001\000\000\000\221\231\000\000\000\000\002\000\000\000\027\000\000\000\324\302\000\000\000\377" "\002\000\000\000\376\000\000\000,\341\000\000\000\000\001\000\000\000c\230\000\000\000\377\001\000\000\000\071\223\000\000" "\000\000\002\000\000\000\015\000\000\000\357\231\000\000\000\377\001\000\000\000x\225\000\000\000\000\001\000\000\000\253" "\230\000\000\000\377\001\000\000\000\033\216\000\000\000\000\001\000\000\000\312\227\000\000\000\377\001\000\000\000b" "\215\000\000\000\000\001\000\000\000i\312\000\000\000\377\001\000\000\000\237\222\000\000\000\000\001\000\000\000\301\315" "\000\000\000\377\001\000\000\000\230\377\000\000\000\000\232\000\000\000\000\002\000\000\000\033\000\000\000\375\226\000" "\000\000\377\002\000\000\000\276\000\000\000\254\226\000\000\000\377\001\000\000\000]\224\000\000\000\000\001\000\000\000" "\235\225\000\000\000\377\003\000\000\000\226\000\000\000\000\000\000\000(\226\000\000\000\377\001\000\000\000G\243" "\000\000\000\000\002\000\000\000\006\000\000\000\235\303\000\000\000\377\001\000\000\000\273\236\000\000\000\000\002\000\000" "\000\010\000\000\000\275\317\000\000\000\377\001\000\000\000X\230\000\000\000\000\002\000\000\000\025\000\000\000\324\304" "\000\000\000\377\001\000\000\000\235\341\000\000\000\000\001\000\000\000\212\230\000\000\000\377\001\000\000\000C\223" "\000\000\000\000\001\000\000\000u\232\000\000\000\377\001\000\000\000\225\224\000\000\000\000\002\000\000\000\032\000\000\000" "\373\227\000\000\000\377\001\000\000\000\307\217\000\000\000\000\001\000\000\000\362\227\000\000\000\377\001\000" "\000\000\071\215\000\000\000\000\001\000\000\000B\312\000\000\000\377\001\000\000\000S\222\000\000\000\000\001\000\000\000\352" "\315\000\000\000\377\001\000\000\000\310\377\000\000\000\000\232\000\000\000\000\001\000\000\000w\227\000\000\000\377" "\002\000\000\000T\000\000\000\236\226\000\000\000\377\001\000\000\000a\223\000\000\000\000\002\000\000\000\022\000\000\000\366" "\225\000\000\000\377\003\000\000\000*\000\000\000\000\000\000\000'\226\000\000\000\377\001\000\000\000M\242\000\000\000\000" "\002\000\000\000\026\000\000\000\304\304\000\000\000\377\001\000\000\000\361\235\000\000\000\000\002\000\000\000\001\000\000" "\000\252\320\000\000\000\377\001\000\000\000\037\227\000\000\000\000\002\000\000\000\021\000\000\000\321\305\000\000" "\000\377\002\000\000\000\356\000\000\000\005\340\000\000\000\000\001\000\000\000\245\230\000\000\000\377\001\000\000\000" "H\222\000\000\000\000\002\000\000\000\007\000\000\000\346\232\000\000\000\377\001\000\000\000\254\224\000\000\000\000\001" "\000\000\000\200\230\000\000\000\377\001\000\000\000i\216\000\000\000\000\001\000\000\000\034\227\000\000\000\377\002" "\000\000\000\376\000\000\000\014\215\000\000\000\000\002\000\000\000\010\000\000\000\370\310\000\000\000\377\002\000\000" "\000\360\000\000\000\015\221\000\000\000\000\001\000\000\000\023\316\000\000\000\377\002\000\000\000\365\000\000\000\002" "\377\000\000\000\000\231\000\000\000\000\001\000\000\000\324\226\000\000\000\377\003\000\000\000\347\000\000\000\005\000" "\000\000\220\226\000\000\000\377\001\000\000\000f\223\000\000\000\000\001\000\000\000v\225\000\000\000\377\001\000\000" "\000\277\202\000\000\000\000\001\000\000\000&\226\000\000\000\377\001\000\000\000R\241\000\000\000\000\002\000\000\000$\000" "\000\000\334\306\000\000\000\377\001\000\000\000\010\234\000\000\000\000\001\000\000\000\212\320\000\000\000\377\001" "\000\000\000\347\227\000\000\000\000\002\000\000\000\007\000\000\000\302\307\000\000\000\377\001\000\000\000B\340\000\000" "\000\000\001\000\000\000\276\230\000\000\000\377\001\000\000\000L\222\000\000\000\000\001\000\000\000g\233\000\000\000\377" "\001\000\000\000\277\223\000\000\000\000\002\000\000\000\004\000\000\000\345\227\000\000\000\377\002\000\000\000\356\000" "\000\000\013\216\000\000\000\000\001\000\000\000J\227\000\000\000\377\001\000\000\000\334\217\000\000\000\000\001\000\000" "\000\273\310\000\000\000\377\001\000\000\000u\222\000\000\000\000\001\000\000\000=\317\000\000\000\377\001\000\000\000" "\030\377\000\000\000\000\230\000\000\000\000\001\000\000\000\063\227\000\000\000\377\003\000\000\000\207\000\000\000\000" "\000\000\000\203\226\000\000\000\377\001\000\000\000j\222\000\000\000\000\002\000\000\000\002\000\000\000\340\225\000\000" "\000\377\001\000\000\000U\202\000\000\000\000\001\000\000\000%\226\000\000\000\377\001\000\000\000W\240\000\000\000\000\002" "\000\000\000\065\000\000\000\352\306\000\000\000\377\001\000\000\000\371\234\000\000\000\000\001\000\000\000^\321\000" "\000\000\377\001\000\000\000\261\226\000\000\000\000\002\000\000\000\001\000\000\000\251\310\000\000\000\377\001\000\000" "\000u\340\000\000\000\000\001\000\000\000\325\230\000\000\000\377\001\000\000\000J\221\000\000\000\000\002\000\000\000\003" "\000\000\000\335\233\000\000\000\377\001\000\000\000\320\223\000\000\000\000\001\000\000\000U\230\000\000\000\377\001" "\000\000\000\206\217\000\000\000\000\001\000\000\000w\227\000\000\000\377\001\000\000\000\252\217\000\000\000\000\001\000" "\000\000E\307\000\000\000\377\002\000\000\000\327\000\000\000\007\222\000\000\000\000\001\000\000\000f\317\000\000\000\377" "\001\000\000\000\062\377\000\000\000\000\230\000\000\000\000\001\000\000\000\221\226\000\000\000\377\004\000\000\000\376" "\000\000\000$\000\000\000\000\000\000\000t\226\000\000\000\377\001\000\000\000q\222\000\000\000\000\001\000\000\000O\225\000" "\000\000\377\002\000\000\000\346\000\000\000\004\202\000\000\000\000\001\000\000\000$\226\000\000\000\377\001\000\000\000]" "\237\000\000\000\000\002\000\000\000=\000\000\000\362\307\000\000\000\377\001\000\000\000\335\233\000\000\000\000\002\000" "\000\000,\000\000\000\365\321\000\000\000\377\001\000\000\000{\226\000\000\000\000\001\000\000\000\200\311\000\000\000" "\377\001\000\000\000\243\340\000\000\000\000\001\000\000\000\344\230\000\000\000\377\001\000\000\000H\221\000\000\000" "\000\001\000\000\000\\\234\000\000\000\377\001\000\000\000\335\223\000\000\000\000\001\000\000\000\277\227\000\000\000" "\377\002\000\000\000\366\000\000\000\026\217\000\000\000\000\001\000\000\000\247\227\000\000\000\377\001\000\000\000w" "\220\000\000\000\000\001\000\000\000\275\305\000\000\000\377\002\000\000\000\345\000\000\000\040\223\000\000\000\000\001" "\000\000\000\220\317\000\000\000\377\001\000\000\000I\377\000\000\000\000\227\000\000\000\000\002\000\000\000\004\000\000\000" "\352\226\000\000\000\377\001\000\000\000\300\202\000\000\000\000\001\000\000\000g\226\000\000\000\377\001\000\000\000" "w\222\000\000\000\000\001\000\000\000\276\225\000\000\000\377\001\000\000\000\200\203\000\000\000\000\001\000\000\000#" "\226\000\000\000\377\001\000\000\000d\236\000\000\000\000\002\000\000\000C\000\000\000\365\310\000\000\000\377\001\000" "\000\000\233\232\000\000\000\000\002\000\000\000\015\000\000\000\330\322\000\000\000\377\001\000\000\000E\225\000\000" "\000\000\002\000\000\000L\000\000\000\376\311\000\000\000\377\001\000\000\000\272\340\000\000\000\000\001\000\000\000\361" "\230\000\000\000\377\001\000\000\000D\220\000\000\000\000\002\000\000\000\001\000\000\000\324\234\000\000\000\377\001\000" "\000\000\352\222\000\000\000\000\001\000\000\000*\230\000\000\000\377\001\000\000\000\226\220\000\000\000\000\001\000\000" "\000\331\227\000\000\000\377\001\000\000\000D\220\000\000\000\000\002\000\000\000\023\000\000\000\326\303\000\000\000" "\377\002\000\000\000\337\000\000\000,\224\000\000\000\000\001\000\000\000\271\317\000\000\000\377\001\000\000\000T\377" "\000\000\000\000\227\000\000\000\000\001\000\000\000M\227\000\000\000\377\001\000\000\000^\202\000\000\000\000\001\000\000\000" "X\226\000\000\000\377\001\000\000\000~\221\000\000\000\000\001\000\000\000-\225\000\000\000\377\002\000\000\000\373\000" "\000\000\032\203\000\000\000\000\001\000\000\000\"\226\000\000\000\377\001\000\000\000n\235\000\000\000\000\002\000\000\000" "?\000\000\000\367\311\000\000\000\377\001\000\000\000D\232\000\000\000\000\001\000\000\000\251\241\000\000\000\377" "\015\000\000\000\351\000\000\000\304\000\000\000\240\000\000\000\200\000\000\000t\000\000\000h\000\000\000]\000\000\000X\000" "\000\000f\000\000\000t\000\000\000\212\000\000\000\270\000\000\000\347\244\000\000\000\377\002\000\000\000\376\000\000" "\000\020\224\000\000\000\000\002\000\000\000\040\000\000\000\360\312\000\000\000\377\001\000\000\000\311\340\000\000" "\000\000\001\000\000\000\375\230\000\000\000\377\001\000\000\000;\220\000\000\000\000\001\000\000\000P\235\000\000\000\377" "\001\000\000\000\370\222\000\000\000\000\001\000\000\000\224\227\000\000\000\377\002\000\000\000\375\000\000\000#\217" "\000\000\000\000\002\000\000\000\015\000\000\000\375\226\000\000\000\377\002\000\000\000\376\000\000\000\020\221\000\000" "\000\000\002\000\000\000\032\000\000\000\273\301\000\000\000\377\002\000\000\000\253\000\000\000\017\225\000\000\000\000" "\001\000\000\000\342\317\000\000\000\377\001\000\000\000\\\377\000\000\000\000\227\000\000\000\000\001\000\000\000\253" "\226\000\000\000\377\002\000\000\000\361\000\000\000\012\202\000\000\000\000\001\000\000\000J\226\000\000\000\377\001" "\000\000\000\205\221\000\000\000\000\001\000\000\000\233\225\000\000\000\377\001\000\000\000\253\204\000\000\000\000" "\001\000\000\000!\226\000\000\000\377\001\000\000\000w\234\000\000\000\000\002\000\000\000\063\000\000\000\362\244\000\000" "\000\377\013\000\000\000\323\000\000\000\236\000\000\000t\000\000\000J\000\000\000+\000\000\000\036\000\000\000\020\000\000" "\000\011\000\000\000\"\000\000\000_\000\000\000\276\232\000\000\000\377\001\000\000\000\304\232\000\000\000\000\001\000" "\000\000l\236\000\000\000\377\004\000\000\000\331\000\000\000\226\000\000\000T\000\000\000\023\215\000\000\000\000\003\000" "\000\000&\000\000\000\177\000\000\000\330\241\000\000\000\377\001\000\000\000\330\224\000\000\000\000\002\000\000\000\002" "\000\000\000\303\237\000\000\000\377\017\000\000\000\366\000\000\000\302\000\000\000\213\000\000\000g\000\000\000H\000" "\000\000;\000\000\000\062\000\000\000\067\000\000\000<\000\000\000K\000\000\000\\\000\000\000v\000\000\000\227\000\000\000\276" "\000\000\000\355\235\000\000\000\377\001\000\000\000\317\337\000\000\000\000\001\000\000\000\005\231\000\000\000\377" "\001\000\000\000\062\220\000\000\000\000\001\000\000\000\312\236\000\000\000\377\001\000\000\000\005\220\000\000\000\000\002" "\000\000\000\014\000\000\000\361\227\000\000\000\377\001\000\000\000\253\220\000\000\000\000\001\000\000\000@\227\000" "\000\000\377\001\000\000\000\331\224\000\000\000\000\003\000\000\000?\000\000\000\244\000\000\000\357\274\000\000\000\377" "\002\000\000\000\272\000\000\000=\226\000\000\000\000\001\000\000\000\014\320\000\000\000\377\001\000\000\000b\377\000\000" "\000\000\226\000\000\000\000\002\000\000\000\020\000\000\000\370\226\000\000\000\377\001\000\000\000\232\203\000\000\000" "\000\001\000\000\000<\226\000\000\000\377\001\000\000\000\214\220\000\000\000\000\002\000\000\000\023\000\000\000\366\225" "\000\000\000\377\001\000\000\000@\204\000\000\000\000\001\000\000\000\040\226\000\000\000\377\001\000\000\000\200\233" "\000\000\000\000\002\000\000\000%\000\000\000\353\241\000\000\000\377\004\000\000\000\374\000\000\000\262\000\000\000b\000" "\000\000\033\213\000\000\000\000\002\000\000\000;\000\000\000\341\227\000\000\000\377\002\000\000\000\366\000\000\000.\231" "\000\000\000\000\002\000\000\000'\000\000\000\370\233\000\000\000\377\003\000\000\000\362\000\000\000\232\000\000\000\065" "\223\000\000\000\000\003\000\000\000\001\000\000\000[\000\000\000\336\237\000\000\000\377\001\000\000\000\242\224\000\000" "\000\000\001\000\000\000{\235\000\000\000\377\004\000\000\000\372\000\000\000\250\000\000\000P\000\000\000\011\216\000\000" "\000\000\004\000\000\000)\000\000\000m\000\000\000\301\000\000\000\375\231\000\000\000\377\001\000\000\000\302\337\000" "\000\000\000\001\000\000\000\011\231\000\000\000\377\001\000\000\000*\217\000\000\000\000\001\000\000\000E\237\000\000\000\377" "\001\000\000\000\021\220\000\000\000\000\001\000\000\000i\230\000\000\000\377\001\000\000\000\065\220\000\000\000\000\001\000" "\000\000u\227\000\000\000\377\001\000\000\000\243\226\000\000\000\000\006\000\000\000\004\000\000\000\070\000\000\000q\000\000" "\000\245\000\000\000\321\000\000\000\370\240\000\000\000\377\012\000\000\000\375\000\000\000\364\000\000\000\353" "\000\000\000\345\000\000\000\340\000\000\000\332\000\000\000\327\000\000\000\324\000\000\000\322\000\000\000\321\210" "\000\000\000\320\005\000\000\000\307\000\000\000\262\000\000\000\231\000\000\000^\000\000\000\032\230\000\000\000\000\001" "\000\000\000\065\261\000\000\000\377\003\000\000\000\360\000\000\000\310\000\000\000\247\202\000\000\000\231\001\000" "\000\000\315\231\000\000\000\377\001\000\000\000\\\377\000\000\000\000\226\000\000\000\000\001\000\000\000f\227\000\000" "\000\377\001\000\000\000:\203\000\000\000\000\001\000\000\000-\226\000\000\000\377\001\000\000\000\223\220\000\000\000" "\000\001\000\000\000z\225\000\000\000\377\001\000\000\000\324\205\000\000\000\000\001\000\000\000\037\226\000\000\000\377" "\001\000\000\000\211\232\000\000\000\000\002\000\000\000\021\000\000\000\331\240\000\000\000\377\003\000\000\000\342\000" "\000\000|\000\000\000\032\216\000\000\000\000\002\000\000\000\007\000\000\000\356\227\000\000\000\377\001\000\000\000d\231" "\000\000\000\000\002\000\000\000\001\000\000\000\303\232\000\000\000\377\003\000\000\000\363\000\000\000\177\000\000\000\014" "\227\000\000\000\000\002\000\000\000\006\000\000\000\230\236\000\000\000\377\001\000\000\000n\223\000\000\000\000\002\000\000" "\000\063\000\000\000\372\233\000\000\000\377\003\000\000\000\365\000\000\000\210\000\000\000\030\224\000\000\000\000" "\003\000\000\000\040\000\000\000\220\000\000\000\367\227\000\000\000\377\001\000\000\000\262\337\000\000\000\000\001\000" "\000\000\015\231\000\000\000\377\001\000\000\000\"\217\000\000\000\000\001\000\000\000\301\237\000\000\000\377\001\000" "\000\000\034\220\000\000\000\000\001\000\000\000\323\227\000\000\000\377\001\000\000\000\301\221\000\000\000\000\001\000" "\000\000\254\227\000\000\000\377\001\000\000\000k\233\000\000\000\000\013\000\000\000\002\000\000\000\035\000\000\000=\000" "\000\000[\000\000\000t\000\000\000\213\000\000\000\242\000\000\000\264\000\000\000\304\000\000\000\325\000\000\000\371" "\226\000\000\000\377\001\000\000\000n\256\000\000\000\000\001\000\000\000_\256\000\000\000\377\004\000\000\000\311\000" "\000\000q\000\000\000-\000\000\000\001\205\000\000\000\000\001\000\000\000g\230\000\000\000\377\001\000\000\000V\377\000\000" "\000\000\226\000\000\000\000\001\000\000\000\304\226\000\000\000\377\001\000\000\000\331\204\000\000\000\000\001\000\000" "\000\036\226\000\000\000\377\001\000\000\000\233\217\000\000\000\000\002\000\000\000\005\000\000\000\345\225\000\000\000" "\377\001\000\000\000i\205\000\000\000\000\001\000\000\000\035\226\000\000\000\377\001\000\000\000\222\231\000\000\000" "\000\002\000\000\000\004\000\000\000\274\237\000\000\000\377\003\000\000\000\350\000\000\000n\000\000\000\007\220\000\000\000" "\000\001\000\000\000S\227\000\000\000\377\002\000\000\000\346\000\000\000\004\231\000\000\000\000\001\000\000\000j\232\000" "\000\000\377\002\000\000\000\235\000\000\000\030\233\000\000\000\000\002\000\000\000c\000\000\000\375\234\000\000\000\377" "\001\000\000\000;\222\000\000\000\000\002\000\000\000\012\000\000\000\330\233\000\000\000\377\002\000\000\000\245\000\000" "\000\030\230\000\000\000\000\002\000\000\000H\000\000\000\373\226\000\000\000\377\001\000\000\000\216\337\000\000\000" "\000\001\000\000\000\017\231\000\000\000\377\001\000\000\000\032\216\000\000\000\000\001\000\000\000<\240\000\000\000\377" "\001\000\000\000(\217\000\000\000\000\001\000\000\000>\230\000\000\000\377\001\000\000\000M\221\000\000\000\000\001\000\000\000" "\343\227\000\000\000\377\001\000\000\000\062\244\000\000\000\000\002\000\000\000\007\000\000\000\363\226\000\000\000\377" "\001\000\000\000\040\256\000\000\000\000\001\000\000\000\210\253\000\000\000\377\003\000\000\000\367\000\000\000\231\000" "\000\000(\212\000\000\000\000\001\000\000\000\261\227\000\000\000\377\001\000\000\000J\377\000\000\000\000\225\000\000" "\000\000\001\000\000\000\"\227\000\000\000\377\001\000\000\000{\204\000\000\000\000\001\000\000\000\020\226\000\000\000\377" "\001\000\000\000\245\217\000\000\000\000\001\000\000\000[\225\000\000\000\377\002\000\000\000\361\000\000\000\014\205" "\000\000\000\000\001\000\000\000\034\226\000\000\000\377\001\000\000\000\235\231\000\000\000\000\001\000\000\000\214\236" "\000\000\000\377\003\000\000\000\371\000\000\000\201\000\000\000\012\222\000\000\000\000\001\000\000\000\250\227\000\000" "\000\377\001\000\000\000\207\231\000\000\000\000\002\000\000\000\035\000\000\000\362\230\000\000\000\377\002\000\000\000" "\360\000\000\000R\236\000\000\000\000\001\000\000\000i\233\000\000\000\377\002\000\000\000\374\000\000\000\012\222\000" "\000\000\000\001\000\000\000\223\232\000\000\000\377\002\000\000\000\351\000\000\000I\230\000\000\000\000\003\000\000\000\027" "\000\000\000\230\000\000\000\374\227\000\000\000\377\001\000\000\000f\337\000\000\000\000\001\000\000\000\020\231\000" "\000\000\377\001\000\000\000\022\216\000\000\000\000\001\000\000\000\271\240\000\000\000\377\001\000\000\000\063\217" "\000\000\000\000\001\000\000\000\250\227\000\000\000\377\002\000\000\000\330\000\000\000\001\220\000\000\000\000\001\000\000" "\000\032\227\000\000\000\377\002\000\000\000\365\000\000\000\004\244\000\000\000\000\001\000\000\000M\226\000\000\000\377" "\001\000\000\000\320\257\000\000\000\000\001\000\000\000\261\251\000\000\000\377\003\000\000\000\374\000\000\000\233" "\000\000\000\030\214\000\000\000\000\001\000\000\000V\227\000\000\000\377\001\000\000\000\070\377\000\000\000\000\225\000" "\000\000\000\001\000\000\000\200\226\000\000\000\377\002\000\000\000\375\000\000\000\035\204\000\000\000\000\002\000\000\000" "\002\000\000\000\376\225\000\000\000\377\001\000\000\000\257\217\000\000\000\000\001\000\000\000\312\225\000\000\000" "\377\001\000\000\000\222\206\000\000\000\000\001\000\000\000\033\226\000\000\000\377\001\000\000\000\252\230\000\000" "\000\000\001\000\000\000N\236\000\000\000\377\002\000\000\000\310\000\000\000+\223\000\000\000\000\002\000\000\000\005\000\000" "\000\362\227\000\000\000\377\001\000\000\000.\231\000\000\000\000\001\000\000\000\264\230\000\000\000\377\002\000\000" "\000\322\000\000\000\"\240\000\000\000\000\001\000\000\000\213\232\000\000\000\377\001\000\000\000\324\222\000\000" "\000\000\002\000\000\000\063\000\000\000\375\231\000\000\000\377\002\000\000\000\301\000\000\000\031\227\000\000\000\000" "\003\000\000\000\012\000\000\000}\000\000\000\363\231\000\000\000\377\001\000\000\000+\337\000\000\000\000\001\000\000\000\020" "\231\000\000\000\377\001\000\000\000\012\215\000\000\000\000\001\000\000\000\064\241\000\000\000\377\001\000\000\000>\216" "\000\000\000\000\002\000\000\000\030\000\000\000\372\227\000\000\000\377\001\000\000\000f\221\000\000\000\000\001\000\000\000" "U\227\000\000\000\377\001\000\000\000\301\245\000\000\000\000\001\000\000\000\236\226\000\000\000\377\001\000\000\000" "\207\257\000\000\000\000\001\000\000\000\333\250\000\000\000\377\002\000\000\000\313\000\000\000/\216\000\000\000\000" "\001\000\000\000*\227\000\000\000\377\001\000\000\000%\377\000\000\000\000\224\000\000\000\000\002\000\000\000\002\000\000\000" "\341\226\000\000\000\377\001\000\000\000\274\206\000\000\000\000\001\000\000\000\362\225\000\000\000\377\001\000" "\000\000\270\216\000\000\000\000\001\000\000\000=\225\000\000\000\377\002\000\000\000\376\000\000\000'\206\000\000\000" "\000\001\000\000\000\032\226\000\000\000\377\001\000\000\000\267\227\000\000\000\000\002\000\000\000\034\000\000\000\356" "\234\000\000\000\377\003\000\000\000\375\000\000\000|\000\000\000\002\224\000\000\000\000\001\000\000\000A\227\000\000\000" "\377\001\000\000\000\330\231\000\000\000\000\001\000\000\000J\230\000\000\000\377\002\000\000\000\320\000\000\000\023" "\241\000\000\000\000\002\000\000\000\007\000\000\000\330\231\000\000\000\377\001\000\000\000\241\221\000\000\000\000\002" "\000\000\000\002\000\000\000\312\231\000\000\000\377\002\000\000\000\244\000\000\000\006\226\000\000\000\000\003\000\000\000" "\006\000\000\000k\000\000\000\346\232\000\000\000\377\001\000\000\000\346\340\000\000\000\000\001\000\000\000\020\231" "\000\000\000\377\001\000\000\000\002\215\000\000\000\000\001\000\000\000\260\241\000\000\000\377\001\000\000\000H\216\000" "\000\000\000\001\000\000\000}\227\000\000\000\377\002\000\000\000\352\000\000\000\010\221\000\000\000\000\001\000\000\000\217" "\227\000\000\000\377\001\000\000\000\207\244\000\000\000\000\002\000\000\000\003\000\000\000\354\226\000\000\000\377" "\001\000\000\000A\256\000\000\000\000\002\000\000\000\007\000\000\000\374\246\000\000\000\377\003\000\000\000\372\000\000\000" "w\000\000\000\003\217\000\000\000\000\001\000\000\000\030\227\000\000\000\377\001\000\000\000\011\377\000\000\000\000\224" "\000\000\000\000\001\000\000\000I\227\000\000\000\377\001\000\000\000]\206\000\000\000\000\001\000\000\000\343\225\000\000" "\000\377\001\000\000\000\302\216\000\000\000\000\001\000\000\000\260\225\000\000\000\377\001\000\000\000\271\207" "\000\000\000\000\001\000\000\000\030\226\000\000\000\377\001\000\000\000\304\227\000\000\000\000\001\000\000\000\270\234" "\000\000\000\377\002\000\000\000\354\000\000\000F\226\000\000\000\000\001\000\000\000\207\227\000\000\000\377\001\000\000" "\000\212\230\000\000\000\000\002\000\000\000\001\000\000\000\320\227\000\000\000\377\002\000\000\000\320\000\000\000\023" "\243\000\000\000\000\001\000\000\000?\231\000\000\000\377\001\000\000\000m\221\000\000\000\000\001\000\000\000g\231\000\000" "\000\377\001\000\000\000\222\226\000\000\000\000\003\000\000\000\004\000\000\000d\000\000\000\341\234\000\000\000\377\001" "\000\000\000\221\340\000\000\000\000\001\000\000\000\020\230\000\000\000\377\001\000\000\000\373\215\000\000\000\000\002" "\000\000\000-\000\000\000\376\241\000\000\000\377\001\000\000\000Q\215\000\000\000\000\002\000\000\000\003\000\000\000\343" "\227\000\000\000\377\001\000\000\000\177\222\000\000\000\000\001\000\000\000\310\227\000\000\000\377\001\000\000\000" "M\244\000\000\000\000\001\000\000\000B\226\000\000\000\377\002\000\000\000\364\000\000\000\006\256\000\000\000\000\001\000" "\000\000-\246\000\000\000\377\002\000\000\000\340\000\000\000\067\221\000\000\000\000\001\000\000\000\035\226\000\000\000" "\377\001\000\000\000\347\377\000\000\000\000\225\000\000\000\000\001\000\000\000\261\226\000\000\000\377\002\000\000" "\000\363\000\000\000\013\206\000\000\000\000\001\000\000\000\324\225\000\000\000\377\001\000\000\000\313\215\000\000" "\000\000\002\000\000\000$\000\000\000\375\225\000\000\000\377\001\000\000\000L\207\000\000\000\000\001\000\000\000\026\226" "\000\000\000\377\001\000\000\000\322\226\000\000\000\000\001\000\000\000e\234\000\000\000\377\002\000\000\000\322\000\000" "\000\037\227\000\000\000\000\001\000\000\000\306\227\000\000\000\377\001\000\000\000=\230\000\000\000\000\001\000\000\000" "[\227\000\000\000\377\002\000\000\000\353\000\000\000\034\245\000\000\000\000\001\000\000\000\300\230\000\000\000\377" "\001\000\000\000<\220\000\000\000\000\002\000\000\000\024\000\000\000\355\230\000\000\000\377\001\000\000\000\223\225" "\000\000\000\000\003\000\000\000\004\000\000\000^\000\000\000\334\236\000\000\000\377\001\000\000\000.\340\000\000\000\000\001" "\000\000\000\017\230\000\000\000\377\001\000\000\000\363\215\000\000\000\000\001\000\000\000\251\242\000\000\000\377" "\001\000\000\000Z\215\000\000\000\000\001\000\000\000Q\227\000\000\000\377\002\000\000\000\366\000\000\000\024\221\000\000" "\000\000\002\000\000\000\011\000\000\000\372\226\000\000\000\377\002\000\000\000\376\000\000\000\023\244\000\000\000\000" "\001\000\000\000\223\226\000\000\000\377\001\000\000\000\262\257\000\000\000\000\001\000\000\000W\245\000\000\000\377" "\002\000\000\000\277\000\000\000\022\222\000\000\000\000\001\000\000\000*\226\000\000\000\377\001\000\000\000\306\377" "\000\000\000\000\224\000\000\000\000\002\000\000\000\034\000\000\000\374\226\000\000\000\377\001\000\000\000\241\207\000" "\000\000\000\001\000\000\000\304\225\000\000\000\377\001\000\000\000\326\215\000\000\000\000\001\000\000\000\225\225" "\000\000\000\377\002\000\000\000\335\000\000\000\002\207\000\000\000\000\001\000\000\000\025\226\000\000\000\377\001\000\000" "\000\337\225\000\000\000\000\002\000\000\000\026\000\000\000\360\233\000\000\000\377\002\000\000\000\304\000\000\000\020" "\227\000\000\000\000\002\000\000\000\011\000\000\000\372\226\000\000\000\377\002\000\000\000\362\000\000\000\004\227\000" "\000\000\000\002\000\000\000\005\000\000\000\336\226\000\000\000\377\002\000\000\000\376\000\000\000G\246\000\000\000\000\001" "\000\000\000N\227\000\000\000\377\002\000\000\000\376\000\000\000\015\220\000\000\000\000\001\000\000\000\232\230\000" "\000\000\377\002\000\000\000\250\000\000\000\001\223\000\000\000\000\003\000\000\000\007\000\000\000h\000\000\000\337\237\000" "\000\000\377\001\000\000\000\271\341\000\000\000\000\001\000\000\000\016\230\000\000\000\377\001\000\000\000\353\214" "\000\000\000\000\002\000\000\000(\000\000\000\375\242\000\000\000\377\001\000\000\000c\215\000\000\000\000\001\000\000\000\274" "\227\000\000\000\377\001\000\000\000\230\222\000\000\000\000\001\000\000\000@\227\000\000\000\377\001\000\000\000\331" "\245\000\000\000\000\001\000\000\000\342\226\000\000\000\377\001\000\000\000i\257\000\000\000\000\001\000\000\000\200\244" "\000\000\000\377\002\000\000\000\233\000\000\000\005\223\000\000\000\000\001\000\000\000D\226\000\000\000\377\001\000\000\000" "\245\377\000\000\000\000\224\000\000\000\000\001\000\000\000\201\227\000\000\000\377\001\000\000\000B\207\000\000\000" "\000\001\000\000\000\265\225\000\000\000\377\001\000\000\000\343\214\000\000\000\000\002\000\000\000\023\000\000\000\366" "\225\000\000\000\377\001\000\000\000r\210\000\000\000\000\001\000\000\000\023\226\000\000\000\377\001\000\000\000\354" "\225\000\000\000\000\001\000\000\000\240\233\000\000\000\377\002\000\000\000\266\000\000\000\012\230\000\000\000\000\001" "\000\000\000;\227\000\000\000\377\001\000\000\000\264\230\000\000\000\000\001\000\000\000l\227\000\000\000\377\001\000" "\000\000\206\247\000\000\000\000\002\000\000\000\004\000\000\000\374\226\000\000\000\377\001\000\000\000\333\220\000" "\000\000\000\002\000\000\000%\000\000\000\374\227\000\000\000\377\002\000\000\000\303\000\000\000\007\222\000\000\000\000\003" "\000\000\000\013\000\000\000r\000\000\000\346\241\000\000\000\377\001\000\000\000\064\341\000\000\000\000\001\000\000\000\015" "\230\000\000\000\377\001\000\000\000\343\214\000\000\000\000\001\000\000\000\243\243\000\000\000\377\001\000\000\000" "l\214\000\000\000\000\002\000\000\000'\000\000\000\376\226\000\000\000\377\002\000\000\000\376\000\000\000&\222\000\000" "\000\000\001\000\000\000{\227\000\000\000\377\001\000\000\000\241\244\000\000\000\000\001\000\000\000.\227\000\000\000\377" "\001\000\000\000\040\257\000\000\000\000\001\000\000\000\251\243\000\000\000\377\001\000\000\000\204\225\000\000\000\000" "\001\000\000\000a\226\000\000\000\377\001\000\000\000\203\377\000\000\000\000\223\000\000\000\000\002\000\000\000\005\000\000" "\000\347\226\000\000\000\377\002\000\000\000\342\000\000\000\002\207\000\000\000\000\001\000\000\000\245\225\000\000" "\000\377\001\000\000\000\360\214\000\000\000\000\001\000\000\000~\225\000\000\000\377\002\000\000\000\364\000\000\000\017" "\210\000\000\000\000\001\000\000\000\022\226\000\000\000\377\001\000\000\000\373\224\000\000\000\000\002\000\000\000\070" "\000\000\000\376\232\000\000\000\377\002\000\000\000\267\000\000\000\005\231\000\000\000\000\001\000\000\000q\227\000\000" "\000\377\001\000\000\000s\227\000\000\000\000\002\000\000\000\004\000\000\000\343\226\000\000\000\377\002\000\000\000\332" "\000\000\000\007\247\000\000\000\000\001\000\000\000%\227\000\000\000\377\001\000\000\000\253\220\000\000\000\000\001\000\000" "\000\244\227\000\000\000\377\002\000\000\000\346\000\000\000\030\221\000\000\000\000\003\000\000\000\027\000\000\000\203" "\000\000\000\354\242\000\000\000\377\001\000\000\000\230\342\000\000\000\000\001\000\000\000\014\230\000\000\000\377" "\001\000\000\000\333\213\000\000\000\000\002\000\000\000#\000\000\000\374\243\000\000\000\377\001\000\000\000u\214\000" "\000\000\000\001\000\000\000\221\227\000\000\000\377\001\000\000\000\262\223\000\000\000\000\001\000\000\000\263\227" "\000\000\000\377\001\000\000\000j\244\000\000\000\000\001\000\000\000x\226\000\000\000\377\001\000\000\000\327\260\000" "\000\000\000\001\000\000\000\323\242\000\000\000\377\001\000\000\000r\226\000\000\000\000\001\000\000\000\206\226\000\000" "\000\377\001\000\000\000b\377\000\000\000\000\223\000\000\000\000\001\000\000\000W\227\000\000\000\377\001\000\000\000\207" "\210\000\000\000\000\001\000\000\000\226\225\000\000\000\377\001\000\000\000\375\213\000\000\000\000\002\000\000\000\010" "\000\000\000\352\225\000\000\000\377\001\000\000\000\225\211\000\000\000\000\001\000\000\000\020\227\000\000\000\377" "\001\000\000\000\016\223\000\000\000\000\001\000\000\000\301\232\000\000\000\377\002\000\000\000\310\000\000\000\013\232" "\000\000\000\000\001\000\000\000\244\227\000\000\000\377\001\000\000\000\067\227\000\000\000\000\001\000\000\000U\227\000" "\000\000\377\001\000\000\000C\250\000\000\000\000\001\000\000\000R\227\000\000\000\377\001\000\000\000z\217\000\000\000\000" "\002\000\000\000)\000\000\000\375\226\000\000\000\377\002\000\000\000\374\000\000\000<\220\000\000\000\000\003\000\000\000" "+\000\000\000\235\000\000\000\370\243\000\000\000\377\002\000\000\000\337\000\000\000\015\342\000\000\000\000\001\000" "\000\000\013\230\000\000\000\377\001\000\000\000\323\213\000\000\000\000\001\000\000\000\236\244\000\000\000\377\001" "\000\000\000|\213\000\000\000\000\002\000\000\000\012\000\000\000\360\227\000\000\000\377\001\000\000\000?