file
stringlengths
18
26
data
stringlengths
2
1.05M
the_stack_data/170452157.c
// This file is a part of Simple-XX/SimpleKernel // (https://github.com/Simple-XX/SimpleKernel). // // atoi.c for Simple-XX/SimpleKernel. #include "stddef.h" #include "stdlib.h" int abs(int _i) { return _i < 0 ? -_i : _i; } int atoi(const char *_str) { return (int)strtol(_str, (char **)NULL, 10); } long atol(const char *_str) { return (long)strtoll(_str, (char **)NULL, 10); } long long atoll(const char *_str) { return (long long)strtoll(_str, (char **)NULL, 10); }
the_stack_data/52869.c
/* Copyright (C) 2017, Chris Simmonds ([email protected]) */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/resource.h> #define BUFFER_SIZE (1024 * 1024) void print_pgfaults(void) { int ret; struct rusage usage; ret = getrusage(RUSAGE_SELF, &usage); if (ret == -1) { perror("getrusage"); } else { printf("Major page faults %ld\n", usage.ru_majflt); printf("Minor page faults %ld\n", usage.ru_minflt); } } int main(int argc, char *argv[]) { unsigned char *p; printf("Initial state\n"); print_pgfaults(); p = malloc(BUFFER_SIZE); printf("After malloc\n"); print_pgfaults(); memset(p, 0x42, BUFFER_SIZE); printf("After memset\n"); print_pgfaults(); memset(p, 0x42, BUFFER_SIZE); printf("After 2nd memset\n"); print_pgfaults(); return 0; }
the_stack_data/114354.c
#include <stdio.h> #define SIZE 20 int binsearch(int x, int *v, int n); int main(){ int v[SIZE]; for (int i = 0; i<SIZE; ++i){ v[i]=i+5; } printf("\nANSWER: %d\n",binsearch(v[0]+2,v,SIZE-1)); return 0; } int binsearch(int x, int *v, int n){ int low,mid,high; low = 0; high = n-1; while(low < high){ mid = (low+high) / 2; if (x <= *(v+mid)) high = mid; else low = mid+1; printf("LOW: %d\tMID: %d\tHIGH: %d\n", low, mid, high); } if (*(v+low) == x) return low; return -1; }
the_stack_data/133412.c
#include <stdio.h> int main(void) { int i = 0; if (i > 0) { printf("This doesn't happen.\n"); printf("Neither does this.\n"); } i = i + 1; if (i > 0) { printf("This does happen.\n"); } return 0; }
the_stack_data/150141701.c
#include <stdio.h> #include <stdlib.h> void Q40() { int n; int *array; printf("Please enter the number of the arrar elements: "); scanf("%d", &n); array = (int *)malloc(n * sizeof(int)); printf("Please enter the array element: "); for (int i = 0; i < n; i++) scanf("%d", (array + i)); printf("The reversed array is: "); for (int i = n-1; i >= 0; i--) printf("%d ", *(array + i)); printf("\n"); free(array); } int main(void) { Q40(); return 0; }
the_stack_data/1062378.c
/* LICENCE INFORMATION: Copyright (c) 2005, John Huxter, [email protected]. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE COPYRIGHT OWNERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE COPYRIGHT OWNERS BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* <TAGS>dt.matrix</TAGS> DESCRIPTION: - define a peak-zone of contiguous values exceeding a threshold in a 2D matrix - starts by finding the maximal value in the data in areas where mask >= 0 - peak propogates out in an expanding radius from the highest un-masked element exceeding the threshold - propogation diagonally is prevented - simplified version of the old hux_findspot function USES: - define a hippocampal place field - find a bright spot in a video frame - define a peak in a phase-amplitude coupling plot DEPENDENCY TREE: No dependencies ARGUMENTS: double *matrix1 : input array holding a matrix of values in which peak zone is to be found int *mask : input/output array initialized by calling function and used to report peak detection long width : width of the matrix long height : height of the matrix float thresh : minimum threshold to be exceeded for inclusion in the peak zone double *result : array initialized by calling function to hold results Regarding the mask array: - presumed to be zero at start - set to 1 on addition to the peak zone - if initially less than zero, that element in the data is ignored - allows successive calls to the funtion - set previously detected mask elements to -1 to allow detection of other peaks Regarding the results array: result[0]= number of elements in peak result[1]= x-position (zero-offset element) of max value result[2]= y-position (zero-offset element) of max value result[3]= x-position of centre of mass (left=0) result[4]= x-position of centre of mass (top=0) result[5]= mean value of elements inside peak zone result[6]= max value (value in the pixel which is the field kernal) RETURN VALUE: 1 on success, 0 on error */ #include <stdio.h> #include <stdlib.h> #include <math.h> int xf_matrixpeak1_f(float *matrix1, int *mask, long width, long height, double thresh, double *result) { long ii,jj,kk,nn,npeak,range,radius,peakx,peaky; long x1,x2,y1,y2,p1,p2,pixelsadded; double aa,min,max,centroid_x,centroid_y,peaksum,peakmean; /********************************************************************************/ /* FIND LARGEST VALUE EXCEEDING THE THRESHOLD */ /********************************************************************************/ nn= width*height; min= max= thresh; npeak=0; for(ii=kk=0;ii<nn;ii++) { if(isfinite(matrix1[ii])) { if(mask[ii]>=0) { if(++kk==1) min= matrix1[ii]; if(matrix1[ii]<min) min= matrix1[ii]; if(matrix1[ii]>max) { p1= ii; max= matrix1[ii]; npeak= 1; }} } else mask[ii]=-1; } min+=1; // increment min so that when adjusting values, zero never occurs /* make sure at least 1 pixel exceeding threshold and not previously masked was detected */ if(npeak==1) { peaky= p1/width; peakx= p1-(peaky*width); mask[p1]=1; // so this pixel is skipped in subsequent searches } else { result[0]=0.0; for(ii=1;ii<7;ii++) result[ii]=NAN; return(0); } /********************************************************************************/ /******************************************************************************** DEFINE THE PEAK-AREA ********************************************************************************/ /********************************************************************************/ /* set limits for radius of pixel search - this will be much larger than a realistic spot */ if(width>height) range = width; else range = height; /* now work out in a widening radius */ for(radius=1;radius<range;radius++) { pixelsadded=0; /********************************************************************************/ /* DO THE SIDES ************************************************************/ /********************************************************************************/ /* set theoretical ranges for scans of top & bottom row */ x1=peakx-radius; x2=peakx+radius; y1=peaky-radius; y2=peaky+radius; /* make sure x stays within range - note that for horizontal scan x2 is a proxy for width */ if(x1<0) x1=0; if(x2>width) x2=width; /* do top row (minus corners) */ if(y1>=0) { p1= y1*width + x1 + 1; p2= y1*width + x2; for(ii=p1;ii<p2;ii++) { /* note that for horizontal scan, p2 must not be reached */ if(matrix1[ii]>=thresh && mask[ii]>=0) { // look left and down for previous non-diagonal pixels that were added if(mask[ii-1]==1 || mask[ii+width]==1) { mask[ii]=1; pixelsadded++; }}}} /* do bottom row (minus corners) - note that for horizontal scan, p2 represents maximum which must not be exceeded */ if(y2<height) { p1= y2*width + x1 + 1; p2= y2*width + x2; for(ii=p1;ii<p2;ii++) { /* note that for horizontal scan, p2 must not be reached */ if(matrix1[ii]>=thresh && mask[ii]>=0) { // look left and up for previous non-diagonal pixels that were added if(mask[ii-1]==1 || mask[ii-width]==1) { mask[ii]=1; pixelsadded++; }}}} /* reset x1 and x2 to hypothetical values */ x1=peakx-radius; x2=peakx+radius; /* make sure y stays within range - note that here y2 represents the last row which may be used */ if(y1<0) y1=0; if(y2>height) y2=height; /* do left side (minus corners) */ if(x1>=0) { p1= (y1+1)*width + x1; p2= (y2*width) + x1; for(ii=p1;ii<p2;ii+=width) { /* note that for vertical scan, p2 is a valid position which can be reached */ if(matrix1[ii]>=thresh && mask[ii]>=0) { // look up and right for previous non-diagonal pixels that were added if(mask[ii-height]==1 || mask[ii+1]==1) { mask[ii]=1; pixelsadded++; }}}} /* do right side (minus corners) */ if(x2<width) { p1= (y1+1)*width + x2; p2= (y2*width) + x2; for(ii=p1;ii<p2;ii+=width) { if(matrix1[ii]>=thresh && mask[ii]>=0) { // look up and left for previous non-diagonal pixels that were added if(mask[ii-height]==1 || mask[ii-1]==1) { mask[ii]=1; pixelsadded++; }}}} /********************************************************************************/ /* DO THE CORNERS ***************************************************************/ /********************************************************************************/ /* reset the theoretical ranges */ x1=peakx-radius; x2=peakx+radius; y1=peaky-radius; y2=peaky+radius; /* make sure x and y stay within range */ if(x1<0) x1=0; if(x2>=width) x2=width-1; if(y1<0) y1=0; if(y2>=height) y2=height-1; if(y1>=0 && x1>=0) { /* do top left corner */ ii= y1*width+x1; if(matrix1[ii]>=thresh && mask[ii]>=0) { // look down and right for previous non-diagonal pixels that were added if(mask[ii+height]==1 || mask[ii+1]==1) { mask[ii]=1; pixelsadded++; }}} if(y1>=0 && x2<width) { /* do top right corner */ ii= y1*width+x2; if(matrix1[ii]>=thresh && mask[ii]>=0) { // look down and left for previous non-diagonal pixels that were added if(mask[ii+height]==1 || mask[ii-1]==1) { //??? change right term to +1 mask[ii]=1; pixelsadded++; }}} if(y2<height && x1>=0) { /* do bottom left corner */ ii= y2*width+x1; if(matrix1[ii]>=thresh && mask[ii]>=0) { // look up and right for previous non-diagonal pixels that were added if(mask[ii-height]==1 || mask[ii+1]==1) { mask[ii]=1; pixelsadded++; }}} if(y2<height && x2<width) { /* do bottom right corner */ ii= y2*width+x2; if(matrix1[ii]>=thresh && mask[ii]>=0) { // look up and left for previous non-diagonal pixels that were added if(mask[ii-height]==1 || mask[ii-1]==1) { mask[ii]=1; pixelsadded++; }} } /* if pixels were added in this radius, add to pixels-in-peak, otherwise, end detection */ if(pixelsadded>0) npeak+=pixelsadded; else break; } /* END OF RADIUS LOOP */ /********************************************************************************/ /* GET PEAK STATISTICS - note no need to check npeak>0 - already did this before the radius loop */ /********************************************************************************/ centroid_x = centroid_y = peaksum = 0.0; for(y1=0;y1<height;y1++) { for(x1=0;x1<width;x1++) { p1=y1*width+x1; if(mask[p1]==1) { aa= matrix1[p1] + min; centroid_x+= aa * (double)x1; centroid_y+= aa * (double)y1; peaksum += aa; }}} centroid_x /= peaksum; centroid_y /= peaksum; peakmean = peaksum/(double)npeak - min; /********************************************************************************/ /* COPY VALUES TO RESULTS AND RETURN FLAG*/ /********************************************************************************/ result[0]=(double)npeak; result[1]=(double)peakx; result[2]=(double)peaky; result[3]=centroid_x; result[4]=centroid_y; result[5]=peakmean; result[6]=max; return(1); }
the_stack_data/64200248.c
int main() { int flag, new_flag; __asm__ ( "movl %1, %%eax \n" "orw $2, %%ax \n" "movl %%ax, %0 \n" : "=r"(new_flag) /* output */ : "r"(flag) /* input */ : "%eax" /* clobbered register */ ); }
the_stack_data/156392863.c
/* f2c.h -- Standard Fortran to C header file */ /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed." - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */ #ifndef F2C_INCLUDE #define F2C_INCLUDE #include <math.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <complex.h> #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimag(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i])) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i]) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i]) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } #endif /* -- translated by f2c (version 20000121). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ /* > \brief \b CUNBDB5 */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download CUNBDB5 + dependencies */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb5 .f"> */ /* > [TGZ]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb5 .f"> */ /* > [ZIP]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb5 .f"> */ /* > [TXT]</a> */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE CUNBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, */ /* LDQ2, WORK, LWORK, INFO ) */ /* INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2, */ /* $ N */ /* COMPLEX Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*) */ /* > \par Purpose: */ /* ============= */ /* > */ /* >\verbatim */ /* > */ /* > CUNBDB5 orthogonalizes the column vector */ /* > X = [ X1 ] */ /* > [ X2 ] */ /* > with respect to the columns of */ /* > Q = [ Q1 ] . */ /* > [ Q2 ] */ /* > The columns of Q must be orthonormal. */ /* > */ /* > If the projection is zero according to Kahan's "twice is enough" */ /* > criterion, then some other vector from the orthogonal complement */ /* > is returned. This vector is chosen in an arbitrary but deterministic */ /* > way. */ /* > */ /* >\endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] M1 */ /* > \verbatim */ /* > M1 is INTEGER */ /* > The dimension of X1 and the number of rows in Q1. 0 <= M1. */ /* > \endverbatim */ /* > */ /* > \param[in] M2 */ /* > \verbatim */ /* > M2 is INTEGER */ /* > The dimension of X2 and the number of rows in Q2. 0 <= M2. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns in Q1 and Q2. 0 <= N. */ /* > \endverbatim */ /* > */ /* > \param[in,out] X1 */ /* > \verbatim */ /* > X1 is COMPLEX array, dimension (M1) */ /* > On entry, the top part of the vector to be orthogonalized. */ /* > On exit, the top part of the projected vector. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX1 */ /* > \verbatim */ /* > INCX1 is INTEGER */ /* > Increment for entries of X1. */ /* > \endverbatim */ /* > */ /* > \param[in,out] X2 */ /* > \verbatim */ /* > X2 is COMPLEX array, dimension (M2) */ /* > On entry, the bottom part of the vector to be */ /* > orthogonalized. On exit, the bottom part of the projected */ /* > vector. */ /* > \endverbatim */ /* > */ /* > \param[in] INCX2 */ /* > \verbatim */ /* > INCX2 is INTEGER */ /* > Increment for entries of X2. */ /* > \endverbatim */ /* > */ /* > \param[in] Q1 */ /* > \verbatim */ /* > Q1 is COMPLEX array, dimension (LDQ1, N) */ /* > The top part of the orthonormal basis matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ1 */ /* > \verbatim */ /* > LDQ1 is INTEGER */ /* > The leading dimension of Q1. LDQ1 >= M1. */ /* > \endverbatim */ /* > */ /* > \param[in] Q2 */ /* > \verbatim */ /* > Q2 is COMPLEX array, dimension (LDQ2, N) */ /* > The bottom part of the orthonormal basis matrix. */ /* > \endverbatim */ /* > */ /* > \param[in] LDQ2 */ /* > \verbatim */ /* > LDQ2 is INTEGER */ /* > The leading dimension of Q2. LDQ2 >= M2. */ /* > \endverbatim */ /* > */ /* > \param[out] WORK */ /* > \verbatim */ /* > WORK is COMPLEX array, dimension (LWORK) */ /* > \endverbatim */ /* > */ /* > \param[in] LWORK */ /* > \verbatim */ /* > LWORK is INTEGER */ /* > The dimension of the array WORK. LWORK >= N. */ /* > \endverbatim */ /* > */ /* > \param[out] INFO */ /* > \verbatim */ /* > INFO is INTEGER */ /* > = 0: successful exit. */ /* > < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date July 2012 */ /* > \ingroup complexOTHERcomputational */ /* ===================================================================== */ /* Subroutine */ int cunbdb5_(integer *m1, integer *m2, integer *n, complex * x1, integer *incx1, complex *x2, integer *incx2, complex *q1, integer *ldq1, complex *q2, integer *ldq2, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer q1_dim1, q1_offset, q2_dim1, q2_offset, i__1, i__2, i__3; real r__1, r__2; /* Local variables */ integer i__, j, childinfo; extern real scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), cunbdb6_( integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK computational routine (version 3.7.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* July 2012 */ /* ===================================================================== */ /* Test input arguments */ /* Parameter adjustments */ --x1; --x2; q1_dim1 = *ldq1; q1_offset = 1 + q1_dim1 * 1; q1 -= q1_offset; q2_dim1 = *ldq2; q2_offset = 1 + q2_dim1 * 1; q2 -= q2_offset; --work; /* Function Body */ *info = 0; if (*m1 < 0) { *info = -1; } else if (*m2 < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*incx1 < 1) { *info = -5; } else if (*incx2 < 1) { *info = -7; } else if (*ldq1 < f2cmax(1,*m1)) { *info = -9; } else if (*ldq2 < f2cmax(1,*m2)) { *info = -11; } else if (*lwork < *n) { *info = -13; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNBDB5", &i__1, (ftnlen)7); return 0; } /* Project X onto the orthogonal complement of Q */ cunbdb6_(m1, m2, n, &x1[1], incx1, &x2[1], incx2, &q1[q1_offset], ldq1, & q2[q2_offset], ldq2, &work[1], lwork, &childinfo); /* If the projection is nonzero, then return */ r__1 = scnrm2_(m1, &x1[1], incx1); r__2 = scnrm2_(m2, &x2[1], incx2); if (r__1 != 0.f || r__2 != 0.f) { return 0; } /* Project each standard basis vector e_1,...,e_M1 in turn, stopping */ /* when a nonzero projection is found */ i__1 = *m1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m1; for (j = 1; j <= i__2; ++j) { i__3 = j; x1[i__3].r = 0.f, x1[i__3].i = 0.f; } i__2 = i__; x1[i__2].r = 1.f, x1[i__2].i = 0.f; i__2 = *m2; for (j = 1; j <= i__2; ++j) { i__3 = j; x2[i__3].r = 0.f, x2[i__3].i = 0.f; } cunbdb6_(m1, m2, n, &x1[1], incx1, &x2[1], incx2, &q1[q1_offset], ldq1, &q2[q2_offset], ldq2, &work[1], lwork, &childinfo); r__1 = scnrm2_(m1, &x1[1], incx1); r__2 = scnrm2_(m2, &x2[1], incx2); if (r__1 != 0.f || r__2 != 0.f) { return 0; } } /* Project each standard basis vector e_(M1+1),...,e_(M1+M2) in turn, */ /* stopping when a nonzero projection is found */ i__1 = *m2; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m1; for (j = 1; j <= i__2; ++j) { i__3 = j; x1[i__3].r = 0.f, x1[i__3].i = 0.f; } i__2 = *m2; for (j = 1; j <= i__2; ++j) { i__3 = j; x2[i__3].r = 0.f, x2[i__3].i = 0.f; } i__2 = i__; x2[i__2].r = 1.f, x2[i__2].i = 0.f; cunbdb6_(m1, m2, n, &x1[1], incx1, &x2[1], incx2, &q1[q1_offset], ldq1, &q2[q2_offset], ldq2, &work[1], lwork, &childinfo); r__1 = scnrm2_(m1, &x1[1], incx1); r__2 = scnrm2_(m2, &x2[1], incx2); if (r__1 != 0.f || r__2 != 0.f) { return 0; } } return 0; /* End of CUNBDB5 */ } /* cunbdb5_ */
the_stack_data/800000.c
#include <stdio.h> static char occur_once(const char *s) { if (s == NULL) return(0); char map[256] = { 0 }; int i; while (*s) { if (map[*s] < 2) map[*s]++; s++; } for (i = 0; i < 256; i++) if (map[i] == 1) return(i); return(0); } int main(int argc, char *argv[]) { printf("%c\n", occur_once(argv[1])); return(0); }
the_stack_data/150140489.c
int max2_c(int v0, int v1) { int r; if (v0 > v1) { r = v0; } else { r = v1; } return r; } int max3_c(int v0, int v1, int v2) { int r; r = max2_c(v0, v1); r = max2_c(r, v2); return r; }
the_stack_data/23576621.c
//Description: Write a recursive function "powTwo" that takes in a positive integer "n" and returns 2^n //Example: powTwo( 3 ) = 8, because 2^3 = 8. //library # include<stdio.h> //Declare Functions int powTwo(int n); int main(){ int x = 0; printf("2^%d = %d \n", x, powTwo(x)); return 0; } //2^0 = 1 // 2^1 = 2 * 1 // 2^ 2 = 2 * 2 // 2^3 = 2 * 2 * 2 int powTwo(int n){ //Base Case if(n == 0){ return 1; } //Recursive Case return 2 * powTwo(n-1); }
the_stack_data/45450531.c
//Finding 10001st Prime number... #include<stdio.h> int isprime(long int a){ long int i;int c=1; if((a%2)==0 && a!=2) c=0; else if(a==1) c=0; else{ for(i=3;i<a/2;i=i+2){ if((a%i)==0) c=0; } } return c; } int main(){ long int a=3,count=2; /*printf("Enter the Number to check:"); scanf("%ld",&a); if(isprime(a)) printf("No is prime"); else printf("No is not Prime");*/ while(1){ a=a+2; if(isprime(a)){ count++; } if(count==10001){ printf("The 10001st Prime is: %ld",a); break;} } return 0; }
the_stack_data/1194707.c
// Tool to shuffle entries of word-word cooccurrence files // // Copyright (c) 2014 The Board of Trustees of // The Leland Stanford Junior University. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // // For more information, bug reports, fixes, contact: // Jeffrey Pennington ([email protected]) // [email protected] // http://nlp.stanford.edu/projects/glove/ #include <stdio.h> #include <string.h> #include <stdlib.h> #define MAX_STRING_LENGTH 1000 static const long LRAND_MAX = ((long) RAND_MAX + 2) * (long)RAND_MAX; typedef double real; typedef struct cooccur_rec { int word1; int word2; real val; } CREC; int verbose = 2; // 0, 1, or 2 long long array_size = 2000000; // size of chunks to shuffle individually char *file_head; // temporary file string real memory_limit = 2.0; // soft limit, in gigabytes /* Efficient string comparison */ int scmp( char *s1, char *s2 ) { while (*s1 != '\0' && *s1 == *s2) {s1++; s2++;} return(*s1 - *s2); } /* Generate uniformly distributed random long ints */ static long rand_long(long n) { long limit = LRAND_MAX - LRAND_MAX % n; long rnd; do { rnd = ((long)RAND_MAX + 1) * (long)rand() + (long)rand(); } while (rnd >= limit); return rnd % n; } /* Write contents of array to binary file */ int write_chunk(CREC *array, long size, FILE *fout) { long i = 0; for (i = 0; i < size; i++) fwrite(&array[i], sizeof(CREC), 1, fout); return 0; } /* Fisher-Yates shuffle */ void shuffle(CREC *array, long n) { long i, j; CREC tmp; for (i = n - 1; i > 0; i--) { j = rand_long(i + 1); tmp = array[j]; array[j] = array[i]; array[i] = tmp; } } /* Merge shuffled temporary files; doesn't necessarily produce a perfect shuffle, but good enough */ int shuffle_merge(int num) { long i, j, k, l = 0; int fidcounter = 0; CREC *array; char filename[MAX_STRING_LENGTH]; FILE **fid, *fout = stdout; array = malloc(sizeof(CREC) * array_size); fid = malloc(sizeof(FILE*) * num); for (fidcounter = 0; fidcounter < num; fidcounter++) { //num = number of temporary files to merge sprintf(filename,"%s_%04d.bin",file_head, fidcounter); fid[fidcounter] = fopen(filename, "rb"); if (fid[fidcounter] == NULL) { fprintf(stderr, "Unable to open file %s.\n",filename); return 1; } } if (verbose > 0) fprintf(stderr, "Merging temp files: processed %ld lines.", l); while (1) { //Loop until EOF in all files i = 0; //Read at most array_size values into array, roughly array_size/num from each temp file for (j = 0; j < num; j++) { if (feof(fid[j])) continue; for (k = 0; k < array_size / num; k++){ fread(&array[i], sizeof(CREC), 1, fid[j]); if (feof(fid[j])) break; i++; } } if (i == 0) break; l += i; shuffle(array, i-1); // Shuffles lines between temp files write_chunk(array,i,fout); if (verbose > 0) fprintf(stderr, "\033[31G%ld lines.", l); } fprintf(stderr, "\033[0GMerging temp files: processed %ld lines.", l); for (fidcounter = 0; fidcounter < num; fidcounter++) { fclose(fid[fidcounter]); sprintf(filename,"%s_%04d.bin",file_head, fidcounter); remove(filename); } fprintf(stderr, "\n\n"); free(array); return 0; } /* Shuffle large input stream by splitting into chunks */ int shuffle_by_chunks() { long i = 0, l = 0; int fidcounter = 0; char filename[MAX_STRING_LENGTH]; CREC *array; FILE *fin = stdin, *fid; array = malloc(sizeof(CREC) * array_size); fprintf(stderr,"SHUFFLING COOCCURRENCES\n"); if (verbose > 0) fprintf(stderr,"array size: %lld\n", array_size); sprintf(filename,"%s_%04d.bin",file_head, fidcounter); fid = fopen(filename,"w"); if (fid == NULL) { fprintf(stderr, "Unable to open file %s.\n",filename); return 1; } if (verbose > 1) fprintf(stderr, "Shuffling by chunks: processed 0 lines."); while (1) { //Continue until EOF if (i >= array_size) {// If array is full, shuffle it and save to temporary file shuffle(array, i-2); l += i; if (verbose > 1) fprintf(stderr, "\033[22Gprocessed %ld lines.", l); write_chunk(array,i,fid); fclose(fid); fidcounter++; sprintf(filename,"%s_%04d.bin",file_head, fidcounter); fid = fopen(filename,"w"); if (fid == NULL) { fprintf(stderr, "Unable to open file %s.\n",filename); return 1; } i = 0; } fread(&array[i], sizeof(CREC), 1, fin); if (feof(fin)) break; i++; } shuffle(array, i-2); //Last chunk may be smaller than array_size write_chunk(array,i,fid); l += i; if (verbose > 1) fprintf(stderr, "\033[22Gprocessed %ld lines.\n", l); if (verbose > 1) fprintf(stderr, "Wrote %d temporary file(s).\n", fidcounter + 1); fclose(fid); free(array); return shuffle_merge(fidcounter + 1); // Merge and shuffle together temporary files } int find_arg(char *str, int argc, char **argv) { int i; for (i = 1; i < argc; i++) { if (!scmp(str, argv[i])) { if (i == argc - 1) { printf("No argument given for %s\n", str); exit(1); } return i; } } return -1; } int main(int argc, char **argv) { int i; file_head = malloc(sizeof(char) * MAX_STRING_LENGTH); if (argc == 1) { printf("Tool to shuffle entries of word-word cooccurrence files\n"); printf("Author: Jeffrey Pennington ([email protected])\n\n"); printf("Usage options:\n"); printf("\t-verbose <int>\n"); printf("\t\tSet verbosity: 0, 1, or 2 (default)\n"); printf("\t-memory <float>\n"); printf("\t\tSoft limit for memory consumption, in GB; default 4.0\n"); printf("\t-array-size <int>\n"); printf("\t\tLimit to length <int> the buffer which stores chunks of data to shuffle before writing to disk. \n\t\tThis value overrides that which is automatically produced by '-memory'.\n"); printf("\t-temp-file <file>\n"); printf("\t\tFilename, excluding extension, for temporary files; default temp_shuffle\n"); printf("\nExample usage: (assuming 'cooccurrence.bin' has been produced by 'coccur')\n"); printf("./shuffle -verbose 2 -memory 8.0 < cooccurrence.bin > cooccurrence.shuf.bin\n"); return 0; } if ((i = find_arg((char *)"-verbose", argc, argv)) > 0) verbose = atoi(argv[i + 1]); if ((i = find_arg((char *)"-temp-file", argc, argv)) > 0) strcpy(file_head, argv[i + 1]); else strcpy(file_head, (char *)"temp_shuffle"); if ((i = find_arg((char *)"-memory", argc, argv)) > 0) memory_limit = atof(argv[i + 1]); array_size = (long long) (0.95 * (real)memory_limit * 1073741824/(sizeof(CREC))); if ((i = find_arg((char *)"-array-size", argc, argv)) > 0) array_size = atoll(argv[i + 1]); return shuffle_by_chunks(); }
the_stack_data/25367.c
#include<stdio.h> #include<math.h> long long int fact(int n){ int ans=1; for (int i = 1; i <=n; i++) { ans*=i; } return ans; } long double multiplier(float n,int k){ long double ans=n; for (int i = 1; i <=k; i++) { ans*=(n-i); } return ans; } int main(){ long double root=1; for (int i = 0; i < 14; i++) { root+=(multiplier(0.5,i))/fact(i); } printf("sqrt 2 = %Lf\n",root); int num; root=1; printf("\nenter a number :- "); scanf("%d",&num); root= pow(2,0.5*log2(num)); printf("square root of %d = %Lf",num,root); return 0; }
the_stack_data/742862.c
#include <stdio.h> #include <string.h> int wcount(char *s); #define MAX 300 int main(int argc, const char * argv[]) { char s[MAX]; fgets(s, MAX, stdin); printf("%d", wcount(s)); } int wcount(char *s) { int i, count; unsigned long length; length = strlen(s); s[length] = ' '; for (i = 0; i < length; ++i){ if((s[i] != ' ') && (s[i+1] == ' ')) ++count; } return (count); }
the_stack_data/105186.c
#include <stdio.h> /* * 2.71 * 将 4 个有符号字节封装成一个 32 位 unsigned。 * 一个字中的字节从 0(最低有效字节)编号到3(最高有效字节)。 * 为一个使用补码运算和算数右移的机器编写一个具有如下原型的函数: * * Declaration of data type where 4 bytes are packed into an unsigned * * typedef unsigned packed_t; * * Extract byte from word. Return as signed integer * * int xbyte(packed_t word, int bytenum); * * 也就是说,函数会抽取出指定的字节,再把它符号扩展为一个 32 位 int。你的前任 * (因为水平不够高而被解雇了)编写了下面的代码: * * Failed attempt at xbyte * int xbyte(packed_t word, int bytenum) * { * return (word >> (bytenum << 3)) & 0xFF; * } * * A. 这段代码错在哪里? // 抽取的字节是负数 没有考虑到 * B. 给出函数的正确实现,只能使用左右移位和一个减法。 */ typedef unsigned packed_t; int xbyte(packed_t word, int bytenum) { // 抽取的字节是负数 printf("%x\n", (word << ((3 - bytenum) << 3))); return ((int)(word << ((3 - bytenum) << 3)) >> 24); } int main(int argc, char *argv[]) { printf("%x\n", xbyte(0xAABBCCDD, 1)); // == 0xFFFFFFCC printf("%x\n", xbyte(0x00112233, 2)); // == 0x11 return 0; }
the_stack_data/231392396.c
#include <stdio.h> #include <string.h> #include <stdint.h> static void help(void) { puts("A simple implementation of a shell for testing termopen()."); puts(""); puts("Usage:"); puts(" shell-test --help"); puts(" Prints this help to stdout."); puts(" shell-test"); puts(" shell-test EXE"); puts(" Prints \"ready $ \" to stderr."); puts(" shell-test -t {prompt text}"); puts(" Prints \"{prompt text} $ \" to stderr."); puts(" shell-test EXE \"prog args...\""); puts(" Prints \"ready $ prog args...\\n\" to stderr."); puts(" shell-test -t {prompt text} EXE \"prog args...\""); puts(" Prints \"{prompt text} $ progs args...\" to stderr."); puts(" shell-test REP {byte} \"line line line\""); puts(" Prints \"{lnr}: line line line\\n\" to stdout {byte} times."); puts(" I.e. for `shell-test REP ab \"test\"'"); puts(" 0: test"); puts(" ..."); puts(" 96: test"); puts(" will be printed because byte `a' is equal to 97."); } int main(int argc, char **argv) { if (argc == 2 && strcmp(argv[1], "--help") == 0) { help(); } if (argc >= 2) { if (strcmp(argv[1], "-t") == 0) { if (argc < 3) { fprintf(stderr,"Missing prompt text for -t option\n"); return 5; } else { fprintf(stderr, "%s $ ", argv[2]); if (argc >= 5 && (strcmp(argv[3], "EXE") == 0)) { fprintf(stderr, "%s\n", argv[4]); } } } else if (strcmp(argv[1], "EXE") == 0) { fprintf(stderr, "ready $ "); if (argc >= 3) { fprintf(stderr, "%s\n", argv[2]); } } else if (strcmp(argv[1], "REP") == 0) { if (argc < 4) { fprintf(stderr, "Not enough REP arguments\n"); return 4; } uint8_t number = (uint8_t) *argv[2]; for (uint8_t i = 0; i < number; i++) { printf("%d: %s\n", (int) i, argv[3]); } } else { fprintf(stderr, "Unknown first argument\n"); return 3; } return 0; } else if (argc == 1) { fprintf(stderr, "ready $ "); return 0; } else { fprintf(stderr, "Missing first argument\n"); return 2; } }
the_stack_data/123548.c
#include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <unistd.h> void* thread_run(void *data) { sleep(2); printf("[TH_1: %ld]: Hello from the thread \n", pthread_self()); sleep(1); (*(int*) data)++; printf("[TH_1: %ld]: To exit............... \n", pthread_self()); pthread_exit(data); } int main() { pthread_t thread; int data = 0; int thread_rc; printf("[MAIN: %ld]: Starting............ \n", pthread_self()); if ((thread_rc = pthread_create(&thread, NULL, thread_run, &data)) != 0) { printf("Error creating the thread. Code %i", thread_rc); return -1; } sleep(1); printf("[MAIN: %ld]: Thread allocated \n", pthread_self()); int *ptr_output_data; pthread_join(thread, (void**) &ptr_output_data); printf("[MAIN: %ld]: Thread returns %d \n", pthread_self(), *ptr_output_data); return 0; }
the_stack_data/48574355.c
extern float __VERIFIER_nondet_float(void); extern int __VERIFIER_nondet_int(void); typedef enum {false, true} bool; bool __VERIFIER_nondet_bool(void) { return __VERIFIER_nondet_int() != 0; } int main() { float x_20, _x_x_20; float x_6, _x_x_6; bool _EL_X_2390, _x__EL_X_2390; bool _EL_X_2383, _x__EL_X_2383; float x_13, _x_x_13; float x_1, _x_x_1; float x_14, _x_x_14; float x_0, _x_x_0; float x_16, _x_x_16; float x_17, _x_x_17; float x_3, _x_x_3; float x_5, _x_x_5; float x_23, _x_x_23; float x_7, _x_x_7; float x_8, _x_x_8; float x_10, _x_x_10; float x_11, _x_x_11; float x_12, _x_x_12; float x_18, _x_x_18; float x_21, _x_x_21; float x_22, _x_x_22; float x_24, _x_x_24; float x_19, _x_x_19; float x_26, _x_x_26; float x_2, _x_x_2; float x_27, _x_x_27; float x_9, _x_x_9; float x_15, _x_x_15; float x_4, _x_x_4; float x_25, _x_x_25; int __steps_to_fair = __VERIFIER_nondet_int(); x_20 = __VERIFIER_nondet_float(); x_6 = __VERIFIER_nondet_float(); _EL_X_2390 = __VERIFIER_nondet_bool(); _EL_X_2383 = __VERIFIER_nondet_bool(); x_13 = __VERIFIER_nondet_float(); x_1 = __VERIFIER_nondet_float(); x_14 = __VERIFIER_nondet_float(); x_0 = __VERIFIER_nondet_float(); x_16 = __VERIFIER_nondet_float(); x_17 = __VERIFIER_nondet_float(); x_3 = __VERIFIER_nondet_float(); x_5 = __VERIFIER_nondet_float(); x_23 = __VERIFIER_nondet_float(); x_7 = __VERIFIER_nondet_float(); x_8 = __VERIFIER_nondet_float(); x_10 = __VERIFIER_nondet_float(); x_11 = __VERIFIER_nondet_float(); x_12 = __VERIFIER_nondet_float(); x_18 = __VERIFIER_nondet_float(); x_21 = __VERIFIER_nondet_float(); x_22 = __VERIFIER_nondet_float(); x_24 = __VERIFIER_nondet_float(); x_19 = __VERIFIER_nondet_float(); x_26 = __VERIFIER_nondet_float(); x_2 = __VERIFIER_nondet_float(); x_27 = __VERIFIER_nondet_float(); x_9 = __VERIFIER_nondet_float(); x_15 = __VERIFIER_nondet_float(); x_4 = __VERIFIER_nondet_float(); x_25 = __VERIFIER_nondet_float(); bool __ok = (1 && ( !(_EL_X_2383 || ( !_EL_X_2390)))); while (__steps_to_fair >= 0 && __ok) { if (( !0)) { __steps_to_fair = __VERIFIER_nondet_int(); } else { __steps_to_fair--; } _x_x_20 = __VERIFIER_nondet_float(); _x_x_6 = __VERIFIER_nondet_float(); _x__EL_X_2390 = __VERIFIER_nondet_bool(); _x__EL_X_2383 = __VERIFIER_nondet_bool(); _x_x_13 = __VERIFIER_nondet_float(); _x_x_1 = __VERIFIER_nondet_float(); _x_x_14 = __VERIFIER_nondet_float(); _x_x_0 = __VERIFIER_nondet_float(); _x_x_16 = __VERIFIER_nondet_float(); _x_x_17 = __VERIFIER_nondet_float(); _x_x_3 = __VERIFIER_nondet_float(); _x_x_5 = __VERIFIER_nondet_float(); _x_x_23 = __VERIFIER_nondet_float(); _x_x_7 = __VERIFIER_nondet_float(); _x_x_8 = __VERIFIER_nondet_float(); _x_x_10 = __VERIFIER_nondet_float(); _x_x_11 = __VERIFIER_nondet_float(); _x_x_12 = __VERIFIER_nondet_float(); _x_x_18 = __VERIFIER_nondet_float(); _x_x_21 = __VERIFIER_nondet_float(); _x_x_22 = __VERIFIER_nondet_float(); _x_x_24 = __VERIFIER_nondet_float(); _x_x_19 = __VERIFIER_nondet_float(); _x_x_26 = __VERIFIER_nondet_float(); _x_x_2 = __VERIFIER_nondet_float(); _x_x_27 = __VERIFIER_nondet_float(); _x_x_9 = __VERIFIER_nondet_float(); _x_x_15 = __VERIFIER_nondet_float(); _x_x_4 = __VERIFIER_nondet_float(); _x_x_25 = __VERIFIER_nondet_float(); __ok = ((((((((((((((((((((((((((((((((x_27 + (-1.0 * _x_x_0)) <= -11.0) && (((x_25 + (-1.0 * _x_x_0)) <= -8.0) && (((x_21 + (-1.0 * _x_x_0)) <= -10.0) && (((x_20 + (-1.0 * _x_x_0)) <= -6.0) && (((x_19 + (-1.0 * _x_x_0)) <= -11.0) && (((x_17 + (-1.0 * _x_x_0)) <= -16.0) && (((x_15 + (-1.0 * _x_x_0)) <= -11.0) && (((x_13 + (-1.0 * _x_x_0)) <= -17.0) && (((x_11 + (-1.0 * _x_x_0)) <= -19.0) && (((x_8 + (-1.0 * _x_x_0)) <= -1.0) && (((x_7 + (-1.0 * _x_x_0)) <= -8.0) && (((x_5 + (-1.0 * _x_x_0)) <= -12.0) && (((x_2 + (-1.0 * _x_x_0)) <= -19.0) && ((x_3 + (-1.0 * _x_x_0)) <= -2.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_0)) == -11.0) || (((x_25 + (-1.0 * _x_x_0)) == -8.0) || (((x_21 + (-1.0 * _x_x_0)) == -10.0) || (((x_20 + (-1.0 * _x_x_0)) == -6.0) || (((x_19 + (-1.0 * _x_x_0)) == -11.0) || (((x_17 + (-1.0 * _x_x_0)) == -16.0) || (((x_15 + (-1.0 * _x_x_0)) == -11.0) || (((x_13 + (-1.0 * _x_x_0)) == -17.0) || (((x_11 + (-1.0 * _x_x_0)) == -19.0) || (((x_8 + (-1.0 * _x_x_0)) == -1.0) || (((x_7 + (-1.0 * _x_x_0)) == -8.0) || (((x_5 + (-1.0 * _x_x_0)) == -12.0) || (((x_2 + (-1.0 * _x_x_0)) == -19.0) || ((x_3 + (-1.0 * _x_x_0)) == -2.0))))))))))))))) && ((((x_26 + (-1.0 * _x_x_1)) <= -15.0) && (((x_25 + (-1.0 * _x_x_1)) <= -12.0) && (((x_24 + (-1.0 * _x_x_1)) <= -12.0) && (((x_22 + (-1.0 * _x_x_1)) <= -9.0) && (((x_19 + (-1.0 * _x_x_1)) <= -1.0) && (((x_17 + (-1.0 * _x_x_1)) <= -6.0) && (((x_9 + (-1.0 * _x_x_1)) <= -13.0) && (((x_8 + (-1.0 * _x_x_1)) <= -16.0) && (((x_7 + (-1.0 * _x_x_1)) <= -11.0) && (((x_5 + (-1.0 * _x_x_1)) <= -10.0) && (((x_4 + (-1.0 * _x_x_1)) <= -17.0) && (((x_3 + (-1.0 * _x_x_1)) <= -1.0) && (((x_0 + (-1.0 * _x_x_1)) <= -18.0) && ((x_2 + (-1.0 * _x_x_1)) <= -15.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_1)) == -15.0) || (((x_25 + (-1.0 * _x_x_1)) == -12.0) || (((x_24 + (-1.0 * _x_x_1)) == -12.0) || (((x_22 + (-1.0 * _x_x_1)) == -9.0) || (((x_19 + (-1.0 * _x_x_1)) == -1.0) || (((x_17 + (-1.0 * _x_x_1)) == -6.0) || (((x_9 + (-1.0 * _x_x_1)) == -13.0) || (((x_8 + (-1.0 * _x_x_1)) == -16.0) || (((x_7 + (-1.0 * _x_x_1)) == -11.0) || (((x_5 + (-1.0 * _x_x_1)) == -10.0) || (((x_4 + (-1.0 * _x_x_1)) == -17.0) || (((x_3 + (-1.0 * _x_x_1)) == -1.0) || (((x_0 + (-1.0 * _x_x_1)) == -18.0) || ((x_2 + (-1.0 * _x_x_1)) == -15.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_2)) <= -14.0) && (((x_24 + (-1.0 * _x_x_2)) <= -20.0) && (((x_23 + (-1.0 * _x_x_2)) <= -18.0) && (((x_21 + (-1.0 * _x_x_2)) <= -2.0) && (((x_20 + (-1.0 * _x_x_2)) <= -11.0) && (((x_19 + (-1.0 * _x_x_2)) <= -16.0) && (((x_15 + (-1.0 * _x_x_2)) <= -1.0) && (((x_12 + (-1.0 * _x_x_2)) <= -17.0) && (((x_9 + (-1.0 * _x_x_2)) <= -18.0) && (((x_8 + (-1.0 * _x_x_2)) <= -16.0) && (((x_7 + (-1.0 * _x_x_2)) <= -10.0) && (((x_3 + (-1.0 * _x_x_2)) <= -4.0) && (((x_1 + (-1.0 * _x_x_2)) <= -14.0) && ((x_2 + (-1.0 * _x_x_2)) <= -14.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_2)) == -14.0) || (((x_24 + (-1.0 * _x_x_2)) == -20.0) || (((x_23 + (-1.0 * _x_x_2)) == -18.0) || (((x_21 + (-1.0 * _x_x_2)) == -2.0) || (((x_20 + (-1.0 * _x_x_2)) == -11.0) || (((x_19 + (-1.0 * _x_x_2)) == -16.0) || (((x_15 + (-1.0 * _x_x_2)) == -1.0) || (((x_12 + (-1.0 * _x_x_2)) == -17.0) || (((x_9 + (-1.0 * _x_x_2)) == -18.0) || (((x_8 + (-1.0 * _x_x_2)) == -16.0) || (((x_7 + (-1.0 * _x_x_2)) == -10.0) || (((x_3 + (-1.0 * _x_x_2)) == -4.0) || (((x_1 + (-1.0 * _x_x_2)) == -14.0) || ((x_2 + (-1.0 * _x_x_2)) == -14.0)))))))))))))))) && ((((x_25 + (-1.0 * _x_x_3)) <= -5.0) && (((x_21 + (-1.0 * _x_x_3)) <= -18.0) && (((x_19 + (-1.0 * _x_x_3)) <= -4.0) && (((x_12 + (-1.0 * _x_x_3)) <= -4.0) && (((x_11 + (-1.0 * _x_x_3)) <= -12.0) && (((x_10 + (-1.0 * _x_x_3)) <= -17.0) && (((x_9 + (-1.0 * _x_x_3)) <= -2.0) && (((x_8 + (-1.0 * _x_x_3)) <= -17.0) && (((x_7 + (-1.0 * _x_x_3)) <= -12.0) && (((x_6 + (-1.0 * _x_x_3)) <= -11.0) && (((x_5 + (-1.0 * _x_x_3)) <= -8.0) && (((x_4 + (-1.0 * _x_x_3)) <= -20.0) && (((x_1 + (-1.0 * _x_x_3)) <= -4.0) && ((x_2 + (-1.0 * _x_x_3)) <= -18.0)))))))))))))) && (((x_25 + (-1.0 * _x_x_3)) == -5.0) || (((x_21 + (-1.0 * _x_x_3)) == -18.0) || (((x_19 + (-1.0 * _x_x_3)) == -4.0) || (((x_12 + (-1.0 * _x_x_3)) == -4.0) || (((x_11 + (-1.0 * _x_x_3)) == -12.0) || (((x_10 + (-1.0 * _x_x_3)) == -17.0) || (((x_9 + (-1.0 * _x_x_3)) == -2.0) || (((x_8 + (-1.0 * _x_x_3)) == -17.0) || (((x_7 + (-1.0 * _x_x_3)) == -12.0) || (((x_6 + (-1.0 * _x_x_3)) == -11.0) || (((x_5 + (-1.0 * _x_x_3)) == -8.0) || (((x_4 + (-1.0 * _x_x_3)) == -20.0) || (((x_1 + (-1.0 * _x_x_3)) == -4.0) || ((x_2 + (-1.0 * _x_x_3)) == -18.0)))))))))))))))) && ((((x_25 + (-1.0 * _x_x_4)) <= -5.0) && (((x_24 + (-1.0 * _x_x_4)) <= -5.0) && (((x_20 + (-1.0 * _x_x_4)) <= -20.0) && (((x_13 + (-1.0 * _x_x_4)) <= -15.0) && (((x_11 + (-1.0 * _x_x_4)) <= -14.0) && (((x_10 + (-1.0 * _x_x_4)) <= -19.0) && (((x_9 + (-1.0 * _x_x_4)) <= -1.0) && (((x_7 + (-1.0 * _x_x_4)) <= -1.0) && (((x_6 + (-1.0 * _x_x_4)) <= -15.0) && (((x_5 + (-1.0 * _x_x_4)) <= -8.0) && (((x_4 + (-1.0 * _x_x_4)) <= -9.0) && (((x_3 + (-1.0 * _x_x_4)) <= -11.0) && (((x_1 + (-1.0 * _x_x_4)) <= -6.0) && ((x_2 + (-1.0 * _x_x_4)) <= -13.0)))))))))))))) && (((x_25 + (-1.0 * _x_x_4)) == -5.0) || (((x_24 + (-1.0 * _x_x_4)) == -5.0) || (((x_20 + (-1.0 * _x_x_4)) == -20.0) || (((x_13 + (-1.0 * _x_x_4)) == -15.0) || (((x_11 + (-1.0 * _x_x_4)) == -14.0) || (((x_10 + (-1.0 * _x_x_4)) == -19.0) || (((x_9 + (-1.0 * _x_x_4)) == -1.0) || (((x_7 + (-1.0 * _x_x_4)) == -1.0) || (((x_6 + (-1.0 * _x_x_4)) == -15.0) || (((x_5 + (-1.0 * _x_x_4)) == -8.0) || (((x_4 + (-1.0 * _x_x_4)) == -9.0) || (((x_3 + (-1.0 * _x_x_4)) == -11.0) || (((x_1 + (-1.0 * _x_x_4)) == -6.0) || ((x_2 + (-1.0 * _x_x_4)) == -13.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_5)) <= -1.0) && (((x_22 + (-1.0 * _x_x_5)) <= -4.0) && (((x_20 + (-1.0 * _x_x_5)) <= -13.0) && (((x_18 + (-1.0 * _x_x_5)) <= -11.0) && (((x_17 + (-1.0 * _x_x_5)) <= -11.0) && (((x_15 + (-1.0 * _x_x_5)) <= -15.0) && (((x_14 + (-1.0 * _x_x_5)) <= -19.0) && (((x_13 + (-1.0 * _x_x_5)) <= -12.0) && (((x_12 + (-1.0 * _x_x_5)) <= -5.0) && (((x_10 + (-1.0 * _x_x_5)) <= -14.0) && (((x_6 + (-1.0 * _x_x_5)) <= -14.0) && (((x_5 + (-1.0 * _x_x_5)) <= -1.0) && (((x_2 + (-1.0 * _x_x_5)) <= -3.0) && ((x_3 + (-1.0 * _x_x_5)) <= -13.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_5)) == -1.0) || (((x_22 + (-1.0 * _x_x_5)) == -4.0) || (((x_20 + (-1.0 * _x_x_5)) == -13.0) || (((x_18 + (-1.0 * _x_x_5)) == -11.0) || (((x_17 + (-1.0 * _x_x_5)) == -11.0) || (((x_15 + (-1.0 * _x_x_5)) == -15.0) || (((x_14 + (-1.0 * _x_x_5)) == -19.0) || (((x_13 + (-1.0 * _x_x_5)) == -12.0) || (((x_12 + (-1.0 * _x_x_5)) == -5.0) || (((x_10 + (-1.0 * _x_x_5)) == -14.0) || (((x_6 + (-1.0 * _x_x_5)) == -14.0) || (((x_5 + (-1.0 * _x_x_5)) == -1.0) || (((x_2 + (-1.0 * _x_x_5)) == -3.0) || ((x_3 + (-1.0 * _x_x_5)) == -13.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_6)) <= -20.0) && (((x_24 + (-1.0 * _x_x_6)) <= -19.0) && (((x_23 + (-1.0 * _x_x_6)) <= -15.0) && (((x_22 + (-1.0 * _x_x_6)) <= -15.0) && (((x_21 + (-1.0 * _x_x_6)) <= -10.0) && (((x_20 + (-1.0 * _x_x_6)) <= -20.0) && (((x_17 + (-1.0 * _x_x_6)) <= -7.0) && (((x_16 + (-1.0 * _x_x_6)) <= -18.0) && (((x_15 + (-1.0 * _x_x_6)) <= -6.0) && (((x_12 + (-1.0 * _x_x_6)) <= -20.0) && (((x_10 + (-1.0 * _x_x_6)) <= -2.0) && (((x_5 + (-1.0 * _x_x_6)) <= -4.0) && (((x_0 + (-1.0 * _x_x_6)) <= -14.0) && ((x_4 + (-1.0 * _x_x_6)) <= -11.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_6)) == -20.0) || (((x_24 + (-1.0 * _x_x_6)) == -19.0) || (((x_23 + (-1.0 * _x_x_6)) == -15.0) || (((x_22 + (-1.0 * _x_x_6)) == -15.0) || (((x_21 + (-1.0 * _x_x_6)) == -10.0) || (((x_20 + (-1.0 * _x_x_6)) == -20.0) || (((x_17 + (-1.0 * _x_x_6)) == -7.0) || (((x_16 + (-1.0 * _x_x_6)) == -18.0) || (((x_15 + (-1.0 * _x_x_6)) == -6.0) || (((x_12 + (-1.0 * _x_x_6)) == -20.0) || (((x_10 + (-1.0 * _x_x_6)) == -2.0) || (((x_5 + (-1.0 * _x_x_6)) == -4.0) || (((x_0 + (-1.0 * _x_x_6)) == -14.0) || ((x_4 + (-1.0 * _x_x_6)) == -11.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_7)) <= -2.0) && (((x_25 + (-1.0 * _x_x_7)) <= -9.0) && (((x_22 + (-1.0 * _x_x_7)) <= -1.0) && (((x_17 + (-1.0 * _x_x_7)) <= -14.0) && (((x_13 + (-1.0 * _x_x_7)) <= -8.0) && (((x_12 + (-1.0 * _x_x_7)) <= -1.0) && (((x_11 + (-1.0 * _x_x_7)) <= -1.0) && (((x_10 + (-1.0 * _x_x_7)) <= -8.0) && (((x_9 + (-1.0 * _x_x_7)) <= -5.0) && (((x_7 + (-1.0 * _x_x_7)) <= -4.0) && (((x_5 + (-1.0 * _x_x_7)) <= -5.0) && (((x_2 + (-1.0 * _x_x_7)) <= -7.0) && (((x_0 + (-1.0 * _x_x_7)) <= -5.0) && ((x_1 + (-1.0 * _x_x_7)) <= -8.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_7)) == -2.0) || (((x_25 + (-1.0 * _x_x_7)) == -9.0) || (((x_22 + (-1.0 * _x_x_7)) == -1.0) || (((x_17 + (-1.0 * _x_x_7)) == -14.0) || (((x_13 + (-1.0 * _x_x_7)) == -8.0) || (((x_12 + (-1.0 * _x_x_7)) == -1.0) || (((x_11 + (-1.0 * _x_x_7)) == -1.0) || (((x_10 + (-1.0 * _x_x_7)) == -8.0) || (((x_9 + (-1.0 * _x_x_7)) == -5.0) || (((x_7 + (-1.0 * _x_x_7)) == -4.0) || (((x_5 + (-1.0 * _x_x_7)) == -5.0) || (((x_2 + (-1.0 * _x_x_7)) == -7.0) || (((x_0 + (-1.0 * _x_x_7)) == -5.0) || ((x_1 + (-1.0 * _x_x_7)) == -8.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_8)) <= -17.0) && (((x_22 + (-1.0 * _x_x_8)) <= -20.0) && (((x_20 + (-1.0 * _x_x_8)) <= -18.0) && (((x_19 + (-1.0 * _x_x_8)) <= -13.0) && (((x_17 + (-1.0 * _x_x_8)) <= -2.0) && (((x_15 + (-1.0 * _x_x_8)) <= -6.0) && (((x_12 + (-1.0 * _x_x_8)) <= -2.0) && (((x_10 + (-1.0 * _x_x_8)) <= -13.0) && (((x_7 + (-1.0 * _x_x_8)) <= -2.0) && (((x_5 + (-1.0 * _x_x_8)) <= -14.0) && (((x_4 + (-1.0 * _x_x_8)) <= -8.0) && (((x_2 + (-1.0 * _x_x_8)) <= -7.0) && (((x_0 + (-1.0 * _x_x_8)) <= -13.0) && ((x_1 + (-1.0 * _x_x_8)) <= -12.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_8)) == -17.0) || (((x_22 + (-1.0 * _x_x_8)) == -20.0) || (((x_20 + (-1.0 * _x_x_8)) == -18.0) || (((x_19 + (-1.0 * _x_x_8)) == -13.0) || (((x_17 + (-1.0 * _x_x_8)) == -2.0) || (((x_15 + (-1.0 * _x_x_8)) == -6.0) || (((x_12 + (-1.0 * _x_x_8)) == -2.0) || (((x_10 + (-1.0 * _x_x_8)) == -13.0) || (((x_7 + (-1.0 * _x_x_8)) == -2.0) || (((x_5 + (-1.0 * _x_x_8)) == -14.0) || (((x_4 + (-1.0 * _x_x_8)) == -8.0) || (((x_2 + (-1.0 * _x_x_8)) == -7.0) || (((x_0 + (-1.0 * _x_x_8)) == -13.0) || ((x_1 + (-1.0 * _x_x_8)) == -12.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_9)) <= -13.0) && (((x_25 + (-1.0 * _x_x_9)) <= -16.0) && (((x_22 + (-1.0 * _x_x_9)) <= -6.0) && (((x_20 + (-1.0 * _x_x_9)) <= -5.0) && (((x_18 + (-1.0 * _x_x_9)) <= -4.0) && (((x_16 + (-1.0 * _x_x_9)) <= -6.0) && (((x_15 + (-1.0 * _x_x_9)) <= -3.0) && (((x_14 + (-1.0 * _x_x_9)) <= -3.0) && (((x_13 + (-1.0 * _x_x_9)) <= -6.0) && (((x_12 + (-1.0 * _x_x_9)) <= -16.0) && (((x_11 + (-1.0 * _x_x_9)) <= -8.0) && (((x_7 + (-1.0 * _x_x_9)) <= -6.0) && (((x_2 + (-1.0 * _x_x_9)) <= -13.0) && ((x_5 + (-1.0 * _x_x_9)) <= -7.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_9)) == -13.0) || (((x_25 + (-1.0 * _x_x_9)) == -16.0) || (((x_22 + (-1.0 * _x_x_9)) == -6.0) || (((x_20 + (-1.0 * _x_x_9)) == -5.0) || (((x_18 + (-1.0 * _x_x_9)) == -4.0) || (((x_16 + (-1.0 * _x_x_9)) == -6.0) || (((x_15 + (-1.0 * _x_x_9)) == -3.0) || (((x_14 + (-1.0 * _x_x_9)) == -3.0) || (((x_13 + (-1.0 * _x_x_9)) == -6.0) || (((x_12 + (-1.0 * _x_x_9)) == -16.0) || (((x_11 + (-1.0 * _x_x_9)) == -8.0) || (((x_7 + (-1.0 * _x_x_9)) == -6.0) || (((x_2 + (-1.0 * _x_x_9)) == -13.0) || ((x_5 + (-1.0 * _x_x_9)) == -7.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_10)) <= -7.0) && (((x_26 + (-1.0 * _x_x_10)) <= -6.0) && (((x_24 + (-1.0 * _x_x_10)) <= -12.0) && (((x_23 + (-1.0 * _x_x_10)) <= -17.0) && (((x_18 + (-1.0 * _x_x_10)) <= -3.0) && (((x_17 + (-1.0 * _x_x_10)) <= -17.0) && (((x_16 + (-1.0 * _x_x_10)) <= -1.0) && (((x_14 + (-1.0 * _x_x_10)) <= -10.0) && (((x_13 + (-1.0 * _x_x_10)) <= -16.0) && (((x_8 + (-1.0 * _x_x_10)) <= -6.0) && (((x_7 + (-1.0 * _x_x_10)) <= -10.0) && (((x_6 + (-1.0 * _x_x_10)) <= -8.0) && (((x_2 + (-1.0 * _x_x_10)) <= -5.0) && ((x_5 + (-1.0 * _x_x_10)) <= -19.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_10)) == -7.0) || (((x_26 + (-1.0 * _x_x_10)) == -6.0) || (((x_24 + (-1.0 * _x_x_10)) == -12.0) || (((x_23 + (-1.0 * _x_x_10)) == -17.0) || (((x_18 + (-1.0 * _x_x_10)) == -3.0) || (((x_17 + (-1.0 * _x_x_10)) == -17.0) || (((x_16 + (-1.0 * _x_x_10)) == -1.0) || (((x_14 + (-1.0 * _x_x_10)) == -10.0) || (((x_13 + (-1.0 * _x_x_10)) == -16.0) || (((x_8 + (-1.0 * _x_x_10)) == -6.0) || (((x_7 + (-1.0 * _x_x_10)) == -10.0) || (((x_6 + (-1.0 * _x_x_10)) == -8.0) || (((x_2 + (-1.0 * _x_x_10)) == -5.0) || ((x_5 + (-1.0 * _x_x_10)) == -19.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_11)) <= -15.0) && (((x_26 + (-1.0 * _x_x_11)) <= -5.0) && (((x_24 + (-1.0 * _x_x_11)) <= -4.0) && (((x_23 + (-1.0 * _x_x_11)) <= -19.0) && (((x_19 + (-1.0 * _x_x_11)) <= -16.0) && (((x_18 + (-1.0 * _x_x_11)) <= -1.0) && (((x_17 + (-1.0 * _x_x_11)) <= -15.0) && (((x_15 + (-1.0 * _x_x_11)) <= -10.0) && (((x_10 + (-1.0 * _x_x_11)) <= -9.0) && (((x_9 + (-1.0 * _x_x_11)) <= -12.0) && (((x_6 + (-1.0 * _x_x_11)) <= -11.0) && (((x_5 + (-1.0 * _x_x_11)) <= -9.0) && (((x_1 + (-1.0 * _x_x_11)) <= -10.0) && ((x_3 + (-1.0 * _x_x_11)) <= -18.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_11)) == -15.0) || (((x_26 + (-1.0 * _x_x_11)) == -5.0) || (((x_24 + (-1.0 * _x_x_11)) == -4.0) || (((x_23 + (-1.0 * _x_x_11)) == -19.0) || (((x_19 + (-1.0 * _x_x_11)) == -16.0) || (((x_18 + (-1.0 * _x_x_11)) == -1.0) || (((x_17 + (-1.0 * _x_x_11)) == -15.0) || (((x_15 + (-1.0 * _x_x_11)) == -10.0) || (((x_10 + (-1.0 * _x_x_11)) == -9.0) || (((x_9 + (-1.0 * _x_x_11)) == -12.0) || (((x_6 + (-1.0 * _x_x_11)) == -11.0) || (((x_5 + (-1.0 * _x_x_11)) == -9.0) || (((x_1 + (-1.0 * _x_x_11)) == -10.0) || ((x_3 + (-1.0 * _x_x_11)) == -18.0)))))))))))))))) && ((((x_25 + (-1.0 * _x_x_12)) <= -11.0) && (((x_24 + (-1.0 * _x_x_12)) <= -15.0) && (((x_23 + (-1.0 * _x_x_12)) <= -8.0) && (((x_22 + (-1.0 * _x_x_12)) <= -20.0) && (((x_21 + (-1.0 * _x_x_12)) <= -10.0) && (((x_19 + (-1.0 * _x_x_12)) <= -15.0) && (((x_18 + (-1.0 * _x_x_12)) <= -9.0) && (((x_14 + (-1.0 * _x_x_12)) <= -15.0) && (((x_13 + (-1.0 * _x_x_12)) <= -17.0) && (((x_12 + (-1.0 * _x_x_12)) <= -18.0) && (((x_8 + (-1.0 * _x_x_12)) <= -3.0) && (((x_6 + (-1.0 * _x_x_12)) <= -16.0) && (((x_0 + (-1.0 * _x_x_12)) <= -19.0) && ((x_1 + (-1.0 * _x_x_12)) <= -19.0)))))))))))))) && (((x_25 + (-1.0 * _x_x_12)) == -11.0) || (((x_24 + (-1.0 * _x_x_12)) == -15.0) || (((x_23 + (-1.0 * _x_x_12)) == -8.0) || (((x_22 + (-1.0 * _x_x_12)) == -20.0) || (((x_21 + (-1.0 * _x_x_12)) == -10.0) || (((x_19 + (-1.0 * _x_x_12)) == -15.0) || (((x_18 + (-1.0 * _x_x_12)) == -9.0) || (((x_14 + (-1.0 * _x_x_12)) == -15.0) || (((x_13 + (-1.0 * _x_x_12)) == -17.0) || (((x_12 + (-1.0 * _x_x_12)) == -18.0) || (((x_8 + (-1.0 * _x_x_12)) == -3.0) || (((x_6 + (-1.0 * _x_x_12)) == -16.0) || (((x_0 + (-1.0 * _x_x_12)) == -19.0) || ((x_1 + (-1.0 * _x_x_12)) == -19.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_13)) <= -11.0) && (((x_26 + (-1.0 * _x_x_13)) <= -15.0) && (((x_23 + (-1.0 * _x_x_13)) <= -13.0) && (((x_19 + (-1.0 * _x_x_13)) <= -10.0) && (((x_17 + (-1.0 * _x_x_13)) <= -11.0) && (((x_15 + (-1.0 * _x_x_13)) <= -8.0) && (((x_12 + (-1.0 * _x_x_13)) <= -7.0) && (((x_11 + (-1.0 * _x_x_13)) <= -1.0) && (((x_10 + (-1.0 * _x_x_13)) <= -1.0) && (((x_8 + (-1.0 * _x_x_13)) <= -7.0) && (((x_6 + (-1.0 * _x_x_13)) <= -9.0) && (((x_5 + (-1.0 * _x_x_13)) <= -7.0) && (((x_1 + (-1.0 * _x_x_13)) <= -20.0) && ((x_4 + (-1.0 * _x_x_13)) <= -4.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_13)) == -11.0) || (((x_26 + (-1.0 * _x_x_13)) == -15.0) || (((x_23 + (-1.0 * _x_x_13)) == -13.0) || (((x_19 + (-1.0 * _x_x_13)) == -10.0) || (((x_17 + (-1.0 * _x_x_13)) == -11.0) || (((x_15 + (-1.0 * _x_x_13)) == -8.0) || (((x_12 + (-1.0 * _x_x_13)) == -7.0) || (((x_11 + (-1.0 * _x_x_13)) == -1.0) || (((x_10 + (-1.0 * _x_x_13)) == -1.0) || (((x_8 + (-1.0 * _x_x_13)) == -7.0) || (((x_6 + (-1.0 * _x_x_13)) == -9.0) || (((x_5 + (-1.0 * _x_x_13)) == -7.0) || (((x_1 + (-1.0 * _x_x_13)) == -20.0) || ((x_4 + (-1.0 * _x_x_13)) == -4.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_14)) <= -2.0) && (((x_23 + (-1.0 * _x_x_14)) <= -9.0) && (((x_22 + (-1.0 * _x_x_14)) <= -17.0) && (((x_19 + (-1.0 * _x_x_14)) <= -4.0) && (((x_17 + (-1.0 * _x_x_14)) <= -8.0) && (((x_13 + (-1.0 * _x_x_14)) <= -6.0) && (((x_11 + (-1.0 * _x_x_14)) <= -1.0) && (((x_10 + (-1.0 * _x_x_14)) <= -14.0) && (((x_9 + (-1.0 * _x_x_14)) <= -8.0) && (((x_6 + (-1.0 * _x_x_14)) <= -16.0) && (((x_5 + (-1.0 * _x_x_14)) <= -16.0) && (((x_3 + (-1.0 * _x_x_14)) <= -2.0) && (((x_1 + (-1.0 * _x_x_14)) <= -14.0) && ((x_2 + (-1.0 * _x_x_14)) <= -20.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_14)) == -2.0) || (((x_23 + (-1.0 * _x_x_14)) == -9.0) || (((x_22 + (-1.0 * _x_x_14)) == -17.0) || (((x_19 + (-1.0 * _x_x_14)) == -4.0) || (((x_17 + (-1.0 * _x_x_14)) == -8.0) || (((x_13 + (-1.0 * _x_x_14)) == -6.0) || (((x_11 + (-1.0 * _x_x_14)) == -1.0) || (((x_10 + (-1.0 * _x_x_14)) == -14.0) || (((x_9 + (-1.0 * _x_x_14)) == -8.0) || (((x_6 + (-1.0 * _x_x_14)) == -16.0) || (((x_5 + (-1.0 * _x_x_14)) == -16.0) || (((x_3 + (-1.0 * _x_x_14)) == -2.0) || (((x_1 + (-1.0 * _x_x_14)) == -14.0) || ((x_2 + (-1.0 * _x_x_14)) == -20.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_15)) <= -8.0) && (((x_24 + (-1.0 * _x_x_15)) <= -14.0) && (((x_21 + (-1.0 * _x_x_15)) <= -3.0) && (((x_20 + (-1.0 * _x_x_15)) <= -18.0) && (((x_18 + (-1.0 * _x_x_15)) <= -9.0) && (((x_12 + (-1.0 * _x_x_15)) <= -7.0) && (((x_11 + (-1.0 * _x_x_15)) <= -15.0) && (((x_10 + (-1.0 * _x_x_15)) <= -11.0) && (((x_9 + (-1.0 * _x_x_15)) <= -7.0) && (((x_8 + (-1.0 * _x_x_15)) <= -10.0) && (((x_6 + (-1.0 * _x_x_15)) <= -5.0) && (((x_5 + (-1.0 * _x_x_15)) <= -13.0) && (((x_0 + (-1.0 * _x_x_15)) <= -11.0) && ((x_4 + (-1.0 * _x_x_15)) <= -14.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_15)) == -8.0) || (((x_24 + (-1.0 * _x_x_15)) == -14.0) || (((x_21 + (-1.0 * _x_x_15)) == -3.0) || (((x_20 + (-1.0 * _x_x_15)) == -18.0) || (((x_18 + (-1.0 * _x_x_15)) == -9.0) || (((x_12 + (-1.0 * _x_x_15)) == -7.0) || (((x_11 + (-1.0 * _x_x_15)) == -15.0) || (((x_10 + (-1.0 * _x_x_15)) == -11.0) || (((x_9 + (-1.0 * _x_x_15)) == -7.0) || (((x_8 + (-1.0 * _x_x_15)) == -10.0) || (((x_6 + (-1.0 * _x_x_15)) == -5.0) || (((x_5 + (-1.0 * _x_x_15)) == -13.0) || (((x_0 + (-1.0 * _x_x_15)) == -11.0) || ((x_4 + (-1.0 * _x_x_15)) == -14.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_16)) <= -17.0) && (((x_25 + (-1.0 * _x_x_16)) <= -17.0) && (((x_21 + (-1.0 * _x_x_16)) <= -3.0) && (((x_20 + (-1.0 * _x_x_16)) <= -1.0) && (((x_19 + (-1.0 * _x_x_16)) <= -8.0) && (((x_18 + (-1.0 * _x_x_16)) <= -15.0) && (((x_16 + (-1.0 * _x_x_16)) <= -7.0) && (((x_12 + (-1.0 * _x_x_16)) <= -3.0) && (((x_10 + (-1.0 * _x_x_16)) <= -3.0) && (((x_8 + (-1.0 * _x_x_16)) <= -13.0) && (((x_7 + (-1.0 * _x_x_16)) <= -8.0) && (((x_4 + (-1.0 * _x_x_16)) <= -15.0) && (((x_0 + (-1.0 * _x_x_16)) <= -15.0) && ((x_3 + (-1.0 * _x_x_16)) <= -16.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_16)) == -17.0) || (((x_25 + (-1.0 * _x_x_16)) == -17.0) || (((x_21 + (-1.0 * _x_x_16)) == -3.0) || (((x_20 + (-1.0 * _x_x_16)) == -1.0) || (((x_19 + (-1.0 * _x_x_16)) == -8.0) || (((x_18 + (-1.0 * _x_x_16)) == -15.0) || (((x_16 + (-1.0 * _x_x_16)) == -7.0) || (((x_12 + (-1.0 * _x_x_16)) == -3.0) || (((x_10 + (-1.0 * _x_x_16)) == -3.0) || (((x_8 + (-1.0 * _x_x_16)) == -13.0) || (((x_7 + (-1.0 * _x_x_16)) == -8.0) || (((x_4 + (-1.0 * _x_x_16)) == -15.0) || (((x_0 + (-1.0 * _x_x_16)) == -15.0) || ((x_3 + (-1.0 * _x_x_16)) == -16.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_17)) <= -19.0) && (((x_26 + (-1.0 * _x_x_17)) <= -15.0) && (((x_24 + (-1.0 * _x_x_17)) <= -1.0) && (((x_21 + (-1.0 * _x_x_17)) <= -12.0) && (((x_19 + (-1.0 * _x_x_17)) <= -10.0) && (((x_18 + (-1.0 * _x_x_17)) <= -15.0) && (((x_16 + (-1.0 * _x_x_17)) <= -13.0) && (((x_15 + (-1.0 * _x_x_17)) <= -9.0) && (((x_13 + (-1.0 * _x_x_17)) <= -20.0) && (((x_12 + (-1.0 * _x_x_17)) <= -14.0) && (((x_6 + (-1.0 * _x_x_17)) <= -19.0) && (((x_4 + (-1.0 * _x_x_17)) <= -14.0) && (((x_0 + (-1.0 * _x_x_17)) <= -6.0) && ((x_2 + (-1.0 * _x_x_17)) <= -9.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_17)) == -19.0) || (((x_26 + (-1.0 * _x_x_17)) == -15.0) || (((x_24 + (-1.0 * _x_x_17)) == -1.0) || (((x_21 + (-1.0 * _x_x_17)) == -12.0) || (((x_19 + (-1.0 * _x_x_17)) == -10.0) || (((x_18 + (-1.0 * _x_x_17)) == -15.0) || (((x_16 + (-1.0 * _x_x_17)) == -13.0) || (((x_15 + (-1.0 * _x_x_17)) == -9.0) || (((x_13 + (-1.0 * _x_x_17)) == -20.0) || (((x_12 + (-1.0 * _x_x_17)) == -14.0) || (((x_6 + (-1.0 * _x_x_17)) == -19.0) || (((x_4 + (-1.0 * _x_x_17)) == -14.0) || (((x_0 + (-1.0 * _x_x_17)) == -6.0) || ((x_2 + (-1.0 * _x_x_17)) == -9.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_18)) <= -16.0) && (((x_24 + (-1.0 * _x_x_18)) <= -5.0) && (((x_23 + (-1.0 * _x_x_18)) <= -6.0) && (((x_22 + (-1.0 * _x_x_18)) <= -3.0) && (((x_20 + (-1.0 * _x_x_18)) <= -19.0) && (((x_17 + (-1.0 * _x_x_18)) <= -1.0) && (((x_15 + (-1.0 * _x_x_18)) <= -10.0) && (((x_11 + (-1.0 * _x_x_18)) <= -17.0) && (((x_9 + (-1.0 * _x_x_18)) <= -17.0) && (((x_7 + (-1.0 * _x_x_18)) <= -14.0) && (((x_6 + (-1.0 * _x_x_18)) <= -12.0) && (((x_3 + (-1.0 * _x_x_18)) <= -12.0) && (((x_0 + (-1.0 * _x_x_18)) <= -12.0) && ((x_1 + (-1.0 * _x_x_18)) <= -3.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_18)) == -16.0) || (((x_24 + (-1.0 * _x_x_18)) == -5.0) || (((x_23 + (-1.0 * _x_x_18)) == -6.0) || (((x_22 + (-1.0 * _x_x_18)) == -3.0) || (((x_20 + (-1.0 * _x_x_18)) == -19.0) || (((x_17 + (-1.0 * _x_x_18)) == -1.0) || (((x_15 + (-1.0 * _x_x_18)) == -10.0) || (((x_11 + (-1.0 * _x_x_18)) == -17.0) || (((x_9 + (-1.0 * _x_x_18)) == -17.0) || (((x_7 + (-1.0 * _x_x_18)) == -14.0) || (((x_6 + (-1.0 * _x_x_18)) == -12.0) || (((x_3 + (-1.0 * _x_x_18)) == -12.0) || (((x_0 + (-1.0 * _x_x_18)) == -12.0) || ((x_1 + (-1.0 * _x_x_18)) == -3.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_19)) <= -2.0) && (((x_24 + (-1.0 * _x_x_19)) <= -8.0) && (((x_23 + (-1.0 * _x_x_19)) <= -9.0) && (((x_22 + (-1.0 * _x_x_19)) <= -18.0) && (((x_21 + (-1.0 * _x_x_19)) <= -19.0) && (((x_19 + (-1.0 * _x_x_19)) <= -16.0) && (((x_16 + (-1.0 * _x_x_19)) <= -10.0) && (((x_15 + (-1.0 * _x_x_19)) <= -2.0) && (((x_9 + (-1.0 * _x_x_19)) <= -6.0) && (((x_8 + (-1.0 * _x_x_19)) <= -13.0) && (((x_6 + (-1.0 * _x_x_19)) <= -11.0) && (((x_3 + (-1.0 * _x_x_19)) <= -17.0) && (((x_0 + (-1.0 * _x_x_19)) <= -1.0) && ((x_2 + (-1.0 * _x_x_19)) <= -14.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_19)) == -2.0) || (((x_24 + (-1.0 * _x_x_19)) == -8.0) || (((x_23 + (-1.0 * _x_x_19)) == -9.0) || (((x_22 + (-1.0 * _x_x_19)) == -18.0) || (((x_21 + (-1.0 * _x_x_19)) == -19.0) || (((x_19 + (-1.0 * _x_x_19)) == -16.0) || (((x_16 + (-1.0 * _x_x_19)) == -10.0) || (((x_15 + (-1.0 * _x_x_19)) == -2.0) || (((x_9 + (-1.0 * _x_x_19)) == -6.0) || (((x_8 + (-1.0 * _x_x_19)) == -13.0) || (((x_6 + (-1.0 * _x_x_19)) == -11.0) || (((x_3 + (-1.0 * _x_x_19)) == -17.0) || (((x_0 + (-1.0 * _x_x_19)) == -1.0) || ((x_2 + (-1.0 * _x_x_19)) == -14.0)))))))))))))))) && ((((x_26 + (-1.0 * _x_x_20)) <= -12.0) && (((x_25 + (-1.0 * _x_x_20)) <= -11.0) && (((x_24 + (-1.0 * _x_x_20)) <= -15.0) && (((x_22 + (-1.0 * _x_x_20)) <= -19.0) && (((x_19 + (-1.0 * _x_x_20)) <= -4.0) && (((x_15 + (-1.0 * _x_x_20)) <= -1.0) && (((x_12 + (-1.0 * _x_x_20)) <= -8.0) && (((x_10 + (-1.0 * _x_x_20)) <= -14.0) && (((x_9 + (-1.0 * _x_x_20)) <= -19.0) && (((x_7 + (-1.0 * _x_x_20)) <= -14.0) && (((x_6 + (-1.0 * _x_x_20)) <= -19.0) && (((x_5 + (-1.0 * _x_x_20)) <= -3.0) && (((x_1 + (-1.0 * _x_x_20)) <= -8.0) && ((x_4 + (-1.0 * _x_x_20)) <= -14.0)))))))))))))) && (((x_26 + (-1.0 * _x_x_20)) == -12.0) || (((x_25 + (-1.0 * _x_x_20)) == -11.0) || (((x_24 + (-1.0 * _x_x_20)) == -15.0) || (((x_22 + (-1.0 * _x_x_20)) == -19.0) || (((x_19 + (-1.0 * _x_x_20)) == -4.0) || (((x_15 + (-1.0 * _x_x_20)) == -1.0) || (((x_12 + (-1.0 * _x_x_20)) == -8.0) || (((x_10 + (-1.0 * _x_x_20)) == -14.0) || (((x_9 + (-1.0 * _x_x_20)) == -19.0) || (((x_7 + (-1.0 * _x_x_20)) == -14.0) || (((x_6 + (-1.0 * _x_x_20)) == -19.0) || (((x_5 + (-1.0 * _x_x_20)) == -3.0) || (((x_1 + (-1.0 * _x_x_20)) == -8.0) || ((x_4 + (-1.0 * _x_x_20)) == -14.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_21)) <= -3.0) && (((x_25 + (-1.0 * _x_x_21)) <= -19.0) && (((x_24 + (-1.0 * _x_x_21)) <= -5.0) && (((x_23 + (-1.0 * _x_x_21)) <= -19.0) && (((x_21 + (-1.0 * _x_x_21)) <= -20.0) && (((x_19 + (-1.0 * _x_x_21)) <= -10.0) && (((x_18 + (-1.0 * _x_x_21)) <= -14.0) && (((x_17 + (-1.0 * _x_x_21)) <= -19.0) && (((x_14 + (-1.0 * _x_x_21)) <= -5.0) && (((x_9 + (-1.0 * _x_x_21)) <= -17.0) && (((x_5 + (-1.0 * _x_x_21)) <= -4.0) && (((x_4 + (-1.0 * _x_x_21)) <= -1.0) && (((x_1 + (-1.0 * _x_x_21)) <= -18.0) && ((x_2 + (-1.0 * _x_x_21)) <= -4.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_21)) == -3.0) || (((x_25 + (-1.0 * _x_x_21)) == -19.0) || (((x_24 + (-1.0 * _x_x_21)) == -5.0) || (((x_23 + (-1.0 * _x_x_21)) == -19.0) || (((x_21 + (-1.0 * _x_x_21)) == -20.0) || (((x_19 + (-1.0 * _x_x_21)) == -10.0) || (((x_18 + (-1.0 * _x_x_21)) == -14.0) || (((x_17 + (-1.0 * _x_x_21)) == -19.0) || (((x_14 + (-1.0 * _x_x_21)) == -5.0) || (((x_9 + (-1.0 * _x_x_21)) == -17.0) || (((x_5 + (-1.0 * _x_x_21)) == -4.0) || (((x_4 + (-1.0 * _x_x_21)) == -1.0) || (((x_1 + (-1.0 * _x_x_21)) == -18.0) || ((x_2 + (-1.0 * _x_x_21)) == -4.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_22)) <= -10.0) && (((x_25 + (-1.0 * _x_x_22)) <= -17.0) && (((x_24 + (-1.0 * _x_x_22)) <= -2.0) && (((x_22 + (-1.0 * _x_x_22)) <= -2.0) && (((x_20 + (-1.0 * _x_x_22)) <= -17.0) && (((x_19 + (-1.0 * _x_x_22)) <= -14.0) && (((x_17 + (-1.0 * _x_x_22)) <= -13.0) && (((x_12 + (-1.0 * _x_x_22)) <= -15.0) && (((x_11 + (-1.0 * _x_x_22)) <= -6.0) && (((x_10 + (-1.0 * _x_x_22)) <= -9.0) && (((x_6 + (-1.0 * _x_x_22)) <= -11.0) && (((x_4 + (-1.0 * _x_x_22)) <= -14.0) && (((x_1 + (-1.0 * _x_x_22)) <= -14.0) && ((x_2 + (-1.0 * _x_x_22)) <= -7.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_22)) == -10.0) || (((x_25 + (-1.0 * _x_x_22)) == -17.0) || (((x_24 + (-1.0 * _x_x_22)) == -2.0) || (((x_22 + (-1.0 * _x_x_22)) == -2.0) || (((x_20 + (-1.0 * _x_x_22)) == -17.0) || (((x_19 + (-1.0 * _x_x_22)) == -14.0) || (((x_17 + (-1.0 * _x_x_22)) == -13.0) || (((x_12 + (-1.0 * _x_x_22)) == -15.0) || (((x_11 + (-1.0 * _x_x_22)) == -6.0) || (((x_10 + (-1.0 * _x_x_22)) == -9.0) || (((x_6 + (-1.0 * _x_x_22)) == -11.0) || (((x_4 + (-1.0 * _x_x_22)) == -14.0) || (((x_1 + (-1.0 * _x_x_22)) == -14.0) || ((x_2 + (-1.0 * _x_x_22)) == -7.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_23)) <= -9.0) && (((x_25 + (-1.0 * _x_x_23)) <= -13.0) && (((x_24 + (-1.0 * _x_x_23)) <= -13.0) && (((x_22 + (-1.0 * _x_x_23)) <= -7.0) && (((x_21 + (-1.0 * _x_x_23)) <= -9.0) && (((x_20 + (-1.0 * _x_x_23)) <= -18.0) && (((x_17 + (-1.0 * _x_x_23)) <= -7.0) && (((x_14 + (-1.0 * _x_x_23)) <= -12.0) && (((x_12 + (-1.0 * _x_x_23)) <= -15.0) && (((x_10 + (-1.0 * _x_x_23)) <= -9.0) && (((x_8 + (-1.0 * _x_x_23)) <= -10.0) && (((x_4 + (-1.0 * _x_x_23)) <= -15.0) && (((x_2 + (-1.0 * _x_x_23)) <= -5.0) && ((x_3 + (-1.0 * _x_x_23)) <= -13.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_23)) == -9.0) || (((x_25 + (-1.0 * _x_x_23)) == -13.0) || (((x_24 + (-1.0 * _x_x_23)) == -13.0) || (((x_22 + (-1.0 * _x_x_23)) == -7.0) || (((x_21 + (-1.0 * _x_x_23)) == -9.0) || (((x_20 + (-1.0 * _x_x_23)) == -18.0) || (((x_17 + (-1.0 * _x_x_23)) == -7.0) || (((x_14 + (-1.0 * _x_x_23)) == -12.0) || (((x_12 + (-1.0 * _x_x_23)) == -15.0) || (((x_10 + (-1.0 * _x_x_23)) == -9.0) || (((x_8 + (-1.0 * _x_x_23)) == -10.0) || (((x_4 + (-1.0 * _x_x_23)) == -15.0) || (((x_2 + (-1.0 * _x_x_23)) == -5.0) || ((x_3 + (-1.0 * _x_x_23)) == -13.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_24)) <= -16.0) && (((x_26 + (-1.0 * _x_x_24)) <= -9.0) && (((x_23 + (-1.0 * _x_x_24)) <= -10.0) && (((x_21 + (-1.0 * _x_x_24)) <= -9.0) && (((x_18 + (-1.0 * _x_x_24)) <= -6.0) && (((x_15 + (-1.0 * _x_x_24)) <= -11.0) && (((x_12 + (-1.0 * _x_x_24)) <= -14.0) && (((x_11 + (-1.0 * _x_x_24)) <= -1.0) && (((x_8 + (-1.0 * _x_x_24)) <= -5.0) && (((x_7 + (-1.0 * _x_x_24)) <= -16.0) && (((x_4 + (-1.0 * _x_x_24)) <= -9.0) && (((x_2 + (-1.0 * _x_x_24)) <= -2.0) && (((x_0 + (-1.0 * _x_x_24)) <= -17.0) && ((x_1 + (-1.0 * _x_x_24)) <= -4.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_24)) == -16.0) || (((x_26 + (-1.0 * _x_x_24)) == -9.0) || (((x_23 + (-1.0 * _x_x_24)) == -10.0) || (((x_21 + (-1.0 * _x_x_24)) == -9.0) || (((x_18 + (-1.0 * _x_x_24)) == -6.0) || (((x_15 + (-1.0 * _x_x_24)) == -11.0) || (((x_12 + (-1.0 * _x_x_24)) == -14.0) || (((x_11 + (-1.0 * _x_x_24)) == -1.0) || (((x_8 + (-1.0 * _x_x_24)) == -5.0) || (((x_7 + (-1.0 * _x_x_24)) == -16.0) || (((x_4 + (-1.0 * _x_x_24)) == -9.0) || (((x_2 + (-1.0 * _x_x_24)) == -2.0) || (((x_0 + (-1.0 * _x_x_24)) == -17.0) || ((x_1 + (-1.0 * _x_x_24)) == -4.0)))))))))))))))) && ((((x_25 + (-1.0 * _x_x_25)) <= -2.0) && (((x_24 + (-1.0 * _x_x_25)) <= -3.0) && (((x_23 + (-1.0 * _x_x_25)) <= -19.0) && (((x_22 + (-1.0 * _x_x_25)) <= -19.0) && (((x_21 + (-1.0 * _x_x_25)) <= -3.0) && (((x_15 + (-1.0 * _x_x_25)) <= -14.0) && (((x_12 + (-1.0 * _x_x_25)) <= -3.0) && (((x_11 + (-1.0 * _x_x_25)) <= -11.0) && (((x_10 + (-1.0 * _x_x_25)) <= -9.0) && (((x_9 + (-1.0 * _x_x_25)) <= -3.0) && (((x_6 + (-1.0 * _x_x_25)) <= -8.0) && (((x_4 + (-1.0 * _x_x_25)) <= -6.0) && (((x_2 + (-1.0 * _x_x_25)) <= -12.0) && ((x_3 + (-1.0 * _x_x_25)) <= -7.0)))))))))))))) && (((x_25 + (-1.0 * _x_x_25)) == -2.0) || (((x_24 + (-1.0 * _x_x_25)) == -3.0) || (((x_23 + (-1.0 * _x_x_25)) == -19.0) || (((x_22 + (-1.0 * _x_x_25)) == -19.0) || (((x_21 + (-1.0 * _x_x_25)) == -3.0) || (((x_15 + (-1.0 * _x_x_25)) == -14.0) || (((x_12 + (-1.0 * _x_x_25)) == -3.0) || (((x_11 + (-1.0 * _x_x_25)) == -11.0) || (((x_10 + (-1.0 * _x_x_25)) == -9.0) || (((x_9 + (-1.0 * _x_x_25)) == -3.0) || (((x_6 + (-1.0 * _x_x_25)) == -8.0) || (((x_4 + (-1.0 * _x_x_25)) == -6.0) || (((x_2 + (-1.0 * _x_x_25)) == -12.0) || ((x_3 + (-1.0 * _x_x_25)) == -7.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_26)) <= -18.0) && (((x_26 + (-1.0 * _x_x_26)) <= -15.0) && (((x_23 + (-1.0 * _x_x_26)) <= -12.0) && (((x_17 + (-1.0 * _x_x_26)) <= -7.0) && (((x_16 + (-1.0 * _x_x_26)) <= -1.0) && (((x_14 + (-1.0 * _x_x_26)) <= -16.0) && (((x_13 + (-1.0 * _x_x_26)) <= -20.0) && (((x_12 + (-1.0 * _x_x_26)) <= -20.0) && (((x_10 + (-1.0 * _x_x_26)) <= -18.0) && (((x_6 + (-1.0 * _x_x_26)) <= -6.0) && (((x_5 + (-1.0 * _x_x_26)) <= -4.0) && (((x_4 + (-1.0 * _x_x_26)) <= -15.0) && (((x_1 + (-1.0 * _x_x_26)) <= -18.0) && ((x_3 + (-1.0 * _x_x_26)) <= -14.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_26)) == -18.0) || (((x_26 + (-1.0 * _x_x_26)) == -15.0) || (((x_23 + (-1.0 * _x_x_26)) == -12.0) || (((x_17 + (-1.0 * _x_x_26)) == -7.0) || (((x_16 + (-1.0 * _x_x_26)) == -1.0) || (((x_14 + (-1.0 * _x_x_26)) == -16.0) || (((x_13 + (-1.0 * _x_x_26)) == -20.0) || (((x_12 + (-1.0 * _x_x_26)) == -20.0) || (((x_10 + (-1.0 * _x_x_26)) == -18.0) || (((x_6 + (-1.0 * _x_x_26)) == -6.0) || (((x_5 + (-1.0 * _x_x_26)) == -4.0) || (((x_4 + (-1.0 * _x_x_26)) == -15.0) || (((x_1 + (-1.0 * _x_x_26)) == -18.0) || ((x_3 + (-1.0 * _x_x_26)) == -14.0)))))))))))))))) && ((((x_27 + (-1.0 * _x_x_27)) <= -17.0) && (((x_26 + (-1.0 * _x_x_27)) <= -6.0) && (((x_24 + (-1.0 * _x_x_27)) <= -1.0) && (((x_22 + (-1.0 * _x_x_27)) <= -8.0) && (((x_21 + (-1.0 * _x_x_27)) <= -16.0) && (((x_12 + (-1.0 * _x_x_27)) <= -15.0) && (((x_11 + (-1.0 * _x_x_27)) <= -18.0) && (((x_10 + (-1.0 * _x_x_27)) <= -8.0) && (((x_8 + (-1.0 * _x_x_27)) <= -1.0) && (((x_7 + (-1.0 * _x_x_27)) <= -1.0) && (((x_5 + (-1.0 * _x_x_27)) <= -14.0) && (((x_3 + (-1.0 * _x_x_27)) <= -15.0) && (((x_0 + (-1.0 * _x_x_27)) <= -11.0) && ((x_1 + (-1.0 * _x_x_27)) <= -14.0)))))))))))))) && (((x_27 + (-1.0 * _x_x_27)) == -17.0) || (((x_26 + (-1.0 * _x_x_27)) == -6.0) || (((x_24 + (-1.0 * _x_x_27)) == -1.0) || (((x_22 + (-1.0 * _x_x_27)) == -8.0) || (((x_21 + (-1.0 * _x_x_27)) == -16.0) || (((x_12 + (-1.0 * _x_x_27)) == -15.0) || (((x_11 + (-1.0 * _x_x_27)) == -18.0) || (((x_10 + (-1.0 * _x_x_27)) == -8.0) || (((x_8 + (-1.0 * _x_x_27)) == -1.0) || (((x_7 + (-1.0 * _x_x_27)) == -1.0) || (((x_5 + (-1.0 * _x_x_27)) == -14.0) || (((x_3 + (-1.0 * _x_x_27)) == -15.0) || (((x_0 + (-1.0 * _x_x_27)) == -11.0) || ((x_1 + (-1.0 * _x_x_27)) == -14.0)))))))))))))))) && ((_EL_X_2390 == (1.0 <= (_x_x_4 + (-1.0 * _x_x_25)))) && (_EL_X_2383 == (13.0 <= (_x_x_7 + (-1.0 * _x_x_11)))))); x_20 = _x_x_20; x_6 = _x_x_6; _EL_X_2390 = _x__EL_X_2390; _EL_X_2383 = _x__EL_X_2383; x_13 = _x_x_13; x_1 = _x_x_1; x_14 = _x_x_14; x_0 = _x_x_0; x_16 = _x_x_16; x_17 = _x_x_17; x_3 = _x_x_3; x_5 = _x_x_5; x_23 = _x_x_23; x_7 = _x_x_7; x_8 = _x_x_8; x_10 = _x_x_10; x_11 = _x_x_11; x_12 = _x_x_12; x_18 = _x_x_18; x_21 = _x_x_21; x_22 = _x_x_22; x_24 = _x_x_24; x_19 = _x_x_19; x_26 = _x_x_26; x_2 = _x_x_2; x_27 = _x_x_27; x_9 = _x_x_9; x_15 = _x_x_15; x_4 = _x_x_4; x_25 = _x_x_25; } }
the_stack_data/90764056.c
int sparsevector(float q[], int size, float epsilon, float T, int NN) { "TYPES: epsilon: <0, 0>; size: <0, 0>; q: <*, *>; T: <0, 0>; NN: <0, 0>"; "PRECONDITION: ALL_DIFFER; ASSUME(NN > 0); ASSUME(NN <= size); ASSUME(T >= -10); ASSUME(T <= 10);"; "CHECK: epsilon"; int out = 0; float eta_1 = Lap(4 / epsilon); int T_bar = T + eta_1; int count = 0; int i = 0; while (count < NN && i < size) { // ERROR: the noise added to query answers does not scale with NN float eta_2 = Lap(4 / (3 * epsilon)); if (q[i] + eta_2 >= T_bar) { CHECKDP_OUTPUT(1); count = count + 1; } else { CHECKDP_OUTPUT(0); } i = i + 1; } }
the_stack_data/192329468.c
#include <stdio.h> int main(void) { int enter_number, enter_number_digits; printf("Enter a number: "); scanf("%d", &enter_number); if (enter_number > 999) { enter_number_digits = 4; } else if (enter_number > 99) { enter_number_digits = 3; } else if (enter_number > 9) { enter_number_digits = 2; } else { enter_number_digits = 1; } printf("The number %d has %d digits \n", enter_number, enter_number_digits); return 0; }
the_stack_data/42933.c
/* K.N.King "C Programming. A Modern Approach." Programming project 5 p.71 Rewrite the upc.c program of Section 4.1 so that the user enters 11 digits at one time, instead of entering one digit, then five digits, and then another five digits. "Enter the first 11 digits of a UPC: 01380015173 Check digit: 5 " */ #include <stdlib.h> #include <ctype.h> #include <stdio.h> #define UPC_DIGIT_COUNT 11 int UpcComputeCheckDigit(const char *upc, int digitCount); int main(void) { // note that the upcDigitsArray to store the upc // code is NOT intended to be null-terminated char upcDigitsArray[UPC_DIGIT_COUNT] = { 0 }; int isInputValid = 0; int checkDigit = -1; printf("Please enter the first %d digits of a UPC: ", UPC_DIGIT_COUNT); while (!isInputValid) { isInputValid = 1; int i = 0; char c = '\0'; while ((c = getchar()) != '\n' && c != EOF) { if (isdigit(c) && i < UPC_DIGIT_COUNT) { upcDigitsArray[i] = c; ++i; } else { // we cannot break out on the spot // since we still need to discard // the rest of invalid input isInputValid = 0; } } if (i != UPC_DIGIT_COUNT) { isInputValid = 0; } if (!isInputValid) { puts("Input invalid. Please try again."); } } checkDigit = UpcComputeCheckDigit(upcDigitsArray, UPC_DIGIT_COUNT); printf("Check digit: %d\n", checkDigit); getchar(); return EXIT_SUCCESS; } int UpcComputeCheckDigit(const char *upc, int digitCount) { if (!upc || digitCount < 1) { return -1; } int sum1 = 0; int sum2 = 0; int total = 0; int i = 0; while (1) { if (i >= digitCount) break; sum1 += upc[i] - '0'; ++i; if (i >= digitCount) break; sum2 += upc[i] - '0'; ++i; } total = 3 * sum1 + sum2; return 9 - ((total - 1) % 10); }
the_stack_data/725236.c
struct List { struct List* next; }; int test1(struct List* p) { int count = 0; for (; p; p = p->next) { count = count+1; } return count; } int test2(struct List* p) { int count = 0; for (; p; p = p->next) { count = (count+1) % 10; } return count; } int test3(struct List* p) { int count = 0; for (; p; p = p->next) { count++; count = count % 10; } return count; } int test4() { int i = 0; int total = 0; for (i = 0; i < 2; i = i+1) { total += i; } return total + i; } int test5() { int i = 0; int total = 0; for (i = 0; i < 2; i++) { total += i; } return total + i; } int test6() { int i = 0; int total = 0; for (i = 0; i+2 < 4; i = i+1) { total += i; } return total + i; } int test7(int i) { if (i < 4) { if (i < 5) { return i; } } return 1; } int test8(int x, int y) { if (-1000 < y && y < 10) { if (x < y-2) { return x; } } return y; } int test9(int x, int y) { if (y == 0) { if (x < 4) { return 0; } } else { if (x < 4) { return 1; } } return x; } int test10(int x, int y) { if (y > 7) { if (x < y) { return 0; } return x; } return 1; } int test11(char *p) { char c; c = *p; if (c != '\0') *p++ = '\0'; if (c == ':') { c = *p; if (c != '\0') *p++ = '\0'; if (c != ',') return 1; } return 0; } typedef unsigned long long size_type; size_type test12_helper() { static size_type n = 0; return n++; } int test12() { size_type Start = 0; while (Start <= test12_helper()-1) { const size_type Length = test12_helper(); Start += Length + 1; } return 1; } // Tests for overflow conditions. int test13(char c, int i) { unsigned char uc = c; unsigned int x = 0; unsigned int y = x-1; int z = i+1; return (double)(c + i + uc + x + y + z); } // Regression test for ODASA-6013. int test14(int x) { int x0 = (int)(char)x; int x1 = (int)(unsigned char)x; int x2 = (int)(unsigned short)x; int x3 = (int)(unsigned int)x; char c0 = x; unsigned short s0 = x; return x0 + x1 + x2 + x3 + c0 + s0; } long long test15(long long x) { return (x > 0 && x == (int)x) ? x : -1; } // Tests for unary operators. int test_unary(int a) { int total = 0; if (3 <= a && a <= 11) { int b = +a; int c = -a; total += b+c; } if (0 <= a && a <= 11) { int b = +a; int c = -a; total += b+c; } if (-7 <= a && a <= 11) { int b = +a; int c = -a; total += b+c; } if (-7 <= a && a <= 1) { int b = +a; int c = -a; total += b+c; } if (-7 <= a && a <= 0) { int b = +a; int c = -a; total += b+c; } if (-7 <= a && a <= -2) { int b = +a; int c = -a; total += b+c; } return total; } // Tests for multiplication. int test_mult01(int a, int b) { int total = 0; if (3 <= a && a <= 11 && 5 <= b && b <= 23) { int r = a*b; // 15 .. 253 total += r; } if (3 <= a && a <= 11 && 0 <= b && b <= 23) { int r = a*b; // 0 .. 253 total += r; } if (3 <= a && a <= 11 && -13 <= b && b <= 23) { int r = a*b; // -143 .. 253 total += r; } if (3 <= a && a <= 11 && -13 <= b && b <= 0) { int r = a*b; // -143 .. 0 total += r; } if (3 <= a && a <= 11 && -13 <= b && b <= -7) { int r = a*b; // -143 .. -21 total += r; } return total; } // Tests for multiplication. int test_mult02(int a, int b) { int total = 0; if (0 <= a && a <= 11 && 5 <= b && b <= 23) { int r = a*b; // 0 .. 253 total += r; } if (0 <= a && a <= 11 && 0 <= b && b <= 23) { int r = a*b; // 0 .. 253 total += r; } if (0 <= a && a <= 11 && -13 <= b && b <= 23) { int r = a*b; // -143 .. 253 total += r; } if (0 <= a && a <= 11 && -13 <= b && b <= 0) { int r = a*b; // -143 .. 0 total += r; } if (0 <= a && a <= 11 && -13 <= b && b <= -7) { int r = a*b; // -143 .. 0 total += r; } return total; } // Tests for multiplication. int test_mult03(int a, int b) { int total = 0; if (-17 <= a && a <= 11 && 5 <= b && b <= 23) { int r = a*b; // -391 .. 253 total += r; } if (-17 <= a && a <= 11 && 0 <= b && b <= 23) { int r = a*b; // -391 .. 253 total += r; } if (-17 <= a && a <= 11 && -13 <= b && b <= 23) { int r = a*b; // -391 .. 253 total += r; } if (-17 <= a && a <= 11 && -13 <= b && b <= 0) { int r = a*b; // -143 .. 221 total += r; } if (-17 <= a && a <= 11 && -13 <= b && b <= -7) { int r = a*b; // -143 .. 221 total += r; } return total; } // Tests for multiplication. int test_mult04(int a, int b) { int total = 0; if (-17 <= a && a <= 0 && 5 <= b && b <= 23) { int r = a*b; // -391 .. 0 total += r; } if (-17 <= a && a <= 0 && 0 <= b && b <= 23) { int r = a*b; // -391 .. 0 total += r; } if (-17 <= a && a <= 0 && -13 <= b && b <= 23) { int r = a*b; // -391 .. 221 total += r; } if (-17 <= a && a <= 0 && -13 <= b && b <= 0) { int r = a*b; // 0 .. 221 total += r; } if (-17 <= a && a <= 0 && -13 <= b && b <= -7) { int r = a*b; // 0 .. 221 total += r; } return total; } // Tests for multiplication. int test_mult05(int a, int b) { int total = 0; if (-17 <= a && a <= -2 && 5 <= b && b <= 23) { int r = a*b; // -391 .. -10 total += r; } if (-17 <= a && a <= -2 && 0 <= b && b <= 23) { int r = a*b; // -391 .. 0 total += r; } if (-17 <= a && a <= -2 && -13 <= b && b <= 23) { int r = a*b; // -391 .. 221 total += r; } if (-17 <= a && a <= -2 && -13 <= b && b <= 0) { int r = a*b; // 0 .. 221 total += r; } if (-17 <= a && a <= -2 && -13 <= b && b <= -7) { int r = a*b; // 14 .. 221 total += r; } return total; } int test16(int x) { int d, i = 0; if (x < 0) { return -1; } while (i < 3) { i++; } d = i; if (x < 0) { // Comparison is always false. if (d > -x) { // Unreachable code. return 1; } } return 0; } // Test ternary expression upper bounds. unsigned int test_ternary01(unsigned int x) { unsigned int y1, y2, y3, y4, y5, y6, y7, y8; y1 = x < 100 ? x : 10; // y1 < 100 y2 = x >= 100 ? 10 : x; // y2 < 100 y3 = 0; y4 = 0; y5 = 0; y6 = 0; y7 = 0; y8 = 0; if (x < 300) { y3 = x ?: 5; // y3 < 300 y4 = x ?: 500; // y4 <= 500 y5 = (x+1) ?: 500; // y5 <= 300 y6 = ((unsigned char)(x+1)) ?: 5; // y6 < 256 y7 = ((unsigned char)(x+1)) ?: 500; // y7 <= 500 y8 = ((unsigned short)(x+1)) ?: 500; // y8 <= 300 } return y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8; } // Test ternary expression lower bounds. unsigned int test_ternary02(unsigned int x) { unsigned int y1, y2, y3, y4, y5; y1 = x > 100 ? x : 110; // y1 > 100 y2 = x <= 100 ? 110 : x; // y2 > 100 y3 = 1000; y4 = 1000; y5 = 1000; if (x >= 300) { y3 = (x-300) ?: 5; // y3 >= 0 y4 = (x-200) ?: 5; // y4 >= 100 y5 = ((unsigned char)(x-200)) ?: 5; // y6 >= 0 } return y1 + y2 + y3 + y4 + y5; } // Test the comma expression. unsigned int test_comma01(unsigned int x) { unsigned int y = x < 100 ? x : 100; unsigned int y1; unsigned int y2; y1 = (++y, y); y2 = (y++, y += 3, y); return y1 + y2; } void out(int i); void test17() { int i, j; i = 10; out(i); // 10 i = 10; i += 10; out(i); // 20 i = 40; i -= 10; out(i); // 30 i = j = 40; out(i); // 40 i = (j += 10); out(i); // 50 i = 20 + (j -= 10); out(i); // 60 [BUG: the analysis thinks it's 2^-31 .. 2^31-1] } // Tests for unsigned multiplication. int test_unsigned_mult01(unsigned int a, unsigned b) { int total = 0; if (3 <= a && a <= 11 && 5 <= b && b <= 23) { int r = a*b; // 15 .. 253 total += r; } if (3 <= a && a <= 11 && 0 <= b && b <= 23) { int r = a*b; // 0 .. 253 total += r; } if (3 <= a && a <= 11 && 13 <= b && b <= 23) { int r = a*b; // 39 .. 253 total += r; } return total; } int test_unsigned_mult02(unsigned b) { int total = 0; if (5 <= b && b <= 23) { int r = 11*b; // 55 .. 253 total += r; } if (0 <= b && b <= 23) { int r = 11*b; // 0 .. 253 total += r; } if (13 <= b && b <= 23) { int r = 11*b; // 143 .. 253 total += r; } return total; } unsigned long mult_rounding() { unsigned long x, y, xy; x = y = 1000000003UL; // 1e9 + 3 xy = x * y; return xy; // BUG: upper bound should be >= 1000000006000000009UL } unsigned long mult_overflow() { unsigned long x, y, xy; x = 274177UL; y = 67280421310721UL; xy = x * y; return xy; // BUG: lower bound should be <= 18446744073709551617UL } unsigned long mult_lower_bound(unsigned int ui, unsigned long ul) { if (ui >= 10) { unsigned long result = (unsigned long)ui * ui; return result; // BUG: upper bound should be >= 18446744065119617025 (possibly a pretty-printing bug) } if (ul >= 10) { unsigned long result = ul * ul; return result; // lower bound is correctly 0 (overflow is possible) } return 0; }
the_stack_data/1215736.c
#include <stdlib.h> #include <math.h> #include <stdio.h> /**********************************************************************/ double **CreateMatrix(long n, long m) { double **A; long i; A = (double **) calloc(n,sizeof(double *)); if (A == NULL) { printf("calloc failed in CreateMatrix. Bailing out.\n"); exit(1); } for(i=0;i<n;i++) { A[i] = (double *) calloc(m,sizeof(double)); if (A[i] == NULL) { printf("calloc failed in CreateMatrix. Bailing out.\n"); exit(1); } } return(A); } /**********************************************************************/ void DestroyMatrix(double **A, long n) { long i; for(i=0;i<n;i++) free(A[i]); free(A); } /**********************************************************************/ /* Solution of NxN system A * x = b */ /* by Gaussian Elimination and Back Substitution, with pivoting */ void LINSOLVE(double **A, double *x, double *b, long n) { long i,j,k,l,m; double mm,*a1,b1; a1 = (double *) calloc(n,sizeof(double)); if (n == 1) { x[0] = b[0]/A[0][0]; return; } for(j=0;j<n-1;j++){ mm = fabs(A[j][j]); l=j; for(i=j+1;i<n;i++){ if (fabs(A[i][j]) >= mm){ l=i; mm=fabs(A[i][j]); } } if (l != j){ for(i=0;i<n;i++){ a1[i]=A[j][i]; } b1=b[j]; for(i=j;i<n;i++){ A[j][i]=A[l][i]/A[l][j]; } b[j]=b[l]/A[l][j]; for(i=0;i<n;i++){ A[l][i]=a1[i]; } b[l]=b1; } else { b[j]=b[j]/A[j][j]; for(i=n-1;i>=j;i--){ A[j][i]=A[j][i]/A[j][j]; } } for(k=j+1;k<n;k++){ b[k]-=A[k][j]*b[j]; } for(k=j+1;k<n;k++){ for(m=n-1;m>=j;m--){ A[k][m]-=A[k][j]*A[j][m]; } } } x[n-1]=b[n-1]/A[n-1][n-1]; for(i=n-2;i>=0;i--){ x[i]=b[i]; for(k=i+1;k<n;k++){ x[i]-=A[i][k]*x[k]; } } free(a1); } /******************************************************************************/ /* Compute Chebyshev polynomials of first kind (T) and second kind (U) */ void ChebyPolys(double u, long n, double T[20], double U[20]) { long k; if (u < -1.0 || u > 1.0) { printf("u out of range in ChebPolys. Bailing out.\n"); exit(1); } if (n > 20) { printf("n out of range in ChebPolys. Bailing out.\n"); exit(1); } T[0] = 1.0; T[1] = u; U[0] = 1.0; U[1] = 2.0*u; for(k=1;k<n-1;k++) { T[k+1] = 2.0*u*T[k] - T[k-1]; U[k+1] = 2.0*u*U[k] - U[k-1]; } } /******************************************************************************/ /* Using ChebyPolys, find "position" (P) and scaled velocity (dPdu) */ void ChebyInterp(double T[20], double U[20], double Coef[20], long n, double *P, double *dPdu) { long k; if (n > 20) { printf("n out of range in ChebyInterp. Bailing out.\n"); exit(1); } *P = Coef[0]*T[0]; *dPdu = 0.0; for(k=1;k<n;k++) { *P += Coef[k]*T[k]; *dPdu += Coef[k]*((double) k)*U[k-1]; } } /******************************************************************************/ void FindChebyCoefs(double *u, double *P, long Nu, long Nc, double Coef[20]) { long i,j,k; double T[20],U[20]; double **AtA, *x, *Atb; if (Nc > 20) { printf("Nc out of range in FindChebyCoefs. Bailing out.\n"); exit(1); } AtA = CreateMatrix(Nc,Nc); x = (double *) calloc(Nc,sizeof(double)); Atb = (double *) calloc(Nc,sizeof(double)); for(k=0;k<Nu;k++) { ChebyPolys(u[k],Nc,T,U); for(i=0;i<Nc;i++) { for(j=0;j<Nc;j++) { AtA[i][j] += T[i]*T[j]; } Atb[i] += T[i]*P[k]; } } LINSOLVE(AtA,x,Atb,Nc); for(i=0;i<Nc;i++) Coef[i] = x[i]; for(i=Nc;i<20;i++) Coef[i] = 0.0; DestroyMatrix(AtA,Nc); free(x); free(Atb); } /******************************************************************************/ int main(int argc, char **argv) { double Coef[20],T[20],U[20]; double *u,*P,Pf,dPduf; long Nu,Nc; long i; FILE *outfile; /* Generate data */ Nu = 100; u = (double *) calloc(Nu,sizeof(double)); P = (double *) calloc(Nu,sizeof(double)); for(i=0;i<Nu;i++) { u[i] = 2.0*((double) i)/((double) Nu) - 1.0; /* [-1:1] */ P[i] = 0.5 - 2.0*u[i] + 3.0*u[i]*u[i] - 0.3*u[i]*u[i]*u[i]; } /* Fit coefficients */ Nc = 6; FindChebyCoefs(u,P,Nu,Nc,Coef); for(i=0;i<Nc;i++) printf("C[%ld]: %lf ",i,Coef[i]); printf("\n\n"); /* Compare fit with data */ outfile = fopen("ChebyData.txt","wt"); for(i=0;i<Nu;i++) { ChebyPolys(u[i],Nc,T,U); ChebyInterp(T,U,Coef,Nc,&Pf,&dPduf); fprintf(outfile,"%lf %lf %lf %lf\n",u[i],P[i],Pf,dPduf); } fclose(outfile); return(0); }
the_stack_data/632087.c
/* Name: p8q3.c Desc: Find which number is bigger and/or smaller */ //declarations #include <stdio.h> //prototypes int bigger(int *x, int *y); int smaller(int *x, int *y); void hiLo(int *x, int *y, int *z, int *highest, int *lowest); int main(void) { //variables int x = 3, y = 4, z = 5, highest, lowest; hiLo(&x, &y, &z, &highest, &lowest); printf("Highest: %d, Lowest: %d\n", highest, lowest); } int bigger(int *x, int *y) { //compare the numbers //if x > y, then return x if (*x > *y) { return *x; } //else return y else { return *y; } } int smaller(int *x, int *y) { //compare the numbers //if x < y, then return x if (*x < *y) { return *x; } //else return y else { return *y; } } void hiLo(int *x, int *y, int *z, int *highest, int *lowest) { //test for highest number //compare x and y, which is largest *highest = bigger(x, y); //compare bigger value with z *highest = bigger(highest, z); //test for lowest number //compare x and y, which is smaller *lowest = smaller(x, y); //compare smaller value with z *lowest = smaller(lowest, z); }
the_stack_data/159514296.c
#include <stdio.h> int main(){ int x, y, prod; scanf("%d", &x); scanf("%d", &y); prod = x*y; printf("PROD = %d\n", prod); return 0; }
the_stack_data/87638658.c
# include<stdio.h> int min(int a,int b) { return a<b?a:b; } int max(int a,int b) { return a>b?a:b; } int main() { int m,n[50],k,l; char ans[1000001]; int i,j; scanf("%d%d%d",&k,&l,&m); for(i=0;i<m;i++) { scanf("%d",&n[i]); } ans[1]='A'; ans[k]='A'; ans[l]='A'; int minim=min(k,l); int maxim=max(k,l); for(i=2;i<minim;i++) { if(ans[i-1]=='B') ans[i]='A'; else ans[i]='B'; } for(i=minim+1;i<maxim;i++) { if(ans[i-1]=='B' || ans[i-minim]=='B') ans[i]='A'; else ans[i]='B'; } for(i=maxim+1;i<=1000000;i++) { if(ans[i-1]=='B' || ans[i-k]=='B' || ans[i-l]=='B') ans[i]='A'; else ans[i]='B'; } for(i=0;i<m;i++) { printf("%c",ans[n[i]]); } printf("\n"); return 0; }
the_stack_data/5978.c
/* 有 a 个学生,每个学生有 b 门课程的成绩,要求用户输入学生序号后,能输出该学生的全部成绩。 用指针函数来实现 */ #include <stdio.h> int main(void) { float score[][4] = {{60, 70, 80, 90}, {56, 89, 67, 88}, {34, 78, 90, 66}}; float *search(float(*pointer)[4], int n); float *p; int i, k; printf("enter the number of student:"); scanf("%d", &k); printf("The scores of No.%d are:\n", k); p = search(score, k); for (i = 0; i < 4; i++) { printf("%5.2f\t", *(p + i)); } printf("\n"); return 0; } float *search(float (*pointer)[4], int n) { float *pt; pt = *(pointer + n); // pt 的值是 &score[k][0]; return pt; }
the_stack_data/6387428.c
/* ************************************************************************** */ /* */ /* ::: :::::::: */ /* ft_str_is_uppercase.c :+: :+: :+: */ /* +:+ +:+ +:+ */ /* By: tpolonen <[email protected]> +#+ +:+ +#+ */ /* +#+#+#+#+#+ +#+ */ /* Created: 2021/06/01 04:10:25 by tpolonen #+# #+# */ /* Updated: 2021/06/01 04:10:42 by tpolonen ### ########.fr */ /* */ /* ************************************************************************** */ int char_is_uppercase(char c); int ft_str_is_uppercase(char *str) { int index; index = 0; while (str[index] != '\0') { if (char_is_uppercase(str[index]) == 0) return (0); index++; } return (1); } int char_is_uppercase(char c) { if (c >= 'A' && c <= 'Z') return (1); else return (0); }
the_stack_data/252165.c
# 1 "benchmarks/ds-05-impl1.c" # 1 "<built-in>" # 1 "<command-line>" # 1 "/usr/include/stdc-predef.h" 1 3 4 # 1 "<command-line>" 2 # 1 "benchmarks/ds-05-impl1.c" # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" 1 # 132 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" int X_SIZE_VALUE = 0; int overflow_mode = 1; int rounding_mode = 0; # 155 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/definitions.h" typedef struct { double a[100]; int a_size; double b[100]; int b_size; double sample_time; double a_uncertainty[100]; double b_uncertainty[100]; } digital_system; typedef struct { double A[4][4]; double B[4][4]; double C[4][4]; double D[4][4]; double states[4][4]; double outputs[4][4]; double inputs[4][4]; double K[4][4]; unsigned int nStates; unsigned int nInputs; unsigned int nOutputs; } digital_system_state_space; typedef struct { int int_bits; int frac_bits; double max; double min; int default_realization; double delta; int scale; double max_error; } implementation; typedef struct { int push; int in; int sbiw; int cli; int out; int std; int ldd; int subi; int sbci; int lsl; int rol; int add; int adc; int adiw; int rjmp; int mov; int sbc; int ld; int rcall; int cp; int cpc; int ldi; int brge; int pop; int ret; int st; int brlt; int cpi; } instructions; typedef struct { long clock; int device; double cycle; instructions assembly; } hardware; typedef struct{ float Ap, Ar, Ac; float wp, wc, wr; int type; }filter_parameters; # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" # 1 "/usr/include/stdlib.h" 1 3 4 # 25 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 33 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 3 4 # 1 "/usr/include/features.h" 1 3 4 # 461 "/usr/include/features.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 1 3 4 # 452 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 453 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4 # 454 "/usr/include/x86_64-linux-gnu/sys/cdefs.h" 2 3 4 # 462 "/usr/include/features.h" 2 3 4 # 485 "/usr/include/features.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/gnu/stubs-64.h" 1 3 4 # 11 "/usr/include/x86_64-linux-gnu/gnu/stubs.h" 2 3 4 # 486 "/usr/include/features.h" 2 3 4 # 34 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 2 3 4 # 26 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 # 209 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 typedef long unsigned int size_t; # 321 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 3 4 typedef int wchar_t; # 32 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 1 3 4 # 52 "/usr/include/x86_64-linux-gnu/bits/waitflags.h" 3 4 typedef enum { P_ALL, P_PID, P_PGID } idtype_t; # 40 "/usr/include/stdlib.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/waitstatus.h" 1 3 4 # 41 "/usr/include/stdlib.h" 2 3 4 # 55 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 1 3 4 # 120 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/long-double.h" 1 3 4 # 25 "/usr/include/x86_64-linux-gnu/bits/floatn-common.h" 2 3 4 # 121 "/usr/include/x86_64-linux-gnu/bits/floatn.h" 2 3 4 # 56 "/usr/include/stdlib.h" 2 3 4 typedef struct { int quot; int rem; } div_t; typedef struct { long int quot; long int rem; } ldiv_t; __extension__ typedef struct { long long int quot; long long int rem; } lldiv_t; # 97 "/usr/include/stdlib.h" 3 4 extern size_t __ctype_get_mb_cur_max (void) __attribute__ ((__nothrow__ , __leaf__)) ; extern double atof (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern int atoi (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern long int atol (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; __extension__ extern long long int atoll (const char *__nptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; extern double strtod (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern float strtof (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long double strtold (const char *__restrict __nptr, char **__restrict __endptr) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 176 "/usr/include/stdlib.h" 3 4 extern long int strtol (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern unsigned long int strtoul (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtouq (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern long long int strtoll (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); __extension__ extern unsigned long long int strtoull (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 385 "/usr/include/stdlib.h" 3 4 extern char *l64a (long int __n) __attribute__ ((__nothrow__ , __leaf__)) ; extern long int a64l (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) ; # 1 "/usr/include/x86_64-linux-gnu/sys/types.h" 1 3 4 # 27 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types.h" 1 3 4 # 27 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 28 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/timesize.h" 1 3 4 # 29 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 typedef unsigned char __u_char; typedef unsigned short int __u_short; typedef unsigned int __u_int; typedef unsigned long int __u_long; typedef signed char __int8_t; typedef unsigned char __uint8_t; typedef signed short int __int16_t; typedef unsigned short int __uint16_t; typedef signed int __int32_t; typedef unsigned int __uint32_t; typedef signed long int __int64_t; typedef unsigned long int __uint64_t; typedef __int8_t __int_least8_t; typedef __uint8_t __uint_least8_t; typedef __int16_t __int_least16_t; typedef __uint16_t __uint_least16_t; typedef __int32_t __int_least32_t; typedef __uint32_t __uint_least32_t; typedef __int64_t __int_least64_t; typedef __uint64_t __uint_least64_t; typedef long int __quad_t; typedef unsigned long int __u_quad_t; typedef long int __intmax_t; typedef unsigned long int __uintmax_t; # 141 "/usr/include/x86_64-linux-gnu/bits/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/typesizes.h" 1 3 4 # 142 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/time64.h" 1 3 4 # 143 "/usr/include/x86_64-linux-gnu/bits/types.h" 2 3 4 typedef unsigned long int __dev_t; typedef unsigned int __uid_t; typedef unsigned int __gid_t; typedef unsigned long int __ino_t; typedef unsigned long int __ino64_t; typedef unsigned int __mode_t; typedef unsigned long int __nlink_t; typedef long int __off_t; typedef long int __off64_t; typedef int __pid_t; typedef struct { int __val[2]; } __fsid_t; typedef long int __clock_t; typedef unsigned long int __rlim_t; typedef unsigned long int __rlim64_t; typedef unsigned int __id_t; typedef long int __time_t; typedef unsigned int __useconds_t; typedef long int __suseconds_t; typedef int __daddr_t; typedef int __key_t; typedef int __clockid_t; typedef void * __timer_t; typedef long int __blksize_t; typedef long int __blkcnt_t; typedef long int __blkcnt64_t; typedef unsigned long int __fsblkcnt_t; typedef unsigned long int __fsblkcnt64_t; typedef unsigned long int __fsfilcnt_t; typedef unsigned long int __fsfilcnt64_t; typedef long int __fsword_t; typedef long int __ssize_t; typedef long int __syscall_slong_t; typedef unsigned long int __syscall_ulong_t; typedef __off64_t __loff_t; typedef char *__caddr_t; typedef long int __intptr_t; typedef unsigned int __socklen_t; typedef int __sig_atomic_t; # 30 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __u_char u_char; typedef __u_short u_short; typedef __u_int u_int; typedef __u_long u_long; typedef __quad_t quad_t; typedef __u_quad_t u_quad_t; typedef __fsid_t fsid_t; typedef __loff_t loff_t; typedef __ino_t ino_t; # 59 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 typedef __dev_t dev_t; typedef __gid_t gid_t; typedef __mode_t mode_t; typedef __nlink_t nlink_t; typedef __uid_t uid_t; typedef __off_t off_t; # 97 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 typedef __pid_t pid_t; typedef __id_t id_t; typedef __ssize_t ssize_t; typedef __daddr_t daddr_t; typedef __caddr_t caddr_t; typedef __key_t key_t; # 1 "/usr/include/x86_64-linux-gnu/bits/types/clock_t.h" 1 3 4 typedef __clock_t clock_t; # 127 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/clockid_t.h" 1 3 4 typedef __clockid_t clockid_t; # 129 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/time_t.h" 1 3 4 typedef __time_t time_t; # 130 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/timer_t.h" 1 3 4 typedef __timer_t timer_t; # 131 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 144 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 145 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef unsigned long int ulong; typedef unsigned short int ushort; typedef unsigned int uint; # 1 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h" 3 4 typedef __int8_t int8_t; typedef __int16_t int16_t; typedef __int32_t int32_t; typedef __int64_t int64_t; # 156 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __uint8_t u_int8_t; typedef __uint16_t u_int16_t; typedef __uint32_t u_int32_t; typedef __uint64_t u_int64_t; typedef int register_t __attribute__ ((__mode__ (__word__))); # 176 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/endian.h" 1 3 4 # 24 "/usr/include/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/endian.h" 1 3 4 # 35 "/usr/include/x86_64-linux-gnu/bits/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/endianness.h" 1 3 4 # 36 "/usr/include/x86_64-linux-gnu/bits/endian.h" 2 3 4 # 25 "/usr/include/endian.h" 2 3 4 # 35 "/usr/include/endian.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 1 3 4 # 33 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4 static __inline __uint16_t __bswap_16 (__uint16_t __bsx) { return __builtin_bswap16 (__bsx); } static __inline __uint32_t __bswap_32 (__uint32_t __bsx) { return __builtin_bswap32 (__bsx); } # 69 "/usr/include/x86_64-linux-gnu/bits/byteswap.h" 3 4 __extension__ static __inline __uint64_t __bswap_64 (__uint64_t __bsx) { return __builtin_bswap64 (__bsx); } # 36 "/usr/include/endian.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 1 3 4 # 32 "/usr/include/x86_64-linux-gnu/bits/uintn-identity.h" 3 4 static __inline __uint16_t __uint16_identity (__uint16_t __x) { return __x; } static __inline __uint32_t __uint32_identity (__uint32_t __x) { return __x; } static __inline __uint64_t __uint64_identity (__uint64_t __x) { return __x; } # 37 "/usr/include/endian.h" 2 3 4 # 177 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/sys/select.h" 1 3 4 # 30 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/select.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/select.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/select.h" 2 3 4 # 31 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 1 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__sigset_t.h" 1 3 4 typedef struct { unsigned long int __val[(1024 / (8 * sizeof (unsigned long int)))]; } __sigset_t; # 5 "/usr/include/x86_64-linux-gnu/bits/types/sigset_t.h" 2 3 4 typedef __sigset_t sigset_t; # 34 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timeval.h" 1 3 4 struct timeval { __time_t tv_sec; __suseconds_t tv_usec; }; # 38 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4 struct timespec { __time_t tv_sec; __syscall_slong_t tv_nsec; # 26 "/usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h" 3 4 }; # 40 "/usr/include/x86_64-linux-gnu/sys/select.h" 2 3 4 typedef __suseconds_t suseconds_t; typedef long int __fd_mask; # 59 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 typedef struct { __fd_mask __fds_bits[1024 / (8 * (int) sizeof (__fd_mask))]; } fd_set; typedef __fd_mask fd_mask; # 91 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 101 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 extern int select (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, struct timeval *__restrict __timeout); # 113 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 extern int pselect (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, const struct timespec *__restrict __timeout, const __sigset_t *__restrict __sigmask); # 126 "/usr/include/x86_64-linux-gnu/sys/select.h" 3 4 # 180 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 typedef __blksize_t blksize_t; typedef __blkcnt_t blkcnt_t; typedef __fsblkcnt_t fsblkcnt_t; typedef __fsfilcnt_t fsfilcnt_t; # 227 "/usr/include/x86_64-linux-gnu/sys/types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 1 3 4 # 44 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 1 3 4 # 21 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h" 2 3 4 # 45 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 typedef struct __pthread_internal_list { struct __pthread_internal_list *__prev; struct __pthread_internal_list *__next; } __pthread_list_t; typedef struct __pthread_internal_slist { struct __pthread_internal_slist *__next; } __pthread_slist_t; # 74 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 1 3 4 # 22 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4 struct __pthread_mutex_s { int __lock; unsigned int __count; int __owner; unsigned int __nusers; int __kind; short __spins; short __elision; __pthread_list_t __list; # 53 "/usr/include/x86_64-linux-gnu/bits/struct_mutex.h" 3 4 }; # 75 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 # 87 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 1 3 4 # 23 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4 struct __pthread_rwlock_arch_t { unsigned int __readers; unsigned int __writers; unsigned int __wrphase_futex; unsigned int __writers_futex; unsigned int __pad3; unsigned int __pad4; int __cur_writer; int __shared; signed char __rwelision; unsigned char __pad1[7]; unsigned long int __pad2; unsigned int __flags; # 55 "/usr/include/x86_64-linux-gnu/bits/struct_rwlock.h" 3 4 }; # 88 "/usr/include/x86_64-linux-gnu/bits/thread-shared-types.h" 2 3 4 struct __pthread_cond_s { __extension__ union { __extension__ unsigned long long int __wseq; struct { unsigned int __low; unsigned int __high; } __wseq32; }; __extension__ union { __extension__ unsigned long long int __g1_start; struct { unsigned int __low; unsigned int __high; } __g1_start32; }; unsigned int __g_refs[2] ; unsigned int __g_size[2]; unsigned int __g1_orig_size; unsigned int __wrefs; unsigned int __g_signals[2]; }; # 24 "/usr/include/x86_64-linux-gnu/bits/pthreadtypes.h" 2 3 4 typedef unsigned long int pthread_t; typedef union { char __size[4]; int __align; } pthread_mutexattr_t; typedef union { char __size[4]; int __align; } pthread_condattr_t; typedef unsigned int pthread_key_t; typedef int pthread_once_t; union pthread_attr_t { char __size[56]; long int __align; }; typedef union pthread_attr_t pthread_attr_t; typedef union { struct __pthread_mutex_s __data; char __size[40]; long int __align; } pthread_mutex_t; typedef union { struct __pthread_cond_s __data; char __size[48]; __extension__ long long int __align; } pthread_cond_t; typedef union { struct __pthread_rwlock_arch_t __data; char __size[56]; long int __align; } pthread_rwlock_t; typedef union { char __size[8]; long int __align; } pthread_rwlockattr_t; typedef volatile int pthread_spinlock_t; typedef union { char __size[32]; long int __align; } pthread_barrier_t; typedef union { char __size[4]; int __align; } pthread_barrierattr_t; # 228 "/usr/include/x86_64-linux-gnu/sys/types.h" 2 3 4 # 395 "/usr/include/stdlib.h" 2 3 4 extern long int random (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srandom (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern char *initstate (unsigned int __seed, char *__statebuf, size_t __statelen) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern char *setstate (char *__statebuf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct random_data { int32_t *fptr; int32_t *rptr; int32_t *state; int rand_type; int rand_deg; int rand_sep; int32_t *end_ptr; }; extern int random_r (struct random_data *__restrict __buf, int32_t *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srandom_r (unsigned int __seed, struct random_data *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int initstate_r (unsigned int __seed, char *__restrict __statebuf, size_t __statelen, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2, 4))); extern int setstate_r (char *__restrict __statebuf, struct random_data *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int rand (void) __attribute__ ((__nothrow__ , __leaf__)); extern void srand (unsigned int __seed) __attribute__ ((__nothrow__ , __leaf__)); extern int rand_r (unsigned int *__seed) __attribute__ ((__nothrow__ , __leaf__)); extern double drand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern double erand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int lrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int nrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern long int mrand48 (void) __attribute__ ((__nothrow__ , __leaf__)); extern long int jrand48 (unsigned short int __xsubi[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void srand48 (long int __seedval) __attribute__ ((__nothrow__ , __leaf__)); extern unsigned short int *seed48 (unsigned short int __seed16v[3]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void lcong48 (unsigned short int __param[7]) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); struct drand48_data { unsigned short int __x[3]; unsigned short int __old_x[3]; unsigned short int __c; unsigned short int __init; __extension__ unsigned long long int __a; }; extern int drand48_r (struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int erand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, double *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int nrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int mrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int jrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int srand48_r (long int __seedval, struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int seed48_r (unsigned short int __seed16v[3], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern int lcong48_r (unsigned short int __param[7], struct drand48_data *__buffer) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2))); extern void *malloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1))) ; extern void *calloc (size_t __nmemb, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1, 2))) ; extern void *realloc (void *__ptr, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)) __attribute__ ((__alloc_size__ (2))); extern void *reallocarray (void *__ptr, size_t __nmemb, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__warn_unused_result__)) __attribute__ ((__alloc_size__ (2, 3))); extern void free (void *__ptr) __attribute__ ((__nothrow__ , __leaf__)); # 1 "/usr/include/alloca.h" 1 3 4 # 24 "/usr/include/alloca.h" 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 25 "/usr/include/alloca.h" 2 3 4 extern void *alloca (size_t __size) __attribute__ ((__nothrow__ , __leaf__)); # 569 "/usr/include/stdlib.h" 2 3 4 extern void *valloc (size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (1))) ; extern int posix_memalign (void **__memptr, size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; extern void *aligned_alloc (size_t __alignment, size_t __size) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) __attribute__ ((__alloc_size__ (2))) ; extern void abort (void) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern int atexit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int at_quick_exit (void (*__func) (void)) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int on_exit (void (*__func) (int __status, void *__arg), void *__arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern void exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void quick_exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void _Exit (int __status) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern char *getenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 647 "/usr/include/stdlib.h" 3 4 extern int putenv (char *__string) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int setenv (const char *__name, const char *__value, int __replace) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (2))); extern int unsetenv (const char *__name) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); extern int clearenv (void) __attribute__ ((__nothrow__ , __leaf__)); # 675 "/usr/include/stdlib.h" 3 4 extern char *mktemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 688 "/usr/include/stdlib.h" 3 4 extern int mkstemp (char *__template) __attribute__ ((__nonnull__ (1))) ; # 710 "/usr/include/stdlib.h" 3 4 extern int mkstemps (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) ; # 731 "/usr/include/stdlib.h" 3 4 extern char *mkdtemp (char *__template) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 784 "/usr/include/stdlib.h" 3 4 extern int system (const char *__command) ; # 800 "/usr/include/stdlib.h" 3 4 extern char *realpath (const char *__restrict __name, char *__restrict __resolved) __attribute__ ((__nothrow__ , __leaf__)) ; typedef int (*__compar_fn_t) (const void *, const void *); # 820 "/usr/include/stdlib.h" 3 4 extern void *bsearch (const void *__key, const void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 2, 5))) ; extern void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 4))); # 840 "/usr/include/stdlib.h" 3 4 extern int abs (int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern long int labs (long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern long long int llabs (long long int __x) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern div_t div (int __numer, int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; extern ldiv_t ldiv (long int __numer, long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; __extension__ extern lldiv_t lldiv (long long int __numer, long long int __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)) ; # 872 "/usr/include/stdlib.h" 3 4 extern char *ecvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *fcvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *gcvt (double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern char *qecvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qfcvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4))) ; extern char *qgcvt (long double __value, int __ndigit, char *__buf) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3))) ; extern int ecvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int fcvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qecvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int qfcvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (3, 4, 5))); extern int mblen (const char *__s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int mbtowc (wchar_t *__restrict __pwc, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int wctomb (char *__s, wchar_t __wchar) __attribute__ ((__nothrow__ , __leaf__)); extern size_t mbstowcs (wchar_t *__restrict __pwcs, const char *__restrict __s, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern size_t wcstombs (char *__restrict __s, const wchar_t *__restrict __pwcs, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern int rpmatch (const char *__response) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))) ; # 957 "/usr/include/stdlib.h" 3 4 extern int getsubopt (char **__restrict __optionp, char *const *__restrict __tokens, char **__restrict __valuep) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1, 2, 3))) ; # 1003 "/usr/include/stdlib.h" 3 4 extern int getloadavg (double __loadavg[], int __nelem) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__nonnull__ (1))); # 1013 "/usr/include/stdlib.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdlib-float.h" 1 3 4 # 1014 "/usr/include/stdlib.h" 2 3 4 # 1023 "/usr/include/stdlib.h" 3 4 # 18 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 1 "/usr/include/assert.h" 1 3 4 # 66 "/usr/include/assert.h" 3 4 extern void __assert_fail (const char *__assertion, const char *__file, unsigned int __line, const char *__function) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void __assert_perror_fail (int __errnum, const char *__file, unsigned int __line, const char *__function) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); extern void __assert (const char *__assertion, const char *__file, int __line) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 1 "/usr/include/stdio.h" 1 3 4 # 27 "/usr/include/stdio.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 28 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stddef.h" 1 3 4 # 34 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 1 3 4 # 40 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdarg.h" 3 4 typedef __builtin_va_list __gnuc_va_list; # 37 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 1 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 1 3 4 # 13 "/usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h" 3 4 typedef struct { int __count; union { unsigned int __wch; char __wchb[4]; } __value; } __mbstate_t; # 6 "/usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h" 2 3 4 typedef struct _G_fpos_t { __off_t __pos; __mbstate_t __state; } __fpos_t; # 40 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 1 3 4 # 10 "/usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h" 3 4 typedef struct _G_fpos64_t { __off64_t __pos; __mbstate_t __state; } __fpos64_t; # 41 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/__FILE.h" 1 3 4 struct _IO_FILE; typedef struct _IO_FILE __FILE; # 42 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/FILE.h" 1 3 4 struct _IO_FILE; typedef struct _IO_FILE FILE; # 43 "/usr/include/stdio.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 1 3 4 # 35 "/usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h" 3 4 struct _IO_FILE; struct _IO_marker; struct _IO_codecvt; struct _IO_wide_data; typedef void _IO_lock_t; struct _IO_FILE { int _flags; char *_IO_read_ptr; char *_IO_read_end; char *_IO_read_base; char *_IO_write_base; char *_IO_write_ptr; char *_IO_write_end; char *_IO_buf_base; char *_IO_buf_end; char *_IO_save_base; char *_IO_backup_base; char *_IO_save_end; struct _IO_marker *_markers; struct _IO_FILE *_chain; int _fileno; int _flags2; __off_t _old_offset; unsigned short _cur_column; signed char _vtable_offset; char _shortbuf[1]; _IO_lock_t *_lock; __off64_t _offset; struct _IO_codecvt *_codecvt; struct _IO_wide_data *_wide_data; struct _IO_FILE *_freeres_list; void *_freeres_buf; size_t __pad5; int _mode; char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)]; }; # 44 "/usr/include/stdio.h" 2 3 4 # 52 "/usr/include/stdio.h" 3 4 typedef __gnuc_va_list va_list; # 84 "/usr/include/stdio.h" 3 4 typedef __fpos_t fpos_t; # 133 "/usr/include/stdio.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdio_lim.h" 1 3 4 # 134 "/usr/include/stdio.h" 2 3 4 extern FILE *stdin; extern FILE *stdout; extern FILE *stderr; extern int remove (const char *__filename) __attribute__ ((__nothrow__ , __leaf__)); extern int rename (const char *__old, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); extern int renameat (int __oldfd, const char *__old, int __newfd, const char *__new) __attribute__ ((__nothrow__ , __leaf__)); # 173 "/usr/include/stdio.h" 3 4 extern FILE *tmpfile (void) ; # 187 "/usr/include/stdio.h" 3 4 extern char *tmpnam (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; extern char *tmpnam_r (char *__s) __attribute__ ((__nothrow__ , __leaf__)) ; # 204 "/usr/include/stdio.h" 3 4 extern char *tempnam (const char *__dir, const char *__pfx) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__malloc__)) ; extern int fclose (FILE *__stream); extern int fflush (FILE *__stream); # 227 "/usr/include/stdio.h" 3 4 extern int fflush_unlocked (FILE *__stream); # 246 "/usr/include/stdio.h" 3 4 extern FILE *fopen (const char *__restrict __filename, const char *__restrict __modes) ; extern FILE *freopen (const char *__restrict __filename, const char *__restrict __modes, FILE *__restrict __stream) ; # 279 "/usr/include/stdio.h" 3 4 extern FILE *fdopen (int __fd, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; # 292 "/usr/include/stdio.h" 3 4 extern FILE *fmemopen (void *__s, size_t __len, const char *__modes) __attribute__ ((__nothrow__ , __leaf__)) ; extern FILE *open_memstream (char **__bufloc, size_t *__sizeloc) __attribute__ ((__nothrow__ , __leaf__)) ; extern void setbuf (FILE *__restrict __stream, char *__restrict __buf) __attribute__ ((__nothrow__ , __leaf__)); extern int setvbuf (FILE *__restrict __stream, char *__restrict __buf, int __modes, size_t __n) __attribute__ ((__nothrow__ , __leaf__)); extern void setbuffer (FILE *__restrict __stream, char *__restrict __buf, size_t __size) __attribute__ ((__nothrow__ , __leaf__)); extern void setlinebuf (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int fprintf (FILE *__restrict __stream, const char *__restrict __format, ...); extern int printf (const char *__restrict __format, ...); extern int sprintf (char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__)); extern int vfprintf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg); extern int vprintf (const char *__restrict __format, __gnuc_va_list __arg); extern int vsprintf (char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)); extern int snprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, ...) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 4))); extern int vsnprintf (char *__restrict __s, size_t __maxlen, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__)) __attribute__ ((__format__ (__printf__, 3, 0))); # 379 "/usr/include/stdio.h" 3 4 extern int vdprintf (int __fd, const char *__restrict __fmt, __gnuc_va_list __arg) __attribute__ ((__format__ (__printf__, 2, 0))); extern int dprintf (int __fd, const char *__restrict __fmt, ...) __attribute__ ((__format__ (__printf__, 2, 3))); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) ; extern int scanf (const char *__restrict __format, ...) ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __attribute__ ((__nothrow__ , __leaf__)); extern int fscanf (FILE *__restrict __stream, const char *__restrict __format, ...) __asm__ ("" "__isoc99_fscanf") ; extern int scanf (const char *__restrict __format, ...) __asm__ ("" "__isoc99_scanf") ; extern int sscanf (const char *__restrict __s, const char *__restrict __format, ...) __asm__ ("" "__isoc99_sscanf") __attribute__ ((__nothrow__ , __leaf__)) ; # 432 "/usr/include/stdio.h" 3 4 extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); extern int vfscanf (FILE *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vfscanf") __attribute__ ((__format__ (__scanf__, 2, 0))) ; extern int vscanf (const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vscanf") __attribute__ ((__format__ (__scanf__, 1, 0))) ; extern int vsscanf (const char *__restrict __s, const char *__restrict __format, __gnuc_va_list __arg) __asm__ ("" "__isoc99_vsscanf") __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__format__ (__scanf__, 2, 0))); # 485 "/usr/include/stdio.h" 3 4 extern int fgetc (FILE *__stream); extern int getc (FILE *__stream); extern int getchar (void); extern int getc_unlocked (FILE *__stream); extern int getchar_unlocked (void); # 510 "/usr/include/stdio.h" 3 4 extern int fgetc_unlocked (FILE *__stream); # 521 "/usr/include/stdio.h" 3 4 extern int fputc (int __c, FILE *__stream); extern int putc (int __c, FILE *__stream); extern int putchar (int __c); # 537 "/usr/include/stdio.h" 3 4 extern int fputc_unlocked (int __c, FILE *__stream); extern int putc_unlocked (int __c, FILE *__stream); extern int putchar_unlocked (int __c); extern int getw (FILE *__stream); extern int putw (int __w, FILE *__stream); extern char *fgets (char *__restrict __s, int __n, FILE *__restrict __stream) ; # 603 "/usr/include/stdio.h" 3 4 extern __ssize_t __getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) ; extern __ssize_t getline (char **__restrict __lineptr, size_t *__restrict __n, FILE *__restrict __stream) ; extern int fputs (const char *__restrict __s, FILE *__restrict __stream); extern int puts (const char *__s); extern int ungetc (int __c, FILE *__stream); extern size_t fread (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __s); # 673 "/usr/include/stdio.h" 3 4 extern size_t fread_unlocked (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) ; extern size_t fwrite_unlocked (const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream); extern int fseek (FILE *__stream, long int __off, int __whence); extern long int ftell (FILE *__stream) ; extern void rewind (FILE *__stream); # 707 "/usr/include/stdio.h" 3 4 extern int fseeko (FILE *__stream, __off_t __off, int __whence); extern __off_t ftello (FILE *__stream) ; # 731 "/usr/include/stdio.h" 3 4 extern int fgetpos (FILE *__restrict __stream, fpos_t *__restrict __pos); extern int fsetpos (FILE *__stream, const fpos_t *__pos); # 757 "/usr/include/stdio.h" 3 4 extern void clearerr (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void clearerr_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int feof_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int ferror_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void perror (const char *__s); # 1 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 1 3 4 # 26 "/usr/include/x86_64-linux-gnu/bits/sys_errlist.h" 3 4 extern int sys_nerr; extern const char *const sys_errlist[]; # 782 "/usr/include/stdio.h" 2 3 4 extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; # 800 "/usr/include/stdio.h" 3 4 extern FILE *popen (const char *__command, const char *__modes) ; extern int pclose (FILE *__stream); extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__)); # 840 "/usr/include/stdio.h" 3 4 extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ; extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)); # 858 "/usr/include/stdio.h" 3 4 extern int __uflow (FILE *); extern int __overflow (FILE *, int); # 873 "/usr/include/stdio.h" 3 4 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 2 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" void __DSVERIFIER_assume(_Bool expression){ __ESBMC_assume(expression); # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" } void __DSVERIFIER_assert(_Bool expression){ # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ((void) sizeof (( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ; else __assert_fail ( # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" "expression" # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 36, __extension__ __PRETTY_FUNCTION__); })) # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" ; } void __DSVERIFIER_assert_msg(_Bool expression, char * msg){ printf("%s", msg); # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ((void) sizeof (( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" expression # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 ) ; else __assert_fail ( # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" "expression" # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h", 41, __extension__ __PRETTY_FUNCTION__); })) # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/compatibility.h" ; } # 22 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 1 # 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" # 1 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 1 3 4 # 9 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 3 4 # 1 "/usr/include/stdint.h" 1 3 4 # 26 "/usr/include/stdint.h" 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/libc-header-start.h" 1 3 4 # 27 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wchar.h" 1 3 4 # 29 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/wordsize.h" 1 3 4 # 30 "/usr/include/stdint.h" 2 3 4 # 1 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 1 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4 # 24 "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h" 3 4 typedef __uint8_t uint8_t; typedef __uint16_t uint16_t; typedef __uint32_t uint32_t; typedef __uint64_t uint64_t; # 38 "/usr/include/stdint.h" 2 3 4 typedef __int_least8_t int_least8_t; typedef __int_least16_t int_least16_t; typedef __int_least32_t int_least32_t; typedef __int_least64_t int_least64_t; typedef __uint_least8_t uint_least8_t; typedef __uint_least16_t uint_least16_t; typedef __uint_least32_t uint_least32_t; typedef __uint_least64_t uint_least64_t; typedef signed char int_fast8_t; typedef long int int_fast16_t; typedef long int int_fast32_t; typedef long int int_fast64_t; # 71 "/usr/include/stdint.h" 3 4 typedef unsigned char uint_fast8_t; typedef unsigned long int uint_fast16_t; typedef unsigned long int uint_fast32_t; typedef unsigned long int uint_fast64_t; # 87 "/usr/include/stdint.h" 3 4 typedef long int intptr_t; typedef unsigned long int uintptr_t; # 101 "/usr/include/stdint.h" 3 4 typedef __intmax_t intmax_t; typedef __uintmax_t uintmax_t; # 10 "/usr/lib/gcc/x86_64-linux-gnu/9/include/stdint.h" 2 3 4 # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2 # 1 "/usr/include/inttypes.h" 1 3 4 # 34 "/usr/include/inttypes.h" 3 4 typedef int __gwchar_t; # 266 "/usr/include/inttypes.h" 3 4 typedef struct { long int quot; long int rem; } imaxdiv_t; # 290 "/usr/include/inttypes.h" 3 4 extern intmax_t imaxabs (intmax_t __n) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern imaxdiv_t imaxdiv (intmax_t __numer, intmax_t __denom) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__const__)); extern intmax_t strtoimax (const char *__restrict __nptr, char **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t strtoumax (const char *__restrict __nptr, char ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern intmax_t wcstoimax (const __gwchar_t *__restrict __nptr, __gwchar_t **__restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); extern uintmax_t wcstoumax (const __gwchar_t *__restrict __nptr, __gwchar_t ** __restrict __endptr, int __base) __attribute__ ((__nothrow__ , __leaf__)); # 432 "/usr/include/inttypes.h" 3 4 # 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" 2 # 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" extern implementation impl; typedef int64_t fxp_t; fxp_t _fxp_one; fxp_t _fxp_half; fxp_t _fxp_minus_one; fxp_t _fxp_min; fxp_t _fxp_max; double _dbl_max; double _dbl_min; fxp_t _fxp_fmask; fxp_t _fxp_imask; static const double scale_factor[31] = { 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0, 65536.0, 131072.0, 262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0, 8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0, 268435456.0, 536870912.0, 1073741824.0 }; static const double scale_factor_inv[31] = { 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625, 0.001953125, 0.0009765625, 0.00048828125, 0.000244140625, 0.0001220703125, 0.00006103515625, 0.000030517578125, 0.000015258789063, 0.000007629394531, 0.000003814697266, 0.000001907348633, 0.000000953674316, 0.000000476837158, 0.000000238418579, 0.000000119209290, 0.000000059604645, 0.000000029802322, 0.000000014901161, 0.000000007450581, 0.000000003725290, 0.000000001862645, 0.000000000931323 }; static const float rand_uni[10000] = { -0.486240329978498f, -0.0886462298529236f, -0.140307596103306f, 0.301096597450952f, 0.0993171079928659f, 0.971751769763271f, 0.985173975730828f, 0.555993645184930f, 0.582088652691427f, -0.153377496651175f, 0.383610009058905f, -0.335724126391271f, 0.978768141636516f, -0.276250018648572f, 0.390075705739569f, -0.179022404038782f, 0.690083827115783f, -0.872530132490992f, -0.970585763293203f, -0.581476053441704f, -0.532614615674888f, -0.239699306693312f, -0.678183014035494f, 0.349502640932782f, -0.210469890686263f, 0.841262085391842f, -0.473585465151401f, 0.659383565443701f, -0.651160036945754f, -0.961043527561335f, -0.0814927639199137f, 0.621303110569702f, -0.784529166943541f, 0.0238464770757800f, 0.392694728594110f, 0.776848735202001f, 0.0870059709310509f, 0.880563655271790f, 0.883457036977564f, -0.249235082877382f, -0.691040749216870f, 0.578731120064320f, -0.973932858000832f, -0.117699105431720f, -0.723831748151088f, -0.483149657477524f, -0.821277691383664f, -0.459725618100875f, 0.148175952221864f, 0.444306875534854f, -0.325610376336498f, 0.544142311404910f, -0.165319440455435f, 0.136706800705517f, 0.543312481350682f, 0.467210959764607f, -0.349266618228534f, -0.660110730565862f, 0.910332331495431f, 0.961049802789367f, -0.786168905164629f, 0.305648402726554f, 0.510815258508885f, 0.0950733260984060f, 0.173750645487898f, 0.144488668408672f, 0.0190031984466126f, -0.299194577636724f, 0.302411647442273f, -0.730462524226212f, 0.688646006554796f, 0.134948379722118f, 0.533716723458894f, -0.00226300779660438f, -0.561340777806718f, 0.450396313744017f, -0.569445876566955f, 0.954155246557698f, -0.255403882430676f, -0.759820984120828f, -0.855279790307514f, -0.147352581758156f, -0.302269055643746f, -0.642038024364086f, -0.367405981107491f, 0.491844011712164f, -0.542191710121194f, -0.938294043323732f, 0.683979894338020f, 0.294728290855287f, 0.00662691839443919f, -0.931040350582855f, 0.152356209974418f, 0.678620860551457f, -0.534989269238408f, 0.932096367913226f, -0.0361062818028513f, -0.847189697149530f, -0.975903030160255f, 0.623293205784014f, -0.661289688031659f, 0.724486055119603f, 0.307504095172835f, 0.00739266163731767f, -0.393681596442097f, 0.0313739422974388f, 0.0768157689673350f, -0.652063346886817f, 0.864188030044388f, -0.588932092781034f, 0.496015896758580f, -0.872858269231211f, 0.978780599551039f, -0.504887732991147f, -0.462378791937628f, 0.0141726829338038f, 0.769610007653591f, 0.945233033188923f, -0.782235375325016f, -0.832206533738799f, 0.745634368088673f, -0.696969510157151f, -0.0674631869948374f, -0.123186450806584f, -0.359158959141949f, -0.393882649464391f, 0.441371446689899f, -0.829394270569736f, -0.301502651277431f, -0.996215501187289f, 0.934634037393066f, -0.282431114746289f, -0.927550795619590f, -0.437037530043415f, -0.360426812995980f, 0.949549724575862f, 0.502784616197919f, 0.800771681422909f, -0.511398929004089f, 0.309288504642554f, -0.207261227890933f, 0.930587995125773f, -0.777029876696670f, -0.489329175755640f, -0.134595132329858f, 0.285771358983518f, 0.182331373854387f, -0.544110494560697f, 0.278439882883985f, -0.556325158102182f, 0.579043806545889f, 0.134648133801916f, 0.602850725479294f, -0.151663563868883f, 0.180694361855878f, -0.651591295315595f, 0.281129147768056f, -0.580047306475484f, 0.687883075491433f, 0.279398670804288f, -0.853428128249503f, -0.532609367372680f, -0.821156786377917f, -0.181273229058573f, -0.983898569846882f, -0.0964374318311501f, 0.880923372124250f, 0.102643371392389f, 0.893615387135596f, -0.259276649383649f, 0.699287743639363f, 0.402940604635828f, -0.110721596226581f, 0.0846246472582877f, 0.820733021865405f, 0.795578903285308f, -0.495144122011537f, 0.273150029257472f, -0.268249949701437f, 0.231982193341980f, 0.694211299124074f, 0.859950868718233f, 0.959483382623794f, -0.422972626833543f, -0.109621798738360f, 0.433094703426531f, 0.694025903378851f, 0.374478987547435f, -0.293668545105608f, -0.396213864190828f, -0.0632095887099047f, -0.0285139536748673f, 0.831794132192390f, -0.548543088139238f, 0.791869201724680f, 0.325211484201845f, 0.155274810721772f, -0.112383643064821f, -0.674403070297721f, 0.642801068229810f, -0.615712048835242f, -0.322576771285566f, -0.409336818836595f, 0.548069973193770f, -0.386353709407947f, -0.0741664985357784f, 0.619639599324983f, -0.815703814931314f, 0.965550307223862f, 0.623407852683828f, -0.789634372832984f, 0.736750050047572f, -0.0269443926793700f, 0.00545706093721488f, -0.315712479832091f, -0.890110021644720f, -0.869390443173846f, -0.381538869981866f, -0.109498998005949f, 0.131433952330613f, -0.233452413139316f, 0.660289822785465f, 0.543381186340023f, -0.384712418750451f, -0.913477554164890f, 0.767102957655267f, -0.115129944521936f, -0.741161985822647f, -0.0604180020782450f, -0.819131535144059f, -0.409539679760029f, 0.574419252943637f, -0.0440704617157433f, 0.933173744590532f, 0.261360623390448f, -0.880290575543046f, 0.329806293425492f, 0.548915621667952f, 0.635187167795234f, -0.611034070318967f, 0.458196727901944f, 0.397377226781023f, 0.711941361933987f, 0.782147744383368f, -0.00300685339552631f, 0.384687233450957f, 0.810102466029521f, 0.452919847968424f, -0.183164257016897f, -0.755603185485427f, -0.604334477365858f, -0.786222413488860f, -0.434887500763099f, -0.678845635625581f, -0.381200370488331f, -0.582350534916068f, -0.0444427346996734f, 0.116237247526397f, -0.364680921206275f, -0.829395404347498f, -0.258574590032613f, -0.910082114298859f, 0.501356900925997f, 0.0295361922006900f, -0.471786618165219f, 0.536352925101547f, -0.316120662284464f, -0.168902841718737f, 0.970850119987976f, -0.813818666854395f, -0.0861183123848732f, 0.866784827877161f, 0.535966478165739f, -0.806958669103425f, -0.627307415616045f, -0.686618354673079f, 0.0239165685193152f, 0.525427699287402f, 0.834079334357391f, -0.527333932295852f, 0.130970034225907f, -0.790218350377199f, 0.399338640441987f, 0.133591886379939f, -0.181354311053254f, 0.420121912637914f, -0.625002202728601f, -0.293296669160307f, 0.0113819513424340f, -0.882382002895096f, -0.883750159690028f, 0.441583656876336f, -0.439054135454480f, 0.873049498123622f, 0.660844523562817f, 0.0104240153103699f, 0.611420248331623f, -0.235926309432748f, 0.207317724918460f, 0.884691834560657f, 0.128302402592277f, -0.283754448219060f, 0.237649901255856f, 0.610200763264703f, -0.625035441247926f, -0.964609592118695f, -0.323146562743113f, 0.961529402270719f, -0.793576233735450f, -0.843916713821003f, 0.314105102728384f, -0.204535560653294f, 0.753318789613803f, 0.160678386635821f, -0.647065919861379f, -0.202789866826280f, 0.648108234268198f, -0.261292621025902f, 0.156681828732770f, 0.405377351820066f, 0.228465381497500f, 0.972348516671163f, 0.288346037401522f, -0.0799068604307178f, 0.916939290109587f, -0.279220972402209f, -0.203447523864279f, -0.533640046855273f, 0.543561961674653f, 0.880711097286889f, -0.549683064687774f, 0.0130107219236368f, -0.554838164576024f, -0.379442406201385f, -0.00500104610043062f, 0.409530122826868f, -0.580423080726061f, 0.824555731914455f, -0.254134502966922f, 0.655609706875230f, 0.629093866184236f, -0.690033250889974f, -0.652346551677826f, 0.169820593515952f, 0.922459552232043f, 0.351812083539940f, 0.876342426613034f, -0.513486005850680f, -0.626382302780497f, -0.734690688861027f, 0.245594886018314f, -0.875740935105191f, -0.388580462918006f, 0.0127041754106421f, -0.0330962560066819f, -0.425003146474193f, 0.0281641353527495f, 0.261441358666622f, 0.949781327102773f, 0.919646340564270f, 0.504503377003781f, 0.0817071051871894f, 0.319968570729658f, 0.229065413577318f, -0.0512608414259468f, -0.0740848540944785f, -0.0974457038582892f, 0.532775710298005f, -0.492913317622840f, 0.492871078783642f, -0.289562388384881f, 0.229149968879593f, 0.697586903105899f, 0.900855243684925f, 0.969700445892771f, -0.618162745501349f, -0.533241431614228f, -0.937955908995453f, 0.886669636523452f, 0.498748076602594f, 0.974106016180519f, -0.199411214757595f, 0.725270392729083f, -0.0279932700005097f, -0.889385821767448f, -0.452211028905500f, -0.487216271217731f, -0.577105004471439f, 0.777405674160298f, 0.390121144627092f, -0.595062864225581f, -0.844712795815575f, -0.894819796738658f, 0.0556635002662202f, 0.200767245646242f, 0.481227096067452f, -0.0854169009474664f, 0.524532943920022f, -0.880292014538901f, -0.127923833629789f, -0.929275628802356f, 0.233276357260949f, -0.776272194935070f, 0.953325886548014f, -0.884399921036004f, -0.504227548828417f, -0.546526107689276f, 0.852622421886067f, 0.947722695551154f, -0.668635552599119f, 0.768739709906834f, 0.830755876586102f, -0.720579994994166f, 0.761613532216491f, 0.340510345777526f, 0.335046764810816f, 0.490102926886310f, -0.568989013749608f, -0.296018470377601f, 0.979838924243657f, 0.624231653632879f, 0.553904401851075f, -0.355359451941014f, 0.267623165480721f, 0.985914275634075f, -0.741887849211797f, 0.560479100333108f, -0.602590162007993f, -0.874870765077352f, -0.0306218773384892f, 0.963145768131215f, 0.544824028787036f, -0.133990816021791f, 0.0679964588712787f, -0.156401335214901f, -0.0802554171832672f, 0.856386218492912f, 0.143013580527942f, 0.403921859374840f, -0.179029058044097f, 0.770723540077919f, -0.183650969350452f, -0.340718434629824f, 0.217166124261387f, -0.171159949445977f, 0.127493767348173f, -0.649649349141405f, -0.0986978180993434f, 0.301786606637125f, 0.942172200207855f, 0.0323236270151113f, -0.579853744301016f, -0.964413060851558f, 0.917535782777861f, 0.442144649483292f, -0.684960854610878f, -0.418908715566712f, 0.617844265088789f, 0.897145578082386f, 0.235463167636481f, 0.0166312355859484f, 0.948331447443040f, -0.961085640409103f, -0.0386086809179784f, -0.949138997977665f, 0.738211385880427f, 0.613757309091864f, -0.606937832993426f, 0.825253298062192f, 0.932609757667859f, -0.169023247637751f, -0.411237965787391f, 0.550590803600950f, -0.0561729280137304f, -0.559663108323671f, -0.718592671237337f, 0.885889621415361f, -0.364207826334344f, -0.839614660327507f, 0.265502694339344f, 0.394329270534417f, -0.270184577808578f, -0.865353487778069f, -0.528848754655393f, -0.179961524561963f, 0.571721065613544f, -0.774363220756696f, 0.251123315200792f, -0.217722762975159f, 0.0901359910328954f, -0.329445470667965f, 0.366410356722994f, -0.777512662632715f, 0.654844363477267f, -0.882409911562713f, -0.613612530795153f, -0.926517759636550f, 0.111572665207194f, 0.0729846382226607f, 0.789912813274098, 0.784452109264882f, -0.949766989295825f, 0.318378232675431f, 0.732077593075111f, 0.786829143208386f, -0.134682559823644f, 0.733164743374965f, 0.978410877665941f, 0.992008491438409f, -0.319064303035495f, 0.958430683602029f, 0.514518212363212f, 0.101876224417090f, 0.642655735778237f, -0.170746516901312f, 0.252352078365623f, -0.761327278132210f, 0.724119717129199f, 0.889374997869224f, -0.785987369200692f, -0.594670344572584f, 0.805192297495935f, -0.990523259595814f, 0.483998949026664f, 0.747350619254878f, -0.824845161088780f, 0.543009506581798f, -0.208778528683094f, -0.314149951901368f, 0.943576771177672f, -0.102633559170861f, -0.947663019606703f, -0.557033071578968f, 0.419150797499848f, 0.251214274356296f, 0.565717763755325f, 0.126676667925064f, -0.0213369479214840f, 0.342212953426240f, -0.288015274572288f, 0.121313363277304f, 0.452832374494206f, 0.545420403121955f, -0.616024063400938f, -0.0320352392995826f, -0.400581850938279f, 0.0642433474653812f, -0.673966224453150f, 0.951962939602010f, -0.241906012952983f, 0.0322060960995099f, -0.449185553826233f, -0.709575766146540f, 0.0283340814242898f, 0.234237103593580f, -0.285526615094797f, -0.793192668153991f, -0.437130485497140f, -0.956132143306919f, 0.601158367473616f, 0.238689691528783f, 0.173709925321432f, 0.437983847738997f, 0.397380645202102f, 0.432093344086237f, -0.0338869881121104f, -0.966303269542493f, 0.875351570183604f, -0.0584554089652962f, 0.294207497692552f, 0.200323088145182f, 0.826642387259759f, 0.284806025494260f, -0.00660991970522007f, 0.682493772727303f, -0.151980775670668f, 0.0470705546940635f, -0.236378427235531f, -0.844780853112247f, 0.134166207564174f, -0.586842667384924f, 0.0711866699414370f, 0.311698821368897f, -0.361229767252053f, 0.750924311039976f, 0.0764323989785694f, 0.898463708247144f, 0.398232179543916f, -0.515644913011399f, -0.189067061520362f, -0.567430593060929f, -0.641924269747436f, -0.0960378699625619f, -0.792054031692334f, 0.803891878854351f, -0.233518627249889f, -0.892523453249154f, 0.707550017996875f, -0.782288435525895f, -0.156166443894764f, -0.543737876329167f, 0.565637809380957f, -0.757689989749326f, -0.612543942167974f, -0.766327195073259f, 0.587626843767440f, -0.280769385897397f, -0.457487372245825f, 0.0862799426622438f, -0.616867284053547f, 0.121778903484808f, -0.451988651573766f, -0.618146087265495f, -0.285868777534354f, 0.108999472244014f, -0.620755183347358f, -0.268563184810196f, -0.721678169615489f, -0.146060198874409f, -0.661506858070617f, 0.901707853998409f, 0.222488776533930f, 0.679599685031679f, 0.974760448601209f, 0.535485953830496f, -0.562345697123585f, 0.369219363331071f, -0.0282801684694869f, -0.0734880727832297f, 0.733216287314358f, -0.514352095765627f, -0.850813063545195f, 0.642458447327163f, 0.118661521915783f, -0.907015526838341f, 0.789277766886329f, -0.719864125961721f, 0.274329068829509f, 0.830124687647056f, 0.719352367261587f, -0.821767317737384f, -0.840153496829227f, 0.650796781936517f, 0.381065387870166f, 0.341870564586224f, -0.00174423702285131f, -0.216348832349188f, 0.678010477635713f, -0.748695103596683f, -0.819659325555269f, 0.620922373008647f, 0.471659250504894f, 0.417848292160984f, -0.990577315445198f, -0.509842007818877f, 0.705761459091187f, 0.723072116074702f, -0.606476484252158f, -0.871593699865195f, -0.662059658667501f, -0.207267692377271f, -0.274706370444270f, 0.317047325063391f, 0.329780707114887f, -0.966325651181920f, -0.666131009799803f, 0.118609206658210f, 0.232960448350140f, -0.139134616436389f, -0.936412642687343f, -0.554985387484625f, -0.609914445911143f, -0.371023087262482f, -0.461044793696911f, 0.0277553171809701f, -0.241589304772568f, -0.990769995548029f, 0.114245771600061f, -0.924483328431436f, 0.237901450206836f, -0.615461633242452f, 0.201497106528945f, -0.599898812620374f, 0.982389910778332f, 0.125701388874024f, -0.892749115498369f, 0.513592673006880f, 0.229316745749793f, 0.422997355912517f, 0.150920221978738f, 0.447743452078441f, 0.366767059168664f, -0.605741985891581f, 0.274905013892524f, -0.861378867171578f, -0.731508622159258f, 0.171187057183023f, 0.250833501952177f, -0.609814068526718f, -0.639397597618127f, -0.712497631420166f, -0.539831932321101f, -0.962361328901384f, 0.799060001548069f, 0.618582550608426f, -0.603865594092701f, -0.750840334759883f, -0.432368099184739f, -0.581021252111797f, 0.134711953024238f, 0.331863889421602f, -0.172907726656169f, -0.435358718118896f, -0.689326993725649f, 0.415840315809038f, -0.333576262820904f, 0.279343777676723f, -0.0393098862927832f, 0.00852090010085194f, -0.853705195692250f, 0.526006696633762f, -0.478653377052437f, -0.584840261391485f, 0.679261003071696f, 0.0367484618219474f, -0.616340335633997f, -0.912843423145420f, -0.221248732289686f, -0.477921890680232f, -0.127369625511666f, 0.865190146410824f, 0.817916456258544f, 0.445973590438029f, -0.621435280140991f, -0.584264056171687f, 0.718712277931876f, -0.337835985469843f, 0.00569064504159345f, -0.546546294846311f, 0.101653624648361f, -0.795498735829364f, -0.249043531299132f, -0.112839395737321f, -0.350305425122331f, -0.910866368205041f, 0.345503177966105f, -0.549306515692918f, 0.711774722622726f, 0.283368922297518f, 0.0401988801224620f, 0.269228967910704f, 0.408165826013612f, -0.306571373865680f, 0.937429053394878f, 0.992154362395068f, 0.679431847774404f, 0.660561953302554f, 0.903254489326130f, -0.939312119455540f, -0.211194531611303f, 0.401554296146757f, -0.0373187111351370f, -0.209143098987164f, -0.483955198209448f, -0.860858509666882f, 0.847006442151417f, 0.287950263267018f, 0.408253171937961f, -0.720812569529331f, 0.623305171273525f, 0.543495760078790f, -0.364025150023839f, -0.893335585394842f, -0.757545415624741f, -0.525417020183382f, -0.985814550271000f, -0.571551008375522f, 0.930716377819686f, -0.272863385293023f, 0.982334910750391f, 0.297868844366342f, 0.922428080219044f, 0.917194773824871f, 0.846964493212884f, 0.0641834146212110f, 0.279768184306094f, 0.591959126556958f, 0.355630573995206f, 0.839818707895839f, 0.219674727597944f, -0.174518904670883f, 0.708669864813752f, -0.224562931791369f, 0.677232454840133f, -0.904826802486527f, -0.627559033402838f, 0.263680517444611f, 0.121902314059156f, -0.704881790282995f, 0.242825089229032f, -0.309373554231866f, -0.479824461459095f, -0.720536286348018f, -0.460418173937526f, 0.774174710513849f, 0.452001499049874f, -0.316992092650694f, 0.153064869645527f, -0.209558599627989f, 0.685508351648252f, -0.508615450383790f, 0.598109567185095f, 0.391177475074196f, 0.964444988755186f, 0.336277292954506f, -0.0367817159101076f, -0.668752640081528f, 0.169621732437504f, -0.440925495294537f, 0.352359477392856f, 0.300517139597811f, 0.464188724292127f, 0.342732840629593f, -0.772028689116952f, 0.523987886508557f, 0.920723209445309f, 0.325634245623597f, 0.999728757965472f, -0.108202444213629f, -0.703463061246440f, -0.764321104361266f, 0.153478091277821f, 0.400776808520781f, 0.0362608595686520f, 0.602660289034871f, -0.00396673312072204f, 0.296881393918662f, 0.563978362789779f, 0.849699999703012f, 0.699481370949461f, -0.517318771826836f, 0.488696839410786f, -0.863267084031406f, 0.0353144039838211f, 0.346060763700543f, 0.964270355001567f, 0.354899825242107f, 0.806313705199543f, 0.675286452110240f, 0.0873918818789949f, -0.595319879813140f, 0.768247284622921f, 0.424433552458434f, -0.308023836359512f, 0.802163480612923f, -0.348151008192881f, -0.889061130591849f, -0.593277042719599f, -0.669426232128590f, 0.758542808803890f, 0.515943031751579f, -0.359688459650311f, 0.568175936707751f, 0.741304023515212f, 0.260283681057109f, 0.957668849401749f, -0.665096753421305f, 0.769229664798946f, -0.0871019488695104f, -0.362662093346394f, -0.411439775739547f, 0.700347493632751f, 0.593221225653487f, 0.712841887456470f, 0.413663813878195f, -0.868002281057698f, -0.704419248587642f, 0.497097875881516f, -0.00234623694758684f, 0.690202361192435f, -0.850266199595343f, 0.315244026446767f, 0.709124123964306f, 0.438047076925768f, 0.798239617424585f, 0.330853072912708f, 0.581059745965701f, 0.449755612947191f, -0.462738032798907f, 0.607731925865227f, 0.0898348455002427f, -0.762827831849901f, 0.895598896497952f, -0.752254194382105f, -0.0916186048978613f, -0.906243795607547f, 0.229263971313788f, 0.401148319671400f, -0.699999035942240f, 0.949897297168705f, 0.442965954562621f, -0.836602533575693f, 0.960460356865877f, -0.588638958628591f, -0.826876652501322f, 0.358883606332526f, 0.963216314331105f, -0.932992215875777f, -0.790078242370583f, 0.402080896170037f, -0.0768348888017805f, 0.728030138891631f, -0.259252300581205f, -0.239039520569651f, -0.0343187629251645f, -0.500656851699075f, 0.213230170834557f, -0.806162554023268f, -0.346741158269134f, 0.593197383681288f, -0.874207905790597f, 0.396896283395687f, -0.899758892162590f, 0.645625478431829f, 0.724064646901595f, 0.505831437483414f, -0.592809028527107f, 0.191058921738261f, 0.329699861086760f, 0.637747614705911f, 0.228492417185859f, 0.350565075483143f, 0.495645634191973f, 0.0378873636406241f, -0.558682871042752f, -0.0463515226573312f, -0.699882077624744f, -0.727701564368345f, -0.185876979038391f, 0.969357227041006f, -0.0396554302826258f, 0.994123321254905f, -0.103700411263859f, -0.122414150286554f, -0.952967253268750f, -0.310113557790019f, 0.389885130024049f, 0.698109781822753f, -0.566884614177461f, -0.807731715569885f, 0.295459359747620f, 0.353911434620388f, -0.0365360121873806f, -0.433710246410727f, -0.112374658849445f, -0.710362620548396f, -0.750188568899340f, -0.421921409270312f, -0.0946825033112555f, -0.207114343395422f, -0.712346704375406f, -0.762905208265238f, 0.668705185793373f, 0.874811836887758f, 0.734155331047614f, 0.0717699959166771f, -0.649642655211151f, 0.710177200600726f, -0.790892796708330f, -0.609051316139055f, 0.158155751049403f, 0.273837117392194f, 0.101461674737037f, -0.341978434311156f, 0.358741707078855f, 0.415990974906378f, 0.760270133083538f, 0.164383469371383f, 0.559847879549422f, 0.209104118141764f, -0.265721227148806f, 0.165407943936551f, 0.611035396421350f, -0.626230501208063f, -0.116714293310250f, -0.696697517286888f, 0.0545261414014888f, 0.440139257477096f, 0.202311640602444f, -0.369311356303593f, 0.901884565342531f, 0.256026357399272f, -0.673699547202088f, 0.108550667621349f, -0.961092940829968f, -0.254802826645023f, 0.553897912330318f, 0.110751075533042f, -0.587445414043347f, 0.786722059164009, 0.182042556749386f, 0.398835909383655f, 0.431324012457533f, 0.587021142157922f, -0.644072183989352f, 0.187430090296218f, 0.516741122998546f, -0.275250933267487f, -0.933673413249875f, -0.767709448823879f, 0.00345814033609182f, -0.585884382069128f, 0.463549040471035f, 0.666537178805293f, -0.393605927315148f, -0.260156573858491f, -0.298799291489529f, -0.246398415746503f, 0.970774181159203f, -0.485708631308223f, -0.456571313115555f, -0.264210030877189f, -0.442583504871362f, 0.0585567697312368f, 0.955769232723545f, 0.651822742221258f, 0.667605490119116f, -0.178564750516287f, 0.744464599638885f, -0.0962758978504710f, -0.538627454923738f, -0.844634654117462f, 0.109151162611125f, -0.862255427201396f, -0.478955305843323f, 0.645965860697344f, 0.345569271369828f, 0.930605011671297f, -0.195523686135506f, 0.927940875293964f, 0.0529927450986318f, -0.537243314646225f, 0.0815400161801159f, -0.528889663721737f, -0.0803965087898244f, 0.722188412643543f, -0.115173100460772f, 0.391581967064874f, 0.609102624309301f, -0.726409099849031f, -0.924071529212721f, -0.424370859730340f, -0.932399086010354f, -0.679903916227243f, 0.398593637781810f, -0.395942610474455f, 0.911017267923838f, 0.830660098751580f, 0.485689056693942f, -0.634874052918746f, 0.558342102044082f, 0.153345477027740f, -0.418797532948752f, -0.962412446404476f, 0.499334884055701f, 0.772755578982235f, 0.486905718186221f, -0.680415982465391f, -0.983589696155766f, 0.0802707365440833f, -0.108186099494932f, 0.272227706025405f, 0.651170828846750f, -0.804713753056757f, 0.778076504684911f, 0.869094633196957f, -0.213764089899489f, -0.289485853647921f, -0.248376169846176f, -0.273907386272412f, -0.272735585352615f, -0.851779302143109f, 0.777935500545070f, 0.610526499062369f, -0.825926925832998f, -0.00122853287679647f, -0.250920102747366f, -0.0333860483260329f, 0.562878228390427f, 0.685359102189134f, 0.909722844787783f, -0.686791591637469f, 0.700018932525581f, -0.975597558640926f, 0.111273045778084f, 0.0313167229308478f, -0.185767397251192f, -0.587922465203314f, -0.569364866257444f, -0.433710470415537f, 0.744709870476354f, 0.812284989338678f, -0.835936210940005f, 0.409175739115410f, 0.364745324015946f, -0.526496413512530f, -0.0949041293633228f, -0.710914623019602f, -0.199035360261516f, 0.249903358254580f, 0.799197892184193f, -0.974131439735146f, -0.962913228246770f, -0.0584067290846062f, 0.0678080882131218f, 0.619989552612058f, 0.600692636138022f, -0.325324145536173f, 0.00758797937831957f, -0.133193608214778f, -0.312408219890363f, -0.0752971209304969f, 0.764751638735404f, 0.207290375565515f, -0.965680055629168f, 0.526346325957267f, 0.365879948128040f, -0.899713698342006f, 0.300806506284083f, 0.282047017067903f, -0.464418831301796f, -0.793644005532544f, -0.338781149582286f, 0.627059412508279f, -0.624056896643864f, -0.503708045945915f, 0.339203903916317f, -0.920899287490514f, -0.753331218450680f, -0.561190137775443f, 0.216431106588929f, -0.191601189620092f, 0.613179188721972f, 0.121381145781083f, -0.477139741951367f, 0.606347924649253f, 0.972409497819530f, 0.00419185232258634f, 0.786976564006247f, 0.716984027373809f, -0.577296880358192f, 0.336508364109364f, -0.837637061538727f, -0.706860533591818f, 0.655351330285695f, -0.799458036429467f, 0.804951754011505f, 0.405471126911303f, 0.485125485165526f, 0.0354103156047567f, 0.774748847269929f, 0.396581375869036f, 0.420464745452802f, -0.544531741676535f, -0.779088258182329f, -0.129534599431145f, 0.228882319223921f, 0.669504936432777f, -0.158954596495398f, -0.171927546721685f, 