\223\000\000\000" "\000\001\000\000\000\351\227\000\000\000\377\001\000\000\000\062\244\000\000\000\000\001\000\000\000\302\226\000\000\000" "\377\001\000\000\000\216\257\000\000\000\000\002\000\000\000\003\000\000\000\370\241\000\000\000\377\001\000\000\000p\227" "\000\000\000\000\001\000\000\000\257\226\000\000\000\377\001\000\000\000@\377\000\000\000\000\223\000\000\000\000\001\000\000" "\000\303\227\000\000\000\377\001\000\000\000*\210\000\000\000\000\001\000\000\000\206\226\000\000\000\377\001\000\000" "\000\013\212\000\000\000\000\001\000\000\000g\225\000\000\000\377\002\000\000\000\376\000\000\000'\211\000\000\000\000\001" "\000\000\000\017\227\000\000\000\377\001\000\000\000\037\222\000\000\000\000\001\000\000\000H\232\000\000\000\377\002\000" "\000\000\327\000\000\000\023\233\000\000\000\000\001\000\000\000\324\226\000\000\000\377\002\000\000\000\366\000\000\000" "\005\227\000\000\000\000\001\000\000\000\302\226\000\000\000\377\001\000\000\000\251\251\000\000\000\000\001\000\000\000" "~\227\000\000\000\377\001\000\000\000J\217\000\000\000\000\001\000\000\000\251\227\000\000\000\377\001\000\000\000\202" "\216\000\000\000\000\003\000\000\000\001\000\000\000G\000\000\000\267\245\000\000\000\377\002\000\000\000\364\000\000\000\060" "\343\000\000\000\000\001\000\000\000\012\230\000\000\000\377\001\000\000\000\313\212\000\000\000\000\002\000\000\000\040" "\000\000\000\373\244\000\000\000\377\001\000\000\000\204\213\000\000\000\000\001\000\000\000e\227\000\000\000\377\001" "\000\000\000\314\223\000\000\000\000\001\000\000\000\040\227\000\000\000\377\002\000\000\000\366\000\000\000\004\243\000" "\000\000\000\002\000\000\000\020\000\000\000\373\226\000\000\000\377\001\000\000\000F\257\000\000\000\000\001\000\000\000%\241" "\000\000\000\377\001\000\000\000t\230\000\000\000\000\001\000\000\000\330\226\000\000\000\377\001\000\000\000\037\377" "\000\000\000\000\222\000\000\000\000\001\000\000\000\060\227\000\000\000\377\001\000\000\000\314\211\000\000\000\000\001\000" "\000\000v\226\000\000\000\377\001\000\000\000\030\211\000\000\000\000\002\000\000\000\003\000\000\000\333\225\000\000\000" "\377\001\000\000\000\270\212\000\000\000\000\001\000\000\000\016\227\000\000\000\377\001\000\000\000\061\222\000\000" "\000\000\001\000\000\000\312\231\000\000\000\377\002\000\000\000\362\000\000\000$\233\000\000\000\000\002\000\000\000\006\000" "\000\000\373\226\000\000\000\377\001\000\000\000\304\227\000\000\000\000\001\000\000\000/\226\000\000\000\377\002\000" "\000\000\372\000\000\000#\251\000\000\000\000\001\000\000\000\253\227\000\000\000\377\001\000\000\000\034\216\000\000" "\000\000\002\000\000\000,\000\000\000\376\226\000\000\000\377\002\000\000\000\313\000\000\000\004\214\000\000\000\000\003\000" "\000\000\030\000\000\000z\000\000\000\337\246\000\000\000\377\002\000\000\000\373\000\000\000O\344\000\000\000\000\001\000" "\000\000\011\230\000\000\000\377\001\000\000\000\303\212\000\000\000\000\001\000\000\000\231\245\000\000\000\377\001" "\000\000\000\213\213\000\000\000\000\001\000\000\000\317\227\000\000\000\377\001\000\000\000Y\223\000\000\000\000\001\000" "\000\000W\227\000\000\000\377\001\000\000\000\303\244\000\000\000\000\001\000\000\000V\226\000\000\000\377\002\000\000" "\000\370\000\000\000\012\257\000\000\000\000\001\000\000\000O\240\000\000\000\377\001\000\000\000\205\230\000\000\000" "\000\002\000\000\000\013\000\000\000\375\225\000\000\000\377\002\000\000\000\372\000\000\000\003\377\000\000\000\000\222" "\000\000\000\000\001\000\000\000\235\227\000\000\000\377\001\000\000\000o\211\000\000\000\000\001\000\000\000f\226\000\000" "\000\377\001\000\000\000'\211\000\000\000\000\001\000\000\000V\226\000\000\000\377\001\000\000\000H\212\000\000\000\000\001" "\000\000\000\014\227\000\000\000\377\001\000\000\000B\221\000\000\000\000\001\000\000\000A\232\000\000\000\377\001\000\000" "\000Y\234\000\000\000\000\001\000\000\000-\227\000\000\000\377\001\000\000\000\217\227\000\000\000\000\001\000\000\000\234" "\226\000\000\000\377\001\000\000\000\224\252\000\000\000\000\001\000\000\000\327\226\000\000\000\377\001\000\000\000" "\357\217\000\000\000\000\001\000\000\000\234\226\000\000\000\377\002\000\000\000\373\000\000\000/\212\000\000\000\000" "\004\000\000\000\002\000\000\000G\000\000\000\256\000\000\000\373\247\000\000\000\377\002\000\000\000\373\000\000\000T\345" "\000\000\000\000\001\000\000\000\010\230\000\000\000\377\001\000\000\000\273\211\000\000\000\000\002\000\000\000\035\000\000" "\000\371\245\000\000\000\377\001\000\000\000\223\212\000\000\000\000\001\000\000\000:\227\000\000\000\377\002\000\000" "\000\342\000\000\000\004\223\000\000\000\000\001\000\000\000\215\227\000\000\000\377\001\000\000\000\213\244\000\000" "\000\000\001\000\000\000\236\226\000\000\000\377\001\000\000\000\277\260\000\000\000\000\001\000\000\000x\237\000\000\000" "\377\001\000\000\000\235\231\000\000\000\000\001\000\000\000\071\226\000\000\000\377\001\000\000\000\334\377\000\000" "\000\000\222\000\000\000\000\002\000\000\000\024\000\000\000\367\226\000\000\000\377\002\000\000\000\373\000\000\000\026" "\211\000\000\000\000\001\000\000\000U\226\000\000\000\377\001\000\000\000\070\211\000\000\000\000\001\000\000\000\315\225" "\000\000\000\377\002\000\000\000\326\000\000\000\001\212\000\000\000\000\001\000\000\000\013\227\000\000\000\377\001\000\000" "\000S\221\000\000\000\000\001\000\000\000\266\231\000\000\000\377\001\000\000\000\234\235\000\000\000\000\001\000\000\000" "V\227\000\000\000\377\001\000\000\000[\226\000\000\000\000\002\000\000\000\013\000\000\000\365\225\000\000\000\377\002" "\000\000\000\371\000\000\000\031\251\000\000\000\000\002\000\000\000\007\000\000\000\373\226\000\000\000\377\001\000\000\000" "\302\216\000\000\000\000\002\000\000\000\017\000\000\000\365\226\000\000\000\377\001\000\000\000\211\211\000\000\000" "\000\003\000\000\000\031\000\000\000{\000\000\000\337\251\000\000\000\377\002\000\000\000\362\000\000\000L\346\000\000\000" "\000\001\000\000\000\006\230\000\000\000\377\001\000\000\000\263\211\000\000\000\000\001\000\000\000\225\246\000\000\000" "\377\001\000\000\000\231\212\000\000\000\000\001\000\000\000\245\227\000\000\000\377\001\000\000\000t\224\000\000\000" "\000\001\000\000\000\304\227\000\000\000\377\001\000\000\000S\244\000\000\000\000\001\000\000\000\341\226\000\000\000\377" "\001\000\000\000|\260\000\000\000\000\001\000\000\000\241\236\000\000\000\377\002\000\000\000\270\000\000\000\004\231\000" "\000\000\000\001\000\000\000j\226\000\000\000\377\001\000\000\000\273\377\000\000\000\000\222\000\000\000\000\001\000\000\000" "z\227\000\000\000\377\001\000\000\000\265\212\000\000\000\000\001\000\000\000E\226\000\000\000\377\001\000\000\000I\210" "\000\000\000\000\001\000\000\000E\226\000\000\000\377\001\000\000\000h\213\000\000\000\000\001\000\000\000\011\227\000\000\000" "\377\001\000\000\000f\220\000\000\000\000\002\000\000\000&\000\000\000\376\230\000\000\000\377\002\000\000\000\344\000" "\000\000\014\235\000\000\000\000\001\000\000\000}\227\000\000\000\377\001\000\000\000*\226\000\000\000\000\001\000\000\000U" "\226\000\000\000\377\001\000\000\000\236\252\000\000\000\000\001\000\000\000.\227\000\000\000\377\001\000\000\000\225" "\216\000\000\000\000\001\000\000\000o\226\000\000\000\377\002\000\000\000\344\000\000\000\013\206\000\000\000\000\004\000" "\000\000\002\000\000\000H\000\000\000\256\000\000\000\373\252\000\000\000\377\002\000\000\000\334\000\000\000+\347\000" "\000\000\000\001\000\000\000\004\230\000\000\000\377\001\000\000\000\253\210\000\000\000\000\002\000\000\000\032\000\000\000\370" "\246\000\000\000\377\001\000\000\000\237\211\000\000\000\000\002\000\000\000\025\000\000\000\371\226\000\000\000\377" "\002\000\000\000\362\000\000\000\017\223\000\000\000\000\002\000\000\000\004\000\000\000\366\227\000\000\000\377\001\000\000" "\000\034\243\000\000\000\000\001\000\000\000$\227\000\000\000\377\001\000\000\000\071\260\000\000\000\000\001\000\000\000\313" "\235\000\000\000\377\002\000\000\000\325\000\000\000\017\232\000\000\000\000\001\000\000\000\233\226\000\000\000\377" "\001\000\000\000\231\377\000\000\000\000\221\000\000\000\000\002\000\000\000\004\000\000\000\344\227\000\000\000\377\001" "\000\000\000Y\212\000\000\000\000\001\000\000\000\064\226\000\000\000\377\001\000\000\000Y\210\000\000\000\000\001\000\000\000" "\277\225\000\000\000\377\002\000\000\000\355\000\000\000\012\213\000\000\000\000\001\000\000\000\007\227\000\000\000\377" "\001\000\000\000|\220\000\000\000\000\001\000\000\000\213\231\000\000\000\377\001\000\000\000Y\236\000\000\000\000\001\000" "\000\000\241\226\000\000\000\377\002\000\000\000\367\000\000\000\003\226\000\000\000\000\001\000\000\000\250\225\000" "\000\000\377\002\000\000\000\376\000\000\000+\252\000\000\000\000\001\000\000\000[\227\000\000\000\377\001\000\000\000h\216" "\000\000\000\000\001\000\000\000\327\226\000\000\000\377\001\000\000\000^\205\000\000\000\000\003\000\000\000\031\000\000\000" "{\000\000\000\337\254\000\000\000\377\002\000\000\000\244\000\000\000\017\350\000\000\000\000\001\000\000\000\002\230" "\000\000\000\377\001\000\000\000\244\210\000\000\000\000\001\000\000\000\222\247\000\000\000\377\001\000\000\000\244" "\211\000\000\000\000\001\000\000\000y\227\000\000\000\377\001\000\000\000\217\224\000\000\000\000\001\000\000\000\062\227" "\000\000\000\377\001\000\000\000\351\244\000\000\000\000\001\000\000\000f\226\000\000\000\377\002\000\000\000\362\000\000" "\000\004\260\000\000\000\000\001\000\000\000\363\234\000\000\000\377\002\000\000\000\354\000\000\000\"\233\000\000\000" "\000\001\000\000\000\314\226\000\000\000\377\001\000\000\000}\377\000\000\000\000\221\000\000\000\000\001\000\000\000X\227" "\000\000\000\377\002\000\000\000\362\000\000\000\012\212\000\000\000\000\001\000\000\000#\226\000\000\000\377\001\000\000" "\000j\207\000\000\000\000\001\000\000\000\070\226\000\000\000\377\001\000\000\000\206\214\000\000\000\000\001\000\000\000" "\004\227\000\000\000\377\001\000\000\000\222\217\000\000\000\000\002\000\000\000\005\000\000\000\351\230\000\000\000\377" "\001\000\000\000\301\237\000\000\000\000\001\000\000\000\305\226\000\000\000\377\001\000\000\000\314\226\000\000\000" "\000\002\000\000\000\010\000\000\000\363\225\000\000\000\377\001\000\000\000\302\253\000\000\000\000\001\000\000\000\207" "\227\000\000\000\377\001\000\000\000<\215\000\000\000\000\001\000\000\000B\226\000\000\000\377\002\000\000\000\314\000" "\000\000\001\202\000\000\000\000\004\000\000\000\002\000\000\000H\000\000\000\256\000\000\000\373\254\000\000\000\377\002\000" "\000\000\354\000\000\000W\353\000\000\000\000\230\000\000\000\377\001\000\000\000\244\207\000\000\000\000\002\000\000\000" "\031\000\000\000\367\222\000\000\000\377\002\000\000\000\372\000\000\000\376\223\000\000\000\377\001\000\000\000\252" "\210\000\000\000\000\002\000\000\000\002\000\000\000\340\226\000\000\000\377\002\000\000\000\374\000\000\000\040\224\000" "\000\000\000\001\000\000\000g\227\000\000\000\377\001\000\000\000\270\244\000\000\000\000\001\000\000\000\251\226\000\000" "\000\377\001\000\000\000\270\260\000\000\000\000\001\000\000\000\036\234\000\000\000\377\002\000\000\000\374\000\000\000" "D\233\000\000\000\000\002\000\000\000\004\000\000\000\370\226\000\000\000\377\001\000\000\000e\377\000\000\000\000\221" "\000\000\000\000\001\000\000\000\311\227\000\000\000\377\001\000\000\000\240\213\000\000\000\000\001\000\000\000\022\226" "\000\000\000\377\001\000\000\000}\207\000\000\000\000\001\000\000\000\262\225\000\000\000\377\002\000\000\000\371\000\000" "\000\031\214\000\000\000\000\001\000\000\000\003\227\000\000\000\377\001\000\000\000\250\217\000\000\000\000\001\000\000\000" "M\231\000\000\000\377\001\000\000\000\064\237\000\000\000\000\001\000\000\000\346\226\000\000\000\377\001\000\000\000" "\241\226\000\000\000\000\001\000\000\000N\226\000\000\000\377\001\000\000\000c\253\000\000\000\000\001\000\000\000\263" "\227\000\000\000\377\001\000\000\000\021\215\000\000\000\000\001\000\000\000\240\226\000\000\000\377\005\000\000\000H" "\000\000\000\000\000\000\000\031\000\000\000{\000\000\000\337\256\000\000\000\377\002\000\000\000\240\000\000\000\024\354" "\000\000\000\000\001\000\000\000\375\227\000\000\000\377\001\000\000\000\244\207\000\000\000\000\001\000\000\000\220\223" "\000\000\000\377\002\000\000\000\212\000\000\000\374\223\000\000\000\377\001\000\000\000\257\210\000\000\000\000\001" "\000\000\000N\227\000\000\000\377\001\000\000\000\252\225\000\000\000\000\001\000\000\000\230\227\000\000\000\377\001" "\000\000\000\207\243\000\000\000\000\002\000\000\000\001\000\000\000\351\226\000\000\000\377\001\000\000\000z\260\000\000" "\000\000\001\000\000\000G\234\000\000\000\377\001\000\000\000y\234\000\000\000\000\001\000\000\000.\227\000\000\000\377\001" "\000\000\000L\377\000\000\000\000\220\000\000\000\000\001\000\000\000:\230\000\000\000\377\001\000\000\000D\213\000\000\000" "\000\002\000\000\000\002\000\000\000\376\225\000\000\000\377\001\000\000\000\222\206\000\000\000\000\001\000\000\000\060\226" "\000\000\000\377\001\000\000\000\241\215\000\000\000\000\001\000\000\000\001\227\000\000\000\377\001\000\000\000\276\217" "\000\000\000\000\001\000\000\000\242\230\000\000\000\377\001\000\000\000\276\237\000\000\000\000\002\000\000\000\007\000\000" "\000\376\226\000\000\000\377\001\000\000\000w\226\000\000\000\000\001\000\000\000\236\225\000\000\000\377\002\000\000" "\000\367\000\000\000\016\253\000\000\000\000\001\000\000\000\336\226\000\000\000\377\001\000\000\000\350\215\000\000" "\000\000\002\000\000\000\004\000\000\000\355\225\000\000\000\377\004\000\000\000\306\000\000\000H\000\000\000\257\000\000\000" "\373\256\000\000\000\377\002\000\000\000\321\000\000\000?\356\000\000\000\000\001\000\000\000\373\227\000\000\000\377" "\001\000\000\000\244\206\000\000\000\000\002\000\000\000\027\000\000\000\366\222\000\000\000\377\002\000\000\000\347\000" "\000\000\016\224\000\000\000\377\001\000\000\000\264\210\000\000\000\000\001\000\000\000\270\227\000\000\000\377\001" "\000\000\000\070\225\000\000\000\000\001\000\000\000\311\227\000\000\000\377\001\000\000\000V\243\000\000\000\000\001\000" "\000\000)\227\000\000\000\377\001\000\000\000=\260\000\000\000\000\001\000\000\000p\233\000\000\000\377\002\000\000\000\261" "\000\000\000\001\234\000\000\000\000\001\000\000\000`\227\000\000\000\377\001\000\000\000\064\377\000\000\000\000\220\000" "\000\000\000\001\000\000\000\252\227\000\000\000\377\002\000\000\000\345\000\000\000\002\214\000\000\000\000\001\000\000\000" "\360\225\000\000\000\377\001\000\000\000\250\206\000\000\000\000\001\000\000\000\254\226\000\000\000\377\001\000" "\000\000.\216\000\000\000\000\227\000\000\000\377\001\000\000\000\324\216\000\000\000\000\002\000\000\000\006\000\000\000\360" "\230\000\000\000\377\001\000\000\000I\237\000\000\000\000\001\000\000\000%\227\000\000\000\377\001\000\000\000N\226\000" "\000\000\000\001\000\000\000\334\225\000\000\000\377\001\000\000\000\266\253\000\000\000\000\002\000\000\000\013\000\000\000" "\376\226\000\000\000\377\001\000\000\000\277\215\000\000\000\000\001\000\000\000D\226\000\000\000\377\001\000\000\000" "\372\257\000\000\000\377\003\000\000\000\346\000\000\000c\000\000\000\002\357\000\000\000\000\001\000\000\000\370\227" "\000\000\000\377\001\000\000\000\244\206\000\000\000\000\001\000\000\000\215\223\000\000\000\377\002\000\000\000c\000\000" "\000\005\224\000\000\000\377\001\000\000\000\272\207\000\000\000\000\002\000\000\000$\000\000\000\376\226\000\000\000\377" "\001\000\000\000\306\225\000\000\000\000\002\000\000\000\003\000\000\000\366\227\000\000\000\377\001\000\000\000$\243\000" "\000\000\000\001\000\000\000c\226\000\000\000\377\002\000\000\000\370\000\000\000\007\260\000\000\000\000\001\000\000\000\232" "\232\000\000\000\377\002\000\000\000\341\000\000\000\021\235\000\000\000\000\001\000\000\000\221\227\000\000\000\377" "\001\000\000\000\033\377\000\000\000\000\217\000\000\000\000\002\000\000\000\040\000\000\000\374\227\000\000\000\377\001" "\000\000\000\214\215\000\000\000\000\001\000\000\000\337\225\000\000\000\377\001\000\000\000\275\205\000\000\000\000" "\002\000\000\000*\000\000\000\376\225\000\000\000\377\001\000\000\000\272\217\000\000\000\000\001\000\000\000\374\226" "\000\000\000\377\001\000\000\000\352\216\000\000\000\000\001\000\000\000E\230\000\000\000\377\001\000\000\000\325\240" "\000\000\000\000\001\000\000\000B\227\000\000\000\377\001\000\000\000&\225\000\000\000\000\001\000\000\000\026\226\000\000\000" "\377\001\000\000\000l\253\000\000\000\000\001\000\000\000\065\227\000\000\000\377\001\000\000\000\226\215\000\000\000" "\000\001\000\000\000\226\304\000\000\000\377\003\000\000\000\357\000\000\000}\000\000\000\013\361\000\000\000\000\001\000" "\000\000\365\227\000\000\000\377\001\000\000\000\244\205\000\000\000\000\002\000\000\000\026\000\000\000\365\222\000" "\000\000\377\003\000\000\000\323\000\000\000\002\000\000\000\012\224\000\000\000\377\001\000\000\000\277\207\000\000\000" "\000\001\000\000\000\215\227\000\000\000\377\001\000\000\000T\225\000\000\000\000\001\000\000\000*\227\000\000\000\377" "\002\000\000\000\362\000\000\000\001\243\000\000\000\000\001\000\000\000\234\226\000\000\000\377\001\000\000\000\304\261" "\000\000\000\000\001\000\000\000\303\231\000\000\000\377\002\000\000\000\373\000\000\000;\236\000\000\000\000\001\000\000\000" "\302\226\000\000\000\377\002\000\000\000\376\000\000\000\004\377\000\000\000\000\217\000\000\000\000\001\000\000\000\217" "\230\000\000\000\377\001\000\000\000\060\215\000\000\000\000\001\000\000\000\315\225\000\000\000\377\001\000\000\000\323" "\205\000\000\000\000\001\000\000\000\247\226\000\000\000\377\001\000\000\000E\217\000\000\000\000\001\000\000\000\372\226" "\000\000\000\377\002\000\000\000\375\000\000\000\004\215\000\000\000\000\001\000\000\000\213\230\000\000\000\377\001\000" "\000\000w\240\000\000\000\000\001\000\000\000]\226\000\000\000\377\002\000\000\000\373\000\000\000\004\225\000\000\000\000" "\001\000\000\000P\226\000\000\000\377\001\000\000\000$\253\000\000\000\000\001\000\000\000`\227\000\000\000\377\001\000\000" "\000m\214\000\000\000\000\002\000\000\000\001\000\000\000\345\302\000\000\000\377\003\000\000\000\362\000\000\000\203\000" "\000\000\020\363\000\000\000\000\001\000\000\000\362\227\000\000\000\377\001\000\000\000\244\205\000\000\000\000\001\000" "\000\000\214\223\000\000\000\377\003\000\000\000I\000\000\000\000\000\000\000\016\224\000\000\000\377\001\000\000\000\305" "\206\000\000\000\000\002\000\000\000\011\000\000\000\356\226\000\000\000\377\002\000\000\000\336\000\000\000\003\225\000" "\000\000\000\001\000\000\000Z\227\000\000\000\377\001\000\000\000\302\244\000\000\000\000\001\000\000\000\326\226\000\000" "\000\377\001\000\000\000\215\261\000\000\000\000\001\000\000\000\354\231\000\000\000\377\001\000\000\000|\236\000\000" "\000\000\002\000\000\000\001\000\000\000\361\226\000\000\000\377\001\000\000\000\352\377\000\000\000\000\217\000\000\000" "\000\002\000\000\000\016\000\000\000\362\227\000\000\000\377\001\000\000\000\325\216\000\000\000\000\001\000\000\000\273" "\225\000\000\000\377\001\000\000\000\353\204\000\000\000\000\002\000\000\000)\000\000\000\375\225\000\000\000\377\001" "\000\000\000\316\220\000\000\000\000\001\000\000\000\367\227\000\000\000\377\001\000\000\000\035\215\000\000\000\000\001" "\000\000\000\321\230\000\000\000\377\001\000\000\000!\240\000\000\000\000\001\000\000\000x\226\000\000\000\377\001\000" "\000\000\332\226\000\000\000\000\001\000\000\000\212\225\000\000\000\377\001\000\000\000\353\254\000\000\000\000\001" "\000\000\000\213\227\000\000\000\377\001\000\000\000E\214\000\000\000\000\001\000\000\000\062\301\000\000\000\377\003" "\000\000\000\356\000\000\000\203\000\000\000\023\365\000\000\000\000\001\000\000\000\357\227\000\000\000\377\001\000\000" "\000\244\204\000\000\000\000\002\000\000\000\026\000\000\000\365\222\000\000\000\377\001\000\000\000\277\202\000\000" "\000\000\001\000\000\000\021\224\000\000\000\377\001\000\000\000\312\206\000\000\000\000\001\000\000\000b\227\000\000\000" "\377\001\000\000\000o\226\000\000\000\000\001\000\000\000\213\227\000\000\000\377\001\000\000\000\221\243\000\000\000" "\000\002\000\000\000\020\000\000\000\376\226\000\000\000\377\001\000\000\000W\260\000\000\000\000\001\000\000\000\026\231" "\000\000\000\377\002\000\000\000\306\000\000\000\003\236\000\000\000\000\001\000\000\000#\227\000\000\000\377\001\000\000\000" "\322\377\000\000\000\000\217\000\000\000\000\001\000\000\000t\230\000\000\000\377\001\000\000\000y\216\000\000\000\000" "\001\000\000\000\250\226\000\000\000\377\001\000\000\000\007\203\000\000\000\000\001\000\000\000\247\226\000\000\000\377" "\001\000\000\000Y\220\000\000\000\000\001\000\000\000\364\227\000\000\000\377\001\000\000\000\067\214\000\000\000\000\002" "\000\000\000\022\000\000\000\376\227\000\000\000\377\001\000\000\000\313\241\000\000\000\000\001\000\000\000\222\226" "\000\000\000\377\001\000\000\000\264\226\000\000\000\000\001\000\000\000\303\225\000\000\000\377\001\000\000\000\267" "\254\000\000\000\000\001\000\000\000\266\227\000\000\000\377\001\000\000\000\037\214\000\000\000\000\001\000\000\000n\277" "\000\000\000\377\003\000\000\000\346\000\000\000u\000\000\000\015\367\000\000\000\000\001\000\000\000\353\227\000\000\000" "\377\001\000\000\000\244\204\000\000\000\000\001\000\000\000\213\223\000\000\000\377\001\000\000\000\066\202\000\000" "\000\000\001\000\000\000\023\224\000\000\000\377\001\000\000\000\320\206\000\000\000\000\001\000\000\000\314\226\000\000" "\000\377\002\000\000\000\360\000\000\000\014\226\000\000\000\000\001\000\000\000\273\227\000\000\000\377\001\000\000\000" "d\243\000\000\000\000\001\000\000\000G\227\000\000\000\377\001\000\000\000!\260\000\000\000\000\001\000\000\000@\230\000" "\000\000\377\002\000\000\000\364\000\000\000#\237\000\000\000\000\001\000\000\000I\227\000\000\000\377\001\000\000\000\271" "\377\000\000\000\000\216\000\000\000\000\002\000\000\000\004\000\000\000\342\227\000\000\000\377\002\000\000\000\376\000" "\000\000\037\216\000\000\000\000\001\000\000\000\225\226\000\000\000\377\001\000\000\000!\202\000\000\000\000\002\000\000" "\000)\000\000\000\375\225\000\000\000\377\002\000\000\000\335\000\000\000\003\220\000\000\000\000\001\000\000\000\362\227" "\000\000\000\377\001\000\000\000R\214\000\000\000\000\001\000\000\000I\230\000\000\000\377\001\000\000\000z\241\000\000\000" "\000\001\000\000\000\251\226\000\000\000\377\001\000\000\000\220\226\000\000\000\000\001\000\000\000\361\225\000\000" "\000\377\001\000\000\000\207\254\000\000\000\000\001\000\000\000\340\226\000\000\000\377\002\000\000\000\370\000\000" "\000\002\214\000\000\000\000\001\000\000\000\250\275\000\000\000\377\003\000\000\000\324\000\000\000c\000\000\000\007\371" "\000\000\000\000\001\000\000\000\347\227\000\000\000\377\001\000\000\000\244\203\000\000\000\000\002\000\000\000\025\000\000" "\000\365\222\000\000\000\377\001\000\000\000\255\203\000\000\000\000\001\000\000\000\026\224\000\000\000\377\001\000" "\000\000\325\205\000\000\000\000\001\000\000\000\067\227\000\000\000\377\001\000\000\000\212\227\000\000\000\000\001\000" "\000\000\353\227\000\000\000\377\001\000\000\000\071\243\000\000\000\000\001\000\000\000y\226\000\000\000\377\001\000" "\000\000\352\261\000\000\000\000\001\000\000\000j\230\000\000\000\377\001\000\000\000s\240\000\000\000\000\001\000\000\000" "l\227\000\000\000\377\001\000\000\000\241\377\000\000\000\000\216\000\000\000\000\001\000\000\000Z\230\000\000\000\377" "\001\000\000\000\302\217\000\000\000\000\001\000\000\000\202\226\000\000\000\377\001\000\000\000<\202\000\000\000\000\001" "\000\000\000\252\226\000\000\000\377\001\000\000\000h\221\000\000\000\000\001\000\000\000\360\227\000\000\000\377\001" "\000\000\000m\214\000\000\000\000\001\000\000\000\201\230\000\000\000\377\001\000\000\000>\241\000\000\000\000\001\000\000" "\000\301\226\000\000\000\377\001\000\000\000m\225\000\000\000\000\001\000\000\000\024\226\000\000\000\377\001\000\000" "\000f\253\000\000\000\000\002\000\000\000\013\000\000\000\376\226\000\000\000\377\001\000\000\000\325\215\000\000\000" "\000\001\000\000\000\342\272\000\000\000\377\003\000\000\000\376\000\000\000\270\000\000\000F\374\000\000\000\000\001\000" "\000\000\343\227\000\000\000\377\001\000\000\000\244\203\000\000\000\000\001\000\000\000\213\222\000\000\000\377" "\002\000\000\000\374\000\000\000)\203\000\000\000\000\001\000\000\000\030\224\000\000\000\377\001\000\000\000\333\205" "\000\000\000\000\001\000\000\000\241\226\000\000\000\377\002\000\000\000\373\000\000\000\034\226\000\000\000\000\001\000\000" "\000\032\230\000\000\000\377\001\000\000\000\017\243\000\000\000\000\001\000\000\000\251\226\000\000\000\377\001\000" "\000\000\272\261\000\000\000\000\001\000\000\000\223\230\000\000\000\377\001\000\000\000\065\240\000\000\000\000\001\000" "\000\000\217\227\000\000\000\377\001\000\000\000\210\377\000\000\000\000\216\000\000\000\000\001\000\000\000\315\230" "\000\000\000\377\001\000\000\000f\217\000\000\000\000\001\000\000\000o\226\000\000\000\377\004\000\000\000X\000\000\000\000\000" "\000\000.\000\000\000\376\225\000\000\000\377\002\000\000\000\346\000\000\000\007\221\000\000\000\000\001\000\000\000\355" "\227\000\000\000\377\001\000\000\000\210\214\000\000\000\000\001\000\000\000\264\227\000\000\000\377\002\000\000\000" "\372\000\000\000\011\241\000\000\000\000\001\000\000\000\326\226\000\000\000\377\001\000\000\000J\225\000\000\000\000" "\001\000\000\000\066\226\000\000\000\377\001\000\000\000G\253\000\000\000\000\001\000\000\000\064\227\000\000\000\377\001" "\000\000\000\260\214\000\000\000\000\001\000\000\000\033\271\000\000\000\377\003\000\000\000\362\000\000\000\224\000\000" "\000)\376\000\000\000\000\001\000\000\000\336\227\000\000\000\377\001\000\000\000\244\202\000\000\000\000\002\000\000\000" "\025\000\000\000\364\222\000\000\000\377\001\000\000\000\236\204\000\000\000\000\001\000\000\000\031\224\000\000\000" "\377\001\000\000\000\340\204\000\000\000\000\002\000\000\000\023\000\000\000\367\226\000\000\000\377\001\000\000\000\245" "\227\000\000\000\000\001\000\000\000E\227\000\000\000\377\001\000\000\000\344\244\000\000\000\000\001\000\000\000\330\226" "\000\000\000\377\001\000\000\000\214\261\000\000\000\000\001\000\000\000\276\230\000\000\000\377\001\000\000\000\014\240" "\000\000\000\000\001\000\000\000\262\227\000\000\000\377\001\000\000\000p\377\000\000\000\000\215\000\000\000\000\001\000\000" "\000?\230\000\000\000\377\002\000\000\000\371\000\000\000\021\217\000\000\000\000\001\000\000\000\\\226\000\000\000\377" "\003\000\000\000y\000\000\000\000\000\000\000\260\226\000\000\000\377\001\000\000\000r\222\000\000\000\000\001\000\000\000\352" "\227\000\000\000\377\001\000\000\000\244\214\000\000\000\000\001\000\000\000\340\227\000\000\000\377\001\000\000\000" "\311\242\000\000\000\000\001\000\000\000\352\226\000\000\000\377\001\000\000\000*\225\000\000\000\000\001\000\000\000X" "\226\000\000\000\377\001\000\000\000.