0.675107968066445f, -0.201470217862098f, -0.185894687796509f, 0.244174688826684f, 0.310288210346694f, -0.0674603586289346f, 0.138103839181198f, 0.269292861340219f, 0.121469813317732f, 0.168629748875041f, 0.581112629873687f, 0.499508530746584f, -0.741772433024897f, -0.311060071316150f, -0.263697352439521f, 0.180487383518774f, -0.800786488742242f, -0.949903966987338f, 0.134975524166410f, 0.213364683193138f, -0.684441197699222f, -0.254697287796379f, -0.260521050814253f, -0.757605554637199f, -0.134324873215927f, -0.699675596579060f, 0.136000646890289f, 0.355272520354523f, -0.712620797948690f, -0.729995036352282f, 0.323100037780915f, -0.718364487938777f, 0.807709622188084f, 0.289336059472722f, -0.558738026311145f, -0.591811756545896f, -0.894952978489225f, -0.354996929975694f, -0.142213103464027f, -0.651950180085633f, 0.182694586161578f, -0.193492058009904f, -0.540079537334588f, -0.300927433533712f, 0.119585035086049f, 0.895807833710939f, -0.413843745301811f, -0.209041322713332f, 0.808094803654324f, 0.0792829008489782f, 0.314806980452270f, 0.502591873175427f, -0.0474189387090473f, -0.407131047818007f, 0.797117088440354f, 0.902395237588928f, -0.783327055804990f, -0.591709085168646f, 0.628191184754911f, -0.454649879692076f, -0.588819444306752f, 0.250889716959370f, -0.582306627010669f, -0.145495766591841f, -0.634137346823528f, 0.667934845545285f, 0.873756470938530f, 0.425969845715827f, -0.779543910541245f, -0.265210219994391f, 0.781530681845886f, 0.304461599274577f, 0.211087853085430f, 0.281022407596766f, 0.0701313665097776f, 0.342337400087349f, -0.0618264046031387f, 0.177147380816613f, 0.751693209867024f, -0.279073264607508f, 0.740459307255654f, -0.352163564204507f, -0.726238685136937f, -0.565819729501492f, -0.779416133306559f, -0.783925450697670f, 0.542612245021260f, -0.810510148278478f, -0.693707081804938f, 0.918862988543900f, -0.368717045271828f, 0.0654919784331340f, -0.438514219239944f, -0.923935138084824f, 0.913316783811291f, -0.961646539574340f, 0.734888382653474f, -0.464102713631586f, -0.896154678819649f, 0.349856565392685f, 0.646610836502422f, -0.104378701809970f, 0.347319102015858f, -0.263947819351090f, 0.343722186197186f, 0.825747554146473f, 0.0661865525544676f, 0.918864908112419f, -0.999160312662909f, -0.904953244747070f, 0.246613032125664f, 0.123426960800262f, -0.294364203503845f, -0.150056966431615f, 0.904179479721301f, 0.517721252782648f, 0.661473373608678f, -0.784276966825964f, -0.984631287069650f, 0.239695484607744f, -0.499150590123099f, 0.00153518224500027f, -0.817955534401114f, 0.221240310713583f, 0.114442325207070f, -0.717650856748245f, -0.722902799253535f, -0.962998380704103f, 0.214092155997873f, -0.226370691123970f, 0.536806140446569f, 0.111745807092858f, 0.657580594136395f, -0.239950592200226f, 0.0981270621736083f, -0.173398466414235f, 0.414811672195735f, 0.147604904291238f, -0.649219724907210f, 0.907797399703411f, -0.496097071857490f, -0.0958082520749422f, -0.700618145301611f, 0.238049932994406f, 0.946616020659334f, 0.143538494511824f, 0.0641076718667677f, 0.377873848622552f, -0.413854028741624f, -0.838831021130186f, 0.0208044297354626f, 0.476712667979210f, 0.850908020233298f, 0.0692454021020814f, 0.841788714865238f, -0.251777041865926f, 0.512215668857165f, 0.827988589806208f, -0.399200428030715f, 0.999219950547600f, -0.00465542086542259f, 0.279790771964531f, -0.683125623289052f, 0.988128867315143f, 0.00697090775456410f, -0.409501680375786f, -0.190812202162744f, -0.154565639467601f, 0.305734586628079f, -0.922825484202279f, -0.0622811516391562f, -0.502492855870975f, 0.358550513844403f, 0.678271216185703f, -0.940222215291861f, 0.568581934651071f, 0.953835466578938f, -0.476569789986603f, 0.0141049472573418f, 0.722262461730185f, -0.128913572076972f, -0.583948340870808f, -0.254358587904773f, -0.390569309413304f, -0.0495119137883056f, -0.486356443935695f, -0.112768011009410f, -0.608763417511343f, -0.145843822867367f, 0.767829603838659f, 0.791239479733126f, 0.0208376062066382f, -0.524291005204912f, -0.200159553848628f, -0.835647719235620f, -0.222774380961612f, 0.0617292533934060f, 0.233433696650208f, -0.543969878951657f, -0.628168009147650f, -0.725602523060817f, -0.273904472034828f, 0.320527317085229f, -0.556961185821848f, 0.261533413201255f, 0.696617398495973f, 0.200506775746016f, -0.395581923906907f, 0.0196423782530712f, -0.0552577396777472f, -0.594078139517501f, -0.816132673139052f, -0.898431571909616f, 0.879105843430143f, 0.949666380003024f, -0.245578843355682f, 0.528960018663897f, 0.201586039072583f, -0.651684706542954f, 0.596063456431086f, -0.659712784781056f, -0.213702651629353f, -0.629790163054887f, -0.0572029778771013f, 0.645291034768991f, -0.453266855343461f, -0.581253959024410f, 0.632682730071992f, 0.991406037765467f, 0.701390336150136f, -0.879037255220971f, -0.304180069776406f, 0.0969095808767941f, -0.465682778651712f, 0.815108046274786f, -0.532850846043973f, 0.950550134670033f, 0.296008118726089f, -0.198390447541329f, 0.159049143352201f, 0.105169964332594f, -0.482506131358523f, 0.493753482281684f, 0.292058685647414f, 0.283730532860951f, 0.00323819209092657f, 0.765838273699203f, -0.0753176377562099f, -0.679824808630431f, 0.548180003463159f, -0.996048798712591f, 0.782768288046545f, 0.396509190560532f, 0.848686742379558f, 0.750049741585178f, 0.730186188655936f, -0.0220701180542726f, -0.487618042364281f, -0.403562199756249f, -0.0693129490117646f, 0.947019452953246f, -0.731947366410442f, 0.198175872470120f, -0.329413252854837f, -0.641319161749268f, 0.186271826190842f, -0.0739989831663739f, -0.334046268448298f, -0.191676071751509f, -0.632573515889708f, -0.999115061914042f, -0.677989795015932f, 0.289828136337821f, 0.696081747094487f, 0.965765319961706f, -0.203649463803737f, -0.195384468978610f, 0.746979659338745f, 0.701651229142588f, -0.498361303522421f, 0.289120104962302f, 0.270493509228559f, -0.132329670835432f, 0.385545665843914f, -0.265371843427444f, 0.306155119003788f, -0.859790373316264f, -0.0198057838521546f, 0.233572324299025f, 0.426354273793125f, -0.510901479579029f, -0.600001464460011f, -0.972316846268671f, 0.531678082677910f, -0.0543913028234813f, -0.860333915321655f, 0.0717414549918496f, -0.992726205437930f, 0.587189647572868f, -0.710120198811545f, -0.712433353767817f, 0.000905613890617163f, 0.323638959833707f, -0.148002344942812f, 0.422217478090035f, -0.512122539396176f, -0.652032513920892f, -0.0749826795945674f, 0.689725543651565f, 0.00708142459169103f, 0.612282380092436f, -0.182868915402510f, -0.478704046524703f, 0.630078231167476f, -0.201694106935605f, 0.471080354222778f, 0.705764111397718f, 0.504296612895499f, -0.245442802115836f, -0.0255433216413170f, 0.244606720514349f, -0.620852691611321f, 0.130333792055452f, -0.0404066268217753f, 0.533698497858480f, 0.569324696850915f, -0.0208385747745345f, -0.344454279574176f, 0.697793551353488f, 0.223740789443046, 0.0819835387259940f, -0.378565059057637f, 0.265230570199009f, -0.654654047270763f, -0.959845479426107f, -0.524706200047066f, -0.320773238900823f, 0.133125806793072f, 0.204919719422386f, 0.781296208272529f, 0.357447172843949f, -0.295741363322007f, -0.531151992759176f, -0.928760461863525f, -0.492737999698919f, 0.185299312597934f, 0.0308933157463984f, 0.0940868629278078f, -0.223134180713975f, -0.728994909644464f, 0.748645378716214f, 0.602424843862873f, 0.939628558971957f, -0.601577015562304f, -0.178714119359324f, 0.812720866753088f, -0.864296642561293f, 0.448439532249340f, 0.423570043689909f, 0.883922405988390f, -0.121889129001415f, -0.0435604321758833f, -0.823641147317994f, -0.775345608718704f, -0.621149628042832f, 0.532395431283659f, -0.803045105215129f, 0.897460124955135f, 0.432615281777583f, -0.0245386640589920f, -0.822321626075771f, -0.992080038736755f, -0.829220327319793f, 0.125841786813822f, 0.277412627470833f, 0.623989234604340f, -0.207977347981346f, -0.666564975567417f, 0.419758053880881f, -0.146809205344117f, 0.702495819380827f, 0.802212477505035f, 0.161529115911938f, 0.987832568197053f, -0.885776673164970f, -0.608518024629661f, -0.126430573784758f, 0.168260422890915f, -0.517060428948049f, -0.766296586196077f, -0.827624510690858f, -0.149091785188351f, -0.643782325842734f, 0.768634567718711f, 0.815278279059715f, -0.648037361329720f, -0.480742843535214f, 0.983809287193308f, -0.701958358623791f, 0.0797427982273327f, 0.903943825454071f, 0.980486658260621f, 0.207436790541324f, -0.536781321571165f, -0.885473392956838f, -0.626744905152131f, 0.279917970592554f, -0.489532633799085f, 0.402084958261836f, -0.566738134593205f, -0.0990017532286025f, 0.458891753618823f, 0.893734110503312f, 0.541822126435773f, -0.856210577956263f, -0.0354679151809227f, -0.868531503535520f, 0.150589222911699f, 0.611651396802303f, 0.524911319413221f, 0.555472734209632f, -0.723626819813614f, -0.162106613127807f, 0.602405197560299f, 0.903198408993777f, 0.329150411562290f, -0.806468536757339f, -0.671787125844359f, -0.707262852044556f, 0.474934689940169f, -0.379636706541612f, 0.404933387269815f, 0.332303761521238f, 0.394233678536033f, -0.0366067593524413f, 0.904405677123363f, -0.356597686978725f, -0.623034135107067f, 0.572040316921149f, 0.799160684670195f, -0.507817199545094f, -0.533380730448667f, -0.884507921224020f, -0.00424735629746076f, 0.647537115339283f, 0.456309536956504f, -0.766102127867730f, -0.625121831714406f, 0.341487890703535f, -0.360549668352997f, -0.229900108098778f, -0.666760418812903f, 0.813282715359911f, 0.115522674116703f, -0.221360306077384f, 0.0297293679340875f, 0.00682810040637105f, 0.0115235719886584f, 0.887989949086462f, 0.792212187398941f, 0.415172771519484f, -0.600202208047434f, 0.949356119962045f, -0.526700730890731f, 0.946712583567682f, -0.392771116330410f, 0.0144823046999243f, -0.649518061223406f, 0.724776068810104f, 0.00920735790862981f, -0.461670796134611f, 0.217703889787716f, 0.846151165623083f, -0.202702970245097f, 0.314177560430781f, -0.761102867343919f, 0.0528399640076420f, -0.986438508940994f, -0.595548022863232f, -0.430067198426456f, 0.150038004203120f, 0.738795383589380f, -0.605707072657181f, -0.597976219376529f, 0.375792542283657f, -0.321042914446039f, 0.902243988712398f, 0.463286578609220f, -0.739643422607773f, 0.210980536147575f, -0.539210294582617f, 0.405318056313257f, -0.876865698043818f, -0.0883135270940518f, 0.0300580586347285f, -0.657955040210154f, 0.159261648552234f, 0.288659459148804f, 0.274488527537659f, 0.646615145281349f, 0.431532024055095f, -0.982045186676854f, -0.777285361097106f, -0.124875006659614f, 0.503004910525253f, 0.824987340852061f, -0.859357943951028f, -0.894837450578304f, 0.744772864540654f, 0.415263521487854f, 0.337833126081168f, -0.612498979721313f, 0.391475686177086f, 0.573982630935632f, -0.391044576636065f, 0.669493459114130f, -0.763807443372196f, -0.898924075896803f, -0.969897663976237f, -0.266947396046322f, 0.198506503481333f, -0.355803387868922f, 0.787375525807664f, 0.655019979695179f, -0.266247398074148f, -0.665577607941915f, 0.0617617780742654f, -0.303207459096743f, 0.807119242186051f, -0.864431193732911f, 0.711808914065391f, 0.267969697417500f, -0.643939259651104f, -0.723685356192067f, 0.887757759160107f, -0.318420101532538f, -0.984559057628900f, -0.123118506428834f, 0.264872379685241f, 0.258477870902406f, -0.727462993670953f, -0.223845786938221f, 0.683462211502638f, -0.989811504909606f, 0.292644294487220f, -0.926087081411227f, -0.801377664261936f, -0.337757621052903f, 0.356167431525877f, 0.974619379699180f, 0.456124311183874f, 0.664192098344107f, -0.910993234571633f, -0.484097468631090f, -0.128534589958108f, -0.770879324529314f, 0.320053414246682f, 0.249818479771296f, 0.0153345543766990f, 0.696352481669035f, -0.397719804512483f, 0.670333638147646f, -0.678192291329959f, 0.190143924397131f, 0.342035884244954f, -0.350791038317704f, 0.0218450632953668f, 0.437133719806156f, 0.659960895652910f, 0.903378806323159f, 0.855089775229062f, 0.946706092624795f, 0.335540975081955f, 0.838337968455111f, -0.102693592034237f, -0.702102376052106f, 0.409624309223486f, -0.654483499569910f, 0.886576641430416f, -0.200573725141884f, -0.461284656727627f, 0.262661770963709f, 0.867505406245483f, -0.0688648080253220f, -0.707487995489326f, -0.248871627068848f, -0.197869870234198f, -0.243745607075197f, -0.244106806741608f, 0.489848112299788f, -0.0909708869175492f, -0.377678949786167f, 0.0385783576998284f, -0.470361956031595f, 0.802403491439449f, -0.408319987166305f, 0.345170991986463f, -0.433455880962420f, 0.00950587287655291f, -0.441888155900165f, -0.817874450719479f, 0.818308133775667f, 0.931915253798354f, 0.818494801634479f, 0.787941704188320f, 0.882012210451449f, 0.0749985961399193f, 0.259772455233352f, -0.655786948552735f, 0.0824323575519799f, 0.980211564632039f, -0.798619050684746f, 0.496019643929772f, -0.727312997781404f, -0.999839600489443f, 0.625938920414345f, -0.561059012154101f, 0.215650518505246f, 0.121571798563274f, 0.161863493108371f, -0.340322748036792f, 0.521792371708641f, 0.655248389359818f, -0.180967013066484f, 0.936797969156762f, 0.523749660366580f, 0.764744126333943f, 0.384701560810431f, -0.744092118301334f, 0.719721922905938f, 0.365931545158250f, -0.720202871171563f, 0.121662048491076f, -0.355501954289222f, 0.379420491208481f, -0.593818415223405f, -0.433690576121147f, -0.766763563509045f, -0.377445104709670f, -0.955638620720410f, 0.309622585052195f, -0.613767678153186f, 0.0177719922394908f, 0.362917537485277f, -0.297613292472489f, 0.0275561832152067f, -0.962345352767599f, 0.452866577068408f, -0.307485159523065f, 0.931778412136845f, 0.639592220588070f, 0.00782144244951311f, -0.0466407334447796f, -0.134392603781566f, 0.895314655361308f, -0.537785271016286f, 0.663926391064792f, -0.886126633268266f, -0.0975129470189278f, -0.429791706025144f, -0.440337831994928f, -0.00156267573188829f, 0.933113069253665f, -0.560704402651437f, -0.201658150324907f, 0.465819560354530f, 0.0701448781871696f, 0.859597672251104f, -0.525851890358272f, -0.992674038068357f, -0.0846761339576128f, -0.401686794568758f, -0.886069686075370f, -0.480254412625133f, 0.432758053902000f, 0.168651590377605f, -0.453397134906684f, 0.340250287733381f, -0.972972507965963f, 0.0560333167197302f, -0.180812774382952f, -0.689848943619717f, -0.427945332505659f, 0.771841237806370f, 0.329334772795521f, 0.573083591606505f, 0.280711890938316f, -0.265074342340277f, -0.166538165045598f, -0.0612128221482104f, 0.458392746490372f, 0.199475931235870f, 0.681819191997175f, 0.356837960840067f, 0.756968760265553f, 0.763288512531608f, -0.890082643508294f, -0.322752448111365f, 0.799445915816577f, -0.956403501496524f, 0.723055987751969f, 0.943900989848643f, -0.217092255585658f, -0.426893469064855f, 0.834596828462842f, 0.723793256883097f, 0.781491391875921f, 0.928040296363564f, -0.468095417622644f, 0.758584798435784f, 0.589732897992602f, 0.929077658343636f, 0.829643041135239f, 0.0947252609994522f, 0.554884923338572f, -0.513740258764285f, -0.221798194292427f, 0.499855133319165f, -0.0237986912033636f, 0.559618648100625f, -0.509812142428963f, -0.444047241791607f, 0.678274420898738f, -0.983706185790147f, -0.295400077545522f, -0.688769625375228f, 0.729259863393412f, 0.889478872450658f, 0.928277502215167f, -0.429388564745762f, -0.790568684428380f, 0.930220908227667f, -0.796970618648576f, -0.980240003047008f, 0.0372716153521411f, -0.290828043433527f, -0.303854123029680f, 0.160774056645456f, -0.712081432630280f, 0.390787025293754f, 0.981202442873064f, -0.679439021090013f, 0.183053153027806f, 0.665002789261745f, -0.708708782620398f, 0.254574948166343f, 0.0575397183305137f, -0.723713533137924f, -0.732816726186887f, 0.501983534740534f, 0.879998734527489f, 0.825871571001792f, 0.920880943816000f, 0.311565022703289f, -0.788226302840017f, -0.223197800016568f, 0.850662847422425f, -0.365181128095578f, 0.958907951854379f, -0.0421327708909884f, -0.153860389403659f, -0.219620959578892f, -0.469076971423126f, -0.523348925540362f, -0.287762354299832f, -0.913332930679763f, 0.403264134926789f, 0.725849051303960f, 0.743650157693605f, -0.382580349065687f, -0.297138545454038f, -0.480092092629432f, 0.0412697614821378f, -0.396203822475830f, -0.0721078217568973f, 0.979038611510460f, -0.766187876085830f, -0.344262922592081f, 0.943351952071948f, -0.219460259008486f, 0.115393587800227f, -0.342675526066015f, 0.926460460401492f, -0.486133445041596f, 0.0722019534490863f, -0.571069005453629f, -0.0854568609959852f, 0.370182934471805f, -0.554007448618166f, 0.899885956615126f, -0.188476209845590f, -0.548132066932086f, 0.0559544259937872f, -0.161750926638529f, -0.532342080900202f, 0.585205009957713f, -0.374876171959848f, -0.169253952741901f, -0.473665572804341f, 0.942267543457416f, -0.515867520277168f, -0.706362509002908f, -0.320672724679343f, -0.398410016134417f, 0.733774712982205f, 0.449599271169282f, 0.109119420842892f, -0.285090495549516f, 0.0854116107702212f, 0.0603189331827261f, -0.943780826189008f, 0.0679186452322331f, 0.0975973769951632f, -0.870728474197789f, -0.153122881744074f, -0.519939625069588f, -0.633620207951748f, -0.767551214057718f, -0.905802311420298f, -0.841350087901049f, -0.271805404203346f, 0.282221543099561f, -0.0874121080198842f, 0.0634591013505281f, 0.318965595714934f, -0.865047622711268f, -0.401960840475322f, 0.637557181177199f, -0.664578054110050f, -0.871253510227744, -0.893972634695541f, 0.442396058421524f, -0.427901040556135f, -0.740186385510743f, 0.788155411447006f, -0.541278113339818f, 0.509586521956676f, -0.461159620800394f, 0.664671981848839f, 0.880365181842209f, -0.0831685214800200f, 0.952827020902887f, 0.183226454466898f, -0.176729350626920f, 0.851946105206441f, -0.361976142339276f, 0.357209010683668f, 0.982462882042961f, -0.690757734204635f, 0.178681657923363f, -0.0804395784672956f, 0.971787623805611f, 0.875217157810758f, 0.160844021450331f, -0.359951755747351f, 0.0178495935461525f, 0.0203610854761294f, 0.413933338290502f, -0.676038601090005f, -0.111093077131977f, -0.381792206260952f, -0.459903351782575f, 0.308522841938619f, 0.324961267942541f, 0.365201262605939f, 0.732543185546895f, -0.559558093250200f, 0.848266528378337f, -0.185546299813159f, 0.997052205707190f, -0.932554828383249f, -0.106322273904826f, -0.0690562674587807f, 0.919489002936141f, 0.137210930163322f, -0.664517238270193f, -0.985856844408119f, -0.0719443995256963f, -0.602400574547167f, -0.398979518518077f, -0.581117055144305f, -0.0626081333075188f, -0.0372763806643306f, -0.688808592854889f, 0.703980953746103f, -0.480647539644480f, 0.615510592326288f, -0.940226159289884f, -0.953483236094818f, -0.300312284206625f, -0.819419230573751f, 0.657560634657022f, -0.0500336389233971f, 0.628589817614501f, 0.717012803783103f, -0.0315450822394920f, -0.445526173532186f, 0.521475917548504f, -0.479539088650145f, 0.695075897089419f, -0.0365115706205694f, 0.0256264409967832f, -0.0121306374106025f, -0.817618774100623f, 0.375407640753000f, 0.944299492219378f, -0.717119961760812f, -0.120740746804286f, 0.995225399986245f, -0.460846026818625f, 0.904552069467540f, 0.807270804870602f, -0.842962924665094f, -0.923108139392625f, -0.130295037856512f, 0.760624035683226f, 0.986419847047289f, -0.959218334866074f, -0.203345611185410f, -0.474420035241129f, -0.872329912560413f, 0.485994152094788f, -0.515456811755484f, -0.948541161235413f, 0.509659433909651f, 0.783030335970347f, -4.41004028146619e-05f, -0.664795573083349f, 0.917509788523214f, -0.824045573084530f, -0.461857767121051f, -0.667434409929092f, -0.00822974230444418f, 0.825606347148302f, -0.396378080991589f, 0.0161379983198293f, -0.940751675506308f, -0.520997013834332f, -0.239727035024153f, -0.354546027474561f, 0.430652211989940f, -0.557416557692462f, -0.357117274957257f, -0.891975448321656f, -0.0775302131779423f, 0.716775563686830f, -0.903453980341467f, 0.946455001410598f, -0.615060907661003f, 0.964288374469340f, 0.0506144897273089f, 0.720601612869967f, -0.991323837622476f, 0.647403093538608f, -0.400304988135589f, -0.883732066109751f, -0.792060477777513f, 0.710867542231890f, -0.840766000234525f, 0.460362174479788f, -0.834771343071341f, -0.329399142231491f, -0.139853203297018f, -0.760035442359396f, -0.546795911275364f, -0.598172518777125f, 0.244198671304740f, 0.0816980976432087f, -0.978470883754859f, -0.425173722072458f, -0.469868865988971f, 0.847396146045236f, 0.0513388454446360f, -0.545662072513986f, -0.130534232821355f, -0.654100097045099f, 0.0409163969999120f, 0.573001152600502f, 0.706046270983569f, 0.587208280138624f, 0.237670099964068f, 0.848355476872244f, -0.318971649676775f, -0.659343733364940f, 0.321817022392701f, -0.595779268050966f, -0.114109784140171f, 0.998897482902424f, -0.615792624357560f, -0.384232465470235f, 0.156963634764123f, 0.499645454164798f, -0.627603624482829f, 0.169440948996654f, 0.109888994819522f, -0.492231461622548f, -0.463014567947703f, 0.825436145613203f, -0.0271223123229367f, 0.497887971992266f, 0.811868354230459f, -0.192668816770168f, 0.287930938097264f, 0.0283112173817568f, 0.791359470942568f, 0.365100854153897f, -0.566922537281877f, 0.915510517906894f, 0.674211624006981f, 0.505848146007678f, 0.509348889158374f, -0.0477364348461706f, 0.409703628204478f, -0.820970358007873f, -0.565377675052345f, 0.810052924776160f, -0.448904038826591f, -0.830251135876445f, -0.660589978662428f, -0.890196028167542f, 0.130526506200048f, 0.924600157422957f, 0.587215078998604f, 0.727552064386916f, -0.224172021948978f, -0.182984019951690f, 0.308546229024235f, 0.971188035736775f, 0.0229902398155457f, 0.0608728749867729f, -0.0712317776940203f, 0.549832674352445f, -0.600015690750697f, -0.0495103483291919f, -0.564669458296125f, 0.726873201108802f, -0.197851942682556f, -0.983422510445155f, -0.905314463127421f, 0.453289030588920f, 0.792504915504518f, -0.840826310621539f, 0.0979339624518987f, -0.506416975007688f, -0.143310751135128f, -0.451251909709310f, -0.356156486602212f, -0.430777119656356f, -0.593002001098269f, -0.212505135257792f, -0.378005313269430f, 0.516460778234704f, -0.574171750919822f, -0.702870049350445f, 0.190454765104412f, 0.694962035659523f, 0.177498499962424f, -0.00126954773922439f, -0.766110586126502f, -0.769862303237397f, -0.208905136673906f, 0.0728026097773338f, -0.467480087700933f, -0.368839893652514f, -0.608806955889496f, -0.531329879815774f, 0.411920547737697f, -0.407318902586407f, 0.922406353838750f, -0.0272310683929855f, 0.781051179942937f, 0.860271807949640f, -0.703736733439623f, -0.285650334863399f, -0.466904334435873f, -0.716816768536707f, 0.0869377378786880f, -0.280331892461309f, 0.773946156883160f, -0.139856444064730f, 0.575680110908147f, -0.887887626173303f, 0.314286545048942f, 0.673119170729964f, 0.520399233930039f, 0.581347801663144f, 0.731708017815653f, 0.672583525027818f, -0.0534590776637494f, -0.880572908687369f, 0.171150522778545f, -0.377041265530122f, -0.478003213002057f, 0.458602883802583f, 0.836824527658741f, -0.0686622680764437f, -0.301000630566919f, -0.652562984155554f, 0.604631263268903f, 0.791770979838877f, 0.0790491584346489f, 0.812646960034949f, 0.138794042671596f, 0.709411730079774f, 0.226484869016811f, 0.797388098554019f, -0.162225991160828f, -0.0295749256270541f, 0.218242165083417f, 0.442845427695148f, -0.480622209857766f, 0.873464432574125f, -0.868017543466245f, -0.435489784247438f, 0.0589001507244313f, 0.829134536020168f, 0.614063504046069f, -0.0498036542372153f, -0.803122689381969f, -0.495207870035615f, -0.126836582496751f, -0.0715271574335641f, -0.600815700055194f, 0.434993547671690f, -0.891665893518364f, 0.515259516482513f, 0.475325173737397f, -0.716548558025405f, -0.881097306400870f, 0.738462585443836f, -0.244486212870867f, -0.750368936394211f, 0.303496411011494f, -0.602701428305057f, -0.400346153635480f, -0.300002744969481f, -0.518552440201900f, 0.437964598712580f, -0.816689813412280f, -0.814392666138757f, -0.888568091915377f, 0.449416911306476f, -0.231889259488176f, 0.589775175288682f, 0.817224890217553f, 0.518646001325967f, -0.406046689874425f, -0.822100925750380f, 0.0528571826460145f, 0.502410576690672f, -0.795964394123106f, 0.0587614583641718f, -0.960750994569408f, 0.0366871534513058f, 0.723018804498087f, 0.0607565140068052f, 0.337380735516841f, 0.810682513202583f, -0.636743814403438f, 0.287171363373943f, -0.651998050401509f, -0.913606366413836f, 0.642186273694795f, -0.197674788034638f, -0.261253290776174f, 0.696450222503413f, -0.178859131737947f, -0.388167582041093f, -0.0593965887764258f, -0.638517356081890f, 0.804955770174156f, 0.220726627737384f, 0.263712659676167f, -0.214285245576410f, -0.267640297291737f, -0.268009369634837f, -0.957726158424482f, 0.708674977585603f, 0.336764494287156f, -0.985742981232916f, -0.883053422617300f, 0.560301189759340f, -0.692967747323003f, 0.977419052658484f, 0.0749830817523358f, 0.916618822945019f, 0.941660769630849f, 0.454145712080114f, 0.176036352526593f, 0.103229925297037f, 0.936507745325933f, -0.870159095287666f, -0.106465234217744f, 0.684178938709319f, 0.669775326656340f, -0.620857222834950f, 0.939074959093680f, -0.592224920792423f, 0.620706594809134f, 0.0456831422421473f, 0.738727999152789f, -0.751090911501446f, 0.683669216540363f, 0.153825621938168f, -0.255671723273688f, -0.773772764499189f, -0.667753952059522f, 0.887641972124558f, -0.664358118222428f, 0.512196622998674f, -0.0234362604874272f, 0.942878420215240f, -0.406617487191566f, -0.140379594627198f, -0.0587253931185765f, 0.419570878799757f, 0.533674656399007f, 0.108777047479414f, -0.695880604462579f, 0.481525582104998f, 0.511165135231064f, 0.136105196996658f, -0.481918536916982f, 0.757546893769363f, 0.957648176032083f, -0.908743619686586f, -0.395640537583668f, 0.0493439519763970f, 0.293569612893396f, 0.387420368421925f, 0.0928482742403196f, 0.407302666835821f, -0.787979245337637f, -0.968269218296593f, -0.409517247978962f, 0.775076200793689f, -0.217738166217447f, -0.370002483875998f, -0.570975789421316f, 0.844070553036478f, 0.668620483679341f, 0.00139813137293987f, -0.0912495442122028f, -0.0375370940595317f, 0.723007849224616f, 0.369999774115317f, 0.862240371150479f, 0.749525689790910f, 0.742992309993137f, -0.495813719545874f, -0.101947508108870f, -0.152536889610560f, 0.0598123624723883f, -0.436496899502871f, 0.520026918467263f, 0.241005798945400f, 0.970456690492966f, -0.376417224463442f, 0.614223236672359f, 0.336733945081746f, 0.376602027190701f, 0.00373987228923456f, -0.415425448787442f, 0.330560415319813f, -0.277250467297048f, 0.861008806111330f, -0.00655914035278493f, 0.810375656135324f, -0.0113631690466840f, -0.191699616402287f, -0.808952204107388f, 0.813180054552450f, 0.472985418265257f, 0.180147510998781f, -0.262580568975063f, 0.211152909221457f, -0.882514639604489f, -0.575589191561861f, 0.106927561961233f, 0.964591320892138f, 0.738192954342001f, 0.687649298588472f, -0.229142519883570f, -0.354434619656716f, -0.420522788056562f, 0.684638470896597f, -0.608080686160634f, 0.172668231197353f, 0.571295073068563f, -0.202258974457565f, 0.183035733721930f, -0.425589835248751f, -0.181955831301366f, 0.798193178080558f, -0.719799491928433f, -0.376418218727565f, 0.100370714244854f, -0.674685331738723f, -0.528950922374114f, 0.480443520097694f, 0.432497368954013f, 0.887439714903326f, 0.598241701759478f, -0.250064970303242f, -0.743111010477448f, 0.936189907099845f, -0.867383557331633f, 0.852536175309851f, -0.426378707286007f, 0.793838638663137f, 0.856262917294594f, 0.734157059815547f, 0.00452009494051664f, -0.884258713402709f, -0.0835595438259760f, -0.735457210599502f, -0.710727075357488f, 0.858050351034768f, -0.626070522205317f, -0.848201957131499f, 0.0180933910837406f, -0.0350884878366737f, -0.893836321618480f, -0.0682788306189803f, -0.539993219329871f, -0.557660404374917f, 0.268969847256868f, 0.505363999910409f, -0.0464757944714727f, -0.529689906951922, -0.138445378586710f, 0.992531054118938f, 0.974585450054910f, 0.940349645687053f, 0.648085319100986f, -0.410736404028701f, 0.804131759246012f, -0.774897101314247f, 0.178246382655493f, -0.361699623232501f, -0.836093509684016f, 0.806309487627613f, -0.758182371322663f, 0.718410035716663f, -0.213136487421868f, -0.0563465521625497f, 0.0411192849612654f, -0.532497330327019f, -0.0419839515250475f, 0.769432068229678f, 0.253556234192255f, -0.745131216530268f, -0.890639235422577f, -0.140643637034330f, 0.318127074868768f, -0.497415632768561f, -0.383508820416842f, -0.468783454456628f, -0.289531078129000f, -0.0831555730758713f, 0.0107128404847427f, -0.567754537918270f, 0.926366772604370f, -0.600154724486768f, -0.0920759547805206f, 0.889582307602381f, -0.0710437157605615f, -0.182724716112986f, 0.228135065644420f, 0.851015495602628f, 0.653035806598961f, -0.986676404958677f, -0.871714951288816f, -0.824734086356281f, -0.490239304888267f, 0.244318295619814f, -0.923794688606381f, 0.670566388343457f, 0.849438492633058f, -0.225318912425116f, 0.461075616917687f, 0.656436404012820f, -0.416403369651597f, 0.205630417444150f, -0.163509095777762f, -0.0670299490212758f, -0.315561491397908f, -0.0952855008191476f, -0.377993693497066f, 0.860172853824826f, -0.669622978211317f, 0.595058880455053f, -0.425661849490015f, -0.0405359106780283f, 0.129968697438974f, -0.156244199842099f, 0.996996665434629f, -0.888570357356090f, -0.925646614993414f, -0.753998082238076f, 0.714491335460749f, -0.307849905639463f, 0.536274323586448f, -0.462944722411129f, 0.622202376598447f, -0.215582012734053f, -0.115115003363232f, 0.128168110175570f, -0.556263623663708f, 0.921813264386344f, -0.288173574121268f, -0.175054002159610f, 0.0621862747516269f, -0.468862899314091f, 0.976184545317535f, 0.468469061953779f, 0.679394669665911f, -0.0651943232114096f, 0.872740953203360f, -0.917720162541254f, 0.271535917769933f, 0.265441861283112f, 0.542190484993772f, -0.0208550501604048f, 0.983272473294640f, -0.522164666401537f, 0.833823680455458f, 0.414337644113416f, 0.588576354535126f, 0.318369292694380f, 0.870442561030567f, -0.422722224743553f, -0.200185003922166f, -0.770185495487048f, -0.878134057034045f, -0.712873198675798f, 0.647706512601268f, 0.593648188899773f, 0.126171748161942f, -0.189622212946038f, 0.707877641788638f, 0.790070498218410f, 0.698576567863428f, 0.594748885238005f, 0.567439045931572f, -0.591839707769224f, -0.632709967090349f, 0.415471238430617f, 0.115403276784208f, -0.375797954748234f, 0.123611001678020f, -0.864109581464288f, 0.115346512920739f, -0.515581940111704f, 0.880606114362175f, 0.356011740142007f, -0.318112820131587f, 0.765766689783476f, -0.226772670084743f, 0.442067390135885f, 0.348547568069751f, 0.862154389627291f, -0.894863284060244f, 0.475714942110286f, 0.552377629980789f, -0.0838875341374268f, -0.227654706745770f, 0.0998522598030438f, 0.870812229993830f, -0.518250234958224f, -0.0635791579471283f, -0.284101882205902f, -0.454751668241269f, 0.720773434493943f, 0.0756117818245317f, -0.0572317848090118f, -0.692584830354208f, 0.776250173796276f, 0.514052484701885f, 0.00770839936587864f, 0.775668871262837f, 0.933055956393907f, 0.0501713700022097f, -0.922194089981246f, 0.266653852930886f, -0.408584553416038f, 0.797066793752635f, -0.785570848747099f, 0.931403610887599f, 0.660859952465710f, -0.630963871875185f, -0.673000673345695f, 0.518897255252506f, -0.342041914345720f, 0.405613809903414f, -0.373516504843492f, -0.208292396009356f, 0.0510871025610438f, 0.396765368381847f, 0.00537609874241829f, 0.935717099427788f, -0.564801066383885f, -0.907523685862547f, 0.670551481631625f, -0.457309616171932f, 0.364001526470449f, 0.140805524345232f, -0.349945327329409f, -0.0361532758624807f, -0.304268551311720f, 0.618482952755668f, -0.0120110524971313f, 0.106364353621731f, -0.427587198043230f, 0.464249033810121f, -0.808297048471569f, 0.675277128303038f, -0.0663762607268352f, -0.431951364170808f, 0.953951718476660f, -0.725934553905574f, -0.685163723789561f, 0.164132617720945f, 0.934798872032034f, -0.695343627424553f, -0.420317401094920f, -0.689247558220342f, -0.605894279765940f, -0.693832779320227f, 0.455037128281788f, 0.968645000038447f, -0.0839147410947130f, 0.603463489419899f, 0.776913738299999f, -0.491560292499776f, 0.692235227850848f, 0.0824017593921889f, 0.459024952691847f, -0.918050509352710f, -0.777463066447746f, -0.161045596440278f, 0.982603547894360f, 0.700884888820475f, 0.998304481713913f, -0.362488733430088f, 0.171493948866881f, 0.565871153533442f, -0.965620428705067f, -0.835532968802398f, 0.885598629033760f, 0.609604257914327f, 0.725300244775050f, 0.153524048564152f, -0.662541112390878f, 0.912145212201290f, 0.135610445338421f, -0.0813934125800109f, 0.242209063597546f, -0.264886126609115f, -0.335070345839122f, 0.823958964903978f, -0.313110855907701f, -0.354068037633970f, -0.0381190024996405f, 0.117794735211134f, -0.604442743379238f, 0.524930955656444f, -0.754959642694882f, -0.359151666678207f, -0.247910739722172f, 0.573570999369016f, 0.543167570010806f, -0.718553346110069f, 0.202415372555816f, -0.860091438569300f, -0.0125446132328610f, 0.509348782140749f, 0.349261188228469f, 0.424395913611831f, 0.0557092265870811f, 0.740276822496471f, 0.479158001215769f, -0.221873518706244f, -0.744883456979009f, 0.393114117430743f, -0.733203119089531f, -0.506531269498885f, -0.505532097672033f, -0.509440981371663f, 0.666118722468113f, 0.0164067375520756f, -0.530276655546078f, 0.786338654343788f, -0.985008085364936f, 0.479988836226036f, -0.233652481382475f, 0.838641098910395f, -0.407379719374768f, -0.314266358910263f, -0.938033692224531f, -0.627320971378707f, -0.229174127295511f, 0.642505983671691f, -0.387855473250297f, 0.360324209821339f, -0.900766206699468f, 0.176676285751262f, 0.833894117554548f, -0.0207873177403817f, -0.202625183820044f, 0.706644325019314f, -0.817922707040537f, -0.242742059004419f, 0.282109349674866f, 0.0164603911954744f, -0.504625902855950f, 0.0415496120997125f, -0.787777778295785f, 0.362588721999523f, -0.371357162843751f, -0.818375262182416f, 0.727779997467707f, -0.836502839702384f, 0.0423869176265037f, -0.283934686546853f, 0.665864224978728f, -0.0428162304637920f, 0.243534621880753f, -0.803789304599586f, 0.570866852088607f, 0.340615579467880f, -0.323456502239327f, 0.403242371952148f, -0.0679158901587793f, -0.866985651416456f, -0.439873628406335f, -0.246357367033863f, 0.436234859832243f, 0.560714706225535f, -0.632564381913014f, -0.316451076258298f, -0.977122780282003f, 0.0741405862954117f, -0.217862250253606f, 0.887093089232476f, -0.418281865182365f, -0.638553415535034f, -0.262631979211197f, -0.567499176465252f, 0.676178859605923f, 0.933551699581608f, -0.0139735129263516f, -0.610719575803582f, 0.565123751720690f, 0.230672823422021f, 0.323935439339366f, 0.635142215896104f, 0.981184609133698f, 0.883668802319366f, -0.281281673616891f, 0.583204242495555f, 0.150854689098149f, -0.775890223139644f, 0.419951701513177f, -0.565767744791652f, -0.855232478054420f, 0.472188579901153f, -0.501463211798228f, 0.727960518524943f, 0.977187851385321f, 0.908113737694915f, -0.570200931535418f, 0.716036980035073f, 0.147838037485588f, 0.218820342222622f, -0.0673193461152677f, 0.433612519652386f, 0.449601736390411f, 0.556458722303960f, 0.417345590820787f, -0.783345413347895f, 0.858903187230710f, 0.178354025272247f, -0.130619018471658f, 0.858282827806003f, 0.508916167873459f, 0.139535936201634f, 0.240400109521332f, -0.102942705407161f, 0.841682417072375f, -0.696350979494975f, -0.793644449061670f, -0.698273636720141f, -0.228676865074326f, -0.195917865828574f, -0.306483109792438f, -0.865320326812636f, 0.659185969805107f, -0.368847387975239f, 0.337343722359231f, 0.0723822170210744f, 0.907475280998826f, 0.515168301614856f, 0.0790167120323961f, -0.756697420780699f, 0.966477562469936f, -0.663190129982788f, 0.145761851826854f, 0.376079225193173f, 0.631883071958707f, -0.956568110802436f, -0.735990864315730f, -0.795999578321461f, 0.958459465243432f, 0.319180429028702f, -0.907664654881857f, 0.992381284978014f, -0.511208110440365f, -0.714797966909523f, -0.717021870210999f, 0.545775837604423f, -0.0443828768329362f, 0.333311879948434f, 0.617237628406207f, -0.0895192882305207f, 0.506491005527430f, -0.354205929841282f, 0.777993157224477f, -0.667532693120319f, -0.105006112097613f, -0.337191911902220f, -0.337964429160738f, 0.609014812897482f, -0.368922911475613f, 0.889184378947484f, -0.676392242654630f, 0.429716870038086f, 0.916751115281822f, -0.655611878274175f, 0.538928395264007f, 0.382674384886170f, 0.0580742902089004f, -0.0124611362991478f, -0.0240388340005702f, -0.726296501832402f, -0.805701334732693f, 0.945344279474230f, -0.668066000378724f, 0.761436128738929f, -0.314275650172792f, -0.394331510439346f, 0.262887592668013f, 0.155064800148016f, -0.561829218656134f, -0.491542446753775f, 0.922248338472926f, 0.574575887413700f, 0.631722295929094f, -0.368854197209698f, 0.984780657580794f, 0.845286034922662f, -0.965631634115590f, -0.435710392440405f, -0.616488688868478f, 0.885865616625930f, 0.425733070487506f, 0.776721663555227f, -0.0652930284860209f, -0.734431875923792f, 0.725517937762654f, -0.474146253075108f, 0.895357779508529f, -0.0725048758018345f, -0.360185856190223f, 0.559350280666427f, 0.363695103660096f, 0.152231254765544f, 0.698196273442671f, 0.0518001104801953f, -0.139037096279713f, 0.340637636595997f, 0.584243998596814f, -0.442304329829130f, -0.501574294329747f, 0.250155103662225f, 0.320493999001502f, -0.150217982700108f, -0.0381390799255577f, 0.734760815545772f, -0.574574233376749f, 0.593440338163725f, 0.408049858247104f, -0.0845023181203484f, -0.855507806920297f, -0.473198309372409f, 0.331033392104072f, 0.196445364460658f, -0.799745050834061f, -0.973517526224363f, 0.333748727500822f, -0.772356831553232f, -0.430793038424357f, 0.649852557262489f, 0.504357958431509f, 0.779588082810134f, 0.0111847677569461f, -0.995526851285634f, -0.676007517368195f, 0.216774012875664f, -0.618928775636485f, -0.418043155155598f, -0.532063904545563f, -0.566979013994587f, 0.246319907266774f, 0.868651379198082f, -0.0433430896891542f, 0.463004686009427f, -0.162112430964754f, 0.285379745117090f, 0.901512987149549f, -0.706916206313139f, 0.685678130935725f, -0.673017501666538f, 0.0616272859909088f, 0.147532779463338f, -0.0108539826652629f, 0.960841184863269f, -0.950190006701182f, 0.992171414792924f, 0.715577145884581, 0.975908103138584f, -0.769014520827696f, -0.463212420186382f, -0.0761813427220397f, -0.704830850508594f, -0.220579724380686f, 0.840893269946637f, -0.432181989863148f, -0.956790418498701f, 0.122344784859397f, -0.242133592220528f, 0.908514497715246f, 0.303653521236872f, 0.756500828196849f, -0.752207807361831f, 0.367894642791072f, -0.702474131286247f, 0.189226989057138f, 0.401804209353236f, 0.608493473010907f, -0.437378101171900f, -0.158801297891213f, -0.381027984311046f, -0.949403985394057f, 0.370189685252539f, -0.872655295458655f, -0.337934909993878f, -0.0619622888328213f, 0.352094440420005f, 0.128759637109350f, 0.432413186229881f, -0.497474226759161f, 0.552933107875735f, 0.332665936587804f, -0.559261497212156f, -0.886188834336549f, 0.0170548801295034f, 0.192729852728271f, -0.674432365770129f, -0.526014722983374f, 0.425009223123802f, -0.186164676538888f, 0.190362042383007f, -0.0930204201587825f, 0.794188212052413f, -0.243549629178106f, 0.118970185744958f, -0.216230226310237f, 0.412570247218594f, 0.659556685538155f, -0.150540425515543f, -0.850858266540316f, -0.843827815842486f, 0.629298164439457f, 0.944304062363374f, -0.117764731240517f, 0.558568737697335f, 0.731745392387362f, -0.00413812760139165f, -0.251933493011685f, -0.473346352965658f, 0.178783613032362f, 0.547769344759580f, -0.414330113592064f, -0.550251453379012f, -0.925253680779905f, 0.623832825809309f, -0.494251081521428f, 0.0643361026845244f, 0.727107898350051f, 0.814864886916156f, 0.0177325632172460f, 0.749324691554934f, -0.266301024849295f, 0.675202550635588f, -0.0748462128620644f, -0.747853513216831f, -0.222563643557406f, -0.608884446788701f, -0.0374135649675464f, 0.852579123003940f, -0.585927920129879f, 0.604065857569210f, 0.573072924781108f, 0.816831955879520f, 0.723975232584095f, 0.367887024581694f, 0.765292601085641f, 0.836490699448589f, 0.623434131440044f, 0.743568762340577f, 0.140474444458222f, -0.746327891490507f, 0.700496422194197f, 0.549693846244016f, 0.729372970291116f, 0.728185563682229f, -0.614909046853182f, -0.756209631211223f, -0.530222413502955f, -0.312453162783936f, -0.752364704008701f, -0.634475515424180f, -0.133239439768175f, 0.252790153178337f, 0.760626105409900f, -0.838262213452153f, -0.266093046689486f, 0.549339088324875f, -0.278178592347115f, 0.190458706141960f, 0.906814275056971f, -0.579827980376046f, -0.134191470195968f, 0.244720998349483f, 0.795502128014338f, 0.287019836683889f, -0.906277889518234f, -0.817071933038363f, 0.613378274793081f, 0.518208081766432f, -0.388902790616382f, -0.785778461147273f, 0.574976429920521f, -0.283168065839246f, -0.857322381041868f, 0.424932015236353f, 0.919756642423073f, 0.412896759578072f, -0.976511020897041f, 0.157825653359643f, -0.0606591903280758f, 0.508438714729350f, -0.513115001652116f, 0.881391940997543f, -0.129708782033534f, 0.382462819411800f, -0.538751535594113f, 0.816770663497783f, 0.869013288394013f, -0.728381721932439f, -0.956736333819522f, -0.839107107637575f, 0.394821058517234f, 0.721983518815999f, -0.0847231453556103f, 0.0206545030491683f, 0.414707730497861f, 0.246591855656934f, -0.546187573590839f, -0.578957978692654f, 0.162844799084821f, 0.493731081270802f, -0.765815587549615f, 0.151613093585910f, -0.112883397239635f, 0.879319928900002f, 0.295375250614654f, -0.505370201033860f, -0.635319167339584f, -0.309818465920078f, 0.768627024018538f, -0.544374452091825f, 0.758974060573473f, -0.106050973670013f, 0.508616501970226f, -0.207224226211215f, 0.616842248601645f, 0.688381226662374f, 0.643728558619948f, -0.906982649598668f, 0.526262112978799f, -0.666644270400075f, 0.314806313630502f, -0.292000096972562f, -0.358353880616007f, 0.156344541906829f, 0.637606941586786f, -0.199572501073669f, -0.669369278061572f, 0.237513395315133f, -0.576741807179552f, 0.0750117203638310f, -0.633877533594996f, 0.829285089669934f, 0.622345234313277f, -0.892617583855908f, -0.280449892200797f, 0.241147361581176f, -0.0784016295955696f, 0.414945819313502f, 0.287238318044040f, -0.691458270387106f, 0.597656137422422f, 0.549022082569726f, -0.590776624040652f, 0.666740423918019f, -0.743115212424850f, 0.164036350785269f, -0.229427480781113f, 0.283602991107853f, -0.533993445778340f, 0.185806116700093f, -0.317953364055307f, 0.140412503708198f, 0.280706883979940f, 0.0439806827213221f, 0.176471515460512f, -0.614144204292693f, 0.314194083857125f, 0.519572839644130f, -0.850547081260782f, -0.515460990713008f, 0.353087995032390f, -0.0241014119925820f, 0.269453276643829f, -0.608515317887958f, -0.777818225534647f, -0.834277444316067f, -0.842707175235771f, -0.929547602540323f, -0.884691870945475f, 0.710591809809692f, 0.143423776629673f, 0.797136471728128f, 0.233311155245426f, -0.923169961754164f, 0.627911916101674f, -0.338187201367212f, 0.211044396110784f, -0.443699655795038f, 0.256593551969761f, -0.406688684034041f, 0.364900889856600f, 0.900530571350288f, -0.160476177153537f, 0.0634217008071056f, 0.709241599309354f, -0.789562037599596f, 0.00891621061029158f, 0.801674768895422f, -0.704378031949125f, 0.430576706378041f, 0.796937507044124f, -0.193348850174576f, -0.493924902919358f, -0.935781577118986f, 0.468142331108629f, 0.00965840085728753f, 0.0834398764999438f, 0.599712941235232f, -0.735675950275295f, 0.200152501800787f, -0.751603779675650f, 0.0697488403240092f, 0.300634243862625f, -0.901969784333300f, -0.958816237033024f, -0.754976119377363f, 0.719702182489622f, -0.338038642556184f, -0.703280944186943f, -0.579148694005994f, 0.556115731092296f, -0.920710928208685f, -0.278178108839470f, -0.793795308512285f, 0.916547680808212f, 0.419467216101691f, 0.177932177026735f, 0.682833725334600f, -0.926849803428705f, 0.179045225389745f, -0.209414969718359f, -0.889551871881532f, 0.961659420127890f, -0.250341627298645f, 0.105606170554974f, -0.547860346689080f, 0.845704098204057f, 0.886892635683680f, 0.768134466622042f, -0.954777823503721f, -0.718106389777233f, -0.580779231998609f, -0.0241800476518665f, 0.815063484178525f, -0.351971452344303f, 0.770369263680192f, 0.520886146470712f, -0.236456125482696f, 0.0900173391919312f, -0.00610611501589697f, 0.0986788038317752f, 0.277083194173223f, 0.0877085076786761f, 0.695814138412262f, 0.281021332783082f, -0.701468161850407f, -0.785496560046616f, -0.805623403379156f, -0.0524204125046179f, 0.0836418099696601f, 0.467252832788807f, 0.148967572323544f, 0.314141193557124f, -0.722297309069329f, 0.147068590429361f, -0.868307069306109f, 0.118712645744921f, 0.737896544941878f, 0.897526485681248f, 0.842207508585120f, 0.817408479766998f, 0.522315328909182f, -0.409136979179218f, 0.580654760034574f, -0.384701243761730f, -0.769398544059918f, -0.791317178699730f, 0.357020281620118f, -0.235410423267782f, -0.326332500533018f, -0.416891876268284f, -0.863029987000052f, 0.505171215727166f, -0.728709553380428f, 0.554546891580919f, 0.737429989077498f, -0.355088598334119f, 0.911987317939763f, 0.525846127625130f, 0.851549830104189f, -0.772303673276796f, 0.0421942169353806f, -0.521836640530782f, 0.995279650924240f, -0.186831960875832f, 0.421233670121556f, -0.0891583750230474f, 0.661100169663965f, 0.393809652414978f, 0.346165179707090f, 0.384203760628548f, -0.329281932973211f, 0.446133401546675f, -0.748200766224366f, -0.0275154142375615f, 0.771701580845288f, -0.0177829993094090f, 0.406813206251131f, 0.606021648140155f, 0.218435152341115f, 0.236571855064013f, -0.513495776515847f, 0.729086381137554f, -0.137775825035815f, 0.0320966747364262f, -0.313487802206023f, 0.105472520924239f, 0.423606700821375f, -0.231301628369264f, 0.465218832919270f, 0.379671652150568f, -0.00497780485272159f, 0.509290230688327f, 0.467240127182068f, 0.353587964503845f, 0.390455232684039f, 0.721536288927627f, -0.838922323815237f, 0.827628029266859f, 0.768844149796201f, -0.813963144642386f, -0.797054297232628f, -0.933039367361175f, -0.0723957249866136f, -0.664824147893300f, 0.695914840901794f, -0.206071660300270f, 0.879389414398409f, 0.181872681691416f, -0.582831210733033f, 0.624249199449935f, 0.204959730900228f, 0.354831594370532f, 0.337152636438178f, 0.596132114241829f, -0.295619496794481f, -0.443402055665686f, 0.743995051028396f, 0.543706744165365f, 0.825846155044062f, -0.764982315603181f, -0.0355223730700034f, -0.682467026736627f, -0.914037445162109f, -0.222823484413727f, 0.825323277024566f, 0.0769459194171547f, 0.696453968928934f, 0.760786120466962f, -0.525470048583831f, 0.764981036001869f, 0.458525204937000f, -0.612703584870878f, 0.626016142683351f, 0.284799326870320f, -0.130410894642153f, -0.730659587111424f, 0.0251896513929686f, 0.744421417725379f, 0.481278905427271f, -0.718686189713675f, -0.972110566787501f, -0.178005803066219f, -0.761536801353512f, 0.675177569459847f, -0.613068600254845f, -0.854757540148688f, 0.641823580903407f, 0.112536000301536f, 0.201235170163357f, -0.332623522893231f, 0.602028236317460f, 0.487529253813741f, -0.936537443253385f, 0.932862477850079f, -0.0977461167435834f, -0.485449569929182f, -0.575807340541437f, -0.920527242558033f, -0.938208754460503f, 0.890054000488493f, -0.154888511872567f, -0.106629818916523f, 0.323343252623500f, 0.105328135407289f, -0.837197492121459f, 0.497769113944639f, -0.234127101891878f, 0.840922493788059f, -0.994297350473539f, 0.241966031396186f, -0.241143860453769f, -0.598953146106117f, 0.839112451637864f, -0.639567866338402f, -0.219908091959649f, -0.778137266578287f, -0.201424793310289f, -0.486105622640452f, 0.874947034932591f, -0.131437343585340f, -0.674427373037920f, -0.161007203320351f, 0.215285933912207f, -0.963047650748652f, -0.841020847986178f, 0.259702280444602f, -0.165325097679823f, 0.572379756389254f, -0.435802768396928f, -0.0776125194906274f, -0.0293182206559168f, -0.847945015803839f, -0.576891917046364f, 0.728544652294888f, 0.110676857648527f, 0.760459056611184f, 0.486936926897001f, 0.680603035572503f, 0.330358411271561f, 0.901153157113818f, -0.893323547516767f, 0.268679990552354f, 0.794615743189695f, 0.221637368947158f, -0.0207579360252996f, -0.585634995914835f, 0.587646126395593f, -0.317780705107399f, 0.790321547328449f, 0.251610679655279f, -0.0386445267248654f, 0.881542790650722f, -0.469258891944944f, -0.900544881246558f, -0.344978220866601f, -0.271404539202745f, 0.863631450621357f, 0.805892242474368f, -0.325004362330199f, -0.649692260224921f, 0.535815472185538f, 0.427767946389023f, 0.924517987543855f, 0.571059970962007f, 0.549923246060706f, -0.639468249016352, 0.307213071097954f, -0.885892976847170f, -0.526002656640427f, 0.733743042788359f, 0.186919211020217f, 0.322167483598106f, -0.933484010727969f, 0.307181642341518f, -0.391959805653480f, -0.892298105797306f, 0.100065710151584f, -0.932962740784651f, -0.643536993204857f, 0.200747180046148f, 0.310831344540979f, -0.923416823619512f, 0.440768799148345f, -0.666930667413366f, -0.485487251971431f, -0.0627811951952384f, -0.331082293469460f, 0.0335811939608148f, -0.653610782697787f, -0.320586426505716f, 0.559163070852115f, -0.497363452770543f, -0.329886484503569f, -0.146612217140156f, -0.0265272745798242f, -0.288663397675155f, -0.996138396801714f, 0.705746028666908f, 0.634215549629091f, 0.165248482682243f, -0.110791752682943f, -0.0583711657160508f, 0.704663932851230f, 0.105987046073574f, -0.674234600022039f, -0.852792911043127f, 0.779458558047699f, -0.506163961277651f, 0.661431789813829f, 0.362986600662932f, 0.677673397902417f, 0.909704544299484f, -0.678129611146149f, -0.700854916363125f, -0.954905799366644f, 0.819329178422143f, -0.278866438326573f, 0.240572863896085f, -0.597973444252616f, 0.520707363092687f, -0.891796539359942f, -0.0707113684027092f, 0.730270237241197f, -0.202809887987925f, 0.712903235793333f, 0.815918058519912f, -0.619284883130692f, 0.620432327799984f, 0.215462902206797f, 0.913706499476201f, -0.284266999538807f, 0.137669223817851f, -0.320599930994154f, -0.279885143029947f, 0.0759863610502050f, 0.362519848337183f, 0.0897184432777523f, 0.730407126330006f, -0.715664883515070f, -0.964294244830797f, 0.337668374417089f, 0.563780948124681f, 0.534272089774928f, 0.670003495251274f, 0.976582736706313f, -0.576021162432801f, 0.318863740329612f, 0.374838616807691f, 0.437628782275460f, 0.629331465907672f, 0.800673318445353f, -0.964950925853698f, -0.115288102568929f, 0.581179798077059f, 0.892103220665649f, -0.224009831257430f, -0.486848659265476f, 0.768601825625188f, -0.478996958061453f, 0.987216084861456f, -0.00828256241998737f, 0.443388113322642f, -0.209225960405120f, 0.784392408672073f, -0.821157008960409f, 0.169088259578466f, 0.188648958653604f, 0.796321723736402f, 0.804915614204973f, -0.947435972579018f, -0.320368366702004f, -0.0857043727442930f, -0.229914128505395f, -0.802013870592427f, 0.497444368231634f, 0.791040716463223f, 0.586369970276563f, 0.871236424247704f, 0.770091868124107f, -0.458396647683594f, 0.871149873224889f, 0.753895449519495f, 0.295832468734546f, 0.574616471536691f, 0.384408809311353f, -0.978021020306570f, 0.0397482936794495f, 0.628095200786834f, -0.968059492217325f, -0.404306711220928f, 0.659301030460980f, -0.345766174675525f, -0.0517956907600681f, -0.640289082986305f, 0.965202733073502f, 0.909703156044274f, -0.744545066259015f, -0.676836498528477f, 0.0507393165493961f, 0.394673166210436f, 0.250366706754377f, -0.287411651947684f, -0.521760552601739f, 0.214487178617345f, -0.922260536787078f, -0.970217444063294f, -0.632705652784150f, -0.720016326822300f, -0.506393579710801f, 0.774172771450182f, 0.891546338793249f, 0.559706491124446f, -0.513481979527671f, 0.735727350850420f, -0.207760672132971f, 0.956672164225499f, -0.516696999265124f, -0.846015525317730f, -0.199370940530009f, 0.927580907007946f, 0.669786891276299f, -0.208316500739886f, -0.349932032863852f, 0.382722440637189f, -0.455635180187178f, -0.573852668753046f, 0.237990995216907f, -0.00210628303929439f, 0.846035951941252f, 0.921932267818374f, 0.141873820779935f, 0.871317167610738f, -0.632607355185838f, -0.565801401210940f, -0.959881482283947f, -0.732559764685905f, -0.655277252471118f, 0.136770193226314f, 0.206392768880907f, 0.0946932052352707f, -0.147722827344946f, 0.142504821799194f, -0.891443939735724f, -0.660161817562772f, -0.918683225740157f, 0.524851053279394f, -0.841532325411647f, -0.662931925252737f, 0.450018807591706f, 0.157794014139767f, -0.562525486647545f, 0.604051451992330f, 0.859220943805127f, 0.943321402026900f, 0.511188518123118f, -0.332990520726740f, 0.904709059147998f, -0.336911302156504f, -0.0329301811082998f, 0.307263624236174f, -0.640655394434152f, 0.791676792853669f, 0.450137270831791f, 0.746000232170803f, -0.915436267533878f, 0.976514418439799f, 0.828073391112522f, 0.990695018409237f, 0.419713963781614f, -0.286897378037841f, 0.111527193084439f, -0.956913449095442f, 0.263769440437253f, 0.534739246489713f, -0.918314908283506f, 0.680501951418845f, -0.0258330390798596f, -0.696521999550769f, 0.274590593565720f, -0.821334538131451f, 0.104139627465949f, -0.790104923997319f, 0.399265830301725f, 0.118854169469537f, 0.309552488812324f, -0.961100729890863f, -0.665645274594184f, -0.125767140532335f, 0.377154316156289f, -0.971986633153292f, -0.148225730575294f, -0.801072242848910f, 0.735673216754228f, 0.247753694178141f, 0.759093842520115f, -0.529946694334253f, 0.594235069164038f, -0.801015868726278f, 0.141962211231124f, 0.135473683510959f, -0.0431660672944612f, -0.437176231417910f, 0.467008031415084f, 0.324675317141816f, 0.122578305547357f, -0.0351479470228342f, -0.437236315511244f, -0.822621846670407f, 0.989461679354308f, -0.242059902390237f, 0.800837521050356f, -0.387832478851607f, 0.316362161826139f, 0.602440060427024f, 0.890992007298149f, 0.319686042477150f, 0.930326885903916f, -0.170779817104763f, -0.437602177375177f, 0.835764105962134f, 0.522922752459604f, 0.295156847627349f, -0.857646277751538f, -0.451421990712551f, 0.752856133268497f, -0.826193868550830f, -0.906961130052697f, 0.118621494342013f, -0.627099634988204f, 0.163256363060383f, -0.719362770410877f, -0.576563943780491f, -0.369939711177846f, -0.294180430088591f, 0.868430622614485f, 0.945955651201780f, -0.879259966782947f, 0.376142233233261f, -0.549019623646418f, -0.366403875933169f, -0.631308623984507f, -0.398270064613022f, 0.631780765950599f, -0.497821177556814f, -0.0754938097555216f, 0.358298259390762f, -0.438971283619577f, -0.835962846436280f, 0.771544885338102f, 0.132031497593111f, 0.0964144932127649f, -0.171144812197942f, 0.734241841669664f, 0.773828279651661f, 0.591442573315395f, 0.449840299498767f, -0.249196666141921f, 0.910274822633449f, -0.623687862912847f, -0.954398427932048f, 0.700975370671540f, -0.128268698036002f, 0.723971772247224f, -0.239872317271662f, 0.599101633280873f, 0.323504979356466f, 0.726076237951951f, 0.775013638477775f, -0.736157118505210f, 0.681129332563739f, -0.989456914597076f, -0.860559243921100f, -0.652547050354339f, 0.227533741410917f, 0.263244425371628f, -0.412800042549063f, -0.774547399227093f, 0.959749220773555f, 0.0285018454625012f, 0.0260964660594436f, -0.817249773797516f, -0.275510098931589f, -0.957071090655421f, 0.755874233806472f, 0.0601247360044190f, 0.155148678178749f, 0.744458452388040f, 0.206143083045583f, 0.405575258734775f, 0.591273066531951f, -0.286358679634110f, 0.168522523380964f, -0.0740663582251186f, 0.991796969736415f, 0.00304472789286958f, 0.0955103281360055f, 0.595292305224677f, -0.633460800851610f, 0.969720344590438f, -0.788939516987962f, -0.690852963213444f, -0.751849610482179f, -0.454105756229298f, 0.527652178438853f, -0.249156091787771f, -0.395486634371019f, -0.586329259469701f, 0.774216673365643f, 0.000796185912973479f, 0.753872935709907f, 0.691883261316931f, -0.599798140130743f, 0.140718954973018f, 0.400016581571111f, -0.412934563119652f, 0.782683275869451f, -0.837415681080234f, 0.503344297140354f, 0.443222186121185f, -0.869067764953740f, 0.891507832007671f, -0.258782538717313f, -0.592111951047753f, 0.542828422857983f, -0.959476625230936f, -0.373353196174649f, 0.558975637763876f, 0.848608638566440f, -0.861701716955403f, -0.937645215971517f, 0.0456695238513540f, -0.643462752057364f, -0.194887894642735f, 0.576940690214110f, -0.889414400002951f, -0.120401270393403f, 0.581976128201341f, -0.914549817300516f, 0.619675229253819f, -0.446355411157033f, -0.686510097388917f, 0.199022704414501f, 0.0679083509214176f, 0.939286059873160f, 0.919854436895475f, -0.921420499961796f, -0.933865152326639f, -0.173428453947994f, 0.0481843697148709f, 0.282408667923603f, 0.411093542307595f, 0.332739798472214f, -0.539048264159821f, -0.704491312083244f, -0.502163632960363f, 0.955228344617550f, 0.620064399129425f, -0.470222569036376f, 0.754614931250763f, -0.616308595262807f, -0.914574682979899f, 0.624066330640082f, 0.836911269770582f, 0.913639510454430f, 0.653228461676548f, -0.269928008555249f, 0.313006679186127f, 0.984676487220296f, -0.492012769698267f, 0.956868299674771f, 0.291679581317590f, 0.0391808383867289f, 0.572884371819903f, 0.0424011452585180f, 0.955486550514640f, -0.402317209279260f, -0.606465037288902f, 0.547296561663929f, -0.262634118959448f, -0.555413611714328f, -0.328781770154915f, 0.145794994289916f, 0.141260540582646f, -0.451655981927315f, 0.305553535897825f, 0.828724940454557f, 0.263943455052409f, -0.609183422737396f, 0.691170220321907f, -0.372701931956834f, 0.750237424665146f, -0.249353280856890f, 0.379870697565802f, 0.385751069018950f, -0.515117494253264f, 0.716937491491901f, 0.343749563024118f, -0.462962268225808f, -0.542579750084113f, 0.865163879545508f, 0.348358741505572f, -0.309602240547849f, -0.0504864877295679f, -0.822856269672862f, 0.199343960697129f, -0.790668167630170f, -0.0910655952543342f, -0.0243531696455832f, 0.832501734319368f, 0.604933598167068f, 0.899053047900036f, 0.270668041381131f, 0.523691409964688f, -0.0841567002292820f, -0.844392287920523f, -0.910987838261586f, -0.470654231510287f, -0.103828495683496f, 0.253788695977573f, -0.103172947809401f, -0.339896741661867f, -0.447251997825083f, 0.217200476817515f, -0.474840886373359f, 0.227876267254650f, -0.851351819181938f, -0.902078585170911f, 0.445464427415683f, -0.842484493463611f, -0.141606736723087f, 0.104224619207891f, -0.554900879859470f, 0.818556374444811f, -0.832710463532413f, -0.284760316465868f, 0.697962734672817f, 0.235137001970259f, 0.538298155374871f, -0.598477541924834f, -0.833959821954974f, -0.164556670763502f, -0.443902305525605f, 0.484290717235912f, 0.319356252041167f, 0.0834544406255109f, -0.839174383593280f, -0.514784811627172f, 0.466424623987191f, 0.597641402168886f, -0.344706573843316f, 0.346954604803744f, 0.150560726232471f, -0.963838773301094f, -0.210406119881130f, 0.740751216241446f, -0.519896828058978f, 0.882277568799242f, 0.982734995306564f, -0.691486807580351f, -0.120653164608028f, 0.263039860106709f, -0.472131671311566f, -0.469155525952548f, -0.562705921604020f, -0.737502946123759f, 0.151863404645485, -0.367233093688652f, 0.149585386378220f, -0.152980596399920f, 0.572826412281344f, -0.498718037086228f, -0.0794332639424211f, 0.659760386972575f, -0.574814983564964f, 0.451329484188896f, 0.473066930128670f, -0.135151886005125f, 0.379571405476121f, -0.308712078323501f, -0.136843563834117f, 0.395667583713552f, 0.196238140324408f, 0.588147058383512f, 0.770505301611929f, -0.865188840370228f, 0.266437694165002f, -0.428134513764013f, 0.661967260527446f, -0.752421375452379f, -0.556389852423621f, 0.424944298468302f, -0.480554454112605f, 0.916159659428765f, -0.112147362457396f, 0.363475545209813f, 0.698805683596358f, -0.862382341730295f, -0.489415523853276f, 0.453056404353730f, -0.606183761884457f, -0.00869682692408680f, -0.288739722701460f, 0.487988005841341f, 0.566870040344668f, 0.0894575138005909f, 0.887832293799319f, -0.0981274237649674f, -0.279935090781560f, 0.506891141525948f, 0.952901245338457f, 0.458002767525373f, -0.569410776125351f, 0.849518291873527f, -0.585020953514368f, 0.676037258640625f, 0.299076264841081f, 0.911385441491479f, -0.954959555659035f, -0.681285607891366f, 0.631368118385947f, 0.522268523899537f, 0.900701101674748f, -0.647701850365577f, 0.567960815808216f, -0.138958982219446f, 0.267024801687456f, -0.975771109955874f, 0.314682157086949f, -0.378801381286130f, 0.665990927256163f, -0.573674360032848f, -0.860450785684384f, 0.516581474078532f, -0.190844183471714f, -0.451971355445856f, -0.808113003973650f, 0.860446168028895f, 0.377778958059242f, 0.126949039950121f, -0.892203650250330f, 0.572503460980517f, 0.975224974978800f, -0.202312370945465f, 0.500665599343084f, -0.0510413720986291f, 0.353231752436633f, -0.805555931906752f, -0.199761377956955f, -0.829487282239605f, 0.0282459088867508f, 0.814545057118991f, 0.557652277921578f, 0.613951716518862f, -0.678811366342345f, 0.896500288318877f, -0.627622562398925f, 0.802545092571611f, 0.211382709497062f, -0.979380222642662f, 0.826784411456488f, -0.670689878657734f, 0.788878029765924f, 0.137070906151783f, 0.901907287859132f, -0.526217367070263f, -0.545043827128876f, 0.494756249972086f, 0.236657948774128f, 0.156603327087660f, 0.516397244064118f, -0.325837179590292f, 0.460683385171580f, -0.196022953760504f, -0.441996357332195f, -0.808932369852494f, 0.291980108741838f, -0.833583979826152f, 0.365574438479475f, -0.797139524158001f, -0.0649288183732912f, -0.000696491493834994f, 0.100125393693922f, 0.598035350719377f, -0.312548404453564f, 0.0414605409182345f, -0.675913083156432f, 0.236245026389435f, 0.550464243484224f, 0.193366907856750f, -0.903654015709839f, -0.00993172527377806f, 0.0180900754210873f, 0.880678290110106f, 0.166539520562349f, -0.984509466189118f, 0.810283124477894f, -0.925371921448173f, 0.193528916069728f, -0.748644561903135f, 0.534508666819454f, 0.364436869280188f, -0.386979667637943f, 0.427958998441480f, 0.362750270039032f, 0.420886957715891f, 0.0300301961707390f, -0.655220626875711f, 0.0504522662127427f, 0.472640818703213f, -0.417745816013639f, 0.0689992794158720f, 0.461232479061866f, -0.483517586427718f, -0.411463769964024f, 0.622740736364726f, 0.659687134578680f, 0.243900134982579f, -0.684356227282321f, -0.688699031115733f, -0.316032121634021f, -0.644296362948831f, -0.236133265458216f, 0.880259454885881f, -0.956880609581177f, 0.737775899964131f, -0.529059297472703f, 0.794119601436042f, -0.375698158660466f, 0.493447663117292f, -0.752511119115434f, -0.941143365329844f, 0.610101048864035f, 0.253791011658991f, -0.369994602049336f, -0.697364270085742f, -0.681360550250048f, -0.571943442128960f, -0.749697324128684f, 0.611997629275096f, 0.892727938106141f, -0.440225399106758f, 0.00196047981855352f, 0.951252158369648f, 0.0351885308766962f, -0.471806546113710f, -0.657231535594911f, -0.0873481442406481f, -0.0341288006282565f, 0.579184398564974f, -0.224334624306026f, -0.298557652719061f, -0.509401519638379f, 0.188853505083675f, -0.321619146497229f, -0.613159956450671f, 0.570042044631281f, 0.699213203307007f, 0.537439231469861f, 0.529440733283839f, -0.744527226912905f, 0.362949055807175f, 0.529758698714545f, -0.114804719889245f, 0.991089489396930f, -0.186716454683287f, -0.218189173574106f, -0.0493780858124198f, -0.928812411399224f, -0.101855573638590f, 0.454268528366586f, 0.617591620012079f, -0.197519518988231f, 0.0973277590468935f, -0.185672509894105f, 0.649922648337967f, -0.896862900376972f, 0.594999589349510f, -0.746978997769556f, 0.590642952628647f, 0.935109901616311f, -0.293310684054096f, 0.783281817912060f, -0.189898897214222f, 0.414859016240278f, -0.0858574647662298f, 0.0810260863380805f, -0.633024441577653f, 0.248442861097829f, 0.984586601784679f, 0.982811638387854f, 0.547456083836220f, 0.476239638753291f, -0.897709902882279f, -0.208045489357872f, -0.860637131636973f, -0.496740558564284f, -0.944185351410090f, 0.157610983944341f, 0.975214099838643f, 0.550265718083095f, -0.630360326400067f, 0.672420341653334f, -0.897139264107564f, -0.670556423663785f, 0.298764071000339f, -0.310465384759529f, -0.978153640586955f, 0.189785151994709f, 0.929291975296760f, 0.758271912876084f, 0.806829662560108f, -0.472787451147715f, -0.802032434276146f, 0.455809631085663f, 0.985520713417984f, 0.739637167649794f, 0.311705106454777f, -0.120539152808323f, 0.977785717545631f, -0.848554870988208f, -0.281179241544089f, 0.931102239520177f, -0.255243432382956f, -0.284952242030900f, -0.189341152192864f, 0.647573166562597f, -0.474203015584843f, -0.545915610099538f, 0.672696420688916f, -0.239274489717776f, 0.956544960216021f, -0.0858024073600807f, -0.758223415922611f, -0.00817763648068581f, -0.500893489164054f, -0.669386983409311f, -0.344450617815217f, -0.728051392792875f, 0.804121117816188f, 0.00718436691280910f, 0.195237363230272f, -0.472485206728796f, 0.642070241911164f, -0.272384993247314f, -0.731715323915071f, -0.791266589031733f, 0.0339783427570857f, 0.0696513783219659f, -0.894169486972683f, 0.00234016305501483f, -0.0403382685361653f, -0.943600572111266f, -0.788181603936192f, 0.851406365407377f, -0.100015982664501f, 0.145502229793638f, -0.528736628076536f, -0.0313760382570432f, -0.662221611141088f, -0.885722031379862f, -0.744257140212482f, 0.524976313116033f, 0.186092035304635f, 0.181669793648209f, -0.606482674165339f, 0.849303544554227f, 0.226118051135263f, -0.690025550727719f, -0.256543384397548f, -0.207714017766381f, -0.447913202664626f, 0.375270273897879f, -0.884312586292038f, -0.0838720085819762f, 0.969898436757285f, -0.736808033249456f, 0.668875150485586f, -0.599937439969920f, 0.470077288925414f, 0.903135367105719f, -0.895619185450694f, -0.637694108244489f, 0.572669535020987f, -0.696211470281632f, -0.820577518545193f, 0.937364674938455f, 0.422458818039761f, -0.593964370461091f, -0.586264791612426f, 0.0282373486927521f, 0.298051147134121f, 0.592825359583763f, 0.716195674857467f, -0.684008410968338f, -0.167523841045924f, -0.370794208549223f, 0.768054740581884f, 0.997835641681024f, -0.366262133888883f, -0.523114034556271f, -0.457946740456489f, -0.530941146838744f, 0.298744841822404f, 0.390761228562591f, 0.0871171594445448f, 0.764002674223649f, 0.233966808661423f, -0.116573523634048f, 0.426118986433559f, -0.255934695328716f, 0.302314199650152f, -0.254971729124577f, -0.330865677738578f, -0.0840307537517577f, -0.711910586170446f, 0.622585361690409f, 0.367595248366733f, 0.422102667722561f, 0.269580206097961f, 0.707083822001774f, 0.625367208198523f, -0.729594790471199f, 0.708679674727951f, 0.00355767003560614f, 0.379158300246371f, -0.688791438249760f, 0.261637457245975f, 0.704008781391790f, -0.917586017594177f, 0.886443038824615f, -0.923559496787343f, 0.360365726214756f, 0.547058288460181f, -0.279853192856989f, -0.996331953899586f, -0.323735921605962f, -0.618788277975037f, 0.314597206161166f, 0.106380963133907f, -0.235044228453968f, 0.0406899091091886f, 0.687339428801573f, 0.344837805924860f, 0.123214914005620f, -0.735264225932133f, 0.0396243248944774f, 0.270602083588730f, -0.316104623194235f, 0.201800731173529f, -0.348987679395254f, 0.994312100135549f, -0.986073454140000f, -0.787571177818193f, 0.508460947811657f, -0.443663972776222f, 0.800303477136838f, 0.712158443474503f, 0.958364684407633f, -0.0512343510942759f, -0.391095518504938f, -0.291911155637644f, 0.721770656984705f, -0.163541232110535f, 0.0366644501980513f, 0.700853097239887f, -0.508089885354834f, -0.375072588159867f, 0.161585369564288f, 0.686325557438797f, -0.113188612544717f, 0.859354598908873f, -0.723198679696606f, 0.398879124170303f, 0.139357627051752f, 0.484780500073663f, -0.0437501438537016f, -0.868783676783105f, -0.147865612288567f, -0.116480069295514f, -0.986846049950927f, -0.859405305954576f, -0.631359938031082f, -0.0310065270390489f, -0.288382201791710f, -0.500960878568203f, -0.805633068309090f, -0.837604329816134f, 0.0325253228618525f, -0.538953832190091f, 0.913844038280417f, 0.681967460199437f, -0.656775429658090f, 0.922492558885196f, -0.689527254640680f, 0.688263898240070f, -0.225450858342925f, 0.0287239965989763f, -0.407744573364816f, -0.477326718671529f, -0.780374037627418f, 0.500400378743065f, -0.532646941279704f, 0.999679272201893f, 0.136003002234441f, -0.811267727922649f, -0.585019862511894f, 0.125465493193590f, 0.203160759437510f, -0.101322607820275f, 0.543784310894398f, 0.630139383695983f, 0.775322422120693f, 0.229262447827729f, -0.656821799421711f, 0.795940998463793f, 0.263281283116320f, -0.377237794697631f, -0.714267543277316f, -0.161924029976839f, 0.804294011825499f, -0.500488029613262f, 0.716655543045374f, -0.709565530287520f, -0.260746944768714f, -0.496886497176178f, -0.896154699339640f, -0.891352204187934f, 0.0589172685048254f, -0.952496908556348f, -0.543314015084183f, 0.0724005345282401f, -0.132089156895576f, 0.694937364018361f, -0.884509342587775f, -0.944587795707932f, 0.346949362800262f, -0.587900264454839f, 0.531217960795664f, 0.404240620498887f, 0.182769547944683f, 0.804826966991636f, 0.601398794220406f, -0.767933817870427f, -0.329693990599177f, -0.880648189418561f, 0.0370834298504716f, -0.405270662847564f, -0.551993194163015f, 0.357335885219159f, -0.442910616174561f, -0.978355051725551f, -0.638907517841606f, 0.266841057307734f, 0.778698832906031f, -0.967180516636130f, -0.772940622039654f, -0.268706136695081f, -0.326082261974967f, 0.0386785617389067f, 0.576293286973562f, 0.446884000380730f, 0.396703264915684f, -0.718633572608705f, 0.586041202195072f, -0.791039546767268f, 0.556638124682382, 0.728711593864679f, -0.576551104247230f, 0.690227524206044f, 0.0451432373341216f, -0.0569690667958747f, 0.877674150343795f, -0.268602876493051f, -0.770720641807978f, 0.630269600593677f, 0.801702094819180f, 0.177071915997341f, -0.0764831522886398f, -0.476930347674815f, 0.0196833210809626f, -0.566188434097295f, 0.309890567123613f, -0.642682312350471f, -0.645839718540077f, -0.985031719881713f, 0.153028235575708f, -0.446724738384881f, -0.616280949001367f, -0.306418078463084f, 0.313048512921978f, 0.944732667717825f, -0.292311689238647f, 0.263616032352334f, 0.776777395064071f, -0.529182830991988f, -0.418996105801001f, 0.286960890623362f, 0.588336822287104f, 0.268219370126612f, -0.696727535489037f, 0.806089151192541f, 0.0396168299208206f, -0.613570658239778f, 0.358002315998429f, -0.0576147175733950f, -0.859664908314368f, 0.930793190364908f, -0.108955403960031f, 0.640347446939098f, 0.0301817512477458f, 0.508435547839785f, -0.774928250619894f, 0.254548271045827f, -0.192551571812315f, -0.401867317012389f, -0.136220787532581f, -0.480363308055205f, 0.146599399729624f, 0.225767301672040f, -0.207158678688912f, 0.763491487133281f, 0.161192803873192f, -0.574968151683314f, -0.454043408746924f, 0.427131132989065f, 0.170648543751820f, 0.0690597676805780f, 0.0360172652133248f, -0.244429817416531f, -0.973014074152018f, -0.172642279134011f, -0.798684796670922f, -0.622626145444778f, -0.743408670602069f, -0.316057396003030f, 0.908608689971065f, 0.948356574904685f, 0.573858539226522f, 0.457065605245418f, -0.246203048690671f, -0.750525340546383f, 0.612971646035183f, 0.951528788403619f, -0.529776510809815f, 0.0886901849846271f, -0.0254136796699882f, 0.978897595553096f, 0.293893753097695f, 0.620217642132267f, 0.862352989549627f, -0.379040515436326f, 0.790157871471479f, 0.147151952442201f, 0.688271487774812f, -0.897847532497188f, -0.0355337105008888f, -0.850253422176695f, -0.0354384862653523f, -0.625796807949394f, 0.851730076897135f, 0.294773618291289f, 0.834287219330433f, 0.0758749738551283f, 0.912613321307355f, -0.326698079590551f, -0.844748577890143f, -0.685263599922107f, -0.197029963909655f, 0.591416614029013f, -0.130921826828109f, -0.524292687689084f, 0.356220524225632f, -0.150091552835503f, -0.935232109847821f, -0.302103008478127f, -0.998557516519010f, -0.477012685701094f, -0.882343341754284f, 0.210797034143964f, -0.963566378978947f, -0.855600913755685f, -0.790231379847513f, -0.625235937382084f, 0.106405105589857f, -0.760544427202586f, 0.0103124858505332f, -0.610157345750845f, 0.968354521575116f, 0.602472069136318f, -0.216458111191680f, 0.935180184275450f, -0.369261245032360f, -0.289325139062185f, -0.772389696964545f, -0.345513639348744f, 0.135539262008296f, -0.747409495863324f, -0.849724942811800f, -0.739393030129744f, -0.0301380087411172f, 0.373808817820448f, 0.760444548005323f, -0.365739960428504f, 0.121859476627292f, -0.719257541809299f, -0.136914676340304f, -0.178479405732130f, -0.336676444507223f, -0.795056125367297f, -0.0872862684496700f, -0.950510559362909f, -0.395266512078238f, 0.636773305385949f, -0.150667208767723f, 0.534401287220298f, -0.349371424663528f, -0.784729313810243f, -0.0510904599006878f, -0.938702345462904f, 0.616929636007953f, -0.228578318449040f, 0.239101663221907f, 0.0390879233281141f, -0.294705782740043f, -0.847928516841798f, -0.0480433695823821f, 0.487351505367245f, -0.820736333448301f, 0.128692585024021f, -0.305133215914817f, 0.344900079505924f, -0.764316168982242f, 0.717529584295197f, 0.655848670831377f, 0.479849611138232f, -0.107624564628078f, -0.345816374073252f, 0.0822414215758816f, -0.0120870567528208f, 0.475870901669481f, -0.00594923432583361f, 0.869227669945672f, -0.262862047504512f, 0.272430399676396f, -0.734262318791166f, 0.980593493214018f, 0.110413869658192f, -0.732486564250777f, 0.470756873196238f, 0.897133387901917f, -0.151953973158384f, -0.591296220619271f, -0.113167158942796f, -0.103020520738423f, 0.220384226627647f, -0.0570027879342681f, 0.0923157145066511f, -0.523010309215342f, 0.385053964060568f, -0.223938668105458f, -0.0566497019068211f, 0.636390081595965f, -0.753651530578004f, -0.765450358896516f, 0.790370075460245f, 0.622949415286967f, -0.0947634056426396f, 0.122381201893998f, -0.138573523511105f, -0.544298107235542f, 0.535416341314523f, -0.341107295330707f, 0.266262786345860f, 0.620108481133049f, 0.190424987800150f, 0.978559599202704f, -0.925772919482004f, -0.300038300695816f, 0.963372836978511f, -0.501235224357981f, 0.828375446308031f, -0.595716120481773f, -0.889271354193173f, -0.389843123593065f, 0.659433696092409f, -0.633476165557619f, -0.708607689555741f, -0.737738480460783f, 0.985245299432648f, 0.976853985813928f, -0.863072444190232f, -0.785830171723126f, 0.309433061520758f, 0.166813366328975f, -0.552916412621405f, 0.0385101740167735f, 0.445866961855263f, 0.222557362424800f, 0.0710515871571971f, -0.368563489700928f, 0.317406114361191f, 0.326902000037272f, 0.868261309598320f, -0.897838476369198f, 0.664364291232529f, -0.373333343843574f, -0.599809263387549f, -0.411236387818613f, -0.118186587264933f, 0.544960929851182f, 0.395925813072269f, 0.337332244255533f, -0.0195528742963547f, -0.580383437020279f, 0.0779554182143842f, -0.902635825594202f, -0.821554429188969f, 0.869996816042779f, 0.646142135585380f, -0.0824693320525758f, 0.643317857725100f, -0.903892480205129f, -0.457595546004975f, 0.540461917564665f, -0.467530238695992f, 0.107497588388074f, -0.122360487746121f, -0.276968072230331f, -0.436413500733568f, 0.0719555518906898f, -0.794937479672675f, -0.641344733876686f, -0.934734152781945f, -0.0610463967348016f, -0.302623058375597f, 0.281116298309257f, 0.557459622053789f, -0.350054779110337f, 0.681853624031498f, -0.0454067482892435f, -0.897204174835461f, 0.0289327275291300f, 