\253\000\000\000\000\001\000\000\000]\227\000\000\000\377\001\000\000\000\213\214" "\000\000\000\000\001\000\000\000S\267\000\000\000\377\003\000\000\000\323\000\000\000i\000\000\000\014\377\000\000\000\000\002" "\000\000\000\000\000\000\000\332\227\000\000\000\377\001\000\000\000\244\202\000\000\000\000\001\000\000\000\213\222" "\000\000\000\377\002\000\000\000\371\000\000\000\036\204\000\000\000\000\001\000\000\000\032\224\000\000\000\377\001\000" "\000\000\345\204\000\000\000\000\001\000\000\000v\227\000\000\000\377\001\000\000\000\063\227\000\000\000\000\001\000\000" "\000p\227\000\000\000\377\001\000\000\000\271\243\000\000\000\000\002\000\000\000\012\000\000\000\375\226\000\000\000" "\377\001\000\000\000^\261\000\000\000\000\001\000\000\000\350\227\000\000\000\377\001\000\000\000\342\241\000\000\000" "\000\001\000\000\000\324\227\000\000\000\377\001\000\000\000_\377\000\000\000\000\215\000\000\000\000\001\000\000\000\260" "\230\000\000\000\377\001\000\000\000\260\220\000\000\000\000\001\000\000\000I\226\000\000\000\377\002\000\000\000\233" "\000\000\000\067\226\000\000\000\377\002\000\000\000\353\000\000\000\012\222\000\000\000\000\001\000\000\000\347\227" "\000\000\000\377\001\000\000\000\303\213\000\000\000\000\002\000\000\000\013\000\000\000\376\227\000\000\000\377\001\000" "\000\000\226\241\000\000\000\000\002\000\000\000\001\000\000\000\374\226\000\000\000\377\001\000\000\000\012\225\000\000" "\000\000\001\000\000\000z\226\000\000\000\377\001\000\000\000#\253\000\000\000\000\001\000\000\000\207\227\000\000\000\377" "\001\000\000\000h\214\000\000\000\000\001\000\000\000z\264\000\000\000\377\003\000\000\000\372\000\000\000\251\000\000\000" ">\377\000\000\000\000\204\000\000\000\000\001\000\000\000\324\227\000\000\000\377\004\000\000\000\244\000\000\000\000\000" "\000\000\026\000\000\000\365\222\000\000\000\377\001\000\000\000\222\205\000\000\000\000\001\000\000\000\033\224\000" "\000\000\377\001\000\000\000\353\203\000\000\000\000\002\000\000\000\002\000\000\000\336\226\000\000\000\377\001\000\000" "\000\277\230\000\000\000\000\001\000\000\000\232\227\000\000\000\377\001\000\000\000\216\243\000\000\000\000\001\000" "\000\000\067\227\000\000\000\377\001\000\000\000\060\260\000\000\000\000\001\000\000\000\021\230\000\000\000\377\001\000" "\000\000\271\240\000\000\000\000\002\000\000\000\001\000\000\000\366\227\000\000\000\377\001\000\000\000P\377\000\000\000" "\000\214\000\000\000\000\002\000\000\000$\000\000\000\375\230\000\000\000\377\001\000\000\000T\220\000\000\000\000\001\000" "\000\000\065\226\000\000\000\377\202\000\000\000\275\226\000\000\000\377\001\000\000\000w\223\000\000\000\000\001" "\000\000\000\344\227\000\000\000\377\001\000\000\000\343\213\000\000\000\000\001\000\000\000\062\230\000\000\000\377" "\001\000\000\000t\241\000\000\000\000\001\000\000\000\021\226\000\000\000\377\001\000\000\000\353\226\000\000\000\000\001" "\000\000\000\231\226\000\000\000\377\001\000\000\000\031\253\000\000\000\000\001\000\000\000\257\227\000\000\000\377" "\001\000\000\000F\214\000\000\000\000\001\000\000\000\234\262\000\000\000\377\003\000\000\000\345\000\000\000\177\000\000" "\000\031\377\000\000\000\000\206\000\000\000\000\001\000\000\000\317\227\000\000\000\377\003\000\000\000\244\000\000\000" "\000\000\000\000\214\222\000\000\000\377\002\000\000\000\365\000\000\000\027\205\000\000\000\000\001\000\000\000\034\224" "\000\000\000\377\001\000\000\000\360\203\000\000\000\000\001\000\000\000K\227\000\000\000\377\001\000\000\000L\230\000" "\000\000\000\001\000\000\000\304\227\000\000\000\377\001\000\000\000d\243\000\000\000\000\001\000\000\000_\226\000\000\000" "\377\002\000\000\000\376\000\000\000\010\260\000\000\000\000\001\000\000\000<\230\000\000\000\377\001\000\000\000\216" "\240\000\000\000\000\001\000\000\000\032\230\000\000\000\377\001\000\000\000A\377\000\000\000\000\214\000\000\000\000\001" "\000\000\000\223\230\000\000\000\377\002\000\000\000\361\000\000\000\010\220\000\000\000\000\001\000\000\000\040\226" "\000\000\000\377\001\000\000\000\370\226\000\000\000\377\002\000\000\000\352\000\000\000\013\223\000\000\000\000\001\000" "\000\000\341\227\000\000\000\377\002\000\000\000\375\000\000\000\005\212\000\000\000\000\001\000\000\000Q\230\000\000\000" "\377\001\000\000\000R\241\000\000\000\000\001\000\000\000\"\226\000\000\000\377\001\000\000\000\317\226\000\000\000\000" "\001\000\000\000\250\226\000\000\000\377\001\000\000\000\030\253\000\000\000\000\001\000\000\000\330\227\000\000\000\377" "\001\000\000\000$\214\000\000\000\000\001\000\000\000\277\260\000\000\000\377\003\000\000\000\300\000\000\000U\000\000\000" "\004\377\000\000\000\000\210\000\000\000\000\001\000\000\000\312\227\000\000\000\377\003\000\000\000\244\000\000\000\027" "\000\000\000\365\222\000\000\000\377\001\000\000\000\207\206\000\000\000\000\001\000\000\000\033\224\000\000\000\377" "\001\000\000\000\366\203\000\000\000\000\001\000\000\000\265\226\000\000\000\377\002\000\000\000\327\000\000\000\001\230" "\000\000\000\000\001\000\000\000\356\227\000\000\000\377\001\000\000\000\071\243\000\000\000\000\001\000\000\000\202\226" "\000\000\000\377\001\000\000\000\344\261\000\000\000\000\001\000\000\000g\230\000\000\000\377\001\000\000\000c\240\000" "\000\000\000\001\000\000\000=\230\000\000\000\377\001\000\000\000\062\377\000\000\000\000\213\000\000\000\000\002\000\000\000" "\020\000\000\000\364\230\000\000\000\377\001\000\000\000\237\221\000\000\000\000\001\000\000\000\013\255\000\000\000" "\377\001\000\000\000r\224\000\000\000\000\001\000\000\000\335\230\000\000\000\377\001\000\000\000#\212\000\000\000\000" "\001\000\000\000n\230\000\000\000\377\001\000\000\000\061\241\000\000\000\000\001\000\000\000\063\226\000\000\000\377\001" "\000\000\000\262\226\000\000\000\000\001\000\000\000\263\226\000\000\000\377\001\000\000\000$\252\000\000\000\000\002\000" "\000\000\005\000\000\000\373\226\000\000\000\377\002\000\000\000\374\000\000\000\005\214\000\000\000\000\001\000\000\000\341" "\255\000\000\000\377\003\000\000\000\363\000\000\000\226\000\000\000+\377\000\000\000\000\213\000\000\000\000\001\000\000" "\000\304\227\000\000\000\377\002\000\000\000\244\000\000\000\215\222\000\000\000\377\002\000\000\000\360\000\000" "\000\021\206\000\000\000\000\001\000\000\000\032\224\000\000\000\377\001\000\000\000\373\202\000\000\000\000\002\000\000" "\000!\000\000\000\375\226\000\000\000\377\001\000\000\000d\230\000\000\000\000\001\000\000\000\031\230\000\000\000\377" "\001\000\000\000\024\243\000\000\000\000\001\000\000\000\246\226\000\000\000\377\001\000\000\000\300\261\000\000\000\000" "\001\000\000\000\221\230\000\000\000\377\001\000\000\000\070\240\000\000\000\000\001\000\000\000^\230\000\000\000\377" "\001\000\000\000#\377\000\000\000\000\213\000\000\000\000\001\000\000\000u\231\000\000\000\377\001\000\000\000D\222\000\000" "\000\000\001\000\000\000\366\253\000\000\000\377\002\000\000\000\344\000\000\000\010\224\000\000\000\000\001\000\000\000\330" "\230\000\000\000\377\001\000\000\000C\212\000\000\000\000\001\000\000\000\213\230\000\000\000\377\001\000\000\000\026" "\241\000\000\000\000\001\000\000\000D\226\000\000\000\377\001\000\000\000\231\226\000\000\000\000\001\000\000\000\276\226" "\000\000\000\377\001\000\000\000:\252\000\000\000\000\001\000\000\000(\227\000\000\000\377\001\000\000\000\337\214\000" "\000\000\000\002\000\000\000\006\000\000\000\375\253\000\000\000\377\003\000\000\000\326\000\000\000l\000\000\000\015\377" "\000\000\000\000\215\000\000\000\000\001\000\000\000\275\227\000\000\000\377\002\000\000\000\273\000\000\000\366\222" "\000\000\000\377\001\000\000\000~\207\000\000\000\000\001\000\000\000\031\225\000\000\000\377\003\000\000\000\001\000\000\000" "\000\000\000\000\212\226\000\000\000\377\002\000\000\000\350\000\000\000\007\230\000\000\000\000\001\000\000\000D\227\000" "\000\000\377\001\000\000\000\357\244\000\000\000\000\001\000\000\000\312\226\000\000\000\377\001\000\000\000\234\261" "\000\000\000\000\001\000\000\000\274\230\000\000\000\377\001\000\000\000\016\240\000\000\000\000\001\000\000\000u\230\000" "\000\000\377\001\000\000\000\023\377\000\000\000\000\212\000\000\000\000\002\000\000\000\002\000\000\000\340\230\000\000\000" "\377\002\000\000\000\346\000\000\000\002\222\000\000\000\000\001\000\000\000\341\253\000\000\000\377\001\000\000\000g\225" "\000\000\000\000\001\000\000\000\324\230\000\000\000\377\001\000\000\000c\212\000\000\000\000\001\000\000\000\240\230\000" "\000\000\377\001\000\000\000\013\241\000\000\000\000\001\000\000\000S\226\000\000\000\377\001\000\000\000\201\226\000" "\000\000\000\001\000\000\000\311\226\000\000\000\377\001\000\000\000^\252\000\000\000\000\001\000\000\000N\227\000\000\000" "\377\001\000\000\000\276\214\000\000\000\000\001\000\000\000\031\251\000\000\000\377\003\000\000\000\373\000\000\000\255" "\000\000\000B\377\000\000\000\000\220\000\000\000\000\001\000\000\000\266\252\000\000\000\377\002\000\000\000\354\000\000" "\000\015\207\000\000\000\000\001\000\000\000\027\225\000\000\000\377\003\000\000\000\006\000\000\000\010\000\000\000\354\226" "\000\000\000\377\001\000\000\000{\231\000\000\000\000\001\000\000\000n\227\000\000\000\377\001\000\000\000\314\244\000" "\000\000\000\001\000\000\000\354\226\000\000\000\377\001\000\000\000\201\261\000\000\000\000\001\000\000\000\350\227" "\000\000\000\377\001\000\000\000\340\241\000\000\000\000\001\000\000\000\212\230\000\000\000\377\001\000\000\000\004\377" "\000\000\000\000\212\000\000\000\000\001\000\000\000M\231\000\000\000\377\001\000\000\000\217\223\000\000\000\000\001\000\000" "\000\313\252\000\000\000\377\002\000\000\000\334\000\000\000\005\225\000\000\000\000\001\000\000\000\317\230\000\000" "\000\377\001\000\000\000\204\212\000\000\000\000\001\000\000\000\261\227\000\000\000\377\002\000\000\000\376\000\000" "\000\001\241\000\000\000\000\001\000\000\000b\226\000\000\000\377\001\000\000\000j\226\000\000\000\000\001\000\000\000\324" "\226\000\000\000\377\001\000\000\000\217\252\000\000\000\000\001\000\000\000t\227\000\000\000\377\001\000\000\000\236" "\214\000\000\000\000\001\000\000\000%\247\000\000\000\377\003\000\000\000\347\000\000\000\202\000\000\000\033\377\000" "\000\000\000\222\000\000\000\000\001\000\000\000\256\252\000\000\000\377\001\000\000\000v\210\000\000\000\000\001\000\000\000" "\024\225\000\000\000\377\002\000\000\000\014\000\000\000_\226\000\000\000\377\002\000\000\000\364\000\000\000\022\231" "\000\000\000\000\001\000\000\000\226\227\000\000\000\377\001\000\000\000\250\243\000\000\000\000\001\000\000\000\007\227" "\000\000\000\377\001\000\000\000i\260\000\000\000\000\001\000\000\000\023\230\000\000\000\377\001\000\000\000\263\241" "\000\000\000\000\001\000\000\000\237\227\000\000\000\377\001\000\000\000\365\377\000\000\000\000\213\000\000\000\000\001" "\000\000\000\267\231\000\000\000\377\001\000\000\000\065\223\000\000\000\000\001\000\000\000\265\252\000\000\000\377" "\001\000\000\000\\\226\000\000\000\000\001\000\000\000\312\230\000\000\000\377\001\000\000\000\247\212\000\000\000\000" "\001\000\000\000\303\227\000\000\000\377\001\000\000\000\366\242\000\000\000\000\001\000\000\000p\226\000\000\000\377" "\001\000\000\000W\226\000\000\000\000\001\000\000\000\330\226\000\000\000\377\001\000\000\000\316\252\000\000\000\000\001" "\000\000\000\230\227\000\000\000\377\001\000\000\000}\214\000\000\000\000\001\000\000\000\060\245\000\000\000\377\003" "\000\000\000\303\000\000\000X\000\000\000\005\377\000\000\000\000\224\000\000\000\000\001\000\000\000\246\251\000\000\000\377" "\002\000\000\000\350\000\000\000\012\210\000\000\000\000\001\000\000\000\021\225\000\000\000\377\002\000\000\000\021\000\000" "\000\311\226\000\000\000\377\001\000\000\000\220\232\000\000\000\000\001\000\000\000\273\227\000\000\000\377\001" "\000\000\000\204\243\000\000\000\000\001\000\000\000\035\227\000\000\000\377\001\000\000\000R\260\000\000\000\000\001\000" "\000\000>\230\000\000\000\377\001\000\000\000\205\241\000\000\000\000\001\000\000\000\264\227\000\000\000\377\001\000" "\000\000\346\377\000\000\000\000\212\000\000\000\000\002\000\000\000\"\000\000\000\376\230\000\000\000\377\001\000\000" "\000\332\224\000\000\000\000\001\000\000\000\235\251\000\000\000\377\002\000\000\000\324\000\000\000\002\226\000\000" "\000\000\001\000\000\000\304\230\000\000\000\377\001\000\000\000\312\212\000\000\000\000\001\000\000\000\317\227\000" "\000\000\377\001\000\000\000\357\242\000\000\000\000\001\000\000\000}\226\000\000\000\377\001\000\000\000E\226\000\000" "\000\000\001\000\000\000\316\226\000\000\000\377\002\000\000\000\376\000\000\000\040\251\000\000\000\000\001\000\000\000\273" "\227\000\000\000\377\001\000\000\000]\214\000\000\000\000\001\000\000\000;\242\000\000\000\377\003\000\000\000\364\000" "\000\000\231\000\000\000.\377\000\000\000\000\227\000\000\000\000\001\000\000\000\237\251\000\000\000\377\001\000\000\000" "p\211\000\000\000\000\001\000\000\000\015\225\000\000\000\377\001\000\000\000I\226\000\000\000\377\002\000\000\000\373" "\000\000\000\037\232\000\000\000\000\001\000\000\000\340\227\000\000\000\377\001\000\000\000`\243\000\000\000\000\001\000" "\000\000\065\227\000\000\000\377\001\000\000\000?\260\000\000\000\000\001\000\000\000k\230\000\000\000\377\001\000\000\000" "W\241\000\000\000\000\001\000\000\000\311\227\000\000\000\377\001\000\000\000\326\377\000\000\000\000\212\000\000\000" "\000\001\000\000\000\213\231\000\000\000\377\001\000\000\000\201\224\000\000\000\000\001\000\000\000\205\251\000\000" "\000\377\001\000\000\000Q\227\000\000\000\000\001\000\000\000\276\230\000\000\000\377\001\000\000\000\355\212\000\000" "\000\000\001\000\000\000\325\227\000\000\000\377\001\000\000\000\372\242\000\000\000\000\001\000\000\000\211\226\000" "\000\000\377\001\000\000\000\070\226\000\000\000\000\001\000\000\000\303\227\000\000\000\377\001\000\000\000~\251\000" "\000\000\000\001\000\000\000\333\227\000\000\000\377\001\000\000\000=\214\000\000\000\000\001\000\000\000G\240\000\000\000" "\377\003\000\000\000\331\000\000\000o\000\000\000\017\377\000\000\000\000\231\000\000\000\000\001\000\000\000\226\250" "\000\000\000\377\002\000\000\000\344\000\000\000\010\211\000\000\000\000\001\000\000\000\011\225\000\000\000\377\001\000" "\000\000\272\226\000\000\000\377\001\000\000\000\244\232\000\000\000\000\002\000\000\000\007\000\000\000\375\227\000" "\000\000\377\001\000\000\000<\243\000\000\000\000\001\000\000\000L\227\000\000\000\377\001\000\000\000\066\260\000\000\000" "\000\001\000\000\000\227\230\000\000\000\377\001\000\000\000(\241\000\000\000\000\001\000\000\000\336\227\000\000\000\377" "\001\000\000\000\307\377\000\000\000\000\211\000\000\000\000\002\000\000\000\007\000\000\000\354\231\000\000\000\377\001" "\000\000\000'\224\000\000\000\000\001\000\000\000l\250\000\000\000\377\001\000\000\000\312\230\000\000\000\000\001\000\000" "\000\266\231\000\000\000\377\001\000\000\000\017\211\000\000\000\000\001\000\000\000\332\230\000\000\000\377\001\000" "\000\000\011\241\000\000\000\000\001\000\000\000\224\226\000\000\000\377\001\000\000\000,\226\000\000\000\000\001\000\000" "\000\270\227\000\000\000\377\002\000\000\000\351\000\000\000\011\250\000\000\000\000\001\000\000\000\366\227\000\000" "\000\377\001\000\000\000\036\214\000\000\000\000\001\000\000\000L\235\000\000\000\377\004\000\000\000\374\000\000\000\260" "\000\000\000E\000\000\000\001\377\000\000\000\000\233\000\000\000\000\001\000\000\000\215\250\000\000\000\377\001\000\000\000" "i\212\000\000\000\000\001\000\000\000\004\254\000\000\000\377\001\000\000\000.\232\000\000\000\000\001\000\000\000)\230\000" "\000\000\377\001\000\000\000\030\243\000\000\000\000\001\000\000\000]\227\000\000\000\377\001\000\000\000-\260\000\000\000" "\000\001\000\000\000\303\227\000\000\000\377\002\000\000\000\365\000\000\000\002\241\000\000\000\000\001\000\000\000\363" "\227\000\000\000\377\001\000\000\000\275\377\000\000\000\000\211\000\000\000\000\001\000\000\000X\231\000\000\000\377" "\001\000\000\000\315\225\000\000\000\000\001\000\000\000S\250\000\000\000\377\001\000\000\000E\230\000\000\000\000\001\000" "\000\000\253\231\000\000\000\377\001\000\000\000\062\211\000\000\000\000\001\000\000\000\336\230\000\000\000\377\001" "\000\000\000\027\241\000\000\000\000\001\000\000\000\237\226\000\000\000\377\001\000\000\000'\226\000\000\000\000\001\000" "\000\000\241\230\000\000\000\377\001\000\000\000w\247\000\000\000\000\001\000\000\000&\227\000\000\000\377\002\000\000" "\000\374\000\000\000\003\214\000\000\000\000\001\000\000\000B\233\000\000\000\377\003\000\000\000\352\000\000\000\206\000" "\000\000\036\377\000\000\000\000\236\000\000\000\000\001\000\000\000\204\247\000\000\000\377\002\000\000\000\340\000\000" "\000\006\213\000\000\000\000\001\000\000\000\375\252\000\000\000\377\001\000\000\000\266\233\000\000\000\000\001\000\000" "\000M\227\000\000\000\377\001\000\000\000\365\244\000\000\000\000\001\000\000\000f\227\000\000\000\377\001\000\000\000" "*\260\000\000\000\000\001\000\000\000\357\227\000\000\000\377\001\000\000\000\311\241\000\000\000\000\001\000\000\000\010" "\230\000\000\000\377\001\000\000\000\270\377\000\000\000\000\211\000\000\000\000\001\000\000\000\272\231\000\000\000" "\377\001\000\000\000t\225\000\000\000\000\001\000\000\000\071\247\000\000\000\377\001\000\000\000\300\231\000\000\000" "\000\001\000\000\000\233\231\000\000\000\377\001\000\000\000T\211\000\000\000\000\001\000\000\000\330\230\000\000\000\377" "\001\000\000\000\063\241\000\000\000\000\001\000\000\000\252\226\000\000\000\377\001\000\000\000%\226\000\000\000\000\001" "\000\000\000~\230\000\000\000\377\002\000\000\000\365\000\000\000\040\245\000\000\000\000\002\000\000\000B\000\000\000\355" "\227\000\000\000\377\001\000\000\000\342\215\000\000\000\000\001\000\000\000\066\231\000\000\000\377\003\000\000\000\307" "\000\000\000\\\000\000\000\007\377\000\000\000\000\240\000\000\000\000\001\000\000\000y\247\000\000\000\377\001\000\000\000b" "\214\000\000\000\000\001\000\000\000\366\252\000\000\000\377\001\000\000\000>\233\000\000\000\000\001\000\000\000r\227" "\000\000\000\377\001\000\000\000\326\244\000\000\000\000\001\000\000\000n\227\000\000\000\377\001\000\000\000\060\221" "\000\000\000\000\007\000\000\000\064\000\000\000\212\000\000\000\275\000\000\000\310\000\000\000\260\000\000\000\177\000\000" "\000.\227\000\000\000\000\001\000\000\000\035\230\000\000\000\377\001\000\000\000\226\241\000\000\000\000\001\000\000\000" "\032\230\000\000\000\377\001\000\000\000\263\377\000\000\000\000\210\000\000\000\000\002\000\000\000\035\000\000\000\375" "\230\000\000\000\377\002\000\000\000\376\000\000\000\035\225\000\000\000\000\001\000\000\000\035\247\000\000\000\377" "\001\000\000\000:\231\000\000\000\000\001\000\000\000\211\231\000\000\000\377\001\000\000\000v\211\000\000\000\000\001\000" "\000\000\317\230\000\000\000\377\001\000\000\000e\241\000\000\000\000\001\000\000\000\264\226\000\000\000\377\001\000" "\000\000)\226\000\000\000\000\001\000\000\000[\231\000\000\000\377\002\000\000\000\305\000\000\000\005\243\000\000\000\000" "\002\000\000\000k\000\000\000\373\230\000\000\000\377\001\000\000\000\304\215\000\000\000\000\001\000\000\000+\227\000" "\000\000\377\002\000\000\000\373\000\000\000A\263\000\000\000\000\007\000\000\000\007\000\000\000\064\000\000\000W\000\000\000d" "\000\000\000X\000\000\000@\000\000\000\020\350\000\000\000\000\001\000\000\000n\246\000\000\000\377\002\000\000\000\333\000" "\000\000\004\214\000\000\000\000\001\000\000\000\357\251\000\000\000\377\001\000\000\000\305\234\000\000\000\000\001\000" "\000\000\226\227\000\000\000\377\001\000\000\000\265\244\000\000\000\000\001\000\000\000v\227\000\000\000\377\001\000" "\000\000\070\217\000\000\000\000\002\000\000\000*\000\000\000\274\207\000\000\000\377\002\000\000\000\270\000\000\000.\225" "\000\000\000\000\001\000\000\000K\230\000\000\000\377\001\000\000\000d\241\000\000\000\000\001\000\000\000\"\230\000\000\000" "\377\001\000\000\000\256\377\000\000\000\000\210\000\000\000\000\001\000\000\000}\231\000\000\000\377\001\000\000\000\302" "\226\000\000\000\000\002\000\000\000\004\000\000\000\374\245\000\000\000\377\001\000\000\000\264\232\000\000\000\000\001" "\000\000\000w\231\000\000\000\377\001\000\000\000\230\211\000\000\000\000\001\000\000\000\306\230\000\000\000\377\001" "\000\000\000\231\241\000\000\000\000\001\000\000\000\274\226\000\000\000\377\001\000\000\000\062\226\000\000\000\000\001" "\000\000\000\066\232\000\000\000\377\001\000\000\000\230\241\000\000\000\000\002\000\000\000\021\000\000\000\253\232" "\000\000\000\377\001\000\000\000\250\215\000\000\000\000\001\000\000\000\023\230\000\000\000\377\002\000\000\000\301\000" "\000\000\010\257\000\000\000\000\004\000\000\000\027\000\000\000n\000\000\000\275\000\000\000\370\205\000\000\000\377\003" "\000\000\000\376\000\000\000\274\000\000\000B\346\000\000\000\000\001\000\000\000b\246\000\000\000\377\001\000\000\000Z\215" "\000\000\000\000\001\000\000\000\347\251\000\000\000\377\001\000\000\000L\234\000\000\000\000\001\000\000\000\273\227\000" "\000\000\377\001\000\000\000\224\244\000\000\000\000\001\000\000\000z\227\000\000\000\377\001\000\000\000M\216\000\000" "\000\000\002\000\000\000l\000\000\000\371\211\000\000\000\377\002\000\000\000\372\000\000\000m\224\000\000\000\000\001\000" "\000\000y\230\000\000\000\377\001\000\000\000\061\241\000\000\000\000\001\000\000\000)\230\000\000\000\377\001\000\000\000" "\251\377\000\000\000\000\207\000\000\000\000\002\000\000\000\001\000\000\000\335\231\000\000\000\377\001\000\000\000j\227" "\000\000\000\000\001\000\000\000\343\244\000\000\000\377\002\000\000\000\376\000\000\000\060\232\000\000\000\000\001\000\000" "\000e\231\000\000\000\377\001\000\000\000\271\211\000\000\000\000\001\000\000\000\273\230\000\000\000\377\001\000\000" "\000\326\241\000\000\000\000\001\000\000\000\305\226\000\000\000\377\001\000\000\000D\226\000\000\000\000\002\000\000\000" "\007\000\000\000\370\232\000\000\000\377\001\000\000\000\210\237\000\000\000\000\002\000\000\000A\000\000\000\343\233" "\000\000\000\377\001\000\000\000\214\216\000\000\000\000\001\000\000\000\354\230\000\000\000\377\002\000\000\000\263" "\000\000\000\007\253\000\000\000\000\004\000\000\000\001\000\000\000E\000\000\000\261\000\000\000\373\212\000\000\000\377\002" "\000\000\000\376\000\000\000{\345\000\000\000\000\001\000\000\000U\245\000\000\000\377\002\000\000\000\323\000\000\000\002" "\215\000\000\000\000\001\000\000\000\335\250\000\000\000\377\001\000\000\000\321\235\000\000\000\000\001\000\000\000\336" "\227\000\000\000\377\001\000\000\000s\244\000\000\000\000\001\000\000\000t\227\000\000\000\377\001\000\000\000f\214\000" "\000\000\000\002\000\000\000\003\000\000\000\230\215\000\000\000\377\001\000\000\000\221\223\000\000\000\000\001\000\000\000" "\246\227\000\000\000\377\002\000\000\000\367\000\000\000\005\241\000\000\000\000\001\000\000\000\060\230\000\000\000\377" "\001\000\000\000\243\377\000\000\000\000\207\000\000\000\000\001\000\000\000;\231\000\000\000\377\002\000\000\000\374\000" "\000\000\025\227\000\000\000\000\001\000\000\000\304\244\000\000\000\377\001\000\000\000\251\233\000\000\000\000\001\000" "\000\000S\231\000\000\000\377\001\000\000\000\333\211\000\000\000\000\001\000\000\000\243\231\000\000\000\377\001\000" "\000\000\070\240\000\000\000\000\001\000\000\000\316\226\000\000\000\377\001\000\000\000c\227\000\000\000\000\001\000\000" "\000\303\233\000\000\000\377\002\000\000\000\225\000\000\000\003\233\000\000\000\000\003\000\000\000\025\000\000\000\237" "\000\000\000\376\234\000\000\000\377\001\000\000\000q\216\000\000\000\000\001\000\000\000\306\231\000\000\000\377\002" "\000\000\000\306\000\000\000\026\250\000\000\000\000\003\000\000\000\003\000\000\000[\000\000\000\323\217\000\000\000\377" "\001\000\000\000G\344\000\000\000\000\001\000\000\000H\245\000\000\000\377\001\000\000\000Q\216\000\000\000\000\001\000\000\000" "\323\250\000\000\000\377\001\000\000\000W\234\000\000\000\000\002\000\000\000\005\000\000\000\374\227\000\000\000\377" "\001\000\000\000R\244\000\000\000\000\001\000\000\000n\227\000\000\000\377\001\000\000\000\216\213\000\000\000\000\002\000" "\000\000\003\000\000\000\246\217\000\000\000\377\001\000\000\000y\222\000\000\000\000\001\000\000\000\326\227\000\000\000" "\377\001\000\000\000\307\242\000\000\000\000\001\000\000\000\067\230\000\000\000\377\001\000\000\000\236\377\000\000" "\000\000\207\000\000\000\000\001\000\000\000\222\231\000\000\000\377\001\000\000\000\272\230\000\000\000\000\001\000\000" "\000\242\243\000\000\000\377\002\000\000\000\374\000\000\000'\233\000\000\000\000\001\000\000\000A\231\000\000\000\377" "\002\000\000\000\371\000\000\000\002\210\000\000\000\000\001\000\000\000\206\231\000\000\000\377\001\000\000\000\235\236" "\000\000\000\000\002\000\000\000\014\000\000\000\234\227\000\000\000\377\001\000\000\000\230\227\000\000\000\000\001\000\000" "\000\207\234\000\000\000\377\002\000\000\000\271\000\000\000\027\230\000\000\000\000\003\000\000\000\007\000\000\000n\000" "\000\000\357\236\000\000\000\377\001\000\000\000V\216\000\000\000\000\001\000\000\000\235\232\000\000\000\377\002\000" "\000\000\340\000\000\000\070\245\000\000\000\000\003\000\000\000\002\000\000\000Y\000\000\000\331\221\000\000\000\377\001" "\000\000\000\302\344\000\000\000\000\001\000\000\000\071\244\000\000\000\377\001\000\000\000\311\217\000\000\000\000\001" "\000\000\000\307\247\000\000\000\377\002\000\000\000\331\000\000\000\002\234\000\000\000\000\001\000\000\000$\230\000\000" "\000\377\001\000\000\000\060\244\000\000\000\000\001\000\000\000g\227\000\000\000\377\001\000\000\000\301\212\000\000" "\000\000\002\000\000\000\005\000\000\000\254\220\000\000\000\377\002\000\000\000\373\000\000\000)\220\000\000\000\000\002\000" "\000\000\011\000\000\000\374\227\000\000\000\377\001\000\000\000\222\242\000\000\000\000\001\000\000\000>\230\000\000" "\000\377\001\000\000\000\231\377\000\000\000\000\206\000\000\000\000\002\000\000\000\002\000\000\000\346\231\000\000\000" "\377\001\000\000\000b\230\000\000\000\000\001\000\000\000\200\243\000\000\000\377\001\000\000\000\236\234\000\000\000" "\000\001\000\000\000/\232\000\000\000\377\001\000\000\000\034\210\000\000\000\000\001\000\000\000j\231\000\000\000\377\002" "\000\000\000\370\000\000\000*\234\000\000\000\000\002\000\000\000<\000\000\000\333\230\000\000\000\377\001\000\000\000\341" "\227\000\000\000\000\001\000\000\000>\235\000\000\000\377\002\000\000\000\351\000\000\000Z\225\000\000\000\000\003\000\000" "\000\011\000\000\000n\000\000\000\344\240\000\000\000\377\001\000\000\000=\216\000\000\000\000\001\000\000\000_\233\000" "\000\000\377\003\000\000\000\375\000\000\000\217\000\000\000\013\241\000\000\000\000\003\000\000\000\003\000\000\000[\000\000" "\000\326\223\000\000\000\377\002\000\000\000\373\000\000\000\014\343\000\000\000\000\001\000\000\000)\244\000\000\000" "\377\001\000\000\000D\217\000\000\000\000\001\000\000\000\272\247\000\000\000\377\001\000\000\000_\235\000\000\000\000" "\001\000\000\000G\230\000\000\000\377\001\000\000\000\016\244\000\000\000\000\001\000\000\000X\227\000\000\000\377\002\000" "\000\000\373\000\000\000\022\210\000\000\000\000\002\000\000\000\022\000\000\000\277\222\000\000\000\377\001\000\000\000" "\261\220\000\000\000\000\001\000\000\000\067\230\000\000\000\377\001\000\000\000Y\242\000\000\000\000\001\000\000\000E\230" "\000\000\000\377\001\000\000\000\224\377\000\000\000\000\206\000\000\000\000\001\000\000\000@\231\000\000\000\377\002\000" "\000\000\371\000\000\000\021\230\000\000\000\000\001\000\000\000\\\242\000\000\000\377\002\000\000\000\371\000\000\000\037" "\234\000\000\000\000\001\000\000\000\035\232\000\000\000\377\001\000\000\000<\210\000\000\000\000\001\000\000\000H\232\000" "\000\000\377\002\000\000\000\313\000\000\000\004\231\000\000\000\000\003\000\000\000\027\000\000\000\241\000\000\000\376\232" "\000\000\000\377\001\000\000\000\060\226\000\000\000\000\002\000\000\000\002\000\000\000\344\236\000\000\000\377\003\000\000" "\000\307\000\000\000M\000\000\000\001\220\000\000\000\000\003\000\000\000\060\000\000\000\221\000\000\000\354\242\000\000" "\000\377\001\000\000\000%\216\000\000\000\000\001\000\000\000\033\235\000\000\000\377\003\000\000\000\343\000\000\000l\000" "\000\000\010\235\000\000\000\000\003\000\000\000\025\000\000\000w\000\000\000\336\226\000\000\000\377\001\000\000\000(\343" "\000\000\000\000\001\000\000\000\030\243\000\000\000\377\001\000\000\000\275\220\000\000\000\000\001\000\000\000\254\246" "\000\000\000\377\002\000\000\000\335\000\000\000\004\235\000\000\000\000\001\000\000\000j\227\000\000\000\377\001\000\000\000" "\353\245\000\000\000\000\001\000\000\000B\230\000\000\000\377\001\000\000\000{\207\000\000\000\000\002\000\000\000A\000\000" "\000\342\223\000\000\000\377\002\000\000\000\373\000\000\000\017\217\000\000\000\000\001\000\000\000h\230\000\000\000" "\377\001\000\000\000\040\242\000\000\000\000\001\000\000\000L\230\000\000\000\377\001\000\000\000\217\377\000\000\000" "\000\206\000\000\000\000\001\000\000\000\227\231\000\000\000\377\001\000\000\000\263\231\000\000\000\000\001\000\000\000" "\071\242\000\000\000\377\001\000\000\000\222\235\000\000\000\000\001\000\000\000\014\232\000\000\000\377\001\000\000" "\000]\210\000\000\000\000\001\000\000\000\027\233\000\000\000\377\002\000\000\000\232\000\000\000\002\226\000\000\000\000" "\003\000\000\000\022\000\000\000\203\000\000\000\361\234\000\000\000\377\001\000\000\000~\227\000\000\000\000\001\000\000" "\000\216\240\000\000\000\377\004\000\000\000\335\000\000\000\205\000\000\000\070\000\000\000\005\211\000\000\000\000\004" "\000\000\000\020\000\000\000J\000\000\000\217\000\000\000\325\245\000\000\000\377\001\000\000\000\015\217\000\000\000\000" "\001\000\000\000\327\236\000\000\000\377\003\000\000\000\350\000\000\000\177\000\000\000%\230\000\000\000\000\004\000\000" "\000\021\000\000\000]\000\000\000\264\000\000\000\371\230\000\000\000\377\001\000\000\000\060\343\000\000\000\000\001\000" "\000\000\005\243\000\000\000\377\001\000\000\000\066\220\000\000\000\000\001\000\000\000\235\246\000\000\000\377\001\000" "\000\000c\236\000\000\000\000\001\000\000\000\215\227\000\000\000\377\001\000\000\000\310\245\000\000\000\000\001\000\000" "\000,\230\000\000\000\377\002\000\000\000\364\000\000\000\067\204\000\000\000\000\002\000\000\000\061\000\000\000\252\226" "\000\000\000\377\001\000\000\000U\217\000\000\000\000\001\000\000\000\233\227\000\000\000\377\001\000\000\000\346\243" "\000\000\000\000\001\000\000\000R\230\000\000\000\377\001\000\000\000\211\377\000\000\000\000\205\000\000\000\000\002\000\000" "\000\001\000\000\000\347\231\000\000\000\377\001\000\000\000\\\231\000\000\000\000\001\000\000\000\025\241\000\000\000\377" "\002\000\000\000\363\000\000\000\026\236\000\000\000\000\001\000\000\000\371\231\000\000\000\377\001\000\000\000}\211" "\000\000\000\000\001\000\000\000\344\233\000\000\000\377\002\000\000\000\256\000\000\000\010\223\000\000\000\000\003\000\000" "\000&\000\000\000\214\000\000\000\362\236\000\000\000\377\001\000\000\000\314\227\000\000\000\000\001\000\000\000\060" "\243\000\000\000\377\012\000\000\000\366\000\000\000\313\000\000\000\251\000\000\000\221\000\000\000\206\000\000\000" "\204\000\000\000\222\000\000\000\240\000\000\000\273\000\000\000\345\250\000\000\000\377\001\000\000\000\367\220" "\000\000\000\000\001\000\000\000\202\241\000\000\000\377\004\000\000\000\314\000\000\000~\000\000\000C\000\000\000\014\220" "\000\000\000\000\005\000\000\000\033\000\000\000N\000\000\000\206\000\000\000\311\000\000\000\375\233\000\000\000\377\001" "\000\000\000\034\344\000\000\000\000\001\000\000\000\361\241\000\000\000\377\001\000\000\000\256\221\000\000\000\000\001" "\000\000\000\214\245\000\000\000\377\002\000\000\000\336\000\000\000\005\236\000\000\000\000\001\000\000\000\260\227" "\000\000\000\377\001\000\000\000\245\245\000\000\000\000\001\000\000\000\020\231\000\000\000\377\005\000\000\000\372\000" "\000\000\245\000\000\000\205\000\000\000\235\000\000\000\327\230\000\000\000\377\001\000\000\000{\217\000\000\000\000" "\001\000\000\000\317\227\000\000\000\377\001\000\000\000\251\243\000\000\000\000\001\000\000\000W\230\000\000\000\377" "\001\000\000\000\210\377\000\000\000\000\205\000\000\000\000\001\000\000\000\063\231\000\000\000\377\002\000\000\000\370" "\000\000\000\015\232\000\000\000\000\001\000\000\000\361\240\000\000\000\377\001\000\000\000\202\237\000\000\000\000\001" "\000\000\000\350\231\000\000\000\377\001\000\000\000\234\211\000\000\000\000\001\000\000\000\260\234\000\000\000\377" "\003\000\000\000\336\000\000\000^\000\000\000\002\216\000\000\000\000\003\000\000\000\035\000\000\000k\000\000\000\300\241\000" "\000\000\377\002\000\000\000\376\000\000\000\033\227\000\000\000\000\001\000\000\000\274\324\000\000\000\377\001\000\000" "\000\344\220\000\000\000\000\002\000\000\000\037\000\000\000\375\243\000\000\000\377\021\000\000\000\374\000\000\000" "\323\000\000\000\261\000\000\000\220\000\000\000p\000\000\000`\000\000\000V\000\000\000L\000\000\000E\000\000\000K\000\000\000" "R\000\000\000]\000\000\000q\000\000\000\206\000\000\000\242\000\000\000\306\000\000\000\352\237\000\000\000\377\002\000" "\000\000\376\000\000\000\006\344\000\000\000\000\001\000\000\000\332\240\000\000\000\377\002\000\000\000\374\000\000\000" "(\221\000\000\000\000\001\000\000\000{\245\000\000\000\377\001\000\000\000b\237\000\000\000\000\001\000\000\000\323\227" "\000\000\000\377\001\000\000\000\202\246\000\000\000\000\001\000\000\000\352\265\000\000\000\377\001\000\000\000\222" "\216\000\000\000\000\002\000\000\000\011\000\000\000\373\227\000\000\000\377\001\000\000\000l\243\000\000\000\000\001\000" "\000\000U\230\000\000\000\377\001\000\000\000\210\377\000\000\000\000\205\000\000\000\000\001\000\000\000\177\231\000" "\000\000\377\001\000\000\000\260\233\000\000\000\000\001\000\000\000\316\237\000\000\000\377\002\000\000\000\353\000" "\000\000\016\237\000\000\000\000\001\000\000\000\326\231\000\000\000\377\001\000\000\000\273\211\000\000\000\000\001\000" "\000\000n\236\000\000\000\377\004\000\000\000\333\000\000\000\217\000\000\000K\000\000\000\021\205\000\000\000\000\006\000" "\000\000\001\000\000\000\030\000\000\000\070\000\000\000c\000\000\000\232\000\000\000\323\245\000\000\000\377\001\000\000\000" "h\227\000\000\000\000\001\000\000\000F\324\000\000\000\377\001\000\000\000\320\221\000\000\000\000\001\000\000\000\267" "\323\000\000\000\377\001\000\000\000\315\345\000\000\000\000\001\000\000\000\300\240\000\000\000\377\001\000\000\000" "\233\222\000\000\000\000\001\000\000\000h\244\000\000\000\377\002\000\000\000\332\000\000\000\004\237\000\000\000\000\001" "\000\000\000\365\227\000\000\000\377\001\000\000\000_\246\000\000\000\000\001\000\000\000\303\265\000\000\000\377\001" "\000\000\000\227\216\000\000\000\000\001\000\000\000?\230\000\000\000\377\001\000\000\000,\243\000\000\000\000\001\000\000" "\000S\230\000\000\000\377\001\000\000\000\212\377\000\000\000\000\205\000\000\000\000\001\000\000\000\312\231\000\000" "\000\377\001\000\000\000[\233\000\000\000\000\001\000\000\000\252\237\000\000\000\377\001\000\000\000l\240\000\000\000" "\000\001\000\000\000\304\231\000\000\000\377\001\000\000\000\332\211\000\000\000\000\001\000\000\000\040\242\000\000\000" "\377\006\000\000\000\372\000\000\000\347\000\000\000\327\000\000\000\335\000\000\000\350\000\000\000\367\252\000" "\000\000\377\001\000\000\000\267\230\000\000\000\000\001\000\000\000\314\323\000\000\000\377\001\000\000\000\302\221" "\000\000\000\000\001\000\000\000D\323\000\000\000\377\001\000\000\000\210\345\000\000\000\000\001\000\000\000\243\237\000" "\000\000\377\002\000\000\000\365\000\000\000\032\222\000\000\000\000\001\000\000\000Q\244\000\000\000\377\001\000\000\000" "Z\237\000\000\000\000\001\000\000\000\031\230\000\000\000\377\001\000\000\000:\246\000\000\000\000\001\000\000\000\230\265" "\000\000\000\377\001\000\000\000\204\216\000\000\000\000\001\000\000\000~\227\000\000\000\377\001\000\000\000\350\244" "\000\000\000\000\001\000\000\000P\230\000\000\000\377\001\000\000\000\216\377\000\000\000\000\204\000\000\000\000\002\000\000" "\000\023\000\000\000\376\230\000\000\000\377\002\000\000\000\370\000\000\000\016\233\000\000\000\000\001\000\000\000\207" "\236\000\000\000\377\002\000\000\000\332\000\000\000\005\240\000\000\000\000\001\000\000\000\262\231\000\000\000\377" "\001\000\000\000\367\212\000\000\000\000\001\000\000\000\323\321\000\000\000\377\002\000\000\000\370\000\000\000\014\227" "\000\000\000\000\001\000\000\000<\323\000\000\000\377\001\000\000\000\264\222\000\000\000\000\001\000\000\000\273\322\000" "\000\000\377\001\000\000\000\062\345\000\000\000\000\001\000\000\000\202\237\000\000\000\377\001\000\000\000\205\223" "\000\000\000\000\001\000\000\000:\243\000\000\000\377\002\000\000\000\321\000\000\000\001\237\000\000\000\000\001\000\000\000=" "\230\000\000\000\377\001\000\000\000\024\246\000\000\000\000\001\000\000\000_\265\000\000\000\377\001\000\000\000c\216" "\000\000\000\000\001\000\000\000\314\227\000\000\000\377\001\000\000\000\245\244\000\000\000\000\001\000\000\000K\230\000" "\000\000\377\001\000\000\000\222\377\000\000\000\000\204\000\000\000\000\001\000\000\000O\231\000\000\000\377\001\000\000" "\000\262\234\000\000\000\000\001\000\000\000c\236\000\000\000\377\001\000\000\000R\241\000\000\000\000\001\000\000\000\240" "\232\000\000\000\377\001\000\000\000\024\211\000\000\000\000\001\000\000\000z\322\000\000\000\377\001\000\000\000R\230" "\000\000\000\000\001\000\000\000\244\322\000\000\000\377\001\000\000\000\253\222\000\000\000\000\002\000\000\000\062\000\000" "\000\376\320\000\000\000\377\001\000\000\000\271\346\000\000\000\000\001\000\000\000Z\236\000\000\000\377\002\000\000" "\000\352\000\000\000\016\223\000\000\000\000\001\000\000\000\040\243\000\000\000\377\001\000\000\000J\240\000\000\000\000" "\001\000\000\000`\227\000\000\000\377\001\000\000\000\356\247\000\000\000\000\001\000\000\000$\265\000\000\000\377\001" "\000\000\000(\215\000\000\000\000\001\000\000\000>\230\000\000\000\377\001\000\000\000^\244\000\000\000\000\001\000\000\000C" "\230\000\000\000\377\001\000\000\000\231\377\000\000\000\000\204\000\000\000\000\001\000\000\000\213\231\000\000\000" "\377\001\000\000\000^\234\000\000\000\000\001\000\000\000?\235\000\000\000\377\001\000\000\000\277\242\000\000\000\000" "\001\000\000\000\216\232\000\000\000\377\001\000\000\000\061\211\000\000\000\000\002\000\000\000\026\000\000\000\370\321" "\000\000\000\377\001\000\000\000\233\230\000\000\000\000\002\000\000\000\031\000\000\000\360\321\000\000\000\377\001\000" "\000\000\245\223\000\000\000\000\001\000\000\000\225\317\000\000\000\377\002\000\000\000\376\000\000\000:\346\000\000" "\000\000\001\000\000\000-\236\000\000\000\377\001\000\000\000k\224\000\000\000\000\002\000\000\000\006\000\000\000\376\241" "\000\000\000\377\001\000\000\000\276\241\000\000\000\000\001\000\000\000\203\227\000\000\000\377\001\000\000\000\307" "\250\000\000\000\000\001\000\000\000\342\263\000\000\000\377\001\000\000\000\336\216\000\000\000\000\001\000\000\000\264" "\227\000\000\000\377\002\000\000\000\375\000\000\000\026\244\000\000\000\000\001\000\000\000:\230\000\000\000\377\001" "\000\000\000\242\377\000\000\000\000\204\000\000\000\000\001\000\000\000\307\230\000\000\000\377\002\000\000\000\372" "\000\000\000\021\234\000\000\000\000\001\000\000\000\034\234\000\000\000\377\002\000\000\000\375\000\000\000/\242\000\000" "\000\000\001\000\000\000|\232\000\000\000\377\001\000\000\000L\212\000\000\000\000\001\000\000\000\242\321\000\000\000\377" "\001\000\000\000\343\231\000\000\000\000\001\000\000\000V\321\000\000\000\377\001\000\000\000\240\223\000\000\000\000\002" "\000\000\000\011\000\000\000\326\316\000\000\000\377\001\000\000\000\215\347\000\000\000\000\002\000\000\000\005\000\000\000" "\371\234\000\000\000\377\002\000\000\000\331\000\000\000\004\225\000\000\000\000\001\000\000\000\347\240\000\000\000" "\377\002\000\000\000\375\000\000\000\061\241\000\000\000\000\001\000\000\000\246\227\000\000\000\377\001\000\000\000\237" "\250\000\000\000\000\001\000\000\000\222\263\000\000\000\377\001\000\000\000x\215\000\000\000\000\002\000\000\000\027\000" "\000\000\374\227\000\000\000\377\001\000\000\000\305\245\000\000\000\000\001\000\000\000\060\230\000\000\000\377\001" "\000\000\000\254\377\000\000\000\000\203\000\000\000\000\002\000\000\000\004\000\000\000\371\230\000\000\000\377\001\000" "\000\000\272\235\000\000\000\000\002\000\000\000\001\000\000\000\367\233\000\000\000\377\001\000\000\000\230\243\000" "\000\000\000\001\000\000\000j\232\000\000\000\377\001\000\000\000f\212\000\000\000\000\002\000\000\000,\000\000\000\374\321" "\000\000\000\377\001\000\000\000+\231\000\000\000\000\001\000\000\000\232\320\000\000\000\377\001\000\000\000\231\224" "\000\000\000\000\002\000\000\000\060\000\000\000\371\314\000\000\000\377\002\000\000\000\320\000\000\000\007\350\000\000\000" "\000\001\000\000\000\314\234\000\000\000\377\001\000\000\000M\226\000\000\000\000\001\000\000\000\304\240\000\000\000\377" "\001\000\000\000\232\242\000\000\000\000\001\000\000\000\311\227\000\000\000\377\001\000\000\000t\250\000\000\000\000\001" "\000\000\000?\262\000\000\000\377\002\000\000\000\356\000\000\000\023\215\000\000\000\000\001\000\000\000d\230\000\000\000" "\377\001\000\000\000s\245\000\000\000\000\001\000\000\000!\230\000\000\000\377\001\000\000\000\272\377\000\000\000\000" "\203\000\000\000\000\001\000\000\000'\231\000\000\000\377\001\000\000\000i\236\000\000\000\000\001\000\000\000\325\232" "\000\000\000\377\002\000\000\000\353\000\000\000\022\243\000\000\000\000\001\000\000\000X\232\000\000\000\377\001\000\000" "\000\177\213\000\000\000\000\001\000\000\000\231\321\000\000\000\377\001\000\000\000n\231\000\000\000\000\002\000\000\000" "\011\000\000\000\317\317\000\000\000\377\001\000\000\000\213\225\000\000\000\000\002\000\000\000Y\000\000\000\376\312" "\000\000\000\377\002\000\000\000\333\000\000\000\030\351\000\000\000\000\001\000\000\000\226\233\000\000\000\377\001\000" "\000\000\274\227\000\000\000\000\001\000\000\000\237\237\000\000\000\377\002\000\000\000\354\000\000\000\023\242\000" "\000\000\000\001\000\000\000\354\227\000\000\000\377\001\000\000\000H\250\000\000\000\000\002\000\000\000\002\000\000\000\334" "\261\000\000\000\377\001\000\000\000k\216\000\000\000\000\001\000\000\000\236\227\000\000\000\377\002\000\000\000\376" "\000\000\000\035\245\000\000\000\000\001\000\000\000\021\230\000\000\000\377\001\000\000\000\314\377\000\000\000\000\203" "\000\000\000\000\001\000\000\000P\230\000\000\000\377\002\000\000\000\376\000\000\000\033\236\000\000\000\000\001\000\000\000" "\261\232\000\000\000\377\001\000\000\000c\244\000\000\000\000\001\000\000\000F\232\000\000\000\377\001\000\000\000\225" "\213\000\000\000\000\002\000\000\000\026\000\000\000\361\320\000\000\000\377\001\000\000\000\260\232\000\000\000\000\002" "\000\000\000\032\000\000\000\341\316\000\000\000\377\001\000\000\000x\226\000\000\000\000\001\000\000\000p\311\000\000\000" "\377\002\000\000\000\340\000\000\000\037\352\000\000\000\000\001\000\000\000[\232\000\000\000\377\002\000\000\000\374" "\000\000\000,\227\000\000\000\000\001\000\000\000v\237\000\000\000\377\001\000\000\000[\242\000\000\000\000\001\000\000\000\017" "\230\000\000\000\377\001\000\000\000\030\251\000\000\000\000\001\000\000\000o\260\000\000\000\377\002\000\000\000\273" "\000\000\000\003\216\000\000\000\000\001\000\000\000\275\227\000\000\000\377\001\000\000\000\277\246\000\000\000\000\002" "\000\000\000\002\000\000\000\374\227\000\000\000\377\001\000\000\000\342\377\000\000\000\000\203\000\000\000\000\001\000" "\000\000w\230\000\000\000\377\001\000\000\000\314\237\000\000\000\000\001\000\000\000\215\231\000\000\000\377\002\000" "\000\000\302\000\000\000\001\244\000\000\000\000\001\000\000\000\064\232\000\000\000\377\001\000\000\000\251\214\000\000" "\000\000\001\000\000\000^\320\000\000\000\377\001\000\000\000\354\233\000\000\000\000\002\000\000\000)\000\000\000\355\315" "\000\000\000\377\001\000\000\000W\227\000\000\000\000\001\000\000\000\201\307\000\000\000\377\002\000\000\000\304\000\000" "\000\026\353\000\000\000\000\001\000\000\000\034\232\000\000\000\377\001\000\000\000\224\230\000\000\000\000\001\000\000" "\000I\236\000\000\000\377\001\000\000\000\257\243\000\000\000\000\001\000\000\000\062\227\000\000\000\377\001\000\000" "\000\326\252\000\000\000\000\002\000\000\000\015\000\000\000\354\256\000\000\000\377\002\000\000\000\337\000\000\000\023" "\217\000\000\000\000\001\000\000\000\303\227\000\000\000\377\001\000\000\000Y\247\000\000\000\000\001\000\000\000\346\227" "\000\000\000\377\001\000\000\000\371\377\000\000\000\000\203\000\000\000\000\001\000\000\000\220\230\000\000\000\377" "\001\000\000\000y\237\000\000\000\000\001\000\000\000j\230\000\000\000\377\002\000\000\000\370\000\000\000(\245\000\000\000" "\000\001\000\000\000\024\232\000\000\000\377\001\000\000\000\270\215\000\000\000\000\001\000\000\000\240\320\000\000\000" "\377\001\000\000\000!\233\000\000\000\000\002\000\000\000\067\000\000\000\356\314\000\000\000\377\001\000\000\000+\230" "\000\000\000\000\002\000\000\000j\000\000\000\374\304\000\000\000\377\002\000\000\000\232\000\000\000\006\355\000\000\000\000" "\001\000\000\000\331\230\000\000\000\377\002\000\000\000\354\000\000\000\021\230\000\000\000\000\001\000\000\000\026\235" "\000\000\000\377\002\000\000\000\354\000\000\000\027\243\000\000\000\000\001\000\000\000?\227\000\000\000\377\001\000\000" "\000\220\253\000\000\000\000\001\000\000\000l\255\000\000\000\377\002\000\000\000\342\000\000\000#\220\000\000\000\000" "\001\000\000\000\253\226\000\000\000\377\002\000\000\000\343\000\000\000\005\247\000\000\000\000\001\000\000\000\315\227" "\000\000\000\377\001\000\000\000\370\377\000\000\000\000\203\000\000\000\000\001\000\000\000\237\227\000\000\000\377" "\002\000\000\000\361\000\000\000\020\237\000\000\000\000\001\000\000\000\066\230\000\000\000\377\001\000\000\000y\247\000" "\000\000\000\001\000\000\000\335\231\000\000\000\377\001\000\000\000\273\215\000\000\000\000\002\000\000\000\013\000\000\000" "\316\317\000\000\000\377\001\000\000\000G\234\000\000\000\000\002\000\000\000+\000\000\000\345\312\000\000\000\377" "\002\000\000\000\353\000\000\000\001\231\000\000\000\000\002\000\000\000N\000\000\000\365\301\000\000\000\377\002\000\000\000" "\343\000\000\000J\357\000\000\000\000\001\000\000\000\217\230\000\000\000\377\001\000\000\000d\232\000\000\000\000\001" "\000\000\000\334\234\000\000\000\377\001\000\000\000W\244\000\000\000\000\001\000\000\000*\227\000\000\000\377\001\000" "\000\000\064\253\000\000\000\000\002\000\000\000\004\000\000\000\324\253\000\000\000\377\002\000\000\000\335\000\000\000\"" "\221\000\000\000\000\001\000\000\000w\226\000\000\000\377\001\000\000\000h\250\000\000\000\000\001\000\000\000\255\227" "\000\000\000\377\001\000\000\000\323\377\000\000\000\000\203\000\000\000\000\001\000\000\000\256\227\000\000\000\377" "\001\000\000\000\205\241\000\000\000\000\001\000\000\000\341\226\000\000\000\377\002\000\000\000\305\000\000\000\003\247" "\000\000\000\000\001\000\000\000\245\231\000\000\000\377\001\000\000\000\247\216\000\000\000\000\002\000\000\000\024\000\000" "\000\325\316\000\000\000\377\001\000\000\000\070\235\000\000\000\000\002\000\000\000\040\000\000\000\330\311\000\000" "\000\377\001\000\000\000\206\233\000\000\000\000\002\000\000\000)\000\000\000\317\276\000\000\000\377\003\000\000\000\373" "\000\000\000\224\000\000\000\016\360\000\000\000\000\001\000\000\000@\227\000\000\000\377\002\000\000\000\307\000\000\000" "\001\232\000\000\000\000\001\000\000\000\231\233\000\000\000\377\001\000\000\000\235\245\000\000\000\000\002\000\000\000" "\012\000\000\000\370\225\000\000\000\377\001\000\000\000\274\255\000\000\000\000\002\000\000\000.\000\000\000\367\251" "\000\000\000\377\002\000\000\000\270\000\000\000\021\222\000\000\000\000\002\000\000\000#\000\000\000\376\224\000\000\000" "\377\002\000\000\000\312\000\000\000\003\250\000\000\000\000\001\000\000\000\211\227\000\000\000\377\001\000\000\000\212" "\377\000\000\000\000\203\000\000\000\000\001\000\000\000\247\226\000\000\000\377\002\000\000\000\357\000\000\000\024\241" "\000\000\000\000\001\000\000\000\207\225\000\000\000\377\002\000\000\000\360\000\000\000\"\250\000\000\000\000\001\000\000" "\000g\231\000\000\000\377\001\000\000\000v\217\000\000\000\000\002\000\000\000\031\000\000\000\326\314\000\000\000\377" "\002\000\000\000\374\000\000\000\021\236\000\000\000\000\002\000\000\000\015\000\000\000\243\263\000\000\000\377\001\000" "\000\000\362\223\000\000\000\377\002\000\000\000\336\000\000\000\015\234\000\000\000\000\003\000\000\000\006\000\000\000\214" "\000\000\000\376\272\000\000\000\377\003\000\000\000\376\000\000\000\250\000\000\000$\362\000\000\000\000\002\000\000\000" "\002\000\000\000\346\225\000\000\000\377\002\000\000\000\373\000\000\000-\233\000\000\000\000\001\000\000\000K\232\000" "\000\000\377\002\000\000\000\325\000\000\000\012\246\000\000\000\000\001\000\000\000\272\224\000\000\000\377\002\000\000" "\000\373\000\000\000\067\256\000\000\000\000\001\000\000\000e\247\000\000\000\377\003\000\000\000\371\000\000\000|\000\000" "\000\002\224\000\000\000\000\001\000\000\000\243\223\000\000\000\377\002\000\000\000\353\000\000\000\040\251\000\000\000" "\000\001\000\000\000^\226\000\000\000\377\002\000\000\000\374\000\000\000%\377\000\000\000\000\203\000\000\000\000\001\000" "\000\000\223\226\000\000\000\377\001\000\000\000h\242\000\000\000\000\002\000\000\000\033\000\000\000\371\224\000\000" "\000\377\001\000\000\000S\251\000\000\000\000\002\000\000\000\030\000\000\000\375\230\000\000\000\377\001\000\000\000&\220" "\000\000\000\000\002\000\000\000\017\000\000\000\265\261\000\000\000\377\003\000\000\000\327\000\000\000g\000\000\000c\227" "\000\000\000\377\001\000\000\000\257\241\000\000\000\000\002\000\000\000^\000\000\000\363\257\000\000\000\377\003\000\000" "\000\275\000\000\000\067\000\000\000\\\222\000\000\000\377\002\000\000\000\362\000\000\000\063\237\000\000\000\000\002" "\000\000\000\066\000\000\000\305\267\000\000\000\377\003\000\000\000\373\000\000\000\247\000\000\000\060\365\000\000" "\000\000\001\000\000\000\213\225\000\000\000\377\001\000\000\000\204\234\000\000\000\000\002\000\000\000\005\000\000\000\350" "\230\000\000\000\377\002\000\000\000\366\000\000\000,\247\000\000\000\000\001\000\000\000T\224\000\000\000\377\001\000" "\000\000|\260\000\000\000\000\001\000\000\000\177\245\000\000\000\377\002\000\000\000\312\000\000\000,\226\000\000\000" "\000\002\000\000\000\032\000\000\000\352\221\000\000\000\377\002\000\000\000\364\000\000\000;\252\000\000\000\000\001\000" "\000\000)\226\000\000\000\377\001\000\000\000\230\377\000\000\000\000\204\000\000\000\000\001\000\000\000f\225\000\000" "\000\377\002\000\000\000\310\000\000\000\002\243\000\000\000\000\001\000\000\000\230\223\000\000\000\377\001\000\000\000" "\201\253\000\000\000\000\001\000\000\000\300\227\000\000\000\377\001\000\000\000\266\222\000\000\000\000\003\000\000" "\000\002\000\000\000\204\000\000\000\374\255\000\000\000\377\003\000\000\000\274\000\000\000K\000\000\000\001\202\000\000" "\000\000\001\000\000\000{\225\000\000\000\377\002\000\000\000\376\000\000\000\071\242\000\000\000\000\003\000\000\000\033\000" "\000\000\243\000\000\000\376\253\000\000\000\377\002\000\000\000\277\000\000\000C\202\000\000\000\000\002\000\000\000\005" "\000\000\000\331\220\000\000\000\377\002\000\000\000\363\000\000\000@\242\000\000\000\000\002\000\000\000W\000\000\000\336" "\263\000\000\000\377\003\000\000\000\360\000\000\000\215\000\000\000\036\367\000\000\000\000\002\000\000\000%\000\000\000" "\376\223\000\000\000\377\002\000\000\000\324\000\000\000\007\235\000\000\000\000\001\000\000\000\177\227\000\000\000" "\377\002\000\000\000\376\000\000\000U\251\000\000\000\000\001\000\000\000\307\222\000\000\000\377\002\000\000\000\250" "\000\000\000\002\261\000\000\000\000\001\000\000\000\200\242\000\000\000\377\003\000\000\000\346\000\000\000a\000\000\000\002" "\230\000\000\000\000\002\000\000\000\070\000\000\000\366\217\000\000\000\377\002\000\000\000\356\000\000\000=\253\000" "\000\000\000\002\000\000\000\001\000\000\000\347\224\000\000\000\377\002\000\000\000\341\000\000\000\020\377\000\000\000\000" "\204\000\000\000\000\001\000\000\000\"\224\000\000\000\377\002\000\000\000\357\000\000\000$\244\000\000\000\000\002\000\000" "\000\022\000\000\000\351\221\000\000\000\377\002\000\000\000\232\000\000\000\001\253\000\000\000\000\001\000\000\000^\226" "\000\000\000\377\002\000\000\000\371\000\000\000*\224\000\000\000\000\002\000\000\000\062\000\000\000\315\251\000\000\000" "\377\003\000\000\000\360\000\000\000\222\000\000\000)\206\000\000\000\000\001\000\000\000\225\224\000\000\000\377\001" "\000\000\000\220\245\000\000\000\000\002\000\000\000\066\000\000\000\303\247\000\000\000\377\003\000\000\000\372\000\000" "\000\245\000\000\000\062\205\000\000\000\000\002\000\000\000@\000\000\000\374\216\000\000\000\377\002\000\000\000\345" "\000\000\000\060\244\000\000\000\000\003\000\000\000\003\000\000\000V\000\000\000\307\256\000\000\000\377\004\000\000\000\376" "\000\000\000\275\000\000\000\\\000\000\000\011\372\000\000\000\000\001\000\000\000\260\222\000\000\000\377\002\000\000\000" "\371\000\000\000\060\236\000\000\000\000\002\000\000\000\026\000\000\000\366\226\000\000\000\377\001\000\000\000~\252" "\000\000\000\000\002\000\000\000\035\000\000\000\347\220\000\000\000\377\002\000\000\000\233\000\000\000\002\263\000\000\000" "\000\002\000\000\000W\000\000\000\365\236\000\000\000\377\003\000\000\000\354\000\000\000{\000\000\000\013\233\000\000\000" "\000\002\000\000\000:\000\000\000\346\215\000\000\000\377\002\000\000\000\313\000\000\000#\255\000\000\000\000\001\000\000" "\000\231\223\000\000\000\377\002\000\000\000\366\000\000\000\065\377\000\000\000\000\206\000\000\000\000\001\000\000\000" "\275\222\000\000\000\377\002\000\000\000\376\000\000\000K\246\000\000\000\000\002\000\000\000H\000\000\000\373\217" "\000\000\000\377\002\000\000\000\214\000\000\000\001\254\000\000\000\000\002\000\000\000\004\000\000\000\336\225\000\000\000" "\377\001\000\000\000p\226\000\000\000\000\003\000\000\000\003\000\000\000h\000\000\000\340\245\000\000\000\377\003\000\000" "\000\310\000\000\000d\000\000\000\012\210\000\000\000\000\002\000\000\000\001\000\000\000\242\222\000\000\000\377\002\000" "\000\000\311\000\000\000\011\247\000\000\000\000\003\000\000\000\067\000\000\000\246\000\000\000\372\242\000\000\000\377" "\003\000\000\000\321\000\000\000r\000\000\000\026\210\000\000\000\000\002\000\000\000e\000\000\000\375\214\000\000\000\377" "\002\000\000\000\261\000\000\000\027\250\000\000\000\000\003\000\000\000\070\000\000\000\233\000\000\000\354\250\000\000" "\000\377\004\000\000\000\375\000\000\000\304\000\000\000s\000\000\000\037\375\000\000\000\000\002\000\000\000\063\000\000\000" "\376\221\000\000\000\377\001\000\000\000l\240\000\000\000\000\001\000\000\000\204\225\000\000\000\377\001\000\000\000" "\244\254\000\000\000\000\002\000\000\000,\000\000\000\334\215\000\000\000\377\002\000\000\000\357\000\000\000_\266" "\000\000\000\000\002\000\000\000!\000\000\000\271\233\000\000\000\377\003\000\000\000\340\000\000\000u\000\000\000\014\236" "\000\000\000\000\003\000\000\000\030\000\000\000\236\000\000\000\373\211\000\000\000\377\003\000\000\000\342\000\000\000j" "\000\000\000\002\256\000\000\000\000\002\000\000\000.