0.664312739864751f, -0.368814604980581f, -0.576946854776660f, -0.187886132141311f, 0.424385580259236f, 0.257994303715228f, -0.567650112011742f, -0.0453371545575014f, -0.362909825264387f, 0.450095578912812f, -0.713870209574945f, -0.956583539581944f, -0.969891699048729f, -0.417755773448598f, -0.230738535348142f, -0.153353095644968f, 0.539368458440622f, 0.591116036659417f, 0.779095541288385f, -0.578525766017613f, -0.587777137316663f, -0.301051260910212f, -0.319655538885669f, -0.343495369437935f, 0.908167583226333f, 0.764220052027033f, 0.0536418758245909f, -0.0529753241803754f, 0.249066042857931f, -0.840152142252005f, -0.529971459254312f, -0.449462194610696f, 0.467144819001113f, -0.500103828192601f, -0.758390449663076f, 0.369740436821770f, 0.189153926151852f, -0.188283227959439f, -0.427563759945909f, -0.186773725840825f, -0.00989853573399446f, -0.783648829817413f, -0.626450875837851f, -0.328015817185970f, 0.760383401930071f, -0.00804531008117837f, -0.982799468341000f, 0.392730506677802f, 0.117799138097530f, 0.351088974844522f, -0.259750164530173f, 0.776495358243216f, -0.703059519879109f, -0.362866233240751f, -0.421345310205860f, -0.818968876330675f, 0.936887497269786f, 0.713300632813635f, 0.916608801523944f, -0.147818975792564f, 0.317064988534009f, 0.885779227314381f, -0.897706599297367f, 0.685423132064732f, 0.907830438936990f, 0.0636614655685575f, -0.423018627861747f, 0.411565657893159f, 0.911060408474647f, -0.617833142759668f, -0.709543522964145f, -0.817633731247023f, -0.252433983274424f, 0.160456393103956f, -0.160765428576997f, -0.622001061437904f, -0.470257555319641f, 0.790643274059634f, -0.648181378655916f, -0.828694900506363f, -0.0234091767546987f, -0.562865077760768f, 0.369299949506391f, -0.423850142805423f, 0.520699811923658f, -0.877662359466779f, -0.739844704434180f, 0.300520939787139f, 0.0655718600121620f, 0.970843358712180f, -0.634231195336845f, 0.324880041395596f, -0.479089635857354f, -0.196422753715449f, 0.568762754402869f, 0.699215376070842f, 0.445741923102597f, 0.679868900756090f, 0.107609859752086f, -0.980983474461865f, -0.788419140653730f, 0.0696289436185713f, 0.00330944186568516f, 0.392265626672398f, 0.803469542460994f, 0.131029913648810f, -0.845408454497170f, -0.754797811352229f, -0.824208086798235f, 0.510072775586974f, -0.809491727769575f, -0.0228491196350333f, 0.920014947791232f, 0.441066319826495f, 0.969846842038360f, -0.199024726691046f, 0.886564290041856f, 0.203997575245743f, 0.481547443573126f, -0.637742489331117f, 0.0664642070998316f, 0.109187062068770f, -0.952676759642045f, 0.309247049771982f, 0.880534651306060f, -0.269363005485603f, 0.280012695899358f, 0.853031642671923f, -0.216236966392235f, 0.903180305900435f, 0.837949615815047f, 0.748563816043584f, 0.266735542018788f, -0.685176037557414f, 0.505893787666761f, 0.977721983069541f, -0.667151469253569f, -0.451774081267849f, -0.385755850727233f, 0.681037251596535f, 0.550130384863457f, 0.704080312734731f, 0.519624533199220f, 0.789651392050294f, 0.176325856625025f, 0.684011432098839f, -0.469125761119035f, -0.841814129063957f, -0.901473334652527f, -0.117747872709914f, -0.608533033968273f, 0.199709646080986f, -0.349430401438670f, -0.435162733168206f, -0.368150014673779f, 0.699084004342174f, -0.446068942643995f, 0.197420740774886f, 0.524893584115327f, 0.706475758890142f, 0.912020785879679f, -0.820472223153770f, -0.334742316079635f, -0.851724976994477f, -0.702164662784812f, -0.649654462810552f, 0.411435475616403f, -0.0438368033650360f, 0.799231452421757f, 0.713371883779316f, 0.252437083518609f, -0.685658163265283f, 0.0734649179831324f, -0.400549431226783f, -0.415602545578540f, 0.233864615718965f, 0.828846528739923f, 0.606577491175688f, -0.266016048272811f, -0.619106744484090f, -0.690853262778644f, -0.503499724631377f, -0.409761822901473f, 0.0576293548519007f, 0.551582021066584f, 0.132631452787255f, -0.838228405334512f, -0.107475742619267f, -0.875306852866273f, -0.184700469068763f, -0.317074087896838f, -0.580912620700556f, 0.453916157844897f, 0.690470988649940f, 0.712835197480083f, 0.314786689622726f, 0.759835688452120f, -0.671090442836235f, -0.408277610289776f, -0.815988422173708f, 0.227854929660384f, -0.0482646895577266f, 0.968141192561708f, 0.373896367655818f, 0.820435826598941f, 0.817746838197885f, -0.0970819110331989f, 0.679170154451559f, -0.577986561676471f, -0.0523570914231941f, -0.776930151133931f, -0.560456597170701f, 0.927747720961181f, 0.0350177837302503f, 0.844938034137843f, 0.00849044473190053f, 0.325089161670337f, -0.851825175889265f, 0.835251667623832f, -0.266397917890485f, 0.108463887056499f, -0.817868888235156f, 0.590399913800720f, 0.699274619715208, 0.200782223352391f, -0.936155874445214f, 0.218471971175575f, -0.890402779861849f, 0.268496441855317f, 0.881231954583528f, 0.279360358017994f, -0.492400368838405f, -0.894376670076375f, 0.585129064098519f, 0.340135248071744f, 0.455880107692993f, -0.861081993524584f, -0.303321115935151f, -0.562781799622214f, -0.526041750296426f, 0.999581943964160f, 0.249814139040315f, -0.0537475603822974f, -0.845239239849439f, -0.874024176808607f, 0.997751771128387f, -0.861617607547820f, 0.671357923629889f, -0.687974310115279f, -0.969462039056016f, -0.448304961870341f, 0.713064428261850f, -0.00718668165564318f, -0.450608596544700f, -0.106059234376561f, -0.591961308554238f, 0.588633089685867f, -0.755341317752403f, -0.542715401462936f, 0.759199260356047f, 0.0297710796506234f, -0.997343196630657f, 0.574076752994254f, -0.696719940193256f, -0.852227517176613f, 0.906332566627663f, -0.171801252847090f, -0.925131151948528f, -0.0212194634560026f, -0.940316444070044f, 0.262965279952363f, 0.902198615594563f, -0.265057066430189f, 0.161983092277652f, 0.0181345459457500f, 0.467973650469608f, 0.857351800575040f, -0.889882538061811f, 0.728868283859490f, 0.671187732362764f, -0.296882575397444f, -0.793099233276668f, 0.335561922676737f, 0.0671874495572633f, -0.0857142329385701f, -0.352870876674233f, -0.119927139078065f, 0.814127111105761f, -0.323910302649634f, -0.313495077982818f, 0.0690526899468447f, 0.877155536890319f, 0.768040884649443f, 0.158910636324140f, -0.824414709871474f, 0.00718921022841235f, -0.868917281154898f, -0.564967532196669f, 0.206261416621150f, -0.0699574404456100f, -0.0547095858591442f, 0.811674902353136f, -0.562993920383635f, 0.441212008804309f, 0.917951119557396f, 0.915571961092301f, 0.0901952529553498f, 0.614118141118295f, 0.760473529905706f, -0.566505475760865f, 0.00880029006400429f, 0.975626259597421f, 0.370738159620831f, -0.0242162976348563f, 0.828887690189252f, -0.665240810020082f, 0.00123256686221063f, 0.184020074202841f, 0.829917510366750f, -0.447854906466885f, 0.529356328938248f, -0.995192699858126f, -0.843748622724646f, -0.422765372440245f, -0.386179414096638f, 0.206325400140261f, -0.369817591904938f, 0.266933785902425f, 0.892617584642659f, 0.740018647415220f, -0.481907279471296f, 0.248268418729551f, -0.382770749117505f, 0.974424303757207f, -0.879320252286332f, -0.0294961755317245f, 0.638693329623790f, -0.765127178629299f, -0.160881380476610f, -0.725001019123526f, 0.00294709357263234f, -0.701949969294570f, -0.708933381768328f, -0.463893635537772f, 0.476650147791524f, -0.206043208566879f, 0.223011684523516f, -0.258637160422673f, 0.206325908651728f, -0.432336904344548f, 0.921979975841259f, -0.944396630315761f, -0.00680582426415510f, 0.319263487872783f, -0.836389324192867f, 0.111532890274445f, -0.938142383682239f, -0.637288670131655f, -0.834211558255576f, 0.251969378874330f, -0.970874587083192f, 0.831662411079802f, -0.446568187924869f, -0.659109068071113f, -0.877869176622375f, -0.890670252448197f, 0.477602927742628f, 0.324737705007923f, -0.147513413112549f, -0.186594638422632f, -0.282864808082840f, 0.745093922271927f, 0.915500859154332f, 0.0421588655873384f, -0.483320910754088f, 0.00503734690385604f, 0.555792895688253f, 0.129412601050279f, -0.229347983583150f, -0.680101211823600f, -0.866063899229274f, 0.437769924839021f, 0.133958234316391f, 0.589233411145099f, -0.498053917701437f, 0.180863681584405f, 0.525955777469479f, -0.581250985307273f, -0.327934857804250f, 0.482381204171926f, -0.867703472610278f, 0.833733008515087f, -0.607761820334944f, -0.758512235503178f, 0.0380785706067470f, 0.719862150842292f, 0.651283470517919f, -0.614218162858801f, -0.239754124815405f, -0.733992057859951f, -0.422541764223845f, 0.951215428883086f, 0.882569470276544f, 0.937054481646402f, 0.184532408731968f, -0.104097666585483f, 0.693277433170057f, 0.800241936558839f, -0.998230532922071f, 0.259835639125661f, 0.562745639592536f, 0.220441127510705f, 0.313735993201991f, 0.330940415696351f, -0.602872424656300f, 0.841677792852844f, 0.749701489563795f, 0.266727039860087f, 0.696379094133993f, -0.430719144952456f, -0.276768289732264f, -0.0872580230244173f, -0.722033206227688f, -0.837309584159114f, -0.629739366225350f, -0.185692585028452f, -0.110619837317415f, 0.515881116042359f, -0.105875685978079f, -0.513700186568578f, 0.961245417898430f, 0.655513716233953f, -0.0921704793645632f, -0.694925472850399f, -0.872174817305748f, 0.0307133806779607f, 0.531120672076921f, 0.965271277398122f, -0.00974420246777163f, -0.497322783064087f, 0.693565685926388f, 0.546918707342947f, -0.230039497490898f, -0.316024461029338f, 0.684231559582941f, -0.306362794944468f, 0.861366189035942f, 0.378922635334764f, 0.259443877770437f, -0.838617128408830f, -0.205350631644011f, -0.139772960377519f, -0.192918167939180f, 0.602404904043886f, -0.537407583974730f, -0.877007125624351f, 0.361539942609439f, -0.732030207831016f, -0.488792995226420f, 0.612591017966442f, 0.567185560938756f, 0.195543595335781f, -0.428955670554558f, -0.666590144318038f, -0.702467396810860f, -0.894350832807439f, -0.0620405855731709f, -0.583114546325259f, -0.482155957064968f, 0.212152442925647f, 0.112603107288251f, 0.0683986906619714f, 0.639176340917929f, 0.642610005510521f, -0.708605273163374f, 0.739594669131005f, -0.492786220480274f, -0.308196102291547f, 0.918748221553053f, 0.186736140989674f, 0.438437026242591f, 0.638769573344929f, 0.928896220524135f, 0.579945520523175f, 0.218608554904045f, -0.526070140579576f, -0.140303420071590f, 0.304347769360423f, 0.488123173638490f, 0.987207018313181f, -0.536397951752998f, -0.553296120219359f, 0.184294880372153f, -0.101502970339396f, 0.287041514309517f, 0.658172721877726f, -0.270141883431914f, -0.0196021946303913f, 0.000779126872975988f, -0.0500294515684538f, -0.588505226599557f, 0.550916571982769f, 0.703271386531766f, 0.982335628009701f, 0.942133544852489f, 0.690741953320684f, 0.0466423349204477f, -0.941178278727504f, 0.121655023640973f, 0.777925151322362f, 0.132430336075323f, -0.114812120408198f, -0.694094073965245f, -0.441397675924967f, -0.187253074701348f, -0.672248118097589f, -0.688869123609503f, -0.0723581859661586f, 0.553779536791160f, 0.380610143087564f, -0.392032089052147f, -0.709403552653908f, -0.607184251637473f, 0.698227587629545f, -0.272885954851784f, 0.0736609147840435f, 0.687106303730018f, -0.230362931709251f, 0.393640839382244f, -0.846905732907407f, 0.0727598538725249f, -0.0119849190815611f, 0.470122652313157f, -0.171681529301612f, -0.329268850654460f, -0.433013841687086f, -0.943499527192280f, -0.123404693276305f, -0.0861435714812342f, -0.228816973160929f, 0.0531549757963279f, 0.901446101051298f, 0.470738280922993f, 0.238383552115632f, 0.292841887198914f, -0.617423653544601f, -0.865786115828523f, 0.586332203179351f, 0.267618252846898f, 0.888575002575769f, -0.0220649407038027f, -0.946385428026066f, 0.317436113017866f, -0.277195072909682f, -0.207326502081016f, 0.735387675940421f, 0.961386190882120f, -0.564038045970629f, 0.840007249305217f, -0.262593952346269f, -0.556378761937190f, -0.346529850864238f, 0.00895460576800877f, -0.695431082536551f, -0.105261635693881f, -0.658342101938401f, -0.631093613961188f, 0.601639903111316f, 0.886830692209879f, -0.600591324826329f, -0.350296019796741f, 0.294348102011741f, 0.555826495708193f, 0.216370653207427f, -0.672654026881445f, -0.572202359802723f, 0.202776438466314f, -0.490708964058038f, 0.0148723360197853f, -0.799031226692943f, -0.221164759306209f, 0.0323674121757880f, -0.130290693568615f, 0.613592603765503f, 0.372755498065474f, -0.540502917956863f, -0.740021877141017f, 0.652888612951242f, -0.666157898478327f, 0.476156241264794f, -0.632081251666311f, -0.538341981270842f, -0.275717185193560f, 0.332983363477103f, -0.989659450166330f, 0.212868816589688f, -0.238985653168422f, -0.453005976359810f, -0.805975530848911f, -0.948192632970312f, -0.291329963979224f, 0.549811667826684f, 0.291147979443248f, 0.909805561757383f, 0.0728533843443158f, 0.737767652888933f, 0.605331616290165f, 0.274826946403577f, 0.710517586349601f, 0.666670055891909f, 0.522059053677516f, -0.553398792071804f, -0.406610321679562f, -0.893232547853708f, 0.549587730399741f, 0.714498083720551f, 0.281833380830291f, 0.652788061587949f, 0.825163748516741f, 0.381299333971584f, -0.485549061474930f, -0.881961689917888f, 0.308937809723222f, -0.524542880617761f, 0.329114405956449f, 0.434631551667457f, -0.894732322264538f, -0.831528385961058f, 0.669760583803638f, -0.674650675537928f, -0.373119878846435f, 0.456602566684508f, 0.387804792569985f, -0.556983911869482f, 0.000826745899317194f, 0.687973801099889f, 0.0471935422816141f, 0.0768302380434509f, 0.317557055919800f, -0.823316513699125f, 0.394699119350099f, 0.609556161256400f, -0.0413041171293194f, -0.244100882405517f, -0.939678976894569f, 0.403390183804743f, -0.933567523933859f, -0.331149894636631f, -0.0265881324103010f, 0.224249195386459f, 0.888271870759308f, -0.119845268644579f, -0.357275416804345f, -0.597001288429956f, -0.486847206619720f, -0.181232488650601f, 0.115441291842326f, -0.599055795186955f, 0.213179364205327f, -0.205238322081458f, -0.373942142629613f, -0.610680997090469f, -0.495737765362772f, -0.257634306994249f, 0.583708320566486f, -0.372047136603982f, 0.953878668619925f, -0.632595987923462f, 0.452049761997455f, 0.166602807787896f, 0.773555002555059f, -0.277154387560832f, -0.557129156714301f, -0.985242402457283f, -0.441173064787937f, 0.561221765682284f, -0.352004972295446f, 0.970292440826449f, 0.855523836321424f, -0.528113079339624f, 0.685454746939680f, 0.322200261898966f, 0.953249967336372f, 0.825673980624808f, 0.177229970128320f, -0.728281956776614f, -0.479030792350269f, -0.00697019557862144f, 0.851652517094715f, 0.853865750362844f, 0.514736989335681f, -0.943509205199198f, -0.0524009027225623f, -0.0798997671509367f, -0.355414349557791f, -0.366273957594958f, -0.565729285138989f, -0.931573923976439f, 0.345119269147864f, 0.638375370217726f, 0.711524360229150f, 0.331664704859388f, -0.986788646426241f, 0.521200596781614f, 0.656290865944842f, -0.436907564088290f, 0.305075696150381f, -0.848337345127939f, 0.354044695448027f, 0.690691708552038f, 0.900352213238582f, 0.475181192463882f, 0.219103309687964f, 0.885437995493547f, 0.421455288320496f, -0.879874221804522f, 0.893371290952196f, -0.545214090169942f, 0.800731783168682f, 0.249421864783476f, 0.0766192343033301f, -0.745747520609971f, -0.613575150364454f, -0.700199720327423, 0.0694373671332735f, 0.759953164582251f, -0.0973030480378387f, -0.298615297250225f, 0.0176506580013247f, -0.269562553201540f, -0.405489169051539f, -0.00491991297033256f, -0.0327449030548885f, -0.688168836745951f, 0.703014457338754f, -0.0909491575673764f, 0.738417882180070f, 0.202377973915515f, 0.338436193625848f, -0.408790267504483f, 0.611776208408261f, -0.711043784659083f, 0.841495665411188f, -0.0445715899008592f, -0.127281559164749f, -0.778797832908623f, 0.210344625249896f, 0.287086540530447f, -0.703702357088620f, -0.151146112491418f, -0.785180444786487f, 0.427963227387140f, 0.873814130606035f, -0.344356753075357f, -0.755726746591465f, 0.846013365191461f, 0.126678120904524f, 0.166687962199295f, -0.148273386834835f, -0.770559345875477f, -0.999129219024862f, -0.223692721084046f, -0.652712854614213f, 0.468054498362978f, -0.911782175948953f, 0.555084850374905f, 0.103972972463380f, -0.414021910330282f, 0.938793897617340f, 0.515461292224815f, -0.127677414947037f, 0.510661477088580f, 0.898409443447962f, 0.528096097102698f, -0.444620870908750f, -0.275909952832928f, -0.516074838791812f, 0.110104492330694f, -0.293114842926621f, -0.596621371059734f, 0.152807456749103f, -0.592864305196648f, 0.948295231208874f, -0.575278847840010f, -0.312463646261757f, 0.664597237604897f, -0.177619554099550f, -0.932259652303036f, -0.295074750863924f, 0.731539128777660f, 0.860409131570119f, -0.0947206503071862f, 0.106073387018718f, -0.235389180430490f, -0.494787189603633f, -0.536357147973158f, -0.680862001049455f, 0.618979489665256f, 0.613893487415732f, -0.308605775713246f, 0.694789556987429f, -0.440049894326668f, 0.908690328690240f, 0.233612239829512f, -0.190662564463532f, -0.344799878911344f, -0.185877286582818f, -0.553543917790750f, -0.859543533414720f, -0.996044831818542f, 0.0388505104043095f, 0.650508591477642f, -0.425233346101631f, -0.576839967180874f, 0.378730359294024f, 0.531713629917424f, 0.506096660522796f, 0.854779196325727f, 0.725302682547051f, -0.414685510902716f, 0.654208477287561f, 0.580368151427426f, -0.000356066597174687f, -0.897393734991154f, -0.845565244312410f, 0.615044057364182f, 0.0434592638759266f, 0.342119048500289f, -0.696414680186901f, -0.713269554140146f, -0.580866925323696f, -0.290886355957456f, -0.473082507703548f, 0.517942229000179f, -0.846159512055215f, -0.715410253368047f, -0.526272663742330f, 0.114004124940380f, -0.207397773975621f, -0.920379649009572f, -0.277970833475531f, -0.636533427057722f, -0.972531734576472f, -0.687000156900366f, 0.872752357637196f, 0.617872391924648f, -0.835274231587444f, -0.383282792481497f, 0.399233665040770f, -0.191230601890140f, 0.620222785371960f, 0.106379326744619f, 0.987222511696630f, 0.219022023664391f, 0.179689082166371f, -0.961619514581522f, 0.570178582343486f, -0.811091514477978f, 0.924484469376845f, 0.744507591138529f, 0.272936430096096f, 0.0646316580619510f, 0.314005111302676f, 0.558833629327024f, -0.329744916784918f, -0.544045568909541f, 0.895769679770795f, 0.798125821580789f, 0.877473384028199f, 0.616163339432501f, 0.441057381106904f, -0.642498173762053f, 0.989059595616979f, -0.374771110304453f, 0.480877593471524f, 0.904941689893360f, 0.428742160807762f, -0.430483645585549f, 0.0830560957640680f, 0.694220841170708f, -0.602964792788891f, -0.522672782287498f, 0.717494777479591f, -0.918002255923909f, -0.454075191574169f, -0.378662039464110f, 0.221482629450150f, 0.750918040362614f, -0.636211037178780f, -0.254529141198887f, -0.944623201010144f, -0.720775773991847f, -0.674641067104323f, -0.208243950413264f, -0.959488786545901f, -0.619966503980330f, 0.599486634018692f, -0.0955439064236721f, -0.458181000169795f, 0.736914498713083f, -0.176789993854223f, 0.676652697410790f, -0.967275583857650f, 0.319377813603719f, -0.427030468653864f, 0.0670640089595258f, 0.769945699222976f, 0.767923203047440f, 0.985790354694142f, -0.207111795449682f, 0.219134401666738f, 0.548513609112215f, 0.977227384558063f, -0.198131173309759f, 0.914163808432723f, 0.178214485462450f, -0.240590252223318f, 0.356128697574950f, 0.453093488702627f, -0.0401152114159198f, 0.818060948361957f, -0.880551400213416f, 0.631519794065582f, 0.658832307703964f, -0.179752451562622f, -0.237844011105596f, 0.739834592198990f, 0.711355594921083f, 0.774856912009109f, 0.321864249971600f, 0.470574585274056f, 0.261964793641569f, -0.634481134262705f, 0.461363065389595f, 0.0879014163867016f, 0.698353456328335f, 0.0611830044908546f, 0.918599000791453f, -0.147822590771951f, -0.208296009525534f, 0.775436805889909f, 0.0380914463017457f, -0.954468558268744f, -0.620451283908529f, -0.770251739379244f, 0.772246778681563f, 0.326462458587915f, 0.417738473564738f, 0.0942643452092895f, 0.486153909005530f, -0.720202618855819f, 0.0172425211828453f, -0.460430186764708f, -0.582933725313246f, -0.439721219285309f, -0.694337374508112f, 0.493516461453915f, -0.993527345413430f, -0.562763570629586f, -0.0644937992008268f, 0.741476357523546f, -0.668588797988340f, 0.594184164979780f, -0.605220767543645f, 0.110074204567278f, -0.599398769115359f, 0.723882026196765f, 0.678747828159456f, -0.608589528492249f, -0.881419419882399f, -0.139357674240927f, 0.873828011683502f, 0.314798068434754f, -0.457017849147976f, -0.526003289738433f, -0.411404919696823f, -0.792254466556923f, -0.299635866135236f, 0.0102316480137963f, 0.161921266554201f, 0.981427028530907f, -0.647351555346480f, -0.183312260273700f, -0.348651484808239f, -0.198142718294920f, 0.589869434168343f, -0.201926511662287f, 0.0337896878721506f, -0.0276515055864679f, 0.236943449722327f, -0.473103622922213f, 0.954358213176107f, -0.536519478008862f, -0.603363977756898f, 0.776267386457251f, 0.780662223932714f, 0.289187291033147f, -0.439954328280331f, 0.0429585232791456f, 0.457321950803212f, 0.236810565417317f, 0.167393310927116f, 0.634521586990289f, 0.154409349572581f, -0.750588956901316f, 0.862647670558265f, 0.800182258889404f, -0.342011510602950f, -0.102697321575297f, -0.797254530582515f, -0.718599505627591f, -0.729105921762328f, -0.152424255231618f, -0.702781451563249f, -0.0212710413372206f, 0.961258625954530f, -0.598484979483616f, 0.188043416567111f, -0.511990501189325f, -0.437449883017104f, -0.352443017251219f, 0.0991554004559394f, -0.663282401319921f, -0.835139403797870f, 0.587602722898819f, -0.939771062270554f, 0.613878515061637f, -0.523857415147229f, 0.444842501987166f, -0.297001528475358f, -0.914581150341453f, 0.554844832376064f, -0.816400014706997f, 0.823726509832068f, 0.704425080572720f, -0.819397910034912f, 0.999003444973468f, -0.968751535943602f, 0.0311500939174130f, 0.247867291448898f, 0.835560943875924f, 0.169794916341582f, -0.302041142019408f, 0.289549413666482f, 0.672141268085176f, 0.947060095876251f, 0.324754171403184f, 0.800014020753458f, -0.785428883146460f, -0.463092135879982f, 0.659192831110219f, 0.118301326248760f, -0.542297334341874f, -0.335957421787428f, 0.794808066256455f, 0.625133567458879f, 0.227917183877260f, 0.533557157748932f, -0.948877884679630f, 0.186417887458649f, 0.859592912781013f, -0.0183320237921572f, 0.967066787435574f, -0.141349529637213f, 0.958107445094614f, 0.264359167622140f, -0.631325355674829f, 0.684598042547604f, -0.527467468151933f, 0.294659298854560f, -0.439220168509424f, 0.391038218778621f, 0.0155669207052447f, -0.681384294454809f, 0.146739459198561f, -0.756404876084652f, 0.381192113543008f, 0.442850940158445f, 0.964002016096921f, -0.0507253848694798f, 0.563462880019551f, 0.190980650425415f, 0.482598778123453f, -0.273426091300166f, 0.980640722167518f, 0.198298590133615f, 0.678100193958147f, 0.530416610025615f, 0.196483886579908f, -0.00515783872303177f, 0.0273438459465027f, -0.257248394117661f, -0.576964504105195f, -0.331030677719652f, 0.389178134459083f, 0.0714066784585938f, 0.915179137858455f, 0.529738860096996f, -0.0851681338619263f, -0.692212896293625f, 0.0786352959300358f, -0.122712774017974f, -0.154641019547052f, -0.487537192251297f, 0.0435645872670241f, 0.856938631597551f, 0.351874085305670f, 0.708100804109985f, -0.701200509799317f, 0.0804479422214388f, -0.0794375302823220f, 0.543751723132725f, 0.346144383452864f, -0.680373368944156f, -0.572281173045994f, 0.237981706511708f, 0.0671482960376590f, 0.852393956008547f, -0.301262907769845f, 0.523762878044853f, 0.0885512158718469f, 0.885168455552951f, -0.333351382431635f, -0.914187358461713f, 0.657220242471575f, 0.202238670865175f, -0.660684692864216f, 0.641271628674064f, 0.795923699912913f, -0.332641448887164f, -0.297595219329770f, 0.427283618553541f, 0.601893958036382f, 0.355248259075043f, -0.420766820174961f, 0.355159952778514f, -0.806733697216087f, -0.694403711049608f, -0.719250654428532f, 0.580487742419744f, 0.959156165420351f, -0.941898541689400f, 0.960568821753178f, 0.119007749103819f, -0.973468502734443f, -0.627534816021182f, 0.331394418445345f, -0.415230278112412f, 0.225355270950915f, -0.216818510922154f, 0.716553646689289f, 0.149097723527982f, -0.212491921692561f, 0.681645638056938f, 0.675358683729395f, 0.0591550775861416f, -0.221626142364110f, -0.235878877821190f, 0.168188057112471f, -0.709738432254387f, 0.842890391064944f, -0.331175752377862f, 0.231375360302226f, -0.714989093452242f, -0.492645353426504f, 0.552424848261518f, -0.436987392663331f, -0.336155191719795f, 0.137666231065822f, 0.739347397348610f, 0.493222787180627f, 0.283646543313800f, -0.603522923409923f, -0.474181275984451f, 0.249315354427624f, 0.323736714335287f, 0.933612934150728f, -0.651555022796413f, -0.743229221575077f, -0.648309364385349f, 0.115117716036212f, -0.0689988553878600f, 0.0394979772968704f, 0.732729774997258f, 0.487584669162102f, 0.808754952095239f, 0.827617962775983f, 0.550826738558347f, 0.890858298785235f, 0.152998196795770f, 0.401198245071198f, 0.187173931669199f, 0.576387011979054f, -0.464903903379260f, 0.735172244343599f, -0.0393734341215035f, -0.501927105416023f, -0.852926247859480f, 0.384774001880198f, 0.723957370923565f, 0.869614310250896f, 0.698124990202440f, -0.0618370378422302f, -0.273879540781302f, -0.0745005910544518f, -0.754408143155094f, -0.859084370639359f, -0.709011936778905f, -0.883595552533659f, 0.326386065122049f, 0.756686513420982f, -0.639817612043620f, -0.536531544653662f, -0.596858657734988f, -0.187117983404806f, 0.760208405412209f, 0.191383034225783f, -0.771443976174702f, -0.371171018178012f, 0.723338724416329f, -0.325113980261468f, -0.652823731845602f, -0.902765567501679f, -0.109945188610355, 0.863727536109734f, 0.762531987550249f, 0.484671237555863f, -0.376731181566557f, -0.961176245257487f, 0.374503763045540f, -0.275274129954644f, 0.947951135663002f, 0.891610575724484f, 0.233179187366345f, 0.868694446846928f, -0.201812205484274f, -0.676342903796604f, 0.962133604967067f, 0.0941637112283598f, -0.0856261317646829f, 0.375061189807232f, -0.275342940020193f, 0.0614298144531287f, -0.183234253182376f, 0.146964792162229f, -0.307180215012337f, -0.139123531176191f, 0.130840221889238f, -0.0654726742084248f, 0.988722897887987f, -0.805684911622576f, 0.763299463922693f, 0.148136188784880f, -0.432183160161832f, -0.592185939638987f, -0.593835208842770f, -0.366135084813261f, 0.840566739882685f, 0.572052978307971f, -0.825682529425410f, -0.970222226210689f, -0.554421263584439f, 0.324648156825255f, 0.0472246837302466f, 0.168098848238140f, 0.00634984653176796f, 0.850237261066903f, 0.286624344510407f, 0.196043215794080f, 0.289161416244007f, 0.334801090322515f, 0.871286740072183f, -0.754609531300255f, 0.623871003889383f, 0.0843430009639772f, -0.736369938040848f, 0.400507674511444f, 0.816325383600297f, -0.500667496861800f, 0.453092855162135f, 0.281798170796444f, 0.631969623501011f, 0.472467114651372f, 0.525988741184527f, -0.124862967293674f, -0.882904489381606f, -0.501090007558747f, 0.631622297793485f, -0.0234210285578584f, -0.521093811962915f, -0.0402368492672573f, -0.762999364505356f, 0.948716268452360f, -0.572740830308272f, -0.261042904339051f, -0.506108365537530f, 0.585933508412429f, -0.362463094458446f, -0.885375028242576f, -0.835757117571791f, 0.337250829139564f, 0.298618238243588f, -0.744903291826588f, -0.979848674056393f, -0.488518944548476f, -0.000297116577397283f, -0.137863396173336f, -0.627207234158244f, -0.970417810284170f, -0.601487862773028f, -0.999527775716382f, 0.116672274325216f, -0.786330829714504f, 0.740118245374718f, 0.856485463622646f, -0.555144930193560f, -0.0168912375666686f, -0.774544329159697f, -0.782767315598991f, -0.600844843420598f, 0.885816107471180f, 0.577075799078571f, 0.663829997048111f, -0.359000184287277f, -0.390009578642891f, 0.202240602818017f, -0.0191477232064394f, -0.566459499064884f, 0.288883557382261f, 0.962583478738218f, 0.782123756762393f, -0.312311582870785f, -0.749354208187204f, 0.205679267602357f, 0.804004517387718f, -0.733078779233144f, -0.426195645938973f, 0.686872484317089f, -0.398704803137823f, -0.267786412313359f, -0.374306263341615f, 0.632992513422251f, -0.972217744254910f, -0.167080739523409f, 0.608176739669718f, -0.935550125875275f, -0.422451600932096f, 0.499643952974426f, -0.491034978653149f, -0.0256130378373849f, -0.158669355267388f, 0.360503946885584f, 0.227714934784132f, -0.138648043280479f, -0.0707461296301128f, 0.0638330442765616f, -0.168811643868974f, -0.575670642767690f, -0.162143785491822f, 0.528621079903453f, 0.581283330394272f, 0.444430744183000f, 0.859288341846780f, -0.170487584890459f, -0.440175706710406f, -0.184806402672108f, 0.676010805169568f, -0.0117535553470483f, -0.231606756742133f, -0.210042044569361f, -0.517950708003565f, -0.805772781723687f, 0.156938933772370f, 0.892075905739393f, 0.403874478002384f, 0.572031508558373f, -0.604145909072008f, -0.330076696654475f, 0.0314560087228033f, 0.683787496948704f, -0.788582181996934f, 0.835276281386949f, -0.0644658492206380f, 0.938270191882745f, -0.344927907293928f, -0.976720519493346f, 0.906264084343827f, -0.648152742145255f, -0.776984965421811f, -0.299470572593974f, -0.423690646950321f, 0.749911693814570f, -0.701929894551648f, -0.665191316321370f, -0.568359320650352f, -0.957309362369509f, 0.914088966355983f, 0.770952996203681f, 0.0924190787439159f, 0.844599990803978f, -0.613336716591875f, -0.683270165308367f, 0.358563204319583f, 0.934597169812267f, 0.236596595813630f, -0.895964332479994f, -0.673302324943916f, 0.454883302340070f, -0.473926010524343f, -0.576000657136217f, -0.644850950007290f, -0.980218836434995f, 0.321620362364719f, -0.799924718666919f, 0.0619872524925393f, -0.609255645268410f, 0.159243124858648f, -0.339764623434603f, 0.379865023026277f, -0.923132229333074f, -0.0300494021321296f, -0.183835365297645f, 0.122648511393234f, 0.887652015676064f, -0.616448517838488f, -0.920600866006207f, 0.352861591267815f, -0.930578364778234f, -0.378819076263050f, 0.775423778544869f, 0.836977798656885f, 0.0472244767469148f, 0.484934339557912f, -0.939155187409193f, 0.261555270800537f, 0.143595058480400f, -0.323517719771947f, 0.483466454684928f, -0.423163689969697f, 0.356966814701025f, -0.843907304366205f, 0.945903563730962f, -0.495952298317153f, 0.972277051575873f, 0.153052037173145f, -0.715894882755676f, -0.617028915483254f, -0.332307224095366f, -0.171207102890728f, 0.841771328272651f, -0.0308707743261867f, -0.626480028747696f, -0.729235538916864f, -0.743517330301179f, -0.733868915239511f, -0.449192858200231f, 0.362286468575150f, 0.327436676142902f, 0.609768663831898f, -0.147499187968100f, -0.470195300907973f, -0.232167856443943f, 0.225074905574485f, -0.0818541072414634f, 0.793403933843056f, 0.267628199755028f, -0.391701371806294f, -0.846991992740029f, -0.776221590294324f, 0.121351482320532f, -0.189789365942677f, -0.894392208695015f, -0.632864319945356f, 0.927817761109627f, -0.732454610273421f, 0.260011686544283f, -0.713973491605344f, 0.469764032416604f, -0.608895265807545f, -0.684992974060601f, -0.745556289276139f, -0.536308213076133f, 0.586581187207818f, 0.149804345860779f, 0.401576742698496f, -0.719670291046630f, 0.618659855530024f, -0.256639783379370f, -0.862966031725668f, 0.893866512913152f, 0.861800793529066f, -0.704895723095590f, 0.154163397540805f, -0.0775797186536984f, -0.252297335448882f, 0.869851864160888f, 0.428747373815147f, -0.818372805928921f, -0.739117647833389f, -0.697378012429133f, 0.182997863108567f, 0.689563104159966f, -0.0506114067037338f, -0.705077813920782f, 0.452892458862023f, -0.365069844049503f, -0.889224821648518f, 0.0194889225677406f, 0.847743515500726f, -0.0650338075825718f, -0.108889937983496f, -0.168485037502421f, 0.912533003086865f, 0.428132366084106f, 0.692652998111620f, 0.130599999674344f, 0.411245435867244f, -0.194909473459497f, 0.562152151569866f, 0.503795293326445f, 0.801805532943245f, 0.795718119772331f, -0.327975015537058f, 0.771389506217327f, 0.237139782375987f, -0.793798852884360f, 0.537824655594807f, -0.0767253125021830f, 0.444538451472890f, 0.623473048970629f, -0.500663871860675f, -0.890399840538612f, 0.389528755348857f, -0.915832255765501f, 0.000652855725217894f, -0.121310443088642f, 0.206662014558968f, -0.409513641801496f, -0.0496262665388731f, -0.313314447256644f, -0.994839397423865f, 0.344513198428247f, 0.250828855150578f, 0.845438302422055f, -0.728803841305459f, 0.249670562418639f, 0.543601559270672f, 0.0138774767713057f, -0.0667600054234216f, -0.803421294778238f, -0.222729734665659f, 0.461896933387103f, -0.378537171475208f, -0.464200027877777f, -0.363170335357481f, 0.616070694104851f, -0.316407896795124f, 0.131719997218670f, 0.0622146037260092f, -0.881713850066484f, 0.400811652868418f, 0.163777537634682f, -0.528768052383715f, 0.553072310703894f, 0.931393033749660f, 0.410062835546529f, -0.190904471223264f, 0.0533617852685424f, -0.911780226731855f, 0.823696403963215f, 0.756735978125573f, -0.849701310148249f, 0.106070214350541f, 0.747890454578944f, -0.559823302095172f, 0.976181619002882f, 0.506524051225122f, -0.0735228576098872f, 0.635610640336510f, 0.607728217052133f, -0.383443012662118f, -0.640835123345673f, 0.0897243696426577f, 0.722421963278953f, -0.368833835044170f, 0.684790387373836f, -0.0336846755494535f, 0.199819176553169f, 0.351822803019512f, -0.433387005248570f, 0.709401898386598f, -0.0149217994364210f, -0.549115733466769f, -0.774049259429836f, 0.440376751789406f, 0.740171176715015f, -0.322301969056869f, -0.148261856544327f, 0.724527166150266f, -0.744178178219827f, -0.743031462890542f, -0.00997727490160383f, 0.550074849063942f, 0.147825200269716f, 0.777182602759074f, -0.625412073440604f, -0.0614214671235789f, -0.400121310797195f, 0.864511820640236f, 0.327656445569618f, 0.765838911283705f, -0.906185069285438f, 0.543656228031101f, -0.527337383463707f, 0.544932532036177f, 0.453966596910417f, -0.422906847383216f, 0.803455668330395f, 0.496651297123425f, -0.254890927444284f, -0.940902660088963f, -0.0691448074129200f, 0.0165534278793877f, 0.510199004798987f, -0.0286331020627788f, -0.141471298460923f, 0.872000980716430f, -0.752995088893842f, 0.167696515625982f, -0.181673581299286f, 0.496236252387172f, 0.854022562040503f, 0.388320660177419f, 0.499320363074588f, 0.173522726183149f, 0.0334192536945390f, 0.631347719906229f, -0.832803059709609f, -0.523826088751894f, 0.322557683663180f, 0.0263621365506006f, 0.948982322858062f, -0.253991680115490f, -0.165970359640120f, 0.331700483099733f, 0.808731855823033f, 0.159862831431822f, -0.438178259673022f, -0.943749594272300f, -0.967819867274861f, 0.263403865531262f, 0.710981741513574f, -0.274597382335371f, 0.929606564147885f, 0.125943272920181f, 0.691306164809532f, -0.607946869004681f, 0.284352421048012f, -0.421663515398071f, -0.409479725854699f, -0.152265311389352f, 0.630868673855242f, 0.123144840061153f, -0.645105689918733f, 0.360153393247973f, 0.683885744053582f, 0.752598814717991f, -0.581494857182821f, -0.469116962448560f, -0.0691726199196117f, 0.174679188611332f, 0.351269328558955f, 0.394815335607621f, 0.710281940645013f, -0.618593505217632f, -0.721546422551907f, -0.974088703589852f, 0.939556772536401f, 0.599407011070674f, -0.342213391542906f, -0.387135346574836f, -0.572027944718123f, -0.622717582512866f, -0.676949872287677f, 0.993953153886700f, -0.784539234625462f, 0.788778188174951f, -0.0652679971583152f, -0.988740647590182f, 0.748989697777310f, 0.412949190397683f, 0.206661198525718f, 0.573116044772809f, 0.938498079842984f, 0.743167714677278f, 0.755679122637903f, -0.295095987460132f, 0.217166189740252f, 0.230160404687938f, -0.504654557405015f, 0.472402206737240f, -0.867751757044285f, 0.869050101160567f, -0.905285205825199f, -0.0698843699947245f, 0.762379282963140f, 0.634191197174691f, -0.498487028811837f, -0.284257632541078f, 0.224245853978976f, 0.412950901773606f, -0.831984679101472f, -0.375663639002356f, 0.153699995838016f, -0.953997055484851f, -0.545360745186449f, 0.637687001020610f, 0.465459355638311f, 0.0769011654935299f, 0.267123343048604f, 0.545842501706277f, 0.778890986545214f, -0.363432183057524f, 0.479786652022207, -0.600912698239979f, -0.738845504293020f, -0.775987143750184f, -0.705559714187038f, -0.310523750352236f, -0.576081829930414f, -0.0341897834633795f, -0.388414434291246f, -0.790681299048144f, -0.169440674711419f, 0.219815472280053f, -0.323451599202462f, 0.835623141427806f, -0.932446301638351f, -0.831480966559550f, -0.185050128422203f, 0.946045240208487f, 0.864740749402213f, 0.916918979039328f, -0.204049261822351f, -0.807183358636872f, -0.484543897885746f, 0.974235382435000f, -0.208019257024664f, 0.647411336652954f, 0.0961385231960816f, -0.800258527388060f, 0.352982142334643f, 0.917274278881503f, -0.733934252997685f, -0.229420044045673f, -0.358499183112933f, 0.469156578609832f, -0.859359096702447f, -0.937762141277625f, 0.389776419837803f, 0.458425599271073f, 0.542973137971009f, 0.675023236195573f, 0.944029213696263f, -0.774027667733194f, 0.262984845114612f, 0.842689106929982f, 0.349251854560315f, 0.815938991679117f, -0.226283690374971f, 0.144356327986477f, -0.610588223452142f, 0.539695204296007f, 0.655759463021729f, -0.725805170479948f, -0.194977831685847f, -0.306105075607822f, 0.725461617920836f, 0.678283785172857f, 0.250577882812283f, -0.571672652704059f, 0.112132856850530f, -0.236412229648694f, 0.768173015701816f, -0.799251028098975f, 0.100723381526471f, 0.113856811781171f, -0.0281630563735495f, -0.0727902548617043f, -0.515248547261805f, 0.795765010992038f, 0.505540143557856f, -0.496124371632015f, -0.363010091302494f, -0.302067159683438f, 0.941309812688142f, 0.0564765277142674f, 0.733027295879568f, 0.582734217224559f, -0.159007222603058f, 0.827637470837748f, -0.163060519537145f, 0.352357500273427f, 0.920405360379926f, -0.280691553157313f, -0.401974149240862f, -0.131353114797667f, 0.0719728276882135f, 0.795795661384902f, -0.348203323368113f, 0.946184663961743f, -0.188400643814906f, 0.979319203447783f, -0.132195434304746f, 0.585832597473452f, -0.894730397941282f, -0.998045985412111f, -0.717844040997160f, -0.706372640246558f, 0.237517748136224f, 0.767232946579208f, -0.246080656591091f, -0.767887803661775f, 0.139501344992184f, -0.545658806327887f, 0.480755550666584f, -0.355750609145607f, -0.493518864013929f, 0.832011102158605f, 0.122542855024589f, 0.179356501845966f, 0.630805165349165f, -0.888557403477561f, 0.861375782261841f, 0.963467658712489f, -0.00498707715217361f, 0.341894517453263f, 0.654808049991043f, -0.826909952854692f, 0.101446328788119f, 0.401514152845232f, -0.830556985096328f, 0.832187560444347f, -0.657254039822149f, 0.0304197382717133f, -0.718462386339415f, -0.592343549551534f, -0.356333235896531f, 0.674135547073730f, 0.606490641440102f, -0.707328770155748f, 0.0251846271186025f, 0.763024927861424f, -0.258224600040528f, 0.456384203436896f, 0.626482995304888f, 0.162353458245830f, 0.964280614412026f, 0.869262296229816f, -0.0659501568862260f, -0.712869755397848f, -0.946968242335746f, -0.852822740386429f, 0.791522782900379f, 0.824530390150335f, -0.369383609091590f, 0.118366422602132f, -0.713278848975255f, 0.549165545117801f, -0.00201102645336770f, 0.748955154405439f, -0.173689412898754f, 0.175162399203493f, 0.0819730422177463f, -0.804833155982895f, 0.972966530563786f, -0.0614871820303859f, -0.293463394754661f, 0.885919261783643f, 0.498531250561504f, -0.808874001349436f, 0.364344357769432f, -0.945616638616975f, -0.285864129675031f, -0.0438177789332626f, 0.303981486324719f, 0.362653007142366f, -0.543157427730716f, 0.174551703296805f, 0.140105048664068f, -0.704163993684247f, -0.647461975308389f, 0.831243960763754f, -0.364954329841192f, -0.730289885595360f, 0.0119708019435723f, 0.796338505809816f, -0.227851954967331f, -0.927330125804492f, 0.0602265250934577f, -0.485204061877453f, 0.198319346525046f, -0.529723177394882f, -0.321493822700232f, -0.839566193416413f, -0.187812484529161f, -0.396142329367383f, 0.367600156667632f, -0.922657847865138f, 0.893508892950972f, -0.504434314314017f, 0.663184814192863f, 0.887813887366393f, 0.267103483259066f, 0.984313142773772f, -0.667515321448428f, 0.0718416862496054f, -0.733363156570869f, 0.00186343206374962f, -0.316531364321301f, -0.467549697367438f, 0.569865535259013f, -0.556502178434536f, -0.650896672234238f, 0.564462797319346f, 0.585276582729153f, -0.433005641153548f, 0.847012427243871f, -0.462088105064984f, -0.379468633087939f, -0.0104892833799723f, 0.654191676584918f, -0.893278846859767f, -0.689350274835588f, -0.333220721049179f, -0.0461703436190983f, -0.463411501818667f, -0.995085073808794f, 0.526075522777196f, -0.0686703698159610f, -0.855908120278260f, -0.239774384006192f, -0.524142243888286f, 0.119526621106050f, -0.838266471869898f, -0.459366707886497f, -0.974921205300089f, -0.680517660007036f, 0.507695286553230f, 0.0920009889477380f, -0.674459855090400f, 0.554585280302756f, 0.357871391273056f, 0.453052004120624f, -0.991707675828263f, 0.144725488641274f, 0.0886535789688503f, 0.708257184179799f, 0.579351194763774f, 0.902098539548710f, 0.0104715251706708f, 0.112677648152527f, 0.0513772996762050f, -0.647561525299580f, 0.321958856072156f, -0.433510239079594f, -0.481493822802105f, 0.651663699618654f, 0.922649363108760f, -0.751799312011289f, -0.0336105332513619f, 0.236872038257485f, -0.0434863841224971f, 0.150810692021768f, -0.217629544451037f, 0.345890414626050f, -0.471941673338326f, 0.675001035054686f, -0.986585320322202f, -0.784679789758475f, 0.270727429189404f, 0.595792127677512f, -0.485969146811564f, 0.222507692419212f, -0.850070310429306f, -0.575184466843042f, -0.220860571657717f, -0.749449040845746f, 0.743039624335149f, 0.463892797640518f, 0.224829531690830f, 0.935410439714992f, 0.00609595972560872f, 0.830877831388658f, 0.0270299847557276f, -0.648763861115704f, 0.471982277585509f, -0.145722971031426f, 0.650947186397952f, -0.266164907037466f, -0.962378355156458f, 0.354855353373398f, -0.184127215272909f, -0.825621979621661f, 0.595495186093792f, 0.448679578752395f, -0.839671989567806f, 0.302158874138200f, -0.735484620769119f, -0.891040803749876f, 0.880298595525880f, -0.281199581528421f, 0.0195033020490396f, -0.511515485794419f, 0.447303195702203f, 0.375317547074287f, 0.964442757731427f, 0.167643569291013f, 0.0118587246816413f, 0.958187068873858f, 0.315395458761821f, 0.188852872643367f, 0.417450657662866f, -0.540566147670448f, -0.422709015019828f, 0.101425586029329f, -0.235465301656357f, -0.806044548641562f, -0.617153815671298f, 0.350658348898447f, -0.738540593521098f, 0.291893065415692f, 0.335435501842245f, 0.832048727909480f, -0.609539777284250f, -0.436992256701542f, -0.685315947977391f, -0.502107715051164f, -0.893460699283628f, -0.262263680492396f, 0.454417031133778f, 0.223227655510993f, 0.605288383003966f, -0.698800586984034f, 0.864843125666124f, 0.363752223710394f, -0.354571459375900f, -0.575008718239530f, 0.423061550052490f, -0.272459660313524f, -0.116932919064239f, 0.547073367599225f, -0.890822451422250f, -0.884262586749836f, -0.889803003239001f, 0.217660629852574f, 0.154863581361214f, -0.333284425759330f, -0.826087281020982f, -0.958198419703014f, 0.850114828540176f, -0.391190814837661f, 0.956578087128909f, 0.0541599967910713f, 0.0988550815990206f, 0.851903747125444f, 0.361959550717838f, -0.901818125706440f, -0.0561477675277424f, 0.522090821863134f, 0.263383912024089f, -0.161061362097086f, -0.983707460720128f, -0.333128836619106f, -0.546535222349413f, 0.627261888412583f, 0.408731616102241f, 0.754700916401496f, 0.869772826180715f, 0.362242883540519f, 0.853587698951791f, -0.698910717068557f, -0.671945256263701f, 0.802655941071284f, 0.338701009518668f, -0.0297818698247327f, -0.881311052338108f, -0.296717226328950f, -0.965699941652671f, -0.737164428831818f, 0.00804554422537485f, 0.989716933531351f, -0.832438692682457f, 0.454553001515962f, -0.933801685729775f, -0.644562445615081f, 0.104508389084640f, -0.535426180524709f, -0.937041822784313f, 0.599911275476691f, -0.789109397888652f, 0.821293320968620f, 0.818032308067912f, -0.838306491947354f, -0.172883985566904f, -0.185775969502745f, -0.672256019841514f, -0.412525056012874f, 0.142272136963196f, 0.792136721788200f, -0.726314486042219f, -0.445981475954073f, -0.857821372905156f, -0.783006950965519f, 0.438776336055643f, 0.400193156140386f, 0.177525578340235f, -0.435380642286229f, 0.547815754835977f, 0.0496394855194708f, -0.442174406426496f, -0.0856142956982360f, -0.0247840885457120f, -0.779016166389253f, -0.511802368745331f, 0.319887353303028f, 0.721806644023428f, 0.770423389111803f, 0.809969588377187f, -0.196191981856391f, -0.105718971622809f, -0.301674515042257f, 0.613622254387482f, -0.969517273103490f, 0.0144576310630131f, -0.668829420461301f, 0.750377960820232f, 0.696858494013122f, -0.563485511352760f, 0.726226115587466f, -0.227540741583116f, 0.665488592033944f, -0.124611809537824f, 0.489550286613580f, -0.579185308695604f, 0.628687311174276f, -0.295770837727116f, 0.240358361854250f, -0.155642183802961f, -0.885945841456110f, 0.388592282428421f, -0.663862196774143f, 0.363779469451472f, -0.371285870971327f, 0.563159689631810f, 0.102725415308920f, -0.320909176496511f, 0.334328794247963f, -0.401664407219370f, 0.726728495517480f, -0.192310060924823f, -0.107973316004269f, 0.898177814643418f, 0.456682306673978f, 0.890742303266606f, -0.742770990765425f, 0.0337493848747046f, 0.786190819119190f, 0.911503487800545f, 0.288384155888888f, -0.249479393879906f, -0.431949793185094f, -0.0847659302921913f, -0.475416985100444f, -0.362720571751962f, 0.676910741300893f, 0.00488530543559529f, -0.227678010632002f, -0.0632947771540859f, -0.990261099329279f, -0.708485805011827f, -0.304846597458441f, -0.480289782580152f, -0.593254971635338f, -0.656335976085053f, 0.584373334310954f, -0.493268395245234f, -0.00212668034894836f, -0.480221591678953f, 0.622365041709782f, -0.258845071515928f, 0.943825418665593f, -0.716642329101759f, -0.765317239111819f, 0.324487844009035f, 0.108158868464706f, -0.790583201992229f, -0.649218622127061f, 0.751409704126257f, 0.301455204388007f, 0.620482350165047f, 0.411016780608874f, -0.878843779367281f, -0.779673415191805f, 0.616508572699874f, 0.0750844738292273f, 0.341011338533919f, -0.553376665552953f, 0.277561087965059f, 0.527499935800293f, -0.489644680144407f, 0.514353996113782f, 0.229842524701725f, 0.139172928186734f, 0.793753206591897f, 0.835555341130211f, 0.794120687009671f, -0.0994745468343306f, 0.109098970584400f, 0.383123470993648f, 0.272549010931094f, 0.683070582699418f, 0.522823199313615f, 0.235903759158310, -0.269490013000195f, -0.103775744391749f, -0.994083979953753f, 0.754983594207459f, 0.806308398378106f, -0.997543362839150f, -0.00396367603607373f, -0.873768378178592f, -0.755907732827809f, 0.703713206520365f, -0.0716773056166142f, 0.0792968663717508f, -0.113760825029016f, 0.828188140127672f, -0.103062543982628f, 0.0455017026983378f, 0.330658414568756f, -0.615810862221588f, 0.827890015477212f, -0.507551960954374f, -0.371044788092612f, 0.723489294741891f, 0.169072478802524f, 0.885612989356318f, -0.496475905980558f, 0.114400438991609f, 0.427961880327008f, -0.0456714004002505f, 0.0246660859589438f, 0.175616122301987f, -0.349777838484285f, -0.939474935533562f, -0.215061649130134f, 0.907049169335834f, -0.0553600192559760f, -0.982464152311714f, 0.405919915647442f, 0.755952405091542f, -0.695422520039876f, 0.373280568864688f, 0.483909023765611f, 0.784896384994620f, 0.978722132488262f, -0.113866140463085f, -0.630016943176703f, 0.512742627309861f, -0.829104067044703f, -0.240982431155520f, 0.0107361024967163f, -0.438682584788413f, 0.935730031472303f, -0.953447901200043f, -0.984218956474073f, -0.745077052885218f, -0.466232938128846f, 0.0326267564209573f, 0.303877586274065f, -0.199843777507458f, 0.674317529952029f, 0.448678903834397f, -0.681863209154081f, 0.273397524216090f, 0.193101955704959f, -0.342858479278718f, -0.485179713360910f, -0.586067050491890f, 0.393099777352274f, -0.982324485510343f, -0.852553426343700f, 0.773613825101220f, -0.590256032959421f, 0.837952413540589f, -0.643137731235821f, -0.311955662956384f, -0.888588599835619f, 0.304629859477166f, -0.810098957400030f, -0.534291626181040f, 0.878601703692302f, 0.362706441157764f, -0.254447668911795f, 0.604309282304246f, -0.977266419340276f, 0.250927873824064f, 0.549600558999971f, -0.796155833245480f, 0.226373301058549f, 0.0137578302483823f, 0.819708534464965f, 0.185662636424304f, -0.450456459548662f, 0.0953849597308440f, 0.736872088617975f, -0.582024306116842f, -0.0522261513001507f, 0.394348349710790f, -0.461023913227183f, 0.139996201153565f, -0.790168851966909f, 0.692544084408690f, -0.580603732841955f, -0.584540773580447f, -0.967062276813525f, -0.00886260208554912f, -0.0520831218167985f, -0.999614949922684f, -0.965820736077636f, 0.366390034326646f, 0.0323069925013668f, 0.164651515113853f, 0.300260003499445f, -0.340634856317630f, -0.238157231550037f, -0.291645957143165f, -0.773881882387456f, -0.144494053860223f, 0.660329619628580f, -0.626727996257997f, -0.994965090982706f, 0.161018019917379f, -0.327211572176153f, 0.0410991278573425f, 0.0123663905917732f, 0.747176159655312f, -0.485981637435718f, 0.00667961234248971f, 0.631625759154389f, -0.831294487064668f, 0.449606477050286f, 0.768845094514142f, 0.928354534843426f, 0.812647997969340f, 0.353418126917875f, -0.872184763557736f, -0.579130598386915f, -0.912928075675835f, -0.779484407508668f, 0.534916834944041f, 0.326353225230543f, 0.395431557674662f, -0.842103899863317f, 0.196590107332985f, -0.261317824893025f, 0.750190543523333f, -0.103409967857074f, -0.201452426430379f, -0.213633615009587f, 0.578822104214576f, -0.130809161238349f, -0.774608769872343f, -0.0222201705228122f, 0.126990738965544f, 0.785780586747108f, 0.0379484317527632f, 0.837140835706189f, -0.191007948387153f, 0.106781679021568f, 0.990298140861558f, 0.618337701073777f, 0.460255491901774f, 0.716379796730692f, -0.159421014009881f, -0.560212468621569f, -0.147263014783522f, -0.962301694075771f, -0.327702010262213f, -0.773959532468388f, 0.351239668535113f, -0.682281479449518f, 0.342188824054257f, -0.743039216419066f, 0.700710268270439f, 0.919651386092770f, 0.626343233048871f, -0.157189576636596f, 0.781882574006976f, 0.349953565654219f, 0.361235312853466f, 0.313242228422046f, 0.582185182102266f, 0.554504358491139f, 0.711217954194576f, 0.332473377627418f, 0.165078226255772f, -0.228349029389292f, 0.899730713958153f, 0.653894503448836f, -0.0452904440925501f, 0.0328806142413372f, 0.793701315832839f, -0.703826261467540f, -0.901648894320192f, -0.195631966969018f, -0.0470590812056508f, 0.487185699934959f, 0.175961644103331f, 0.818028721319245f, -0.224389104974946f, 0.901974203693823f, -0.153212477843726f, -0.472747796173897f, -0.587471692952684f, 0.452340198339707f, 0.996443894349412f, -0.849126217374502f, -0.403800337277983f, 0.923427876645159f, -0.0516037992113898f, -0.380335341989182f, -0.299914673109747f, 0.764492139190834f, 0.773463290027243f, 0.0175454601261817f, -0.400742340353541f, 0.912354892189422f, 0.999766609328281f, -0.521321752061712f, -0.365769506846305f, 0.477612405338644f, -0.0522578739905535f, -0.479259238587280f, 0.645161410912429f, -0.702546085166056f, 0.359736398041538f, 0.638130894056863f, 0.115633419893101f, -0.674410360620500f, -0.150824943737990f, -0.824854463897591f, -0.504410162129685f, 0.560317574021813f, -0.159611666752889f, 0.997647540626334f, 0.702777895178414f, -0.946494281691535f, -0.0109619562916898f, -0.383756482005404f, 0.872670066971334f, -0.453527506439184f, -0.635719199113957f, 0.932852122005178f, -0.800755479140234f, -0.225213334363716f, 0.251163542389519f, -0.598147625383133f, -0.155241293946661f, 0.967736510890644f, -0.0157250628103103f, 0.250570924071858f, 0.209749651169078f, -0.381016062687537f, -0.679300447230592f, 0.160197663113971f, -0.749803147200800f, 0.596917045783617f, -0.0878737681749431f, 0.642402180339789f, 0.261614973684270f, -0.111833224093973f, 0.300170844971678f, 0.317966800167647f, 0.0585375534708252f, -0.842709435910728f, 0.760207701069839f, -0.979366191145221f, 0.940703569377911f, 0.866488078693979f, 0.553497107695259f, 0.127260247084497f, 0.530106152060111f, 0.725171359852920f, 0.356742729430045f, -0.209841680046178f, -0.164239817187855f, -0.888858150931758f, 0.0367561852378047f, 0.803496113779956f, -0.594927045375575f, -0.00347281985657166f, 0.114118941713783f, -0.427864462568672f, 0.719021423892768f, 0.335845790828654f, 0.0207216235296064f, -0.523146933862102f, -0.145001077781793f, 0.490566784879983f, 0.461904660734682f, -0.897010089735077f, -0.895737903861849f, 0.343397505472310f, -0.684377591381862f, -0.0154016881290400f, -0.462987614871549f, 0.884045010701589f, 0.192617174725234f, 0.226497290324550f, -0.788151335932529f, -0.190538526746651f, -0.556614046330326f, -0.139480186854974f, 0.196785300148418f, 0.978844132512627f, -0.290726060479808f, -0.591813978495167f, -0.0769033757443105f, -0.467044929381376f, 0.171585053083057f, 0.408215527269010f, -0.818706013465989f, -0.328144984930982f, 0.790275356337217f, -0.977491163139178f, -0.979679268318504f, -0.524875121608236f, -0.263859024168277f, 0.0180787743488171f, -0.984390626106750f, 0.952274619010224f, -0.851400664579601f, 0.692959439369046f, -0.150312001943653f, 0.712066554169562f, -0.492336226254660f, -0.453559897031351f, -0.159679763180474f, 0.745834647687870f, -0.725963425297178f, -0.720341794596050f, 0.370674334928492f, -0.845974926208293f, -0.00448769398027360f, -0.595973105115042f, 0.967372249596385f, 0.512949503724102f, 0.889619262804735f, 0.990718232652913f, -0.662246751886904f, 0.333846293708563f, -0.423114421367372f, 0.549637439543149f, -0.987876053136374f, -0.782714958794276f, 0.294868983681807f, 0.931284560597614f, 0.445522387300861f, -0.388400162488578f, -0.182673246109423f, -0.773488958971573f, 0.438788569593725f, 0.578106509978236f, -0.373449127435319f, -0.301996528814967f, -0.227124771031239f, 0.700176189695036f, -0.910948938567526f, 0.733412403327578f, 0.486154072292544f, -0.974058632864456f, 0.216693355653246f, 0.147564301397678f, -0.715192277853558f, -0.366996833259925f, 0.568909126406069f, -0.0810069456450131f, -0.371253841044151f, 0.254736918036059f, -0.868966383080701f, 0.190312518076662f, 0.457253801337437f, 0.941043431633233f, -0.297470749600241f, 0.244270515950156f, -0.240122562119888f, -0.766384662307300f, 0.765045432900429f, -0.608250739173787f, -0.733052557932594f, -0.268433000443065f, 0.733598123424154f, -0.0550005774741753f, 0.273893221740822f, -0.659641650983149f, 0.967032725204337f, 0.390126626361090f, 0.518740746381756f, -0.859387560527806f, 0.554117289841284f, 0.648904904654236f, -0.755880975555381f, 0.834231592524942f, -0.137512395743275f, 0.0477027353535724f, -0.880364563062979f, 0.458763614093086f, 0.650036413308116f, 0.496385905878033f, -0.418537115548864f, -0.565561960782851f, -0.227941684691245f, -0.165031891659812f, 0.204464989908300f, -0.688093624763916f, -0.678874848552394f, 0.813764873880514f, -0.561723359541237f, -0.575805702297063f, -0.288097000970518f, 0.950119107184838f, 0.709879842972902f, 0.730067219897393f, 0.710813066057284f, -0.192333836978130f, -0.190446300563246f, 0.872679304648751f, 0.134143163657763f, -0.979443835407234f, -0.103872104041761f, -0.0568328979324004f, -0.863020133862081f, -0.0257801722427251f, -0.577962771617033f, -0.0500056799801032f, 0.191817418291914f, -0.799853775410853f, -0.110019424741421f, 0.840753817223395f, 0.355588322976119f, 0.274501278628024f, 0.757538306972136f, 0.771547320156202f, 0.0394143752709530f, 0.120744072764658f, 0.324337882930581f, -0.380086709776951f, -0.772025774284869f, 0.473986846199588f, 0.703247561676381f, 0.734667480205300f, -0.594290184210087f, 0.760158653782445f, 0.624553744314883f, -0.941053266957965f, -0.165913770936962f, -0.0497972870738055f, -0.0435608680908517f, -0.663165366083943f, -0.570972482385751f, 0.427845034528880f, 0.0897903148165149f, -0.481825010950428f, -0.0901127105939594f, 0.887770435656611f, 0.770985476674623f, 0.00966158758316293f, -0.331059327378268f, -0.286033645163736f, -0.0698945910210471f, 0.834392309773299f, 0.875537383319608f, -0.657919190548359f, 0.583890957562885f, -0.418481077359384f, -0.282242397022386f, 0.864577023994874f, -0.898367126143440f, 0.815804441243808f, 0.616061408588373f, 0.132365642864798f, -0.221099752471970f, -0.852722283680675f, -0.269499596712950f, 0.360828136129415f, -0.120022743070141f, -0.0354652134632905f, -0.718389836602256f, 0.973490047219112f, -0.201775047168341f, 0.348769511760972f, -0.338750368577880f, -0.269769414088757f, 0.498910931428472f, -0.787648791515347f, 0.508408064858444f, -0.904215976374529f, -0.778575029821227f, -0.662889546847757f, -0.787503064261069f, -0.915166838630178f, -0.415784802770356f, 0.731806835017609f, -0.903922155472207f, 0.0872811033112211f, -0.452516774501827f, 0.577942533813694f, -0.200909337658770f, 0.866167939661793f, 0.982552542055944f, -0.332277333696961f, 0.201673960342839, 0.881239812364993f, -0.0293753746942893f, 0.0967170348490725f, -0.765573023404242f, -0.179225339525953f, -0.931530757069740f, -0.702596334762137f, 0.439106079307245f, -0.469364154277323f, 0.211063395888038f, -0.245858633045693f, 0.936376071219385f, 0.0334087380010875f, 0.0765265939183459f, 0.417091701258078f, 0.962467059286170f, -0.180698008768999f, -0.129816441691123f, -0.833694435146788f, -0.800582099046532f, 0.736376297618233f, 0.0164704176688124f, 0.207462305741760f, 0.300555292898496f, 0.777154212278295f, -0.0804533056660695f, -0.279940128908185f, 0.203101811030871f, 0.447496959357837f, 0.508353359025257f, 0.644333822521829f, 0.897259297488483f, -0.675785952117501f, 0.149337263319588f, 0.350953290584184f, 0.600296681944338f, -0.606098182955297f, -0.418312129297725f, 0.792551232171214f, -0.944025948110651f, -0.923106441737020f, 0.508989820072736f, 0.101554011154237f, -0.799369609980037f, -0.229001813644938f, 0.196367996268564f, -0.634078446275840f, 0.267446716753553f, 0.943765754688567f, 0.329924442019441f, -0.898235312442524f, 0.563592978494850f, -0.976934293161001f, -0.609744819901837f, 0.498989633313589f, -0.105680058480959f, -0.400730747241191f, 0.264919109340783f, -0.313066735594123f, -0.465399967597728f, -0.425123918113080f, -0.609514085808810f, 0.916560800692384f, 0.0173757138934230f, 0.147814399202503f, 0.594152503614559f, -0.145681097751433f, -0.427232299718493f, 0.233460382614713f, 0.337361272635241f, 0.376106438004541f, 0.900277274651600f, 0.424547631957395f, -0.710790444715071f, 0.0846761090154495f, -0.0122707338404220f, 0.119989812955904f, -0.239774389963524f, -0.692300891031819f, -0.735109129583214f, 0.802276300301071f, 0.348982047806247f, 0.916302084278941f, -0.0838164783829127f, -0.989134997097880f, 0.832909602224562f, -0.701363449605445f, -0.150487976031971f, -0.728594035984111f, -0.144393031996783f, -0.458856761770637f, 0.733295441303064f, -0.405608670768629f, 0.522871610912813f, 0.468223399458939f, -0.575139530810903f, -0.241684287862418f, -0.499140599234906f, -0.395586476697394f, 0.692745485195348f, -0.125142235859546f, -0.342212246193052f, 0.133841188490164f, -0.539478395228865f, -0.887973984329817f, -0.474033882236453f, -0.837114132429830f, 0.773392302912611f, 0.117697651876253f, -0.461595011213406f, -0.528669601602068f, -0.957799577987062f, -0.468654423525192f, -0.0602288998398475f, 0.154553704272891f, -0.422854231304259f, -0.496136532114270f, -0.348154983723668f, 0.0576478341707483f, 0.542088962901856f, -0.0465812136931592f, -0.280128217727361f, -0.900695482510248f, 0.525110685457899f, -0.957266165874283f, 0.136490670826643f, -0.213221811269364f, 0.690040133288898f, 0.269408771473479f, -0.0488994830172422f, -0.837526616586426f, -0.289127052660601f, 0.149325279006459f, -0.694169700971401f, -0.0230547571616897f, -0.368313297034846f, 0.344434270521740f, 0.859135365902404f, 0.839336654691204f, -0.511783987355355f, -0.0349625753049687f, 0.935857929664427f, 0.820032045433520f, -0.0394079346656324f, -0.656352913407746f, -0.874383371678169f, -0.425836335156061f, 0.208600154889275f, -0.135596548598733f, 0.566430757256762f, 0.820840891306264f, 0.735746624790780f, -0.765482927015804f, -0.0195537720748045f, 0.606216172027628f, 0.436027839798869f, -0.609233580289002f, -0.963547951222316f, -0.575271468261977f, 0.692873344771925f, 0.143031668657597f, 0.890157114774225f, 0.762299295692265f, 0.653618249618643f, -0.957258626549595f, 0.521895225378123f, -0.607922211531407f, -0.956795748110572f, 0.477633684273092f, 0.794301967670603f, 0.139753218894595f, 0.371726372555490f, -0.804791987531745f, 0.837080126047059f, -0.440992020192054f, 0.584986017638085f, 0.950442046050057f, 0.613109120495913f, 0.633948971396891f, -0.581246845000116f, 0.730290176291093f, 0.599119212595240f, 0.120096101936515f, -0.144169383323758f, 0.930776406826440f, -0.0209712926465206f, 0.572995665695966f, 0.924623298379120f, -0.751832867985678f, 0.630196806059302f, 0.506634179395662f, 0.0388997263873157f, -0.311041196366299f, -0.729049093325017f, -0.918815504666740f, -0.103935429478766f, -0.000623544124330300f, 0.102880227280474f, -0.563637096166535f, -0.332148269587814f, 0.472114131256244f, 0.295717126494164f, 0.246944592105312f, -0.713191555660498f, 0.160410320426559f, 0.110992936470077f, 0.213877527744528f, 0.541660996543375f, -0.872405734998843f, 0.388515073094269f, -0.840811647524440f, -0.968008592072007f, 0.669947948420772f, -0.122943215855172f, 0.565929115911552f, -0.695408966310186f, 0.361296950635219f, 0.574282481983669f, 0.0877180513263536f, -0.694316083550519f, 0.327696487191071f, 0.289746985823208f, -0.241476327174879f, 0.605084742574250f, 0.0929272338220821f, -0.391399761658219f, -0.612928183827531f, 0.0471987261466311f, 0.157388702609590f, 0.575695018001234f, 0.450453491026024f, 0.876623108212541f, -0.456500163180038f, 0.436901006801809f, 0.796734433864345f, 0.771008396172517f, -0.784740610155705f, 0.405172719255834f, 0.958393667559228f, 0.787380105147761f, -0.262826016234054f, 0.773327117333271f, 0.482142068916266f, -0.461607549022954f, -0.153993688218026f, -0.129280134980317f, 0.901812622560630f, -0.111520793491644f, -0.0973214524989203f, -0.293695817178366f, -0.190045093887485f, -0.204792515844396f, 0.501086384719391f, 0.755953359112033f, -0.425886872154604f, -0.0883029298084141f, 0.763071371252921f, -0.556289447935984f, 0.577370462369201f, 0.0480599614417476f, -0.794423686623353f, 0.756645959967545f, 0.570538730848462f, 0.872575422156333f, -0.443572567528656f, -0.0487937634747691f, 0.283986553648095f, -0.170910821134099f, -0.329867000423004f, -0.982322841409943f, 0.555344201026651f, -0.351964643393940f, 0.776172688776518f, -0.148102477734717f, 0.889532618676503f, -0.310979434517253f, 0.711839903052208f, -0.646385596147085f, 0.145592596381502f, 0.233949589173221f, -0.825471565980294f, -0.370248763132654f, -0.777194557275684f, -0.224658064754195f, 0.263281286751478f, 0.849661910468068f, 0.271261490445121f, -0.915885420717958f, -0.947144520818678f, 0.227960459606299f, 0.784463828083640f, 0.995882406349565f, -0.987273766396493f, 0.0792453274840108f, -0.788403526960056f, -0.619975942121645f, 0.801181796307713f, 0.967884377026145f, -0.781223064263388f, -0.300716486479280f, 0.994748932974184f, -0.200152360574411f, -0.101898131541608f, 0.542914585925881f, 0.407729967031792f, -0.105215843903154f, 0.638066037611924f, -0.563777780161298f, 0.134189395993685f, -0.503320561486155f, -0.0379170306314711f, 0.723638115686875f, 0.747948383928228f, 0.928239905995551f, -0.736883772878758f, 0.892242913709735f, 0.468998243295705f, -0.224406388545097f, 0.758754382878863f, 0.994739001052496f, -0.749837906573089f, -0.938777322178786f, -0.619168635741936f, 0.827875717654585f, 0.294033159230782f, -0.372766318349126f, -0.292752124932124f, 0.396629951868878f, -0.986760927173237f, -0.0841834195975009f, 0.999760803826313f, 0.0142305924173638f, -0.820393900206961f, 0.409972278573230f, 0.227315924377402f, -0.641500351639361f, -0.470788010535406f, -0.486171076557593f, -0.758140688442947f, -0.971539708794928f, -0.949039718833189f, -0.146844988902767f, -0.0183627478820223f, 0.402918762093981f, 0.0620266698060286f, -0.182527786403967f, -0.374395326540229f, 0.566584207940253f, 0.879546558847970f, 0.853360173786566f, -0.515321950652696f, 0.511692631053674f, 0.342152084355850f, 0.374686420595610f, -0.794372980760555f, -0.648670375991101f, 0.761192158420166f, 0.223791993225057f, -0.342720055148453f, 0.965612513218950f, -0.796193009647904f, 0.215057114709867f, -0.0459498239576994f, 0.871047701509015f, 0.664672380241520f, -0.546301701630944f, -0.939910946986200f, -0.213195706858966f, 0.559543622118596f, -0.255844807516886f, 0.509576048776352f, -0.699005089750431f, -0.520317652140772f, -0.924306703712950f, -0.923814193467638f, 0.868401299001930f, -0.571229497763863f, 0.984740691690212f, -0.911782692220985f, -0.265295471266664f, 0.0479848731515942f, -0.195328058836883f, 0.758281465939343f, -0.418177229854869f, -0.263323557662932f, 0.0230762644115943f, 0.382605016442608f, -0.576209059863238f, -0.739785100410209f, 0.0956412509899256f, 0.0369702493097637f, 0.0738922616872486f, 0.589371657036664f, 0.548586250623500f, 0.996096574632666f, -0.574178408335425f, -0.827059309028347f, 0.600283403682961f, -0.0651062813338117f, 0.985857002071398f, 0.982700721670305f, 0.777628710286989f, -0.139415722014730f, 0.951156387462424f, 0.806391217144736f, 0.135433009714206f, 0.252388414319270f, 0.485541324740928f, 0.270688932431637f, 0.892850103229909f, 0.440168171407923f, 0.515384398158669f, 0.600884162546465f, 0.947986221531091f, 0.339440884303404f, 0.403857490690436f, -0.937015609644647f, 0.729529495316627f, -0.389601866986821f, -0.420712615666380f, -0.763003723744745f, -0.0619534667970105f, 0.486654476027536f, -0.943536854881494f, 0.471171699317719f, 0.996886209046820f, -0.945316270673373f, 0.230772742042993f, -0.621222111022648f, 0.838934157721328f, 0.124035987915113f, 0.737576768711407f, -0.217898078842006f, 0.0429859145211120f, 0.223685413947773f, 0.820073956039170f, -0.378381145423743f, -0.335672684173821f, 0.649791267584388f, -0.457253860252872f, -0.664776842833046f, 0.150429615666837f, 0.974812973893170f, 0.00119972362050369f, 0.140744912838368f, -0.252632269055503f, -0.124205752907507f, -0.383194456927254f, -0.356455432479067f, 0.0694989880525767f, 0.188230048541949f, -0.854592697407303f, -0.902559387772971f, 0.454054169179423f, 0.534684767654295f, 0.806837289706952f, 0.274203715752641f, -0.765433763984323f, 0.459365005291520f, -0.896797218412250f, 0.382900474341852f, 0.169400421233177f, -0.184111368111075f, 0.0323514487432812f, 0.621015577938758f, 0.139872518806323f, 0.480965263781330f, 0.0649386999855643f, 0.815365754221614f, 0.761990264098834f, -0.0927412249348933f, -0.580853742457387f, 0.211615321410605f, 0.165159968106305f, 0.305515629345863f, 0.725748395743965f, -0.667649812347274f, -0.621843189978885f, -0.939317191264789f, -0.197108718554958f, 0.902152006895939f, -0.889744652803018f, 0.667113256888905f, 0.929471703711725f, 0.660025836042506f, -0.0712223078913006f, 0.416152292126436f, -0.602223852277700f, -0.828462878627106f, -0.956915163338265f, 0.298196541541469f, -0.933863927954050f, -0.198745190221695f, 0.749101206471011f, -0.922366396086261f, 0.769953026855636f, 0.971459582749177f, -0.226637139032289f, -0.593509265485619f, -0.635649447577657, -0.443127775644156f, 0.350464269654307f, 0.379979516655134f, 0.896282784801247f, 0.00871209446887344f, 0.401818712823609f, 0.815422566258939f, 0.215868289995843f, 0.682217845700443f, 0.508819667108007f, -0.988484263336122f, 0.216656890144568f, -0.185777888700071f, 0.522106353117928f, 0.894211314619113f, -0.779300881699217f, 0.137801937535128f, -0.818740955579722f, 0.637214461095055f, 0.187867696634722f, 0.184985729971243f, 0.315323389557324f, -0.0312525033775366f, 0.498559120407008f, 0.855778208118391f, 0.936851170962385f, -0.0524308158818188f, 0.257087262622978f, 0.816141818246927f, -0.147192803443011f, 0.194545158383538f, -0.655428449892669f, -0.650441844539509f, 0.536015423540886f, 0.0250060573607953f, -0.863380305825989f, 0.0605420782823460f, -0.963662464088496f, 0.689136717877590f, -0.929664162821947f, -0.327349437742288f, 0.713122240487331f, 0.765587094162777f, -0.314350325341316f, 0.409992519686522f, 0.753377832105546f, -0.756848529995586f, 0.760787899507869f, 0.512213162407276f, -0.674820237484644f, 0.560776719592082f, -0.874905891603855f, 0.925202682923872f, -0.907405002733482f, -0.575836335118172f, -0.248173888600965f, -0.187923239740639f, 0.230951002247789f, -0.540190666146588f, 0.390890663320481f, -0.705511708249712f, 0.0980457138183717f, 0.879979753648798f, -0.378326046226794f, -0.645363625221967f, 0.883365508962968f, 0.728720763588748f, -0.191571576393619f, -0.941989254130187f, 0.944312154950866f, -0.367184985473008f, -0.974124559264444f, -0.579946765132286f, 0.509825236656578f, 0.952047194261820f, -0.0955445631918663f, -0.00500764501201401f, -0.00111382665477655f, -0.0404281661495578f, -0.265706359102834f, 0.865881843285797f, -0.947915521623861f, -0.820337973623839f, 0.0843747524022067f, -0.948599514028391f, -0.464018526769358f, 0.600790429663803f, -0.0779017384430381f, 0.756949801920938f, -0.955436496929340f, -0.553346424499498f, -0.401256107066610f, 0.569624108543687f, 0.179455179577041f, -0.189386842296675f, -0.467166492259358f, 0.367644583467601f, -0.722338735126514f, 0.863903729827081f, 0.0631027352569811f, -0.982269235503679f, -0.837788470642698f, 0.421730643738386f, -0.671745211565315f, 0.858467932275763f, -0.745298219348761f, -0.659594977600028f, 0.403238381269873f, 0.951987904652099f, 0.228887404582426f, -0.331665752024408f, 0.794789885033899f, 0.669978127515269f, 0.977583870328654f, -0.346398989178462f, 0.692053246433782f, -0.159407706019695f, 0.710808563527500f, -0.555701359319642f, 0.625665798239905f, -0.711048329414687f, -0.672431532474912f, -0.474897384314332f, -0.196250611816064f, 0.902140605659856f, -0.459732035217428f, 0.651412290305649f, -0.686137550630920f, -0.803228611526547f, 0.371120664039117f, 0.289869860968561f, -0.720979161638185f, -0.0940498575417996f, 0.185025844935128f, 0.401524077274769f, 0.811721346556136f, 0.224659861626089f, 0.106438807548742f, -0.117458956991326f, -0.407361487623449f, 0.683891165426988f, -0.216582410631386f, 0.710644530504861f, 0.867797453793643f, 0.626683550176870f, 0.115061097783331f, 0.976742668387085f, 0.250700864990527f, 0.272723539841862f, 0.159923684669346f, 0.167713264013185f, -0.445764377935606f, -0.489538472614810f, 0.227880894824940f, 0.670702116476237f, 0.610361511284318f, 0.503801949624464f, -0.687816091694902f, -0.0413765153535617f, 0.155769004545734f, 0.921910233366689f, -0.467299226678025f, -0.991984541712805f, -0.527009262324220f, 0.248157897392517f, 0.661145853979517f, -0.975947426744844f, -0.242453990684693f, -0.277956284573619f, 0.162010437415540f, 0.889456199489152f, -0.171259539670729f, -0.0636124576727060f, 0.311318764402696f, -0.227771282875219f, -0.567702050585727f, -0.132881625149059f, 0.870846950418812f, 0.440078398779761f, -0.0908818839265000f, 0.410077545060762f, 0.917678125288724f, 0.975295290129489f, 0.736514272579886f, 0.653896379317074f, -0.166512942888681f, -0.218665383726096f, -0.0688642360506688f, -0.596589868100824f, -0.180873413844075f, 0.229002598511067f, -0.647630976455599f, 0.722615884501717f, 0.760194030884127f, 0.253262836539679f, 0.0734191803957118f, -0.941427952376035f, 0.224118866807764f, 0.634990976599086f, 0.538622500570355f, -0.591487367587299f, 0.829253069890529f, 0.426659996899884f, -0.562435396124737f, 0.924178169394878f, -0.693964899988321f, -0.520472617448914f, 0.845157115508053f, 0.162984246343684f, -0.212032053476592f, 0.0482566706558292f, 0.820584028875367f, 0.676120066619505f, 0.590174358812695f, -0.457289938956925f, -0.351282540371674f, 0.322162683499620f, -0.683726196205246f, -0.279636659553935f, -0.186133028676429f, 0.965481755833750f, -0.0550172560314044f, -0.437844829991532f, -0.448670532146325f, -0.438916826946834f, 0.830205353164842f, -0.0125988502002286f, 0.733716462327519f, 0.870000673588185f, -0.189915082276716f, -0.676269331249200f, -0.336432931956768f, -0.288892891213265f, -0.912569275291884f, 0.509853767908707f, -0.658452317958678f, -0.562848133961047f, -0.102082581799095f, 0.904062026055565f, 0.473339990381854f, 0.210234896873676f, -0.0884007008398613f, 0.720872020499257f, 0.538315255331760f, -0.884485227439286f, 0.160844002639634f, 0.625863524205804f, -0.947487159926400f, 0.362643826956149f, -0.189913270725334f, -0.110428721523612f, -0.666510263156819f, -0.214827103263521f, 0.912669747474334f, -0.973896103049543f, 0.665373714127588f, 0.148135031012834f, 0.126524689644449f, 0.00283763548841764f, 0.312700495893193f, 0.579520771033243f, 0.677583023476560f, -0.779567427807191f, 0.0694994546110597f, -0.298762697062437f, 0.655210050716681f, 0.435909078048151f, 0.322095567178671f, 0.764827170021089f, -0.713736794113842f, 0.992844460358584f, -0.735915506109616f, 0.280204875392391f, 0.584446532772711f, 0.796955505835788f, 0.742508124239176f, 0.0785523490091065f, -0.562359397016753f, 0.874448473576734f, -0.794251927759664f, -0.658767152705445f, 0.120015806343044f, 0.662372174700575f, -0.719334975225296f, -0.663474261357014f, -0.637663874969148f, 0.706137632813821f, 0.734790814693796f, -0.449118755654663f, -0.758125670003823f, 0.719059339327447f, -0.228679956701166f, -0.0782671261690160f, 0.637830522744746f, -0.178696376536345f, -0.848273935253246f, 0.840882430630200f, 0.977813953976437f, 0.565474986185913f, -0.807314895274907f, -0.100534840844589f, -0.436186956483089f, 0.854663592026441f, -0.547576146320248f, -0.621784076386717f, 0.688687549426321f, -0.688962085987764f, -0.998914668418794f, 0.751493418398842f, -0.203018738091861f, -0.881317097659280f, -0.422480898609404f, -0.321074554557095f, -0.759379357125740f, -0.806503084491033f, -0.496837315822352f, 0.217087355208111f, -0.776801484423500f, -0.445747498145286f, 0.710204776554782f, 0.274276964033182f, 0.650397224484409f, -0.709395921248168f, 0.862663541330686f, -0.946166202558813f, 0.826638502366159f, -0.450587332736099f, -0.808257632193740f, -0.414360554482101f, -0.471118187583276f, 0.981592919290155f, 0.192794908371370f, -0.314979855997427f, 0.722518962804398f, -0.795914669179603f, 0.121447532644509f, 0.0446893237592363f, 0.651720955387594f, 0.897128141094619f, 0.283834144643742f, 0.369570391543943f, -0.163784005163726f, -0.799144231493300f, 0.338136741961422f, 0.795991730702685f, 0.601735561139351f, -0.556654767533027f, 0.907044495725416f, -0.374604065784494f, 0.814308532452677f, -0.254295412850351f, 0.443103437041340f, -0.0218296619602199f, 0.826728672505738f, 0.773205771668962f, 0.171909022893217f, 0.497670481959597f, 0.954178712898056f, 0.0840098577761919f, -0.705861127301893f, 0.145663865959608f, -0.436204975766037f, 0.479359595998989f, -0.719493824988072f, -0.523146212355768f, -0.917822711649927f, -0.610003715217602f, -0.192266667446473f, -0.377507163265653f, -0.250419291332051f, 0.873627391381727f, 0.922899703740095f, -0.902411671519496f, 0.285830821349708f, -0.577368595723736f, -0.598296174995687f, -0.0152478418690674f, 0.503725955636280f, 0.946501779740920f, 0.261108140547963f, 0.206258978593364f, -0.887022338332430f, 0.989187042741485f, 0.461764104690670f, 