\000\000\000\376\221\000\000\000\377\002\000\000\000\372\000\000\000O" "\377\000\000\000\000\207\000\000\000\000\002\000\000\000=\000\000\000\376\220\000\000\000\377\002\000\000\000\376\000\000" "\000g\250\000\000\000\000\002\000\000\000^\000\000\000\372\214\000\000\000\377\002\000\000\000\354\000\000\000W\257\000" "\000\000\000\001\000\000\000`\224\000\000\000\377\001\000\000\000\230\231\000\000\000\000\003\000\000\000\005\000\000\000b\000" "\000\000\324\240\000\000\000\377\003\000\000\000\344\000\000\000\210\000\000\000(\214\000\000\000\000\002\000\000\000\003" "\000\000\000\242\220\000\000\000\377\002\000\000\000\330\000\000\000\023\252\000\000\000\000\004\000\000\000\031\000\000" "\000t\000\000\000\305\000\000\000\375\234\000\000\000\377\003\000\000\000\315\000\000\000\200\000\000\000/\214\000" "\000\000\000\002\000\000\000I\000\000\000\341\211\000\000\000\377\002\000\000\000\321\000\000\000W\254\000\000\000\000\004" "\000\000\000\004\000\000\000F\000\000\000\233\000\000\000\341\242\000\000\000\377\004\000\000\000\344\000\000\000\245\000" "\000\000b\000\000\000\026\377\000\000\000\000\202\000\000\000\000\001\000\000\000\240\220\000\000\000\377\001\000\000\000" "\232\241\000\000\000\000\002\000\000\000\014\000\000\000\344\223\000\000\000\377\002\000\000\000\257\000\000\000\004\255" "\000\000\000\000\003\000\000\000\017\000\000\000\230\000\000\000\370\211\000\000\000\377\003\000\000\000\363\000\000\000\220" "\000\000\000\031\271\000\000\000\000\002\000\000\000K\000\000\000\304\226\000\000\000\377\004\000\000\000\371\000\000\000" "\262\000\000\000N\000\000\000\002\242\000\000\000\000\013\000\000\000\040\000\000\000r\000\000\000\266\000\000\000\336\000" "\000\000\362\000\000\000\373\000\000\000\355\000\000\000\313\000\000\000\227\000\000\000K\000\000\000\005\261\000\000\000" "\000\001\000\000\000\226\220\000\000\000\377\002\000\000\000\365\000\000\000M\377\000\000\000\000\211\000\000\000\000\001" "\000\000\000\206\217\000\000\000\377\002\000\000\000\373\000\000\000^\252\000\000\000\000\002\000\000\000=\000\000\000\333" "\211\000\000\000\377\003\000\000\000\361\000\000\000\212\000\000\000\024\261\000\000\000\000\001\000\000\000\262\222" "\000\000\000\377\002\000\000\000\232\000\000\000\002\234\000\000\000\000\003\000\000\000\062\000\000\000\216\000\000\000\345" "\232\000\000\000\377\004\000\000\000\343\000\000\000\220\000\000\000<\000\000\000\001\217\000\000\000\000\002\000\000\000\002" "\000\000\000\225\216\000\000\000\377\002\000\000\000\312\000\000\000\032\256\000\000\000\000\005\000\000\000\030\000\000" "\000f\000\000\000\245\000\000\000\333\000\000\000\376\223\000\000\000\377\005\000\000\000\376\000\000\000\325\000\000" "\000\231\000\000\000]\000\000\000\033\220\000\000\000\000\012\000\000\000\011\000\000\000]\000\000\000\255\000\000\000\337" "\000\000\000\365\000\000\000\371\000\000\000\345\000\000\000\310\000\000\000\211\000\000\000@\262\000\000\000\000\005\000" "\000\000\040\000\000\000_\000\000\000\234\000\000\000\320\000\000\000\366\230\000\000\000\377\005\000\000\000\362\000" "\000\000\303\000\000\000\221\000\000\000`\000\000\000%\377\000\000\000\000\206\000\000\000\000\002\000\000\000\024\000\000\000" "\351\216\000\000\000\377\002\000\000\000\260\000\000\000\004\242\000\000\000\000\002\000\000\000B\000\000\000\375\221" "\000\000\000\377\002\000\000\000\266\000\000\000\006\260\000\000\000\000\013\000\000\000\032\000\000\000p\000\000\000\261\000" "\000\000\334\000\000\000\360\000\000\000\372\000\000\000\351\000\000\000\322\000\000\000\235\000\000\000\\\000\000\000" "\017\275\000\000\000\000\003\000\000\000\064\000\000\000\216\000\000\000\343\220\000\000\000\377\004\000\000\000\352" "\000\000\000\251\000\000\000_\000\000\000\020\341\000\000\000\000\002\000\000\000\006\000\000\000\266\216\000\000\000\377" "\002\000\000\000\321\000\000\000,\377\000\000\000\000\212\000\000\000\000\002\000\000\000\003\000\000\000\230\215\000\000\000" "\377\002\000\000\000\331\000\000\000\066\254\000\000\000\000\013\000\000\000\004\000\000\000Z\000\000\000\251\000\000\000\337" "\000\000\000\365\000\000\000\372\000\000\000\353\000\000\000\313\000\000\000\232\000\000\000V\000\000\000\011\263\000" "\000\000\000\002\000\000\000\024\000\000\000\335\217\000\000\000\377\002\000\000\000\375\000\000\000y\241\000\000\000\000" "\004\000\000\000,\000\000\000o\000\000\000\261\000\000\000\350\222\000\000\000\377\005\000\000\000\371\000\000\000\300" "\000\000\000y\000\000\000\062\000\000\000\001\224\000\000\000\000\002\000\000\000q\000\000\000\374\213\000\000\000\377\002\000" "\000\000\236\000\000\000\010\263\000\000\000\000\025\000\000\000\021\000\000\000E\000\000\000k\000\000\000\211\000\000\000\250" "\000\000\000\306\000\000\000\332\000\000\000\344\000\000\000\355\000\000\000\367\000\000\000\376\000\000\000\371\000" "\000\000\360\000\000\000\347\000\000\000\327\000\000\000\276\000\000\000\245\000\000\000\210\000\000\000`\000\000\000\066" "\000\000\000\014\324\000\000\000\000\014\000\000\000\002\000\000\000#\000\000\000L\000\000\000q\000\000\000\212\000\000\000\242" "\000\000\000\271\000\000\000\320\000\000\000\340\000\000\000\347\000\000\000\356\000\000\000\366\202\000\000\000\375" "\014\000\000\000\366\000\000\000\360\000\000\000\352\000\000\000\334\000\000\000\310\000\000\000\264\000\000\000\240" "\000\000\000\204\000\000\000c\000\000\000A\000\000\000\036\000\000\000\001\377\000\000\000\000\213\000\000\000\000\002\000\000\000" "G\000\000\000\375\214\000\000\000\377\002\000\000\000\246\000\000\000\004\244\000\000\000\000\001\000\000\000u\220\000" "\000\000\377\002\000\000\000\240\000\000\000\005\374\000\000\000\000\007\000\000\000$\000\000\000]\000\000\000\220\000\000\000" "\262\000\000\000\322\000\000\000\347\000\000\000\361\202\000\000\000\373\010\000\000\000\362\000\000\000\347\000" "\000\000\315\000\000\000\260\000\000\000\214\000\000\000]\000\000\000+\000\000\000\001\345\000\000\000\000\003\000\000\000\003" "\000\000\000|\000\000\000\364\212\000\000\000\377\003\000\000\000\341\000\000\000k\000\000\000\004\377\000\000\000\000\215" "\000\000\000\000\002\000\000\000f\000\000\000\351\211\000\000\000\377\003\000\000\000\346\000\000\000w\000\000\000\012\354" "\000\000\000\000\002\000\000\000\032\000\000\000\324\215\000\000\000\377\002\000\000\000\333\000\000\000>\246\000\000\000" "\000\023\000\000\000\024\000\000\000@\000\000\000k\000\000\000\213\000\000\000\243\000\000\000\274\000\000\000\324\000\000" "\000\343\000\000\000\353\000\000\000\362\000\000\000\372\000\000\000\375\000\000\000\361\000\000\000\341\000\000\000" "\301\000\000\000\233\000\000\000o\000\000\000\070\000\000\000\007\231\000\000\000\000\002\000\000\000:\000\000\000\334\210" "\000\000\000\377\002\000\000\000\275\000\000\000\070\377\000\000\000\000\377\000\000\000\000\305\000\000\000\000\001\000\000" "\000m\212\000\000\000\377\002\000\000\000\371\000\000\000v\247\000\000\000\000\002\000\000\000|\000\000\000\376\214\000" "\000\000\377\002\000\000\000\357\000\000\000b\377\000\000\000\000\367\000\000\000\000\014\000\000\000\021\000\000\000h\000" "\000\000\253\000\000\000\330\000\000\000\363\000\000\000\375\000\000\000\370\000\000\000\346\000\000\000\302\000\000" "\000\214\000\000\000C\000\000\000\002\377\000\000\000\000\220\000\000\000\000\013\000\000\000\013\000\000\000c\000\000\000\253" "\000\000\000\334\000\000\000\361\000\000\000\371\000\000\000\346\000\000\000\315\000\000\000\224\000\000\000Q\000\000\000" "\007\357\000\000\000\000\003\000\000\000\015\000\000\000\214\000\000\000\372\211\000\000\000\377\003\000\000\000\341\000" "\000\000p\000\000\000\006\324\000\000\000\000\011\000\000\000\006\000\000\000m\000\000\000\316\000\000\000\370\000\000\000\354" "\000\000\000\326\000\000\000\266\000\000\000q\000\000\000(\377\000\000\000\000\377\000\000\000\000\310\000\000\000\000\002" "\000\000\000d\000\000\000\370\207\000\000\000\377\002\000\000\000\266\000\000\000*\251\000\000\000\000\002\000\000\000L\000" "\000\000\343\211\000\000\000\377\003\000\000\000\360\000\000\000\213\000\000\000\024\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\222\000\000\000\000\013\000\000\000\037\000\000\000s\000\000\000\275\000\000" "\000\337\000\000\000\366\000\000\000\371\000\000\000\350\000\000\000\304\000\000\000\215\000\000\000C\000\000\000\003\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\251\000\000\000\000\010\000\000\000(\000\000\000\241\000\000\000\351" "\000\000\000\373\000\000\000\354\000\000\000\303\000\000\000\204\000\000\000,\254\000\000\000\000\013\000\000\000\007\000" "\000\000d\000\000\000\263\000\000\000\344\000\000\000\371\000\000\000\370\000\000\000\347\000\000\000\306\000\000\000\224" "\000\000\000P\000\000\000\010\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\273\000\000\000\000\013\000\000\000\022\000\000\000b\000\000\000\236\000\000" "\000\322\000\000\000\347\000\000\000\371\000\000\000\361\000\000\000\335\000\000\000\260\000\000\000n\000\000\000\025" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\372\000\000\000\000\003\000\000\000\040\000\000\000\235\000\000\000\366\211\000\000\000\377\003\000" "\000\000\365\000\000\000\212\000\000\000\010\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\366\000\000\000\000\003\000\000\000\001\000\000\000r\000\000\000" "\364\215\000\000\000\377\002\000\000\000\315\000\000\000\035\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\364\000\000\000\000\002\000\000\000\012" "\000\000\000\255\220\000\000\000\377\002\000\000\000\324\000\000\000\016\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\362\000\000\000\000\002\000" "\000\000\014\000\000\000\307\222\000\000\000\377\001\000\000\000\243\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\361\000\000\000\000\002\000\000" "\000\004\000\000\000\273\223\000\000\000\377\002\000\000\000\376\000\000\000.\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\223\000\000\000\000\012\000\000\000<\000\000\000" "\212\000\000\000\306\000\000\000\347\000\000\000\371\000\000\000\355\000\000\000\326\000\000\000\241\000\000\000X\000" "\000\000\007\377\000\000\000\000\323\000\000\000\000\001\000\000\000}\225\000\000\000\377\001\000\000\000\216\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\273\000\000\000\000\013\000\000\000" "\020\000\000\000U\000\000\000\233\000\000\000\316\000\000\000\345\000\000\000\372\000\000\000\362\000\000\000\335\000" "\000\000\256\000\000\000i\000\000\000\021\311\000\000\000\000\003\000\000\000\001\000\000\000Z\000\000\000\325\211\000\000\000" "\377\002\000\000\000\343\000\000\000c\377\000\000\000\000\321\000\000\000\000\002\000\000\000\034\000\000\000\372\225" "\000\000\000\377\001\000\000\000\325\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\271\000\000\000\000\003\000\000\000\040\000\000\000\222\000\000\000\365\211\000\000\000\377\003\000\000\000" "\363\000\000\000w\000\000\000\002\306\000\000\000\000\002\000\000\000)\000\000\000\310\215\000\000\000\377\002\000\000\000" "\247\000\000\000\012\377\000\000\000\000\317\000\000\000\000\001\000\000\000\207\226\000\000\000\377\001\000\000\000\371" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\267\000\000\000\000" "\003\000\000\000\006\000\000\000\203\000\000\000\373\215\000\000\000\377\002\000\000\000\265\000\000\000\011\304\000\000" "\000\000\002\000\000\000b\000\000\000\365\217\000\000\000\377\002\000\000\000\275\000\000\000\005\377\000\000\000\000\316" "\000\000\000\000\001\000\000\000\330\227\000\000\000\377\001\000\000\000\017\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\265\000\000\000\000\002\000\000\000-\000\000\000\324\220\000\000\000" "\377\002\000\000\000\261\000\000\000\001\301\000\000\000\000\002\000\000\000\001\000\000\000\211\222\000\000\000\377\001" "\000\000\000\232\377\000\000\000\000\315\000\000\000\000\001\000\000\000\025\230\000\000\000\377\001\000\000\000\007\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264\000\000\000\000\002\000" "\000\000:\000\000\000\360\222\000\000\000\377\001\000\000\000g\300\000\000\000\000\002\000\000\000\001\000\000\000\237\224" "\000\000\000\377\001\000\000\000:\377\000\000\000\000\314\000\000\000\000\001\000\000\000E\227\000\000\000\377\001\000\000" "\000\353\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264\000" "\000\000\000\002\000\000\000\034\000\000\000\351\223\000\000\000\377\002\000\000\000\350\000\000\000\007\277\000\000\000\000" "\001\000\000\000\226\225\000\000\000\377\001\000\000\000\275\377\000\000\000\000\314\000\000\000\000\001\000\000\000o\227" "\000\000\000\377\001\000\000\000\321\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\264\000\000\000\000\001\000\000\000\256\225\000\000\000\377\001\000\000\000Z\276\000\000\000\000\001\000\000" "\000\202\226\000\000\000\377\002\000\000\000\374\000\000\000\024\377\000\000\000\000\313\000\000\000\000\001\000\000\000" "\224\227\000\000\000\377\001\000\000\000\266\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\065\226\000\000\000\377\001\000\000\000\246\275\000" "\000\000\000\001\000\000\000U\230\000\000\000\377\001\000\000\000Q\377\000\000\000\000\313\000\000\000\000\001\000\000\000\266" "\227\000\000\000\377\001\000\000\000\233\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\240\226\000\000\000\377\001\000\000\000\337\274\000\000" "\000\000\002\000\000\000-\000\000\000\364\230\000\000\000\377\001\000\000\000l\377\000\000\000\000\313\000\000\000\000\001" "\000\000\000\324\227\000\000\000\377\001\000\000\000\200\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\262\000\000\000\000\002\000\000\000\004\000\000\000\361\227\000\000\000\377\001" "\000\000\000\015\272\000\000\000\000\002\000\000\000\014\000\000\000\331\231\000\000\000\377\001\000\000\000x\377\000\000" "\000\000\313\000\000\000\000\001\000\000\000\360\227\000\000\000\377\001\000\000\000f\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\262\000\000\000\000\001\000\000\000=\230\000\000\000\377" "\001\000\000\000\062\272\000\000\000\000\001\000\000\000\245\232\000\000\000\377\001\000\000\000`\377\000\000\000\000\312" "\000\000\000\000\001\000\000\000\012\230\000\000\000\377\001\000\000\000K\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\262\000\000\000\000\001\000\000\000r\230\000\000\000\377\001\000\000\000" "P\271\000\000\000\000\001\000\000\000b\233\000\000\000\377\001\000\000\000A\377\000\000\000\000\312\000\000\000\000\001\000" "\000\000\"\230\000\000\000\377\001\000\000\000\060\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\262\000\000\000\000\001\000\000\000\240\230\000\000\000\377\001\000\000\000j\270\000\000" "\000\000\002\000\000\000(\000\000\000\365\232\000\000\000\377\002\000\000\000\362\000\000\000\007\377\000\000\000\000\312" "\000\000\000\000\001\000\000\000\070\230\000\000\000\377\001\000\000\000\026\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\262\000\000\000\000\001\000\000\000\277\230\000\000\000\377\001" "\000\000\000\200\267\000\000\000\000\002\000\000\000\007\000\000\000\320\233\000\000\000\377\001\000\000\000\247\377" "\000\000\000\000\313\000\000\000\000\001\000\000\000M\227\000\000\000\377\002\000\000\000\372\000\000\000\001\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\262\000\000\000\000\001\000\000\000\330" "\230\000\000\000\377\001\000\000\000\223\267\000\000\000\000\001\000\000\000\216\233\000\000\000\377\002\000\000\000" "\375\000\000\000/\377\000\000\000\000\313\000\000\000\000\001\000\000\000b\227\000\000\000\377\001\000\000\000\340\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000" "\000\000\347\230\000\000\000\377\001\000\000\000\243\266\000\000\000\000\002\000\000\000D\000\000\000\376\233\000\000" "\000\377\001\000\000\000\240\377\000\000\000\000\314\000\000\000\000\001\000\000\000w\227\000\000\000\377\001\000\000\000" "\305\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\263\000\000" "\000\000\001\000\000\000\357\230\000\000\000\377\001\000\000\000\261\265\000\000\000\000\002\000\000\000\020\000\000\000\343" "\233\000\000\000\377\002\000\000\000\334\000\000\000\021\377\000\000\000\000\314\000\000\000\000\001\000\000\000\214\227" "\000\000\000\377\001\000\000\000\252\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\263\000\000\000\000\001\000\000\000\362\230\000\000\000\377\001\000\000\000\277\265\000\000\000\000\001" "\000\000\000\242\233\000\000\000\377\002\000\000\000\364\000\000\000-\377\000\000\000\000\315\000\000\000\000\001\000\000" "\000\245\227\000\000\000\377\001\000\000\000\216\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\354\230\000\000\000\377\001\000\000\000\315\264" "\000\000\000\000\001\000\000\000L\234\000\000\000\377\001\000\000\000V\377\000\000\000\000\316\000\000\000\000\001\000\000\000" "\274\227\000\000\000\377\001\000\000\000n\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\345\230\000\000\000\377\001\000\000\000\333\263\000\000" "\000\000\002\000\000\000\015\000\000\000\343\233\000\000\000\377\001\000\000\000\210\377\000\000\000\000\317\000\000\000" "\000\001\000\000\000\326\227\000\000\000\377\001\000\000\000N\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\336\230\000\000\000\377\001\000\000\000\354" "\263\000\000\000\000\001\000\000\000\221\233\000\000\000\377\002\000\000\000\271\000\000\000\002\377\000\000\000\000\317" "\000\000\000\000\001\000\000\000\361\227\000\000\000\377\001\000\000\000.\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000\000\000\322\230\000\000\000\377\002\000" "\000\000\375\000\000\000\002\261\000\000\000\000\002\000\000\000,\000\000\000\374\232\000\000\000\377\002\000\000\000\336" "\000\000\000\022\377\000\000\000\000\317\000\000\000\000\001\000\000\000\020\230\000\000\000\377\001\000\000\000\014\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\263\000\000\000\000\001\000" "\000\000\277\231\000\000\000\377\001\000\000\000\024\261\000\000\000\000\001\000\000\000\265\232\000\000\000\377\002" "\000\000\000\373\000\000\000\070\377\000\000\000\000\320\000\000\000\000\001\000\000\000\061\227\000\000\000\377\001\000" "\000\000\350\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264" "\000\000\000\000\001\000\000\000\255\231\000\000\000\377\001\000\000\000+\260\000\000\000\000\001\000\000\000:\233\000\000" "\000\377\001\000\000\000|\377\000\000\000\000\321\000\000\000\000\001\000\000\000]\227\000\000\000\377\001\000\000\000\303" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264\000\000\000\000" "\001\000\000\000\233\231\000\000\000\377\001\000\000\000F\260\000\000\000\000\001\000\000\000\275\232\000\000\000\377" "\002\000\000\000\302\000\000\000\003\377\000\000\000\000\321\000\000\000\000\001\000\000\000\212\227\000\000\000\377\001" "\000\000\000\237\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264" "\000\000\000\000\001\000\000\000\205\231\000\000\000\377\001\000\000\000b\257\000\000\000\000\001\000\000\000@\232\000\000" "\000\377\002\000\000\000\361\000\000\000\036\377\000\000\000\000\322\000\000\000\000\001\000\000\000\267\227\000\000\000" "\377\001\000\000\000x\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\264\000\000\000\000\001\000\000\000j\231\000\000\000\377\001\000\000\000\210\257\000\000\000\000\001\000\000\000\303\232" "\000\000\000\377\001\000\000\000h\377\000\000\000\000\323\000\000\000\000\001\000\000\000\344\227\000\000\000\377\001\000" "\000\000P\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264\000\000" "\000\000\001\000\000\000O\231\000\000\000\377\001\000\000\000\260\256\000\000\000\000\001\000\000\000F\232\000\000\000\377" "\002\000\000\000\302\000\000\000\001\377\000\000\000\000\322\000\000\000\000\001\000\000\000\022\230\000\000\000\377\001\000" "\000\000(\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\264\000\000" "\000\000\001\000\000\000\063\231\000\000\000\377\001\000\000\000\333\256\000\000\000\000\001\000\000\000\310\231\000\000" "\000\377\002\000\000\000\370\000\000\000(\377\000\000\000\000\323\000\000\000\000\001\000\000\000?\227\000\000\000\377" "\002\000\000\000\373\000\000\000\005\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\264\000\000\000\000\001\000\000\000\030\231\000\000\000\377\002\000\000\000\374\000\000\000\007\254\000\000" "\000\000\001\000\000\000L\232\000\000\000\377\001\000\000\000}\377\000\000\000\000\324\000\000\000\000\001\000\000\000l\227" "\000\000\000\377\001\000\000\000\326\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\265\000\000\000\000\002\000\000\000\001\000\000\000\366\231\000\000\000\377\001\000\000\000+\253\000\000\000" "\000\002\000\000\000\001\000\000\000\316\231\000\000\000\377\002\000\000\000\337\000\000\000\007\377\000\000\000\000\324" "\000\000\000\000\001\000\000\000\231\227\000\000\000\377\001\000\000\000\252\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\266\000\000\000\000\001\000\000\000\325\231\000\000\000\377\001" "\000\000\000Q\253\000\000\000\000\001\000\000\000R\232\000\000\000\377\001\000\000\000U\377\000\000\000\000\325\000\000\000" "\000\001\000\000\000\307\227\000\000\000\377\001\000\000\000\177\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\266\000\000\000\000\001\000\000\000\262\231\000\000\000\377\001\000\000" "\000v\252\000\000\000\000\002\000\000\000\001\000\000\000\323\231\000\000\000\377\001\000\000\000\303\377\000\000\000\000" "\325\000\000\000\000\002\000\000\000\001\000\000\000\363\227\000\000\000\377\001\000\000\000S\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\266\000\000\000\000\001\000\000\000\217\231\000" "\000\000\377\001\000\000\000\232\252\000\000\000\000\001\000\000\000X\231\000\000\000\377\002\000\000\000\376\000\000\000" "\064\377\000\000\000\000\325\000\000\000\000\001\000\000\000!\230\000\000\000\377\001\000\000\000'\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\266\000\000\000\000\001\000\000\000l\231\000\000" "\000\377\001\000\000\000\276\251\000\000\000\000\002\000\000\000\003\000\000\000\327\231\000\000\000\377\001\000\000\000" "\244\377\000\000\000\000\326\000\000\000\000\001\000\000\000N\227\000\000\000\377\002\000\000\000\366\000\000\000\002\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\266\000\000\000\000\001\000" "\000\000F\231\000\000\000\377\001\000\000\000\342\251\000\000\000\000\001\000\000\000]\231\000\000\000\377\002\000\000" "\000\370\000\000\000\037\377\000\000\000\000\326\000\000\000\000\001\000\000\000|\227\000\000\000\377\001\000\000\000\312" "\247\000\000\000\000\012\000\000\000\017\000\000\000Y\000\000\000\250\000\000\000\323\000\000\000\355\000\000\000\367\000" "\000\000\341\000\000\000\277\000\000\000x\000\000\000%\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\206\000\000\000\000\001\000\000\000\035\231\000\000\000\377\002\000\000\000\375\000\000" "\000\007\247\000\000\000\000\002\000\000\000\004\000\000\000\334\231\000\000\000\377\001\000\000\000\215\377\000\000\000" "\000\327\000\000\000\000\001\000\000\000\251\227\000\000\000\377\001\000\000\000\234\245\000\000\000\000\003\000\000\000" "\017\000\000\000\204\000\000\000\365\210\000\000\000\377\003\000\000\000\374\000\000\000\237\000\000\000\031\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\205\000\000\000\000\001\000" "\000\000\363\231\000\000\000\377\001\000\000\000'\247\000\000\000\000\001\000\000\000c\231\000\000\000\377\002\000\000" "\000\357\000\000\000\022\377\000\000\000\000\327\000\000\000\000\001\000\000\000\326\227\000\000\000\377\001\000\000\000" "m\244\000\000\000\000\002\000\000\000P\000\000\000\354\214\000\000\000\377\002\000\000\000\346\000\000\000:\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\204\000\000\000\000\001\000\000\000" "\312\231\000\000\000\377\001\000\000\000J\246\000\000\000\000\002\000\000\000\006\000\000\000\340\231\000\000\000\377" "\001\000\000\000w\377\000\000\000\000\327\000\000\000\000\002\000\000\000\007\000\000\000\373\227\000\000\000\377\001\000\000" "\000=\242\000\000\000\000\002\000\000\000\004\000\000\000\214\217\000\000\000\377\002\000\000\000\370\000\000\000<\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\203\000\000\000\000\001\000" "\000\000\242\231\000\000\000\377\001\000\000\000k\246\000\000\000\000\001\000\000\000i\231\000\000\000\377\002\000\000" "\000\342\000\000\000\010\377\000\000\000\000\327\000\000\000\000\001\000\000\000\061\227\000\000\000\377\002\000\000\000" "\376\000\000\000\015\241\000\000\000\000\002\000\000\000\020\000\000\000\274\221\000\000\000\377\002\000\000\000\356" "\000\000\000\"\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\202" "\000\000\000\000\001\000\000\000y\231\000\000\000\377\001\000\000\000\215\245\000\000\000\000\002\000\000\000\007\000\000\000\344" "\231\000\000\000\377\001\000\000\000`\377\000\000\000\000\330\000\000\000\000\001\000\000\000^\227\000\000\000\377\001" "\000\000\000\332\241\000\000\000\000\002\000\000\000\"\000\000\000\326\223\000\000\000\377\001\000\000\000\264\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\202\000\000\000\000\001\000" "\000\000P\231\000\000\000\377\001\000\000\000\257\245\000\000\000\000\001\000\000\000o\231\000\000\000\377\002\000\000" "\000\322\000\000\000\002\377\000\000\000\000\330\000\000\000\000\001\000\000\000\213\227\000\000\000\377\001\000\000\000" "\251\240\000\000\000\000\002\000\000\000:\000\000\000\353\225\000\000\000\377\001\000\000\000\071\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\002\000\000\000\000\000\000\000'\231\000\000" "\000\377\001\000\000\000\321\244\000\000\000\000\002\000\000\000\012\000\000\000\350\231\000\000\000\377\001\000\000\000" "I\377\000\000\000\000\331\000\000\000\000\001\000\000\000\270\227\000\000\000\377\001\000\000\000x\237\000\000\000\000" "\002\000\000\000Z\000\000\000\370\226\000\000\000\377\001\000\000\000\217\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\003\000\000\000\000\000\000\000\004\000\000\000\372\230\000\000\000\377" "\001\000\000\000\362\244\000\000\000\000\001\000\000\000u\231\000\000\000\377\001\000\000\000\276\272\000\000\000\000\024" "\000\000\000\010\000\000\000\062\000\000\000\\\000\000\000}\000\000\000\235\000\000\000\270\000\000\000\313\000\000\000\336" "\000\000\000\355\000\000\000\364\000\000\000\372\000\000\000\374\000\000\000\361\000\000\000\346\000\000\000\332\000" "\000\000\276\000\000\000\233\000\000\000x\000\000\000J\000\000\000\016\313\000\000\000\000\024\000\000\000\010\000\000\000\062" "\000\000\000\\\000\000\000}\000\000\000\235\000\000\000\270\000\000\000\313\000\000\000\336\000\000\000\355\000\000\000\364" "\000\000\000\372\000\000\000\374\000\000\000\361\000\000\000\346\000\000\000\332\000\000\000\276\000\000\000\233\000" "\000\000x\000\000\000J\000\000\000\016\254\000\000\000\000\001\000\000\000\346\227\000\000\000\377\001\000\000\000E\236" "\000\000\000\000\001\000\000\000\177\230\000\000\000\377\001\000\000\000\315\257\000\000\000\000\024\000\000\000\010\000" "\000\000\062\000\000\000\\\000\000\000}\000\000\000\235\000\000\000\270\000\000\000\313\000\000\000\336\000\000\000\355" "\000\000\000\364\000\000\000\372\000\000\000\374\000\000\000\361\000\000\000\346\000\000\000\332\000\000\000\276\000" "\000\000\233\000\000\000x\000\000\000J\000\000\000\016\313\000\000\000\000\024\000\000\000\010\000\000\000\062\000\000\000\\" "\000\000\000}\000\000\000\235\000\000\000\270\000\000\000\313\000\000\000\336\000\000\000\355\000\000\000\364\000\000\000" "\372\000\000\000\374\000\000\000\361\000\000\000\346\000\000\000\332\000\000\000\276\000\000\000\233\000\000\000x\000" "\000\000J\000\000\000\016\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\336\000\000\000\000\001\000\000\000\327" "\231\000\000\000\377\001\000\000\000\023\242\000\000\000\000\002\000\000\000\020\000\000\000\355\230\000\000\000\377" "\002\000\000\000\376\000\000\000\064\266\000\000\000\000\005\000\000\000\037\000\000\000^\000\000\000\233\000\000\000\325\000" "\000\000\374\222\000\000\000\377\004\000\000\000\374\000\000\000\314\000\000\000\205\000\000\000(\304\000\000\000\000" "\005\000\000\000\037\000\000\000^\000\000\000\233\000\000\000\325\000\000\000\374\222\000\000\000\377\004\000\000\000\374" "\000\000\000\314\000\000\000\205\000\000\000(\250\000\000\000\000\001\000\000\000\023\230\000\000\000\377\001\000\000\000" "\022\234\000\000\000\000\002\000\000\000\007\000\000\000\244\231\000\000\000\377\001\000\000\000\350\253\000\000\000\000" "\005\000\000\000\037\000\000\000^\000\000\000\233\000\000\000\325\000\000\000\374\222\000\000\000\377\004\000\000\000\374" "\000\000\000\314\000\000\000\205\000\000\000(\304\000\000\000\000\005\000\000\000\037\000\000\000^\000\000\000\233\000\000\000" "\325\000\000\000\374\222\000\000\000\377\004\000\000\000\374\000\000\000\314\000\000\000\205\000\000\000(\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\333\000\000\000\000\001\000\000\000\256\231\000\000\000\377\001\000" "\000\000\065\242\000\000\000\000\001\000\000\000\212\231\000\000\000\377\001\000\000\000\247\264\000\000\000\000\003\000" "\000\000\066\000\000\000\210\000\000\000\324\233\000\000\000\377\003\000\000\000\313\000\000\000b\000\000\000\004\276" "\000\000\000\000\003\000\000\000\066\000\000\000\210\000\000\000\324\233\000\000\000\377\003\000\000\000\313\000\000\000b" "\000\000\000\004\245\000\000\000\000\001\000\000\000@\227\000\000\000\377\001\000\000\000\336\234\000\000\000\000\002\000\000" "\000\025\000\000\000\305\232\000\000\000\377\001\000\000\000\360\250\000\000\000\000\003\000\000\000\066\000\000\000\210" "\000\000\000\324\233\000\000\000\377\003\000\000\000\313\000\000\000b\000\000\000\004\276\000\000\000\000\003\000\000\000\066" "\000\000\000\210\000\000\000\324\233\000\000\000\377\003\000\000\000\313\000\000\000b\000\000\000\004\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\330\000\000\000\000\001\000\000\000\207\231\000\000\000\377\001\000\000\000V\241" "\000\000\000\000\002\000\000\000\035\000\000\000\367\230\000\000\000\377\002\000\000\000\371\000\000\000\"\261\000\000\000" "\000\003\000\000\000\033\000\000\000}\000\000\000\332\240\000\000\000\377\003\000\000\000\335\000\000\000`\000\000\000\002\271" "\000\000\000\000\003\000\000\000\033\000\000\000}\000\000\000\332\240\000\000\000\377\003\000\000\000\335\000\000\000`\000\000" "\000\002\243\000\000\000\000\001\000\000\000m\227\000\000\000\377\001\000\000\000\253\233\000\000\000\000\002\000\000\000," "\000\000\000\337\233\000\000\000\377\001\000\000\000\336\245\000\000\000\000\003\000\000\000\033\000\000\000}\000\000\000" "\332\240\000\000\000\377\003\000\000\000\335\000\000\000`\000\000\000\002\271\000\000\000\000\003\000\000\000\033\000\000" "\000}\000\000\000\332\240\000\000\000\377\003\000\000\000\335\000\000\000`\000\000\000\002\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\326\000\000\000\000\001\000\000\000`\231\000\000\000\377\001\000\000\000x\241\000\000\000" "\000\001\000\000\000\241\231\000\000\000\377\001\000\000\000\221\260\000\000\000\000\003\000\000\000\070\000\000\000\251" "\000\000\000\373\244\000\000\000\377\002\000\000\000\304\000\000\000&\266\000\000\000\000\003\000\000\000\070\000\000\000" "\251\000\000\000\373\244\000\000\000\377\002\000\000\000\304\000\000\000&\242\000\000\000\000\001\000\000\000\233\227" "\000\000\000\377\001\000\000\000w\232\000\000\000\000\002\000\000\000K\000\000\000\362\234\000\000\000\377\001\000\000\000" "\263\243\000\000\000\000\003\000\000\000\070\000\000\000\251\000\000\000\373\244\000\000\000\377\002\000\000\000\304" "\000\000\000&\266\000\000\000\000\003\000\000\000\070\000\000\000\251\000\000\000\373\244\000\000\000\377\002\000\000\000" "\304\000\000\000&\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\325\000\000\000\000\001\000\000\000\070\231" "\000\000\000\377\001\000\000\000\230\240\000\000\000\000\002\000\000\000/\000\000\000\375\230\000\000\000\377\002\000\000" "\000\361\000\000\000\024\256\000\000\000\000\002\000\000\000:\000\000\000\272\250\000\000\000\377\002\000\000\000\367" "\000\000\000l\263\000\000\000\000\002\000\000\000:\000\000\000\272\250\000\000\000\377\002\000\000\000\367\000\000\000l\241" "\000\000\000\000\001\000\000\000\310\227\000\000\000\377\001\000\000\000D\231\000\000\000\000\002\000\000\000q\000\000\000\375" "\235\000\000\000\377\001\000\000\000u\241\000\000\000\000\002\000\000\000:\000\000\000\272\250\000\000\000\377\002\000" "\000\000\367\000\000\000l\263\000\000\000\000\002\000\000\000:\000\000\000\272\250\000\000\000\377\002\000\000\000\367" "\000\000\000l\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\324\000\000\000\000\001\000\000\000\022\231\000" "\000\000\377\001\000\000\000\271\240\000\000\000\000\001\000\000\000\271\231\000\000\000\377\001\000\000\000z\255\000" "\000\000\000\002\000\000\000#\000\000\000\257\254\000\000\000\377\002\000\000\000\227\000\000\000\004\257\000\000\000\000\002" "\000\000\000#\000\000\000\257\254\000\000\000\377\002\000\000\000\227\000\000\000\004\236\000\000\000\000\002\000\000\000\001" "\000\000\000\363\227\000\000\000\377\001\000\000\000\022\227\000\000\000\000\002\000\000\000\005\000\000\000\232\236\000" "\000\000\377\002\000\000\000\375\000\000\000\035\237\000\000\000\000\002\000\000\000#\000\000\000\257\254\000\000\000\377" "\