0.305280284664753f, 0.243972878436235f, -0.573704516784209f, 0.111805651228880f, -0.373590027525854f, 0.574564836347642f, -0.712884790778729f, -0.0570130063179222f, 0.244209425500712f, -0.717492787619277f, -0.476920207759357f, -0.444169983027413f, -0.254851417015366f, -0.505678630542571f, -0.953549022234155f, -0.0316841901798541f, 0.198256779602804f, 0.151938229162240f, -0.0259028503944394f, -0.799645893003010f, -0.889308912372168f, 0.339221517072804f, 0.904784479404768f, -0.367330903112591f, 0.866281762131661f, 0.112765232993802f, -0.0852946527317187f, -0.283538359072154f, -0.734951426632046f, 0.502970854898684f, -0.541434927857400f, 0.881496286285600f, -0.227404039639917f, -0.636983936776183f, -0.0799774217214970f, -0.833780310813424f, -0.222787370954425f, 0.433143783060434f, 0.0953330524947187f, 0.965400264971588f, 0.308927931247299f, 0.344316393259575f, 0.122880788538352f, -0.898509922382301f, -0.187062523329053f, 0.705352247460646f, -0.817811000761718f, 0.303714513401701f, 0.714863075518907f, -0.00862372607283035f, -0.842715848975590f, 0.816504077307885f, 0.924594085591125f, 0.334618732730041f, -0.212414743241377f, -0.758289625449925f, 0.586405661412351f, 0.909247363444287f, -0.800422609846793f, 0.397430897916299f, -0.408827454151232f, -0.411913213123543f, -0.602703152770135f, -0.893591462026327f, 0.417648762458765f, -0.766362696266534f, -0.166060103951854f, 0.883234167729589f, -0.0741908774062401f, 0.113912882075078f, -0.268248292164738f, -0.825585719915457f, 0.885446166477969f, -0.996523379251940f, -0.000841720632677401f, 0.940286529247477f, -0.528330498750176f, 0.0938880690147421f, -0.966296878893937f, 0.891956527154360f, -0.483384605653306f, 0.257210342748458f, -0.820220338820906f, 0.363913841603935f, 0.0364865250689275f, 0.0619156958713947f, -0.645447937080250f, 0.548279343062761f, -0.289526240449473f, -0.506780094171335f, -0.901771170107367f, -0.437874075223813f, 0.748512212111141f, -0.529884246718074f, 0.924062132675193f, -0.365432219122282f, -0.263296006595835f, -0.927083881647913f, -0.192737974697553f, -0.450051159199964f, -0.543528645806642f, 0.834976909049276f, -0.426975046433596f, -0.361056079272416f, 0.883880063360531f, 0.680380429911630f, -0.553642515320953f, 0.548847108935282f, -0.357430246936948f, 0.210445016993628f, 0.949511601115471f, -0.611278947360487f, 0.344744934459962f, 0.0684247970496175f, -0.877154656281116f, -0.521992702610556, -0.0303764312006813f, -0.647220068176984f, 0.693175336224119f, -0.0955602614554496f, -0.765579758912278f, -0.821318118938906f, -0.220936603794347f, 0.159013709512021f, 0.0222743973539492f, 0.569438412513281f, 0.896083437551563f, 0.973699071868637f, -0.403438951991928f, -0.976931032127622f, -0.0720613180573018f, 0.0788813367661694f, -0.430781354548607f, 0.580378296309349f, -0.175446689199481f, -0.256743557012462f, -0.696667845393283f, 0.870473046831235f, 0.146660713923108f, 0.277741407197705f, 0.502075064404417f, 0.396530064046844f, -0.000209092342246420f, -0.977003947244262f, 0.451457326960000f, 0.420509664462095f, -0.0826395067671402f, 0.461120688156973f, 0.786867285802415f, 0.429254905841222f, 0.894426863739026f, -0.670297281923597f, -0.833650409296060f, -0.908588009702110f, 0.516311115539149f, 0.975234001829324f, -0.532953533466378f, 0.775291582519158f, -0.0136022600428900f, 0.654817093112596f, 0.363512141498233f, 0.624779024037534f, 0.0237004661473674f, -0.172570506046968f, 0.401807838319043f, 0.997391258152958f, -0.553969395939123f, -0.415425175833161f, -0.758032843655304f, -0.482766088920005f, 0.637574309072414f, -0.729000055114342f, 0.699851428676091f, -0.827508053421131f, 0.900655803848482f, -0.431149800814228f, 0.0369409101983413f, -0.378608101457895f, 0.237564147838841f, 0.533020461112441f, -0.280269627508005f, -0.864065787343603f, -0.0381481642453043f, -0.566886547530062f, 0.539727700361167f, 0.166859339425035f, 0.850080295054718f, 0.384690146030125f, -0.384995288415294f, 0.303656036600558f, -0.580297619022502f, 0.0649069482840878f, -0.162922327392773f, -0.235019427063355f, -0.265468718118809f, -0.121827312187455f, 0.0416628805824146f, 0.343481543012411f, -0.251429566892972f, -0.868100204320718f, -0.802636407512128f, -0.549547579028752f, -0.570017983863503f, -0.853634311513627f, -0.564570567173235f, 0.955944215494794f, -0.0930750790375956f, -0.160319122401953f, -0.640886790354213f, 0.798634607857513f, 0.503051518023559f, 0.765247226736789f, 0.909476811674882f, 0.677590253114963f, -0.110641683440517f, -0.336445241915220f, -0.684064840782028f, 0.962285048920031f, 0.883303701653897f, 0.981819291389659f, -0.597290928759656f, 0.215792997443025f, -0.847656608719347f, 0.679887992445640f, 0.299901700372808f, -0.677306526467426f, -0.348340058872692f, 0.651490451411335f, -0.133387041637395f, 0.718311240322040f, 0.0869279817052975f, 0.155413706090559f, -0.869119988858735f, -0.566773040844476f, -0.0513826414151206f, -0.368087669232071f, -0.978175512831125f, -0.229213501073727f, 0.344608572405871f, -0.663307667219997f, 0.437238632879575f, 0.00205230197288353f, -0.0897076092856746f, 0.834529513214144f, 0.131872357342232f, 0.113081940417244f, -0.418620232731326f, -0.317993033651213f, -0.740303025960662f, 0.423423655701288f, -0.300833032468860f, -0.458960388256530f, 0.692670405117589f, -0.559944357561921f, 0.0168623577148430f, 0.568661331088367f, -0.385055363002398f, -0.356055436463140f, -0.794446573681063f, 0.908870080953069f, -0.295500656666577f, 0.800625150733729f, 0.206307902542489f, 0.729591183391974f, -0.0655746333947396f, -0.261707022686154f, -0.802380330579914f, 0.0812359238243023f, -0.00528231140765212f, -0.725740453383981f, 0.919076065030463f, -0.896497189839174f, 0.861919731820265f, -0.804273875755869f, 0.230339021648310f, 0.296779613186519f, -0.349872572510143f, -0.270230381483447f, 0.0368924200249658f, 0.581340248642417f, 0.943620537648739f, 0.715012058065301f, 0.528414993233909f, 0.695917111744314f, -0.634354198968852f, -0.483786223099716f, 0.565405035681248f, -0.530076864213017f, 0.363019522302994f, -0.825556544716473f, 0.891096876998683f, -0.990692760548295f, -0.450641405862313f, -0.597008073985341f, -0.464377765418678f, -0.942926913464693f, -0.871399725569805f, 0.232335933943403f, 0.858786794807406f, -0.528589179815518f, -0.324757177062634f, 0.595880088750788f, -0.976574570427974f, -0.423824220654658f, -0.832990206908489f, 0.198704682807118f, -0.168244652325292f, 0.843066822744011f, 0.0912498543932607f, 0.485570815146582f, -0.104653316420662f, -0.623461298489716f, -0.807713596811018f, 0.737782734425857f, 0.456364368166532f, -0.430703367862900f, -0.188953991637209f, -0.827984282695373f, 0.0246267653665548f, 0.891225605267640f, 0.910600867999638f, 0.345236086687552f, -0.600682365520065f, 0.833182106437698f, 0.213749250288017f, -0.0866339102562885f, -0.618385082289017f, 0.859527120927500f, 0.749978780964161f, -0.334770513867011f, 0.242140166670949f, -0.196268320459958f, 0.611789869603675f, 0.655057159657307f, -0.603759576722096f, 0.614654509385217f, 0.144145218488192f, 0.959930150756613f, 0.485009777784726f, -0.564230295010912f, -0.404716165405314f, 0.0442672151313601f, 0.929486639423805f, 0.409386317338224f, 0.527053707674182f, 0.899087569745327f, -0.933259779365388f, 0.265159475034860f, -0.858300862890810f, -0.870994388031662f, 0.354868177430506f, 0.00956840260511749f, 0.429740959889133f, 0.649668163567379f, -0.744532888765288f, -0.967499901569196f, 0.556703631745254f, 0.535130550118618f, -0.639502350153040f, -0.604586469532735f, 0.0799683564329623f, -0.156074786599444f, -0.348308700325411f, 0.217829052228100f, 0.545642400171123f, -0.303317700019152f, -0.473220675222451f, -0.239688108834945f, 0.0998500862725149f, -0.962734081833842f, 0.870743993144299f, 0.464578557934316f, 0.184511089576136f, 0.559729843314504f, 0.0702052363354577f, 0.632714874625648f, 0.212930743289312f, -0.454606863365109f, -0.592679055778218f, 0.287649993384466f, -0.457293694071368f, -0.423493046785686f, -0.0674763327876298f, 0.242131064298176f, 0.488581911885965f, -0.464567743213882f, -0.387515661812354f, -0.914585596974616f, -0.255803162310627f, 0.941267268311980f, 0.690278917089395f, 0.302397314111962f, -0.178461434689705f, -0.949279941481428f, 0.160440202901122f, -0.970582196769486f, -0.0119478205074164f, -0.206440255898676f, 0.221640403444713f, -0.819801447827624f, 0.263614394802488f, 0.616376195532700f, -0.596859494305351f, -0.118659509995453f, 0.458168997595326f, -0.0400474705134108f, 0.934465050133603f, -0.852936731989621f, 0.0191637795580570f, 0.298534793677081f, -0.857491630206749f, -0.0141198383157879f, -0.365027350962024f, 0.450964838023674f, 0.351383095290905f, -0.387039947149600f, -0.983994933095116f, 0.610531582220017f, -0.0446025524732094f, 0.216718014780746f, -0.676819246943449f, 0.0385619292249610f, 0.192482456707739f, -0.288809653393521f, 0.241774557042318f, -0.444638770943313f, 0.535319194413803f, 0.374773141606987f, 0.186364279454450f, 0.0701814972821988f, -0.452753172654203f, -0.350918291268194f, -0.332963791049667f, 0.179301863965318f, 0.954101654404080f, -0.687960044344130f, 0.611454049205213f, -0.696789567124132f, -0.551566492897529f, 0.656434797122885f, -0.601779335396959f, -0.265656331560395f, -0.528821434638507f, 0.153601151147409f, 0.514739334540489f, -0.0517769842323894f, -0.659246830986894f, -0.453055366696259f, -0.0515886000780059f, 0.958478845408115f, 0.0221452906045994f, -0.159960643390796f, 0.816263632871352f, 0.245244170325114f, -0.0919839688704780f, 0.947170598807362f, 0.846772793441790f, 0.247105133025056f, -0.801972939368103f, -0.224977420586025f, 0.130099925027197f, 0.497816036746753f, 0.308139730113712f, -0.0536876417759813f, -0.492022090866895f, 0.188938438822753f, -0.400894058284033f, 0.314370104391157f, 0.618580768947071f, 0.830051263404639f, -0.228700130023340f, 0.811855169643177f, 0.0924092179787017f, 0.273652523319809f, -0.0624274843235475f, -0.503696982048589f, 0.510545161203341f, 0.341823133345436f, -0.437486933663093f, 0.0134072800031224f, 0.613837993234983f, 0.740945655313894f, 0.135311460882606f, 0.464832228842466f, -0.973962843371452f, -0.519388256678232f, 0.631469277357519f, -0.936937468616713f, 0.208677911871604f, -0.0946010975796272f, 0.560587233611855f, 0.230925763372331f, -0.637408482848184f, -0.679175194353885f, -0.408696637706987f, -0.0837464598184048f, -0.911070817707239f, 0.985815432104941f, -0.208807972878988f, 0.741966810464688f, 0.162772839973564f, 0.717702638881939f, 0.490767958961575f, -0.835565390813677f, -0.878516167634055f, -0.956727838876563f, -0.00772081382858891f, 0.355227897612178f, 0.202889185809854f, -0.431078767653467f, 0.106936101717808f, 0.354494042302258f, -0.619623833602791f, 0.193065593078352f, -0.105803087758606f, 0.151828327005194f, -0.141094922099930f, 0.847569902283069f, -0.656683924792181f, -0.880754505470701f, -0.421714047610595f, 0.681762288858050f, 0.633712681698887f, 0.947060360650644f, -0.959122611588459f, -0.0690574969687099f, -0.805062392278087f, 0.226501754467861f, -0.414732397455275f, 0.242398867364043f, -0.831838824773804f, 0.00787391802290793f, -0.860692119913991f, -0.391321299589110f, -0.0548681430681355f, -0.992920640472037f, 0.0975642331777702f, 0.894630836703243f, 0.767919825689366f, -0.260878774442215f, 0.407457430171103f, 0.140688657702825f, 0.737494845272763f, -0.650969054257040f, 0.230613259000797f, -0.0986876345046772f, 0.0996951163848971f, -0.679173062298700f, -0.760174222364469f, -0.613840714529317f, -0.692138390397415f, -0.0919103790884603f, 0.0259548517830916f, 0.463763807478796f, -0.859327137970617f, 0.298600182982665f, -0.591236092977368f, -0.994984881037264f, -0.0533840054951049f, 0.544979189292485f, 0.652482875230260f, 0.897548627394727f, -0.340241293753474f, 0.508237349558163f, -0.611986702936889f, -0.399952468536369f, -0.758494484998191f, -0.148960755782999f, 0.895231513826071f, -0.870487943961511f, -0.172763884748068f, -0.652702954266129f, 0.784450103085903f, -0.428504279168614f, -0.347266234450861f, -0.0897193897382391f, 0.760686883857503f, -0.0863659842493281f, -0.453544362916610f, 0.713112885874267f, -0.529914378597266f, -0.134507787695203f, -0.590955798880753f, -0.372583442870916f, 0.646730663631020f, -0.809515553972267f, 0.0226873348847205f, -0.209338539804651f, -0.737170063193136f, 0.365916689978321f, 0.658019395382111f, 0.733982378695990f, -0.579926149814113f, 0.973814182111372f, 0.933875763922095f, -0.985234946636757f, -0.103124599698243f, -0.798304574918884f, -0.119705341414667f, 0.205941898284561f, 0.111088288053652f, 0.418598493379981f, 0.309112287901667f, 0.0865232803642195f, -0.281174085998345f, -0.158426951248790f, 0.156672456990889f, 0.608691108739118f, -0.124654784531448f, -0.372060827503666f, 0.555750853569654f, -0.481715370485256f, 0.411012047999522f, 0.265636511301544f, 0.164466400718006f, 0.427292785417094, -0.407665783814271f, 0.0463239131527564f, 0.0109249300633605f, 0.0949704798708169f, 0.223291931618591f, 0.708651599857453f, 0.810927407452143f, -0.298811874805995f, 0.347215272448441f, 0.778225160999446f, -0.981258755328673f, -0.629231280170021f, -0.948786159268210f, -0.0530522786747270f, -0.665046033882002f, 0.776993795678436f, -0.604492154463805f, -0.906360689482177f, 0.543616910115371f, -0.501547360013149f, 0.571784796850774f, 0.868511495621889f, 0.783008382563488f, 0.571870376568081f, 0.0471150346240308f, 0.402433510592678f, 0.661353159662286f, 0.0253381317208246f, 0.720141243708461f, -0.478805385943742f, 0.989639021624774f, 0.538614599364854f, -0.282810721919526f, 0.888399971333007f, 0.118572990347886f, 0.564528382703688f, 0.988296121763412f, 0.509638594649021f, -0.797738059997026f, 0.0363326380089621f, 0.978315833815278f, -0.483368013204689f, 0.879051054425480f, 0.632539830439323f, 0.722677742708361f, 0.578919286433726f, -0.250721628167261f, 0.534435049744896f, -0.0404568429105234f, 0.00805525426120179f, 0.841210870775473f, -0.731771544679396f, 0.713758914490801f, 0.830250762535296f, 0.436563669872217f, 0.567024378980237f, 0.983941121609744f, -0.253548560865555f, 0.647105012325159f, 0.434994339049196f, 0.130837710207442f, -0.775136733344706f, 0.234917279141211f, -0.498429841761386f, -0.273571256415041f, 0.247467425899991f, -0.970396693506149f, 0.975835855884816f, -0.347896516486866f, -0.552856369180847f, -0.887336234316568f, -0.573271015958957f, 0.910862901097874f, -0.807236601077904f, -0.523971593712952f, -0.263589563369279f, 0.591056276091253f, -0.320168527954128f, 0.726795865615521f, -0.731502115921006f, -0.942225519371229f, 0.268573107637337f, 0.380348127119473f, -0.284539943611895f, 0.117478291379931f, -0.817442486350524f, 0.0734705767013011f, -0.626880755668906f, -0.873066996524459f, -0.528675805715351f, 0.490255491577847f, 0.398142666604162f, -0.911320079669940f, -0.870350237514323f, 0.854587452657144f, 0.736349579728106f, 0.948232845958681f, -0.00126774478569258f, 0.905641169934000f, -0.965500575551565f, 0.0831330388550517f, -0.892713267782484f, -0.277958019172831f, 0.312987842344813f, 0.484268977417485f, -0.365960524226328f, 0.177956605738091f, 0.913776767689874f, -0.897537691614058f, 0.473075982698961f, 0.913190042662185f, -0.00843862630950820f, 0.972679442298938f, -0.856058592202917f, 0.264007224067230f, -0.138444823656136f, -0.386195416368251f, -0.286657907928107f, -0.231200657384828f, 0.917365701941188f, -0.271317547281263f, -0.252691685075831f, 0.893742787021399f, 0.512463051119608f, 0.979155111008605f, -0.472272776864686f, 0.238767541974988f, -0.672234403865928f, -0.846783135777377f, 0.0877594573148737f, 0.493055606176910f, -0.289012308379085f, 0.416463895880697f, -0.0795051375851281f, -0.476692131327163f, -0.430471976159529f, -0.701875030095239f, 0.724684336417516f, 0.984802039066595f, 0.798285421773762f, 0.000509924988974175f, -0.0852199551444761f, -0.709724122158260f, -0.332735158942919f, -0.741119907407496f, 0.729608513555970f, 0.500578022862182f, 0.520862987462710f, 0.565678561009731f, -0.393741545311224f, -0.568866018100912f, 0.571654318026290f, -0.817900961532165f, -0.793268461448962f, 0.614914392385859f, 0.763415306986536f, 0.450074180772758f, -0.737435729799608f, 0.841185794339245f, 0.894276069286366f, -0.276262284222369f, -0.798623475612628f, -0.280994234105732f, 0.821175230597885f, -0.474251640366966f, -0.190039801864015f, 0.0663032720971493f, 0.884162053156770f, -0.162023139878049f, -0.963135153785511f, -0.582213329804047f, -0.328536493809765f, -0.938405687658462f, -0.0171569611327957f, -0.727260847907578f, 0.419920927745257f, -0.361592243835530f, 0.476989471873569f, -0.146161675185107f, 0.431817832405826f, -0.371528849369885f, -0.940567978751516f, 0.165203770962029f, 0.781321525273307f, 0.0585592625092357f, 0.573299596753579f, -0.378869924017182f, 0.523139576520889f, 0.385605607116478f, -0.235893429970747f, 0.285814921067909f, -0.121941292771133f, 0.621558611608942f, -0.0860979132283732f, -0.627097832687809f, -0.312083243705910f, -0.494490796681559f, -0.987187334387934f, -0.0804474888246625f, 0.496400656176795f, -0.851811189314651f, -0.791398271297849f, -0.868174317799275f, -0.226794668997878f, -0.335339474552766f, -0.276765924750817f, -0.395876032147377f, -0.740529136126816f, -0.167799472110453f, 0.593129248263724f, 0.336783120133436f, 0.248892158925787f, 0.950120283075237f, -0.795216613504226f, -0.574731116508357f, -0.822689608026685f, 0.973698546284335f, 0.125166556654624f, 0.588150318080073f, 0.128654744345192f, -0.219207714307262f, -0.271053050307713f, 0.124071241265810f, -0.618209718015327f, -0.766619799595349f, -0.478340220431165f, -0.446873929629545f, 0.978019432749647f, -0.627041040766022f, 0.169323691066764f, -0.714079827532216f, 0.386101296128268f, -0.360225804976135f, -0.236797717782837f, -0.311635747131794f, 0.0482888201705840f, -0.477302740867809f, -0.427349080854399f, 0.390352470816329f, 0.611790541936623f, -0.648292156214605f, -0.345871618789073f, 0.509300603302844f, -0.0142202703124219f, -0.570248077753979f, -0.0629178211029751f, -0.737806048037047f, 0.497750084049821f, -0.761650107803135f, -0.788756591098617f, -0.994497286039420f, -0.987344273533962f, 0.657151987467984f, -0.763708299084062f, -0.0729359162118841f, 0.0455275633022023f, -0.101919187896584f, 0.457804242981095f, 0.0117715388281796f, -0.274125197027132f, -0.949738804931191f, 0.762108173886486f, 0.405150754308562f, -0.733330375873553f, -0.712774896799572f, -0.791947616412901f, 0.444023894424500f, 0.00507562975249609f, -0.900698136223538f, -0.576055334977054f, -0.948895529956106f, -0.832665060374124f, -0.992753953473078f, -0.0674086978315183f, 0.569494111501383f, -0.962269067721443f, -0.489700810475570f, 0.972626508328545f, -0.777400448149780f, 0.115588644128954f, 0.0730469703310024f, 0.523584488072518f, 0.659055312807301f, 0.134198234373838f, -0.797833055125151f, -0.167842823235145f, -0.662347837139732f, -0.537544370279756f, -0.622353549740796f, -0.789789664448618f, 0.985300123665319f, 0.862449845163424f, 0.973193986256980f, 0.148883268671144f, 0.283619537155083f, 0.508503183151258f, -0.246167305966866f, -0.259543094514413f, -0.778029136807597f, 0.128978622849116f, -0.920978818238085f, -0.116324837544276f, -0.261472397833253f, 0.772449038068069f, -0.696754008784325f, 0.980778877985902f, -0.227636956328402f, -0.472493776528032f, -0.568519858000960f, -0.151689463117960f, -0.102997587484899f, 0.464752146042376f, -0.839114793935065f, -0.0325074343587592f, -0.180618880765978f, 0.0132253638432844f, -0.646173464496730f, 0.821983901071593f, 0.657453744559881f, 0.786315172070382f, -0.438718096604728f, 0.702691078885442f, 0.859957412428682f, -0.505281395658564f, -0.236722160990303f, -0.698465568366759f, -0.746418979540090f, -0.218205126412646f, -0.808715244840435f, -0.949813739800491f, 0.176975348790769f, 0.723960974918154f, -0.139253733704369f, -0.387224393658603f, -0.869945438924443f, -0.396979039594941f, 0.0256060022407458f, -0.566074790002811f, -0.161564565183606f, -0.736189868188370f, -0.205593811665825f, -0.628996407588712f, -0.0266462623004120f, -0.344127255771429f, -0.229003801178142f, -0.469786561635510f, 0.258249378153965f, 0.160442939158622f, 0.0528817242116550f, 0.261960766261548f, -0.571069557415276f, 0.411333771884545f, -0.145205354714326f, 0.249324532476397f, 0.163889600722793f, 0.649915677347011f, 0.147077371087195f, -0.227104208942068f, 0.867390199578604f, -0.0734153565896754f, 0.0491208061060167f, 0.0360590744216485f, 0.181620126101180f, 0.0567549454976457f, -0.856976992549465f, -0.242511192726339f, -0.624770508991394f, -0.793161214564285f, -0.251208532727981f, -0.833192309869275f, 0.368166434661069f, 0.939730260791580f, 0.305796202211942f, -0.598830491282818f, -0.0575368190467946f, 0.371329658849021f, -0.227872714677810f, 0.707539568196379f, 0.795186297468385f, 0.475847791658551f, 0.829361555893632f, 0.405386540930889f, 0.213282954068900f, 0.767339023510319f, 0.525055513018554f, 0.259437496637378f, -0.524342591286100f, -0.731515526086696f, -0.233118783725590f, 0.237972339628935f, -0.933985285078109f, 0.537013420173496f, 0.498819465200784f, -0.407713459607516f, 0.382821417923595f, -0.416894700661466f, 0.0787266904103943f, -0.0627973593192392f, -0.320105342653426f, -0.844066834407447f, 0.138221622417319f, -0.676665423871596f, -0.961043785105959f, 0.832268610130385f, -0.905530890441773f, -0.114191325652611f, -0.376697124207843f, 0.390323137798417f, 0.953143142925101f, 0.983427991280007f, -0.0895687386326503f, -0.681543125061097f, 0.677131540142176f, -0.867715848764628f, -0.812718786220309f, -0.212509939486840f, -0.990002327123638f, -0.0682855560011961f, 0.129310729289606f, -0.623746296335073f, -0.285580241032587f, 0.235626081900812f, -0.611973228709249f, 0.539189737955466f, 0.970058678533189f, 0.901944358898624f, 0.168094826408153f, -0.666711281252260f, 0.965612752173968f, 0.651034558458719f, 0.687501917067508f, 0.758614314567106f, -0.839396045781239f, -0.552775028233564f, -0.528941743867256f, 0.174761156721889f, 0.243585712774679f, 0.588913151268911f, -0.306898192880627f, 0.921540023069231f, -0.0223654942298541f, -0.102408576957649f, 0.612577852207921f, 0.835809058447089f, -0.437118459197839f, 0.455316033239981f, 0.311435507416257f, -0.648992336007256f, 0.346823844785409f, -0.632080213667648f, -0.599678627679202f, -0.653822991854328f, 0.484305292443427f, 0.782046295685087f, 0.960987598814982f, 0.627169162605570f, 0.948092598306120f, -0.185268381817018f, 0.602489977060513f, -0.885827813790617f, -0.00179203147433582f, -0.175476447614991f, 0.0461282236560925f, -0.898013889602944f, 0.256310837914276f, -0.733422110056865f, -0.740091677658095f, 0.966724540497493f, 0.328056986822768f, -0.267854591449557f, 0.670545831663244f, -0.356204313297688f, 0.0729865206358908f, -0.594530723723669f, 0.519965324048968f, 0.0632129606097647f, -0.878434885663544f, -0.497945943395010f, 0.0151854050905818f, -0.218036856012343f, 0.547721213710874f, -0.0915514918588898f, -0.279344098401951f, -0.228654882218650f, 0.100432155997130f, 0.802024600677294f, 0.175832345686877f, 0.0551231013299744f, 0.938247319394824f, 0.639298571360036f, -0.291461603371678f, -0.853503115314794f, -0.604829242631156f, 0.0291571486740745f, -0.932575328418390f, -0.621235088415116f, 0.403040314052094f, -0.809695618266849f, 0.966605888732736f, -0.199254401023053, -0.540808222970056f, -0.0141840769249790f, 0.114579158224093f, 0.466889318471371f, -0.145415211797766f, -0.846707387707480f, -0.881237200733915f, -0.410798723199712f, -0.637697860299854f, -0.196366036081372f, 0.193267531425712f, -0.258591200841940f, -0.173003722066551f, 0.478121376006132f, 0.953819951501542f, 0.969916001975448f, 0.131515861287576f, -0.499829658784781f, 0.320952777516193f, -0.226980682212371f, 0.766886115655233f, 0.647310434110803f, -0.772594685974992f, 0.772645949480187f, -0.936357605801364f, -0.671842916281206f, -0.595127074295355f, 0.335132581825520f, 0.648964430112689f, -0.793376819398441f, -0.963663232647360f, 0.914308824314478f, -0.397663128784982f, 0.803240040231588f, -0.291039120047626f, -0.339918835846510f, -0.208620988780609f, 0.278177231697424f, -0.833157746552451f, 0.260554706029473f, -0.580537744139231f, 0.918561093477862f, 0.641368468308093f, 0.827379039283645f, -0.412231303854834f, -0.518315486749742f, 0.423356687848085f, 0.0777277584993787f, 0.394127392657178f, 0.609705410002715f, 0.264669032561337f, -0.460555696512027f, -0.0858908123066196f, -0.281781559603429f, -0.179777723960362f, -0.00449990348855067f, 0.803703377739133f, -0.155074032314596f, -0.00206139428833696f, 0.0661730930565525f, -0.737509215752079f, 0.620182143819587f, 0.114750705414661f, 0.545663051433958f, 0.661601724477194f, -0.592280382351976f, 0.609240020031149f, -0.968781019917808f, -0.668068368389875f, 0.206915551463500f, 0.0951453192552747f, 0.268580107578401f, -0.0450052302342363f, -0.933589842483940f, 0.236570492858402f, 0.0688734168318912f, 0.930163232697303f, 0.435953476823146f, 0.533759385687075f, 0.368282038662015f, -0.602312961473778f, 0.709516631712345f, -0.168303926671961f, 0.130670870119294f, -0.657736111745007f, 0.115028598388756f, 0.173728026281032f, -0.681671363429886f, -0.538786035950873f, 0.481457671665448f, 0.0136795278434168f, -0.570065342244344f, 0.188187050857249f, -0.352869308173680f, -0.979175308628854f, 0.223702879460018f, 0.994220466087713f, -0.147795166105729f, 0.218427535879435f, -0.120050826084179f, -0.0124939247430063f, -0.645134875027126f, -0.503122688484778f, 0.534123007328982f, 0.619710972635444f, -0.234248243706177f, 0.987144458053815f, 0.261284702576427f, 0.851827092094236f, 0.750019654249059f, -0.926154630610335f, 0.449356103243440f, 0.783011320523296f, -0.459228158107270f, -0.228877816937867f, 0.271108937592868f, -0.676085611673506f, 0.783114428240160f, 0.636093784021493f, -0.754110314308629f, -0.546386104880684f, 0.0385811136139234f, -0.768951137117397f, -0.644624743947807f, 0.00890157035391148f, -0.0792572116273387f, -0.989980668770044f, 0.603057533157075f, 0.280835727469123f, -0.634716709420524f, -0.712669415138995f, -0.424129916157595f, -0.436923748487354f, 0.467366013559791f, 0.907740481011987f, 0.788617065944311f, -0.152237692069130f, -0.963044404518533f, 0.907393322909416f, 0.806867676446313f, 0.699270310021791f, 0.107867603776547f, 0.127360747415417f, -0.502645789696788f, -0.511744166872327f, -0.121672719343072f, -0.596527146770249f, 0.410180172377510f, -0.852889849908704f, 0.278972213674154f, 0.0260156356783650f, 0.997558501949683f, -0.499245840292893f, -0.451169267624132f, -0.881643497362337f, 0.986957209874262f, -0.129608292321380f, 0.935829016346258f, -0.649021465281634f, 0.550436689069794f, 0.278888743082679f, 0.0137769346664500f, -0.660666060213522f, -0.416709136728042f, -0.302903068397225f, 0.180657445835459f, -0.908195955986293f, 0.280056533234627f, -0.660025789034158f, -0.798207438952561f, 0.901575224780405f, -0.608702932295102f, 0.318860199910414f, 0.874005722023406f, -0.0816057579181704f, 0.981671341873017f, -0.339234700161323f, 0.559717959858931f, 0.390363525109105f, -0.309384476087470f, 0.956563156784297f, -0.623734354817613f, -0.196627375289105f, -0.702076014509088f, 0.293098766889643f, -0.617152224560368f, 0.859117491438645f, 0.661015739867647f, 0.0747554166353739f, -0.282417009682732f, -0.667461537762524f, -0.451029960388404f, -0.464518668674360f, 0.591389440503293f, 0.552648871601186f, -0.242406315814918f, 0.147876771864331f, -0.00605730052917419f, -0.850648363553678f, -0.659957159486993f, -0.165475362851332f, 0.204150315434812f, -0.665767311591476f, -0.716154682563576f, 0.417487456932076f, 0.448184990956287f, 0.733843802413198f, -0.170228277851921f, -0.346809954182150f, 0.956058632188011f, 0.0315623945930987f, 0.509027121691627f, -0.147826185909834f, 0.717423768198044f, -0.153258078639530f, -0.586190749016474f, 0.122228033051868f, -0.884999045468193f, -0.364729711773548f, 0.0869976154696972f, -0.793532199218799f, 0.533748273468951f, -0.852754376244435f, 0.294752047699830f, 0.136764278163013f, 0.838074791168389f, 0.795224598541123f, -0.778005568697498f, -0.260924769562304f, -0.303759147861313f, 0.273726011325558f, 0.530476779331216f, 0.0866801234357086f, 0.0677702376031544f, 0.724353404182035f, -0.974710312543683f, 0.791838170482991f, 0.247768259921660f, 0.979431048271259f, -0.386992541899814f, 0.0640038231299192f, -0.00457726816166693f, 0.371455553726539f, 0.647649995487707f, 0.268304945808406f, -0.320428608173924f, 0.0927511620029309f, 0.256010036486838f, 0.740396212690346f, -0.656873241472848f, 0.823534292439413f, -0.820380362458844f, -0.453300307443023f, 0.784238355222248f, 0.912791840124321f, 0.0999478035440859f, -0.212620916988855f, 0.0170290625008669f, -0.589062380565879f, -0.171833624145497f, -0.524918122866141f, 0.961528292650892f, 0.101262818636430f, 0.941455114569308f, -0.967226220138929f, 0.616781547648562f, -0.913823148383971f, 0.274508821885917f, 0.924653374107756f, -0.866302908989783f, 0.227541907715857f, 0.0907574361370582f, -0.127499097943315f, -0.942071371521895f, -0.119419163649152f, 0.674284088819523f, 0.881328505929745f, 0.246290207551702f, 0.0547607254148590f, -0.462882918359077f, 0.888969728230585f, 0.666583509571921f, 0.238417203582380f, -0.279842248122727f, 0.855260336845903f, 0.314306869401155f, -0.188654877893078f, -0.609304918228150f, 0.169453885325888f, 0.265617874907016f, -0.943423537926184f, 0.493118676869450f, -0.386147750024858f, 0.0103920154342951f, 0.753677832518483f, 0.363353012331066f, -0.286620106520429f, -0.623332994906295f, 0.183966714365642f, -0.124278942882867f, -0.687889346448110f, -0.509002319646341f, -0.705769785650865f, 0.600586126467172f, 0.814989294939922f, 0.198959025256652f, 0.477897007911356f, 0.757957814363899f, 0.617755921094230f, -0.353589871947529f, 0.419688673189503f, -0.860584865805600f, -0.0232779635193843f, -0.789951030889387f, -0.893196700185750f, 0.610996462535201f, 0.847373590985131f, -0.989553358501822f, -0.367651771428081f, 0.741563712056747f, -0.923595352848971f, -0.580174215739367f, 0.577092000574232f, -0.910872910110270f, -0.907499077314190f, 0.692372247654077f, 0.810694134592084f, -0.608596332548047f, 0.761254615051625f, 0.0546240611947364f, -0.393956427117691f, -0.116127831535139f, -0.0352014590913388f, 0.374742194768889f, -0.927344099730091f, 0.939301337232488f, -0.969831716293845f, -0.0489333404770240f, -0.586719398908953f, 0.0235541378462407f, 0.388882981728285f, -0.0728483242295113f, 0.418280445244943f, -0.574289337805456f, -0.779962057565259f, -0.835190719754123f, 0.918717316922657f, -0.765889988109173f, -0.935310664146932f, -0.0750906135370848f, -0.256246546197534f, 0.693865929543926f, 0.592800255527084f, 0.836743344551035f, -0.801953470827580f, 0.0595524153568945f, 0.158376549012192f, -0.429364776412726f, -0.450531184162532f, -0.169317185285268f, 0.420344570579195f, -0.902838087574441f, -0.654676904337469f, 0.941802178622893f, -0.411034608875500f, -0.455381371659872f, 0.582371240315256f, -0.276150504466756f, 0.164276403376185f, -0.960238817086774f, 0.590055303394028f, -0.995185688656226f, -0.285809748360467f, -0.792066171752882f, -0.456123303649101f, -0.864169187700384f, 0.798745251308383f, -0.517673464079948f, 0.523086536900369f, 0.398784615211052f, 0.908677185333852f, -0.434846969584770f, -0.277024535706464f, 0.575800013122065f, -0.0423952171673019f, -0.327530749916683f, -0.401220909875065f, -0.232577533032385f, 0.577630268254944f, -0.733290201484409f, -0.297499739456838f, 0.166541885572822f, -0.646828619904039f, 0.0312662656272755f, 0.754145050600965f, -0.908499825108811f, 0.315379190361296f, 0.366242661082351f, 0.867903806940678f, -0.613391940567782f, 0.00760147209048068f, 0.953424134034927f, -0.812551125910811f, 0.734998935207065f, 0.781720854678504f, -0.653974423413561f, 0.612587888218526f, -0.297359914095386f, -0.409559158758694f, -0.143962230212734f, -0.814888102841114f, 0.359131810502055f, 0.356924557741016f, -0.872415989401612f, 0.716849887848809f, -0.374916928585818f, -0.0702264435280595f, 0.329843438660215f, 0.0956097573088677f, -0.937528128860310f, -0.322293489817529f, 0.781444964993177f, -0.810141738751828f, -0.150295079242497f, 0.846909181293597f, -0.128124277517711f, -0.752611695817661f, 0.839996835828451f, -0.0705685941510277f, 0.000366462394740585f, 0.0788016995849923f, -0.246053200655556f, -0.156645099915028f, -0.460752333796863f, 0.622021359864204f, 0.722871957583123f, -0.257873353238499f, -0.309810184480446f, 0.765248644407833f, -0.553316047243663f, -0.612742789838491f, 0.354017349601509f, 0.923293368553697f, 0.630695912377860f, -0.148750121613537f, -0.821801680234240f, 0.368247966228196f, 0.405416044101496f, -0.803232509711354f, -0.429778551911399f, -0.723837414527446f, -0.963925147452133f, 0.190882872226757f, 0.477008077263598f, -0.661282403679070f, 0.271643442525556f, -0.915994079618801f, 0.196564556546175f, 0.378359035245796f, 0.584016730657668f, -0.0377864332655202f, -0.327376192853106f, 0.850744189707984f, 0.799571679043808f, -0.111126908452029f, 0.525587242291601f, -0.404486180733535f, -0.134496922397279f, 0.0890128096708100f, -0.815560643303157f, -0.920166023598312f, -0.360079578314899f, -0.556238898466371f, -0.220978103133838f, -0.571530268052405f, 0.573332217175226f, -0.133862258696460f, -0.982130330352248f, -0.352538465285082f, 0.318683937697894f, -0.790927430842686f, 0.691168535237102f, 0.806014327242002f, -0.981639450008060f, 0.407200095027265f, 0.918249921845949f, 0.776880149695420f, -0.437773083955269f, -0.385117533333437f, 0.0115152415796460f, 0.687224538003991f, 0.992524870612626f, 0.471003324792228f, -0.873541777412034f, -0.560923118634380f, -0.726151823613842f, -0.538941951730010f, 0.772057551475325f, 0.858490725829641f, -0.168849338472479f }; # 102 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t wrap(fxp_t kX, fxp_t kLowerBound, fxp_t kUpperBound) { int32_t range_size = kUpperBound - kLowerBound + 1; if (kX < kLowerBound){ kX += range_size * ((kLowerBound - kX) / range_size + 1); } return kLowerBound + (kX - kLowerBound) % range_size; } fxp_t fxp_get_int_part(fxp_t in) { return ((in < 0) ? -((-in) & _fxp_imask) : in & _fxp_imask); } fxp_t fxp_get_frac_part(fxp_t in) { return ((in < 0) ? -((-in) & _fxp_fmask) : in & _fxp_fmask); } float fxp_to_float(fxp_t fxp); fxp_t fxp_quantize(fxp_t aquant) { if (overflow_mode == 2) { if(aquant < _fxp_min) { return _fxp_min; } else if(aquant > _fxp_max) { return _fxp_max; } } else if (overflow_mode == 3) { if(aquant < _fxp_min || aquant > _fxp_max) { return wrap(aquant, _fxp_min, _fxp_max); } } return (fxp_t) aquant; } void fxp_verify_overflow(fxp_t value){ fxp_quantize(value); printf("An Overflow Occurred in system's output"); __DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min); } void fxp_verify_overflow_node(fxp_t value, char* msg){ if (1 == 2) { printf("%s",msg); __DSVERIFIER_assert(value <= _fxp_max && value >= _fxp_min); } } void fxp_verify_overflow_array(fxp_t array[], int n){ int i=0; for(i=0; i<n;i++){ fxp_verify_overflow(array[i]); } } fxp_t fxp_int_to_fxp(int in) { fxp_t lin; lin = (fxp_t) in*_fxp_one; return lin; } int fxp_to_int(fxp_t fxp) { if(fxp >= 0){ fxp += _fxp_half; } else { fxp -= _fxp_half; } fxp >>= impl.frac_bits; return (int) fxp; } fxp_t fxp_float_to_fxp(float f) { fxp_t tmp; double ftemp; ftemp = f * scale_factor[impl.frac_bits]; if(f >= 0) { tmp = (fxp_t)(ftemp + 0.5); } else { tmp = (fxp_t)(ftemp - 0.5); } return tmp; } fxp_t fxp_double_to_fxp(double value) { fxp_t tmp; double ftemp = value * scale_factor[impl.frac_bits]; if (rounding_mode == 0){ if(value >= 0) { tmp = (fxp_t)(ftemp + 0.5); } else { tmp = (fxp_t)(ftemp - 0.5); } } else if(rounding_mode == 1){ tmp = (fxp_t) ftemp; double residue = ftemp - tmp; if ((value < 0) && (residue != 0)){ ftemp = ftemp - 1; tmp = (fxp_t) ftemp; } } else if (rounding_mode == 0){ tmp = (fxp_t) ftemp; } return tmp; } void fxp_float_to_fxp_array(float f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { r[i] = fxp_float_to_fxp(f[i]); } } void fxp_double_to_fxp_array(double f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { r[i] = fxp_double_to_fxp(f[i]); } } # 275 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" float fxp_to_float(fxp_t fxp) { float f; int f_int = (int) fxp; f = f_int * scale_factor_inv[impl.frac_bits]; return f; } double fxp_to_double(fxp_t fxp) { double f; int f_int = (int) fxp; f = f_int * scale_factor_inv[impl.frac_bits]; return f; } void fxp_to_float_array(float f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { f[i] = fxp_to_float(r[i]); } } void fxp_to_double_array(double f[], fxp_t r[], int N) { int i; for(i = 0; i < N; ++i) { f[i] = fxp_to_double(r[i]); } } fxp_t fxp_abs(fxp_t a) { fxp_t tmp; tmp = ((a < 0) ? -(fxp_t)(a) : a); tmp = fxp_quantize(tmp); return tmp; } fxp_t fxp_add(fxp_t aadd, fxp_t badd) { fxp_t tmpadd; tmpadd = ((fxp_t)(aadd) + (fxp_t)(badd)); tmpadd = fxp_quantize(tmpadd); return tmpadd; } fxp_t fxp_sub(fxp_t asub, fxp_t bsub) { fxp_t tmpsub; tmpsub = (fxp_t)((fxp_t)(asub) - (fxp_t)(bsub)); tmpsub = fxp_quantize(tmpsub); return tmpsub; } fxp_t fxp_mult(fxp_t amult, fxp_t bmult) { fxp_t tmpmult, tmpmultprec; tmpmult = (fxp_t)((fxp_t)(amult)*(fxp_t)(bmult)); if (tmpmult >= 0) { tmpmultprec = (tmpmult + ((tmpmult & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits; } else { tmpmultprec = -(((-tmpmult) + (((-tmpmult) & 1 << (impl.frac_bits - 1)) << 1)) >> impl.frac_bits); } tmpmultprec = fxp_quantize(tmpmultprec); return tmpmultprec; } # 372 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t fxp_div(fxp_t a, fxp_t b){ __DSVERIFIER_assume( b!=0 ); fxp_t tmpdiv = ((a << impl.frac_bits) / b); tmpdiv = fxp_quantize(tmpdiv); return tmpdiv; } fxp_t fxp_neg(fxp_t aneg) { fxp_t tmpneg; tmpneg = -(fxp_t)(aneg); tmpneg = fxp_quantize(tmpneg); return tmpneg; } # 398 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/fixed-point.h" fxp_t fxp_sign(fxp_t a) { return ((a == 0) ? 0 : ((a < 0) ? _fxp_minus_one : _fxp_one) ); } fxp_t fxp_shrl(fxp_t in, int shift) { return (fxp_t) (((unsigned int) in) >> shift); } fxp_t fxp_square(fxp_t a) { return fxp_mult(a, a); } void fxp_print_int(fxp_t a) { printf("\n%i", (int32_t)a); } void fxp_print_float(fxp_t a) { printf("\n%f", fxp_to_float(a)); } void fxp_print_float_array(fxp_t a[], int N) { int i; for(i = 0; i < N; ++i) { printf("\n%f", fxp_to_float(a[i])); } } void print_fxp_array_elements(char * name, fxp_t * v, int n){ printf("%s = {", name); int i; for(i=0; i < n; i++){ printf(" %jd ", v[i]); } printf("}\n"); } # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 1 # 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" void initialize_array(double v[], int n){ int i; for(i=0; i<n; i++){ v[i] = 0; } } void revert_array(double v[], double out[], int n){ initialize_array(out,n); int i; for(i=0; i<n; i++){ out[i] = v[n-i-1]; } } double internal_pow(double a, double b){ int i; double acc = 1; for (i=0; i < b; i++){ acc = acc*a; } return acc; } double internal_abs(double a){ return a < 0 ? -a : a; } int fatorial(int n){ return n == 0 ? 1 : n * fatorial(n-1); } int check_stability(double a[], int n){ int lines = 2 * n - 1; int columns = n; double m[lines][n]; int i,j; double current_stability[n]; for (i=0; i < n; i++){ current_stability[i] = a[i]; } double sum = 0; for (i=0; i < n; i++){ sum += a[i]; } if (sum <= 0){ printf("[DEBUG] the first constraint of Jury criteria failed: (F(1) > 0)"); return 0; } sum = 0; for (i=0; i < n; i++){ sum += a[i] * internal_pow(-1, n-1-i); } sum = sum * internal_pow(-1, n-1); if (sum <= 0){ printf("[DEBUG] the second constraint of Jury criteria failed: (F(-1)*(-1)^n > 0)"); return 0; } if (internal_abs(a[n-1]) > a[0]){ printf("[DEBUG] the third constraint of Jury criteria failed: (abs(a0) < a_{n}*z^{n})"); return 0; } for (i=0; i < lines; i++){ for (j=0; j < columns; j++){ m[i][j] = 0; } } for (i=0; i < lines; i++){ for (j=0; j < columns; j++){ if (i == 0){ m[i][j] = a[j]; continue; } if (i % 2 != 0 ){ int x; for(x=0; x<columns;x++){ m[i][x] = m[i-1][columns-x-1]; } columns = columns - 1; j = columns; }else{ m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j]; } } } int first_is_positive = m[0][0] >= 0 ? 1 : 0; for (i=0; i < lines; i++){ if (i % 2 == 0){ int line_is_positive = m[i][0] >= 0 ? 1 : 0; if (first_is_positive != line_is_positive){ return 0; } continue; } } return 1; } void poly_sum(double a[], int Na, double b[], int Nb, double ans[], int Nans){ int i; Nans = Na>Nb? Na:Nb; for (i=0; i<Nans; i++){ if (Na>Nb){ ans[i]=a[i]; if (i > Na-Nb-1){ ans[i]=ans[i]+b[i-Na+Nb]; } }else { ans[i]=b[i]; if (i> Nb - Na -1){ ans[i]=ans[i]+a[i-Nb+Na]; } } } } void poly_mult(double a[], int Na, double b[], int Nb, double ans[], int Nans){ int i; int j; int k; Nans = Na+Nb-1; for (i=0; i<Na; i++){ for (j=0; j<Nb; j++){ k= Na + Nb - i - j - 2; ans[k]=0; } } for (i=0; i<Na; i++){ for (j=0; j<Nb; j++){ k= Na + Nb - i - j - 2; ans[k]=ans[k]+a[Na - i - 1]*b[Nb - j - 1]; } } } void double_check_oscillations(double * y, int y_size){ __DSVERIFIER_assume(y[0] != y[y_size - 1]); int window_timer = 0; int window_count = 0; int i, j; for (i = 2; i < y_size; i++){ int window_size = i; for(j=0; j<y_size; j++){ if (window_timer > window_size){ window_timer = 0; window_count = 0; } int window_index = j + window_size; if (window_index < y_size){ if (y[j] == y[window_index]){ window_count++; # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ((void) sizeof (( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" !(window_count == window_size) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" !(window_count == window_size) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 ) ; else __assert_fail ( # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" "!(window_count == window_size)" # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h", 209, __extension__ __PRETTY_FUNCTION__); })) # 209 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/util.h" ; } }else{ break; } window_timer++; } } } void double_check_limit_cycle(double * y, int y_size){ double reference = y[y_size - 1]; int idx = 0; int window_size = 1; for(idx = (y_size-2); idx >= 0; idx--){ if (y[idx] != reference){ window_size++; }else{ break; } } __DSVERIFIER_assume(window_size != y_size && window_size != 1); printf("window_size %d\n", window_size); int desired_elements = 2 * window_size; int found_elements = 0; for(idx = (y_size-1); idx >= 0; idx--){ if (idx > (y_size-window_size-1)){ printf("%.0f == %.0f\n", y[idx], y[idx-window_size]); int cmp_idx = idx - window_size; if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){ found_elements = found_elements + 2; }else{ break; } } } printf("desired_elements %d\n", desired_elements); printf("found_elements %d\n", found_elements); __DSVERIFIER_assert(desired_elements != found_elements); } void double_check_persistent_limit_cycle(double * y, int y_size){ int idy = 0; int count_same = 0; int window_size = 0; double reference = y[0]; for(idy = 0; idy < y_size; idy++){ if (y[idy] != reference){ window_size++; } else if (window_size != 0){ break; } else { count_same++; } } window_size += count_same; __DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2); double lco_elements[window_size]; for(idy = 0; idy < y_size; idy++){ if (idy < window_size){ lco_elements[idy] = y[idy]; } } idy = 0; int lco_idy = 0; _Bool is_persistent = 0; while (idy < y_size){ if(y[idy++] == lco_elements[lco_idy++]){ is_persistent = 1; }else{ is_persistent = 0; break; } if (lco_idy == window_size){ lco_idy = 0; } } __DSVERIFIER_assert(is_persistent == 0); } void print_array_elements(char * name, double * v, int n){ printf("%s = {", name); int i; for(i=0; i < n; i++){ printf(" %.32f ", v[i]); } printf("}\n"); } void double_add_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ result[i][j] = m1[i][j] + m2[i][j]; } } } void double_sub_matrix( unsigned int lines, unsigned int columns, double m1[4][4], double m2[4][4], double result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ result[i][j] = m1[i][j] - m2[i][j]; } } } void double_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, double m1[4][4], double m2[4][4], double m3[4][4]){ unsigned int i, j, k; if (j1 == i2) { for (i=0; i<i1; i++) { for (j=0; j<j2; j++) { m3[i][j] = 0; } } for (i=0;i<i1; i++) { for (j=0; j<j2; j++) { for (k=0; k<j1; k++) { double mult = (m1[i][k] * m2[k][j]); m3[i][j] = m3[i][j] + (m1[i][k] * m2[k][j]); } } } } else { printf("\nError! Operation invalid, please enter with valid matrices.\n"); } } void fxp_matrix_multiplication( unsigned int i1, unsigned int j1, unsigned int i2, unsigned int j2, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t m3[4][4]){ unsigned int i, j, k; if (j1 == i2) { for (i=0; i<i1; i++) { for (j=0; j<j2; j++) { m3[i][j] = 0; } } for (i=0;i<i1; i++) { for (j=0; j<j2; j++) { for (k=0; k<j1; k++) { m3[i][j] = fxp_add( m3[i][j], fxp_mult(m1[i][k] , m2[k][j])); } } } } else { printf("\nError! Operation invalid, please enter with valid matrices.\n"); } } void fxp_exp_matrix(unsigned int lines, unsigned int columns, fxp_t m1[4][4], unsigned int expNumber, fxp_t result[4][4]){ unsigned int i, j, l, k; fxp_t m2[4][4]; if(expNumber == 0){ for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ if(i == j){ result[i][j] = fxp_double_to_fxp(1.0); } else { result[i][j] = 0.0; } } } return; } for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = m1[i][j]; if(expNumber == 1){ return; } for(l = 1; l < expNumber; l++){ for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) m2[i][j] = result[i][j]; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = 0; for (i=0;i<lines; i++) { for (j=0; j<columns; j++) { for (k=0; k<columns; k++) { result[i][j] = fxp_add( result[i][j], fxp_mult(m2[i][k] , m1[k][j])); } } } } } void double_exp_matrix(unsigned int lines, unsigned int columns, double m1[4][4], unsigned int expNumber, double result[4][4]){ unsigned int i, j, k, l; double m2[4][4]; if(expNumber == 0){ for (i = 0; i < lines; i++){ for (j = 0; j < columns; j++){ if(i == j){ result[i][j] = 1.0; } else { result[i][j] = 0.0; } } } return; } for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = m1[i][j]; if(expNumber == 1){ return; } for(l = 1; l < expNumber; l++){ for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) m2[i][j] = result[i][j]; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = 0; for (i=0;i<lines; i++) { for (j=0; j<columns; j++) { for (k=0; k<columns; k++) { result[i][j] = result[i][j] + (m2[i][k] * m1[k][j]); } } } } } void fxp_add_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) { result[i][j] = fxp_add(m1[i][j] , m2[i][j]); } } void fxp_sub_matrix( unsigned int lines, unsigned int columns, fxp_t m1[4][4], fxp_t m2[4][4], fxp_t result[4][4]){ unsigned int i, j; for (i = 0; i < lines; i++) for (j = 0; j < columns; j++) result[i][j] = fxp_sub(m1[i][j] , m2[i][j]); } void print_matrix(double matrix[4][4], unsigned int lines, unsigned int columns){ printf("\nMatrix\n=====================\n\n"); unsigned int i, j; for (i=0; i<lines; i++) { for (j=0; j<columns; j++) { printf("#matrix[%d][%d]: %2.2f ", i,j,matrix[i][j]); } printf("\n"); } printf("\n"); } double determinant(double a[4][4],int n) { int i,j,j1,j2; double det = 0; double m[4][4]; if (n < 1) { } else if (n == 1) { det = a[0][0]; } else if (n == 2) { det = a[0][0] * a[1][1] - a[1][0] * a[0][1]; } else { det = 0; for (j1=0;j1<n;j1++) { for (i=0;i<n-1;i++) for (i=1;i<n;i++) { j2 = 0; for (j=0;j<n;j++) { if (j == j1) continue; m[i-1][j2] = a[i][j]; j2++; } } det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1); } } return(det); } double fxp_determinant(fxp_t a_fxp[4][4],int n) { int i,j,j1,j2; double a[4][4]; for(i=0; i<n;i++){ for(j=0; j<n;j++){ a[i][j]= fxp_to_double(a_fxp[i][j]); } } double det = 0; double m[4][4]; if (n < 1) { } else if (n == 1) { det = a[0][0]; } else if (n == 2) { det = a[0][0] * a[1][1] - a[1][0] * a[0][1]; } else { det = 0; for (j1=0;j1<n;j1++) { for (i=0;i<n-1;i++) for (i=1;i<n;i++) { j2 = 0; for (j=0;j<n;j++) { if (j == j1) continue; m[i-1][j2] = a[i][j]; j2++; } } det += internal_pow(-1.0,1.0+j1+1.0) * a[0][j1] * determinant(m,n-1); } } return(det); } void transpose(double a[4][4], double b[4][4],int n, int m) { int i,j; for (i=0;i<n;i++) { for (j=0;j<m;j++) { b[j][i] = a[i][j]; } } } void fxp_transpose(fxp_t a[4][4], fxp_t b[4][4],int n, int m) { int i,j; for (i=0;i<n;i++) { for (j=0;j<m;j++) { b[j][i] = a[i][j]; } } } # 24 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" extern int generic_timer; extern hardware hw; double generic_timing_shift_l_double(double zIn, double z[], int N) { generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std)); int i; double zOut; zOut = z[0]; generic_timer += ((5 * hw.assembly.ldd) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.ld)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (i = 0; i < N - 1; i++) { generic_timer += ((17 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (6 * hw.assembly.mov) + (2 * hw.assembly.adiw) + (5 * hw.assembly.std) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbc)+ (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); z[i] = z[i + 1]; } z[N - 1] = zIn; generic_timer += ((12 * hw.assembly.ldd) + (6 * hw.assembly.mov) + (3 * hw.assembly.std) + (2 * hw.assembly.lsl) + (2 * hw.assembly.rol) + (1 * hw.assembly.adc) + (1 * hw.assembly.add) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in)+ (1 * hw.assembly.cli)); generic_timer += ((3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret)); return (zOut); } double generic_timing_shift_r_double(double zIn, double z[], int N) { generic_timer += ((2 * hw.assembly.push) + (3 * hw.assembly.in) + (3 * hw.assembly.out) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (8 * hw.assembly.std)); int i; double zOut; zOut = z[N - 1]; generic_timer += ((7 * hw.assembly.ldd) + (2 * hw.assembly.rol) + (2 * hw.assembly.lsl) + (2 * hw.assembly.mov) + (4 * hw.assembly.std) + (1 * hw.assembly.add) + (1 * hw.assembly.adc) + (1 * hw.assembly.ld) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci)); generic_timer += ((2 * hw.assembly.ldd) + (2 * hw.assembly.std) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.rjmp)); for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; generic_timer += ((15 * hw.assembly.ldd) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (4 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.ld) + (1 * hw.assembly.st) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); } z[0] = zIn; generic_timer += ((10 * hw.assembly.ldd) + (5 * hw.assembly.mov) + (3 * hw.assembly.std) + (3 * hw.assembly.out) + (2 * hw.assembly.pop) + (1 * hw.assembly.ret) + (1 * hw.assembly.ret) + (1 * hw.assembly.cli) + (1 * hw.assembly.in) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw)); return zOut; } fxp_t shiftL(fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } fxp_t shiftR(fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } float shiftLfloat(float zIn, float z[], int N) { int i; float zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } float shiftRfloat(float zIn, float z[], int N) { int i; float zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } double shiftRDdouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } double shiftRdouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; } z[0] = zIn; return zOut; } double shiftLDouble(double zIn, double z[], int N) { int i; double zOut; zOut = z[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; } z[N - 1] = zIn; return (zOut); } void shiftLboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; float zfOut; zOut = z[0]; zfOut = zf[0]; for (i = 0; i < N - 1; i++) { z[i] = z[i + 1]; zf[i] = zf[i + 1]; } z[N - 1] = zIn; zf[N - 1] = zfIn; } void shiftRboth(float zfIn, float zf[], fxp_t zIn, fxp_t z[], int N) { int i; fxp_t zOut; float zfOut; zOut = z[N - 1]; zfOut = zf[N - 1]; for (i = N - 1; i > 0; i--) { z[i] = z[i - 1]; zf[i] = zf[i - 1]; } z[0] = zIn; zf[0] = zfIn; } int order(int Na, int Nb) { return Na > Nb ? Na - 1 : Nb - 1; } void fxp_check_limit_cycle(fxp_t y[], int y_size){ fxp_t reference = y[y_size - 1]; int idx = 0; int window_size = 1; for(idx = (y_size-2); idx >= 0; idx--){ if (y[idx] != reference){ window_size++; }else{ break; } } __DSVERIFIER_assume(window_size != y_size && window_size != 1); printf("window_size %d\n", window_size); int desired_elements = 2 * window_size; int found_elements = 0; for(idx = (y_size-1); idx >= 0; idx--){ if (idx > (y_size-window_size-1)){ printf("%.0f == %.0f\n", y[idx], y[idx-window_size]); int cmp_idx = idx - window_size; if ((cmp_idx > 0) && (y[idx] == y[idx-window_size])){ found_elements = found_elements + 2; }else{ break; } } } __DSVERIFIER_assume(found_elements > 0); printf("desired_elements %d\n", desired_elements); printf("found_elements %d\n", found_elements); __DSVERIFIER_assume(found_elements == desired_elements); __DSVERIFIER_assert(0); } void fxp_check_persistent_limit_cycle(fxp_t * y, int y_size){ int idy = 0; int count_same = 0; int window_size = 0; fxp_t reference = y[0]; for(idy = 0; idy < y_size; idy++){ if (y[idy] != reference){ window_size++; } else if (window_size != 0){ break; } else { count_same++; } } window_size += count_same; __DSVERIFIER_assume(window_size > 1 && window_size <= y_size/2); fxp_t lco_elements[window_size]; for(idy = 0; idy < y_size; idy++){ if (idy < window_size){ lco_elements[idy] = y[idy]; } } idy = 0; int lco_idy = 0; _Bool is_persistent = 0; while (idy < y_size){ if(y[idy++] == lco_elements[lco_idy++]){ is_persistent = 1; }else{ is_persistent = 0; break; } if (lco_idy == window_size){ lco_idy = 0; } } __DSVERIFIER_assert(is_persistent == 0); } void fxp_check_oscillations(fxp_t y[] , int y_size){ __DSVERIFIER_assume((y[0] != y[y_size - 1]) && (y[y_size - 1] != y[y_size - 2])); int window_timer = 0; int window_count = 0; int i, j; for (i = 2; i < y_size; i++){ int window_size = i; for(j=0; j<y_size; j++){ if (window_timer > window_size){ window_timer = 0; window_count = 0; } int window_index = j + window_size; if (window_index < y_size){ if (y[j] == y[window_index]){ window_count++; __DSVERIFIER_assert(!(window_count == window_size)); } }else{ break; } window_timer++; } } } int fxp_ln(int x) { int t, y; y = 0xa65af; if (x < 0x00008000) x <<= 16, y -= 0xb1721; if (x < 0x00800000) x <<= 8, y -= 0x58b91; if (x < 0x08000000) x <<= 4, y -= 0x2c5c8; if (x < 0x20000000) x <<= 2, y -= 0x162e4; if (x < 0x40000000) x <<= 1, y -= 0x0b172; t = x + (x >> 1); if ((t & 0x80000000) == 0) x = t, y -= 0x067cd; t = x + (x >> 2); if ((t & 0x80000000) == 0) x = t, y -= 0x03920; t = x + (x >> 3); if ((t & 0x80000000) == 0) x = t, y -= 0x01e27; t = x + (x >> 4); if ((t & 0x80000000) == 0) x = t, y -= 0x00f85; t = x + (x >> 5); if ((t & 0x80000000) == 0) x = t, y -= 0x007e1; t = x + (x >> 6); if ((t & 0x80000000) == 0) x = t, y -= 0x003f8; t = x + (x >> 7); if ((t & 0x80000000) == 0) x = t, y -= 0x001fe; x = 0x80000000 - x; y -= x >> 15; return y; } double fxp_log10_low(double x) { int xint = (int) (x * 65536.0 + 0.5); int lnum = fxp_ln(xint); int lden = fxp_ln(655360); return ((double) lnum / (double) lden); } double fxp_log10(double x) { if (x > 32767.0) { if (x > 1073676289.0) { x = x / 1073676289.0; return fxp_log10_low(x) + 9.030873362; } x = x / 32767.0; return fxp_log10_low(x) + 4.515436681; } return fxp_log10_low(x); } float snrVariance(float s[], float n[], int blksz) { int i; double sm = 0, nm = 0, sv = 0, nv = 0, snr; for (i = 0; i < blksz; i++) { sm += s[i]; nm += n[i]; } sm /= blksz; nm /= blksz; for (i = 0; i < blksz; i++) { sv += (s[i] - sm) * (s[i] - sm); nv += (n[i] - nm) * (n[i] - nm); } if (nv != 0.0f) { # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "sv >= nv" # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 373, __extension__ __PRETTY_FUNCTION__); })) # 373 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; snr = sv / nv; return snr; } else { return 9999.9f; } } float snrPower(float s[], float n[], int blksz) { int i; double sv = 0, nv = 0, snr; for (i = 0; i < blksz; i++) { sv += s[i] * s[i]; nv += n[i] * n[i]; } if (nv != 0.0f) { # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" sv >= nv # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "sv >= nv" # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 394, __extension__ __PRETTY_FUNCTION__); })) # 394 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; snr = sv / nv; return snr; } else { return 9999.9f; } } float snrPoint(float s[], float n[], int blksz) { int i; double ratio = 0, power = 0; for (i = 0; i < blksz; i++) { if(n[i] == 0) continue; ratio = s[i] / n[i]; if(ratio > 150.0f || ratio < -150.0f) continue; power = ratio * ratio; # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" power >= 1.0f # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" power >= 1.0f # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "power >= 1.0f" # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 412, __extension__ __PRETTY_FUNCTION__); })) # 412 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; } return 9999.9f; } unsigned long next = 1; int rand(void) { next = next*1103515245 + 12345; return (unsigned int)(next/65536) % 32768; } void srand(unsigned int seed) { next = seed; } float iirIIOutTime(float w[], float x, float a[], float b[], int Na, int Nb) { int timer1 = 0; float *a_ptr, *b_ptr, *w_ptr; float sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; timer1 += 71; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; timer1 += 54; } w[0] += x; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; timer1 += 46; } timer1 += 38; # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 450, __extension__ __PRETTY_FUNCTION__); })) # 450 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return sum; } float iirIItOutTime(float w[], float x, float a[], float b[], int Na, int Nb) { int timer1 = 0; float *a_ptr, *b_ptr; float yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 477, __extension__ __PRETTY_FUNCTION__); })) # 477 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return yout; } double iirIItOutTime_double(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ((void) sizeof (( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" (double)timer1*1 / 16000000 <= (double)1 / 100 # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 ) ; else __assert_fail ( # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" "(double)timer1*CYCLE <= (double)DEADLINE" # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h", 504, __extension__ __PRETTY_FUNCTION__); })) # 504 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/functions.h" ; return yout; } void iirOutBoth(float yf[], float xf[], float af[], float bf[], float *sumf_ref, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t *sum_ref, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; fxp_t sum = 0; float sumf = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; af_ptr = &af[1]; yf_ptr = &yf[Na - 1]; bf_ptr = &bf[0]; xf_ptr = &xf[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--)); sumf += *bf_ptr++ * *xf_ptr--; } for (j = 1; j < Na; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--)); sumf -= *af_ptr++ * *yf_ptr--; } *sum_ref = sum; *sumf_ref = sumf; } fxp_t iirOutFixedL(fxp_t y[], fxp_t x[], fxp_t xin, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[j] = y[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[Na - 1] = sum; return sum; } float iirOutFloatL(float y[], float x[], float xin, float a[], float b[], int Na, int Nb) { float *a_ptr, *y_ptr, *b_ptr, *x_ptr; float sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum += *b_ptr-- * *x_ptr++; } x[Nb - 1] = xin; sum += *b_ptr-- * *x_ptr++; for (j = 1; j < Na - 1; j++) { sum -= *a_ptr-- * *y_ptr++; y[j] = y[j+1]; } if(Na>1) sum -= *a_ptr-- * *y_ptr++; y[Na - 1] = sum; return sum; } float iirOutBothL(float yf[], float xf[], float af[], float bf[], float xfin, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; float sumf = 0; af_ptr = &af[Na - 1]; yf_ptr = &yf[1]; bf_ptr = &bf[Nb - 1]; xf_ptr = &xf[0]; int i, j; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); xf[i] = xf[i+1]; sumf += *bf_ptr-- * *xf_ptr++; } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(*b_ptr--, *x_ptr++)); xf[Nb - 1] = xfin; sumf += *bf_ptr-- * *xf_ptr++; for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[j] = y[j+1]; sumf -= *af_ptr-- * *yf_ptr++; yf[j] = yf[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(*a_ptr--, *y_ptr++)); y[Na - 1] = sum; if(Na>1) sumf -= *af_ptr-- * *yf_ptr++; yf[Na - 1] = sumf; return fxp_to_float(sum) - sumf; } float iirOutBothL2(float yf[], float xf[], float af[], float bf[], float xfin, fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], fxp_t xin, int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[Na - 1]; y_ptr = &y[1]; b_ptr = &b[Nb - 1]; x_ptr = &x[0]; float *af_ptr, *yf_ptr, *bf_ptr, *xf_ptr; float sumf = 0; af_ptr = &af[Na - 1]; yf_ptr = &yf[1]; bf_ptr = &bf[Nb - 1]; xf_ptr = &xf[0]; int i=0, j=1; for (i = 0; i < Nb - 1; i++) { x[i] = x[i+1]; sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i])); xf[i] = xf[i+1]; sumf += bf[Nb - 1 - i] * xf[i]; } x[Nb - 1] = xin; sum = fxp_add(sum, fxp_mult(b[Nb - 1 - i], x[i])); xf[Nb - 1] = xfin; sumf += bf[Nb - 1 - i] * xf[i]; for (j = 1; j < Na - 1; j++) { sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j])); y[j] = y[j+1]; sumf -= af[Na - j] * yf[j]; yf[j] = yf[j+1]; } if(Na>1) sum = fxp_sub(sum, fxp_mult(a[Na - j], y[j])); y[Na - 1] = sum; if(Na>1) sumf -= af[Na - j] * yf[j]; yf[Na - 1] = sumf; return fxp_to_float(sum) - sumf; } # 25 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" extern digital_system ds; extern hardware hw; extern int generic_timer; fxp_t fxp_direct_form_1(fxp_t y[], fxp_t x[], fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *y_ptr, *b_ptr, *x_ptr; fxp_t sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *x_ptr--)); } for (j = 1; j < Na; j++) { sum = fxp_sub(sum, fxp_mult(*a_ptr++, *y_ptr--)); } fxp_verify_overflow_node(sum, "An Overflow Occurred in the node a0"); sum = fxp_div(sum,a[0]); return fxp_quantize(sum); } fxp_t fxp_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *b_ptr, *w_ptr; fxp_t sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] = fxp_sub(w[0], fxp_mult(*a_ptr++, *w_ptr++)); } w[0] = fxp_add(w[0], x); w[0] = fxp_div(w[0], a[0]); fxp_verify_overflow_node(w[0], "An Overflow Occurred in the node b0"); w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum = fxp_add(sum, fxp_mult(*b_ptr++, *w_ptr++)); } return fxp_quantize(sum); } fxp_t fxp_transposed_direct_form_2(fxp_t w[], fxp_t x, fxp_t a[], fxp_t b[], int Na, int Nb) { fxp_t *a_ptr, *b_ptr; fxp_t yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = fxp_add(fxp_mult(*b_ptr++, x), w[0]); yout = fxp_div(yout, a[0]); int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] = fxp_sub(w[j], fxp_mult(*a_ptr++, yout)); } if (j < Nb - 1) { w[j] = fxp_add(w[j], fxp_mult(*b_ptr++, x)); } } fxp_verify_overflow_node(w[j], "An Overflow Occurred in the node a0"); return fxp_quantize(yout); } double double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb) { double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum += *b_ptr++ * *x_ptr--; } for (j = 1; j < Na; j++) { sum -= *a_ptr++ * *y_ptr--; } sum = (sum / a[0]); return sum; } double double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; } return sum; } double double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; yout = yout / a[0]; int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } } return yout; } float float_direct_form_1(float y[], float x[], float a[], float b[], int Na, int Nb) { float *a_ptr, *y_ptr, *b_ptr, *x_ptr; float sum = 0; a_ptr = &a[1]; y_ptr = &y[Na - 1]; b_ptr = &b[0]; x_ptr = &x[Nb - 1]; int i, j; for (i = 0; i < Nb; i++) { sum += *b_ptr++ * *x_ptr--; } for (j = 1; j < Na; j++) { sum -= *a_ptr++ * *y_ptr--; } sum = (sum / a[0]); return sum; } float float_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) { float *a_ptr, *b_ptr, *w_ptr; float sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; } return sum; } float float_transposed_direct_form_2(float w[], float x, float a[], float b[], int Na, int Nb) { float *a_ptr, *b_ptr; float yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; yout = yout / a[0]; int j; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } } return yout; } double double_direct_form_1_MSP430(double y[], double x[], double a[], double b[], int Na, int Nb){ int timer1 = 0; double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na-1]; b_ptr = &b[0]; x_ptr = &x[Nb-1]; int i, j; timer1 += 91; for (i = 0; i < Nb; i++){ sum += *b_ptr++ * *x_ptr--; timer1 += 47; } for (j = 1; j < Na; j++){ sum -= *a_ptr++ * *y_ptr--; timer1 += 57; } timer1 += 3; # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 235, __extension__ __PRETTY_FUNCTION__); })) # 235 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return sum; } double double_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; timer1 += 71; for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; timer1 += 54; } w[0] += x; w[0] = w[0] / a[0]; w_ptr = &w[0]; for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; timer1 += 46; } timer1 += 38; # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 262, __extension__ __PRETTY_FUNCTION__); })) # 262 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return sum; } double double_transposed_direct_form_2_MSP430(double w[], double x, double a[], double b[], int Na, int Nb) { int timer1 = 0; double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; timer1 += 105; for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; timer1 += 41; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; timer1 += 38; } timer1 += 54; } timer1 += 7; # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ((void) sizeof (( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" (double) timer1 * hw.cycle <= ds.sample_time # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 ) ; else __assert_fail ( # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" "(double) timer1 * hw.cycle <= ds.sample_time" # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h", 291, __extension__ __PRETTY_FUNCTION__); })) # 291 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/realizations.h" ; return yout; } double generic_timing_double_direct_form_1(double y[], double x[], double a[], double b[], int Na, int Nb){ generic_timer += ((6 * hw.assembly.push) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (12 * hw.assembly.std)); double *a_ptr, *y_ptr, *b_ptr, *x_ptr; double sum = 0; a_ptr = &a[1]; y_ptr = &y[Na-1]; b_ptr = &b[0]; x_ptr = &x[Nb-1]; generic_timer += ((12 * hw.assembly.std) + (12 * hw.assembly.ldd) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (4 * hw.assembly.lsl) + (4 * hw.assembly.rol) + (2 * hw.assembly.add) + (2 * hw.assembly.adc) + (1 * hw.assembly.adiw)); int i, j; generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (i = 0; i < Nb; i++){ generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.sbc) + (10 * hw.assembly.std) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); sum += *b_ptr++ * *x_ptr--; } generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 1; j < Na; j++){ generic_timer += ((22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.subi) + (8 * hw.assembly.std) + (1 * hw.assembly.sbci) + (2 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (1 * hw.assembly.sbc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.adiw) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); sum -= *a_ptr++ * *y_ptr--; } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (6 * hw.assembly.pop) + (1 * hw.assembly.ret)); return sum; } double generic_timing_double_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli)); double *a_ptr, *b_ptr, *w_ptr; double sum = 0; a_ptr = &a[1]; b_ptr = &b[0]; w_ptr = &w[1]; int k, j; generic_timer += ((10 * hw.assembly.std) + (6 * hw.assembly.ldd) + (2 * hw.assembly.adiw)); generic_timer += ((2 * hw.assembly.ldi) + (2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 1; j < Na; j++) { w[0] -= *a_ptr++ * *w_ptr++; generic_timer += ((23 * hw.assembly.ldd) + (32 * hw.assembly.mov) + (9 * hw.assembly.std) + (2 * hw.assembly.subi) + (3 * hw.assembly.ld) + (2 * hw.assembly.rcall) + (2 * hw.assembly.sbci) + (1 * hw.assembly.st) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge)); } w[0] += x; w_ptr = &w[0]; generic_timer += ((13 * hw.assembly.ldd) + (12 * hw.assembly.mov) + (5 * hw.assembly.std) + (1 * hw.assembly.st) + (1 * hw.assembly.ld) + (1 * hw.assembly.rcall)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (k = 0; k < Nb; k++) { sum += *b_ptr++ * *w_ptr++; generic_timer += ((20 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (10 * hw.assembly.std) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (2 * hw.assembly.subi) + (2 * hw.assembly.sbci) + (1 * hw.assembly.adiw) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brge) + (1 * hw.assembly.rjmp)); } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (1 * hw.assembly.adiw) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (3 * hw.assembly.out) + (8 * hw.assembly.pop) + (1 * hw.assembly.ret)); return sum; } double generic_timing_double_transposed_direct_form_2(double w[], double x, double a[], double b[], int Na, int Nb) { generic_timer += ((8 * hw.assembly.push) + (14 * hw.assembly.std) + (3 * hw.assembly.out) + (3 * hw.assembly.in) + (1 * hw.assembly.sbiw) + (1 * hw.assembly.cli)); double *a_ptr, *b_ptr; double yout = 0; a_ptr = &a[1]; b_ptr = &b[0]; int Nw = Na > Nb ? Na : Nb; yout = (*b_ptr++ * x) + w[0]; int j; generic_timer += ((15 * hw.assembly.std) + (22 * hw.assembly.ldd) + (24 * hw.assembly.mov) + (2 * hw.assembly.rcall) + (2 * hw.assembly.ld) + (1 * hw.assembly.cp) + (1 * hw.assembly.cpc) + (1 * hw.assembly.subi) + (1 * hw.assembly.sbci) + (1 * hw.assembly.brge) + (1 * hw.assembly.adiw)); generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); for (j = 0; j < Nw - 1; j++) { w[j] = w[j + 1]; if (j < Na - 1) { w[j] -= *a_ptr++ * yout; } if (j < Nb - 1) { w[j] += *b_ptr++ * x; } generic_timer += ((70 * hw.assembly.mov) + (65 * hw.assembly.ldd) + (12 * hw.assembly.lsl) + (12 * hw.assembly.rol) + (15 * hw.assembly.std) + (6 * hw.assembly.add) + (6 * hw.assembly.adc) + (2 * hw.assembly.adiw) + (3 * hw.assembly.cpc) + (3 * hw.assembly.cp) + (5 * hw.assembly.ld) + (4 * hw.assembly.rcall) + (5 * hw.assembly.subi) + (3 * hw.assembly.rjmp) + (2 * hw.assembly.brlt) + (3 * hw.assembly.st) + (2 * hw.assembly.sbci) + (3 * hw.assembly.sbc) + (1 * hw.assembly.brge)); } generic_timer += ((4 * hw.assembly.ldd) + (4 * hw.assembly.mov) + (8 * hw.assembly.pop) + (3 * hw.assembly.out) + (1 * hw.assembly.in) + (1 * hw.assembly.cli) + (1 * hw.assembly.adiw) + (1 * hw.assembly.ret)); return yout; } void double_direct_form_1_impl2(double x[], int x_size, double b[], int b_size, double a[], int a_size, double y[]){ int i = 0; int j = 0; double v[x_size]; for(i = 0; i < x_size; i++){ v[i] = 0; for(j = 0; j < b_size; j++){ if (j > i) break; v[i] = v[i] + x[i-j] * b[j]; } } y[0] = v[0]; for(i = 1; i < x_size; i++){ y[i] = 0; y[i] = y[i] + v[i]; for(j = 1; j < a_size; j++){ if (j > i) break; y[i] = y[i] + y[i-j] * ((-1) * a[j]); } } } void fxp_direct_form_1_impl2(fxp_t x[], int x_size, fxp_t b[], int b_size, fxp_t a[], int a_size, fxp_t y[]){ int i = 0; int j = 0; fxp_t v[x_size]; for(i = 0; i < x_size; i++){ v[i] = 0; for(j = 0; j < b_size; j++){ if (j > i) break; v[i] = fxp_add(v[i], fxp_mult(x[i-j], b[j])); } } y[0] = v[0]; for(i = 1; i < x_size; i++){ y[i] = 0; y[i] = fxp_add(y[i], v[i]); for(j = 1; j < a_size; j++){ if (j > i) break; y[i] = fxp_add(y[i], fxp_mult(y[i-j] , -a[j])); } } } # 26 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" # 1 "/usr/include/assert.h" 1 3 4 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2 # 1 "/usr/include/assert.h" 1 3 4 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/delta-operator.h" 2 int nchoosek(int n, int k){ if (k == 0) return 1; return (n * nchoosek(n - 1, k - 1)) / k; } void generate_delta_coefficients(double vetor[], double out[], int n, double delta){ int i,j; int N = n - 1; double sum_delta_operator; for(i=0; i<=N; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + vetor[j]*nchoosek(N-j,i-j); } out[i] = internal_pow(delta,N-i)*sum_delta_operator; } } void get_delta_transfer_function(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){ generate_delta_coefficients(b, b_out, b_size, delta); generate_delta_coefficients(a, a_out, a_size, delta); } void get_delta_transfer_function_with_base(double b[], double b_out[], int b_size, double a[], double a_out[], int a_size, double delta){ int i,j; int N = a_size - 1; int M = b_size - 1; double sum_delta_operator; for(i=0; i<=N; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + a[j]*nchoosek(N-j,i-j); } a_out[i] = internal_pow(delta,N-i)*sum_delta_operator; } for(i=0; i<=M; i++) { sum_delta_operator = 0; for(j=0; j<=i; j++) { sum_delta_operator = sum_delta_operator + b[j]*nchoosek(M-j,i-j); } b_out[i] = internal_pow(delta,M-i)*sum_delta_operator; } } # 27 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h" 1 # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/closed-loop.h" void ft_closedloop_series(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ Nans_num = Nc_num + Nmodel_num - 1; Nans_den = Nc_den + Nmodel_den - 1 ; double den_mult [Nans_den]; poly_mult(c_num, Nc_num, model_num, Nmodel_num, ans_num, Nans_num); poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den ); poly_sum(ans_num, Nans_num , den_mult, Nans_den , ans_den, Nans_den); } void ft_closedloop_sensitivity(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ int Nans_num_p = Nc_num + Nmodel_num-1; Nans_den = Nc_den + Nmodel_den-1; Nans_num = Nc_den + Nmodel_den-1; double num_mult [Nans_num_p]; poly_mult(c_den, Nc_den, model_den, Nmodel_den, ans_num, Nans_num); poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nans_num_p); poly_sum(ans_num, Nans_num, num_mult, Nans_num_p, ans_den, Nans_den); } void ft_closedloop_feedback(double c_num[], int Nc_num, double c_den[], int Nc_den, double model_num[], int Nmodel_num, double model_den[], int Nmodel_den, double ans_num[], int Nans_num, double ans_den[], int Nans_den){ Nans_num = Nc_den + Nmodel_num - 1; Nans_den = Nc_den + Nmodel_den - 1; int Nnum_mult = Nc_num + Nmodel_num - 1; double den_mult [Nans_den]; double num_mult [Nnum_mult]; poly_mult(c_num, Nc_num, model_num, Nmodel_num, num_mult, Nnum_mult); poly_mult(c_den, Nc_den, model_den, Nmodel_den, den_mult, Nans_den); poly_sum(num_mult, Nnum_mult, den_mult, Nans_den, ans_den, Nans_den); poly_mult(c_den, Nc_den, model_num, Nmodel_num, ans_num, Nans_num); } int check_stability_closedloop(double a[], int n, double plant_num[], int p_num_size, double plant_den[], int p_den_size){ int columns = n; double m[2 * n - 1][n]; int i,j; int first_is_positive = 0; double * p_num = plant_num; double * p_den = plant_den; double sum = 0; for (i=0; i < n; i++){ sum += a[i]; } __DSVERIFIER_assert(sum > 0); sum = 0; for (i=0; i < n; i++){ sum += a[i] * internal_pow(-1, n-1-i); } sum = sum * internal_pow(-1, n-1); __DSVERIFIER_assert(sum > 0); __DSVERIFIER_assert(internal_abs(a[n-1]) < a[0]); for (i=0; i < 2 * n - 1; i++){ for (j=0; j < columns; j++){ m[i][j] = 0; if (i == 0){ m[i][j] = a[j]; continue; } if (i % 2 != 0 ){ int x; for(x=0; x<columns;x++){ m[i][x] = m[i-1][columns-x-1]; } columns = columns - 1; j = columns; }else{ __DSVERIFIER_assert(m[i-2][0] > 0); m[i][j] = m[i-2][j] - (m[i-2][columns] / m[i-2][0]) * m[i-1][j]; __DSVERIFIER_assert((m[0][0] >= 0) && (m[i][0] >= 0)); } } } return 1; } # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" extern digital_system ds; extern digital_system plant; extern digital_system control; extern implementation impl; extern filter_parameters filter; extern hardware hw; void initialization(){ if (impl.frac_bits >= 32){ printf("impl.frac_bits must be less than word width!