002\000\000\000\227\000\000\000\004\257\000\000\000\000\002\000\000\000#\000\000\000\257\254\000\000\000\377\002\000\000\000" "\227\000\000\000\004\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\323\000\000\000\000\001\000\000\000\354" "\230\000\000\000\377\001\000\000\000\332\237\000\000\000\000\001\000\000\000D\231\000\000\000\377\002\000\000\000\345" "\000\000\000\012\253\000\000\000\000\003\000\000\000\010\000\000\000\206\000\000\000\371\256\000\000\000\377\002\000\000" "\000\271\000\000\000\011\254\000\000\000\000\003\000\000\000\010\000\000\000\206\000\000\000\371\256\000\000\000\377" "\002\000\000\000\271\000\000\000\011\235\000\000\000\000\001\000\000\000\"\227\000\000\000\377\001\000\000\000\336\227" "\000\000\000\000\002\000\000\000\023\000\000\000\277\237\000\000\000\377\001\000\000\000\241\236\000\000\000\000\003\000\000" "\000\010\000\000\000\206\000\000\000\371\256\000\000\000\377\002\000\000\000\271\000\000\000\011\254\000\000\000\000" "\003\000\000\000\010\000\000\000\206\000\000\000\371\256\000\000\000\377\002\000\000\000\271\000\000\000\011\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\322\000\000\000\000\001\000\000\000\306\230\000\000\000\377\002\000" "\000\000\371\000\000\000\002\235\000\000\000\000\002\000\000\000\001\000\000\000\316\231\000\000\000\377\001\000\000\000d\253" "\000\000\000\000\002\000\000\000<\000\000\000\331\261\000\000\000\377\002\000\000\000\265\000\000\000\005\252\000\000\000\000" "\002\000\000\000<\000\000\000\331\261\000\000\000\377\002\000\000\000\265\000\000\000\005\234\000\000\000\000\001\000\000\000" "P\227\000\000\000\377\001\000\000\000\253\226\000\000\000\000\002\000\000\000+\000\000\000\336\237\000\000\000\377" "\002\000\000\000\360\000\000\000\036\235\000\000\000\000\002\000\000\000<\000\000\000\331\261\000\000\000\377\002\000\000" "\000\265\000\000\000\005\252\000\000\000\000\002\000\000\000<\000\000\000\331\261\000\000\000\377\002\000\000\000\265\000" "\000\000\005\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\321\000\000\000\000\001\000\000\000\241\231\000" "\000\000\377\001\000\000\000\034\235\000\000\000\000\001\000\000\000\\\231\000\000\000\377\002\000\000\000\325\000\000\000" "\003\251\000\000\000\000\003\000\000\000\003\000\000\000\204\000\000\000\375\263\000\000\000\377\002\000\000\000\250\000" "\000\000\001\247\000\000\000\000\003\000\000\000\003\000\000\000\204\000\000\000\375\263\000\000\000\377\002\000\000\000\250" "\000\000\000\001\233\000\000\000\000\001\000\000\000}\227\000\000\000\377\001\000\000\000x\225\000\000\000\000\002\000\000\000" "L\000\000\000\362\237\000\000\000\377\002\000\000\000\375\000\000\000L\234\000\000\000\000\003\000\000\000\003\000\000\000" "\204\000\000\000\375\263\000\000\000\377\002\000\000\000\250\000\000\000\001\247\000\000\000\000\003\000\000\000\003\000" "\000\000\204\000\000\000\375\263\000\000\000\377\002\000\000\000\250\000\000\000\001\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\320\000\000\000\000\001\000\000\000{\231\000\000\000\377\001\000\000\000\071\234\000\000\000" "\000\002\000\000\000\007\000\000\000\340\231\000\000\000\377\001\000\000\000M\251\000\000\000\000\002\000\000\000\033\000\000" "\000\303\266\000\000\000\377\001\000\000\000{\246\000\000\000\000\002\000\000\000\033\000\000\000\303\266\000\000\000" "\377\001\000\000\000{\233\000\000\000\000\001\000\000\000\252\227\000\000\000\377\001\000\000\000E\224\000\000\000\000" "\002\000\000\000w\000\000\000\375\240\000\000\000\377\001\000\000\000e\234\000\000\000\000\002\000\000\000\033\000\000\000\303" "\266\000\000\000\377\001\000\000\000{\246\000\000\000\000\002\000\000\000\033\000\000\000\303\266\000\000\000\377\001" "\000\000\000{\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\320\000\000\000\000\001\000\000\000V\231\000\000" "\000\377\001\000\000\000U\234\000\000\000\000\001\000\000\000t\231\000\000\000\377\001\000\000\000\302\251\000\000\000" "\000\002\000\000\000\067\000\000\000\347\267\000\000\000\377\002\000\000\000\374\000\000\000@\244\000\000\000\000\002\000" "\000\000\067\000\000\000\347\267\000\000\000\377\002\000\000\000\374\000\000\000@\232\000\000\000\000\001\000\000\000\327" "\227\000\000\000\377\001\000\000\000\026\222\000\000\000\000\002\000\000\000\010\000\000\000\243\241\000\000\000\377" "\001\000\000\000o\234\000\000\000\000\002\000\000\000\067\000\000\000\347\267\000\000\000\377\002\000\000\000\374\000\000" "\000@\244\000\000\000\000\002\000\000\000\067\000\000\000\347\267\000\000\000\377\002\000\000\000\374\000\000\000@\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\317\000\000\000\000\001\000\000\000\063\231\000\000\000\377\001\000" "\000\000q\233\000\000\000\000\002\000\000\000\021\000\000\000\356\231\000\000\000\377\001\000\000\000\067\250\000\000\000" "\000\002\000\000\000W\000\000\000\367\271\000\000\000\377\002\000\000\000\346\000\000\000\017\242\000\000\000\000\002\000" "\000\000W\000\000\000\367\271\000\000\000\377\002\000\000\000\346\000\000\000\017\230\000\000\000\000\002\000\000\000\010" "\000\000\000\374\226\000\000\000\377\001\000\000\000\347\222\000\000\000\000\002\000\000\000\033\000\000\000\312\240" "\000\000\000\377\002\000\000\000\376\000\000\000l\234\000\000\000\000\002\000\000\000W\000\000\000\367\271\000\000\000\377" "\002\000\000\000\346\000\000\000\017\242\000\000\000\000\002\000\000\000W\000\000\000\367\271\000\000\000\377\002\000\000" "\000\346\000\000\000\017\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000\000\000\000\001\000\000\000\016" "\231\000\000\000\377\001\000\000\000\216\233\000\000\000\000\001\000\000\000\213\231\000\000\000\377\001\000\000\000" "\253\250\000\000\000\000\002\000\000\000k\000\000\000\376\273\000\000\000\377\001\000\000\000\224\241\000\000\000\000" "\002\000\000\000k\000\000\000\376\273\000\000\000\377\001\000\000\000\224\230\000\000\000\000\001\000\000\000\062\227" "\000\000\000\377\001\000\000\000\270\221\000\000\000\000\002\000\000\000:\000\000\000\347\240\000\000\000\377\002\000\000" "\000\374\000\000\000a\234\000\000\000\000\002\000\000\000k\000\000\000\376\273\000\000\000\377\001\000\000\000\224\241" "\000\000\000\000\002\000\000\000k\000\000\000\376\273\000\000\000\377\001\000\000\000\224\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\317\000\000\000\000\001\000\000\000\353\230\000\000\000\377\001\000\000\000\252\232\000" "\000\000\000\002\000\000\000\036\000\000\000\370\230\000\000\000\377\002\000\000\000\373\000\000\000%\247\000\000\000\000" "\001\000\000\000|\275\000\000\000\377\002\000\000\000\375\000\000\000\062\237\000\000\000\000\001\000\000\000|\275\000\000" "\000\377\002\000\000\000\375\000\000\000\062\227\000\000\000\000\001\000\000\000_\227\000\000\000\377\001\000\000\000\211" "\220\000\000\000\000\002\000\000\000d\000\000\000\371\240\000\000\000\377\002\000\000\000\370\000\000\000S\234\000\000" "\000\000\001\000\000\000|\275\000\000\000\377\002\000\000\000\375\000\000\000\062\237\000\000\000\000\001\000\000\000|\275" "\000\000\000\377\002\000\000\000\375\000\000\000\062\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000" "\000\000\000\001\000\000\000\310\230\000\000\000\377\001\000\000\000\307\232\000\000\000\000\001\000\000\000\243\231" "\000\000\000\377\001\000\000\000\225\247\000\000\000\000\001\000\000\000z\277\000\000\000\377\001\000\000\000\275\236" "\000\000\000\000\001\000\000\000z\277\000\000\000\377\001\000\000\000\275\227\000\000\000\000\001\000\000\000\214\227\000" "\000\000\377\001\000\000\000Z\216\000\000\000\000\002\000\000\000\005\000\000\000\225\241\000\000\000\377\002\000\000\000\361" "\000\000\000A\234\000\000\000\000\001\000\000\000z\277\000\000\000\377\001\000\000\000\275\236\000\000\000\000\001\000\000" "\000z\277\000\000\000\377\001\000\000\000\275\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000\000" "\000\000\001\000\000\000\252\230\000\000\000\377\001\000\000\000\343\231\000\000\000\000\002\000\000\000\060\000\000\000\376" "\230\000\000\000\377\002\000\000\000\363\000\000\000\026\246\000\000\000\000\001\000\000\000r\301\000\000\000\377\001" "\000\000\000\070\234\000\000\000\000\001\000\000\000r\301\000\000\000\377\001\000\000\000\070\226\000\000\000\000\001\000\000" "\000\271\227\000\000\000\377\001\000\000\000+\215\000\000\000\000\002\000\000\000\027\000\000\000\302\241\000\000\000" "\377\002\000\000\000\346\000\000\000\060\234\000\000\000\000\001\000\000\000r\301\000\000\000\377\001\000\000\000\070\234" "\000\000\000\000\001\000\000\000r\301\000\000\000\377\001\000\000\000\070\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\315\000\000\000\000\001\000\000\000\214\230\000\000\000\377\002\000\000\000\374\000\000\000\003\230\000\000" "\000\000\001\000\000\000\272\231\000\000\000\377\001\000\000\000~\246\000\000\000\000\002\000\000\000\\\000\000\000\376\301" "\000\000\000\377\001\000\000\000\263\233\000\000\000\000\002\000\000\000\\\000\000\000\376\301\000\000\000\377\001\000" "\000\000\263\226\000\000\000\000\001\000\000\000\347\226\000\000\000\377\002\000\000\000\372\000\000\000\005\214\000" "\000\000\000\002\000\000\000\070\000\000\000\344\241\000\000\000\377\002\000\000\000\326\000\000\000\037\234\000\000\000" "\000\002\000\000\000\\\000\000\000\376\301\000\000\000\377\001\000\000\000\263\233\000\000\000\000\002\000\000\000\\\000" "\000\000\376\301\000\000\000\377\001\000\000\000\263\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\315" "\000\000\000\000\001\000\000\000n\231\000\000\000\377\001\000\000\000\034\227\000\000\000\000\001\000\000\000F\231\000\000\000" "\377\002\000\000\000\347\000\000\000\013\245\000\000\000\000\002\000\000\000B\000\000\000\371\302\000\000\000\377\002" "\000\000\000\376\000\000\000!\231\000\000\000\000\002\000\000\000B\000\000\000\371\302\000\000\000\377\002\000\000\000\376" "\000\000\000!\224\000\000\000\000\001\000\000\000\024\227\000\000\000\377\001\000\000\000\324\214\000\000\000\000\002\000" "\000\000g\000\000\000\371\241\000\000\000\377\002\000\000\000\300\000\000\000\021\234\000\000\000\000\002\000\000\000B\000" "\000\000\371\302\000\000\000\377\002\000\000\000\376\000\000\000!\231\000\000\000\000\002\000\000\000B\000\000\000\371" "\302\000\000\000\377\002\000\000\000\376\000\000\000!\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314" "\000\000\000\000\001\000\000\000O\231\000\000\000\377\001\000\000\000\070\226\000\000\000\000\002\000\000\000\002\000\000\000\317" "\231\000\000\000\377\001\000\000\000h\245\000\000\000\000\002\000\000\000\"\000\000\000\356\304\000\000\000\377\001\000" "\000\000\177\230\000\000\000\000\002\000\000\000\"\000\000\000\356\304\000\000\000\377\001\000\000\000\177\224\000" "\000\000\000\001\000\000\000A\227\000\000\000\377\001\000\000\000\251\212\000\000\000\000\002\000\000\000\007\000\000\000\235" "\242\000\000\000\377\002\000\000\000\242\000\000\000\006\234\000\000\000\000\002\000\000\000\"\000\000\000\356\304\000" "\000\000\377\001\000\000\000\177\230\000\000\000\000\002\000\000\000\"\000\000\000\356\304\000\000\000\377\001\000\000" "\000\177\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000\000\000\061\231\000\000" "\000\377\001\000\000\000U\226\000\000\000\000\001\000\000\000^\231\000\000\000\377\002\000\000\000\330\000\000\000\004\244" "\000\000\000\000\002\000\000\000\011\000\000\000\320\305\000\000\000\377\002\000\000\000\335\000\000\000\001\226\000\000\000" "\000\002\000\000\000\011\000\000\000\320\305\000\000\000\377\002\000\000\000\335\000\000\000\001\223\000\000\000\000\001\000" "\000\000n\227\000\000\000\377\001\000\000\000~\211\000\000\000\000\002\000\000\000\037\000\000\000\313\242\000\000\000\377" "\001\000\000\000\200\235\000\000\000\000\002\000\000\000\011\000\000\000\320\305\000\000\000\377\002\000\000\000\335\000" "\000\000\001\226\000\000\000\000\002\000\000\000\011\000\000\000\320\305\000\000\000\377\002\000\000\000\335\000\000\000\001" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\023\231\000\000\000\377" "\001\000\000\000r\225\000\000\000\000\002\000\000\000\010\000\000\000\341\231\000\000\000\377\001\000\000\000Q\245\000\000" "\000\000\001\000\000\000\240\307\000\000\000\377\001\000\000\000\063\226\000\000\000\000\001\000\000\000\240\307\000\000" "\000\377\001\000\000\000\063\223\000\000\000\000\001\000\000\000\234\227\000\000\000\377\001\000\000\000S\210\000\000" "\000\000\002\000\000\000J\000\000\000\355\241\000\000\000\377\002\000\000\000\370\000\000\000Z\236\000\000\000\000\001\000" "\000\000\240\307\000\000\000\377\001\000\000\000\063\226\000\000\000\000\001\000\000\000\240\307\000\000\000\377\001" "\000\000\000\063\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000\000\000\364\230" "\000\000\000\377\001\000\000\000\224\225\000\000\000\000\001\000\000\000u\231\000\000\000\377\001\000\000\000\305\245" "\000\000\000\000\001\000\000\000h\310\000\000\000\377\001\000\000\000x\225\000\000\000\000\001\000\000\000h\310\000\000\000\377" "\001\000\000\000x\223\000\000\000\000\001\000\000\000\311\227\000\000\000\377\001\000\000\000(\206\000\000\000\000\003\000" "\000\000\002\000\000\000\204\000\000\000\376\241\000\000\000\377\002\000\000\000\352\000\000\000:\236\000\000\000\000\001" "\000\000\000h\310\000\000\000\377\001\000\000\000x\225\000\000\000\000\001\000\000\000h\310\000\000\000\377\001\000\000\000" "x\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000\000\000\325\230\000\000\000\377" "\001\000\000\000\265\224\000\000\000\000\002\000\000\000\021\000\000\000\356\231\000\000\000\377\001\000\000\000;\244" "\000\000\000\000\002\000\000\000\066\000\000\000\371\240\000\000\000\377\013\000\000\000\360\000\000\000\275\000\000\000" "\214\000\000\000a\000\000\000O\000\000\000@\000\000\000;\000\000\000Q\000\000\000g\000\000\000\232\000\000\000\345\235\000" "\000\000\377\001\000\000\000\275\224\000\000\000\000\002\000\000\000\066\000\000\000\371\240\000\000\000\377\013\000" "\000\000\360\000\000\000\275\000\000\000\214\000\000\000a\000\000\000O\000\000\000@\000\000\000;\000\000\000Q\000\000\000g\000" "\000\000\232\000\000\000\345\235\000\000\000\377\001\000\000\000\275\222\000\000\000\000\002\000\000\000\001\000\000\000" "\364\226\000\000\000\377\002\000\000\000\372\000\000\000\004\205\000\000\000\000\002\000\000\000\026\000\000\000\275\242" "\000\000\000\377\002\000\000\000\325\000\000\000!\236\000\000\000\000\002\000\000\000\066\000\000\000\371\240\000\000\000" "\377\013\000\000\000\360\000\000\000\275\000\000\000\214\000\000\000a\000\000\000O\000\000\000@\000\000\000;\000\000\000Q" "\000\000\000g\000\000\000\232\000\000\000\345\235\000\000\000\377\001\000\000\000\275\224\000\000\000\000\002\000\000\000" "\066\000\000\000\371\240\000\000\000\377\013\000\000\000\360\000\000\000\275\000\000\000\214\000\000\000a\000\000\000" "O\000\000\000@\000\000\000;\000\000\000Q\000\000\000g\000\000\000\232\000\000\000\345\235\000\000\000\377\001\000\000\000\275" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000\000\000\266\230\000\000\000\377" "\001\000\000\000\326\224\000\000\000\000\001\000\000\000\215\231\000\000\000\377\001\000\000\000\257\244\000\000\000" "\000\002\000\000\000\011\000\000\000\332\236\000\000\000\377\004\000\000\000\364\000\000\000\236\000\000\000I\000\000\000" "\005\211\000\000\000\000\003\000\000\000\001\000\000\000@\000\000\000\317\233\000\000\000\377\002\000\000\000\370\000\000\000" "\006\222\000\000\000\000\002\000\000\000\011\000\000\000\332\236\000\000\000\377\004\000\000\000\364\000\000\000\236\000" "\000\000I\000\000\000\005\211\000\000\000\000\003\000\000\000\001\000\000\000@\000\000\000\317\233\000\000\000\377\002\000\000" "\000\370\000\000\000\006\221\000\000\000\000\001\000\000\000#\227\000\000\000\377\001\000\000\000\327\205\000\000\000\000" "\002\000\000\000C\000\000\000\347\242\000\000\000\377\002\000\000\000\271\000\000\000\017\236\000\000\000\000\002\000\000" "\000\011\000\000\000\332\236\000\000\000\377\004\000\000\000\364\000\000\000\236\000\000\000I\000\000\000\005\211\000" "\000\000\000\003\000\000\000\001\000\000\000@\000\000\000\317\233\000\000\000\377\002\000\000\000\370\000\000\000\006\222\000" "\000\000\000\002\000\000\000\011\000\000\000\332\236\000\000\000\377\004\000\000\000\364\000\000\000\236\000\000\000I\000" "\000\000\005\211\000\000\000\000\003\000\000\000\001\000\000\000@\000\000\000\317\233\000\000\000\377\002\000\000\000\370\000" "\000\000\006\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\226\230\000" "\000\000\377\001\000\000\000\366\223\000\000\000\000\002\000\000\000\040\000\000\000\370\230\000\000\000\377\002\000\000" "\000\374\000\000\000(\244\000\000\000\000\001\000\000\000\215\235\000\000\000\377\003\000\000\000\362\000\000\000\207" "\000\000\000\024\216\000\000\000\000\002\000\000\000\002\000\000\000y\233\000\000\000\377\001\000\000\000\060\222\000\000\000" "\000\001\000\000\000\215\235\000\000\000\377\003\000\000\000\362\000\000\000\207\000\000\000\024\216\000\000\000\000\002" "\000\000\000\002\000\000\000y\233\000\000\000\377\001\000\000\000\060\221\000\000\000\000\001\000\000\000Q\227\000\000\000\377" "\001\000\000\000\260\203\000\000\000\000\003\000\000\000\003\000\000\000\203\000\000\000\375\242\000\000\000\377\002\000" "\000\000\221\000\000\000\003\237\000\000\000\000\001\000\000\000\215\235\000\000\000\377\003\000\000\000\362\000\000\000" "\207\000\000\000\024\216\000\000\000\000\002\000\000\000\002\000\000\000y\233\000\000\000\377\001\000\000\000\060\222\000" "\000\000\000\001\000\000\000\215\235\000\000\000\377\003\000\000\000\362\000\000\000\207\000\000\000\024\216\000\000\000" "\000\002\000\000\000\002\000\000\000y\233\000\000\000\377\001\000\000\000\060\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\313\000\000\000\000\001\000\000\000v\231\000\000\000\377\001\000\000\000\031\222\000\000\000\000\001\000\000" "\000\244\231\000\000\000\377\001\000\000\000\231\244\000\000\000\000\002\000\000\000\071\000\000\000\375\234\000\000" "\000\377\002\000\000\000\257\000\000\000\030\222\000\000\000\000\001\000\000\000p\232\000\000\000\377\001\000\000\000^\221" "\000\000\000\000\002\000\000\000\071\000\000\000\375\234\000\000\000\377\002\000\000\000\257\000\000\000\030\222\000\000" "\000\000\001\000\000\000p\232\000\000\000\377\001\000\000\000^\221\000\000\000\000\001\000\000\000~\227\000\000\000\377\001" "\000\000\000\210\202\000\000\000\000\002\000\000\000\034\000\000\000\302\242\000\000\000\377\002\000\000\000\371\000\000" "\000c\240\000\000\000\000\002\000\000\000\071\000\000\000\375\234\000\000\000\377\002\000\000\000\257\000\000\000\030\222" "\000\000\000\000\001\000\000\000p\232\000\000\000\377\001\000\000\000^\221\000\000\000\000\002\000\000\000\071\000\000\000\375" "\234\000\000\000\377\002\000\000\000\257\000\000\000\030\222\000\000\000\000\001\000\000\000p\232\000\000\000\377\001" "\000\000\000^\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000V\231\000\000" "\000\377\001\000\000\000:\221\000\000\000\000\002\000\000\000\061\000\000\000\376\230\000\000\000\377\002\000\000\000\364" "\000\000\000\030\243\000\000\000\000\002\000\000\000\010\000\000\000\327\233\000\000\000\377\002\000\000\000\363\000\000" "\000Z\225\000\000\000\000\001\000\000\000\237\231\000\000\000\377\001\000\000\000\215\220\000\000\000\000\002\000\000\000" "\010\000\000\000\327\233\000\000\000\377\002\000\000\000\363\000\000\000Z\225\000\000\000\000\001\000\000\000\237\231" "\000\000\000\377\001\000\000\000\215\221\000\000\000\000\001\000\000\000\253\227\000\000\000\377\004\000\000\000a\000\000" "\000\000\000\000\000V\000\000\000\356\242\000\000\000\377\002\000\000\000\352\000\000\000=\240\000\000\000\000\002\000\000" "\000\010\000\000\000\327\233\000\000\000\377\002\000\000\000\363\000\000\000Z\225\000\000\000\000\001\000\000\000\237" "\231\000\000\000\377\001\000\000\000\215\220\000\000\000\000\002\000\000\000\010\000\000\000\327\233\000\000\000\377" "\002\000\000\000\363\000\000\000Z\225\000\000\000\000\001\000\000\000\237\231\000\000\000\377\001\000\000\000\215\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\066\231\000\000\000\377\001\000" "\000\000[\221\000\000\000\000\001\000\000\000\273\231\000\000\000\377\001\000\000\000\202\244\000\000\000\000\001\000\000" "\000\210\233\000\000\000\377\002\000\000\000\344\000\000\000\060\226\000\000\000\000\002\000\000\000\026\000\000\000\360" "\230\000\000\000\377\001\000\000\000\261\220\000\000\000\000\001\000\000\000\210\233\000\000\000\377\002\000\000\000" "\344\000\000\000\060\226\000\000\000\000\002\000\000\000\026\000\000\000\360\230\000\000\000\377\001\000\000\000\261" "\221\000\000\000\000\001\000\000\000\330\227\000\000\000\377\002\000\000\000G\000\000\000\241\243\000\000\000\377\002" "\000\000\000\321\000\000\000\037\241\000\000\000\000\001\000\000\000\210\233\000\000\000\377\002\000\000\000\344\000\000" "\000\060\226\000\000\000\000\002\000\000\000\026\000\000\000\360\230\000\000\000\377\001\000\000\000\261\220\000\000" "\000\000\001\000\000\000\210\233\000\000\000\377\002\000\000\000\344\000\000\000\060\226\000\000\000\000\002\000\000\000\026" "\000\000\000\360\230\000\000\000\377\001\000\000\000\261\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\313\000\000\000\000\001\000\000\000\026\231\000\000\000\377\001\000\000\000}\220\000\000\000\000\001\000\000\000H\231\000" "\000\000\377\002\000\000\000\351\000\000\000\015\243\000\000\000\000\002\000\000\000#\000\000\000\371\232\000\000\000\377" "\002\000\000\000\325\000\000\000\032\230\000\000\000\000\001\000\000\000\200\230\000\000\000\377\001\000\000\000\314\217" "\000\000\000\000\002\000\000\000#\000\000\000\371\232\000\000\000\377\002\000\000\000\325\000\000\000\032\230\000\000\000" "\000\001\000\000\000\200\230\000\000\000\377\001\000\000\000\314\220\000\000\000\000\002\000\000\000\011\000\000\000\374" "\227\000\000\000\377\001\000\000\000\353\243\000\000\000\377\002\000\000\000\251\000\000\000\013\241\000\000\000\000" "\002\000\000\000#\000\000\000\371\232\000\000\000\377\002\000\000\000\325\000\000\000\032\230\000\000\000\000\001\000\000" "\000\200\230\000\000\000\377\001\000\000\000\314\217\000\000\000\000\002\000\000\000#\000\000\000\371\232\000\000\000" "\377\002\000\000\000\325\000\000\000\032\230\000\000\000\000\001\000\000\000\200\230\000\000\000\377\001\000\000\000\314" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000\000\000\365\230\000\000\000\377" "\001\000\000\000\236\217\000\000\000\000\002\000\000\000\002\000\000\000\321\231\000\000\000\377\001\000\000\000k\244\000" "\000\000\000\001\000\000\000\252\232\000\000\000\377\002\000\000\000\335\000\000\000\032\231\000\000\000\000\001\000\000\000" "%\230\000\000\000\377\001\000\000\000\347\217\000\000\000\000\001\000\000\000\252\232\000\000\000\377\002\000\000\000" "\335\000\000\000\032\231\000\000\000\000\001\000\000\000%\230\000\000\000\377\001\000\000\000\347\220\000\000\000\000" "\001\000\000\000\063\272\000\000\000\377\002\000\000\000\375\000\000\000w\243\000\000\000\000\001\000\000\000\252\232" "\000\000\000\377\002\000\000\000\335\000\000\000\032\231\000\000\000\000\001\000\000\000%\230\000\000\000\377\001\000\000" "\000\347\217\000\000\000\000\001\000\000\000\252\232\000\000\000\377\002\000\000\000\335\000\000\000\032\231\000\000" "\000\000\001\000\000\000%\230\000\000\000\377\001\000\000\000\347\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\314\000\000\000\000\001\000\000\000\325\230\000\000\000\377\001\000\000\000\277\217\000\000\000\000\001\000\000\000" "_\231\000\000\000\377\002\000\000\000\333\000\000\000\005\243\000\000\000\000\001\000\000\000\067\232\000\000\000\377" "\002\000\000\000\346\000\000\000!\233\000\000\000\000\001\000\000\000\313\227\000\000\000\377\002\000\000\000\375\000\000" "\000\003\215\000\000\000\000\001\000\000\000\067\232\000\000\000\377\002\000\000\000\346\000\000\000!\233\000\000\000\000" "\001\000\000\000\313\227\000\000\000\377\002\000\000\000\375\000\000\000\003\217\000\000\000\000\001\000\000\000`\271\000" "\000\000\377\002\000\000\000\356\000\000\000G\243\000\000\000\000\001\000\000\000\067\232\000\000\000\377\002\000\000\000" "\346\000\000\000!\233\000\000\000\000\001\000\000\000\313\227\000\000\000\377\002\000\000\000\375\000\000\000\003\215" "\000\000\000\000\001\000\000\000\067\232\000\000\000\377\002\000\000\000\346\000\000\000!\233\000\000\000\000\001\000\000\000" "\313\227\000\000\000\377\002\000\000\000\375\000\000\000\003\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\313\000\000\000\000\001\000\000\000\263\230\000\000\000\377\001\000\000\000\341\216\000\000\000\000\002\000\000\000" "\010\000\000\000\342\231\000\000\000\377\001\000\000\000U\244\000\000\000\000\001\000\000\000\303\231\000\000\000\377" "\002\000\000\000\372\000\000\000:\234\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000\000\015\215" "\000\000\000\000\001\000\000\000\303\231\000\000\000\377\002\000\000\000\372\000\000\000:\234\000\000\000\000\001\000\000\000" "\215\230\000\000\000\377\001\000\000\000\015\217\000\000\000\000\001\000\000\000\215\270\000\000\000\377\002\000\000" "\000\321\000\000\000\"\244\000\000\000\000\001\000\000\000\303\231\000\000\000\377\002\000\000\000\372\000\000\000:\234" "\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000\000\015\215\000\000\000\000\001\000\000\000\303\231" "\000\000\000\377\002\000\000\000\372\000\000\000:\234\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000" "\000\015\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\221\230\000\000" "\000\377\002\000\000\000\376\000\000\000\010\215\000\000\000\000\001\000\000\000w\231\000\000\000\377\001\000\000\000\310" "\244\000\000\000\000\001\000\000\000O\232\000\000\000\377\001\000\000\000p\235\000\000\000\000\001\000\000\000`\230\000\000" "\000\377\001\000\000\000\026\214\000\000\000\000\001\000\000\000O\232\000\000\000\377\001\000\000\000p\235\000\000\000\000" "\001\000\000\000`\230\000\000\000\377\001\000\000\000\026\217\000\000\000\000\001\000\000\000\273\267\000\000\000\377" "\002\000\000\000\240\000\000\000\011\244\000\000\000\000\001\000\000\000O\232\000\000\000\377\001\000\000\000p\235\000\000" "\000\000\001\000\000\000`\230\000\000\000\377\001\000\000\000\026\214\000\000\000\000\001\000\000\000O\232\000\000\000\377" "\001\000\000\000p\235\000\000\000\000\001\000\000\000`\230\000\000\000\377\001\000\000\000\026\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000p\231\000\000\000\377\001\000\000\000-\214\000\000\000" "\000\002\000\000\000\022\000\000\000\357\231\000\000\000\377\001\000\000\000>\244\000\000\000\000\001\000\000\000\307\231" "\000\000\000\377\001\000\000\000\261\236\000\000\000\000\001\000\000\000\062\230\000\000\000\377\001\000\000\000\036\214" "\000\000\000\000\001\000\000\000\307\231\000\000\000\377\001\000\000\000\261\236\000\000\000\000\001\000\000\000\062\230" "\000\000\000\377\001\000\000\000\036\217\000\000\000\000\001\000\000\000\350\265\000\000\000\377\002\000\000\000\370\000" "\000\000f\246\000\000\000\000\001\000\000\000\307\231\000\000\000\377\001\000\000\000\261\236\000\000\000\000\001\000\000" "\000\062\230\000\000\000\377\001\000\000\000\036\214\000\000\000\000\001\000\000\000\307\231\000\000\000\377\001\000" "\000\000\261\236\000\000\000\000\001\000\000\000\062\230\000\000\000\377\001\000\000\000\036\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000N\231\000\000\000\377\001\000\000\000S\214\000\000" "\000\000\001\000\000\000\216\231\000\000\000\377\001\000\000\000\263\244\000\000\000\000\001\000\000\000\071\231\000\000" "\000\377\002\000\000\000\356\000\000\000\030\236\000\000\000\000\001\000\000\000\025\230\000\000\000\377\001\000\000\000" "%\213\000\000\000\000\001\000\000\000\071\231\000\000\000\377\002\000\000\000\356\000\000\000\030\236\000\000\000\000\001" "\000\000\000\025\230\000\000\000\377\001\000\000\000%\216\000\000\000\000\001\000\000\000\025\265\000\000\000\377\002\000" "\000\000\337\000\000\000\063\246\000\000\000\000\001\000\000\000\071\231\000\000\000\377\002\000\000\000\356\000\000\000" "\030\236\000\000\000\000\001\000\000\000\025\230\000\000\000\377\001\000\000\000%\213\000\000\000\000\001\000\000\000\071" "\231\000\000\000\377\002\000\000\000\356\000\000\000\030\236\000\000\000\000\001\000\000\000\025\230\000\000\000\377" "\001\000\000\000%\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000,\231\000" "\000\000\377\001\000\000\000z\213\000\000\000\000\002\000\000\000\040\000\000\000\371\230\000\000\000\377\002\000\000\000" "\374\000\000\000+\244\000\000\000\000\001\000\000\000\252\231\000\000\000\377\001\000\000\000^\237\000\000\000\000\001" "\000\000\000\010\230\000\000\000\377\001\000\000\000\035\213\000\000\000\000\001\000\000\000\252\231\000\000\000\377" "\001\000\000\000^\237\000\000\000\000\001\000\000\000\010\230\000\000\000\377\001\000\000\000\035\216\000\000\000\000\001\000" "\000\000B\265\000\000\000\377\002\000\000\000\316\000\000\000\003\246\000\000\000\000\001\000\000\000\252\231\000\000\000" "\377\001\000\000\000^\237\000\000\000\000\001\000\000\000\010\230\000\000\000\377\001\000\000\000\035\213\000\000\000\000" "\001\000\000\000\252\231\000\000\000\377\001\000\000\000^\237\000\000\000\000\001\000\000\000\010\230\000\000\000\377" "\001\000\000\000\035\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\313\000\000\000\000\001\000\000\000\013\231" "\000\000\000\377\001\000\000\000\240\213\000\000\000\000\001\000\000\000\246\231\000\000\000\377\001\000\000\000\234" "\244\000\000\000\000\002\000\000\000\037\000\000\000\374\230\000\000\000\377\001\000\000\000\275\241\000\000\000\000\001" "\000\000\000\372\227\000\000\000\377\001\000\000\000\023\212\000\000\000\000\002\000\000\000\037\000\000\000\374\230" "\000\000\000\377\001\000\000\000\275\241\000\000\000\000\001\000\000\000\372\227\000\000\000\377\001\000\000\000\023\216" "\000\000\000\000\001\000\000\000o\266\000\000\000\377\001\000\000\000n\245\000\000\000\000\002\000\000\000\037\000\000\000\374" "\230\000\000\000\377\001\000\000\000\275\241\000\000\000\000\001\000\000\000\372\227\000\000\000\377\001\000\000\000" "\023\212\000\000\000\000\002\000\000\000\037\000\000\000\374\230\000\000\000\377\001\000\000\000\275\241\000\000\000" "\000\001\000\000\000\372\227\000\000\000\377\001\000\000\000\023\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\314\000\000\000\000\001\000\000\000\347\230\000\000\000\377\001\000\000\000\307\212\000\000\000\000\002\000\000\000" "\063\000\000\000\376\230\000\000\000\377\002\000\000\000\366\000\000\000\033\244\000\000\000\000\001\000\000\000\213" "\230\000\000\000\377\002\000\000\000\374\000\000\000-\241\000\000\000\000\001\000\000\000\357\227\000\000\000\377\001" "\000\000\000\010\212\000\000\000\000\001\000\000\000\213\230\000\000\000\377\002\000\000\000\374\000\000\000-\241\000" "\000\000\000\001\000\000\000\357\227\000\000\000\377\001\000\000\000\010\216\000\000\000\000\001\000\000\000\233\266\000" "\000\000\377\002\000\000\000\361\000\000\000\031\244\000\000\000\000\001\000\000\000\213\230\000\000\000\377\002\000\000" "\000\374\000\000\000-\241\000\000\000\000\001\000\000\000\357\227\000\000\000\377\001\000\000\000\010\212\000\000\000" "\000\001\000\000\000\213\230\000\000\000\377\002\000\000\000\374\000\000\000-\241\000\000\000\000\001\000\000\000\357\227" "\000\000\000\377\001\000\000\000\010\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\314\000\000\000\000\001\000" "\000\000\304\230\000\000\000\377\001\000\000\000\355\212\000\000\000\000\001\000\000\000\275\231\000\000\000\377" "\001\000\000\000\206\244\000\000\000\000\002\000\000\000\002\000\000\000\347\230\000\000\000\377\001\000\000\000\230\242" "\000\000\000\000\001\000\000\000\363\226\000\000\000\377\001\000\000\000\375\212\000\000\000\000\002\000\000\000\002\000\000" "\000\347\230\000\000\000\377\001\000\000\000\230\242\000\000\000\000\001\000\000\000\363\226\000\000\000\377\001" "\000\000\000\375\217\000\000\000\000\001\000\000\000\306\267\000\000\000\377\001\000\000\000\250\243\000\000\000\000" "\002\000\000\000\002\000\000\000\347\230\000\000\000\377\001\000\000\000\230\242\000\000\000\000\001\000\000\000\363\226" "\000\000\000\377\001\000\000\000\375\212\000\000\000\000\002\000\000\000\002\000\000\000\347\230\000\000\000\377\001\000" "\000\000\230\242\000\000\000\000\001\000\000\000\363\226\000\000\000\377\001\000\000\000\375\377\000\000\000\000\377" "\000\000\000\000\377\000\000\000\000\315\000\000\000\000\001\000\000\000\240\231\000\000\000\377\001\000\000\000\024\210" "\000\000\000\000\001\000\000\000I\231\000\000\000\377\002\000\000\000\353\000\000\000\016\244\000\000\000\000\001\000\000\000" "A\230\000\000\000\377\002\000\000\000\370\000\000\000\031\242\000\000\000\000\001\000\000\000\373\226\000\000\000\377" "\001\000\000\000\363\212\000\000\000\000\001\000\000\000A\230\000\000\000\377\002\000\000\000\370\000\000\000\031\242" "\000\000\000\000\001\000\000\000\373\226\000\000\000\377\001\000\000\000\363\216\000\000\000\000\002\000\000\000\001\000\000" "\000\363\270\000\000\000\377\001\000\000\000E\242\000\000\000\000\001\000\000\000A\230\000\000\000\377\002\000\000\000" "\370\000\000\000\031\242\000\000\000\000\001\000\000\000\373\226\000\000\000\377\001\000\000\000\363\212\000\000\000" "\000\001\000\000\000A\230\000\000\000\377\002\000\000\000\370\000\000\000\031\242\000\000\000\000\001\000\000\000\373\226" "\000\000\000\377\001\000\000\000\363\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000\001" "\000\000\000|\231\000\000\000\377\001\000\000\000:\207\000\000\000\000\002\000\000\000\002\000\000\000\322\231\000\000\000" "\377\001\000\000\000o\245\000\000\000\000\001\000\000\000\230\230\000\000\000\377\001\000\000\000\225\242\000\000\000" "\000\001\000\000\000\002\227\000\000\000\377\001\000\000\000\342\212\000\000\000\000\001\000\000\000\230\230\000\000\000" "\377\001\000\000\000\225\242\000\000\000\000\001\000\000\000\002\227\000\000\000\377\001\000\000\000\342\216\000\000" "\000\000\001\000\000\000$\271\000\000\000\377\002\000\000\000\332\000\000\000\007\241\000\000\000\000\001\000\000\000\230\230" "\000\000\000\377\001\000\000\000\225\242\000\000\000\000\001\000\000\000\002\227\000\000\000\377\001\000\000\000\342\212" "\000\000\000\000\001\000\000\000\230\230\000\000\000\377\001\000\000\000\225\242\000\000\000\000\001\000\000\000\002\227" "\000\000\000\377\001\000\000\000\342\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000\001" "\000\000\000Y\231\000\000\000\377\001\000\000\000a\207\000\000\000\000\001\000\000\000a\231\000\000\000\377\002\000\000\000" "\336\000\000\000\006\244\000\000\000\000\002\000\000\000\003\000\000\000\352\227\000\000\000\377\002\000\000\000\373\000" "\000\000\036\242\000\000\000\000\001\000\000\000\015\227\000\000\000\377\001\000\000\000\303\211\000\000\000\000\002\000" "\000\000\003\000\000\000\352\227\000\000\000\377\002\000\000\000\373\000\000\000\036\242\000\000\000\000\001\000\000\000\015" "\227\000\000\000\377\001\000\000\000\303\216\000\000\000\000\001\000\000\000W\272\000\000\000\377\001\000\000\000\200" "\240\000\000\000\000\002\000\000\000\003\000\000\000\352\227\000\000\000\377\002\000\000\000\373\000\000\000\036\242\000" "\000\000\000\001\000\000\000\015\227\000\000\000\377\001\000\000\000\303\211\000\000\000\000\002\000\000\000\003\000\000\000\352" "\227\000\000\000\377\002\000\000\000\373\000\000\000\036\242\000\000\000\000\001\000\000\000\015\227\000\000\000\377" "\001\000\000\000\303\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000\001\000\000\000\065\231" "\000\000\000\377\001\000\000\000\210\206\000\000\000\000\002\000\000\000\011\000\000\000\343\231\000\000\000\377\001\000" "\000\000Y\245\000\000\000\000\001\000\000\000E\230\000\000\000\377\001\000\000\000\257\243\000\000\000\000\001\000\000\000" "$\227\000\000\000\377\001\000\000\000\242\211\000\000\000\000\001\000\000\000E\230\000\000\000\377\001\000\000\000\257" "\243\000\000\000\000\001\000\000\000$\227\000\000\000\377\001\000\000\000\242\216\000\000\000\000\001\000\000\000\210\272" "\000\000\000\377\002\000\000\000\370\000\000\000%\237\000\000\000\000\001\000\000\000E\230\000\000\000\377\001\000\000\000" "\257\243\000\000\000\000\001\000\000\000$\227\000\000\000\377\001\000\000\000\242\211\000\000\000\000\001\000\000\000E" "\230\000\000\000\377\001\000\000\000\257\243\000\000\000\000\001\000\000\000$\227\000\000\000\377\001\000\000\000\242" "\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\315\000\000\000\000\001\000\000\000\020\231\000\000\000\377" "\001\000\000\000\264\206\000\000\000\000\001\000\000\000x\231\000\000\000\377\002\000\000\000\314\000\000\000\001\245\000" "\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000\000I\243\000\000\000\000\001\000\000\000<\227\000\000\000" "\377\001\000\000\000\202\211\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000\000I\243\000\000\000" "\000\001\000\000\000<\227\000\000\000\377\001\000\000\000\202\216\000\000\000\000\001\000\000\000\275\273\000\000\000\377" "\001\000\000\000\272\237\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001\000\000\000I\243\000\000\000\000\001" "\000\000\000<\227\000\000\000\377\001\000\000\000\202\211\000\000\000\000\001\000\000\000\215\230\000\000\000\377\001" "\000\000\000I\243\000\000\000\000\001\000\000\000<\227\000\000\000\377\001\000\000\000\202\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\316\000\000\000\000\001\000\000\000\353\230\000\000\000\377\001\000\000\000\340\205" "\000\000\000\000\002\000\000\000\023\000\000\000\360\231\000\000\000\377\001\000\000\000B\246\000\000\000\000\001\000\000\000" "\312\227\000\000\000\377\002\000\000\000\344\000\000\000\002\243\000\000\000\000\001\000\000\000S\227\000\000\000\377" "\001\000\000\000a\211\000\000\000\000\001\000\000\000\312\227\000\000\000\377\002\000\000\000\344\000\000\000\002\243\000" "\000\000\000\001\000\000\000S\227\000\000\000\377\001\000\000\000a\216\000\000\000\000\001\000\000\000\357\274\000\000\000" "\377\001\000\000\000W\236\000\000\000\000\001\000\000\000\312\227\000\000\000\377\002\000\000\000\344\000\000\000\002\243" "\000\000\000\000\001\000\000\000S\227\000\000\000\377\001\000\000\000a\211\000\000\000\000\001\000\000\000\312\227\000\000" "\000\377\002\000\000\000\344\000\000\000\002\243\000\000\000\000\001\000\000\000S\227\000\000\000\377\001\000\000\000a\377" "\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000\000\000\000\001\000\000\000\306\230\000\000\000\377\002" "\000\000\000\376\000\000\000\015\204\000\000\000\000\001\000\000\000\220\231\000\000\000\377\001\000\000\000\267\246" "\000\000\000\000\002\000\000\000\013\000\000\000\373\227\000\000\000\377\001\000\000\000\225\244\000\000\000\000\001\000\000" "\000w\227\000\000\000\377\001\000\000\000@\210\000\000\000\000\002\000\000\000\013\000\000\000\373\227\000\000\000\377" "\001\000\000\000\225\244\000\000\000\000\001\000\000\000w\227\000\000\000\377\001\000\000\000@\215\000\000\000\000\001\000" "\000\000&\275\000\000\000\377\002\000\000\000\346\000\000\000\016\234\000\000\000\000\002\000\000\000\013\000\000\000\373" "\227\000\000\000\377\001\000\000\000\225\244\000\000\000\000\001\000\000\000w\227\000\000\000\377\001\000\000\000@\210" "\000\000\000\000\002\000\000\000\013\000\000\000\373\227\000\000\000\377\001\000\000\000\225\244\000\000\000\000\001\000\000" "\000w\227\000\000\000\377\001\000\000\000@\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000\000\000" "\000\001\000\000\000\240\231\000\000\000\377\001\000\000\000\070\203\000\000\000\000\002\000\000\000\"\000\000\000\371\230" "\000\000\000\377\002\000\000\000\375\000\000\000.\246\000\000\000\000\001\000\000\000C\230\000\000\000\377\001\000\000\000" "E\244\000\000\000\000\001\000\000\000\237\227\000\000\000\377\001\000\000\000\022\210\000\000\000\000\001\000\000\000C\230" "\000\000\000\377\001\000\000\000E\244\000\000\000\000\001\000\000\000\237\227\000\000\000\377\001\000\000\000\022\215" "\000\000\000\000\001\000\000\000\\\276\000\000\000\377\001\000\000\000\221\234\000\000\000\000\001\000\000\000C\230\000\000" "\000\377\001\000\000\000E\244\000\000\000\000\001\000\000\000\237\227\000\000\000\377\001\000\000\000\022\210\000\000" "\000\000\001\000\000\000C\230\000\000\000\377\001\000\000\000E\244\000\000\000\000\001\000\000\000\237\227\000\000\000\377" "\001\000\000\000\022\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\316\000\000\000\000\001\000\000\000{\231" "\000\000\000\377\001\000\000\000d\203\000\000\000\000\001\000\000\000\250\231\000\000\000\377\001\000\000\000\240\247" "\000\000\000\000\001\000\000\000\177\227\000\000\000\377\002\000\000\000\367\000\000\000\005\244\000\000\000\000\001\000\000" "\000\310\226\000\000\000\377\001\000\000\000\332\211\000\000\000\000\001\000\000\000\177\227\000\000\000\377\002" "\000\000\000\367\000\000\000\005\244\000\000\000\000\001\000\000\000\310\226\000\000\000\377\001\000\000\000\332\216" "\000\000\000\000\001\000\000\000\221\276\000\000\000\377\002\000\000\000\374\000\000\000\061\233\000\000\000\000\001\000\000" "\000\177\227\000\000\000\377\002\000\000\000\367\000\000\000\005\244\000\000\000\000\001\000\000\000\310\226\000\000" "\000\377\001\000\000\000\332\211\000\000\000\000\001\000\000\000\177\227\000\000\000\377\002\000\000\000\367\000\000" "\000\005\244\000\000\000\000\001\000\000\000\310\226\000\000\000\377\001\000\000\000\332\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\317\000\000\000\000\001\000\000\000V\231\000\000\000\377\001\000\000\000\221\202\000\000" "\000\000\002\000\000\000\064\000\000\000\376\230\000\000\000\377\002\000\000\000\367\000\000\000\035\247\000\000\000\000" "\001\000\000\000\264\227\000\000\000\377\001\000\000\000\303\244\000\000\000\000\002\000\000\000\004\000\000\000\364\226" "\000\000\000\377\001\000\000\000\242\211\000\000\000\000\001\000\000\000\264\227\000\000\000\377\001\000\000\000\303" "\244\000\000\000\000\002\000\000\000\004\000\000\000\364\226\000\000\000\377\001\000\000\000\242\216\000\000\000\000\001" "\000\000\000\310\277\000\000\000\377\002\000\000\000\311\000\000\000\002\232\000\000\000\000\001\000\000\000\264\227" "\000\000\000\377\001\000\000\000\303\244\000\000\000\000\002\000\000\000\004\000\000\000\364\226\000\000\000\377\001\000" "\000\000\242\211\000\000\000\000\001\000\000\000\264\227\000\000\000\377\001\000\000\000\303\244\000\000\000\000\002" "\000\000\000\004\000\000\000\364\226\000\000\000\377\001\000\000\000\242\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\317\000\000\000\000\001\000\000\000/\231\000\000\000\377\001\000\000\000\275\202\000\000\000\000\001\000\000" "\000\276\231\000\000\000\377\001\000\000\000\212\250\000\000\000\000\001\000\000\000\330\227\000\000\000\377\001" "\000\000\000\212\244\000\000\000\000\001\000\000\000\064\227\000\000\000\377\001\000\000\000j\211\000\000\000\000\001\000" "\000\000\330\227\000\000\000\377\001\000\000\000\212\244\000\000\000\000\001\000\000\000\064\227\000\000\000\377\001" "\000\000\000j\215\000\000\000\000\002\000\000\000\007\000\000\000\371\300\000\000\000\377\001\000\000\000h\232\000\000\000" "\000\001\000\000\000\330\227\000\000\000\377\001\000\000\000\212\244\000\000\000\000\001\000\000\000\064\227\000\000\000" "\377\001\000\000\000j\211\000\000\000\000\001\000\000\000\330\227\000\000\000\377\001\000\000\000\212\244\000\000\000" "\000\001\000\000\000\064\227\000\000\000\377\001\000\000\000j\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000" "\317\000\000\000\000\002\000\000\000\011\000\000\000\376\230\000\000\000\377\003\000\000\000\351\000\000\000\000\000\000\000" "K\231\000\000\000\377\002\000\000\000\355\000\000\000\020\247\000\000\000\000\002\000\000\000\002\000\000\000\371\227" "\000\000\000\377\001\000\000\000^\244\000\000\000\000\001\000\000\000p\227\000\000\000\377\001\000\000\000\063\210\000\000" "\000\000\002\000\000\000\002\000\000\000\371\227\000\000\000\377\001\000\000\000^\244\000\000\000\000\001\000\000\000p\227" "\000\000\000\377\001\000\000\000\063\215\000\000\000\000\001\000\000\000\067\242\000\000\000\377\002\000\000\000\265\000" "\000\000e\235\000\000\000\377\002\000\000\000\356\000\000\000\026\230\000\000\000\000\002\000\000\000\002\000\000\000\371" "\227\000\000\000\377\001\000\000\000^\244\000\000\000\000\001\000\000\000p\227\000\000\000\377\001\000\000\000\063\210" "\000\000\000\000\002\000\000\000\002\000\000\000\371\227\000\000\000\377\001\000\000\000^\244\000\000\000\000\001\000\000\000p" "\227\000\000\000\377\001\000\000\000\063\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\320\000\000\000\000" "\001\000\000\000\340\231\000\000\000\377\002\000\000\000\027\000\000\000\323\231\000\000\000\377\001\000\000\000s\250" "\000\000\000\000\001\000\000\000\040\230\000\000\000\377\001\000\000\000<\244\000\000\000\000\001\000\000\000\261\226\000" "\000\000\377\002\000\000\000\360\000\000\000\004\210\000\000\000\000\001\000\000\000\040\230\000\000\000\377\001\000\000\000" "<\244\000\000\000\000\001\000\000\000\261\226\000\000\000\377\002\000\000\000\360\000\000\000\004\215\000\000\000\000\001" "\000\000\000p\240\000\000\000\377\002\000\000\000\352\000\000\000Z\202\000\000\000\000\001\000\000\000\257\235\000\000" "\000\377\001\000\000\000\243\230\000\000\000\000\001\000\000\000\040\230\000\000\000\377\001\000\000\000<\244\000\000" "\000\000\001\000\000\000\261\226\000\000\000\377\002\000\000\000\360\000\000\000\004\210\000\000\000\000\001\000\000\000\040" "\230\000\000\000\377\001\000\000\000<\244\000\000\000\000\001\000\000\000\261\226\000\000\000\377\002\000\000\000\360" "\000\000\000\004\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\320\000\000\000\000\001\000\000\000\270\231" "\000\000\000\377\001\000\000\000\244\231\000\000\000\377\002\000\000\000\340\000\000\000\007\250\000\000\000\000\001\000" "\000\000D\230\000\000\000\377\001\000\000\000\032\243\000\000\000\000\002\000\000\000\013\000\000\000\367\226\000\000\000" "\377\001\000\000\000\246\211\000\000\000\000\001\000\000\000D\230\000\000\000\377\001\000\000\000\032\243\000\000\000" "\000\002\000\000\000\013\000\000\000\367\226\000\000\000\377\001\000\000\000\246\216\000\000\000\000\001\000\000\000\250" "\237\000\000\000\377\002\000\000\000\241\000\000\000\023\203\000\000\000\000\002\000\000\000\034\000\000\000\362\235" "\000\000\000\377\001\000\000\000A\227\000\000\000\000\001\000\000\000D\230\000\000\000\377\001\000\000\000\032\243\000\000" "\000\000\002\000\000\000\013\000\000\000\367\226\000\000\000\377\001\000\000\000\246\211\000\000\000\000\001\000\000\000D" "\230\000\000\000\377\001\000\000\000\032\243\000\000\000\000\002\000\000\000\013\000\000\000\367\226\000\000\000\377" "\001\000\000\000\246\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\321\000\000\000\000\001\000\000\000\220" "\263\000\000\000\377\001\000\000\000\\\251\000\000\000\000\001\000\000\000e\230\000\000\000\377\001\000\000\000\011\243" "\000\000\000\000\001\000\000\000T\227\000\000\000\377\001\000\000\000V\211\000\000\000\000\001\000\000\000e\230\000\000\000\377" "\001\000\000\000\011\243\000\000\000\000\001\000\000\000T\227\000\000\000\377\001\000\000\000V\216\000\000\000\000\001\000\000" "\000\341\235\000\000\000\377\002\000\000\000\333\000\000\000C\206\000\000\000\000\001\000\000\000j\235\000\000\000\377" "\002\000\000\000\327\000\000\000\006\226\000\000\000\000\001\000\000\000e\230\000\000\000\377\001\000\000\000\011\243\000" "\000\000\000\001\000\000\000T\227\000\000\000\377\001\000\000\000V\211\000\000\000\000\001\000\000\000e\230\000\000\000\377" "\001\000\000\000\011\243\000\000\000\000\001\000\000\000T\227\000\000\000\377\001\000\000\000V\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\321\000\000\000\000\001\000\000\000g\262\000\000\000\377\002\000\000\000\317\000\000\000\001" "\251\000\000\000\000\001\000\000\000t\227\000\000\000\377\001\000\000\000\375\244\000\000\000\000\001\000\000\000\254\226" "\000\000\000\377\002\000\000\000\371\000\000\000\015\211\000\000\000\000\001\000\000\000t\227\000\000\000\377\001\000\000" "\000\375\244\000\000\000\000\001\000\000\000\254\226\000\000\000\377\002\000\000\000\371\000\000\000\015\215\000\000" "\000\000\001\000\000\000\033\234\000\000\000\377\003\000\000\000\371\000\000\000\205\000\000\000\010\207\000\000\000\000" "\002\000\000\000\001\000\000\000\302\235\000\000\000\377\001\000\000\000z\226\000\000\000\000\001\000\000\000t\227\000\000" "\000\377\001\000\000\000\375\244\000\000\000\000\001\000\000\000\254\226\000\000\000\377\002\000\000\000\371\000\000" "\000\015\211\000\000\000\000\001\000\000\000t\227\000\000\000\377\001\000\000\000\375\244\000\000\000\000\001\000\000\000" "\254\226\000\000\000\377\002\000\000\000\371\000\000\000\015\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\321\000\000\000\000\001\000\000\000>\262\000\000\000\377\001\000\000\000F\252\000\000\000\000\001\000\000\000\200\227" "\000\000\000\377\001\000\000\000\367\243\000\000\000\000\002\000\000\000\032\000\000\000\373\226\000\000\000\377\001\000" "\000\000\267\212\000\000\000\000\001\000\000\000\200\227\000\000\000\377\001\000\000\000\367\243\000\000\000\000\002" "\000\000\000\032\000\000\000\373\226\000\000\000\377\001\000\000\000\267\216\000\000\000\000\001\000\000\000U\233\000" "\000\000\377\002\000\000\000\300\000\000\000)\212\000\000\000\000\002\000\000\000'\000\000\000\370\234\000\000\000\377" "\002\000\000\000\366\000\000\000!\225\000\000\000\000\001\000\000\000\200\227\000\000\000\377\001\000\000\000\367\243" "\000\000\000\000\002\000\000\000\032\000\000\000\373\226\000\000\000\377\001\000\000\000\267\212\000\000\000\000\001\000\000" "\000\200\227\000\000\000\377\001\000\000\000\367\243\000\000\000\000\002\000\000\000\032\000\000\000\373\226\000\000" "\000\377\001\000\000\000\267\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\322\000\000\000\000\001\000\000" "\000\025\261\000\000\000\377\001\000\000\000\273\253\000\000\000\000\001\000\000\000\214\230\000\000\000\377\001\000" "\000\000\005\242\000\000\000\000\001\000\000\000\177\227\000\000\000\377\001\000\000\000d\212\000\000\000\000\001\000\000\000" "\214\230\000\000\000\377\001\000\000\000\005\242\000\000\000\000\001\000\000\000\177\227\000\000\000\377\001\000\000" "\000d\216\000\000\000\000\001\000\000\000\217\231\000\000\000\377\002\000\000\000\346\000\000\000[\215\000\000\000\000" "\001\000\000\000|\235\000\000\000\377\001\000\000\000\264\225\000\000\000\000\001\000\000\000\214\230\000\000\000\377" "\001\000\000\000\005\242\000\000\000\000\001\000\000\000\177\227\000\000\000\377\001\000\000\000d\212\000\000\000\000\001\000" "\000\000\214\230\000\000\000\377\001\000\000\000\005\242\000\000\000\000\001\000\000\000\177\227\000\000\000\377\001" "\000\000\000d\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\323\000\000\000\000\001\000\000\000\352\257\000" "\000\000\377\002\000\000\000\376\000\000\000\061\253\000\000\000\000\001\000\000\000\227\230\000\000\000\377\001\000\000" "\000\025\241\000\000\000\000\002\000\000\000\013\000\000\000\350\226\000\000\000\377\002\000\000\000\362\000\000\000\014" "\212\000\000\000\000\001\000\000\000\227\230\000\000\000\377\001\000\000\000\025\241\000\000\000\000\002\000\000\000\013" "\000\000\000\350\226\000\000\000\377\002\000\000\000\362\000\000\000\014\216\000\000\000\000\001\000\000\000\310\227" "\000\000\000\377\003\000\000\000\366\000\000\000\206\000\000\000\014\216\000\000\000\000\002\000\000\000\005\000\000\000\323" "\235\000\000\000\377\001\000\000\000Q\224\000\000\000\000\001\000\000\000\227\230\000\000\000\377\001\000\000\000\025" "\241\000\000\000\000\002\000\000\000\013\000\000\000\350\226\000\000\000\377\002\000\000\000\362\000\000\000\014\212" "\000\000\000\000\001\000\000\000\227\230\000\000\000\377\001\000\000\000\025\241\000\000\000\000\002\000\000\000\013\000\000" "\000\350\226\000\000\000\377\002\000\000\000\362\000\000\000\014\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\323\000\000\000\000\001\000\000\000\300\257\000\000\000\377\001\000\000\000\244\254\000\000\000\000\001\000\000" "\000\242\230\000\000\000\377\001\000\000\000&\241\000\000\000\000\001\000\000\000y\227\000\000\000\377\001\000\000\000" "\225\213\000\000\000\000\001\000\000\000\242\230\000\000\000\377\001\000\000\000&\241\000\000\000\000\001\000\000\000y" "\227\000\000\000\377\001\000\000\000\225\216\000\000\000\000\002\000\000\000\007\000\000\000\371\227\000\000\000\377" "\001\000\000\000\213\221\000\000\000\000\002\000\000\000\070\000\000\000\375\234\000\000\000\377\002\000\000\000\342\000" "\000\000\013\223\000\000\000\000\001\000\000\000\242\230\000\000\000\377\001\000\000\000&\241\000\000\000\000\001\000\000" "\000y\227\000\000\000\377\001\000\000\000\225\213\000\000\000\000\001\000\000\000\242\230\000\000\000\377\001\000\000" "\000&\241\000\000\000\000\001\000\000\000y\227\000\000\000\377\001\000\000\000\225\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\324\000\000\000\000\001\000\000\000\225\256\000\000\000\377\002\000\000\000\370\000\000\000\040" "\254\000\000\000\000\001\000\000\000\243\230\000\000\000\377\001\000\000\000J\240\000\000\000\000\002\000\000\000\020\000" "\000\000\356\227\000\000\000\377\001\000\000\000,\213\000\000\000\000\001\000\000\000\243\230\000\000\000\377\001\000" "\000\000J\240\000\000\000\000\002\000\000\000\020\000\000\000\356\227\000\000\000\377\001\000\000\000,\216\000\000\000\000" "\001\000\000\000\067\230\000\000\000\377\001\000\000\000U\222\000\000\000\000\001\000\000\000\224\235\000\000\000\377" "\001\000\000\000\210\223\000\000\000\000\001\000\000\000\243\230\000\000\000\377\001\000\000\000J\240\000\000\000\000\002" "\000\000\000\020\000\000\000\356\227\000\000\000\377\001\000\000\000,\213\000\000\000\000\001\000\000\000\243\230\000" "\000\000\377\001\000\000\000J\240\000\000\000\000\002\000\000\000\020\000\000\000\356\227\000\000\000\377\001\000\000\000" ",\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\324\000\000\000\000\001\000\000\000j\256\000\000\000\377" "\001\000\000\000\215\255\000\000\000\000\001\000\000\000\231\230\000\000\000\377\001\000\000\000\202\240\000\000\000" "\000\001\000\000\000\233\227\000\000\000\377\001\000\000\000\302\214\000\000\000\000\001\000\000\000\231\230\000\000" "\000\377\001\000\000\000\202\240\000\000\000\000\001\000\000\000\233\227\000\000\000\377\001\000\000\000\302\217" "\000\000\000\000\001\000\000\000n\230\000\000\000\377\001\000\000\000\037\222\000\000\000\000\002\000\000\000\015\000\000\000\344" "\234\000\000\000\377\002\000\000\000\371\000\000\000'\222\000\000\000\000\001\000\000\000\231\230\000\000\000\377\001" "\000\000\000\202\240\000\000\000\000\001\000\000\000\233\227\000\000\000\377\001\000\000\000\302\214\000\000\000\000" "\001\000\000\000\231\230\000\000\000\377\001\000\000\000\202\240\000\000\000\000\001\000\000\000\233\227\000\000\000" "\377\001\000\000\000\302\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\325\000\000\000\000\001\000\000\000" ">\255\000\000\000\377\002\000\000\000\357\000\000\000\022\255\000\000\000\000\001\000\000\000\217\230\000\000\000\377" "\001\000\000\000\271\237\000\000\000\000\002\000\000\000@\000\000\000\376\227\000\000\000\377\001\000\000\000X\214\000" "\000\000\000\001\000\000\000\217\230\000\000\000\377\001\000\000\000\271\237\000\000\000\000\002\000\000\000@\000\000\000\376" "\227\000\000\000\377\001\000\000\000X\217\000\000\000\000\001\000\000\000\245\227\000\000\000\377\001\000\000\000\351" "\224\000\000\000\000\001\000\000\000R\235\000\000\000\377\001\000\000\000\271\222\000\000\000\000\001\000\000\000\217\230" "\000\000\000\377\001\000\000\000\271\237\000\000\000\000\002\000\000\000@\000\000\000\376\227\000\000\000\377\001\000\000" "\000X\214\000\000\000\000\001\000\000\000\217\230\000\000\000\377\001\000\000\000\271\237\000\000\000\000\002\000\000\000" "@\000\000\000\376\227\000\000\000\377\001\000\000\000X\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\325" "\000\000\000\000\001\000\000\000\021\255\000\000\000\377\001\000\000\000w\256\000\000\000\000\001\000\000\000\203\230\000" "\000\000\377\002\000\000\000\364\000\000\000\016\235\000\000\000\000\002\000\000\000\020\000\000\000\335\227\000\000\000" "\377\002\000\000\000\327\000\000\000\003\214\000\000\000\000\001\000\000\000\203\230\000\000\000\377\002\000\000\000\364" "\000\000\000\016\235\000\000\000\000\002\000\000\000\020\000\000\000\335\227\000\000\000\377\002\000\000\000\327\000\000" "\000\003\217\000\000\000\000\001\000\000\000\332\227\000\000\000\377\001\000\000\000\263\225\000\000\000\000\001\000\000" "\000\264\235\000\000\000\377\001\000\000\000Q\221\000\000\000\000\001\000\000\000\203\230\000\000\000\377\002\000\000" "\000\364\000\000\000\016\235\000\000\000\000\002\000\000\000\020\000\000\000\335\227\000\000\000\377\002\000\000\000\327" "\000\000\000\003\214\000\000\000\000\001\000\000\000\203\230\000\000\000\377\002\000\000\000\364\000\000\000\016\235\000" "\000\000\000\002\000\000\000\020\000\000\000\335\227\000\000\000\377\002\000\000\000\327\000\000\000\003\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\326\000\000\000\000\001\000\000\000\344\253\000\000\000\377\002\000\000\000\342" "\000\000\000\010\256\000\000\000\000\001\000\000\000k\231\000\000\000\377\001\000\000\000k\234\000\000\000\000\002\000\000\000" "\001\000\000\000\264\230\000\000\000\377\001\000\000\000U\215\000\000\000\000\001\000\000\000k\231\000\000\000\377\001" "\000\000\000k\234\000\000\000\000\002\000\000\000\001\000\000\000\264\230\000\000\000\377\001\000\000\000U\217\000\000\000" "\000\001\000\000\000\021\230\000\000\000\377\001\000\000\000~\225\000\000\000\000\002\000\000\000\040\000\000\000\365\234" "\000\000\000\377\002\000\000\000\334\000\000\000\006\220\000\000\000\000\001\000\000\000k\231\000\000\000\377\001\000\000\000" "k\234\000\000\000\000\002\000\000\000\001\000\000\000\264\230\000\000\000\377\001\000\000\000U\215\000\000\000\000\001\000" "\000\000k\231\000\000\000\377\001\000\000\000k\234\000\000\000\000\002\000\000\000\001\000\000\000\264\230\000\000\000\377" "\001\000\000\000U\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\327\000\000\000\000\001\000\000\000\266\253" "\000\000\000\377\001\000\000\000`\257\000\000\000\000\001\000\000\000K\231\000\000\