\n"); } if (impl.int_bits >= 32 - impl.frac_bits){ printf("impl.int_bits must be less than word width subtracted by precision!\n"); # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ((void) sizeof (( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 0 # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 0 # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 ) ; else __assert_fail ( # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" "0" # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h", 33, __extension__ __PRETTY_FUNCTION__); })) # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" ; } if(impl.frac_bits >= 31){ _fxp_one = 0x7fffffff; }else{ _fxp_one = (0x00000001 << impl.frac_bits); } _fxp_half = (0x00000001 << (impl.frac_bits - 1)); _fxp_minus_one = -(0x00000001 << impl.frac_bits); _fxp_min = -(0x00000001 << (impl.frac_bits + impl.int_bits - 1)); _fxp_max = (0x00000001 << (impl.frac_bits + impl.int_bits - 1)) - 1; _fxp_fmask = ((((int32_t) 1) << impl.frac_bits) - 1); _fxp_imask = ((0x80000000) >> (32 - impl.frac_bits - 1)); _dbl_min = _fxp_min; _dbl_min /= (1 << impl.frac_bits); _dbl_max = _fxp_max; _dbl_max /= (1 << impl.frac_bits); if ((impl.scale == 0) || (impl.scale == 1)){ impl.scale = 1; return; } if (impl.min != 0){ impl.min = impl.min / impl.scale; } if (impl.max != 0){ impl.max = impl.max / impl.scale; } # 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/initialization.h" } # 29 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/state-space.h" extern digital_system_state_space _controller; extern int nStates; extern int nInputs; extern int nOutputs; double double_state_space_representation(void){ double result1[4][4]; double result2[4][4]; int i, j; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); return _controller.outputs[0][0]; } double fxp_state_space_representation(void){ fxp_t result1[4][4]; fxp_t result2[4][4]; int i, j; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } fxp_t A_fpx[4][4]; fxp_t B_fpx[4][4]; fxp_t C_fpx[4][4]; fxp_t D_fpx[4][4]; fxp_t states_fpx[4][4]; fxp_t inputs_fpx[4][4]; fxp_t outputs_fpx[4][4]; for(i=0; i<4;i++){ for(j=0; j<4;j++){ A_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ B_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ C_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ D_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ states_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ inputs_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ outputs_fpx[i][j]=0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ D_fpx[i][j]= fxp_double_to_fxp(_controller.D[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ states_fpx[i][j]= fxp_double_to_fxp(_controller.states[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ inputs_fpx[i][j]= fxp_double_to_fxp(_controller.inputs[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ outputs_fpx[i][j]= fxp_double_to_fxp(_controller.outputs[i][j]); } } fxp_matrix_multiplication(nOutputs,nStates,nStates,1,C_fpx,states_fpx,result1); fxp_matrix_multiplication(nOutputs,nInputs,nInputs,1,D_fpx,inputs_fpx,result2); fxp_add_matrix(nOutputs, 1, result1, result2, outputs_fpx); fxp_matrix_multiplication(nStates,nStates,nStates,1,A_fpx,states_fpx,result1); fxp_matrix_multiplication(nStates,nInputs,nInputs,1,B_fpx,inputs_fpx,result2); fxp_add_matrix(nStates, 1, result1, result2, states_fpx); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= fxp_to_double(states_fpx[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ _controller.outputs[i][j]= fxp_to_double(outputs_fpx[i][j]); } } return _controller.outputs[0][0]; } # 30 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/core/filter_functions.h" double sinTyl(double x, int precision){ double sine; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; sine = aux; if (precision >= 1) { aux = x; sine += aux; if (precision >= 2) { aux = aux*xsquared; sine -= aux/6; if (precision >= 3) { aux = aux*xsquared; sine +=aux/120; if(precision >=4) { aux = aux*xsquared; sine -=aux/5040; if(precision >= 5) { aux = aux*xsquared; sine +=aux/362880; if(precision >= 6) { aux = aux*xsquared; sine -=aux/39916800; if (precision >= 7) printf("Warning: Function sinTyl " "from bmc/core/filter_functions.h: Precision " "representation exceeded. Assuming maximum precision of 6\n"); } } } } } } } return sine; } double cosTyl(double x, int precision){ double cosine; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function cosTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; cosine = aux; if (precision >= 1) { aux = 1; cosine = 1; if (precision >= 2) { aux = xsquared; cosine -= aux/2; if (precision >= 3) { aux = aux*xsquared; cosine += aux/24; if(precision >=4) { aux = aux*xsquared; cosine -=aux/720; if(precision >= 5) { aux = aux*xsquared; cosine +=aux/40320; if(precision >= 6) { aux = aux*xsquared; cosine -=aux/3628800; if (precision >= 7) printf("Warning: Function sinTyl " "from bmc/core/filter_functions.h: Precision " "representation exceeded. Assuming maximum precision of 6\n"); } } } } } } } return cosine; } double atanTyl(double x, int precision){ double atangent; double xsquared = x*x; double aux; if (precision < 0) { printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision must be a positive integer. Assuming 0 precision\n"); precision = 0; } if (precision >= 0) { aux = 0; atangent = aux; if (precision >= 1) { aux = x; atangent = aux; if (precision >= 2) { aux = xsquared; atangent -= aux/3; if (precision >= 3) { aux = aux*xsquared; atangent += aux/5; if(precision >=4) { aux = aux*xsquared; atangent -=aux/7; if (precision >= 7) printf("Warning: Function sinTyl from bmc/core/filter_functions.h: " "Precision representation exceeded. Assuming maximum precision of 4\n"); } } } } } return atangent; } float sqrt1(const float x) { const float xhalf = 0.5f*x; union { float x; int i; } u; u.x = x; u.i = 0x5f3759df - (u.i >> 1); return x*u.x*(1.5f - xhalf*u.x*u.x); } float sqrt2(const float x) { union { int i; float x; } u; u.x = x; u.i = (1<<29) + (u.i >> 1) - (1<<22); return u.x; } float fabsolut(float x) { if (x < 0) x = -x; return x; } static float sqrt3(float val) { float x = val/10; float dx; double diff; double min_tol = 0.00001; int i, flag; flag = 0; if (val == 0 ) x = 0; else { for (i=1;i<20;i++) { if (!flag) { dx = (val - (x*x)) / (2.0 * x); x = x + dx; diff = val - (x*x); if (fabsolut(diff) <= min_tol) flag = 1; } else x =x; } } return (x); } # 31 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" 1 # 19 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; int verify_overflow(void) { fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 73 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_int(); __DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; int j; for (i = 0; i < X_SIZE_VALUE; ++i) { # 129 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" y[i] = fxp_transposed_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size); # 174 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_overflow.h" } overflow_mode = 1; fxp_verify_overflow_array(y, X_SIZE_VALUE); return 0; } # 33 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 1 # 15 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" extern digital_system ds; extern implementation impl; extern digital_system_state_space _controller; extern int nStates; extern int nInputs; extern int nOutputs; int verify_limit_cycle_state_space(void){ double stateMatrix[4][4]; double outputMatrix[4][4]; double arrayLimitCycle[4]; double result1[4][4]; double result2[4][4]; int i, j, k; for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; stateMatrix[i][j]=0; outputMatrix[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); k = 0; for (i = 1; i < 0; i++) { double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); int l; for(l = 0; l < nStates; l++){ stateMatrix[l][k] = _controller.states[l][0]; } for(l = 0; l < nOutputs; l++){ stateMatrix[l][k] = _controller.outputs[l][0]; } k++; } printf("#matrix STATES -------------------------------"); print_matrix(stateMatrix,nStates,0); printf("#matrix OUTPUTS -------------------------------"); print_matrix(outputMatrix,nOutputs,0); # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ((void) sizeof (( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" "0" # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 93, __extension__ __PRETTY_FUNCTION__); })) # 93 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" ; for(i=0; i<nStates;i++){ for(j=0; j<0;j++){ arrayLimitCycle[j] = stateMatrix[i][j]; } double_check_persistent_limit_cycle(arrayLimitCycle,0); } for(i=0; i<nOutputs;i++){ for(j=0; j<0;j++){ arrayLimitCycle[j] = outputMatrix[i][j]; } double_check_persistent_limit_cycle(arrayLimitCycle,0); } # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ((void) sizeof (( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 0 # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" "0" # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h", 110, __extension__ __PRETTY_FUNCTION__); })) # 110 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" ; } int verify_limit_cycle(void){ overflow_mode = 3; int i; int Set_xsize_at_least_two_times_Na = 2 * ds.a_size; printf("X_SIZE must be at least 2 * ds.a_size"); __DSVERIFIER_assert(X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na); fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 168 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t xaux[ds.b_size]; int nondet_constant_input = nondet_int(); __DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp); for (i = 0; i < X_SIZE_VALUE; ++i) { x[i] = nondet_constant_input; y[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = nondet_constant_input; } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t y0[ds.a_size]; fxp_t waux[Nw]; fxp_t w0[Nw]; # 206 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" for (i = 0; i < Nw; ++i) { waux[i] = nondet_int(); __DSVERIFIER_assume(waux[i] >= min_fxp && waux[i] <= max_fxp); w0[i] = waux[i]; } fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; int j; for(i=0; i<X_SIZE_VALUE; ++i){ # 234 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" y[i] = fxp_transposed_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size); # 278 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle.h" } fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 34 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" extern digital_system ds; extern implementation impl; int verify_error(void){ overflow_mode = 2; double a_cascade[100]; int a_cascade_size; double b_cascade[100]; int b_cascade_size; fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 69 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; double yf[X_SIZE_VALUE]; double xf[X_SIZE_VALUE]; int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; double yfaux[ds.a_size]; double xfaux[ds.b_size]; double wfaux[Nw]; int i; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; yfaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; xfaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; wfaux[i] = 0; } for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_int(); __DSVERIFIER_assume(x[i] >= min_fxp && x[i] <= max_fxp); yf[i] = 0.0f; xf[i] = fxp_to_double(x[i]); } for (i = 0; i < X_SIZE_VALUE; ++i) { # 156 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" y[i] = fxp_transposed_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size); yf[i] = double_transposed_direct_form_2(wfaux, xf[i], ds.a, ds.b, ds.a_size, ds.b_size); # 169 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error.h" double absolute_error = yf[i] - fxp_to_double(y[i]); __DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error)); } return 0; } # 35 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 1 # 13 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" extern digital_system ds; extern implementation impl; int verify_zero_input_limit_cycle(void){ overflow_mode = 3; int i,j; int Set_xsize_at_least_two_times_Na = 2 * ds.a_size; printf("X_SIZE must be at least 2 * ds.a_size"); # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ((void) sizeof (( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 ) ; else __assert_fail ( # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" "X_SIZE_VALUE >= Set_xsize_at_least_two_times_Na" # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h", 23, __extension__ __PRETTY_FUNCTION__); })) # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" ; fxp_t a_fxp[ds.a_size]; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); # 71 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); fxp_t y[X_SIZE_VALUE]; fxp_t x[X_SIZE_VALUE]; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = 0; } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; fxp_t yaux[ds.a_size]; fxp_t xaux[ds.b_size]; fxp_t waux[Nw]; fxp_t y0[ds.a_size]; fxp_t w0[Nw]; # 104 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" for (i = 0; i < Nw; ++i) { waux[i] = nondet_int(); __DSVERIFIER_assume(waux[i] >= min_fxp && waux[i] <= max_fxp); w0[i] = waux[i]; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } fxp_t xk, temp; fxp_t *aptr, *bptr, *xptr, *yptr, *wptr; for(i=0; i<X_SIZE_VALUE; ++i){ # 141 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" y[i] = fxp_transposed_direct_form_2(waux, x[i], a_fxp, b_fxp, ds.a_size, ds.b_size); # 188 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_zero_input_limit_cycle.h" } fxp_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 36 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; extern hardware hw; int generic_timer = 0; int verify_generic_timing(void) { double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_float(); __DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; double yaux[ds.a_size]; double xaux[ds.b_size]; double waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; generic_timer += ((2 * hw.assembly.std) + (1 * hw.assembly.rjmp)); double initial_timer = generic_timer; for (i = 0; i < X_SIZE_VALUE; ++i) { generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.adiw) + (2 * hw.assembly.std)); generic_timer += ((2 * hw.assembly.ldd) + (1 * hw.assembly.cpi) + (1 * hw.assembly.cpc) + (1 * hw.assembly.brlt)); # 85 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" y[i] = generic_timing_double_transposed_direct_form_2(waux, x[i], ds.a, ds.b, ds.a_size, ds.b_size); double spent_time = (((double) generic_timer) * hw.cycle); # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ((void) sizeof (( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" spent_time <= ds.sample_time # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" spent_time <= ds.sample_time # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 ) ; else __assert_fail ( # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" "spent_time <= ds.sample_time" # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h", 89, __extension__ __PRETTY_FUNCTION__); })) # 89 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_generic_timing.h" ; generic_timer = initial_timer; } return 0; } # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" int nondet_int(); float nondet_float(); extern digital_system ds; extern implementation impl; int verify_timing_msp_430(void) { double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; int i; for (i = 0; i < X_SIZE_VALUE; ++i) { y[i] = 0; x[i] = nondet_float(); __DSVERIFIER_assume(x[i] >= impl.min && x[i] <= impl.max); } int Nw = 0; Nw = ds.a_size > ds.b_size ? ds.a_size : ds.b_size; double yaux[ds.a_size]; double xaux[ds.b_size]; double waux[Nw]; for (i = 0; i < ds.a_size; ++i) { yaux[i] = 0; } for (i = 0; i < ds.b_size; ++i) { xaux[i] = 0; } for (i = 0; i < Nw; ++i) { waux[i] = 0; } double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; for (i = 0; i < X_SIZE_VALUE; ++i) { # 75 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" y[i] = double_transposed_direct_form_2_MSP430(waux, x[i], ds.a, ds.b, ds.a_size, ds.b_size); # 121 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_timing_msp430.h" } return 0; } # 38 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 1 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" extern digital_system ds; extern implementation impl; int verify_stability(void){ overflow_mode = 0; fxp_t a_fxp[ds.a_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); double _a[ds.a_size]; fxp_to_double_array(_a, a_fxp, ds.a_size); # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ((void) sizeof (( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" check_stability(_a, ds.a_size) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" check_stability(_a, ds.a_size) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 ) ; else __assert_fail ( # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" "check_stability(_a, ds.a_size)" # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h", 37, __extension__ __PRETTY_FUNCTION__); })) # 37 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" ; # 83 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability.h" return 0; } # 39 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" 1 # 21 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" extern digital_system ds; extern implementation impl; int verify_minimum_phase(void){ overflow_mode = 0; fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); double _b[ds.b_size]; fxp_to_double_array(_b, b_fxp, ds.b_size); __DSVERIFIER_assert(check_stability(_b, ds.b_size)); # 85 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_minimum_phase.h" return 0; } # 40 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; int verify_stability_closedloop_using_dslib(void){ double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den[100]; int ans_den_size = controller.a_size + plant.a_size - 1; # 68 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_stability_closedloop.h" printf("Verifying stability for closedloop function\n"); __DSVERIFIER_assert(check_stability_closedloop(ans_den, ans_den_size, p_num, p_num_size, p_den, p_den_size)); return 0; } # 41 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" 1 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; double nondet_double(); int verify_limit_cycle_closed_loop(void){ overflow_mode = 3; double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den[100]; int ans_den_size = controller.a_size + plant.a_size - 1; int i; double y[X_SIZE_VALUE]; double x[X_SIZE_VALUE]; double xaux[ans_num_size]; double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max); for (i = 0; i < X_SIZE_VALUE; ++i) { x[i] = nondet_constant_input; y[i] = 0; } for (i = 0; i < ans_num_size; ++i) { xaux[i] = nondet_constant_input; } double yaux[ans_den_size]; double y0[ans_den_size]; int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size; double waux[Nw]; double w0[Nw]; # 105 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" for (i = 0; i < Nw; ++i) { waux[i] = nondet_int(); __DSVERIFIER_assume(waux[i] >= impl.min && waux[i] <= impl.max); w0[i] = waux[i]; } double xk, temp; double *aptr, *bptr, *xptr, *yptr, *wptr; int j; for(i=0; i<X_SIZE_VALUE; ++i){ # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_limit_cycle_closedloop.h" y[i] = double_transposed_direct_form_2(waux, x[i], ans_den, ans_num, ans_den_size, ans_num_size); } double_check_persistent_limit_cycle(y, X_SIZE_VALUE); return 0; } # 42 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" 1 # 23 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" extern digital_system plant; extern digital_system plant_cbmc; extern digital_system controller; int verify_error_closedloop(void){ overflow_mode = 3; double * c_num = controller.b; int c_num_size = controller.b_size; double * c_den = controller.a; int c_den_size = controller.a_size; fxp_t c_num_fxp[controller.b_size]; fxp_double_to_fxp_array(c_num, c_num_fxp, controller.b_size); fxp_t c_den_fxp[controller.a_size]; fxp_double_to_fxp_array(c_den, c_den_fxp, controller.a_size); double c_num_qtz[controller.b_size]; fxp_to_double_array(c_num_qtz, c_num_fxp, controller.b_size); double c_den_qtz[controller.a_size]; fxp_to_double_array(c_den_qtz, c_den_fxp, controller.a_size); double * p_num = plant.b; int p_num_size = plant.b_size; double * p_den = plant.a; int p_den_size = plant.a_size; double ans_num_double[100]; double ans_num_qtz[100]; int ans_num_size = controller.b_size + plant.b_size - 1; double ans_den_qtz[100]; double ans_den_double[100]; int ans_den_size = controller.a_size + plant.a_size - 1; # 77 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" int i; double y_qtz[X_SIZE_VALUE]; double y_double[X_SIZE_VALUE]; double x_qtz[X_SIZE_VALUE]; double x_double[X_SIZE_VALUE]; double xaux_qtz[ans_num_size]; double xaux_double[ans_num_size]; double xaux[ans_num_size]; double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= impl.min && nondet_constant_input <= impl.max); for (i = 0; i < X_SIZE_VALUE; ++i) { x_qtz[i] = nondet_constant_input; x_double[i] = nondet_constant_input; y_qtz[i] = 0; y_double[i] = 0; } for (i = 0; i < ans_num_size; ++i) { xaux_qtz[i] = nondet_constant_input; xaux_double[i] = nondet_constant_input; } double yaux_qtz[ans_den_size]; double yaux_double[ans_den_size]; double y0_qtz[ans_den_size]; double y0_double[ans_den_size]; int Nw = ans_den_size > ans_num_size ? ans_den_size : ans_num_size; double waux_qtz[Nw]; double waux_double[Nw]; double w0_qtz[Nw]; double w0_double[Nw]; for (i = 0; i < Nw; ++i) { waux_qtz[i] = 0; waux_double[i] = 0; } for(i=0; i<X_SIZE_VALUE; ++i){ # 150 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_closedloop.h" y_qtz[i] = double_transposed_direct_form_2(waux_qtz, x_qtz[i], ans_den_qtz, ans_num_qtz, ans_den_size, ans_num_size); y_double[i] = double_transposed_direct_form_2(waux_double, x_double[i], ans_den_double, ans_num_double, ans_den_size, ans_num_size); double absolute_error = y_double[i] - fxp_to_double(y_qtz[i]); __DSVERIFIER_assert(absolute_error < (impl.max_error) && absolute_error > (-impl.max_error)); } return 0; } # 43 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 1 # 20 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" extern digital_system_state_space _controller; extern double error_limit; extern int closed_loop; double new_state[4][4]; double new_stateFWL[4][4]; digital_system_state_space _controller_fxp; digital_system_state_space _controller_double; double ss_system_quantization_error(fxp_t inputs){ digital_system_state_space __backupController; int i; int j; _controller.inputs[0][0] = inputs; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ __backupController.A[i][j]= (_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ __backupController.B[i][j]= (_controller.B[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ __backupController.C[i][j]= (_controller.C[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ __backupController.D[i][j]= (_controller.D[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ __backupController.states[i][j]= (_controller.states[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ __backupController.inputs[i][j]= (_controller.inputs[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ __backupController.outputs[i][j]= (_controller.outputs[i][j]); } } double __quant_error = 0.0; for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= (new_state[i][j]); } } double output_double = double_state_space_representation(); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_state[i][j]= (_controller.states[i][j]); } } __backupController.inputs[0][0] = inputs; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ _controller.A[i][j] = __backupController.A[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ _controller.B[i][j] = __backupController.B[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ _controller.C[i][j] = __backupController.C[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ _controller.D[i][j] = __backupController.D[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j] = __backupController.states[i][j]; } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ _controller.inputs[i][j] = __backupController.inputs[i][j]; } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ _controller.outputs[i][j] = __backupController.outputs[i][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ _controller.states[i][j]= (new_stateFWL[i][j]); } } double output_fxp = fxp_state_space_representation(); for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_stateFWL[i][j]= (_controller.states[i][j]); } } __quant_error = output_double - output_fxp; return __quant_error; } double fxp_ss_closed_loop_quantization_error(double reference){ double reference_aux[4][4]; double result1[4][4]; double temp_result1[4][4]; double result2[4][4]; double temp_states[4][4]; fxp_t K_fxp[4][4]; fxp_t states_fxp[4][4]; fxp_t result_fxp[4][4]; unsigned int i; unsigned int j; unsigned int k; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller_fxp.D[i][j] != 0){ flag = 1; } } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ reference_aux[i][j]=0; K_fxp[i][j] = 0; } } for(i=0; i<nInputs;i++){ reference_aux[i][0]= reference; } for(i=0; i<4;i++){ states_fxp[i][0]=0; } for(i=0; i<nStates;i++){ K_fxp[0][i]= fxp_double_to_fxp(_controller_fxp.K[0][i]); } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } for(k=0; k<nStates;k++) { states_fxp[k][0]= fxp_double_to_fxp(_controller_fxp.states[k][0]); } fxp_matrix_multiplication(nOutputs,nStates,nStates,1,K_fxp,states_fxp,result_fxp); fxp_t reference_fxp[4][4]; fxp_t result_fxp2[4][4]; for(k=0;k<nInputs;k++) { reference_fxp[k][0] =fxp_double_to_fxp(fxp_quantize(reference_aux[k][0])); } fxp_sub_matrix(nInputs,1, reference_fxp, result_fxp, result_fxp2); for(k=0; k<nInputs;k++) { _controller_fxp.inputs[k][0] = fxp_to_double(fxp_quantize(result_fxp2[k][0])); } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_fxp.C,_controller_fxp.states,result1); if(flag == 1) { double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_fxp.D,_controller_fxp.inputs,result2); } double_add_matrix(nOutputs,1,result1,result2,_controller_fxp.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller_fxp.A,_controller_fxp.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_fxp.B,_controller_fxp.inputs,result2); double_add_matrix(nStates,1,result1,result2,_controller_fxp.states); return _controller_fxp.outputs[0][0]; } double ss_closed_loop_quantization_error(double reference){ double reference_aux[4][4]; double result1[4][4]; double result2[4][4]; unsigned int i; unsigned int j; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller_double.D[i][j] != 0){ flag = 1; } } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ reference_aux[i][j]= reference; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.K,_controller_double.states,result1); double_sub_matrix(nInputs,1,reference_aux,result1, _controller_double.inputs); double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller_double.C,_controller_double.states,result1); if(flag == 1) double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller_double.D,_controller_double.inputs,result2); double_add_matrix(nOutputs,1,result1,result2,_controller_double.outputs); double_matrix_multiplication(nStates,nStates,nStates,1,_controller_double.A,_controller_double.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller_double.B,_controller_double.inputs,result2); double_add_matrix(nStates,1,result1,result2,_controller_double.states); return _controller_double.outputs[0][0]; } int verify_error_state_space(void){ int i,j; for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_state[i][j]= (_controller.states[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<1;j++){ new_stateFWL[i][j]= (_controller.states[i][j]); } } _controller_fxp = _controller; _controller_double = _controller; overflow_mode = 0; fxp_t x[0]; fxp_t min_fxp = fxp_double_to_fxp(impl.min); fxp_t max_fxp = fxp_double_to_fxp(impl.max); double nondet_constant_input = nondet_double(); __DSVERIFIER_assume(nondet_constant_input >= min_fxp && nondet_constant_input <= max_fxp); for (i = 0; i < 0; ++i) { x[i] = nondet_constant_input; } double __quant_error; if(closed_loop){ for (i = 0; i < 0; ++i) { __quant_error = ss_closed_loop_quantization_error(x[i]) - fxp_ss_closed_loop_quantization_error(x[i]); # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ((void) sizeof (( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ; else __assert_fail ( # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" "__quant_error < error_limit && __quant_error > ((-1)*error_limit)" # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 354, __extension__ __PRETTY_FUNCTION__); })) # 354 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" ; } } else { for (i=0; i < 0; i++) { __quant_error = ss_system_quantization_error(x[i]); # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ((void) sizeof (( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" __quant_error < error_limit && __quant_error > ((-1)*error_limit) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 ) ; else __assert_fail ( # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" "__quant_error < error_limit && __quant_error > ((-1)*error_limit)" # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h", 361, __extension__ __PRETTY_FUNCTION__); })) # 361 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_error_state_space.h" ; } } return 0; } # 44 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" extern digital_system_state_space _controller; extern double error_limit; extern int closed_loop; double fxp_ss_closed_loop_safety(){ double reference[4][4]; double result1[4][4]; double result2[4][4]; fxp_t K_fpx[4][4]; fxp_t outputs_fpx[4][4]; fxp_t result_fxp[4][4]; unsigned int i; unsigned int j; unsigned int k; short unsigned int flag = 0; for(i=0; i<nOutputs;i++){ for(j=0; j<nInputs;j++){ if(_controller.D[i][j] != 0){ flag = 1; } } } for(i=0; i<nInputs;i++){ for(j=0; j<1;j++){ reference[i][j]= (_controller.inputs[i][j]); } } for(i=0; i<nInputs;i++){ for(j=0; j<nOutputs;j++){ K_fpx[i][j]=0; } } for(i=0; i<nOutputs;i++){ for(j=0; j<1;j++){ outputs_fpx[i][j]=0; } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result_fxp[i][j]=0; } } for(i=0; i<nInputs;i++){ for(j=0; j<nOutputs;j++){ K_fpx[i][j]= fxp_double_to_fxp(_controller.K[i][j]); } } for(i=0; i<4;i++){ for(j=0; j<4;j++){ result1[i][j]=0; result2[i][j]=0; } } for (i = 1; i < 0; i++) { double_matrix_multiplication(nOutputs,nStates,nStates,1,_controller.C,_controller.states,result1); if(flag == 1){ double_matrix_multiplication(nOutputs,nInputs,nInputs,1,_controller.D,_controller.inputs,result2); } double_add_matrix(nOutputs, 1, result1, result2, _controller.outputs); for(k=0; k<nOutputs;k++){ for(j=0; j<1;j++){ outputs_fpx[k][j]= fxp_double_to_fxp(_controller.outputs[k][j]); } } fxp_matrix_multiplication(nInputs,nOutputs,nOutputs,1,K_fpx,outputs_fpx,result_fxp); for(k=0; k<nInputs;k++){ for(j=0; j<1;j++){ result1[k][j]= fxp_to_double(result_fxp[k][j]); } } printf("### fxp: U (before) = %.9f", _controller.inputs[0][0]); printf("### fxp: reference = %.9f", reference[0][0]); printf("### fxp: result1 = %.9f", result1[0][0]); printf("### fxp: reference - result1 = %.9f", (reference[0][0] - result1[0][0])); double_sub_matrix(nInputs, 1, reference, result1, _controller.inputs); printf("### fxp: Y = %.9f", _controller.outputs[0][0]); printf("### fxp: U (after) = %.9f \n### \n### ", _controller.inputs[0][0]); double_matrix_multiplication(nStates,nStates,nStates,1,_controller.A,_controller.states,result1); double_matrix_multiplication(nStates,nInputs,nInputs,1,_controller.B,_controller.inputs,result2); double_add_matrix(nStates, 1, result1, result2, _controller.states); } return _controller.outputs[0][0]; } int verify_safety_state_space(void){ fxp_t output_fxp = fxp_ss_closed_loop_safety(); double output_double = fxp_to_double(output_fxp); # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ((void) sizeof (( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" output_double <= error_limit # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" output_double <= error_limit # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 ) ; else __assert_fail ( # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" "output_double <= error_limit" # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h", 140, __extension__ __PRETTY_FUNCTION__); })) # 140 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_safety_state_space.h" ; return 0; } # 45 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 1 # 14 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" extern digital_system_state_space _controller; int verify_controllability(void){ int i; int j; fxp_t A_fpx[4][4]; fxp_t B_fpx[4][4]; fxp_t controllabilityMatrix[4][4]; fxp_t backup[4][4]; fxp_t backupSecond[4][4]; double controllabilityMatrix_double[4][4]; for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ A_fpx[i][j] = 0.0; B_fpx[i][j] = 0.0; controllabilityMatrix[i][j] = 0.0; backup[i][j] = 0.0; backupSecond[i][j] = 0.0; controllabilityMatrix_double[i][j] = 0.0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nStates;i++){ for(j=0; j<nInputs;j++){ B_fpx[i][j]= fxp_double_to_fxp(_controller.B[i][j]); } } if(nInputs > 1){ int l = 0; for(j=0; j<(nStates*nInputs);){ fxp_exp_matrix(nStates,nStates,A_fpx,l,backup); l++; fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond); for(int k = 0; k < nInputs; k++){ for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][k]; } j++; } } for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ backup[i][j]= 0.0; } } fxp_transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs)); fxp_t mimo_controllabilityMatrix_fxp[4][4]; fxp_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_fxp); for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ controllabilityMatrix_double[i][j]= fxp_to_double(mimo_controllabilityMatrix_fxp[i][j]); } } # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix_double,nStates) != 0" # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 91, __extension__ __PRETTY_FUNCTION__); })) # 91 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } else { for(j=0; j<nStates;j++){ fxp_exp_matrix(nStates,nStates,A_fpx,j,backup); fxp_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,B_fpx,backupSecond); for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][0]; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ controllabilityMatrix_double[i][j]= fxp_to_double(controllabilityMatrix[i][j]); } } # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix_double,nStates) != 0 # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix_double,nStates) != 0" # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 113, __extension__ __PRETTY_FUNCTION__); })) # 113 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } return 0; } int verify_controllability_double(void){ int i; int j; double controllabilityMatrix[4][4]; double backup[4][4]; double backupSecond[4][4]; double controllabilityMatrix_double[4][4]; if(nInputs > 1){ int l = 0; for(j=0; j<(nStates*nInputs);){ double_exp_matrix(nStates,nStates,_controller.A,l,backup); l++; double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond); for(int k = 0; k < nInputs; k++){ for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][k]; } j++; } } for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nInputs);j++){ backup[i][j]= 0.0; } } transpose(controllabilityMatrix,backup,nStates,(nStates*nInputs)); double mimo_controllabilityMatrix_double[4][4]; double_matrix_multiplication(nStates,(nStates*nInputs),(nStates*nInputs),nStates,controllabilityMatrix,backup,mimo_controllabilityMatrix_double); # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(mimo_controllabilityMatrix_double,nStates) != 0 # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(mimo_controllabilityMatrix_double,nStates) != 0 # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(mimo_controllabilityMatrix_double,nStates) != 0" # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 154, __extension__ __PRETTY_FUNCTION__); })) # 154 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } else { for(j=0; j<nStates;j++){ double_exp_matrix(nStates,nStates,_controller.A,j,backup); double_matrix_multiplication(nStates,nStates,nStates,nInputs,backup,_controller.B,backupSecond); for(i = 0; i<nStates;i++){ controllabilityMatrix[i][j]= backupSecond[i][0]; } } # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ((void) sizeof (( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix,nStates) != 0 # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" determinant(controllabilityMatrix,nStates) != 0 # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 ) ; else __assert_fail ( # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" "determinant(controllabilityMatrix,nStates) != 0" # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h", 163, __extension__ __PRETTY_FUNCTION__); })) # 163 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_controllability.h" ; } return 0; } # 46 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 1 # 17 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" extern digital_system_state_space _controller; int verify_observability(void){ int i; int j; fxp_t A_fpx[4][4]; fxp_t C_fpx[4][4]; fxp_t observabilityMatrix[4][4]; fxp_t backup[4][4]; fxp_t backupSecond[4][4]; double observabilityMatrix_double[4][4]; for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix[i][j]= 0; A_fpx[i][j]=0; C_fpx[i][j]= 0; backup[i][j]= 0; backupSecond[i][j]= 0; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ A_fpx[i][j]= fxp_double_to_fxp(_controller.A[i][j]); } } for(i=0; i<nOutputs;i++){ for(j=0; j<nStates;j++){ C_fpx[i][j]= fxp_double_to_fxp(_controller.C[i][j]); } } if(nOutputs > 1){ int l; j = 0; for(l=0; l<nStates;){ fxp_exp_matrix(nStates,nStates,A_fpx,l,backup); l++; fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond); for(int k = 0; k < nOutputs; k++){ for(i = 0; i<nStates;i++){ observabilityMatrix[j][i]= backupSecond[k][i]; } j++; } } # 80 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" for(i=0; i<nStates;i++){ for(j=0; j<(nStates*nOutputs);j++){ backup[i][j]= 0.0; } } fxp_transpose(observabilityMatrix,backup,(nStates*nOutputs),nStates); # 99 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" fxp_t mimo_observabilityMatrix_fxp[4][4]; fxp_matrix_multiplication(nStates,(nStates*nOutputs),(nStates*nOutputs),nStates,backup,observabilityMatrix,mimo_observabilityMatrix_fxp); # 112 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix_double[i][j]= fxp_to_double(mimo_observabilityMatrix_fxp[i][j]); } } # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ((void) sizeof (( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ; else __assert_fail ( # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" "determinant(observabilityMatrix_double,nStates) != 0" # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 119, __extension__ __PRETTY_FUNCTION__); })) # 119 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" ; }else{ for(i=0; i<nStates;i++){ fxp_exp_matrix(nStates,nStates,A_fpx,i,backup); fxp_matrix_multiplication(nOutputs,nStates,nStates,nStates,C_fpx,backup,backupSecond); for(j = 0; j<nStates;j++){ observabilityMatrix[i][j]= backupSecond[0][j]; } } for(i=0; i<nStates;i++){ for(j=0; j<nStates;j++){ observabilityMatrix_double[i][j]= fxp_to_double(observabilityMatrix[i][j]); } } # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ((void) sizeof (( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ? 1 : 0), __extension__ ({ if ( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" determinant(observabilityMatrix_double,nStates) != 0 # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 ) ; else __assert_fail ( # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" "determinant(observabilityMatrix_double,nStates) != 0" # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" 3 4 , "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h", 134, __extension__ __PRETTY_FUNCTION__); })) # 134 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_observability.h" ; } return 0; } # 47 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 # 1 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" 1 # 16 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" extern filter_parameters filter; extern implementation impl; extern digital_system ds; # 28 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/engine/verify_magnitude.h" void resp_mag(double* num, int lnum, double* den, int lden, double* res, int N) { double w; int m, i; double out_numRe[N + 1]; double out_numIm[N + 1]; double out_denRe[N + 1]; double out_denIm[N + 1]; double old_out_Re; double zero_test; for (w = 0, i = 0; w <= 3.14159265358979323846; w += 3.14159265358979323846 / N, ++i) { out_numRe[i] = num[0]; out_numIm[i] = 0; for (m = 1; m < lnum; ++m) { old_out_Re = out_numRe[i]; out_numRe[i] = cosTyl(w, 6) * out_numRe[i] - sinTyl(w, 6) * out_numIm[i] + num[m]; out_numIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_numIm[i]; } out_denRe[i] = den[0]; out_denIm[i] = 0; for (m = 1; m < lden; ++m) { old_out_Re = out_denRe[i]; out_denRe[i] = cosTyl(w, 6) * out_denRe[i] - sinTyl(w, 6) * out_denIm[i] + den[m]; out_denIm[i] = sinTyl(w, 6) * old_out_Re + cosTyl(w, 6) * out_denIm[i]; } res[i] = sqrt3(out_numRe[i] * out_numRe[i] + out_numIm[i] * out_numIm[i]); zero_test = sqrt3(out_denRe[i] * out_denRe[i] + out_denIm[i] * out_denIm[i]); __DSVERIFIER_assume(zero_test != 0); res[i] = res[i] / zero_test; } } int verify_magnitude(void) { int freq_response_samples = 100; double w; double w_incr = 1.0 / freq_response_samples; double res[freq_response_samples+1]; int i,j; fxp_t a_fxp[ds.a_size]; fxp_double_to_fxp_array(ds.a, a_fxp, ds.a_size); double _a[ds.a_size]; fxp_to_double_array(_a, a_fxp, ds.a_size); fxp_t b_fxp[ds.b_size]; fxp_double_to_fxp_array(ds.b, b_fxp, ds.b_size); double _b[ds.b_size]; fxp_to_double_array(_b, b_fxp, ds.b_size); resp_mag(ds.b, ds.b_size, ds.a, ds.a_size, res, freq_response_samples); if (filter.type == 1) { for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) { if (w <= filter.wp) { __DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|"); } else if (w == filter.wc) { __DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|"); } else if ((w >= filter.wr) && (w <= 1)) { __DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|"); } } } else if (filter.type == 2) { for (i = 0, w = 0; (w <= 1.0); ++i, w += w_incr) { if (w <= filter.wr) { __DSVERIFIER_assert_msg(res[i] <= filter.Ar, "|----------------Stopband Failure-------------|"); } else if (w == filter.wc) { __DSVERIFIER_assert_msg(res[i] <= filter.Ac, "|-------------Cutoff Frequency Failure--------|"); } else if ((w > filter.wp) && (w <= 1)) { __DSVERIFIER_assert_msg(res[i] >= filter.Ap, "|----------------Passband Failure-------------|"); } } } else { __DSVERIFIER_assert(0); } return 0; } # 48 "/home/yashchopda/Desktop/dsverifier-v2.0.3-esbmc-v4.0-cbmc-5.6/bmc/dsverifier.h" 2 extern digital_system ds; extern digital_system plant; digital_system plant_cbmc; extern digital_system controller; extern implementation impl; extern hardware hw; extern digital_system_state_space _controller; extern filter_parameters filter; unsigned int nondet_uint(); extern void initials(); void validation(); void call_verification_task(void * verification_task); void call_closedloop_verification_task(void * closedloop_verification_task); float nondet_float(); double nondet_double(); int main(){ initialization(); validation(); if (1 == 0) rounding_mode = 0; else if (1 == 1) rounding_mode = 1; else if (1 == 2) rounding_mode = 2; if (7 == 3) { call_verification_task(&verify_overflow); } else if (7 == 2) { call_verification_task(&verify_limit_cycle); } else if (7 == 6) { call_verification_task(&verify_error); } else if (7 == 1) { call_verification_task(&verify_zero_input_limit_cycle); } else if (7 == 4) { call_verification_task(&verify_timing_msp_430); } else if (7 == 5) { call_verification_task(&verify_generic_timing); } else if (7 == 7) { call_verification_task(&verify_stability); } else if (7 == 8) { call_verification_task(&verify_minimum_phase); } else if (7 == 9) { call_closedloop_verification_task(&verify_stability_closedloop_using_dslib); } else if (7 == 10) { call_closedloop_verification_task(&verify_limit_cycle_closed_loop); } else if (7 == 11) { call_closedloop_verification_task(&verify_error_closedloop); } else if (7 == 12) { verify_error_state_space(); } else if (7 == 16) { verify_safety_state_space(); } else if (7 == 13) { verify_controllability(); } else if (7 == 14) { verify_observability(); } else if (7 == 15) { verify_limit_cycle_state_space(); } else if (7 == 18) { call_verification_task(&verify_magnitude); } return 0; } void validation() { if (7 == 12 || 7 == 16 || 7 == 15 || 7 == 13 || 7 == 14) { if (0 == 0) { printf("\n\n********************************************************************************************\n"); printf("* set a K_SIZE to use this property in DSVerifier (use: -DK_SIZE=VALUE) *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); exit(1); } initials(); return; } if (((7 != 9) && (7 != 10) && (7 != 11)) && (ds.a_size == 0 || ds.b_size == 0)) { printf("\n\n****************************************************************************\n"); printf("* set (ds and impl) parameters to check with DSVerifier *\n"); printf("****************************************************************************\n"); __DSVERIFIER_assert(0); } if ((7 == 9) || (7 == 10) || (7 == 11)) { if (controller.a_size == 0 || plant.b_size == 0 || impl.int_bits == 0 ) { printf("\n\n*****************************************************************************************************\n"); printf("* set (controller, plant, and impl) parameters to check CLOSED LOOP with DSVerifier *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } else { printf("\n\n*****************************************************************************************************\n"); printf("* set (controller and impl) parameters so that they do not overflow *\n"); printf("*****************************************************************************************************\n"); unsigned j; for (j = 0; j < controller.a_size; ++j) { const double value=controller.a[j]; __DSVERIFIER_assert(value <= _dbl_max); __DSVERIFIER_assert(value >= _dbl_min); } for (j = 0; j < controller.b_size; ++j) { const double value=controller.b[j]; __DSVERIFIER_assert(value <= _dbl_max); __DSVERIFIER_assert(value >= _dbl_min); } } if (controller.b_size > 0) { unsigned j, zeros=0; for (j = 0; j < controller.b_size; ++j) { if (controller.b[j]==0) ++zeros; } if (zeros == controller.b_size) { printf("\n\n*****************************************************************************************************\n"); printf("* The controller numerator must not be zero *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (controller.a_size > 0) { unsigned j, zeros=0; for (j = 0; j < controller.a_size; ++j) { if (controller.a[j]==0) ++zeros; } if (zeros == controller.a_size) { printf("\n\n*****************************************************************************************************\n"); printf("* The controller denominator must not be zero *\n"); printf("*****************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (0 == 0) { printf("\n\n***************************************************************************************************************\n"); printf("* set a connection mode to check CLOSED LOOP with DSVerifier (use: --connection-mode TYPE) *\n"); printf("***************************************************************************************************************\n"); __DSVERIFIER_assert(0); } } if (7 == 0) { printf("\n\n***************************************************************************************\n"); printf("* set the property to check with DSVerifier (use: --property NAME) *\n"); printf("***************************************************************************************\n"); __DSVERIFIER_assert(0); } if ((7 == 3) || (7 == 2) || (7 == 1) || (7 == 10) || (7 == 11) || (7 == 4 || 7 == 5) || 7 == 6) { if ((5 == 0) && !(0 == 1)) { printf("\n\n********************************************************************************************\n"); printf("* set a X_SIZE to use this property in DSVerifier (use: --x-size VALUE) *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); } else if (0 == 1) { X_SIZE_VALUE = nondet_uint(); __DSVERIFIER_assume( X_SIZE_VALUE > (2 * ds.a_size)); } else if (5 < 0) { printf("\n\n********************************************************************************************\n"); printf("* set a X_SIZE > 0 *\n"); printf("********************************************************************************************\n"); __DSVERIFIER_assert(0); } else { X_SIZE_VALUE = 5; } } if ((3 == 0) && (7 != 9) && (7 != 18)) { printf("\n\n*********************************************************************************************\n"); printf("* set the realization to check with DSVerifier (use: --realization NAME) *\n"); printf("*********************************************************************************************\n"); __DSVERIFIER_assert(0); } if (7 == 6 || 7 == 11) { if (impl.max_error == 0) { printf("\n\n***********************************************************************\n"); printf("* provide the maximum expected error (use: impl.max_error) *\n"); printf("***********************************************************************\n"); __DSVERIFIER_assert(0); } } if (7 == 4 || 7 == 5) { if (7 == 5 || 7 == 4) { if (hw.clock == 0l) { printf("\n\n***************************\n"); printf("* Clock could not be zero *\n"); printf("***************************\n"); __DSVERIFIER_assert(0); } hw.cycle = ((double) 1.0 / hw.clock); if (hw.cycle < 0) { printf("\n\n*********************************************\n"); printf("* The cycle time could not be representable *\n"); printf("*********************************************\n"); __DSVERIFIER_assert(0); } if (ds.sample_time == 0) { printf("\n\n*****************************************************************************\n"); printf("* provide the sample time of the digital system (ds.sample_time) *\n"); printf("*****************************************************************************\n"); __DSVERIFIER_assert(0); } } } if (7 == 18) { if (!((filter.Ap > 0) && (filter.Ac >0) && (filter.Ar >0))) { printf("\n\n*****************************************************************************\n"); printf("* set values bigger than 0 for Ap, Ac and Ar* \n"); printf("*****************************************************************************\n"); __DSVERIFIER_assert(0); } } if ((3 == 7) || (3 == 8) || (3 == 9) || (3 == 10) || (3 == 11) || (3 == 12)) { printf("\n\n******************************************\n"); printf("* Temporarily the cascade modes are disabled *\n"); printf("**********************************************\n"); __DSVERIFIER_assert(0); } } void call_verification_task(void * verification_task) { int i = 0; _Bool base_case_executed = 0; if (0 == 2) { for(i=0; i<ds.b_size; i++) { if (ds.b_uncertainty[i] > 0) { double factor = ds.b_uncertainty[i]; factor = factor < 0 ? factor * (-1) : factor; double min = ds.b[i] - factor; double max = ds.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.b[i] = nondet_double(); __DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max)); } } for(i=0; i<ds.a_size; i++) { if (ds.a_uncertainty[i] > 0) { double factor = ds.a_uncertainty[i]; factor = factor < 0 ? factor * (-1) : factor; double min = ds.a[i] - factor; double max = ds.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.a[i] = nondet_double(); __DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max)); } } } else { int i=0; for(i=0; i<ds.b_size; i++) { if (ds.b_uncertainty[i] > 0) { double factor = ((ds.b[i] * ds.b_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = ds.b[i] - factor; double max = ds.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.b[i] = nondet_double(); __DSVERIFIER_assume((ds.b[i] >= min) && (ds.b[i] <= max)); } } for(i=0; i<ds.a_size; i++) { if (ds.a_uncertainty[i] > 0) { double factor = ((ds.a[i] * ds.a_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = ds.a[i] - factor; double max = ds.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } ds.a[i] = nondet_double(); __DSVERIFIER_assume((ds.a[i] >= min) && (ds.a[i] <= max)); } } } ((void(*)())verification_task)(); } void call_closedloop_verification_task(void * closedloop_verification_task) { _Bool base_case_executed = 0; int i=0; for(i=0; i<plant.b_size; i++) { if (plant.b_uncertainty[i] > 0) { double factor = ((plant.b[i] * plant.b_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = plant.b[i] - factor; double max = plant.b[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } plant.b[i] = nondet_double(); __DSVERIFIER_assume((plant.b[i] >= min) && (plant.b[i] <= max)); }else{ } } for(i=0; i<plant.a_size; i++) { if (plant.a_uncertainty[i] > 0) { double factor = ((plant.a[i] * plant.a_uncertainty[i]) / 100); factor = factor < 0 ? factor * (-1) : factor; double min = plant.a[i] - factor; double max = plant.a[i] + factor; if ((factor == 0) && (base_case_executed == 1)) { continue; } else if ((factor == 0) && (base_case_executed == 0)) { base_case_executed = 1; } plant.a[i] = nondet_double(); __DSVERIFIER_assume((plant.a[i] >= min) && (plant.a[i] <= max)); } else { } } ((void(*)())closedloop_verification_task)(); } # 2 "benchmarks/ds-05-impl1.c" 2 digital_system ds = { .b = { 2002.0, -4000.0, 1998.0 }, .b_size = 3, .a = { 1.0, 0.0, -1.0 }, .a_size = 3, .sample_time = 0.001 }; implementation impl = { .int_bits = 10, .frac_bits = 6, .max = 1.0, .min = -1.0 };
the_stack_data/243892390.c
/* Remove Duplicates from Sorted List II * delete all nodes that have duplicate numbers, * leaving only distinct numbers from the original list */ #include <stdio.h> #include <stdlib.h> struct ListNode { int val; struct ListNode *next; }; struct ListNode *init(int val) { struct ListNode *temp = malloc(sizeof(struct ListNode)); temp->val = val; temp->next = NULL; return temp; } struct ListNode *deleteDuplicates(struct ListNode *head) { if (!head || !(head->next)) return head; struct ListNode *prev_p = NULL; struct ListNode *p = head; struct ListNode *newHead = head; while (p) { struct ListNode *prev = p; struct ListNode *cur = p->next; int dup = 0; // remove cur dup with p while (cur) { if (p->val == cur->val) { prev->next = cur->next; // free(cur); cur = prev->next; dup = 1; } else { prev = cur; cur = cur->next; } } if (dup) { // remove p if (!prev_p) { newHead = p->next; // free(p); p = newHead; } else { prev_p->next = p->next; // free(p); p = prev_p->next; } } else { prev_p = p; p = p->next; } } return newHead; } typedef struct ListNode *pNode; int main() { pNode p0 = init(3); pNode p1 = init(1); pNode p2 = init(1); pNode p3 = init(2); pNode p4 = init(1); p0->next = p1; p1->next = p2; p2->next = p3; p3->next = p4; pNode p = deleteDuplicates(p0); while (p) { printf("%d\n", p->val); p = p->next; } free(p0); free(p1); free(p2); free(p3); free(p4); return 0; }
the_stack_data/10828.c
// RUN: %clang_cc1 -emit-llvm -o - %s -fpascal-strings | grep "05Hello" unsigned char * Foo( void ) { static unsigned char s[256] = "\pHello"; return s; }
the_stack_data/154828136.c
#include <stdint.h> /* returns 0 for little-endian, 1 for big-endian */ int main( void ) { static const uint64_t one = (uint64_t) 1; if ((uint8_t) 1 == *((uint8_t *) &one)) return 0; else return 1; }
the_stack_data/243893018.c
// Copyright 2017 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stdint.h> #ifndef __BYTE_ORDER__ #error __BYTE_ORDER__ not defined! #endif #ifndef __ORDER_LITTLE_ENDIAN__ #error __ORDER_LITTLE_ENDIAN__ not defined! #endif uint16_t htons(uint16_t val) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return __builtin_bswap16(val); #else return val; #endif } uint16_t ntohs(uint16_t val) { return htons(val); } uint32_t htonl(uint32_t val) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return __builtin_bswap32(val); #else return val; #endif } uint32_t ntohl(uint32_t val) { return htonl(val); }
the_stack_data/62638257.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <CL/cl.h> unsigned char *read_buffer(char *file_name, size_t *size_ptr) { FILE *f; unsigned char *buf; size_t size; /* Open file */ f = fopen(file_name, "rb"); if (!f) return NULL; /* Obtain file size */ fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, 0, SEEK_SET); /* Allocate and read buffer */ buf = malloc(size + 1); fread(buf, 1, size, f); buf[size] = '\0'; /* Return size of buffer */ if (size_ptr) *size_ptr = size; /* Return buffer */ return buf; } void write_buffer(char *file_name, const char *buffer, size_t buffer_size) { FILE *f; /* Open file */ f = fopen(file_name, "w+"); /* Write buffer */ if(buffer) fwrite(buffer, 1, buffer_size, f); /* Close file */ fclose(f); } int main(int argc, char const *argv[]) { /* Get platform */ cl_platform_id platform; cl_uint num_platforms; cl_int ret = clGetPlatformIDs(1, &platform, &num_platforms); if (ret != CL_SUCCESS) { printf("error: call to 'clGetPlatformIDs' failed\n"); exit(1); } printf("Number of platforms: %d\n", num_platforms); printf("platform=%p\n", platform); /* Get platform name */ char platform_name[100]; ret = clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_name), platform_name, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clGetPlatformInfo' failed\n"); exit(1); } printf("platform.name='%s'\n\n", platform_name); /* Get device */ cl_device_id device; cl_uint num_devices; ret = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, &num_devices); if (ret != CL_SUCCESS) { printf("error: call to 'clGetDeviceIDs' failed\n"); exit(1); } printf("Number of devices: %d\n", num_devices); printf("device=%p\n", device); /* Get device name */ char device_name[100]; ret = clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_name), device_name, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clGetDeviceInfo' failed\n"); exit(1); } printf("device.name='%s'\n", device_name); printf("\n"); /* Create a Context Object */ cl_context context; context = clCreateContext(NULL, 1, &device, NULL, NULL, &ret); if (ret != CL_SUCCESS) { printf("error: call to 'clCreateContext' failed\n"); exit(1); } printf("context=%p\n", context); /* Create a Command Queue Object*/ cl_command_queue command_queue; command_queue = clCreateCommandQueue(context, device, 0, &ret); if (ret != CL_SUCCESS) { printf("error: call to 'clCreateCommandQueue' failed\n"); exit(1); } printf("command_queue=%p\n", command_queue); printf("\n"); /* Program source */ unsigned char *source_code; size_t source_length; /* Read program from 'not_equal_ucharuchar.cl' */ source_code = read_buffer("not_equal_ucharuchar.cl", &source_length); /* Create a program */ cl_program program; program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_length, &ret); if (ret != CL_SUCCESS) { printf("error: call to 'clCreateProgramWithSource' failed\n"); exit(1); } printf("program=%p\n", program); /* Build program */ ret = clBuildProgram(program, 1, &device, NULL, NULL, NULL); if (ret != CL_SUCCESS ) { size_t size; char *log; /* Get log size */ clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,0, NULL, &size); /* Allocate log and print */ log = malloc(size); clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,size, log, NULL); printf("error: call to 'clBuildProgram' failed:\n%s\n", log); /* Free log and exit */ free(log); exit(1); } printf("program built\n"); printf("\n"); /* Create a Kernel Object */ cl_kernel kernel; kernel = clCreateKernel(program, "not_equal_ucharuchar", &ret); if (ret != CL_SUCCESS) { printf("error: call to 'clCreateKernel' failed\n"); exit(1); } /* Create and allocate host buffers */ size_t num_elem = 10; /* Create and init host side src buffer 0 */ cl_uchar *src_0_host_buffer; src_0_host_buffer = malloc(num_elem * sizeof(cl_uchar)); for (int i = 0; i < num_elem; i++) src_0_host_buffer[i] = (cl_uchar)(2); /* Create and init device side src buffer 0 */ cl_mem src_0_device_buffer; src_0_device_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, num_elem * sizeof(cl_uchar), NULL, &ret); if (ret != CL_SUCCESS) { printf("error: could not create source buffer\n"); exit(1); } ret = clEnqueueWriteBuffer(command_queue, src_0_device_buffer, CL_TRUE, 0, num_elem * sizeof(cl_uchar), src_0_host_buffer, 0, NULL, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clEnqueueWriteBuffer' failed\n"); exit(1); } /* Create and init host side src buffer 1 */ cl_uchar *src_1_host_buffer; src_1_host_buffer = malloc(num_elem * sizeof(cl_uchar)); for (int i = 0; i < num_elem; i++) src_1_host_buffer[i] = (cl_uchar)(2); /* Create and init device side src buffer 1 */ cl_mem src_1_device_buffer; src_1_device_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, num_elem * sizeof(cl_uchar), NULL, &ret); if (ret != CL_SUCCESS) { printf("error: could not create source buffer\n"); exit(1); } ret = clEnqueueWriteBuffer(command_queue, src_1_device_buffer, CL_TRUE, 0, num_elem * sizeof(cl_uchar), src_1_host_buffer, 0, NULL, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clEnqueueWriteBuffer' failed\n"); exit(1); } /* Create host dst buffer */ cl_int *dst_host_buffer; dst_host_buffer = malloc(num_elem * sizeof(cl_int)); memset((void *)dst_host_buffer, 1, num_elem * sizeof(cl_int)); /* Create device dst buffer */ cl_mem dst_device_buffer; dst_device_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, num_elem *sizeof(cl_int), NULL, &ret); if (ret != CL_SUCCESS) { printf("error: could not create dst buffer\n"); exit(1); } /* Set kernel arguments */ ret = CL_SUCCESS; ret |= clSetKernelArg(kernel, 0, sizeof(cl_mem), &src_0_device_buffer); ret |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &src_1_device_buffer); ret |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &dst_device_buffer); if (ret != CL_SUCCESS) { printf("error: call to 'clSetKernelArg' failed\n"); exit(1); } /* Launch the kernel */ size_t global_work_size = num_elem; size_t local_work_size = num_elem; ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global_work_size, &local_work_size, 0, NULL, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clEnqueueNDRangeKernel' failed\n"); exit(1); } /* Wait for it to finish */ clFinish(command_queue); /* Read results from GPU */ ret = clEnqueueReadBuffer(command_queue, dst_device_buffer, CL_TRUE,0, num_elem * sizeof(cl_int), dst_host_buffer, 0, NULL, NULL); if (ret != CL_SUCCESS) { printf("error: call to 'clEnqueueReadBuffer' failed\n"); exit(1); } /* Dump dst buffer to file */ char dump_file[100]; sprintf((char *)&dump_file, "%s.result", argv[0]); write_buffer(dump_file, (const char *)dst_host_buffer, num_elem * sizeof(cl_int)); printf("Result dumped to %s\n", dump_file); /* Free host dst buffer */ free(dst_host_buffer); /* Free device dst buffer */ ret = clReleaseMemObject(dst_device_buffer); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseMemObject' failed\n"); exit(1); } /* Free host side src buffer 0 */ free(src_0_host_buffer); /* Free device side src buffer 0 */ ret = clReleaseMemObject(src_0_device_buffer); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseMemObject' failed\n"); exit(1); } /* Free host side src buffer 1 */ free(src_1_host_buffer); /* Free device side src buffer 1 */ ret = clReleaseMemObject(src_1_device_buffer); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseMemObject' failed\n"); exit(1); } /* Release kernel */ ret = clReleaseKernel(kernel); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseKernel' failed\n"); exit(1); } /* Release program */ ret = clReleaseProgram(program); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseProgram' failed\n"); exit(1); } /* Release command queue */ ret = clReleaseCommandQueue(command_queue); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseCommandQueue' failed\n"); exit(1); } /* Release context */ ret = clReleaseContext(context); if (ret != CL_SUCCESS) { printf("error: call to 'clReleaseContext' failed\n"); exit(1); } return 0; }
the_stack_data/165764183.c
#include <stdio.h> #include <unistd.h> char buf[4096]; int main(int argc, char **argv) { int hash = 0; int fd = open(argv[1], 0); if (fd < 0) { printf("could not open: %s\n", argv[1]); return 1; } while (1) { int i = 0, r = read(fd, buf, 4096); if (r <= 0) break; for (i = 0; i < r; i++) { hash = hash * 33 + buf[i]; } } close(fd); return hash; }
the_stack_data/87660.c
/* Copyright (C) 2012-2015 A. C. Open Hardware Ideas Lab * * Authors: * Marco Giammarini <[email protected]> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. ******************************************************************************/ /** * @file libohiboard/source/adc_KL15Z4.c * @author Marco Giammarini <[email protected]> * @brief ADC functions implementation. */ #ifdef LIBOHIBOARD_ADC #include "platforms.h" #include "system.h" #include "adc.h" #if defined (LIBOHIBOARD_KL15Z4) #define ADC_PIN_ENABLED 1 #define ADC_PIN_DISABLED 0 #define ADC_MAX_PINS 20 typedef struct Adc_Device { ADC_MemMapPtr regMap; volatile uint32_t* simScgcPtr; /**< SIM_SCGCx register for the device. */ uint32_t simScgcBitEnable; /**< SIM_SCGC enable bit for the device. */ Adc_Pins pins[ADC_MAX_PINS]; /**< List of the pin for the FTM channel. */ volatile uint32_t* pinsPtr[ADC_MAX_PINS]; Adc_ChannelNumber channelNumber[ADC_MAX_PINS]; Adc_ChannelMux channelMux[ADC_MAX_PINS]; uint8_t pinMux[ADC_MAX_PINS]; /**< Mux of the pin of the FTM channel. */ uint8_t devInitialized; /**< Indicate that device was been initialized. */ } Adc_Device; static Adc_Device adc0 = { .regMap = ADC0_BASE_PTR, .simScgcPtr = &SIM_SCGC6, .simScgcBitEnable = SIM_SCGC6_ADC0_MASK, .pins = {ADC_PINS_PTE16, ADC_PINS_PTE17, ADC_PINS_PTE18, ADC_PINS_PTE19, ADC_PINS_PTE20, ADC_PINS_PTE21, ADC_PINS_PTE22, ADC_PINS_PTE23, ADC_PINS_PTE29, ADC_PINS_PTE30, ADC_PINS_PTB0, ADC_PINS_PTB1, ADC_PINS_PTB2, ADC_PINS_PTB3, ADC_PINS_PTC0, ADC_PINS_PTC1, ADC_PINS_PTC2, ADC_PINS_PTD1, ADC_PINS_PTD5, ADC_PINS_PTD6, }, .pinsPtr = {&PORTE_PCR16, &PORTE_PCR17, &PORTE_PCR18, &PORTE_PCR19, &PORTE_PCR20, &PORTE_PCR21, &PORTE_PCR22, &PORTE_PCR23, &PORTE_PCR29, &PORTE_PCR30, &PORTB_PCR0, &PORTB_PCR1, &PORTB_PCR2, &PORTB_PCR3, &PORTC_PCR0, &PORTC_PCR1, &PORTC_PCR2, &PORTD_PCR1, &PORTD_PCR5, &PORTD_PCR6, }, .pinMux = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, .channelNumber = {ADC_CH_SE1, ADC_CH_SE5a, ADC_CH_SE2, ADC_CH_SE6a, ADC_CH_SE0, ADC_CH_SE4a, ADC_CH_SE3, ADC_CH_SE7a, ADC_CH_SE4b, ADC_CH_SE23, ADC_CH_SE8, ADC_CH_SE9, ADC_CH_SE12, ADC_CH_SE13, ADC_CH_SE14, ADC_CH_SE15, ADC_CH_SE11, ADC_CH_SE5b, ADC_CH_SE6b, ADC_CH_SE7b, }, .channelMux = {ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_B, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_A, ADC_CHL_B, ADC_CHL_B, ADC_CHL_B, }, .devInitialized = 0, }; Adc_DeviceHandle ADC0 = &adc0; /** * This function initialize the ADC device and setup operational mode. * * @param dev Adc device handle to be synchronize. * @return A System_Errors elements that indicate the status of initialization. */ System_Errors Adc_init (Adc_DeviceHandle dev, Adc_Config *config) { ADC_MemMapPtr regmap = dev->regMap; System_Errors errore = ERRORS_NO_ERROR; uint8_t clkdiv = 0; if (dev->devInitialized) return ERRORS_ADC_DEVICE_JUST_INIT; /* Enable the clock to the selected ADC */ *dev->simScgcPtr |= dev->simScgcBitEnable; /*setting clock source and divider*/ switch (config->clkDiv) { case 1: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADIV(0); break; case 2: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADIV(1); break; case 4: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADIV(2); break; case 8: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADIV(3); break; default: return errore = ERRORS_ADC_DIVIDER_NOT_FOUND; } switch (config->clkSource) { case ADC_BUS_CLOCK: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADICLK(0); break; case ADC_BUS_CLOCK_DIV2: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADICLK(1); break; case ADC_ALTERNATE_CLOCK: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADICLK(2); break; case ADC_ASYNCHRONOUS_CLOCK: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADICLK(3); break; } /*Setting Sample Time*/ switch (config->sampleLength) { case ADC_SHORT_SAMPLE: ADC_CFG1_REG(regmap) &= ~(ADC_CFG1_ADLSMP_MASK); break; case ADC_LONG_SAMPLE_20: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADLSMP_MASK; ADC_CFG2_REG(regmap) |= ADC_CFG2_ADLSTS(0); break; case ADC_LONG_SAMPLE_12: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADLSMP_MASK; ADC_CFG2_REG(regmap) |= ADC_CFG2_ADLSTS(1); break; case ADC_LONG_SAMPLE_6: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADLSMP_MASK; ADC_CFG2_REG(regmap) |= ADC_CFG2_ADLSTS(2); break; case ADC_LONG_SAMPLE_2: ADC_CFG1_REG(regmap) |= ADC_CFG1_ADLSMP_MASK; ADC_CFG2_REG(regmap) |= ADC_CFG2_ADLSTS(3); break; } /*setting convertion speed*/ switch (config->covertionSpeed) { case ADC_NORMAL_CONVERTION: ADC_CFG2_REG(regmap) &= ~(ADC_CFG2_ADHSC_MASK); break; case ADC_HIGH_SPEED_CONVERTION: ADC_CFG2_REG(regmap) |= ADC_CFG2_ADHSC_MASK; break; } /*setting single or continuous convertion*/ switch (config->contConv) { case ADC_SINGLE_CONVERTION: ADC_SC3_REG(regmap) &= ~(ADC_SC3_ADCO_MASK); break; case ADC_CONTINUOUS_CONVERTION: ADC_SC3_REG(regmap) |= ADC_SC3_ADCO_MASK; break; } /*setting resoluton*/ switch (config->resolution) { case ADC_RESOLUTION_8BIT: ADC_CFG1_REG(regmap) |= ADC_CFG1_MODE(0); break; case ADC_RESOLUTION_10BIT: ADC_CFG1_REG(regmap) |= ADC_CFG1_MODE(2); break; case ADC_RESOLUTION_12BIT: ADC_CFG1_REG(regmap) |= ADC_CFG1_MODE(1); break; case ADC_RESOLUTION_16BIT: ADC_CFG1_REG(regmap) |= ADC_CFG1_MODE(3); break; } /* Select voltage reference*/ switch (config->voltRef) { case ADC_VREF: ADC_SC2_REG(regmap) = ADC_SC2_REFSEL(0); break; case ADC_VALT: ADC_SC2_REG(regmap) = ADC_SC2_REFSEL(1); break; } /* Select the average */ switch (config->average) { case ADC_AVERAGE_1_SAMPLES: /* Nothing to do! */ ADC_SC3_REG(regmap) &= ~ADC_SC3_AVGE_MASK; break; case ADC_AVERAGE_4_SAMPLES: ADC_SC3_REG(regmap) = ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(0); break; case ADC_AVERAGE_8_SAMPLES: ADC_SC3_REG(regmap) = ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(1); break; case ADC_AVERAGE_16_SAMPLES: ADC_SC3_REG(regmap) = ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(2); break; case ADC_AVERAGE_32_SAMPLES: ADC_SC3_REG(regmap) = ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(3); break; } // Adc_enablePin (dev, config->adcPin); dev->devInitialized = 1; return ERRORS_NO_ERROR; } void Adc_enablePin (Adc_DeviceHandle dev, Adc_Pins pin) { uint8_t devPinIndex; for (devPinIndex = 0; devPinIndex < ADC_MAX_PINS; ++devPinIndex) { if (dev->pins[devPinIndex] == pin) { *(dev->pinsPtr[devPinIndex]) = PORT_PCR_MUX(dev->pinMux[devPinIndex]) | PORT_PCR_IRQC(0); break; } } /* TODO: It's all? */ } System_Errors Adc_readValue (Adc_DeviceHandle dev, Adc_ChannelNumber channel, uint16_t *value) { ADC_MemMapPtr regmap = dev->regMap; uint8_t channelIndex; Adc_ChannelMux channelMux; if (channel != ADC_CH_DISABLE) { for (channelIndex = 0; channelIndex < ADC_MAX_PINS; ++channelIndex) { if (dev->channelNumber[channelIndex] == channel) { channelMux = dev->channelMux[channelIndex]; break; } } if (channel > 0x1F) channel -= 0x20; if (channelMux == ADC_CHL_A) ADC_CFG2_REG(regmap) &= ~ADC_CFG2_MUXSEL_MASK; else ADC_CFG2_REG(regmap) |= ADC_CFG2_MUXSEL_MASK; /* Start conversion */ ADC_SC1_REG(regmap,0) = ADC_SC1_ADCH(channel); /* wait until conversion ended */ while ((ADC_SC1_REG(regmap,0) & ADC_SC1_COCO_MASK) != ADC_SC1_COCO_MASK); *value = (uint16_t) ADC_R_REG(regmap,0); /* Disable conversion */ ADC_SC1_REG(regmap,0) = ADC_SC1_ADCH(ADC_CH_DISABLE); return ERRORS_NO_ERROR; } else { *value = 0; return ERRORS_ADC_CHANNEL_WRONG; } } #endif // LIBOHIBOARD_KL15Z4 #endif // LIBOHIBOARD_ADC
the_stack_data/173578879.c
#include <stdio.h> int main (void) { int ctc_handle; int job_desc; int retval; ctc_handle = ctc_open_connection (0, "ctc:cubrid:192.168.1.77:20000"); if (ctc_handle == -1) { printf ("[ERROR] ctc_open_connection ()\n"); return -1; } job_desc = ctc_add_job (ctc_handle); if (job_desc == -1) { printf ("[ERROR] ctc_open_connection ()\n"); return -1; } retval = ctc_register_table (ctc_handle, job_desc, "dba1", "tbl1"); if (retval == -1) { printf ("[ERROR] ctc_register_table ()\n"); return -1; } retval = ctc_unregister_table (ctc_handle, job_desc, "dba1", "tbl1"); if (retval == -1) { printf ("[ERROR] ctc_unregister_table ()\n"); return -1; } retval = ctc_delete_job (ctc_handle, job_desc); if (retval == -1) { printf ("[ERROR] ctc_delete_job ()\n"); return -1; } retval = ctc_close_connection (ctc_handle); if (retval == -1) { printf ("[ERROR] ctc_close_connection ()\n"); return -1; } return 0; }