000\377\001\000\000\000\323\234\000" "\000\000\000\001\000\000\000\206\230\000\000\000\377\002\000\000\000\317\000\000\000\001\215\000\000\000\000\001\000\000\000" "K\231\000\000\000\377\001\000\000\000\323\234\000\000\000\000\001\000\000\000\206\230\000\000\000\377\002\000\000\000" "\317\000\000\000\001\217\000\000\000\000\001\000\000\000E\230\000\000\000\377\001\000\000\000H\226\000\000\000\000\001\000" "\000\000v\235\000\000\000\377\001\000\000\000q\220\000\000\000\000\001\000\000\000K\231\000\000\000\377\001\000\000\000\323" "\234\000\000\000\000\001\000\000\000\206\230\000\000\000\377\002\000\000\000\317\000\000\000\001\215\000\000\000\000\001" "\000\000\000K\231\000\000\000\377\001\000\000\000\323\234\000\000\000\000\001\000\000\000\206\230\000\000\000\377\002" "\000\000\000\317\000\000\000\001\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\327\000\000\000\000\001\000\000" "\000\210\252\000\000\000\377\002\000\000\000\322\000\000\000\002\257\000\000\000\000\001\000\000\000+\232\000\000\000\377" "\001\000\000\000`\232\000\000\000\000\001\000\000\000|\231\000\000\000\377\001\000\000\000M\216\000\000\000\000\001\000\000\000" "+\232\000\000\000\377\001\000\000\000`\232\000\000\000\000\001\000\000\000|\231\000\000\000\377\001\000\000\000M\220" "\000\000\000\000\001\000\000\000{\230\000\000\000\377\001\000\000\000\024\226\000\000\000\000\002\000\000\000\004\000\000\000\323" "\234\000\000\000\377\002\000\000\000\356\000\000\000\022\217\000\000\000\000\001\000\000\000+\232\000\000\000\377\001" "\000\000\000`\232\000\000\000\000\001\000\000\000|\231\000\000\000\377\001\000\000\000M\216\000\000\000\000\001\000\000\000+" "\232\000\000\000\377\001\000\000\000`\232\000\000\000\000\001\000\000\000|\231\000\000\000\377\001\000\000\000M\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\330\000\000\000\000\001\000\000\000Z\252\000\000\000\377\001\000\000\000" "J\260\000\000\000\000\002\000\000\000\011\000\000\000\374\231\000\000\000\377\002\000\000\000\357\000\000\000\031\227" "\000\000\000\000\002\000\000\000\001\000\000\000\201\231\000\000\000\377\001\000\000\000\307\217\000\000\000\000\002\000\000" "\000\011\000\000\000\374\231\000\000\000\377\002\000\000\000\357\000\000\000\031\227\000\000\000\000\002\000\000\000\001" "\000\000\000\201\231\000\000\000\377\001\000\000\000\307\221\000\000\000\000\001\000\000\000\257\227\000\000\000\377" "\001\000\000\000\340\230\000\000\000\000\001\000\000\000@\235\000\000\000\377\001\000\000\000\212\217\000\000\000\000\002" "\000\000\000\011\000\000\000\374\231\000\000\000\377\002\000\000\000\357\000\000\000\031\227\000\000\000\000\002\000\000" "\000\001\000\000\000\201\231\000\000\000\377\001\000\000\000\307\217\000\000\000\000\002\000\000\000\011\000\000\000\374" "\231\000\000\000\377\002\000\000\000\357\000\000\000\031\227\000\000\000\000\002\000\000\000\001\000\000\000\201\231\000" "\000\000\377\001\000\000\000\307\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\331\000\000\000\000\001\000" "\000\000+\251\000\000\000\377\001\000\000\000\276\262\000\000\000\000\001\000\000\000\321\232\000\000\000\377\002\000" "\000\000\272\000\000\000\005\225\000\000\000\000\002\000\000\000\015\000\000\000\257\231\000\000\000\377\002\000\000\000\374" "\000\000\000\061\220\000\000\000\000\001\000\000\000\321\232\000\000\000\377\002\000\000\000\272\000\000\000\005\225\000" "\000\000\000\002\000\000\000\015\000\000\000\257\231\000\000\000\377\002\000\000\000\374\000\000\000\061\221\000\000\000" "\000\001\000\000\000\344\227\000\000\000\377\001\000\000\000\253\231\000\000\000\000\001\000\000\000\246\234\000\000" "\000\377\002\000\000\000\365\000\000\000\027\217\000\000\000\000\001\000\000\000\321\232\000\000\000\377\002\000\000\000" "\272\000\000\000\005\225\000\000\000\000\002\000\000\000\015\000\000\000\257\231\000\000\000\377\002\000\000\000\374\000" "\000\000\061\220\000\000\000\000\001\000\000\000\321\232\000\000\000\377\002\000\000\000\272\000\000\000\005\225\000\000" "\000\000\002\000\000\000\015\000\000\000\257\231\000\000\000\377\002\000\000\000\374\000\000\000\061\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\331\000\000\000\000\002\000\000\000\004\000\000\000\370\247\000\000\000\377\002" "\000\000\000\376\000\000\000\064\262\000\000\000\000\001\000\000\000\231\233\000\000\000\377\002\000\000\000\253\000\000" "\000\010\223\000\000\000\000\002\000\000\000J\000\000\000\335\232\000\000\000\377\001\000\000\000\215\221\000\000\000" "\000\001\000\000\000\231\233\000\000\000\377\002\000\000\000\253\000\000\000\010\223\000\000\000\000\002\000\000\000J\000" "\000\000\335\232\000\000\000\377\001\000\000\000\215\221\000\000\000\000\001\000\000\000\030\230\000\000\000\377\001" "\000\000\000w\231\000\000\000\000\002\000\000\000\032\000\000\000\362\234\000\000\000\377\001\000\000\000\221\217\000" "\000\000\000\001\000\000\000\231\233\000\000\000\377\002\000\000\000\253\000\000\000\010\223\000\000\000\000\002\000\000\000" "J\000\000\000\335\232\000\000\000\377\001\000\000\000\215\221\000\000\000\000\001\000\000\000\231\233\000\000\000\377" "\002\000\000\000\253\000\000\000\010\223\000\000\000\000\002\000\000\000J\000\000\000\335\232\000\000\000\377\001\000\000" "\000\215\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\333\000\000\000\000\001\000\000\000\314\247\000" "\000\000\377\001\000\000\000\251\263\000\000\000\000\001\000\000\000`\234\000\000\000\377\002\000\000\000\312\000\000\000" "(\220\000\000\000\000\002\000\000\000\065\000\000\000\260\233\000\000\000\377\002\000\000\000\340\000\000\000\013\221" "\000\000\000\000\001\000\000\000`\234\000\000\000\377\002\000\000\000\312\000\000\000(\220\000\000\000\000\002\000\000\000\065" "\000\000\000\260\233\000\000\000\377\002\000\000\000\340\000\000\000\013\221\000\000\000\000\001\000\000\000J\230\000" "\000\000\377\001\000\000\000D\232\000\000\000\000\001\000\000\000s\234\000\000\000\377\002\000\000\000\370\000\000\000\030" "\216\000\000\000\000\001\000\000\000`\234\000\000\000\377\002\000\000\000\312\000\000\000(\220\000\000\000\000\002\000\000" "\000\065\000\000\000\260\233\000\000\000\377\002\000\000\000\340\000\000\000\013\221\000\000\000\000\001\000\000\000`\234" "\000\000\000\377\002\000\000\000\312\000\000\000(\220\000\000\000\000\002\000\000\000\065\000\000\000\260\233\000\000\000" "\377\002\000\000\000\340\000\000\000\013\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\333\000\000\000\000" "\001\000\000\000\233\246\000\000\000\377\002\000\000\000\372\000\000\000$\263\000\000\000\000\002\000\000\000\033\000\000" "\000\376\234\000\000\000\377\003\000\000\000\370\000\000\000\226\000\000\000'\213\000\000\000\000\003\000\000\000\030" "\000\000\000c\000\000\000\302\235\000\000\000\377\001\000\000\000K\222\000\000\000\000\002\000\000\000\033\000\000\000\376" "\234\000\000\000\377\003\000\000\000\370\000\000\000\226\000\000\000'\213\000\000\000\000\003\000\000\000\030\000\000\000" "c\000\000\000\302\235\000\000\000\377\001\000\000\000K\222\000\000\000\000\001\000\000\000}\230\000\000\000\377\001\000" "\000\000\021\232\000\000\000\000\002\000\000\000\005\000\000\000\327\234\000\000\000\377\001\000\000\000\207\216\000\000" "\000\000\002\000\000\000\033\000\000\000\376\234\000\000\000\377\003\000\000\000\370\000\000\000\226\000\000\000'\213" "\000\000\000\000\003\000\000\000\030\000\000\000c\000\000\000\302\235\000\000\000\377\001\000\000\000K\222\000\000\000\000\002" "\000\000\000\033\000\000\000\376\234\000\000\000\377\003\000\000\000\370\000\000\000\226\000\000\000'\213\000\000\000" "\000\003\000\000\000\030\000\000\000c\000\000\000\302\235\000\000\000\377\001\000\000\000K\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\334\000\000\000\000\001\000\000\000j\246\000\000\000\377\001\000\000\000\224\265\000\000\000" "\000\001\000\000\000\307\237\000\000\000\377\014\000\000\000\320\000\000\000\221\000\000\000e\000\000\000F\000\000\000:" "\000\000\000\071\000\000\000F\000\000\000T\000\000\000t\000\000\000\240\000\000\000\317\000\000\000\376\236\000\000\000\377" "\001\000\000\000\250\224\000\000\000\000\001\000\000\000\307\237\000\000\000\377\014\000\000\000\320\000\000\000\221" "\000\000\000e\000\000\000F\000\000\000:\000\000\000\071\000\000\000F\000\000\000T\000\000\000t\000\000\000\240\000\000\000\317\000" "\000\000\376\236\000\000\000\377\001\000\000\000\250\223\000\000\000\000\001\000\000\000\257\227\000\000\000\377" "\001\000\000\000\336\234\000\000\000\000\001\000\000\000I\234\000\000\000\377\002\000\000\000\360\000\000\000\015\216" "\000\000\000\000\001\000\000\000\307\237\000\000\000\377\014\000\000\000\320\000\000\000\221\000\000\000e\000\000\000F\000" "\000\000:\000\000\000\071\000\000\000F\000\000\000T\000\000\000t\000\000\000\240\000\000\000\317\000\000\000\376\236\000\000" "\000\377\001\000\000\000\250\224\000\000\000\000\001\000\000\000\307\237\000\000\000\377\014\000\000\000\320\000\000" "\000\221\000\000\000e\000\000\000F\000\000\000:\000\000\000\071\000\000\000F\000\000\000T\000\000\000t\000\000\000\240\000\000\000" "\317\000\000\000\376\236\000\000\000\377\001\000\000\000\250\377\000\000\000\000\377\000\000\000\000\377\000\000" "\000\000\335\000\000\000\000\001\000\000\000:\245\000\000\000\377\002\000\000\000\362\000\000\000\026\265\000\000\000\000" "\001\000\000\000u\310\000\000\000\377\002\000\000\000\336\000\000\000\017\224\000\000\000\000\001\000\000\000u\310\000\000" "\000\377\002\000\000\000\336\000\000\000\017\223\000\000\000\000\001\000\000\000\337\227\000\000\000\377\001\000\000\000" "\253\235\000\000\000\000\001\000\000\000\266\234\000\000\000\377\001\000\000\000o\216\000\000\000\000\001\000\000\000u" "\310\000\000\000\377\002\000\000\000\336\000\000\000\017\224\000\000\000\000\001\000\000\000u\310\000\000\000\377\002" "\000\000\000\336\000\000\000\017\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\335\000\000\000\000\002\000\000" "\000\013\000\000\000\375\244\000\000\000\377\001\000\000\000z\266\000\000\000\000\002\000\000\000\035\000\000\000\374\306" "\000\000\000\377\002\000\000\000\372\000\000\000\065\225\000\000\000\000\002\000\000\000\035\000\000\000\374\306\000\000" "\000\377\002\000\000\000\372\000\000\000\065\223\000\000\000\000\001\000\000\000\020\230\000\000\000\377\001\000\000\000" "y\235\000\000\000\000\002\000\000\000(\000\000\000\372\233\000\000\000\377\001\000\000\000\323\216\000\000\000\000\002" "\000\000\000\035\000\000\000\374\306\000\000\000\377\002\000\000\000\372\000\000\000\065\225\000\000\000\000\002\000\000" "\000\035\000\000\000\374\306\000\000\000\377\002\000\000\000\372\000\000\000\065\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\337\000\000\000\000\001\000\000\000\326\243\000\000\000\377\002\000\000\000\342\000\000\000\011" "\267\000\000\000\000\001\000\000\000\253\306\000\000\000\377\001\000\000\000p\227\000\000\000\000\001\000\000\000\253\306" "\000\000\000\377\001\000\000\000p\224\000\000\000\000\001\000\000\000>\230\000\000\000\377\001\000\000\000G\236\000\000\000" "\000\001\000\000\000\221\234\000\000\000\377\001\000\000\000\070\216\000\000\000\000\001\000\000\000\253\306\000\000\000" "\377\001\000\000\000p\227\000\000\000\000\001\000\000\000\253\306\000\000\000\377\001\000\000\000p\377\000\000\000\000" "\377\000\000\000\000\377\000\000\000\000\340\000\000\000\000\001\000\000\000\243\243\000\000\000\377\001\000\000\000\\" "\270\000\000\000\000\001\000\000\000;\305\000\000\000\377\001\000\000\000\260\230\000\000\000\000\001\000\000\000;\305" "\000\000\000\377\001\000\000\000\260\225\000\000\000\000\001\000\000\000l\230\000\000\000\377\001\000\000\000\025\236" "\000\000\000\000\002\000\000\000\024\000\000\000\361\233\000\000\000\377\001\000\000\000\221\216\000\000\000\000\001\000\000" "\000;\305\000\000\000\377\001\000\000\000\260\230\000\000\000\000\001\000\000\000;\305\000\000\000\377\001\000\000\000" "\260\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\341\000\000\000\000\001\000\000\000q\242\000\000\000\377" "\002\000\000\000\310\000\000\000\001\271\000\000\000\000\001\000\000\000\305\303\000\000\000\377\002\000\000\000\333\000" "\000\000\021\231\000\000\000\000\001\000\000\000\305\303\000\000\000\377\002\000\000\000\333\000\000\000\021\225\000" "\000\000\000\001\000\000\000\230\227\000\000\000\377\001\000\000\000\345\240\000\000\000\000\001\000\000\000z\233\000\000" "\000\377\001\000\000\000\341\217\000\000\000\000\001\000\000\000\305\303\000\000\000\377\002\000\000\000\333\000\000" "\000\021\231\000\000\000\000\001\000\000\000\305\303\000\000\000\377\002\000\000\000\333\000\000\000\021\377\000\000" "\000\000\377\000\000\000\000\377\000\000\000\000\341\000\000\000\000\001\000\000\000>\241\000\000\000\377\002\000\000\000\376" "\000\000\000\066\272\000\000\000\000\001\000\000\000\071\302\000\000\000\377\002\000\000\000\356\000\000\000'\232\000\000" "\000\000\001\000\000\000\071\302\000\000\000\377\002\000\000\000\356\000\000\000'\226\000\000\000\000\001\000\000\000\302" "\227\000\000\000\377\001\000\000\000\265\240\000\000\000\000\002\000\000\000\012\000\000\000\344\233\000\000\000\377" "\001\000\000\000-\216\000\000\000\000\001\000\000\000\071\302\000\000\000\377\002\000\000\000\356\000\000\000'\232\000\000" "\000\000\001\000\000\000\071\302\000\000\000\377\002\000\000\000\356\000\000\000'\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\342\000\000\000\000\002\000\000\000\014\000\000\000\375\240\000\000\000\377\001\000\000\000\240\274" "\000\000\000\000\001\000\000\000\247\300\000\000\000\377\002\000\000\000\371\000\000\000A\234\000\000\000\000\001\000\000\000" "\247\300\000\000\000\377\002\000\000\000\371\000\000\000A\227\000\000\000\000\001\000\000\000\353\227\000\000\000\377" "\001\000\000\000\205\241\000\000\000\000\001\000\000\000f\233\000\000\000\377\001\000\000\000e\217\000\000\000\000\001\000" "\000\000\247\300\000\000\000\377\002\000\000\000\371\000\000\000A\234\000\000\000\000\001\000\000\000\247\300\000\000" "\000\377\002\000\000\000\371\000\000\000A\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\344\000\000\000\000" "\001\000\000\000\325\237\000\000\000\377\002\000\000\000\360\000\000\000\027\274\000\000\000\000\002\000\000\000\035\000" "\000\000\361\276\000\000\000\377\002\000\000\000\374\000\000\000S\235\000\000\000\000\002\000\000\000\035\000\000\000\361" "\276\000\000\000\377\002\000\000\000\374\000\000\000S\227\000\000\000\000\001\000\000\000\017\230\000\000\000\377\001" "\000\000\000V\241\000\000\000\000\002\000\000\000\005\000\000\000\336\232\000\000\000\377\001\000\000\000\227\217\000\000" "\000\000\002\000\000\000\035\000\000\000\361\276\000\000\000\377\002\000\000\000\374\000\000\000S\235\000\000\000\000\002" "\000\000\000\035\000\000\000\361\276\000\000\000\377\002\000\000\000\374\000\000\000S\377\000\000\000\000\377\000\000" "\000\000\377\000\000\000\000\345\000\000\000\000\001\000\000\000\240\237\000\000\000\377\001\000\000\000l\276\000\000\000" "\000\001\000\000\000]\275\000\000\000\377\002\000\000\000\376\000\000\000b\237\000\000\000\000\001\000\000\000]\275\000\000" "\000\377\002\000\000\000\376\000\000\000b\230\000\000\000\000\001\000\000\000\060\230\000\000\000\377\001\000\000\000'\242" "\000\000\000\000\001\000\000\000a\232\000\000\000\377\001\000\000\000\257\220\000\000\000\000\001\000\000\000]\275\000\000" "\000\377\002\000\000\000\376\000\000\000b\237\000\000\000\000\001\000\000\000]\275\000\000\000\377\002\000\000\000\376" "\000\000\000b\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\346\000\000\000\000\001\000\000\000i\236\000\000" "\000\377\002\000\000\000\315\000\000\000\002\277\000\000\000\000\001\000\000\000\250\273\000\000\000\377\002\000\000\000" "\375\000\000\000a\241\000\000\000\000\001\000\000\000\250\273\000\000\000\377\002\000\000\000\375\000\000\000a\231" "\000\000\000\000\001\000\000\000K\227\000\000\000\377\002\000\000\000\361\000\000\000\002\242\000\000\000\000\002\000\000\000\003" "\000\000\000\333\231\000\000\000\377\001\000\000\000\272\221\000\000\000\000\001\000\000\000\250\273\000\000\000\377" "\002\000\000\000\375\000\000\000a\241\000\000\000\000\001\000\000\000\250\273\000\000\000\377\002\000\000\000\375\000\000" "\000a\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\347\000\000\000\000\001\000\000\000\061\235\000\000\000" "\377\002\000\000\000\374\000\000\000\062\300\000\000\000\000\002\000\000\000\017\000\000\000\325\271\000\000\000\377" "\002\000\000\000\373\000\000\000[\242\000\000\000\000\002\000\000\000\017\000\000\000\325\271\000\000\000\377\002\000\000" "\000\373\000\000\000[\232\000\000\000\000\001\000\000\000Y\227\000\000\000\377\001\000\000\000\262\244\000\000\000\000" "\001\000\000\000f\231\000\000\000\377\001\000\000\000\247\221\000\000\000\000\002\000\000\000\017\000\000\000\325\271" "\000\000\000\377\002\000\000\000\373\000\000\000[\242\000\000\000\000\002\000\000\000\017\000\000\000\325\271\000\000\000" "\377\002\000\000\000\373\000\000\000[\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\350\000\000\000\000\002" "\000\000\000\004\000\000\000\365\234\000\000\000\377\001\000\000\000\213\302\000\000\000\000\002\000\000\000\040\000\000\000" "\350\267\000\000\000\377\002\000\000\000\361\000\000\000F\244\000\000\000\000\002\000\000\000\040\000\000\000\350\267" "\000\000\000\377\002\000\000\000\361\000\000\000F\233\000\000\000\000\001\000\000\000O\227\000\000\000\377\001\000\000\000" "l\244\000\000\000\000\002\000\000\000\007\000\000\000\347\230\000\000\000\377\001\000\000\000x\222\000\000\000\000\002\000" "\000\000\040\000\000\000\350\267\000\000\000\377\002\000\000\000\361\000\000\000F\244\000\000\000\000\002\000\000\000\040" "\000\000\000\350\267\000\000\000\377\002\000\000\000\361\000\000\000F\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\352\000\000\000\000\001\000\000\000\277\233\000\000\000\377\002\000\000\000\333\000\000\000\012\303\000\000" "\000\000\002\000\000\000\064\000\000\000\364\265\000\000\000\377\002\000\000\000\337\000\000\000.\246\000\000\000\000\002" "\000\000\000\064\000\000\000\364\265\000\000\000\377\002\000\000\000\337\000\000\000.\234\000\000\000\000\001\000\000\000" ">\226\000\000\000\377\002\000\000\000\363\000\000\000\020\245\000\000\000\000\001\000\000\000y\230\000\000\000\377\001" "\000\000\000,\223\000\000\000\000\002\000\000\000\064\000\000\000\364\265\000\000\000\377\002\000\000\000\337\000\000\000" ".\246\000\000\000\000\002\000\000\000\064\000\000\000\364\265\000\000\000\377\002\000\000\000\337\000\000\000.\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\353\000\000\000\000\001\000\000\000\203\232\000\000\000\377\002\000" "\000\000\375\000\000\000:\305\000\000\000\000\002\000\000\000:\000\000\000\360\263\000\000\000\377\002\000\000\000\270" "\000\000\000\022\250\000\000\000\000\002\000\000\000:\000\000\000\360\263\000\000\000\377\002\000\000\000\270\000\000\000" "\022\235\000\000\000\000\001\000\000\000\034\226\000\000\000\377\001\000\000\000\215\246\000\000\000\000\002\000\000\000" "\024\000\000\000\370\226\000\000\000\377\001\000\000\000\302\225\000\000\000\000\002\000\000\000:\000\000\000\360\263" "\000\000\000\377\002\000\000\000\270\000\000\000\022\250\000\000\000\000\002\000\000\000:\000\000\000\360\263\000\000\000" "\377\002\000\000\000\270\000\000\000\022\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\354\000\000\000\000" "\001\000\000\000E\232\000\000\000\377\001\000\000\000\211\307\000\000\000\000\002\000\000\000\061\000\000\000\352\260" "\000\000\000\377\003\000\000\000\372\000\000\000y\000\000\000\002\252\000\000\000\000\002\000\000\000\061\000\000\000\352\260" "\000\000\000\377\003\000\000\000\372\000\000\000y\000\000\000\002\237\000\000\000\000\001\000\000\000\341\224\000\000\000\377" "\002\000\000\000\343\000\000\000\020\247\000\000\000\000\001\000\000\000\244\225\000\000\000\377\002\000\000\000\376\000" "\000\000\070\226\000\000\000\000\002\000\000\000\061\000\000\000\352\260\000\000\000\377\003\000\000\000\372\000\000\000" "y\000\000\000\002\252\000\000\000\000\002\000\000\000\061\000\000\000\352\260\000\000\000\377\003\000\000\000\372\000\000" "\000y\000\000\000\002\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\355\000\000\000\000\002\000\000\000\012\000" "\000\000\370\230\000\000\000\377\002\000\000\000\314\000\000\000\005\310\000\000\000\000\002\000\000\000%\000\000\000\322" "\256\000\000\000\377\002\000\000\000\323\000\000\000\061\255\000\000\000\000\002\000\000\000%\000\000\000\322\256\000" "\000\000\377\002\000\000\000\323\000\000\000\061\241\000\000\000\000\001\000\000\000\222\223\000\000\000\377\002\000\000" "\000\375\000\000\000B\250\000\000\000\000\001\000\000\000:\225\000\000\000\377\001\000\000\000\211\230\000\000\000\000" "\002\000\000\000%\000\000\000\322\256\000\000\000\377\002\000\000\000\323\000\000\000\061\255\000\000\000\000\002\000\000" "\000%\000\000\000\322\256\000\000\000\377\002\000\000\000\323\000\000\000\061\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\360\000\000\000\000\001\000\000\000\275\227\000\000\000\377\002\000\000\000\362\000\000\000%\312" "\000\000\000\000\002\000\000\000\011\000\000\000\237\253\000\000\000\377\003\000\000\000\364\000\000\000v\000\000\000\005\257" "\000\000\000\000\002\000\000\000\011\000\000\000\237\253\000\000\000\377\003\000\000\000\364\000\000\000v\000\000\000\005\242" "\000\000\000\000\002\000\000\000!\000\000\000\374\221\000\000\000\377\002\000\000\000\375\000\000\000a\252\000\000\000\000" "\001\000\000\000\314\223\000\000\000\377\002\000\000\000\263\000\000\000\003\231\000\000\000\000\002\000\000\000\011\000\000" "\000\237\253\000\000\000\377\003\000\000\000\364\000\000\000v\000\000\000\005\257\000\000\000\000\002\000\000\000\011\000" "\000\000\237\253\000\000\000\377\003\000\000\000\364\000\000\000v\000\000\000\005\377\000\000\000\000\377\000\000\000\000" "\377\000\000\000\000\361\000\000\000\000\001\000\000\000o\226\000\000\000\377\002\000\000\000\376\000\000\000Q\315\000" "\000\000\000\002\000\000\000X\000\000\000\347\247\000\000\000\377\003\000\000\000\374\000\000\000\234\000\000\000\033\263" "\000\000\000\000\002\000\000\000X\000\000\000\347\247\000\000\000\377\003\000\000\000\374\000\000\000\234\000\000\000\033" "\245\000\000\000\000\001\000\000\000|\220\000\000\000\377\002\000\000\000\372\000\000\000`\253\000\000\000\000\001\000\000" "\000B\222\000\000\000\377\002\000\000\000\264\000\000\000\010\234\000\000\000\000\002\000\000\000X\000\000\000\347\247" "\000\000\000\377\003\000\000\000\374\000\000\000\234\000\000\000\033\263\000\000\000\000\002\000\000\000X\000\000\000\347" "\247\000\000\000\377\003\000\000\000\374\000\000\000\234\000\000\000\033\377\000\000\000\000\377\000\000\000\000\377" "\000\000\000\000\363\000\000\000\000\002\000\000\000\026\000\000\000\366\225\000\000\000\377\001\000\000\000\202\317\000" "\000\000\000\003\000\000\000\016\000\000\000\221\000\000\000\374\243\000\000\000\377\003\000\000\000\372\000\000\000\241" "\000\000\000'\266\000\000\000\000\003\000\000\000\016\000\000\000\221\000\000\000\374\243\000\000\000\377\003\000\000\000" "\372\000\000\000\241\000\000\000'\247\000\000\000\000\002\000\000\000\001\000\000\000\231\216\000\000\000\377\002\000\000" "\000\331\000\000\000\062\255\000\000\000\000\001\000\000\000\225\217\000\000\000\377\003\000\000\000\376\000\000\000\210" "\000\000\000\004\236\000\000\000\000\003\000\000\000\016\000\000\000\221\000\000\000\374\243\000\000\000\377\003\000\000\000" "\372\000\000\000\241\000\000\000'\266\000\000\000\000\003\000\000\000\016\000\000\000\221\000\000\000\374\243\000\000" "\000\377\003\000\000\000\372\000\000\000\241\000\000\000'\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\366" "\000\000\000\000\001\000\000\000\213\224\000\000\000\377\001\000\000\000\237\322\000\000\000\000\003\000\000\000%\000\000\000" "\232\000\000\000\370\237\000\000\000\377\003\000\000\000\347\000\000\000\207\000\000\000\034\272\000\000\000\000\003" "\000\000\000%\000\000\000\232\000\000\000\370\237\000\000\000\377\003\000\000\000\347\000\000\000\207\000\000\000\034" "\253\000\000\000\000\002\000\000\000_\000\000\000\342\212\000\000\000\377\003\000\000\000\344\000\000\000r\000\000\000\012" "\256\000\000\000\000\002\000\000\000\004\000\000\000\254\215\000\000\000\377\002\000\000\000\345\000\000\000G\242\000\000" "\000\000\003\000\000\000%\000\000\000\232\000\000\000\370\237\000\000\000\377\003\000\000\000\347\000\000\000\207\000\000" "\000\034\272\000\000\000\000\003\000\000\000%\000\000\000\232\000\000\000\370\237\000\000\000\377\003\000\000\000\347" "\000\000\000\207\000\000\000\034\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\370\000\000\000\000\002\000\000" "\000\016\000\000\000\336\222\000\000\000\377\002\000\000\000\241\000\000\000\003\324\000\000\000\000\003\000\000\000\030" "\000\000\000\200\000\000\000\332\232\000\000\000\377\004\000\000\000\361\000\000\000\246\000\000\000O\000\000\000\004\276" "\000\000\000\000\003\000\000\000\030\000\000\000\200\000\000\000\332\232\000\000\000\377\004\000\000\000\361\000\000\000\246" "\000\000\000O\000\000\000\004\256\000\000\000\000\014\000\000\000\004\000\000\000R\000\000\000\225\000\000\000\313\000\000\000\345" "\000\000\000\366\000\000\000\367\000\000\000\343\000\000\000\312\000\000\000\220\000\000\000K\000\000\000\006\261\000\000" "\000\000\003\000\000\000\001\000\000\000u\000\000\000\364\211\000\000\000\377\003\000\000\000\347\000\000\000p\000\000\000\010" "\245\000\000\000\000\003\000\000\000\030\000\000\000\200\000\000\000\332\232\000\000\000\377\004\000\000\000\361\000\000" "\000\246\000\000\000O\000\000\000\004\276\000\000\000\000\003\000\000\000\030\000\000\000\200\000\000\000\332\232\000\000" "\000\377\004\000\000\000\361\000\000\000\246\000\000\000O\000\000\000\004\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\373\000\000\000\000\002\000\000\000\064\000\000\000\362\217\000\000\000\377\003\000\000\000\376\000\000\000\207" "\000\000\000\001\330\000\000\000\000\004\000\000\000\062\000\000\000\207\000\000\000\307\000\000\000\371\222\000\000\000\377" "\005\000\000\000\370\000\000\000\307\000\000\000\207\000\000\000D\000\000\000\006\304\000\000\000\000\004\000\000\000\062\000" "\000\000\207\000\000\000\307\000\000\000\371\222\000\000\000\377\005\000\000\000\370\000\000\000\307\000\000\000\207" "\000\000\000D\000\000\000\006\360\000\000\000\000\013\000\000\000\024\000\000\000p\000\000\000\267\000\000\000\345\000\000\000" "\370\000\000\000\366\000\000\000\337\000\000\000\306\000\000\000\214\000\000\000B\000\000\000\005\252\000\000\000\000\004" "\000\000\000\062\000\000\000\207\000\000\000\307\000\000\000\371\222\000\000\000\377\005\000\000\000\370\000\000\000\307" "\000\000\000\207\000\000\000D\000\000\000\006\304\000\000\000\000\004\000\000\000\062\000\000\000\207\000\000\000\307\000\000" "\000\371\222\000\000\000\377\005\000\000\000\370\000\000\000\307\000\000\000\207\000\000\000D\000\000\000\006\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\002\000\000\000:\000\000\000\350\215\000\000\000\377" "\002\000\000\000\346\000\000\000N\335\000\000\000\000\024\000\000\000\010\000\000\000=\000\000\000l\000\000\000\217\000\000\000" "\260\000\000\000\320\000\000\000\341\000\000\000\353\000\000\000\366\000\000\000\376\000\000\000\372\000\000\000\363" "\000\000\000\351\000\000\000\325\000\000\000\301\000\000\000\245\000\000\000\202\000\000\000^\000\000\000\060\000\000\000" "\005\313\000\000\000\000\024\000\000\000\010\000\000\000=\000\000\000l\000\000\000\217\000\000\000\260\000\000\000\320\000" "\000\000\341\000\000\000\353\000\000\000\366\000\000\000\376\000\000\000\372\000\000\000\363\000\000\000\351\000\000" "\000\325\000\000\000\301\000\000\000\245\000\000\000\202\000\000\000^\000\000\000\060\000\000\000\005\377\000\000\000\000" "\255\000\000\000\000\024\000\000\000\010\000\000\000=\000\000\000l\000\000\000\217\000\000\000\260\000\000\000\320\000\000" "\000\341\000\000\000\353\000\000\000\366\000\000\000\376\000\000\000\372\000\000\000\363\000\000\000\351\000\000\000" "\325\000\000\000\301\000\000\000\245\000\000\000\202\000\000\000^\000\000\000\060\000\000\000\005\313\000\000\000\000\024" "\000\000\000\010\000\000\000=\000\000\000l\000\000\000\217\000\000\000\260\000\000\000\320\000\000\000\341\000\000\000\353" "\000\000\000\366\000\000\000\376\000\000\000\372\000\000\000\363\000\000\000\351\000\000\000\325\000\000\000\301\000" "\000\000\245\000\000\000\202\000\000\000^\000\000\000\060\000\000\000\005\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\205\000\000\000\000\003\000\000\000\027\000\000\000\236\000\000\000\374\211\000\000\000\377" "\003\000\000\000\361\000\000\000\207\000\000\000\017\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000" "\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\372\000\000\000\000\013\000\000\000\034\000\000\000" "p\000\000\000\257\000\000\000\333\000\000\000\361\000\000\000\374\000\000\000\362\000\000\000\327\000\000\000\246\000" "\000\000\\\000\000\000\015\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000" "\000\377\000\000\000\000\377\000\000\000\000\377\000\000\000\000\361\000\000\000\000", };