the_stack_data/149259.c
/* setrlimit64 is the same as setrlimit. */
the_stack_data/168892226.c
// RUN: %clang_cc1 -E -C %s | FileCheck -strict-whitespace %s // foo // CHECK: // foo /* bar */ // CHECK: /* bar */ #if FOO #endif /* baz */ // CHECK: /* baz */ _Pragma("unknown") // after unknown pragma // CHECK: #pragma unknown // CHECK-NEXT: # // CHECK-NEXT: // after unknown pragma _Pragma("comment(\"abc\")") // after known pragma // CHECK: #pragma comment("abc") // CHECK-NEXT: # // CHECK-NEXT: // after known pragma
the_stack_data/67326.c
/*---------------------------------------------------------------------------- * Copyright (c) <2016-2018>, <Huawei Technologies Co., Ltd> * All rights reserved. * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * 3. Neither the name of the copyright holder nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------- * Notice of Export Control Law * =============================================== * Huawei LiteOS may be subject to applicable export control laws and regulations, which might * include those applicable to Huawei LiteOS of U.S. and the country in which you are located. * Import, export and usage of Huawei LiteOS in any manner by you shall be in compliance with such * applicable export control laws and regulations. *---------------------------------------------------------------------------*/ #if defined(WITH_AT_FRAMEWORK) #include "sim900a.h" extern at_task at; at_adaptor_api sim900a_interface; char prefix_name[15]; int32_t sim900a_echo_off(void) { return at.cmd((int8_t *)AT_CMD_ECHO_OFF, strlen(AT_CMD_ECHO_OFF), "OK\r\n", NULL,NULL); } int32_t sim900a_echo_on(void) { return at.cmd((int8_t *)AT_CMD_ECHO_ON, strlen(AT_CMD_ECHO_OFF), "OK\r\n", NULL,NULL); } int32_t sim900a_reset(void) { int32_t ret = 0; //at.cmd((int8_t*)AT_CMD_CLOSE,strlen(AT_CMD_CLOSE),"CLOSE OK","ERROR"); ret = at.cmd((int8_t *)AT_CMD_SHUT, strlen(AT_CMD_SHUT), "SHUT OK", NULL,NULL); return ret; } int32_t sim900a_set_mux_mode(int32_t m) { char cmd[64] = {0}; snprintf(cmd, 64, "%s=%d", AT_CMD_MUX, (int)m); return at.cmd((int8_t *)cmd, strlen(cmd), "OK", NULL,NULL); } int32_t sim900a_connect(const int8_t *host, const int8_t *port, int32_t proto) { int32_t ret = AT_FAILED; int32_t id = at.get_id(); sim900a_reset(); char cmd1[64] = {0}; snprintf(cmd1, 64, "%s=\"B\"", AT_CMD_CLASS); at.cmd((int8_t *)cmd1, strlen(cmd1), "OK", NULL,NULL); char cmd2[64] = {0}; snprintf(cmd2, 64, "%s=1,\"IP\",\"CMNET\"", AT_CMD_PDP_CONT); at.cmd((int8_t *)cmd2, strlen(cmd2), "OK", NULL,NULL); char cmd3[64] = {0}; snprintf(cmd3, 64, "%s=1", AT_CMD_PDP_ATT); at.cmd((int8_t *)cmd3, strlen(cmd3), "OK", NULL,NULL); char cmd4[64] = {0}; snprintf(cmd4, 64, "%s=1", AT_CMD_CIPHEAD); at.cmd((int8_t *)cmd4, strlen(cmd4), "OK", NULL,NULL); char cmd5[64] = {0}; AT_LOG("host:%s, port:%s", host, port); if (AT_MUXMODE_SINGLE == at.mux_mode) { snprintf(cmd5, 64, "%s=\"%s\",\"%s\",\"%s\"", AT_CMD_CONN, proto == ATINY_PROTO_UDP ? "UDP" : "TCP", host, port); } else { at.cmd((int8_t *)(AT_CMD_PDP_ACT"=1,1"), strlen(AT_CMD_PDP_ACT"=1,1"), "OK", NULL,NULL); at.cmd((int8_t *)AT_CMD_CSTT, strlen(AT_CMD_CSTT), "OK", NULL,NULL); at.cmd((int8_t *)AT_CMD_CIICR, strlen(AT_CMD_CIICR), "OK", NULL,NULL); at.cmd((int8_t *)AT_CMD_CIFSR, strlen(AT_CMD_CIFSR), "", NULL,NULL); snprintf(cmd5, 64, "%s=%ld,\"%s\",\"%s\",\"%s\"", AT_CMD_CONN, id, proto == ATINY_PROTO_UDP ? "UDP" : "TCP", host, port); } if (id < 0 || id >= AT_MAX_LINK_NUM) { AT_LOG("no vailed linkid for use(id = %ld)", id); return -1; } ret = LOS_QueueCreate("dataQueue", 16, &at.linkid[id].qid, 0, sizeof(QUEUE_BUFF)); if (ret != LOS_OK) { AT_LOG("init dataQueue failed!"); at.linkid[id].usable = AT_LINK_UNUSE; return -1; } at.cmd((int8_t *)cmd5, strlen(cmd5), "CONNECT OK", NULL,NULL); return id; } int32_t sim900a_recv_timeout(int32_t id, uint8_t *buf, uint32_t len, char* ipaddr,int* port, int32_t timeout) { uint32_t qlen = sizeof(QUEUE_BUFF); uint32_t rxlen = 0; (void)ipaddr; //gprs not need remote ip (void)port; //gprs not need remote port QUEUE_BUFF qbuf = {0, NULL}; AT_LOG("****at.linkid[id].qid=%d***\n", at.linkid[id].qid); int ret = LOS_QueueReadCopy(at.linkid[id].qid, (void *)&qbuf, (UINT32 *)&qlen, timeout); AT_LOG("ret = %x, len = %ld, id = %ld", ret, qbuf.len, id); if (ret != LOS_OK) { return AT_FAILED; } if (qbuf.len) { rxlen = (len < qbuf.len) ? len : qbuf.len; memcpy(buf, qbuf.addr, rxlen); at_free(qbuf.addr); } return rxlen; } int32_t sim900a_recv(int32_t id, uint8_t *buf, uint32_t len) { return sim900a_recv_timeout(id, buf, len, NULL,NULL,LOS_WAIT_FOREVER); } int32_t sim900a_send(int32_t id , const uint8_t *buf, uint32_t len) { int32_t ret = -1; char cmd[64] = {0}; if (AT_MUXMODE_SINGLE == at.mux_mode) { snprintf(cmd, 64, "%s=%ld", AT_CMD_SEND, len); } else { snprintf(cmd, 64, "%s=%ld,%ld", AT_CMD_SEND, id, len); } ret = at.write((int8_t *)cmd, (int8_t *)"SEND OK", (int8_t *)buf, len); return ret; } void sim900a_check(void) { //check module response while(AT_FAILED == at.cmd((int8_t *)AT_CMD_AT, strlen(AT_CMD_AT), "OK", NULL,NULL)) { printf("\r\ncheck module response unnormal\r\n"); printf("\r\nplease check the module pin connection and the power switch\r\n"); SIM900A_DELAY(500); } if(AT_FAILED != at.cmd((int8_t *)AT_CMD_CPIN, strlen(AT_CMD_CPIN), "OK", NULL,NULL)) { printf("detected sim card\n"); } if(AT_FAILED != at.cmd((int8_t *)AT_CMD_COPS, strlen(AT_CMD_COPS), "CHINA MOBILE", NULL,NULL)) { printf("registerd to the network\n"); } } int32_t sim900a_recv_cb(int32_t id) { return AT_FAILED; } int32_t sim900a_close(int32_t id) { char cmd[64] = {0}; if (AT_MUXMODE_SINGLE == at.mux_mode) { snprintf(cmd, 64, "%s", AT_CMD_CLOSE); } else { uint32_t qlen = sizeof(QUEUE_BUFF); QUEUE_BUFF qbuf = {0, NULL}; while(LOS_OK == LOS_QueueReadCopy(at.linkid[id].qid, (void *)&qbuf, (UINT32 *)&qlen, 10)) { if (qbuf.len) { at_free(qbuf.addr); memset(&qbuf, 0, sizeof(QUEUE_BUFF)); // don't use qlen } } (void)LOS_QueueDelete(at.linkid[id].qid); at.linkid[id].usable = 0; snprintf(cmd, 64, "%s=%ld", AT_CMD_CLOSE, id); } return at.cmd((int8_t *)cmd, strlen(cmd), "OK", NULL,NULL); } int32_t sim900a_data_handler(void *arg, int8_t *buf, int32_t len) { if (NULL == buf || len <= 0) { AT_LOG("param invailed!"); return -1; } AT_LOG("entry!"); //process data frame ,like +IPD,linkid,len:data int32_t ret = 0; int32_t linkid = 0, data_len = 0; char *p1, *p2; QUEUE_BUFF qbuf; p1 = (char *)buf; if (0 == memcmp(p1, prefix_name, strlen(prefix_name))) { p2 = strstr(p1, ","); if (NULL == p2) { AT_LOG("got data prefix invailed!"); goto END; } if (AT_MUXMODE_MULTI == at.mux_mode) { linkid = 0; for (p2++; *p2 <= '9' && *p2 >= '0'; p2++) { linkid = linkid * 10 + (*p2 - '0'); } } for (p2++; *p2 <= '9' && *p2 >= '0' ; p2++) { data_len = (data_len * 10 + (*p2 - '0')); } p2++; //over ':' qbuf.addr = at_malloc(data_len); if (NULL == qbuf.addr) { AT_LOG("malloc for qbuf failed!"); goto END; } qbuf.len = data_len; if(AT_MUXMODE_MULTI == at.mux_mode) { p2++; p2++;//multi-connect prefix is +RECEIVE,0,13:\r\n+packet content } memcpy(qbuf.addr, p2, data_len); if (LOS_OK != (ret = LOS_QueueWriteCopy(at.linkid[linkid].qid, &qbuf, sizeof(QUEUE_BUFF), 0))) { AT_LOG("LOS_QueueWriteCopy failed! ret = %lx", ret); at_free(qbuf.addr); goto END; } ret = (p2 + data_len - (char *)buf); } END: return ret; } int32_t sim900a_cmd_match(const char *buf, char* featurestr,int len) { return memcmp(buf,featurestr,len); } int32_t sim900a_ini() { at_config at_user_conf = { .name = AT_MODU_NAME, .usart_port = AT_USART_PORT, .buardrate = AT_BUARDRATE, .linkid_num = AT_MAX_LINK_NUM, .user_buf_len = MAX_AT_USERDATA_LEN, .cmd_begin = AT_CMD_BEGIN, .line_end = AT_LINE_END, .mux_mode = 1, //support multi connection mode .timeout = AT_CMD_TIMEOUT, // ms }; at.init(&at_user_conf); //single and multi connect prefix is different if (AT_MUXMODE_MULTI == at.mux_mode) { memcpy(prefix_name, AT_DATAF_PREFIX_MULTI, sizeof(AT_DATAF_PREFIX_MULTI)); } else { memcpy(prefix_name, AT_DATAF_PREFIX, sizeof(AT_DATAF_PREFIX)); } at.oob_register((char *)prefix_name, strlen((char *)prefix_name), sim900a_data_handler,sim900a_cmd_match); sim900a_echo_off(); sim900a_check(); sim900a_reset(); sim900a_set_mux_mode(at.mux_mode); at.cmd((int8_t *)("AT+CIPMUX?"), strlen("AT+CIPMUX?"), "OK", NULL,NULL); return AT_OK; } int32_t sim900a_deinit(void) { int id = 0; if(NULL != at.linkid) { for(id = 0; id < AT_MAX_LINK_NUM; id++) { if(AT_LINK_INUSE == at.linkid[id].usable) { if(AT_OK != sim900a_close(id)) { AT_LOG("sim900a_close(%d) failed", id); } } } } at.deinit(); return AT_OK; } at_adaptor_api sim900a_interface = { .init = sim900a_ini, .connect = sim900a_connect, /*TCP or UDP connect*/ .send = sim900a_send, /*send data, if no response, retrun error*/ .recv_timeout = sim900a_recv_timeout, .recv = sim900a_recv, .close = sim900a_close,/*close connect*/ .recv_cb = sim900a_recv_cb,/*receive event handle, no available by now */ .deinit = sim900a_deinit, }; #endif //#if NETWORK_TYPE == SIM_900A
the_stack_data/40460.c
#include <stdio.h> int findSum(int m, int n, int a[][n]) { int sum = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i == j || (i + j) == (n - 1)) { sum += a[i][j]; } } } return sum; } void main() { int m, n; printf("m = "); scanf("%d", &m); printf("n = "); scanf("%d", &n); int mat[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // scanf("%d", *(mat + i) + j); // working code // scanf("%d", mat + i + j); // This does not work maybe because - // it depends on how the OS stores a 2-dimensional matrix (it may be ROW major OR Column major) // We need to access the pointer to the row - (mat + i), and dereference it *(mat + i) // and then perform pointer addition *(mat +i) + j scanf("%d", &mat[i][j]); } } int sum = findSum(m, n, mat); // int sum = -1; printf("\nThe sum of both diagonal elements = %d\n", sum); }
the_stack_data/308383.c
int smallestRepunitDivByK(int K) { int remainder = 0; for (int i = 1; i <= K; ++i) { remainder = (remainder * 10 + 1) % K; if (remainder == 0) return i; } return -1; }
the_stack_data/175144092.c
extern int __VERIFIER_nondet_int(); extern void abort(void); void reach_error(){} int fibo(int n) { if (n < 1) { return 0; } else if (n == 1) { return 1; } else { return fibo(n-1) + fibo(n-2); } } // fibo 1-30 // 1, 1, 2, 3, 5, // 8, 13, 21, 34, 55, // 89, 144, 233, 377, 610, // 987, 1597, 2584, 4181, 6765, // 10946, 17711, 28657, 46368, 75025, // 121393, 196418, 317811, 514229, 832040 int main(void) { int x = 5; int result = fibo(x); if (result != 5) { ERROR: {reach_error();abort();} } return 0; }
the_stack_data/93888517.c
#include <stdio.h> // parzibyte.me/blog int devolverEdad() { // Coloca el punto y coma al final int edad = 23; // Haz que se regrese la edad con "return" return edad; } int main(int argc, char const *argv[]) { return 0; }
the_stack_data/22013119.c
#include <stdio.h> int main(void) { double n, sum = 0; printf("Enter a few integers (0 to terminate): "); scanf("%lf", &n); while (n != 0) { sum += n; scanf("%lf", &n); } printf("The sum is: %lf\n", sum); return 0; }
the_stack_data/237644095.c
/**************************************************************************** * Ralink Tech Inc. * 4F, No. 2 Technology 5th Rd. * Science-based Industrial Park * Hsin-chu, Taiwan, R.O.C. * (c) Copyright 2002, Ralink Technology, Inc. * * All rights reserved. Ralink's source code is an unpublished work and the * use of a copyright notice does not imply otherwise. This source code * contains confidential trade secret material of Ralink Tech. Any attemp * or participation in deciphering, decoding, reverse engineering or in any * way altering the source code is stricitly prohibited, unless the prior * written consent of Ralink Technology, Inc. is obtained. **************************************************************************** Module Name: tdls.h Abstract: Revision History: Who When What --------- ---------- ---------------------------------------------- Arvin Tai 17-04-2009 created for 802.11z */ #ifdef DOT11Z_TDLS_SUPPORT #include "rt_config.h" /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ BOOLEAN PeerTdlsChannelSwitchReqSanity( IN PRTMP_ADAPTER pAd, IN VOID *Msg, IN ULONG MsgLen, OUT UCHAR *pPeerAddr, OUT BOOLEAN *pIsInitator, OUT UCHAR *pTargetChannel, OUT UCHAR *pRegulatoryClass, OUT UCHAR *pNewExtChannelOffset, OUT USHORT *pChSwitchTime, OUT USHORT *pChSwitchTimeOut, OUT UCHAR *pLinkIdentLen, OUT TDLS_LINK_IDENT_ELEMENT *pLinkIdent) { ULONG RemainLen = MsgLen; CHAR *Ptr =(CHAR *)Msg; PEID_STRUCT pEid; ULONG Length = 0; PHEADER_802_11 pHeader; BOOLEAN rv = TRUE; /* init value */ *pNewExtChannelOffset = 0; /* Message contains 802.11 header (24 bytes), LLC_SNAP (8 bytes), TDLS Action header(3 bytes) and Payload (variable) */ if (RemainLen < (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H)) { DBGPRINT_RAW(RT_DEBUG_ERROR, ("PeerTdlsChannelSwitchReqSanity --> Invaild packet length - (ation header) \n")); return FALSE; } pHeader = (PHEADER_802_11)Ptr; COPY_MAC_ADDR(pPeerAddr, &pHeader->Addr2); /* Offset to Target Channel */ Ptr += (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H); RemainLen -= (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H); /* Get the value of target channel from payload and advance the pointer */ if (RemainLen < 1) { DBGPRINT_RAW(RT_DEBUG_ERROR, ("PeerTdlsChannelSwitchReqSanity --> Invaild packet length - (target channel) \n")); return FALSE; } *pTargetChannel = *Ptr; /* Offset to Regulatory Class */ Ptr += 1; RemainLen -= 1; /* Get the value of regulatory class from payload and advance the pointer */ if (RemainLen < 1) { DBGPRINT_RAW(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity --> Invaild packet length - (regulatory class) \n")); return FALSE; } *pRegulatoryClass = *Ptr; DBGPRINT_RAW(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity - Regulatory class = %d \n", *pRegulatoryClass)); /* Offset to other elements */ Ptr += 1; RemainLen -= 1; pEid = (PEID_STRUCT) Ptr; /* get variable fields from payload and advance the pointer */ while ((Length + 2 + pEid->Len) <= RemainLen) { switch(pEid->Eid) { case IE_SECONDARY_CH_OFFSET: if (pEid->Len == 1) { *pNewExtChannelOffset = pEid->Octet[0]; } else { rv = FALSE; DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity - wrong IE_SECONDARY_CH_OFFSET. \n")); } break; case IE_TDLS_LINK_IDENTIFIER: if (pEid->Len == TDLS_ELM_LEN_LINK_IDENTIFIER) { NdisMoveMemory(pLinkIdent, &pEid->Octet[0], sizeof(TDLS_LINK_IDENT_ELEMENT)); *pLinkIdentLen = TDLS_ELM_LEN_LINK_IDENTIFIER; } else { rv = FALSE; DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity - wrong IE_TDLS_LINK_IDENTIFIER. \n")); } break; case IE_TDLS_CHANNEL_SWITCH_TIMING: if (pEid->Len == 4) { TDLS_CH_SWITCH_TIMING_ELEMENT ChSwitchTiming; NdisMoveMemory(&ChSwitchTiming, &pEid->Octet[0], sizeof(TDLS_CH_SWITCH_TIMING_ELEMENT)); *pChSwitchTime = ChSwitchTiming.ChSwitchTime; *pChSwitchTimeOut = ChSwitchTiming.ChSwitchTimeOut; } else { rv = FALSE; DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity - wrong IE_TDLS_CHANNEL_SWITCH_TIMING. \n")); } break; default: // Unknown IE, we have to pass it as variable IEs DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchReqSanity - unrecognized EID = %d\n", pEid->Eid)); break; } Length = Length + 2 + pEid->Len; pEid = (PEID_STRUCT)((UCHAR*)pEid + 2 + pEid->Len); } return rv; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ BOOLEAN PeerTdlsChannelSwitchRspSanity( IN PRTMP_ADAPTER pAd, IN VOID *Msg, IN ULONG MsgLen, OUT UCHAR *pPeerAddr, OUT USHORT *pStatusCode, OUT USHORT *pChSwitchTime, OUT USHORT *pChSwitchTimeOut, OUT UCHAR *pLinkIdentLen, OUT TDLS_LINK_IDENT_ELEMENT *pLinkIdent) { ULONG RemainLen = MsgLen; CHAR *Ptr =(CHAR *)Msg; PEID_STRUCT pEid; ULONG Length = 0; PHEADER_802_11 pHeader; // Message contains 802.11 header (24 bytes), LLC_SNAP (8 bytes), TDLS Action header(3 bytes) and Payload (variable) if (RemainLen < (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H)) { DBGPRINT_RAW(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchRspSanity --> Invaild packet length - (ation header) \n")); return FALSE; } pHeader = (PHEADER_802_11)Ptr; COPY_MAC_ADDR(pPeerAddr, &pHeader->Addr2); // Offset to Status Code Ptr += (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H); RemainLen -= (LENGTH_802_11 + LENGTH_802_1_H + LENGTH_TDLS_PAYLOAD_H); // Get the value of Status Code from payload and advance the pointer if (RemainLen < 2) { DBGPRINT_RAW(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchRspSanity --> Invaild packet length - (status code) \n")); return FALSE; } NdisMoveMemory(pStatusCode, Ptr, 2); // Offset to other elements Ptr += 2; RemainLen -= 2; pEid = (PEID_STRUCT) Ptr; // get variable fields from payload and advance the pointer while ((Length + 2 + pEid->Len) <= RemainLen) { switch(pEid->Eid) { case IE_TDLS_LINK_IDENTIFIER: if (pEid->Len == TDLS_ELM_LEN_LINK_IDENTIFIER) { NdisMoveMemory(pLinkIdent, &pEid->Octet[0], sizeof(TDLS_LINK_IDENT_ELEMENT)); *pLinkIdentLen = TDLS_ELM_LEN_LINK_IDENTIFIER; } else { DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchRspSanity - wrong IE_TDLS_LINK_IDENTIFIER. \n")); } break; case IE_TDLS_CHANNEL_SWITCH_TIMING: if (pEid->Len == 4) { TDLS_CH_SWITCH_TIMING_ELEMENT ChSwitchTiming; NdisMoveMemory(&ChSwitchTiming, &pEid->Octet[0], sizeof(TDLS_CH_SWITCH_TIMING_ELEMENT)); *pChSwitchTime = ChSwitchTiming.ChSwitchTime; *pChSwitchTimeOut = ChSwitchTiming.ChSwitchTimeOut; } else { DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchRspSanity - wrong IE_TDLS_CHANNEL_SWITCH_TIMING. \n")); } break; default: // Unknown IE, we have to pass it as variable IEs DBGPRINT(RT_DEBUG_WARN, ("PeerTdlsChannelSwitchRspSanity - unrecognized EID = %d\n", pEid->Eid)); break; } Length = Length + 2 + pEid->Len; pEid = (PEID_STRUCT)((UCHAR*)pEid + 2 + pEid->Len); } return TRUE; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_BuildChannelSwitchRequest( IN PRTMP_ADAPTER pAd, OUT PUCHAR pFrameBuf, OUT PULONG pFrameLen, IN PUCHAR pPeerAddr, IN USHORT ChSwitchTime, IN USHORT ChSwitchTimeOut, IN UCHAR TargetChannel, IN UCHAR TargetChannelBW) { PRT_802_11_TDLS pTDLS = NULL; INT LinkId = 0xff; /* fill action code */ TDLS_InsertActField(pAd, (pFrameBuf + *pFrameLen), pFrameLen, CATEGORY_TDLS, TDLS_ACTION_CODE_CHANNEL_SWITCH_REQUEST); /* Target Channel */ TDLS_InsertTargetChannel(pAd, (pFrameBuf + *pFrameLen), pFrameLen, TargetChannel); /* Regulatory Class */ TDLS_InsertRegulatoryClass(pAd, (pFrameBuf + *pFrameLen), pFrameLen, TargetChannel, TargetChannelBW); /* Secondary Channel Offset */ if(TargetChannelBW != EXTCHA_NONE) { if (TargetChannel > 14) { if ((TargetChannel == 36) || (TargetChannel == 44) || (TargetChannel == 52) || (TargetChannel == 60) || (TargetChannel == 100) || (TargetChannel == 108) || (TargetChannel == 116) || (TargetChannel == 124) || (TargetChannel == 132) || (TargetChannel == 149) || (TargetChannel == 157)) { TDLS_InsertSecondaryChOffsetIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, EXTCHA_ABOVE); pAd->StaCfg.TdlsCurrentChannelBW = EXTCHA_ABOVE; } else if ((TargetChannel == 40) || (TargetChannel == 48) || (TargetChannel == 56) | (TargetChannel == 64) || (TargetChannel == 104) || (TargetChannel == 112) || (TargetChannel == 120) || (TargetChannel == 128) || (TargetChannel == 136) || (TargetChannel == 153) || (TargetChannel == 161)) { TDLS_InsertSecondaryChOffsetIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, EXTCHA_BELOW); pAd->StaCfg.TdlsCurrentChannelBW = EXTCHA_BELOW; } } else { do { UCHAR ExtCh; UCHAR Dir = pAd->CommonCfg.RegTransmitSetting.field.EXTCHA; ExtCh = TDLS_GetExtCh(TargetChannel, Dir); if (TDLS_IsValidChannel(pAd, ExtCh)) { TDLS_InsertSecondaryChOffsetIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, Dir); pAd->StaCfg.TdlsCurrentChannelBW = Dir; break; } Dir = (Dir == EXTCHA_ABOVE) ? EXTCHA_BELOW : EXTCHA_ABOVE; ExtCh = TDLS_GetExtCh(TargetChannel, Dir); if (TDLS_IsValidChannel(pAd, ExtCh)) { TDLS_InsertSecondaryChOffsetIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, Dir); pAd->StaCfg.TdlsCurrentChannelBW = Dir; break; } } while(FALSE); } } else { pAd->StaCfg.TdlsCurrentChannelBW = EXTCHA_NONE; } /* fill link identifier */ LinkId = TDLS_SearchLinkId(pAd, pPeerAddr); if (LinkId == -1 || LinkId == MAX_NUM_OF_TDLS_ENTRY) { DBGPRINT(RT_DEBUG_ERROR,("TDLS - TDLS_ChannelSwitchReqAction() can not find the LinkId!\n")); return NDIS_STATUS_FAILURE; } pTDLS = (PRT_802_11_TDLS)&pAd->StaCfg.TdlsInfo.TDLSEntry[LinkId]; if (pTDLS->bInitiator) TDLS_InsertLinkIdentifierIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, pPeerAddr, pAd->CurrentAddress); else TDLS_InsertLinkIdentifierIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, pAd->CurrentAddress, pPeerAddr); /* Channel Switch Timing */ TDLS_InsertChannelSwitchTimingIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, ChSwitchTime, ChSwitchTimeOut); } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_BuildChannelSwitchResponse( IN PRTMP_ADAPTER pAd, OUT PUCHAR pFrameBuf, OUT PULONG pFrameLen, IN PRT_802_11_TDLS pTDLS, IN USHORT ChSwitchTime, IN USHORT ChSwitchTimeOut, IN UINT16 ReasonCode) { /* fill action code */ TDLS_InsertActField(pAd, (pFrameBuf + *pFrameLen), pFrameLen, CATEGORY_TDLS, TDLS_ACTION_CODE_CHANNEL_SWITCH_RESPONSE); /* fill reason code */ TDLS_InsertReasonCode(pAd, (pFrameBuf + *pFrameLen), pFrameLen, ReasonCode); /* fill link identifier */ if (pTDLS->bInitiator) TDLS_InsertLinkIdentifierIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, pTDLS->MacAddr, pAd->CurrentAddress); else TDLS_InsertLinkIdentifierIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, pAd->CurrentAddress, pTDLS->MacAddr); /* Channel Switch Timing */ TDLS_InsertChannelSwitchTimingIE(pAd, (pFrameBuf + *pFrameLen), pFrameLen, ChSwitchTime, ChSwitchTimeOut); } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ NDIS_STATUS TDLS_ChannelSwitchReqAction( IN PRTMP_ADAPTER pAd, IN PMLME_TDLS_CH_SWITCH_STRUCT pChSwitchReq) { UCHAR TDLS_ETHERTYPE[] = {0x89, 0x0d}; UCHAR Header802_3[14]; PUCHAR pOutBuffer = NULL; ULONG FrameLen = 0; ULONG TempLen; UCHAR RemoteFrameType = PROTO_NAME_TDLS; NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; MAC_TABLE_ENTRY *pEntry = NULL; UINT16 SwitchTime = pAd->StaCfg.TdlsInfo.TdlsSwitchTime; //micro seconds UINT16 SwitchTimeout = pAd->StaCfg.TdlsInfo.TdlsSwitchTimeout; // micro seconds INT LinkId = 0xff; PRT_802_11_TDLS pTDLS = NULL; DBGPRINT(RT_DEBUG_WARN, ("====> TDLS_ChannelSwitchReqAction\n")); MAKE_802_3_HEADER(Header802_3, pChSwitchReq->PeerMacAddr, pAd->CurrentAddress, TDLS_ETHERTYPE); // Allocate buffer for transmitting message NStatus = MlmeAllocateMemory(pAd, &pOutBuffer); if (NStatus != NDIS_STATUS_SUCCESS) return NStatus; MakeOutgoingFrame(pOutBuffer, &TempLen, 1, &RemoteFrameType, END_OF_ARGS); FrameLen = FrameLen + TempLen; TDLS_BuildChannelSwitchRequest(pAd, pOutBuffer, &FrameLen, pChSwitchReq->PeerMacAddr,SwitchTime, SwitchTimeout, pChSwitchReq->TargetChannel, pChSwitchReq->TargetChannelBW); pEntry = MacTableLookup(pAd, pChSwitchReq->PeerMacAddr); if (pEntry && IS_ENTRY_TDLS(pEntry)) { pTDLS->ChannelSwitchCurrentState = TDLS_CHANNEL_SWITCH_WAIT_RSP; if (pChSwitchReq->TargetChannel != pAd->CommonCfg.Channel) RTMPToWirelessSta(pAd, pEntry, Header802_3, LENGTH_802_3, pOutBuffer, (UINT)FrameLen, FALSE, RTMP_TDLS_SPECIFIC_EDCA); else RTMPToWirelessSta(pAd, pEntry, Header802_3, LENGTH_802_3, pOutBuffer, (UINT)FrameLen, FALSE, RTMP_TDLS_SPECIFIC_HCCA); pAd->StaCfg.TdlsCurrentChannel = pChSwitchReq->TargetChannel; pAd->StaCfg.TdlsCurrentChannelBW = pChSwitchReq->TargetChannelBW; } else { DBGPRINT(RT_DEBUG_ERROR, ("Can't find TDLS entry on mac TABLE !!!!\n")); } hex_dump("TDLS switch channel request send pack", pOutBuffer, FrameLen); MlmeFreeMemory(pAd, pOutBuffer); DBGPRINT(RT_DEBUG_WARN, ("<==== TDLS_ChannelSwitchReqAction\n")); return NStatus; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ NDIS_STATUS TDLS_ChannelSwitchRspAction( IN PRTMP_ADAPTER pAd, IN PRT_802_11_TDLS pTDLS, IN USHORT ChSwitchTime, IN USHORT ChSwitchTimeOut, IN UINT16 StatusCode, IN UCHAR FrameType) { UCHAR TDLS_ETHERTYPE[] = {0x89, 0x0d}; UCHAR Header802_3[14]; PUCHAR pOutBuffer = NULL; ULONG FrameLen = 0; ULONG TempLen; UCHAR RemoteFrameType = PROTO_NAME_TDLS; NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; DBGPRINT(RT_DEBUG_WARN, ("TDLS ===> TDLS_ChannelSwitchRspAction\n")); MAKE_802_3_HEADER(Header802_3, pTDLS->MacAddr, pAd->CurrentAddress, TDLS_ETHERTYPE); // Allocate buffer for transmitting message NStatus = MlmeAllocateMemory(pAd, &pOutBuffer); if (NStatus != NDIS_STATUS_SUCCESS) { DBGPRINT(RT_DEBUG_ERROR,("ACT - TDLS_ChannelSwitchRspAction() allocate memory failed \n")); return NStatus; } MakeOutgoingFrame(pOutBuffer, &TempLen, 1, &RemoteFrameType, END_OF_ARGS); FrameLen = FrameLen + TempLen; TDLS_BuildChannelSwitchResponse(pAd, pOutBuffer, &FrameLen, pTDLS, ChSwitchTime, ChSwitchTimeOut, StatusCode); RTMPToWirelessSta(pAd, &pAd->MacTab.Content[pTDLS->MacTabMatchWCID], Header802_3, LENGTH_802_3, pOutBuffer, (UINT)FrameLen, FALSE, FrameType); hex_dump("TDLS send channel switch response pack", pOutBuffer, FrameLen); MlmeFreeMemory(pAd, pOutBuffer); DBGPRINT(RT_DEBUG_WARN, ("TDLS <=== TDLS_ChannelSwitchRspAction\n")); return NStatus; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_MlmeChannelSwitchAction( IN PRTMP_ADAPTER pAd, IN MLME_QUEUE_ELEM *Elem) { PMLME_TDLS_CH_SWITCH_STRUCT pChSwReq = NULL; NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; INT LinkId = 0xff; DBGPRINT(RT_DEBUG_WARN,("TDLS ===> TDLS_MlmeChannelSwitchAction() \n")); pChSwReq = (PMLME_TDLS_CH_SWITCH_STRUCT)Elem->Msg; if (pAd->StaActive.ExtCapInfo.TDLSChSwitchProhibited == TRUE) { DBGPRINT(RT_DEBUG_OFF,("%s(%d): AP Prohibite TDLS Channel Switch !!!\n", __FUNCTION__, __LINE__)); return; } if (INFRA_ON(pAd)) { // Drop not within my TDLS Table that created before ! LinkId = TDLS_SearchLinkId(pAd, pChSwReq->PeerMacAddr); if (LinkId == -1 || LinkId == MAX_NUM_OF_TDLS_ENTRY) { DBGPRINT(RT_DEBUG_ERROR,("TDLS - TDLS_MlmeChannelSwitchAction() can not find the LinkId!\n")); return; } pAd->StaCfg.TdlsForcePowerSaveWithAP = TRUE; if (pAd->StaCfg.bTdlsNoticeAPPowerSave == FALSE) { pAd->StaCfg.TdlsSendNullFrameCount = 0; pAd->StaCfg.bTdlsNoticeAPPowerSave = TRUE; RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, TRUE); } else { pAd->StaCfg.TdlsSendNullFrameCount++; if (pAd->StaCfg.TdlsSendNullFrameCount >= 200) pAd->StaCfg.bTdlsNoticeAPPowerSave = FALSE; } DBGPRINT(RT_DEBUG_ERROR, ("103. %ld !!!\n", (jiffies * 1000) / OS_HZ)); /* Build TDLS channel switch Request Frame */ NStatus = TDLS_ChannelSwitchReqAction(pAd, pChSwReq); if (NStatus != NDIS_STATUS_SUCCESS) { DBGPRINT(RT_DEBUG_ERROR,("TDLS - TDLS_MlmeChannelSwitchAction() Build Channel Switch Request Fail !!!\n")); } else { pAd->StaCfg.TdlsChannelSwitchPairCount++; DBGPRINT(RT_DEBUG_WARN,("TDLS <=== TDLS_MlmeChannelSwitchAction() \n")); } } else { DBGPRINT(RT_DEBUG_WARN,("TDLS <=== TDLS_MlmeChannelSwitchAction() TDLS only support infra mode !!!\n")); } return; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_MlmeChannelSwitchRspAction( IN PRTMP_ADAPTER pAd, IN MLME_QUEUE_ELEM *Elem) { PMLME_TDLS_CH_SWITCH_STRUCT pMlmeChSwitchRsp = NULL; NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; PRT_802_11_TDLS pTdls = NULL; INT LinkId = 0xff; DBGPRINT(RT_DEBUG_WARN,("TDLS ===> TDLS_MlmeChannelSwitchRspAction() \n")); pMlmeChSwitchRsp = (PMLME_TDLS_CH_SWITCH_STRUCT)Elem->Msg; if (INFRA_ON(pAd)) { // Drop not within my TDLS Table that created before ! LinkId = TDLS_SearchLinkId(pAd, pMlmeChSwitchRsp->PeerMacAddr); if (LinkId == -1 || LinkId == MAX_NUM_OF_TDLS_ENTRY) { DBGPRINT(RT_DEBUG_OFF,("TDLS - TDLS_MlmeChannelSwitchRspAction() can not find the LinkId!\n")); return; } /* Point to the current Link ID */ pTdls = &pAd->StaCfg.TdlsInfo.TDLSEntry[LinkId]; /* Build TDLS channel switch Request Frame */ NStatus = TDLS_ChannelSwitchRspAction(pAd, pTdls, pTdls->ChSwitchTime, pTdls->ChSwitchTimeout, 0, (RTMP_TDLS_SPECIFIC_CS_RSP_NOACK + RTMP_TDLS_SPECIFIC_HCCA)); if (NStatus != NDIS_STATUS_SUCCESS) { DBGPRINT(RT_DEBUG_ERROR,("TDLS - TDLS_MlmeChannelSwitchRspAction() Build Channel Switch Response Fail !!!\n")); } else { RTMPusecDelay(300); NdisGetSystemUpTime(&pAd->StaCfg.TdlsGoBackStartTime); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); DBGPRINT(RT_DEBUG_WARN,("TDLS <=== TDLS_MlmeChannelSwitchRspAction() \n")); } } else { DBGPRINT(RT_DEBUG_ERROR,("TDLS - TDLS_MlmeChannelSwitchRspAction() TDLS only support infra mode !!!\n")); } return; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_PeerChannelSwitchReqAction( IN PRTMP_ADAPTER pAd, IN MLME_QUEUE_ELEM *Elem) { PRT_802_11_TDLS pTDLS = NULL; INT LinkId = 0xff; UCHAR PeerAddr[MAC_ADDR_LEN]; BOOLEAN IsInitator; //BOOLEAN TimerCancelled; UCHAR TargetChannel; UCHAR RegulatoryClass; UCHAR NewExtChannelOffset = 0xff; UCHAR LinkIdentLen; USHORT PeerChSwitchTime; USHORT PeerChSwitchTimeOut; TDLS_LINK_IDENT_ELEMENT LinkIdent; NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; USHORT StatusCode = MLME_SUCCESS; UINT16 SwitchTime = pAd->StaCfg.TdlsInfo.TdlsSwitchTime; //micro seconds UINT16 SwitchTimeout = pAd->StaCfg.TdlsInfo.TdlsSwitchTimeout; // micro seconds DBGPRINT(RT_DEBUG_WARN,("TDLS ===> TDLS_PeerChannelSwitchReqAction() \n")); // Not TDLS Capable, ignore it if (!IS_TDLS_SUPPORT(pAd)) return; if (!INFRA_ON(pAd)) return; if (pAd->StaActive.ExtCapInfo.TDLSChSwitchProhibited == TRUE) { DBGPRINT(RT_DEBUG_OFF,("%s(%d): AP Prohibite TDLS Channel Switch !!!\n", __FUNCTION__, __LINE__)); return; } tdls_hex_dump("TDLS peer channel switch request receive pack", Elem->Msg, Elem->MsgLen); if (!PeerTdlsChannelSwitchReqSanity(pAd, Elem->Msg, Elem->MsgLen, PeerAddr, &IsInitator, &TargetChannel, &RegulatoryClass, &NewExtChannelOffset, &PeerChSwitchTime, &PeerChSwitchTimeOut, &LinkIdentLen, &LinkIdent)) { DBGPRINT(RT_DEBUG_ERROR,("%s(%d): from %02x:%02x:%02x:%02x:%02x:%02x Sanity Check Fail !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); return; } DBGPRINT(RT_DEBUG_WARN,("%s(%d): from %02x:%02x:%02x:%02x:%02x:%02x !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); DBGPRINT(RT_DEBUG_ERROR, ("300. %ld !!!\n", (jiffies * 1000) / OS_HZ)); // Drop not within my TDLS Table that created before ! LinkId = TDLS_SearchLinkId(pAd, PeerAddr); if (LinkId == -1 || LinkId == MAX_NUM_OF_TDLS_ENTRY) { DBGPRINT(RT_DEBUG_ERROR,("%s(%d): can not find from %02x:%02x:%02x:%02x:%02x:%02x on TDLS entry !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); return; } if (pAd->StaCfg.bChannelSwitchInitiator == FALSE) { pAd->StaCfg.TdlsForcePowerSaveWithAP = TRUE; if (pAd->StaCfg.bTdlsNoticeAPPowerSave == FALSE) { pAd->StaCfg.TdlsSendNullFrameCount = 0; pAd->StaCfg.bTdlsNoticeAPPowerSave = TRUE; RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, TRUE); } else { pAd->StaCfg.TdlsSendNullFrameCount++; if (pAd->StaCfg.TdlsSendNullFrameCount >= 200) pAd->StaCfg.bTdlsNoticeAPPowerSave = FALSE; } } // Point to the current Link ID pTDLS = &pAd->StaCfg.TdlsInfo.TDLSEntry[LinkId]; if (SwitchTime >= PeerChSwitchTime) PeerChSwitchTime = SwitchTime; if (SwitchTimeout >= PeerChSwitchTimeOut) PeerChSwitchTimeOut = SwitchTimeout; if (RtmpPktPmBitCheck(pAd)) { RTMP_SET_PSM_BIT(pAd, PWR_ACTIVE); TDLS_SendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, 0); } { UINT32 macCfg, TxCount; UINT32 MTxCycle; RTMP_IO_READ32(pAd, TX_REPORT_CNT, &macCfg); if (TargetChannel != pAd->CommonCfg.Channel) NStatus = TDLS_ChannelSwitchRspAction(pAd, pTDLS, PeerChSwitchTime, PeerChSwitchTimeOut, StatusCode, RTMP_TDLS_SPECIFIC_CS_RSP_WAIT_ACK); else NStatus = TDLS_ChannelSwitchRspAction(pAd, pTDLS, PeerChSwitchTime, PeerChSwitchTimeOut, StatusCode, (RTMP_TDLS_SPECIFIC_CS_RSP_WAIT_ACK + RTMP_TDLS_SPECIFIC_HCCA)); for (MTxCycle = 0; MTxCycle < 500; MTxCycle++) { RTMP_IO_READ32(pAd, TX_REPORT_CNT, &macCfg); TxCount = macCfg & 0x0000ffff; if (TxCount > 0) { DBGPRINT(RT_DEBUG_ERROR, ("MTxCycle = %d, %ld !!!\n", MTxCycle, (jiffies * 1000) / OS_HZ)); break; } else RTMPusecDelay(50); } if (MTxCycle >= 500) { NStatus = NDIS_STATUS_FAILURE; DBGPRINT(RT_DEBUG_OFF,("TDLS Transmit Channel Switch Response Fail !!!\n")); } } if (NStatus == NDIS_STATUS_SUCCESS) { { if (TargetChannel != pAd->CommonCfg.Channel) { BOOLEAN TimerCancelled; //ULONG Now, temp1, temp2, temp3; pAd->StaCfg.TdlsCurrentChannel = TargetChannel; if (NewExtChannelOffset != 0) pAd->StaCfg.TdlsCurrentChannelBW = NewExtChannelOffset; else pAd->StaCfg.TdlsCurrentChannelBW = EXTCHA_NONE; pTDLS->ChSwitchTime = PeerChSwitchTime; pAd->StaCfg.TdlsGlobalSwitchTime = PeerChSwitchTime; pTDLS->ChSwitchTimeout = PeerChSwitchTimeOut; pAd->StaCfg.TdlsGlobalSwitchTimeOut = PeerChSwitchTimeOut; RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); //Cancel the timer since the received packet to me. #ifdef TDLS_HWTIMER_SUPPORT TDLS_SetChannelSwitchTimer(pAd, (PeerChSwitchTimeOut / 1000)); #else RTMPCancelTimer(&pTDLS->ChannelSwitchTimeoutTimer, &TimerCancelled); NdisGetSystemUpTime(&pTDLS->ChannelSwitchTimerStartTime); RTMPSetTimer(&pTDLS->ChannelSwitchTimeoutTimer, (PeerChSwitchTimeOut / 1000)); #endif // TDLS_HWTIMER_SUPPORT // RTMPCancelTimer(&pAd->StaCfg.TdlsDisableChannelSwitchTimer, &TimerCancelled); pAd->StaCfg.bTdlsCurrentDoingChannelSwitchWaitSuccess = TRUE; pAd->StaCfg.bDoingPeriodChannelSwitch = TRUE; if (RTDebugLevel < RT_DEBUG_ERROR) RTMPusecDelay(300); else DBGPRINT(RT_DEBUG_ERROR, ("1041. %ld !!!\n", (jiffies * 1000) / OS_HZ)); TDLS_InitChannelRelatedValue(pAd, pAd->StaCfg.TdlsCurrentChannel, pAd->StaCfg.TdlsCurrentChannelBW); } else { pTDLS->bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.TdlsForcePowerSaveWithAP = FALSE; pAd->StaCfg.bTdlsNoticeAPPowerSave = FALSE; RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); RTMPusecDelay(300); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, FALSE); } } } DBGPRINT(RT_DEBUG_WARN,("TDLS <=== TDLS_PeerChannelSwitchReqAction() \n")); return; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_PeerChannelSwitchRspAction( IN PRTMP_ADAPTER pAd, IN MLME_QUEUE_ELEM *Elem) { PRT_802_11_TDLS pTDLS = NULL; INT LinkId = 0xff; UCHAR PeerAddr[MAC_ADDR_LEN]; //BOOLEAN IsInitator; BOOLEAN TimerCancelled; //UCHAR RegulatoryClass; //UCHAR NewExtChannelOffset = 0xff; UCHAR LinkIdentLen; USHORT PeerChSwitchTime; USHORT PeerChSwitchTimeOut; TDLS_LINK_IDENT_ELEMENT LinkIdent; //NDIS_STATUS NStatus = NDIS_STATUS_SUCCESS; USHORT StatusCode = MLME_SUCCESS; DBGPRINT(RT_DEBUG_WARN,("TDLS ===> TDLS_PeerChannelSwitchRspAction() \n")); // Not TDLS Capable, ignore it if (!IS_TDLS_SUPPORT(pAd)) return; if (!INFRA_ON(pAd)) return; hex_dump("TDLS peer channel switch response receive pack", Elem->Msg, Elem->MsgLen); if (!PeerTdlsChannelSwitchRspSanity(pAd, Elem->Msg, Elem->MsgLen, PeerAddr, &StatusCode, &PeerChSwitchTime, &PeerChSwitchTimeOut, &LinkIdentLen, &LinkIdent)) { DBGPRINT(RT_DEBUG_ERROR,("%s(%d): from %02x:%02x:%02x:%02x:%02x:%02x Sanity Check Fail !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); return; } // Drop not within my TDLS Table that created before ! LinkId = TDLS_SearchLinkId(pAd, PeerAddr); if (LinkId == -1 || LinkId == MAX_NUM_OF_TDLS_ENTRY) { DBGPRINT(RT_DEBUG_ERROR,("%s(%d): can not find from %02x:%02x:%02x:%02x:%02x:%02x on TDLS entry !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); return; } // Point to the current Link ID pTDLS = &pAd->StaCfg.TdlsInfo.TDLSEntry[LinkId]; if ((pTDLS->ChannelSwitchCurrentState == TDLS_CHANNEL_SWITCH_NONE) && (StatusCode == MLME_REQUEST_DECLINED)) { DBGPRINT(RT_DEBUG_OFF,("%s(%d): received a failed StatusCode = %d on Unsolicited response !!!\n", __FUNCTION__, __LINE__, StatusCode)); return; } if (StatusCode == MLME_REQUEST_DECLINED) { if ((pAd->StaCfg.TdlsChannelSwitchRetryCount > 0) && (pTDLS->bDoingPeriodChannelSwitch) && (pAd->StaCfg.bDoingPeriodChannelSwitch)) { pAd->StaCfg.TdlsChannelSwitchRetryCount--; DBGPRINT(RT_DEBUG_OFF,("%s(%d): received a failed StatusCode = %d re-try again !!!\n", __FUNCTION__, __LINE__, StatusCode)); } else { pTDLS->bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.bTdlsNoticeAPPowerSave = FALSE; pAd->StaCfg.TdlsForcePowerSaveWithAP = FALSE; RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, FALSE); } DBGPRINT(RT_DEBUG_OFF,("TDLS - TDLS_PeerChannelSwitchRspAction() received a failed StatusCode = %d !!!\n", StatusCode )); return; } DBGPRINT(RT_DEBUG_WARN,("%s(%d): from %02x:%02x:%02x:%02x:%02x:%02x !!!\n", __FUNCTION__,__LINE__, PeerAddr[0], PeerAddr[1], PeerAddr[2], PeerAddr[3], PeerAddr[4], PeerAddr[5])); if (StatusCode == MLME_SUCCESS) { if (pTDLS->ChannelSwitchCurrentState == TDLS_CHANNEL_SWITCH_NONE) { if (pAd->StaCfg.bChannelSwitchInitiator == FALSE) { RTMPCancelTimer(&pAd->StaCfg.TdlsResponderGoBackBaseChTimer, &TimerCancelled); DBGPRINT(RT_DEBUG_WARN,("%s(%d): i am responder!!!\n", __FUNCTION__,__LINE__)); } else { RTMPCancelTimer(&pAd->StaCfg.TdlsPeriodGoBackBaseChTimer, &TimerCancelled); DBGPRINT(RT_DEBUG_WARN,("%s(%d): i am Initiator !!!\n", __FUNCTION__,__LINE__)); } if (pAd->StaCfg.TdlsCurrentOperateChannel != pAd->CommonCfg.Channel) { DBGPRINT(RT_DEBUG_ERROR, ("106. %ld !!!\n", (jiffies * 1000) / OS_HZ)); RTMPusecDelay(300); NdisGetSystemUpTime(&pAd->StaCfg.TdlsGoBackStartTime); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); } } else { if (pAd->StaCfg.TdlsCurrentChannel != pAd->CommonCfg.Channel) { if (pAd->StaCfg.bChannelSwitchInitiator) { UINT16 SwitchTime = pAd->StaCfg.TdlsInfo.TdlsSwitchTime; //micro seconds UINT16 SwitchTimeout = pAd->StaCfg.TdlsInfo.TdlsSwitchTimeout; // micro seconds pAd->StaCfg.TdlsChannelSwitchPairCount--; pAd->StaCfg.TdlsChannelSwitchRetryCount = 10; //pAd->StaCfg.bDoingPeriodChannelSwitch = TRUE; if (SwitchTime >= PeerChSwitchTime) PeerChSwitchTime = SwitchTime; if (SwitchTimeout >= PeerChSwitchTimeOut) PeerChSwitchTimeOut = SwitchTimeout; pTDLS->ChSwitchTime = PeerChSwitchTime; pAd->StaCfg.TdlsGlobalSwitchTime = PeerChSwitchTime; pTDLS->ChSwitchTimeout = PeerChSwitchTimeOut; pAd->StaCfg.TdlsGlobalSwitchTimeOut = PeerChSwitchTimeOut; pTDLS->ChannelSwitchCurrentState = TDLS_CHANNEL_SWITCH_NONE; RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); //Cancel the timer since the received packet to me. #ifdef TDLS_HWTIMER_SUPPORT TDLS_SetChannelSwitchTimer(pAd, ((PeerChSwitchTime + pAd->StaCfg.TdlsOffChannelDelay) / 1000)); #else RTMPCancelTimer(&pTDLS->ChannelSwitchTimer, &TimerCancelled); pTDLS->bEnableChSwitchTime = TRUE; NdisGetSystemUpTime(&pTDLS->ChannelSwitchTimerStartTime); RTMPSetTimer(&pTDLS->ChannelSwitchTimer, ((PeerChSwitchTime + pAd->StaCfg.TdlsOffChannelDelay) / 1000)); #endif // TDLS_HWTIMER_SUPPORT // if (RTDebugLevel < RT_DEBUG_ERROR) RTMPusecDelay(300); else DBGPRINT(RT_DEBUG_ERROR, ("104. %ld !!!\n", (jiffies * 1000) / OS_HZ)); TDLS_InitChannelRelatedValue(pAd, pAd->StaCfg.TdlsCurrentChannel, pAd->StaCfg.TdlsCurrentChannelBW); } } else { pTDLS->bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.bDoingPeriodChannelSwitch = FALSE; pAd->StaCfg.TdlsForcePowerSaveWithAP = FALSE; pAd->StaCfg.bTdlsNoticeAPPowerSave = FALSE; if (pAd->StaCfg.bChannelSwitchInitiator == FALSE) { DBGPRINT(RT_DEBUG_OFF,("%s(%d): i am channel switch responder!!!\n", __FUNCTION__,__LINE__)); } else { RTMPCancelTimer(&pAd->StaCfg.TdlsDisableChannelSwitchTimer, &TimerCancelled); pAd->StaCfg.bChannelSwitchInitiator = FALSE; DBGPRINT(RT_DEBUG_OFF,("%s(%d): i am channel switch Initiator !!!\n", __FUNCTION__,__LINE__)); } if (pAd->StaCfg.TdlsCurrentOperateChannel != pAd->CommonCfg.Channel) { RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); } RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, FALSE); } } } DBGPRINT(RT_DEBUG_WARN,("TDLS <=== TDLS_PeerChannelSwitchRspAction() \n")); return; } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_ChannelSwitchTimeAction( IN PVOID SystemSpecific1, IN PVOID FunctionContext, IN PVOID SystemSpecific2, IN PVOID SystemSpecific3) { PRTMP_ADAPTER pAd; PRT_802_11_TDLS pTDLS = (PRT_802_11_TDLS)FunctionContext; DBGPRINT(RT_DEBUG_WARN, ("TDLS_ChannelSwitchTimeAction - channel switch procedure for (%02x:%02x:%02x:%02x:%02x:%02x)\n", pTDLS->MacAddr[0], pTDLS->MacAddr[1], pTDLS->MacAddr[2], pTDLS->MacAddr[3], pTDLS->MacAddr[4], pTDLS->MacAddr[5])); pAd = pTDLS->pAd; { UINT32 macCfg, TxCount; UINT32 MTxCycle; UINT16 MaxWaitingTime; DBGPRINT(RT_DEBUG_ERROR, ("105. %ld !!!\n", (jiffies * 1000) / OS_HZ)); { ULONG Now, temp1; NdisGetSystemUpTime(&Now); temp1 = (((Now - pTDLS->ChannelSwitchTimerStartTime) * 1000) / OS_HZ); if (temp1 < (pTDLS->ChSwitchTime / 1000)) { DBGPRINT(RT_DEBUG_OFF, ("Timer = %ld < 11 !!!\n", temp1)); } } RTMP_IO_READ32(pAd, TX_REPORT_CNT, &macCfg); TDLS_SendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE, RTMP_TDLS_SPECIFIC_NULL_FRAME); TDLS_EnablePktChannel(pAd, TDLS_FIFO_HCCA); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); MaxWaitingTime = ((pTDLS->ChSwitchTimeout - pTDLS->ChSwitchTime) / 1000); for (MTxCycle = 0; MTxCycle < ((MaxWaitingTime + 1) * 20); MTxCycle++) { RTMP_IO_READ32(pAd, TX_REPORT_CNT, &macCfg); TxCount = macCfg & 0x0000ffff; if (TxCount > 0) { DBGPRINT(RT_DEBUG_ERROR, ("MTxCycle = %d, %ld !!!\n", MTxCycle, (jiffies * 1000) / OS_HZ)); break; } else RTMPusecDelay(50); } if (MTxCycle == ((MaxWaitingTime + 1) * 20)) { DBGPRINT(RT_DEBUG_OFF, ("24. %ld @@@!!!\n", (jiffies * 1000) / OS_HZ)); RTMPusecDelay(300); NdisGetSystemUpTime(&pAd->StaCfg.TdlsGoBackStartTime); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); return; } } } /* ========================================================================== Description: IRQL = PASSIVE_LEVEL ========================================================================== */ VOID TDLS_ChannelSwitchTimeOutAction( IN PVOID SystemSpecific1, IN PVOID FunctionContext, IN PVOID SystemSpecific2, IN PVOID SystemSpecific3) { PRT_802_11_TDLS pTDLS = (PRT_802_11_TDLS)FunctionContext; PRTMP_ADAPTER pAd = pTDLS->pAd; BOOLEAN TimerCancelled; DBGPRINT(RT_DEBUG_WARN, ("TDLS - Failed to wait for channel switch, terminate the channel switch procedure (%02x:%02x:%02x:%02x:%02x:%02x)\n", pTDLS->MacAddr[0], pTDLS->MacAddr[1], pTDLS->MacAddr[2], pTDLS->MacAddr[3], pTDLS->MacAddr[4], pTDLS->MacAddr[5])); { ULONG Now, temp1; NdisGetSystemUpTime(&Now); temp1 = (((Now - pTDLS->ChannelSwitchTimerStartTime) * 1000) / OS_HZ); if (temp1 < (pTDLS->ChSwitchTimeout / 1000)) { RTMPSetTimer(&pTDLS->ChannelSwitchTimeoutTimer, ((pTDLS->ChSwitchTimeout / 1000) - temp1)); return; } if (temp1 < (pTDLS->ChSwitchTimeout / 1000)) { DBGPRINT(RT_DEBUG_OFF, ("Timer = %ld < 11 !!!\n", temp1)); } } RTMPCancelTimer(&pAd->StaCfg.TdlsResponderGoBackBaseChTimer, &TimerCancelled); pAd->StaCfg.bTdlsCurrentDoingChannelSwitchWaitSuccess = FALSE; pAd->StaCfg.bDoingPeriodChannelSwitch = FALSE; RTMPusecDelay(300); NdisGetSystemUpTime(&pAd->StaCfg.TdlsGoBackStartTime); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); if (pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_ABOVE); else if (pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_BELOW); else TDLS_InitChannelRelatedValue(pAd, pAd->CommonCfg.Channel, EXTCHA_NONE); TDLS_EnablePktChannel(pAd, TDLS_FIFO_ALL); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_TDLS_DOING_CHANNEL_SWITCH); } #endif /* DOT11Z_TDLS_SUPPORT */
the_stack_data/48259.c
/** * simon64_32.c - Simon implementation * * Author: Cas van der Weegen <[email protected]> * * Copyright (c) 2017 Cas van der Weegen * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <string.h> const uint8_t key_size = 4; // key_size % word_size const uint8_t word_size = 16; // block_size % 2 const uint8_t bytes = 2; // word_size % 8 const uint8_t rounds = 32; const uint64_t z_sequence = 0b0001100111000011010100100010111110110011100001101010010001011111; #define ULLONG_MAX 18446744073709551615ULL #define shift_left(x, r) ((x << r) | (x >> (word_size - r))) #define shift_right(x, r) (x >> r) | ((x & ((1 << r) - 1)) << (word_size - r)) void expand_simon_64_32(uint8_t *key, uint8_t *key_schedule) { uint8_t i; uint64_t keys[4] = {}; for (i = 0; i < key_size; i++) { memcpy(&keys[i], key + (bytes * i), bytes); } memcpy(key_schedule, &keys[0], bytes); uint64_t mod_mask = ULLONG_MAX >> (64 - word_size); uint64_t c = 0xfffffffffffffffc; uint64_t x,y; for (i = 0; i < rounds; i++) { x = shift_right(keys[key_size - 1], 3); x = x ^ keys[1]; // ONLY if key_size = 4 y = shift_right(x,1); x = x ^ keys[0]; x = x ^ y; y = c ^ ((z_sequence >> (i % 62)) & 1); x = x ^ y; for (uint8_t i = 0; i < (key_size - 1); i++) { keys[i] = keys[i+1]; } keys[key_size -1] = x & mod_mask; memcpy(key_schedule + (bytes * (i+1)), &keys[0], bytes); printf("X: %02x, Y: %02x, K0: %02x, K1: %02x, K2: %02x, K3: %02x \n",x,y,keys[0],keys[1],keys[2],keys[3]); } } void encrypt_simon_64_32(uint8_t *key_schedule, uint8_t *plaintext, uint8_t *ciphertext) { uint16_t y = *(uint16_t *)plaintext; uint16_t x = *(((uint16_t *)plaintext) + 1); uint16_t *k = (uint16_t *)key_schedule; uint16_t *w = (uint16_t *)ciphertext; uint16_t tmp; for(int i = 0; i < rounds; i++) { tmp = shift_left(x, 1); tmp = tmp & shift_left(x, 8); tmp = tmp ^ y; tmp = tmp ^ shift_left(x, 2); y = x; // Feistell Cross x = tmp ^ *(k+i); printf("X: %02x, Y: %02x \n",x,y); } *w = y; w += 1; *w = x; return; } void decrypt_simon_64_32(uint8_t *key_schedule, uint8_t *plaintext, uint8_t *ciphertext) { uint16_t x = *(uint16_t *)ciphertext; uint16_t y = *(((uint16_t *)ciphertext) + 1); uint16_t *k = (uint16_t *)key_schedule; uint16_t * w = (uint16_t *)plaintext; uint16_t tmp; for(int i = (rounds - 1); i >= 0; i--) { tmp = shift_left(x, 1); tmp = tmp & shift_left(x, 8); tmp = tmp ^ y; tmp = tmp ^ shift_left(x, 2); y = x; // Feistell Cross x = tmp ^ *(k+i); } *w = x; w += 1; *w = y; return; } int main(void) { printf("Test Simon 64/32\n"); uint8_t key_schedule[3*rounds]; uint8_t ciphertext[16]; uint8_t decrypted[16]; uint8_t encryption_key[] = {0x00, 0x01, 0x08, 0x09, 0x10, 0x11, 0x18, 0x19}; uint8_t plaintext[] = {0x77, 0x68, 0x65, 0x65}; expand_simon_64_32(encryption_key, key_schedule); encrypt_simon_64_32(key_schedule, plaintext, ciphertext); decrypt_simon_64_32(key_schedule, decrypted, ciphertext); printf("Plaintext %02x, %02x, %02x, %02x \n",plaintext[0],plaintext[1],plaintext[2],plaintext[3]); printf("Encrypted %02x, %02x, %02x, %02x \n",ciphertext[0],ciphertext[1],ciphertext[2],ciphertext[3]); printf("Decrypted %02x, %02x, %02x, %02x \n",decrypted[0],decrypted[1],decrypted[2],decrypted[3]); return 0; }
the_stack_data/781296.c
#define NULL ((void*)0) typedef unsigned long size_t; // Customize by platform. typedef long intptr_t; typedef unsigned long uintptr_t; typedef long scalar_t__; // Either arithmetic or pointer type. /* By default, we understand bool (as a convenience). */ typedef int bool; #define false 0 #define true 1 /* Forward declarations */ typedef struct TYPE_13__ TYPE_6__ ; typedef struct TYPE_12__ TYPE_5__ ; typedef struct TYPE_11__ TYPE_4__ ; typedef struct TYPE_10__ TYPE_3__ ; typedef struct TYPE_9__ TYPE_2__ ; typedef struct TYPE_8__ TYPE_1__ ; /* Type definitions */ typedef size_t uint64_t ; typedef size_t uint32_t ; struct TYPE_13__ {char* archive_format_name; int /*<<< orphan*/ archive_format; } ; struct archive_read {TYPE_6__ archive; TYPE_1__* format; } ; struct archive_entry {int dummy; } ; struct _7zip_entry {size_t folderIndex; int mode; int flg; size_t ssIndex; int /*<<< orphan*/ atime_ns; int /*<<< orphan*/ atime; int /*<<< orphan*/ ctime_ns; int /*<<< orphan*/ ctime; int /*<<< orphan*/ mtime_ns; int /*<<< orphan*/ mtime; int /*<<< orphan*/ name_len; scalar_t__ utf16name; } ; struct TYPE_11__ {int* unpackSizes; } ; struct TYPE_9__ {size_t numFolders; struct _7z_folder* folders; } ; struct TYPE_12__ {TYPE_4__ ss; TYPE_2__ ci; } ; struct _7zip {scalar_t__ has_encrypted_entries; size_t entries_remaining; int end_of_entry; int entry_bytes_remaining; char* format_name; TYPE_5__ si; int /*<<< orphan*/ * sconv; int /*<<< orphan*/ entry_crc32; scalar_t__ entry_offset; struct _7zip_entry* entry; struct _7zip_entry* entries; scalar_t__ numFiles; } ; struct _7z_header_info {int dummy; } ; struct _7z_folder {size_t numCoders; TYPE_3__* coders; } ; typedef int /*<<< orphan*/ int64_t ; typedef int /*<<< orphan*/ header ; struct TYPE_10__ {int codec; } ; struct TYPE_8__ {scalar_t__ data; } ; /* Variables and functions */ int AE_IFLNK ; int AE_IFMT ; int AE_IFREG ; int ARCHIVE_EOF ; int /*<<< orphan*/ ARCHIVE_ERRNO_FILE_FORMAT ; int ARCHIVE_FATAL ; int /*<<< orphan*/ ARCHIVE_FORMAT_7ZIP ; int ARCHIVE_OK ; scalar_t__ ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW ; int ARCHIVE_WARN ; int ATIME_IS_SET ; int CTIME_IS_SET ; scalar_t__ ENOMEM ; int MTIME_IS_SET ; #define _7Z_CRYPTO_AES_256_SHA_256 130 #define _7Z_CRYPTO_MAIN_ZIP 129 #define _7Z_CRYPTO_RAR_29 128 scalar_t__ archive_entry_copy_pathname_l (struct archive_entry*,char const*,int /*<<< orphan*/ ,int /*<<< orphan*/ *) ; int /*<<< orphan*/ archive_entry_copy_symlink (struct archive_entry*,char const*) ; int /*<<< orphan*/ archive_entry_set_atime (struct archive_entry*,int /*<<< orphan*/ ,int /*<<< orphan*/ ) ; int /*<<< orphan*/ archive_entry_set_ctime (struct archive_entry*,int /*<<< orphan*/ ,int /*<<< orphan*/ ) ; int /*<<< orphan*/ archive_entry_set_is_data_encrypted (struct archive_entry*,int) ; int /*<<< orphan*/ archive_entry_set_mode (struct archive_entry*,int) ; int /*<<< orphan*/ archive_entry_set_mtime (struct archive_entry*,int /*<<< orphan*/ ,int /*<<< orphan*/ ) ; int /*<<< orphan*/ archive_entry_set_size (struct archive_entry*,int) ; int archive_read_format_7zip_read_data (struct archive_read*,void const**,size_t*,int /*<<< orphan*/ *) ; int /*<<< orphan*/ archive_set_error (TYPE_6__*,scalar_t__,char*,...) ; int /*<<< orphan*/ archive_string_conversion_charset_name (int /*<<< orphan*/ *) ; int /*<<< orphan*/ * archive_string_conversion_from_charset (TYPE_6__*,char*,int) ; int /*<<< orphan*/ crc32 (int /*<<< orphan*/ ,int /*<<< orphan*/ *,int /*<<< orphan*/ ) ; scalar_t__ errno ; int /*<<< orphan*/ free (unsigned char*) ; int /*<<< orphan*/ free_Header (struct _7z_header_info*) ; int /*<<< orphan*/ memcpy (unsigned char*,void const*,size_t) ; int /*<<< orphan*/ memset (struct _7z_header_info*,int /*<<< orphan*/ ,int) ; unsigned char* realloc (unsigned char*,size_t) ; int slurp_central_directory (struct archive_read*,struct _7zip*,struct _7z_header_info*) ; int /*<<< orphan*/ sprintf (char*,char*) ; __attribute__((used)) static int archive_read_format_7zip_read_header(struct archive_read *a, struct archive_entry *entry) { struct _7zip *zip = (struct _7zip *)a->format->data; struct _7zip_entry *zip_entry; int r, ret = ARCHIVE_OK; struct _7z_folder *folder = 0; uint64_t fidx = 0; /* * It should be sufficient to call archive_read_next_header() for * a reader to determine if an entry is encrypted or not. If the * encryption of an entry is only detectable when calling * archive_read_data(), so be it. We'll do the same check there * as well. */ if (zip->has_encrypted_entries == ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW) { zip->has_encrypted_entries = 0; } a->archive.archive_format = ARCHIVE_FORMAT_7ZIP; if (a->archive.archive_format_name == NULL) a->archive.archive_format_name = "7-Zip"; if (zip->entries == NULL) { struct _7z_header_info header; memset(&header, 0, sizeof(header)); r = slurp_central_directory(a, zip, &header); free_Header(&header); if (r != ARCHIVE_OK) return (r); zip->entries_remaining = (size_t)zip->numFiles; zip->entry = zip->entries; } else { ++zip->entry; } zip_entry = zip->entry; if (zip->entries_remaining <= 0 || zip_entry == NULL) return ARCHIVE_EOF; --zip->entries_remaining; zip->entry_offset = 0; zip->end_of_entry = 0; zip->entry_crc32 = crc32(0, NULL, 0); /* Setup a string conversion for a filename. */ if (zip->sconv == NULL) { zip->sconv = archive_string_conversion_from_charset( &a->archive, "UTF-16LE", 1); if (zip->sconv == NULL) return (ARCHIVE_FATAL); } /* Figure out if the entry is encrypted by looking at the folder that is associated to the current 7zip entry. If the folder has a coder with a _7Z_CRYPTO codec then the folder is encrypted. Hence the entry must also be encrypted. */ if (zip_entry && zip_entry->folderIndex < zip->si.ci.numFolders) { folder = &(zip->si.ci.folders[zip_entry->folderIndex]); for (fidx=0; folder && fidx<folder->numCoders; fidx++) { switch(folder->coders[fidx].codec) { case _7Z_CRYPTO_MAIN_ZIP: case _7Z_CRYPTO_RAR_29: case _7Z_CRYPTO_AES_256_SHA_256: { archive_entry_set_is_data_encrypted(entry, 1); zip->has_encrypted_entries = 1; break; } } } } /* Now that we've checked for encryption, if there were still no * encrypted entries found we can say for sure that there are none. */ if (zip->has_encrypted_entries == ARCHIVE_READ_FORMAT_ENCRYPTION_DONT_KNOW) { zip->has_encrypted_entries = 0; } if (archive_entry_copy_pathname_l(entry, (const char *)zip_entry->utf16name, zip_entry->name_len, zip->sconv) != 0) { if (errno == ENOMEM) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for Pathname"); return (ARCHIVE_FATAL); } archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Pathname cannot be converted " "from %s to current locale.", archive_string_conversion_charset_name(zip->sconv)); ret = ARCHIVE_WARN; } /* Populate some additional entry fields: */ archive_entry_set_mode(entry, zip_entry->mode); if (zip_entry->flg & MTIME_IS_SET) archive_entry_set_mtime(entry, zip_entry->mtime, zip_entry->mtime_ns); if (zip_entry->flg & CTIME_IS_SET) archive_entry_set_ctime(entry, zip_entry->ctime, zip_entry->ctime_ns); if (zip_entry->flg & ATIME_IS_SET) archive_entry_set_atime(entry, zip_entry->atime, zip_entry->atime_ns); if (zip_entry->ssIndex != (uint32_t)-1) { zip->entry_bytes_remaining = zip->si.ss.unpackSizes[zip_entry->ssIndex]; archive_entry_set_size(entry, zip->entry_bytes_remaining); } else { zip->entry_bytes_remaining = 0; archive_entry_set_size(entry, 0); } /* If there's no body, force read_data() to return EOF immediately. */ if (zip->entry_bytes_remaining < 1) zip->end_of_entry = 1; if ((zip_entry->mode & AE_IFMT) == AE_IFLNK) { unsigned char *symname = NULL; size_t symsize = 0; /* * Symbolic-name is recorded as its contents. We have to * read the contents at this time. */ while (zip->entry_bytes_remaining > 0) { const void *buff; unsigned char *mem; size_t size; int64_t offset; r = archive_read_format_7zip_read_data(a, &buff, &size, &offset); if (r < ARCHIVE_WARN) { free(symname); return (r); } mem = realloc(symname, symsize + size + 1); if (mem == NULL) { free(symname); archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for Symname"); return (ARCHIVE_FATAL); } symname = mem; memcpy(symname+symsize, buff, size); symsize += size; } if (symsize == 0) { /* If there is no symname, handle it as a regular * file. */ zip_entry->mode &= ~AE_IFMT; zip_entry->mode |= AE_IFREG; archive_entry_set_mode(entry, zip_entry->mode); } else { symname[symsize] = '\0'; archive_entry_copy_symlink(entry, (const char *)symname); } free(symname); archive_entry_set_size(entry, 0); } /* Set up a more descriptive format name. */ sprintf(zip->format_name, "7-Zip"); a->archive.archive_format_name = zip->format_name; return (ret); }
the_stack_data/22012291.c
#include<stdio.h> #include<stdlib.h> #include<stdbool.h> #include <string.h> typedef struct node { int data; struct node * left; struct node * right; struct node * parent; } node; typedef struct tree { struct node * root; int count; } tree; void init(tree * t) { struct tree * new_t = malloc(sizeof new_t); new_t->root = NULL; new_t->count = 0; t = new_t; } int find(tree* t, int data, node* n) { struct node * n2; n2 = t->root; if (t->root == NULL){ return 1; } while (1){ if (n2 == NULL) { return 1; } else if (n2->data == data){ n->data = n2->data; n->left = n2->left; n->right = n2->right; n->parent = n2->parent; return 0; } else if (data > n2->data){ n2 = n2->right; } else { n2 = n2->left; } } return 1; } int insert(tree* t, int data) { struct node * n, ** nn, * last_n = NULL; struct node * e_n; e_n = malloc(sizeof * e_n); int err = find(t, data, e_n); if (err == 0){ return 1; } nn = &t->root; n = t->root; while (1){ if (n == NULL) { n = *nn = malloc(sizeof * n); if (n != NULL){ n->data = data; n->left = NULL; n->right = NULL; n->parent = last_n; t->count++; return 0; } else { return 2; } } last_n = n; if (data > n->data){ nn = &n->right; n = n->right; } else { nn = &n->left; n = n->left; } } return 0; } int deepness(struct node * n, int deep){ if (n == NULL){ return deep; } int d1 = deepness(n->left, deep + 1); int d2 = deepness(n->right, deep + 1); return (d1 > d2) ? d1 : d2; } void printNode(struct node * n, int current, int deep, int first){ if (current == deep){ if (first > 0){ printf(" "); } if (n == NULL){ printf("_"); } else{ printf("%d", n->data); } } else if (n != NULL){ printNode(n->left, current + 1, deep, first); printNode(n->right, current + 1, deep, first + 1); } else { printNode(n, current + 1, deep, first); printNode(n, current + 1, deep, first + 1); } } void print_depth_first(struct node * n) { int m = deepness(n, 0); for (int i = 1; i <= m; i++){ printNode(n, 1, i, 0); if(i!=m){ printf(" "); } else{ printf("\n"); } } } void print_direct(node* n){ node** nodes = malloc(sizeof(node)*100); int last_pos=99; printf("%d", n->data); nodes[last_pos]=n->right; last_pos--; nodes[last_pos]=n->left; last_pos--; while(last_pos!=99){ last_pos++; node* tmp=nodes[last_pos]; printf(" %d", tmp->data); if(tmp->right!=NULL){ nodes[last_pos]=tmp->right; last_pos--; } if(tmp->left!=NULL){ nodes[last_pos]=tmp->left; last_pos--; } } printf("\n"); } bool end=false; void print_reverse(node* n){ if (n!=NULL) { bool is_end=false; if(!end){ is_end=true; end=true; } print_reverse(n->left); print_reverse(n->right); if(is_end) printf("%d\n", n->data); else printf("%d ", n->data); } } void printTree(struct tree * t) { print_direct(t->root); } int main(){ struct tree * t = malloc(sizeof t); init(t); for (int i = 0; i < 7; i++){ int a; scanf("%d", &a); insert(t, a); } printTree(t); return 0; }
the_stack_data/141460.c
#include<stdio.h> int foo(int i, int j) {printf("Foo %d, ", i); return 5;} int bar() {printf("Bar "); return 5;} int foobar() {printf("FooBar"); return 5;} int abc(int i, int j, int k) {printf("%d, %d, %d\n", i, j, k);return 0;} void test(){} int main () { int i = 10; int c = 0; int a = foo (i, 3) + bar() * foobar(); int b = (++i) + foo(foobar(), bar()) + (++i) + foo(i, 4); int d = 12; int x = i++, y = i, z = ++x; printf("%d, %d\n", ++c, c); abc(foo(bar(), foobar()), foobar(), bar()); c = 0; d = 2; abc(c, c++, c+d); d = 10; abc(foo(d, d), foo(d++, 0), bar()); if (!d) { printf("Hello, %d"); } d?test():test(); }
the_stack_data/389936.c
#include <stdio.h> #include <stdlib.h> struct pairInt { int min, max; }; struct pairInt min_max(int a, int b) { struct pairInt pair; pair.min = (a>b) ? b:a; pair.max = (a>b) ? a:b; return pair; }; int main() { int x,y; struct pairInt result; puts("Give two integers: "); scanf("%d %d", &x, &y); result = min_max(x, y); printf("%d <= %d\n", result.min, result.max); return(0); }
the_stack_data/301632.c
#include <stdio.h> #include <stdlib.h> int main() { char *s1 = (char*)malloc(sizeof(char)*1000); char *s2 = (char*)malloc(sizeof(char)*1000); if ((s1 == NULL) || (s2 == NULL)) { printf("Memory allocation error!"); return -1; } printf("Enter the first line: "); gets(s1); printf("Enter the second line: "); gets(s2); int k = strcmpmy(s1, s2); printf("Result: %d", k); free(s1); free(s2); return 0; } int strcmpmy(char *s1, char *s2) { while(*s1 && *s2 && (*s1 == *s2)) { s1++; s2++; } if (*s1 > *s2) { return 1; } if (*s1 < *s2) { return -1; } return 0; }
the_stack_data/98574914.c
#include <stdio.h> #include <stdlib.h> #include <unistd.h> static int T = 0; //sleep time variable static int R = 0; //repeats variable static int check_args(int argc, char * argv[]){ //if we do not have 2 arguments if(argc != 3){ fprintf(stderr, "Usage: testsim sleeptime repeats\n"); return -1; //error } //in case if sleep time is invalid if( (T = atoi(argv[1])) < 0){ return -1; //error } //in case if repeat time is invalid if( (R = atoi(argv[2])) < 0){ return -1; //error } return 0; } static void testsim(void){ const pid_t pid = getpid(); //repeat while(R-- > 0){ sleep(T); //sleep fprintf(stderr, "%i\n", pid); //print } } int main(int argc, char * argv[]){ if(check_args(argc, argv) == -1){ return EXIT_FAILURE; } testsim(); return EXIT_SUCCESS; }
the_stack_data/28262923.c
#include <pthread.h> #include <stdio.h> #include <stdlib.h> void *thread(void *argp) { int id = (int)argp; static int cnt = 0; printf("id: %d, cnt: %d\n", id, cnt++); return NULL; } void sys_error(char *msg) { printf("%s\n", msg); exit(-1); } int main() { pthread_t tid; for (int i = 0; i < 100; i++) { if (pthread_create(&tid, NULL, thread, (void *)i) != 0) { sys_error("Error: main pthread_create"); } } pthread_exit(NULL); return 0; }
the_stack_data/525.c
int t1() { int a[2][3]; int *p = a; *p = 1; expect(1, *p); } int t2() { int a[2][3]; int *p = a + 1; *p = 1; int *q = a; *p = 32; expect(32, *(q + 3)); } int t3() { int a[4][5]; int *p = a; *(*(a + 1) + 2) = 62; expect(62, *(p + 7)); } int t4() { int a[3] = { 1, 2, 3 }; expect(1, a[0]); expect(2, a[1]); expect(3, a[2]); } int t5() { int a[2][3]; a[0][1] = 1; a[1][1] = 2; int *p = a; expect(1, p[1]); expect(2, p[4]); } int t6a(int e, int x[][3]) { expect(e, *(*(x + 1) + 1)); } int t6() { int a[2][3]; int *p = a; *(p + 4) = 65; t6a(65, a); } int t7() { int a[3*3]; // integer constant expression a[8] = 68; expect(68, a[8]); } int main() { printf("Testing array ... "); t1(); t2(); t3(); t4(); t5(); t6(); printf("OK\n"); return 0; }
the_stack_data/111828.c
#include <stdio.h> #include <string.h> void encryptDecrypt(char *input, char *output) { char key[] = "OPERATINGSYSTEMS"; int i; for(i = 0; i < strlen(input); i++) { output[i] = input[i] ^ key[i % (sizeof(key)/sizeof(char))]; } } int main (int argc, char *argv[]) { char baseStr[] = "Hello Cruel World"; char encrypted[strlen(baseStr)]; encryptDecrypt(baseStr, encrypted); printf("Encrypted:%s\n", encrypted); char decrypted[strlen(baseStr)]; encryptDecrypt(encrypted, decrypted); printf("Decrypted:%s\n", decrypted); }
the_stack_data/57315.c
#include <stdbool.h> // #include <stdio.h> bool mx_is_odd (int value) { if (value % 2 == 0){ return true; } else { return false; } } // int main() // { // mx_is_odd(1); // printf("%d", mx_is_odd(6)); // return 0; // }
the_stack_data/70453.c
#include <stdio.h> int main() { int a,i,m=0,c=0,r=0,s=0,j; scanf("%d",&a); int n[a][2]; char k[a][2]; for(i=0;i<a;i++) { for(j=0;j<1;j++) { scanf("%d",&n[i][j]); } for(j=1;j<2;j++) { m=n[i][0]+m; scanf(" %c",&k[i][j]); if(k[i][1]=='C') c=n[i][0]+c; if(k[i][1]=='R') r=n[i][0]+r; if(k[i][1]=='S') s=n[i][0]+s; } } printf("Total: %d cobaias\nTotal de coelhos: %d\nTotal de ratos: %d\nTotal de sapos: %d\nPercentual de coelhos: %.2f %\n" "Percentual de ratos: %.2f %\nPercentual de sapos: %.2f %\n",m,c,r,s,(c*1.00/m)*100,(r*1.00/m)*100,(s*1.00/m)*100); return 0; }
the_stack_data/20449529.c
#include<stdio.h> void edit(int* p) { //void edit(int p[]) { if ((unsigned)(sizeof(p) / sizeof(p[0])) > 4) { printf("sizeof: %d\n", sizeof p); p[2] = 99; } } void main(int args, char* argv[]) { printf("pointer array test--------\n"); int test[] = {1,2,3,4,5}; int* p = test; printf("test[0]=%d, test[1]=%d \n", *p, *(p+1)); printf("p[4]=%d, *(p+4)=%d \n", p[4], *(p+4)); printf("pointer array test--------\n"); edit(test); printf("p[2]= %d, p[5]=%d\n", test[2], test[5]); printf("array size: %u\n", (unsigned)(sizeof(test)/sizeof(test[0]))); }
the_stack_data/206392353.c
#include <stdio.h> int main() { int X; int i = 1; scanf("%d", &X); while (i <= X) { printf("%d", i); printf("\n"); i+=2; } return 0; }
the_stack_data/247016860.c
/* * "enigma.c" is in file cbw.tar from * anonymous FTP host watmsg.waterloo.edu: pub/crypt/cbw.tar.Z * * A one-rotor machine designed along the lines of Enigma * but considerably trivialized. * * A public-domain replacement for the UNIX "crypt" command. * * Upgraded to function properly on 64-bit machines. * * $FreeBSD: src/usr.bin/enigma/enigma.c,v 1.2.6.3 2001/08/01 23:51:34 obrien Exp $ * $DragonFly: src/usr.bin/enigma/enigma.c,v 1.6 2005/01/05 18:42:33 liamfoy Exp $ */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #define MINUSKVAR "CrYpTkEy" #define ECHO 010 #define ROTORSZ 256 #define MASK 0377 char t1[ROTORSZ]; char t2[ROTORSZ]; char t3[ROTORSZ]; char deck[ROTORSZ]; char buf[13]; static void shuffle(char *); static void setup(const char *); static void setup(const char *pw) { int ic, i, k, temp; char salt[3]; unsigned rnd; long seed; strncpy(salt, pw, sizeof(salt)); memcpy(buf, crypt(pw, salt), sizeof(buf)); seed = 123; for (i=0; i<13; i++) seed = seed*buf[i] + i; for(i=0;i<ROTORSZ;i++) { t1[i] = i; deck[i] = i; } for(i=0;i<ROTORSZ;i++) { seed = 5*seed + buf[i%13]; if( sizeof(long) > 4 ) { /* Force seed to stay in 32-bit signed math */ if( seed & 0x80000000 ) seed = seed | (-1L & ~0xFFFFFFFFL); else seed &= 0x7FFFFFFF; } rnd = seed % 65521; k = ROTORSZ-1 - i; ic = (rnd&MASK)%(k+1); rnd >>= 8; temp = t1[k]; t1[k] = t1[ic]; t1[ic] = temp; if(t3[k]!=0) continue; ic = (rnd&MASK) % k; while(t3[ic]!=0) ic = (ic+1) % k; t3[k] = ic; t3[ic] = k; } for(i=0;i<ROTORSZ;i++) t2[t1[i]&MASK] = i; } int main(int argc, char **argv) { int i, n1, n2, nr1, nr2; int secureflg = 0, kflag = 0; char *cp; if (argc > 1 && argv[1][0] == '-') { if (argv[1][1] == 's') { argc--; argv++; secureflg = 1; } else if (argv[1][1] == 'k') { argc--; argv++; kflag = 1; } } if (kflag) { if ((cp = getenv(MINUSKVAR)) == NULL) { fprintf(stderr, "%s not set\n", MINUSKVAR); exit(1); } setup(cp); } else if (argc != 2) { setup(getpass("Enter key:")); } else setup(argv[1]); n1 = 0; n2 = 0; nr2 = 0; while((i=getchar()) != -1) { if (secureflg) { nr1 = deck[n1]&MASK; nr2 = deck[nr1]&MASK; } else { nr1 = n1; } i = t2[(t3[(t1[(i+nr1)&MASK]+nr2)&MASK]-nr2)&MASK]-nr1; putchar(i); n1++; if(n1==ROTORSZ) { n1 = 0; n2++; if(n2==ROTORSZ) n2 = 0; if (secureflg) { shuffle(deck); } else { nr2 = n2; } } } return 0; } static void shuffle(char *deckary) { int i, ic, k, temp; unsigned rnd; static long seed = 123; for(i=0;i<ROTORSZ;i++) { seed = 5*seed + buf[i%13]; rnd = seed % 65521; k = ROTORSZ-1 - i; ic = (rnd&MASK)%(k+1); temp = deckary[k]; deckary[k] = deckary[ic]; deckary[ic] = temp; } }
the_stack_data/90115.c
const char *gitrev = "c32f52956bd7cb9411c9f05dc3bd39a024742313"; const char *gittag = "v1.0.3";
the_stack_data/411075.c
// ---------------------------------------------------------------------------- // Copyright 2016-2017 ARM Ltd. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ---------------------------------------------------------------------------- #ifndef MBED_CONF_MBED_CLOUD_CLIENT_PSA_SUPPORT #ifdef MBED_CONF_MBED_CLOUD_CLIENT_EXTERNAL_SST_SUPPORT #include <stdbool.h> #include "pv_error_handling.h" #include "pv_macros.h" #include "storage_items.h" #include "fcc_malloc.h" #include "pal_sst.h" #include "storage_internal.h" extern bool g_kcm_initialized; static kcm_status_e storage_get_first_cert_in_chain_name_and_info(storage_item_prefix_type_e item_prefix_type, const uint8_t *kcm_item_name, size_t kcm_item_name_len, char *kcm_complete_name, size_t kcm_complete_name_len, palSSTItemInfo_t *palItemInfo) { kcm_status_e kcm_status = KCM_STATUS_SUCCESS; palStatus_t pal_status = PAL_SUCCESS; kcm_chain_cert_info_s cert_chain_info = { 0 }; cert_chain_info.certificate_index = 0; cert_chain_info.is_last_certificate = false; SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_complete_name_len != STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH || kcm_complete_name == NULL), kcm_status = KCM_STATUS_INVALID_PARAMETER, "Wrong kcm_complete_name parameter"); //Change complete certificate name to first certificate in chain with the same name kcm_status = storage_build_complete_working_item_name(KCM_CERTIFICATE_ITEM, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, &cert_chain_info); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to change single certificate name"); //Get size pal_status = pal_SSTGetInfo(kcm_complete_name, palItemInfo); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { return KCM_STATUS_ITEM_NOT_FOUND; } SA_PV_ERR_RECOVERABLE_RETURN_IF(pal_status != PAL_SUCCESS, kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to get data size"); SA_PV_LOG_WARN("Warning: The operation made on first certificate of the chain using single certificate API!"); return kcm_status; } kcm_status_e storage_specific_init() { palStatus_t pal_status = PAL_SUCCESS; size_t actual_size; SA_PV_LOG_TRACE_FUNC_ENTER_NO_ARGS(); //check if flag file exists pal_status = pal_SSTGet(STORAGE_FACTORY_RESET_IN_PROGRESS_ITEM, NULL, 0, &actual_size); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { //flag file was not found - positive scenario return KCM_STATUS_SUCCESS; } else if (pal_status == PAL_SUCCESS) { //flag file can be opened for reading //previous factory reset failed during execution //call factory reset to complete the process pal_status = storage_factory_reset(); } SA_PV_LOG_TRACE_FUNC_EXIT_NO_ARGS(); return pal_to_kcm_error_translation(pal_status); } kcm_status_e storage_specific_finalize() { return KCM_STATUS_SUCCESS; } kcm_status_e storage_specific_reset() { palStatus_t pal_status = PAL_SUCCESS; SA_PV_LOG_TRACE_FUNC_ENTER_NO_ARGS(); pal_status = pal_SSTReset(); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), pal_to_kcm_error_translation(pal_status), "Failed pal_SSTReset (%" PRIu32 ")", pal_status); SA_PV_LOG_TRACE_FUNC_EXIT_NO_ARGS(); return KCM_STATUS_SUCCESS; } kcm_status_e storage_factory_reset() { palStatus_t pal_status = PAL_SUCCESS; kcm_status_e kcm_status = KCM_STATUS_SUCCESS; char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; palSSTIterator_t sst_iterator = 0; palSSTItemInfo_t item_info = { 0 }; uint8_t* data_buffer = NULL; size_t actual_data_size; SA_PV_LOG_TRACE_FUNC_ENTER_NO_ARGS(); // set factory reset in progress item flag pal_status = pal_SSTSet(STORAGE_FACTORY_RESET_IN_PROGRESS_ITEM, NULL, 0, PAL_SST_REPLAY_PROTECTION_FLAG); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTSet (%" PRIu32 ")", pal_status); //open iterator with working prefix pal_status = pal_SSTIteratorOpen(&sst_iterator, STORAGE_WORKING); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTIteratorOpen (%" PRIu32 ")", pal_status); //iterate over items with 'working' prefix and remove all items while ((pal_status = pal_SSTIteratorNext(sst_iterator, (char*)kcm_complete_name, KCM_MAX_FILENAME_SIZE)) == PAL_SUCCESS) { pal_status = pal_SSTRemove((const char*)kcm_complete_name); if (pal_status != PAL_SUCCESS) { // output warining in case of failure, but continue factory reset process SA_PV_LOG_ERR("Warning: failed to remove item. Continue factory reset..."); } } //verify that we went over all items SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), iterator_close_end_exit, "Failed pal_SSTIteratorNext (%" PRIu32 ")", pal_status); //close iterator pal_status = pal_SSTIteratorClose(sst_iterator); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTIteratorClose (%" PRIu32 ")", pal_status); //open iterator with backup prefix pal_status = pal_SSTIteratorOpen(&sst_iterator, STORAGE_BACKUP); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTIteratorOpen (%" PRIu32 ")", pal_status); //iterate over items with 'backup' prefix while ((pal_status = pal_SSTIteratorNext(sst_iterator, (char*)kcm_complete_name, KCM_MAX_FILENAME_SIZE)) == PAL_SUCCESS) { //retreive item info (size and flags) pal_status = pal_SSTGetInfo((const char*)kcm_complete_name, &item_info); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), iterator_close_end_exit, "Failed pal_SSTGetInfo (%" PRIu32 ")", pal_status); //allocate buffer for the data according to its size data_buffer = fcc_malloc(item_info.itemSize); SA_PV_ERR_RECOVERABLE_GOTO_IF((data_buffer == NULL), kcm_status = KCM_STATUS_OUT_OF_MEMORY, iterator_close_end_exit, "Failed to allocate bffer"); //read factory item to the buffer pal_status = pal_SSTGet((const char*)kcm_complete_name, data_buffer, item_info.itemSize, &actual_data_size); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), free_memory_and_exit, "Failed pal_SSTGet (%" PRIu32 ")", pal_status); SA_PV_ERR_RECOVERABLE_GOTO_IF((item_info.itemSize != actual_data_size), kcm_status = KCM_STATUS_FILE_CORRUPTED, free_memory_and_exit, "Failed pal_SSTGet (%" PRIu32 ")", pal_status); //change item name prefix to STORAGE_DEFAULT_PATH ('working' prefix) memcpy(kcm_complete_name, STORAGE_WORKING, strlen(STORAGE_WORKING)); //write item with 'working' prefix pal_status = pal_SSTSet((const char*)kcm_complete_name, data_buffer, item_info.itemSize, item_info.SSTFlagsBitmap); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), free_memory_and_exit, "Failed pal_SSTSet (%" PRIu32 ")", pal_status); //free allocated buffer fcc_free(data_buffer); } //verify that we went over all items SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), iterator_close_end_exit, "Failed pal_SSTIteratorNext (%" PRIu32 ")", pal_status); //close iterator pal_status = pal_SSTIteratorClose(sst_iterator); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTIteratorClose (%" PRIu32 ")", pal_status); //delete temporary file. if failed, set special status to `kcm_backup_status` since factory reset succedeed. pal_status = pal_SSTRemove(STORAGE_FACTORY_RESET_IN_PROGRESS_ITEM); if (pal_status != PAL_SUCCESS) { // output warining in case of failure, but continue factory reset process SA_PV_LOG_ERR("Warning: failed to remove item. Continue factory reset..."); } goto exit; free_memory_and_exit: //free allocated memory fcc_free(data_buffer); iterator_close_end_exit: //close iterator pal_status = pal_SSTIteratorClose(sst_iterator); SA_PV_ERR_RECOVERABLE_GOTO_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), exit, "Failed pal_SSTIteratorClose (%" PRIu32 ")", pal_status); exit: SA_PV_LOG_TRACE_FUNC_EXIT_NO_ARGS(); return kcm_status; } palStatus_t storage_rbp_read( const char *item_name, uint8_t *data, size_t data_size, size_t *data_actual_size_out) { palStatus_t pal_status = PAL_SUCCESS; palSSTItemInfo_t palItemInfo; // Validate function parameters SA_PV_ERR_RECOVERABLE_RETURN_IF((item_name == NULL), PAL_ERR_INVALID_ARGUMENT, "Invalid item_name"); SA_PV_LOG_INFO_FUNC_ENTER("item name = %s", (char*)item_name); SA_PV_ERR_RECOVERABLE_RETURN_IF((data == NULL), PAL_ERR_INVALID_ARGUMENT, "Invalid data"); SA_PV_ERR_RECOVERABLE_RETURN_IF((data_size == 0 || data_size > UINT16_MAX), PAL_ERR_INVALID_ARGUMENT, "Invalid data_length"); SA_PV_ERR_RECOVERABLE_RETURN_IF((data_actual_size_out == NULL), PAL_ERR_INVALID_ARGUMENT, "Invalid data_actual_size_out"); pal_status = pal_SSTGetInfo(item_name, &palItemInfo); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { //item not found. Print info level error SA_PV_LOG_INFO("Item not found"); return PAL_ERR_ITEM_NOT_EXIST; } SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), PAL_ERR_GENERIC_FAILURE, "pal_SSTGetInfo failed"); SA_PV_ERR_RECOVERABLE_RETURN_IF((palItemInfo.itemSize > data_size), PAL_ERR_BUFFER_TOO_SMALL, "data_size is too small"); pal_status = pal_SSTGet(item_name, data, data_size, data_actual_size_out); SA_PV_ERR_RECOVERABLE_RETURN_IF(pal_status != PAL_SUCCESS, PAL_ERR_GENERIC_FAILURE, "Failed to get data"); return pal_status; } palStatus_t storage_rbp_write( const char *item_name, const uint8_t *data, size_t data_size, bool is_write_once) { uint32_t flag_mask = PAL_SST_REPLAY_PROTECTION_FLAG | PAL_SST_CONFIDENTIALITY_FLAG; palStatus_t pal_status = PAL_SUCCESS; SA_PV_ERR_RECOVERABLE_RETURN_IF((item_name == NULL), PAL_ERR_INVALID_ARGUMENT, "Invalid item_name"); SA_PV_ERR_RECOVERABLE_RETURN_IF((data_size > UINT16_MAX || data_size == 0), PAL_ERR_INVALID_ARGUMENT, "Invalid param data"); SA_PV_LOG_INFO_FUNC_ENTER("data_size = %" PRIu32 " item_name = %s", (uint32_t)data_size, item_name); SA_PV_ERR_RECOVERABLE_RETURN_IF((data == NULL), PAL_ERR_INVALID_ARGUMENT, "Invalid param data"); if (is_write_once == true) { flag_mask |= PAL_SST_WRITE_ONCE_FLAG; } pal_status = pal_SSTSet(item_name, data, data_size, flag_mask); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status == PAL_ERR_SST_WRITE_PROTECTED), PAL_ERR_ITEM_EXIST, "Failed to write rbp data"); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), PAL_ERR_GENERIC_FAILURE, "Failed to write rbp data"); SA_PV_LOG_INFO_FUNC_EXIT(); return pal_status; } kcm_status_e storage_item_store_impl(const uint8_t * kcm_item_name, size_t kcm_item_name_len, kcm_item_type_e kcm_item_type, bool kcm_item_is_factory, bool kcm_item_is_encrypted, storage_item_prefix_type_e item_prefix_type, const uint8_t * kcm_item_data, size_t kcm_item_data_size) { char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; kcm_status_e kcm_status = KCM_STATUS_SUCCESS; palStatus_t pal_status = PAL_SUCCESS; palSSTItemInfo_t palItemInfo; uint32_t flag_mask = 0; //Build complete data name (also checks name validity) kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to build complete data name"); pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status == PAL_SUCCESS), kcm_status = KCM_STATUS_FILE_EXIST, "Data already exists"); //Check if certificate chain with the same name is exists, if yes -> return an error if (kcm_item_type == KCM_CERTIFICATE_ITEM) { kcm_chain_cert_info_s cert_name_info = { 0 }; cert_name_info.certificate_index = 0; cert_name_info.is_last_certificate = false; //Build complete name of first chain certificate kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, &cert_name_info); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to change single certificate name"); pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status == PAL_SUCCESS), kcm_status = KCM_STATUS_FILE_EXIST, "Data already exists"); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), "pal_SSTGetInfo FAILED"); //Revert the name to certificate complete name //Build complete name of single certificate kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to change first certificate name"); } //Create flag mask if (kcm_item_is_encrypted == true) { flag_mask |= PAL_SST_CONFIDENTIALITY_FLAG; } if (kcm_item_is_factory == true) { //Set the complete name to backup path kcm_status = build_complete_backup_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to change first certificate name to backup path"); //Write the data to backup path pal_status = pal_SSTSet(kcm_complete_name, kcm_item_data, kcm_item_data_size, flag_mask); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to write data to backup"); //Set the backup path back to working kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to change first certificate nameFailed to change to backup path"); } //Write the data to working path pal_status = pal_SSTSet(kcm_complete_name, kcm_item_data, kcm_item_data_size, flag_mask); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to write data"); SA_PV_LOG_INFO_FUNC_EXIT_NO_ARGS(); return kcm_status; } kcm_status_e storage_item_get_data_size( const uint8_t * kcm_item_name, size_t kcm_item_name_len, kcm_item_type_e kcm_item_type, storage_item_prefix_type_e item_prefix_type, size_t * kcm_item_data_size_out) { char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; kcm_status_e kcm_status = KCM_STATUS_SUCCESS; palSSTItemInfo_t palItemInfo; palStatus_t pal_status = PAL_SUCCESS; // Validate function parameters SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name == NULL), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name_len == 0), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name_len"); SA_PV_LOG_INFO_FUNC_ENTER("item name = %.*s len=%" PRIu32 "", (int)kcm_item_name_len, (char*)kcm_item_name, (uint32_t)kcm_item_name_len); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_type >= KCM_LAST_ITEM), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_type"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_data_size_out == NULL), KCM_STATUS_INVALID_PARAMETER, "Kcm size out pointer is NULL"); SA_PV_ERR_RECOVERABLE_RETURN_IF((item_prefix_type != STORAGE_ITEM_PREFIX_KCM && item_prefix_type != STORAGE_ITEM_PREFIX_CE), KCM_STATUS_INVALID_PARAMETER, "Invalid origin_type"); // Check if KCM initialized, if not initialize it if (!g_kcm_initialized) { kcm_status = kcm_init(); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "KCM initialization failed\n"); } //Build complete data name kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to to build complete name"); //Try to get data info pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS && pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to get data size"); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { if (kcm_item_type == KCM_CERTIFICATE_ITEM) { kcm_status = storage_get_first_cert_in_chain_name_and_info(item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, sizeof(kcm_complete_name), &palItemInfo); if (kcm_status == KCM_STATUS_ITEM_NOT_FOUND) { //We don't want print log in case the item wasn't found return kcm_status; } SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to check single certificate name"); pal_status = PAL_SUCCESS; } else {//not certificate SA_PV_LOG_INFO("Item not found"); return KCM_STATUS_ITEM_NOT_FOUND; } } //Set value of data size *kcm_item_data_size_out = palItemInfo.itemSize; SA_PV_LOG_INFO_FUNC_EXIT("kcm data size = %" PRIu32 "", (uint32_t)*kcm_item_data_size_out); return kcm_status; } kcm_status_e storage_item_get_data( const uint8_t * kcm_item_name, size_t kcm_item_name_len, kcm_item_type_e kcm_item_type, storage_item_prefix_type_e item_prefix_type, uint8_t *kcm_item_data_out, size_t kcm_item_data_max_size, size_t *kcm_item_data_act_size_out) { char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; kcm_status_e kcm_status = KCM_STATUS_SUCCESS; palStatus_t pal_status = PAL_SUCCESS; palSSTItemInfo_t palItemInfo; // Validate function parameters SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name == NULL), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name_len == 0), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name_len"); SA_PV_LOG_INFO_FUNC_ENTER("item name = %.*s len = %" PRIu32 ", data max size = %" PRIu32 "", (int)kcm_item_name_len, (char*)kcm_item_name, (uint32_t)kcm_item_name_len, (uint32_t)kcm_item_data_max_size); SA_PV_ERR_RECOVERABLE_RETURN_IF((item_prefix_type != STORAGE_ITEM_PREFIX_KCM && item_prefix_type != STORAGE_ITEM_PREFIX_CE), KCM_STATUS_INVALID_PARAMETER, "Invalid origin_type"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_type >= KCM_LAST_ITEM), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_type"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_data_act_size_out == NULL), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_data_act_size_out"); SA_PV_ERR_RECOVERABLE_RETURN_IF(((kcm_item_data_out == NULL) && (kcm_item_data_max_size > 0)), KCM_STATUS_INVALID_PARAMETER, "Provided kcm_item_data NULL and kcm_item_data_size greater than 0"); // Check if KCM initialized, if not initialize it if (!g_kcm_initialized) { kcm_status = kcm_init(); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "KCM initialization failed\n"); } //Build complete data name kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to to build complete name"); //Get size pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS && pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to get data size"); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { if (kcm_item_type == KCM_CERTIFICATE_ITEM) { kcm_status = storage_get_first_cert_in_chain_name_and_info(item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, sizeof(kcm_complete_name), &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to check single certificate name"); pal_status = PAL_SUCCESS; } else { //item not found. Print info level error SA_PV_LOG_INFO("Item not found"); return KCM_STATUS_ITEM_NOT_FOUND; } } //Check buffer size for the data SA_PV_ERR_RECOVERABLE_RETURN_IF((palItemInfo.itemSize > kcm_item_data_max_size), kcm_status = KCM_STATUS_INSUFFICIENT_BUFFER, "Data out buffer too small"); pal_status = pal_SSTGet(kcm_complete_name, kcm_item_data_out, kcm_item_data_max_size, kcm_item_data_act_size_out); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to get data "); SA_PV_LOG_INFO_FUNC_EXIT_NO_ARGS(); return kcm_status; } kcm_status_e storage_item_delete( const uint8_t * kcm_item_name, size_t kcm_item_name_len, kcm_item_type_e kcm_item_type, storage_item_prefix_type_e item_prefix_type) { char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; kcm_status_e kcm_status = KCM_STATUS_SUCCESS; palStatus_t pal_status = PAL_SUCCESS; palSSTItemInfo_t palItemInfo; // Validate function parameters SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name == NULL), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name"); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_name_len == 0), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_name_len"); SA_PV_LOG_INFO_FUNC_ENTER("item name = %.*s len = %" PRIu32 "", (int)kcm_item_name_len, (char*)kcm_item_name, (uint32_t)kcm_item_name_len); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_item_type >= KCM_LAST_ITEM), KCM_STATUS_INVALID_PARAMETER, "Invalid kcm_item_type"); SA_PV_ERR_RECOVERABLE_RETURN_IF((item_prefix_type != STORAGE_ITEM_PREFIX_KCM && item_prefix_type != STORAGE_ITEM_PREFIX_CE), KCM_STATUS_INVALID_PARAMETER, "Invalid origin_type"); // Check if KCM initialized, if not initialize it if (!g_kcm_initialized) { kcm_status = kcm_init(); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "KCM initialization failed\n"); } //Build complete data name kcm_status = storage_build_complete_working_item_name(kcm_item_type, item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to to build complete name"); //Get size pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS && pal_status != PAL_ERR_SST_ITEM_NOT_FOUND), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to get data size"); if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { if (kcm_item_type == KCM_CERTIFICATE_ITEM) { kcm_status = storage_get_first_cert_in_chain_name_and_info(item_prefix_type, kcm_item_name, kcm_item_name_len, kcm_complete_name, sizeof(kcm_complete_name), &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to check single certificate name"); pal_status = PAL_SUCCESS; } else { SA_PV_LOG_INFO("Item not found"); return KCM_STATUS_ITEM_NOT_FOUND; } } //Remove the item name pal_status = pal_SSTRemove(kcm_complete_name); SA_PV_ERR_RECOVERABLE_RETURN_IF(pal_status != PAL_SUCCESS, kcm_status = pal_to_kcm_error_translation(pal_status), "Failed to delete data"); SA_PV_LOG_INFO_FUNC_EXIT_NO_ARGS(); return kcm_status; } kcm_status_e check_certificate_existance(const uint8_t *kcm_chain_name, size_t kcm_chain_name_len, storage_item_prefix_type_e item_prefix_type) { kcm_status_e kcm_status = KCM_STATUS_SUCCESS; char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; palStatus_t pal_status = PAL_SUCCESS; palSSTItemInfo_t palItemInfo = { 0 }; kcm_chain_cert_info_s cert_name_info = { 0 }; //Build complete name of single certificate with given certificate chain name kcm_status = storage_build_complete_working_item_name(KCM_CERTIFICATE_ITEM, item_prefix_type, kcm_chain_name, kcm_chain_name_len, kcm_complete_name, NULL, NULL); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to build complete data name"); //If single certificate with the chain name is exists in the data base - return an error pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status == PAL_SUCCESS), kcm_status = KCM_STATUS_FILE_EXIST, "Data with the same name already exists"); //Build complete name of first certificate name in the chain cert_name_info.certificate_index = 0; cert_name_info.is_last_certificate = false; kcm_status = storage_build_complete_working_item_name(KCM_CERTIFICATE_ITEM, item_prefix_type, kcm_chain_name, kcm_chain_name_len, kcm_complete_name, NULL, &cert_name_info); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to build complete data name"); //If first certificate with the chain name is exists in the data base - return an error pal_status = pal_SSTGetInfo(kcm_complete_name, &palItemInfo); SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status == PAL_SUCCESS), kcm_status = KCM_STATUS_FILE_EXIST, "Data with the same name already exists"); return kcm_status; } kcm_status_e set_certificates_info(storage_cert_chain_context_s *chain_context, storage_item_prefix_type_e item_prefix_type) { kcm_status_e kcm_status = KCM_STATUS_SUCCESS; char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; palSSTItemInfo_t palItemInfo = { 0 }; kcm_chain_cert_info_s cert_name_info = { 0, false }; palStatus_t pal_status = PAL_SUCCESS; int certificate_index = 0; //Try to read all certificate in the chain, retrieve the number of certificates in the chain and their sizes for (certificate_index = 0; (certificate_index < KCM_MAX_NUMBER_OF_CERTITICATES_IN_CHAIN) && (cert_name_info.is_last_certificate == false); certificate_index++) { cert_name_info.certificate_index = (uint32_t)certificate_index; //Build certificate name according to its index in certificate chain kcm_status = storage_build_complete_working_item_name(KCM_LAST_ITEM, item_prefix_type, chain_context->chain_name, chain_context->chain_name_len, kcm_complete_name, NULL, &cert_name_info); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to build complete data name"); //Try to read certificate as not last certificate pal_status = pal_SSTGetInfo((const char*)kcm_complete_name, &palItemInfo); //If current name wasn't found, try to read the certificate as last one in the chain if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { cert_name_info.is_last_certificate = true; //Set the name certificate as last certificate in the chain kcm_status = storage_build_complete_working_item_name(KCM_LAST_ITEM, item_prefix_type, chain_context->chain_name, chain_context->chain_name_len, kcm_complete_name, NULL, &cert_name_info); SA_PV_ERR_RECOVERABLE_RETURN_IF((kcm_status != KCM_STATUS_SUCCESS), kcm_status, "Failed to build complete data name"); //retrieve item info (size and flags) pal_status = pal_SSTGetInfo((const char*)kcm_complete_name, &palItemInfo); //Indication for last certificate if (pal_status == PAL_SUCCESS) { cert_name_info.is_last_certificate = true; } } if (pal_status == PAL_ERR_SST_ITEM_NOT_FOUND) { //We don't want print log in case the item wasn't found kcm_status = pal_to_kcm_error_translation(pal_status); return kcm_status; } SA_PV_ERR_RECOVERABLE_RETURN_IF((pal_status != PAL_SUCCESS), kcm_status = pal_to_kcm_error_translation(pal_status), "Failed pal_SSTGetInfo (%" PRIu32 ")", pal_status); //Set in certificate info array the size of current index chain_context->certificates_info[certificate_index] = palItemInfo.itemSize; } SA_PV_ERR_RECOVERABLE_RETURN_IF((cert_name_info.is_last_certificate != true), kcm_status = KCM_STATUS_INVALID_NUM_OF_CERT_IN_CHAIN, "Failed to set size of certificate chain"); chain_context->num_of_certificates_in_chain = (uint32_t)(certificate_index); return kcm_status; } void chain_delete(storage_cert_chain_context_s *chain_context, storage_item_prefix_type_e item_prefix_type) { kcm_status_e kcm_status = KCM_STATUS_SUCCESS; kcm_chain_cert_info_s cert_name_info = { 0, false }; char kcm_complete_name[STORAGE_MAX_COMPLETE_ITEM_NAME_LENGTH] = { 0 }; do { cert_name_info.certificate_index = chain_context->current_cert_index; //Set the name of the certificate in working kcm_status = storage_build_complete_working_item_name(KCM_CERTIFICATE_ITEM, item_prefix_type, chain_context->chain_name, chain_context->chain_name_len, kcm_complete_name, NULL, &cert_name_info); //we don't check the result of storage_file_delete, as it is possible that not all certificates were saved to the storage if (kcm_status == KCM_STATUS_SUCCESS) { pal_SSTRemove(kcm_complete_name); } //Only in case of invalid create operation we will remove wrong chain from backup path too if (chain_context->operation_type == STORAGE_CHAIN_OP_TYPE_CREATE) { //Set the name the certificate in backup (factory) kcm_status = build_complete_backup_item_name(KCM_CERTIFICATE_ITEM, item_prefix_type, chain_context->chain_name, chain_context->chain_name_len, kcm_complete_name, &cert_name_info); //we don't check the result of storage_file_delete, as it is possible that not all certificates were saved to the storage if (kcm_status == KCM_STATUS_SUCCESS) { pal_SSTRemove(kcm_complete_name); } } if (chain_context->current_cert_index == 0) { break; } // chain_context->current_cert_index--; } while (true); } #endif #endif //#ifndef MBED_CONF_MBED_CLOUD_CLIENT_PSA_SUPPORT
the_stack_data/72900.c
struct A { char pad[4]; void (*fptr)(void); }; int foo(struct A *a, void *b);
the_stack_data/200143162.c
// PROGRAMA p01a.c #include <stdio.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> void sigint_handler(int signo) { printf("In SIGINT handler ...\n"); } int main(void) { struct sigaction action; action.sa_handler = sigint_handler; sigemptyset(&action.sa_mask); action.sa_flags = 0; if (sigaction(SIGINT, &action, NULL)) { fprintf(stderr,"Unable to install SIGINT handler\n"); exit(1); } printf("Sleeping for 30 seconds ...\n"); sleep(30); printf("Waking up ...\n"); exit(0); }
the_stack_data/1084399.c
/* Simulator instruction semantics for crisv32f. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2007 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef DEFINE_LABELS /* The labels have the case they have because the enum of insn types is all uppercase and in the non-stdc case the insn symbol is built into the enum name. */ static struct { int index; void *label; } labels[] = { { CRISV32F_INSN_X_INVALID, && case_sem_INSN_X_INVALID }, { CRISV32F_INSN_X_AFTER, && case_sem_INSN_X_AFTER }, { CRISV32F_INSN_X_BEFORE, && case_sem_INSN_X_BEFORE }, { CRISV32F_INSN_X_CTI_CHAIN, && case_sem_INSN_X_CTI_CHAIN }, { CRISV32F_INSN_X_CHAIN, && case_sem_INSN_X_CHAIN }, { CRISV32F_INSN_X_BEGIN, && case_sem_INSN_X_BEGIN }, { CRISV32F_INSN_MOVE_B_R, && case_sem_INSN_MOVE_B_R }, { CRISV32F_INSN_MOVE_W_R, && case_sem_INSN_MOVE_W_R }, { CRISV32F_INSN_MOVE_D_R, && case_sem_INSN_MOVE_D_R }, { CRISV32F_INSN_MOVEQ, && case_sem_INSN_MOVEQ }, { CRISV32F_INSN_MOVS_B_R, && case_sem_INSN_MOVS_B_R }, { CRISV32F_INSN_MOVS_W_R, && case_sem_INSN_MOVS_W_R }, { CRISV32F_INSN_MOVU_B_R, && case_sem_INSN_MOVU_B_R }, { CRISV32F_INSN_MOVU_W_R, && case_sem_INSN_MOVU_W_R }, { CRISV32F_INSN_MOVECBR, && case_sem_INSN_MOVECBR }, { CRISV32F_INSN_MOVECWR, && case_sem_INSN_MOVECWR }, { CRISV32F_INSN_MOVECDR, && case_sem_INSN_MOVECDR }, { CRISV32F_INSN_MOVSCBR, && case_sem_INSN_MOVSCBR }, { CRISV32F_INSN_MOVSCWR, && case_sem_INSN_MOVSCWR }, { CRISV32F_INSN_MOVUCBR, && case_sem_INSN_MOVUCBR }, { CRISV32F_INSN_MOVUCWR, && case_sem_INSN_MOVUCWR }, { CRISV32F_INSN_ADDQ, && case_sem_INSN_ADDQ }, { CRISV32F_INSN_SUBQ, && case_sem_INSN_SUBQ }, { CRISV32F_INSN_CMP_R_B_R, && case_sem_INSN_CMP_R_B_R }, { CRISV32F_INSN_CMP_R_W_R, && case_sem_INSN_CMP_R_W_R }, { CRISV32F_INSN_CMP_R_D_R, && case_sem_INSN_CMP_R_D_R }, { CRISV32F_INSN_CMP_M_B_M, && case_sem_INSN_CMP_M_B_M }, { CRISV32F_INSN_CMP_M_W_M, && case_sem_INSN_CMP_M_W_M }, { CRISV32F_INSN_CMP_M_D_M, && case_sem_INSN_CMP_M_D_M }, { CRISV32F_INSN_CMPCBR, && case_sem_INSN_CMPCBR }, { CRISV32F_INSN_CMPCWR, && case_sem_INSN_CMPCWR }, { CRISV32F_INSN_CMPCDR, && case_sem_INSN_CMPCDR }, { CRISV32F_INSN_CMPQ, && case_sem_INSN_CMPQ }, { CRISV32F_INSN_CMPS_M_B_M, && case_sem_INSN_CMPS_M_B_M }, { CRISV32F_INSN_CMPS_M_W_M, && case_sem_INSN_CMPS_M_W_M }, { CRISV32F_INSN_CMPSCBR, && case_sem_INSN_CMPSCBR }, { CRISV32F_INSN_CMPSCWR, && case_sem_INSN_CMPSCWR }, { CRISV32F_INSN_CMPU_M_B_M, && case_sem_INSN_CMPU_M_B_M }, { CRISV32F_INSN_CMPU_M_W_M, && case_sem_INSN_CMPU_M_W_M }, { CRISV32F_INSN_CMPUCBR, && case_sem_INSN_CMPUCBR }, { CRISV32F_INSN_CMPUCWR, && case_sem_INSN_CMPUCWR }, { CRISV32F_INSN_MOVE_M_B_M, && case_sem_INSN_MOVE_M_B_M }, { CRISV32F_INSN_MOVE_M_W_M, && case_sem_INSN_MOVE_M_W_M }, { CRISV32F_INSN_MOVE_M_D_M, && case_sem_INSN_MOVE_M_D_M }, { CRISV32F_INSN_MOVS_M_B_M, && case_sem_INSN_MOVS_M_B_M }, { CRISV32F_INSN_MOVS_M_W_M, && case_sem_INSN_MOVS_M_W_M }, { CRISV32F_INSN_MOVU_M_B_M, && case_sem_INSN_MOVU_M_B_M }, { CRISV32F_INSN_MOVU_M_W_M, && case_sem_INSN_MOVU_M_W_M }, { CRISV32F_INSN_MOVE_R_SPRV32, && case_sem_INSN_MOVE_R_SPRV32 }, { CRISV32F_INSN_MOVE_SPR_RV32, && case_sem_INSN_MOVE_SPR_RV32 }, { CRISV32F_INSN_MOVE_M_SPRV32, && case_sem_INSN_MOVE_M_SPRV32 }, { CRISV32F_INSN_MOVE_C_SPRV32_P2, && case_sem_INSN_MOVE_C_SPRV32_P2 }, { CRISV32F_INSN_MOVE_C_SPRV32_P3, && case_sem_INSN_MOVE_C_SPRV32_P3 }, { CRISV32F_INSN_MOVE_C_SPRV32_P5, && case_sem_INSN_MOVE_C_SPRV32_P5 }, { CRISV32F_INSN_MOVE_C_SPRV32_P6, && case_sem_INSN_MOVE_C_SPRV32_P6 }, { CRISV32F_INSN_MOVE_C_SPRV32_P7, && case_sem_INSN_MOVE_C_SPRV32_P7 }, { CRISV32F_INSN_MOVE_C_SPRV32_P9, && case_sem_INSN_MOVE_C_SPRV32_P9 }, { CRISV32F_INSN_MOVE_C_SPRV32_P10, && case_sem_INSN_MOVE_C_SPRV32_P10 }, { CRISV32F_INSN_MOVE_C_SPRV32_P11, && case_sem_INSN_MOVE_C_SPRV32_P11 }, { CRISV32F_INSN_MOVE_C_SPRV32_P12, && case_sem_INSN_MOVE_C_SPRV32_P12 }, { CRISV32F_INSN_MOVE_C_SPRV32_P13, && case_sem_INSN_MOVE_C_SPRV32_P13 }, { CRISV32F_INSN_MOVE_C_SPRV32_P14, && case_sem_INSN_MOVE_C_SPRV32_P14 }, { CRISV32F_INSN_MOVE_C_SPRV32_P15, && case_sem_INSN_MOVE_C_SPRV32_P15 }, { CRISV32F_INSN_MOVE_SPR_MV32, && case_sem_INSN_MOVE_SPR_MV32 }, { CRISV32F_INSN_MOVE_SS_R, && case_sem_INSN_MOVE_SS_R }, { CRISV32F_INSN_MOVE_R_SS, && case_sem_INSN_MOVE_R_SS }, { CRISV32F_INSN_MOVEM_R_M_V32, && case_sem_INSN_MOVEM_R_M_V32 }, { CRISV32F_INSN_MOVEM_M_R_V32, && case_sem_INSN_MOVEM_M_R_V32 }, { CRISV32F_INSN_ADD_B_R, && case_sem_INSN_ADD_B_R }, { CRISV32F_INSN_ADD_W_R, && case_sem_INSN_ADD_W_R }, { CRISV32F_INSN_ADD_D_R, && case_sem_INSN_ADD_D_R }, { CRISV32F_INSN_ADD_M_B_M, && case_sem_INSN_ADD_M_B_M }, { CRISV32F_INSN_ADD_M_W_M, && case_sem_INSN_ADD_M_W_M }, { CRISV32F_INSN_ADD_M_D_M, && case_sem_INSN_ADD_M_D_M }, { CRISV32F_INSN_ADDCBR, && case_sem_INSN_ADDCBR }, { CRISV32F_INSN_ADDCWR, && case_sem_INSN_ADDCWR }, { CRISV32F_INSN_ADDCDR, && case_sem_INSN_ADDCDR }, { CRISV32F_INSN_ADDS_B_R, && case_sem_INSN_ADDS_B_R }, { CRISV32F_INSN_ADDS_W_R, && case_sem_INSN_ADDS_W_R }, { CRISV32F_INSN_ADDS_M_B_M, && case_sem_INSN_ADDS_M_B_M }, { CRISV32F_INSN_ADDS_M_W_M, && case_sem_INSN_ADDS_M_W_M }, { CRISV32F_INSN_ADDSCBR, && case_sem_INSN_ADDSCBR }, { CRISV32F_INSN_ADDSCWR, && case_sem_INSN_ADDSCWR }, { CRISV32F_INSN_ADDU_B_R, && case_sem_INSN_ADDU_B_R }, { CRISV32F_INSN_ADDU_W_R, && case_sem_INSN_ADDU_W_R }, { CRISV32F_INSN_ADDU_M_B_M, && case_sem_INSN_ADDU_M_B_M }, { CRISV32F_INSN_ADDU_M_W_M, && case_sem_INSN_ADDU_M_W_M }, { CRISV32F_INSN_ADDUCBR, && case_sem_INSN_ADDUCBR }, { CRISV32F_INSN_ADDUCWR, && case_sem_INSN_ADDUCWR }, { CRISV32F_INSN_SUB_B_R, && case_sem_INSN_SUB_B_R }, { CRISV32F_INSN_SUB_W_R, && case_sem_INSN_SUB_W_R }, { CRISV32F_INSN_SUB_D_R, && case_sem_INSN_SUB_D_R }, { CRISV32F_INSN_SUB_M_B_M, && case_sem_INSN_SUB_M_B_M }, { CRISV32F_INSN_SUB_M_W_M, && case_sem_INSN_SUB_M_W_M }, { CRISV32F_INSN_SUB_M_D_M, && case_sem_INSN_SUB_M_D_M }, { CRISV32F_INSN_SUBCBR, && case_sem_INSN_SUBCBR }, { CRISV32F_INSN_SUBCWR, && case_sem_INSN_SUBCWR }, { CRISV32F_INSN_SUBCDR, && case_sem_INSN_SUBCDR }, { CRISV32F_INSN_SUBS_B_R, && case_sem_INSN_SUBS_B_R }, { CRISV32F_INSN_SUBS_W_R, && case_sem_INSN_SUBS_W_R }, { CRISV32F_INSN_SUBS_M_B_M, && case_sem_INSN_SUBS_M_B_M }, { CRISV32F_INSN_SUBS_M_W_M, && case_sem_INSN_SUBS_M_W_M }, { CRISV32F_INSN_SUBSCBR, && case_sem_INSN_SUBSCBR }, { CRISV32F_INSN_SUBSCWR, && case_sem_INSN_SUBSCWR }, { CRISV32F_INSN_SUBU_B_R, && case_sem_INSN_SUBU_B_R }, { CRISV32F_INSN_SUBU_W_R, && case_sem_INSN_SUBU_W_R }, { CRISV32F_INSN_SUBU_M_B_M, && case_sem_INSN_SUBU_M_B_M }, { CRISV32F_INSN_SUBU_M_W_M, && case_sem_INSN_SUBU_M_W_M }, { CRISV32F_INSN_SUBUCBR, && case_sem_INSN_SUBUCBR }, { CRISV32F_INSN_SUBUCWR, && case_sem_INSN_SUBUCWR }, { CRISV32F_INSN_ADDC_R, && case_sem_INSN_ADDC_R }, { CRISV32F_INSN_ADDC_M, && case_sem_INSN_ADDC_M }, { CRISV32F_INSN_ADDC_C, && case_sem_INSN_ADDC_C }, { CRISV32F_INSN_LAPC_D, && case_sem_INSN_LAPC_D }, { CRISV32F_INSN_LAPCQ, && case_sem_INSN_LAPCQ }, { CRISV32F_INSN_ADDI_B_R, && case_sem_INSN_ADDI_B_R }, { CRISV32F_INSN_ADDI_W_R, && case_sem_INSN_ADDI_W_R }, { CRISV32F_INSN_ADDI_D_R, && case_sem_INSN_ADDI_D_R }, { CRISV32F_INSN_NEG_B_R, && case_sem_INSN_NEG_B_R }, { CRISV32F_INSN_NEG_W_R, && case_sem_INSN_NEG_W_R }, { CRISV32F_INSN_NEG_D_R, && case_sem_INSN_NEG_D_R }, { CRISV32F_INSN_TEST_M_B_M, && case_sem_INSN_TEST_M_B_M }, { CRISV32F_INSN_TEST_M_W_M, && case_sem_INSN_TEST_M_W_M }, { CRISV32F_INSN_TEST_M_D_M, && case_sem_INSN_TEST_M_D_M }, { CRISV32F_INSN_MOVE_R_M_B_M, && case_sem_INSN_MOVE_R_M_B_M }, { CRISV32F_INSN_MOVE_R_M_W_M, && case_sem_INSN_MOVE_R_M_W_M }, { CRISV32F_INSN_MOVE_R_M_D_M, && case_sem_INSN_MOVE_R_M_D_M }, { CRISV32F_INSN_MULS_B, && case_sem_INSN_MULS_B }, { CRISV32F_INSN_MULS_W, && case_sem_INSN_MULS_W }, { CRISV32F_INSN_MULS_D, && case_sem_INSN_MULS_D }, { CRISV32F_INSN_MULU_B, && case_sem_INSN_MULU_B }, { CRISV32F_INSN_MULU_W, && case_sem_INSN_MULU_W }, { CRISV32F_INSN_MULU_D, && case_sem_INSN_MULU_D }, { CRISV32F_INSN_MCP, && case_sem_INSN_MCP }, { CRISV32F_INSN_DSTEP, && case_sem_INSN_DSTEP }, { CRISV32F_INSN_ABS, && case_sem_INSN_ABS }, { CRISV32F_INSN_AND_B_R, && case_sem_INSN_AND_B_R }, { CRISV32F_INSN_AND_W_R, && case_sem_INSN_AND_W_R }, { CRISV32F_INSN_AND_D_R, && case_sem_INSN_AND_D_R }, { CRISV32F_INSN_AND_M_B_M, && case_sem_INSN_AND_M_B_M }, { CRISV32F_INSN_AND_M_W_M, && case_sem_INSN_AND_M_W_M }, { CRISV32F_INSN_AND_M_D_M, && case_sem_INSN_AND_M_D_M }, { CRISV32F_INSN_ANDCBR, && case_sem_INSN_ANDCBR }, { CRISV32F_INSN_ANDCWR, && case_sem_INSN_ANDCWR }, { CRISV32F_INSN_ANDCDR, && case_sem_INSN_ANDCDR }, { CRISV32F_INSN_ANDQ, && case_sem_INSN_ANDQ }, { CRISV32F_INSN_ORR_B_R, && case_sem_INSN_ORR_B_R }, { CRISV32F_INSN_ORR_W_R, && case_sem_INSN_ORR_W_R }, { CRISV32F_INSN_ORR_D_R, && case_sem_INSN_ORR_D_R }, { CRISV32F_INSN_OR_M_B_M, && case_sem_INSN_OR_M_B_M }, { CRISV32F_INSN_OR_M_W_M, && case_sem_INSN_OR_M_W_M }, { CRISV32F_INSN_OR_M_D_M, && case_sem_INSN_OR_M_D_M }, { CRISV32F_INSN_ORCBR, && case_sem_INSN_ORCBR }, { CRISV32F_INSN_ORCWR, && case_sem_INSN_ORCWR }, { CRISV32F_INSN_ORCDR, && case_sem_INSN_ORCDR }, { CRISV32F_INSN_ORQ, && case_sem_INSN_ORQ }, { CRISV32F_INSN_XOR, && case_sem_INSN_XOR }, { CRISV32F_INSN_SWAP, && case_sem_INSN_SWAP }, { CRISV32F_INSN_ASRR_B_R, && case_sem_INSN_ASRR_B_R }, { CRISV32F_INSN_ASRR_W_R, && case_sem_INSN_ASRR_W_R }, { CRISV32F_INSN_ASRR_D_R, && case_sem_INSN_ASRR_D_R }, { CRISV32F_INSN_ASRQ, && case_sem_INSN_ASRQ }, { CRISV32F_INSN_LSRR_B_R, && case_sem_INSN_LSRR_B_R }, { CRISV32F_INSN_LSRR_W_R, && case_sem_INSN_LSRR_W_R }, { CRISV32F_INSN_LSRR_D_R, && case_sem_INSN_LSRR_D_R }, { CRISV32F_INSN_LSRQ, && case_sem_INSN_LSRQ }, { CRISV32F_INSN_LSLR_B_R, && case_sem_INSN_LSLR_B_R }, { CRISV32F_INSN_LSLR_W_R, && case_sem_INSN_LSLR_W_R }, { CRISV32F_INSN_LSLR_D_R, && case_sem_INSN_LSLR_D_R }, { CRISV32F_INSN_LSLQ, && case_sem_INSN_LSLQ }, { CRISV32F_INSN_BTST, && case_sem_INSN_BTST }, { CRISV32F_INSN_BTSTQ, && case_sem_INSN_BTSTQ }, { CRISV32F_INSN_SETF, && case_sem_INSN_SETF }, { CRISV32F_INSN_CLEARF, && case_sem_INSN_CLEARF }, { CRISV32F_INSN_RFE, && case_sem_INSN_RFE }, { CRISV32F_INSN_SFE, && case_sem_INSN_SFE }, { CRISV32F_INSN_RFG, && case_sem_INSN_RFG }, { CRISV32F_INSN_RFN, && case_sem_INSN_RFN }, { CRISV32F_INSN_HALT, && case_sem_INSN_HALT }, { CRISV32F_INSN_BCC_B, && case_sem_INSN_BCC_B }, { CRISV32F_INSN_BA_B, && case_sem_INSN_BA_B }, { CRISV32F_INSN_BCC_W, && case_sem_INSN_BCC_W }, { CRISV32F_INSN_BA_W, && case_sem_INSN_BA_W }, { CRISV32F_INSN_JAS_R, && case_sem_INSN_JAS_R }, { CRISV32F_INSN_JAS_C, && case_sem_INSN_JAS_C }, { CRISV32F_INSN_JUMP_P, && case_sem_INSN_JUMP_P }, { CRISV32F_INSN_BAS_C, && case_sem_INSN_BAS_C }, { CRISV32F_INSN_JASC_R, && case_sem_INSN_JASC_R }, { CRISV32F_INSN_JASC_C, && case_sem_INSN_JASC_C }, { CRISV32F_INSN_BASC_C, && case_sem_INSN_BASC_C }, { CRISV32F_INSN_BREAK, && case_sem_INSN_BREAK }, { CRISV32F_INSN_BOUND_R_B_R, && case_sem_INSN_BOUND_R_B_R }, { CRISV32F_INSN_BOUND_R_W_R, && case_sem_INSN_BOUND_R_W_R }, { CRISV32F_INSN_BOUND_R_D_R, && case_sem_INSN_BOUND_R_D_R }, { CRISV32F_INSN_BOUND_CB, && case_sem_INSN_BOUND_CB }, { CRISV32F_INSN_BOUND_CW, && case_sem_INSN_BOUND_CW }, { CRISV32F_INSN_BOUND_CD, && case_sem_INSN_BOUND_CD }, { CRISV32F_INSN_SCC, && case_sem_INSN_SCC }, { CRISV32F_INSN_LZ, && case_sem_INSN_LZ }, { CRISV32F_INSN_ADDOQ, && case_sem_INSN_ADDOQ }, { CRISV32F_INSN_ADDO_M_B_M, && case_sem_INSN_ADDO_M_B_M }, { CRISV32F_INSN_ADDO_M_W_M, && case_sem_INSN_ADDO_M_W_M }, { CRISV32F_INSN_ADDO_M_D_M, && case_sem_INSN_ADDO_M_D_M }, { CRISV32F_INSN_ADDO_CB, && case_sem_INSN_ADDO_CB }, { CRISV32F_INSN_ADDO_CW, && case_sem_INSN_ADDO_CW }, { CRISV32F_INSN_ADDO_CD, && case_sem_INSN_ADDO_CD }, { CRISV32F_INSN_ADDI_ACR_B_R, && case_sem_INSN_ADDI_ACR_B_R }, { CRISV32F_INSN_ADDI_ACR_W_R, && case_sem_INSN_ADDI_ACR_W_R }, { CRISV32F_INSN_ADDI_ACR_D_R, && case_sem_INSN_ADDI_ACR_D_R }, { CRISV32F_INSN_FIDXI, && case_sem_INSN_FIDXI }, { CRISV32F_INSN_FTAGI, && case_sem_INSN_FTAGI }, { CRISV32F_INSN_FIDXD, && case_sem_INSN_FIDXD }, { CRISV32F_INSN_FTAGD, && case_sem_INSN_FTAGD }, { 0, 0 } }; int i; for (i = 0; labels[i].label != 0; ++i) { #if FAST_P CPU_IDESC (current_cpu) [labels[i].index].sem_fast_lab = labels[i].label; #else CPU_IDESC (current_cpu) [labels[i].index].sem_full_lab = labels[i].label; #endif } #undef DEFINE_LABELS #endif /* DEFINE_LABELS */ #ifdef DEFINE_SWITCH /* If hyper-fast [well not unnecessarily slow] execution is selected, turn off frills like tracing and profiling. */ /* FIXME: A better way would be to have TRACE_RESULT check for something that can cause it to be optimized out. Another way would be to emit special handlers into the instruction "stream". */ #if FAST_P #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #endif #undef GET_ATTR #if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE) #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) #else #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_/**/attr) #endif { #if WITH_SCACHE_PBB /* Branch to next handler without going around main loop. */ #define NEXT(vpc) goto * SEM_ARGBUF (vpc) -> semantic.sem_case SWITCH (sem, SEM_ARGBUF (vpc) -> semantic.sem_case) #else /* ! WITH_SCACHE_PBB */ #define NEXT(vpc) BREAK (sem) #ifdef __GNUC__ #if FAST_P SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_fast_lab) #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_full_lab) #endif #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->num) #endif #endif /* ! WITH_SCACHE_PBB */ { CASE (sem, INSN_X_INVALID) : /* --invalid-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 2); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_AFTER) : /* --after-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV32F crisv32f_pbb_after (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEFORE) : /* --before-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV32F crisv32f_pbb_before (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CTI_CHAIN) : /* --cti-chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV32F #ifdef DEFINE_SWITCH vpc = crisv32f_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = crisv32f_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CHAIN) : /* --chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV32F vpc = crisv32f_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEGIN) : /* --begin-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV32F #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = crisv32f_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = crisv32f_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = crisv32f_pbb_begin (current_cpu, 0); #endif #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_B_R) : /* move.b move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_W_R) : /* move.w move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_D_R) : /* move.d move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEQ) : /* moveq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_moveq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_newval; tmp_newval = FLD (f_s6); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SET_H_NBIT_MOVE (LTSI (tmp_newval, 0)); SET_H_ZBIT_MOVE (ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1)))); SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_B_R) : /* movs.b movs.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpops; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_newval = EXTQISI (tmp_tmpops); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_W_R) : /* movs.w movs.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpops; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_newval = EXTHISI (tmp_tmpops); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_B_R) : /* movu.b movu.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpops; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_newval = ZEXTQISI (tmp_tmpops); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_W_R) : /* movu.w movu.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpops; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_newval = ZEXTHISI (tmp_tmpops); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECBR) : /* move.b ${sconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_newval; tmp_newval = FLD (f_indir_pc__byte); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECWR) : /* move.w ${sconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_newval; tmp_newval = FLD (f_indir_pc__word); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECDR) : /* move.d ${const32},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_newval; tmp_newval = FLD (f_indir_pc__dword); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVSCBR) : /* movs.b ${sconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVSCWR) : /* movs.w ${sconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUCBR) : /* movu.b ${uconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUCWR) : /* movu.w ${uconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDQ) : /* addq $j,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_u6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBQ) : /* subq $j,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_u6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_B_R) : /* cmp-r.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_W_R) : /* cmp-r.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_D_R) : /* cmp-r.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_B_M) : /* cmp-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_W_M) : /* cmp-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_D_M) : /* cmp-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCBR) : /* cmp.b $sconst8,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = TRUNCSIQI (FLD (f_indir_pc__byte)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCWR) : /* cmp.w $sconst16,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = TRUNCSIHI (FLD (f_indir_pc__word)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCDR) : /* cmp.d $const32,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPQ) : /* cmpq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_s6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPS_M_B_M) : /* cmps-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPS_M_W_M) : /* cmps-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPU_M_B_M) : /* cmpu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPU_M_W_M) : /* cmpu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_B_M) : /* move-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmp, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_W_M) : /* move-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmp, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_D_M) : /* move-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = tmp_tmp; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_M_B_M) : /* movs-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movs_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_M_W_M) : /* movs-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movs_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_M_B_M) : /* movu-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movs_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_M_W_M) : /* movu-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movs_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_SPRV32) : /* move ${Rs},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; SI tmp_rno; tmp_tmp = GET_H_GR (FLD (f_operand1)); tmp_rno = FLD (f_operand2); if (ORIF (ORIF (EQSI (tmp_rno, 0), EQSI (tmp_rno, 1)), ORIF (EQSI (tmp_rno, 4), EQSI (tmp_rno, 8)))) { cgen_rtx_error (current_cpu, "move-r-spr: trying to set a read-only special register"); } else { { SI opval = tmp_tmp; SET_H_SR (FLD (f_operand2), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_SPR_RV32) : /* move ${Ps},${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_grno; SI tmp_prno; SI tmp_newval; tmp_prno = FLD (f_operand2); tmp_newval = GET_H_SR (FLD (f_operand2)); if (EQSI (tmp_prno, 2)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 3)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 5)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 6)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 7)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 9)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 10)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 11)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 12)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 13)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 14)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 15)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 0)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 1)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 4)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 8)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { cgen_rtx_error (current_cpu, "move-spr-r from unimplemented register"); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_SPRV32) : /* move [${Rs}${inc}],${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_rno; SI tmp_newval; tmp_rno = FLD (f_operand2); if (EQSI (tmp_rno, 2)) { tmp_newval = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 3)) { tmp_newval = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 5)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 6)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 7)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 9)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 10)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 11)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 12)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 13)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 14)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 15)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else { cgen_rtx_error (current_cpu, "Trying to set unimplemented special register"); } { SI opval = tmp_newval; SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P2) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P3) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P5) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P6) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P7) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P9) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P10) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P11) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P12) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P13) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P14) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV32_P15) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_SPR_MV32) : /* move ${Ps},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_rno; tmp_rno = FLD (f_operand2); if (EQSI (tmp_rno, 2)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 3)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 5)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 6)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 7)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 9)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 10)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 11)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 12)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 13)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 14)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 15)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 0)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 1)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 4)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 8)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else { cgen_rtx_error (current_cpu, "write from unimplemented special register"); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_SS_R) : /* move ${Ss},${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GET_H_SUPR (FLD (f_operand2)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_SS) : /* move ${Rs},${Sd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GET_H_GR (FLD (f_operand1)); SET_H_SUPR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "supr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEM_R_M_V32) : /* movem ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movem_r_m_v32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); { SI tmp_dummy; tmp_dummy = GET_H_GR (FLD (f_operand2)); } tmp_addr = GET_H_GR (FLD (f_operand1)); { if (GESI (FLD (f_operand2), 0)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 0)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 1)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 1)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 2)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 2)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 3)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 3)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 4)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 4)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 5)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 5)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 6)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 6)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 7)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 7)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 8)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 8)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 9)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 9)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 10)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 10)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 11)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 11)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 12)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 12)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 13)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 13)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 14)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 14)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 15)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 15)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } } if (NEBI (tmp_postinc, 0)) { { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEM_M_R_V32) : /* movem [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movem_m_r_v32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = GET_H_GR (FLD (f_operand1)); { SI tmp_dummy; tmp_dummy = GET_H_GR (FLD (f_operand2)); } { if (GESI (FLD (f_operand2), 0)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 0), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 1)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 1), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 2)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 2), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 3)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 3), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 4)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 4), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 5)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 5), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 6)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 6), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 7)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 7), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 8)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 8), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 9)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 9), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 10)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 10), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 11)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 11), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 12)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 12), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 13)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 13), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 14)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 14), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 15)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 15), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } } if (NEBI (tmp_postinc, 0)) { { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_B_R) : /* add.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_W_R) : /* add.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_D_R) : /* add.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_B_M) : /* add-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_W_M) : /* add-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_D_M) : /* add-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCBR) : /* add.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = FLD (f_indir_pc__byte); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCWR) : /* add.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = FLD (f_indir_pc__word); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCDR) : /* add.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_B_R) : /* adds.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_W_R) : /* adds.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_M_B_M) : /* adds-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_M_W_M) : /* adds-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_B_R) : /* addu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_W_R) : /* addu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_M_B_M) : /* addu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_M_W_M) : /* addu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_B_R) : /* sub.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_W_R) : /* sub.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_D_R) : /* sub.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_B_M) : /* sub-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_W_M) : /* sub-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_D_M) : /* sub-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCBR) : /* sub.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = FLD (f_indir_pc__byte); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCWR) : /* sub.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = FLD (f_indir_pc__word); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCDR) : /* sub.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_B_R) : /* subs.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_W_R) : /* subs.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_M_B_M) : /* subs-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_M_W_M) : /* subs-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_B_R) : /* subu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_W_R) : /* subu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_M_B_M) : /* subu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_M_W_M) : /* subu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDC_R) : /* addc $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { CPU (h_xbit) = 1; { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDC_M) : /* addc [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { CPU (h_xbit) = 1; { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDC_C) : /* addc ${const32},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { CPU (h_xbit) = 1; { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LAPC_D) : /* lapc.d ${const32-pcrel},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_lapc_d.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (i_const32_pcrel); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LAPCQ) : /* lapcq ${qo},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_lapcq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = FLD (i_qo); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_B_R) : /* addi.b ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 1)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_W_R) : /* addi.w ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 2)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_D_R) : /* addi.d ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 4)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_B_R) : /* neg.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_W_R) : /* neg.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_D_R) : /* neg.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_B_M) : /* test-m.b [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_W_M) : /* test-m.w [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_D_M) : /* test-m.d [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_B_M) : /* move-r-m.b ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = tmp_tmpd; SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = tmp_tmpd; SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_W_M) : /* move-r-m.w ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { HI opval = tmp_tmpd; SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { HI opval = tmp_tmpd; SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_D_M) : /* move-r-m.d ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); if (ANDIF (GET_H_V32_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = tmp_tmpd; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = tmp_tmpd; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_B) : /* muls.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_W) : /* muls.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_D) : /* muls.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_B) : /* mulu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_W) : /* mulu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_D) : /* mulu.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MCP) : /* mcp $Ps,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { CPU (h_xbit) = 1; CPU (h_zbit) = 1; { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_SR (FLD (f_operand2)); tmp_tmpopd = GET_H_GR (FLD (f_operand1)); tmp_carry = CPU (h_rbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_rbit) = opval; TRACE_RESULT (current_cpu, abuf, "rbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DSTEP) : /* dstep $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; SI tmp_tmps; SI tmp_tmpd; tmp_tmps = GET_H_GR (FLD (f_operand1)); tmp_tmp = SLLSI (GET_H_GR (FLD (f_operand2)), 1); tmp_tmpd = ((GEUSI (tmp_tmp, tmp_tmps)) ? (SUBSI (tmp_tmp, tmp_tmps)) : (tmp_tmp)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ABS) : /* abs $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ABSSI (GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_B_R) : /* and.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_W_R) : /* and.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_D_R) : /* and.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_B_M) : /* and-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_W_M) : /* and-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_D_M) : /* and-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI opval = tmp_tmpd; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCBR) : /* and.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__byte)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCWR) : /* and.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__word)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCDR) : /* and.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDQ) : /* andq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), FLD (f_s6)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_B_R) : /* orr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_W_R) : /* orr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_D_R) : /* orr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_B_M) : /* or-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_W_M) : /* or-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_D_M) : /* or-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI opval = tmp_tmpd; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCBR) : /* or.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__byte)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCWR) : /* or.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__word)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCDR) : /* or.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORQ) : /* orq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), FLD (f_s6)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_XOR) : /* xor $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = XORSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SWAP) : /* swap${swapoption} ${Rs} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmps; SI tmp_tmpd; tmp_tmps = GET_H_GR (FLD (f_operand1)); tmp_tmpd = ({ SI tmp_tmpcode; SI tmp_tmpval; SI tmp_tmpres; tmp_tmpcode = FLD (f_operand2); ; tmp_tmpval = tmp_tmps; ; if (EQSI (tmp_tmpcode, 0)) { tmp_tmpres = (cgen_rtx_error (current_cpu, "SWAP without swap modifier isn't implemented"), 0); } else if (EQSI (tmp_tmpcode, 1)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = tmp_tmpval; ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 2)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 3)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 4)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); } else if (EQSI (tmp_tmpcode, 5)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 6)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 7)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 8)) { tmp_tmpres = INVSI (tmp_tmpval); } else if (EQSI (tmp_tmpcode, 9)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = INVSI (tmp_tmpval); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 10)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 11)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 12)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); } else if (EQSI (tmp_tmpcode, 13)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 14)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 15)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } ; tmp_tmpres; }); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_B_R) : /* asrr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_W_R) : /* asrr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_D_R) : /* asrr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRQ) : /* asrq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SRASI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_B_R) : /* lsrr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_W_R) : /* lsrr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_D_R) : /* lsrr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRQ) : /* lsrq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SRLSI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_B_R) : /* lslr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_W_R) : /* lslr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_ACR (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_D_R) : /* lslr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLQ) : /* lslq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BTST) : /* $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), SUBSI (31, ANDSI (GET_H_GR (FLD (f_operand1)), 31))); { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BTSTQ) : /* btstq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), SUBSI (31, FLD (f_u5))); { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SETF) : /* setf ${list-of-flags} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_setf.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = FLD (f_dstsrc); if (NESI (ANDSI (tmp_tmp, SLLSI (1, 0)), 0)) { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 1)), 0)) { { BI opval = 1; CPU (h_vbit) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 2)), 0)) { { BI opval = 1; CPU (h_zbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 3)), 0)) { { BI opval = 1; CPU (h_nbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 1; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 5)), 0)) { { BI opval = 1; SET_H_IBIT (opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "ibit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 6)), 0)) { { BI opval = 1; SET_H_UBIT (opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "ubit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 7)), 0)) { { BI opval = 1; CPU (h_pbit) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pbit", 'x', opval); } } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } if (EQSI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CLEARF) : /* clearf ${list-of-flags} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_setf.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = FLD (f_dstsrc); if (NESI (ANDSI (tmp_tmp, SLLSI (1, 0)), 0)) { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 1)), 0)) { { BI opval = 0; CPU (h_vbit) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 2)), 0)) { { BI opval = 0; CPU (h_zbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 3)), 0)) { { BI opval = 0; CPU (h_nbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 5)), 0)) { { BI opval = 0; SET_H_IBIT (opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "ibit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 6)), 0)) { { BI opval = 0; SET_H_UBIT (opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "ubit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 7)), 0)) { { BI opval = 0; CPU (h_pbit) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pbit", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_RFE) : /* rfe */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_rfe.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI tmp_oldccs; USI tmp_samebits; USI tmp_shiftbits; USI tmp_keepmask; BI tmp_p1; tmp_oldccs = GET_H_SR (((UINT) 13)); tmp_keepmask = 0xc0000000; tmp_samebits = ANDSI (tmp_oldccs, tmp_keepmask); tmp_shiftbits = ANDSI (SRLSI (ANDSI (tmp_oldccs, 1073609728), 10), INVSI (tmp_keepmask)); tmp_p1 = NESI (0, ANDSI (tmp_oldccs, 131072)); { SI opval = ORSI (ORSI (tmp_samebits, tmp_shiftbits), ((ANDBI (CPU (h_rbit), NOTBI (tmp_p1))) ? (0) : (128))); SET_H_SR (((UINT) 13), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SFE) : /* sfe */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_rfe.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_oldccs; SI tmp_savemask; tmp_savemask = 0xc0000000; tmp_oldccs = GET_H_SR (((UINT) 13)); { SI opval = ORSI (ANDSI (tmp_savemask, tmp_oldccs), ANDSI (INVSI (tmp_savemask), SLLSI (tmp_oldccs, 10))); SET_H_SR (((UINT) 13), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_RFG) : /* rfg */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); crisv32f_rfg_handler (current_cpu, pc); #undef FLD } NEXT (vpc); CASE (sem, INSN_RFN) : /* rfn */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_rfe.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI tmp_oldccs; USI tmp_samebits; USI tmp_shiftbits; USI tmp_keepmask; BI tmp_p1; tmp_oldccs = GET_H_SR (((UINT) 13)); tmp_keepmask = 0xc0000000; tmp_samebits = ANDSI (tmp_oldccs, tmp_keepmask); tmp_shiftbits = ANDSI (SRLSI (ANDSI (tmp_oldccs, 1073609728), 10), INVSI (tmp_keepmask)); tmp_p1 = NESI (0, ANDSI (tmp_oldccs, 131072)); { SI opval = ORSI (ORSI (tmp_samebits, tmp_shiftbits), ((ANDBI (CPU (h_rbit), NOTBI (tmp_p1))) ? (0) : (128))); SET_H_SR (((UINT) 13), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } } { BI opval = 1; SET_H_MBIT (opval); TRACE_RESULT (current_cpu, abuf, "mbit", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_HALT) : /* halt */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = crisv32f_halt_handler (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BCC_B) : /* b${cc} ${o-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); crisv32f_branch_taken (current_cpu, pc, FLD (i_o_pcrel), tmp_truthval); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } if (tmp_truthval) { { { USI opval = FLD (i_o_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BA_B) : /* ba ${o-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = FLD (i_o_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BCC_W) : /* b${cc} ${o-word-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_w.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); crisv32f_branch_taken (current_cpu, pc, FLD (i_o_word_pcrel), tmp_truthval); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } if (tmp_truthval) { { { USI opval = FLD (i_o_word_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BA_W) : /* ba ${o-word-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_w.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = FLD (i_o_word_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JAS_R) : /* jas ${Rs},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } if (ANDIF (EQSI (FLD (f_operand1), 1), EQSI (FLD (f_operand2), 11))) { cris_flush_simulator_decode_cache (current_cpu, pc); } { { { SI opval = ADDSI (pc, 4); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = GET_H_GR (FLD (f_operand1)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JAS_C) : /* jas ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { { SI opval = ADDSI (pc, 8); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = FLD (f_indir_pc__dword); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JUMP_P) : /* jump ${Ps} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = GET_H_SR (FLD (f_operand2)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BAS_C) : /* bas ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bas_c.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { { SI opval = ADDSI (pc, 8); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = FLD (i_const32_pcrel); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JASC_R) : /* jasc ${Rs},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { { SI opval = ADDSI (pc, 8); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = GET_H_GR (FLD (f_operand1)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JASC_C) : /* jasc ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv32_p2.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { { SI opval = ADDSI (pc, 12); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = FLD (f_indir_pc__dword); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BASC_C) : /* basc ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bas_c.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { { SI opval = ADDSI (pc, 12); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = FLD (i_const32_pcrel); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BREAK) : /* break $n */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_break.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { USI opval = crisv32f_break_handler (current_cpu, FLD (f_u4), pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_B_R) : /* bound-r.b ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_W_R) : /* bound-r.w ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_D_R) : /* bound-r.d ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = TRUNCSISI (GET_H_GR (FLD (f_operand1))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CB) : /* bound.b [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CW) : /* bound.w [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTSISI (FLD (f_indir_pc__word)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CD) : /* bound.d [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SCC) : /* s${cc} ${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv32.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); { SI opval = ZEXTBISI (tmp_truthval); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LZ) : /* lz ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_tmp; tmp_tmp = GET_H_GR (FLD (f_operand1)); tmp_tmpd = 0; { if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } } { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDOQ) : /* addoq $o,$Rs,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), FLD (f_s8)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_B_M) : /* addo-m.b [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmps; tmp_tmps = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTQISI (tmp_tmps)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_W_M) : /* addo-m.w [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmps; tmp_tmps = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTHISI (tmp_tmps)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_D_M) : /* addo-m.d [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addc_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmps; tmp_tmps = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (GET_H_PREFIXREG_V32 ())); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), tmp_tmps); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CB) : /* addo.b [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte)))); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CW) : /* addo.w [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word)))); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CD) : /* addo.d [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_B_R) : /* addi-acr.b ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 1)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_W_R) : /* addi-acr.w ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 2)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_D_R) : /* addi-acr.d ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 4)); SET_H_PREFIXREG_V32 (opval); TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_FIDXI) : /* fidxi [$Rs] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = crisv32f_fidxi_handler (current_cpu, pc, GET_H_GR (FLD (f_operand1))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_FTAGI) : /* fidxi [$Rs] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = crisv32f_ftagi_handler (current_cpu, pc, GET_H_GR (FLD (f_operand1))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_FIDXD) : /* fidxd [$Rs] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = crisv32f_fidxd_handler (current_cpu, pc, GET_H_GR (FLD (f_operand1))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_FTAGD) : /* ftagd [$Rs] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_mcp.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = crisv32f_ftagd_handler (current_cpu, pc, GET_H_GR (FLD (f_operand1))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); } ENDSWITCH (sem) /* End of semantic switch. */ /* At this point `vpc' contains the next insn to execute. */ } #undef DEFINE_SWITCH #endif /* DEFINE_SWITCH */
the_stack_data/98576447.c
/* * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /******************************************************************************* * Place holder function to perform any Secure SVC specific architectural * setup. At the moment there is nothing to do. ******************************************************************************/ void bl2_arch_setup(void) { }
the_stack_data/103266697.c
// Initialization to nowhere of an array of struct typedef struct { int *a; int *b[10]; int (*c)[10]; } mystruct; int main() { mystruct tab_s[2]; return(0); }
the_stack_data/12637976.c
int main(){ int A[10]; A[0] = 1; return 0; }
the_stack_data/26699490.c
#include<stdio.h> int main() { int i; for(i=1; i<=100; i++) { if(i!=49 && i!=51) { printf("%d ",i); } } return 0; }
the_stack_data/75138405.c
#include<stdio.h> int gcd(int a,int b) { if(a==b) { return a; } if (a>b) { gcd(a-b,b); } } void main() { int a,b,c; printf("Enter the value of a and b:"); scanf("%d%d",&a,&b); c = gcd(a,b); printf("ans=%d",c); }
the_stack_data/179829909.c
#include <unistd.h> int main() { alarm(3); pause(); return 0; }
the_stack_data/37636611.c
/* f2c.h -- Standard Fortran to C header file */ /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed." - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */ #ifndef F2C_INCLUDE #define F2C_INCLUDE #include <math.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <complex.h> #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef int logical; typedef short int shortlogical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimag(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle() continue; #define myceiling(w) {ceil(w)} #define myhuge(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)} /* procedure parameter types for -A and -C++ */ #define F2C_proc_par_types 1 #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i])) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i])) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex float zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i]) * Cf(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]); } } pCf(z) = zdotc; } static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; _Complex double zdotc = 0.0; if (incx == 1 && incy == 1) { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i]) * Cd(&y[i]); } } else { for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */ zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]); } } pCd(z) = zdotc; } #endif /* -- translated by f2c (version 20000121). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ /* > \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix. */ /* =========== DOCUMENTATION =========== */ /* Online html documentation available at */ /* http://www.netlib.org/lapack/explore-html/ */ /* > \htmlonly */ /* > Download SLASR + dependencies */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f "> */ /* > [TGZ]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f "> */ /* > [ZIP]</a> */ /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f "> */ /* > [TXT]</a> */ /* > \endhtmlonly */ /* Definition: */ /* =========== */ /* SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) */ /* CHARACTER DIRECT, PIVOT, SIDE */ /* INTEGER LDA, M, N */ /* REAL A( LDA, * ), C( * ), S( * ) */ /* > \par Purpose: */ /* ============= */ /* > */ /* > \verbatim */ /* > */ /* > SLASR applies a sequence of plane rotations to a real matrix A, */ /* > from either the left or the right. */ /* > */ /* > When SIDE = 'L', the transformation takes the form */ /* > */ /* > A := P*A */ /* > */ /* > and when SIDE = 'R', the transformation takes the form */ /* > */ /* > A := A*P**T */ /* > */ /* > where P is an orthogonal matrix consisting of a sequence of z plane */ /* > rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', */ /* > and P**T is the transpose of P. */ /* > */ /* > When DIRECT = 'F' (Forward sequence), then */ /* > */ /* > P = P(z-1) * ... * P(2) * P(1) */ /* > */ /* > and when DIRECT = 'B' (Backward sequence), then */ /* > */ /* > P = P(1) * P(2) * ... * P(z-1) */ /* > */ /* > where P(k) is a plane rotation matrix defined by the 2-by-2 rotation */ /* > */ /* > R(k) = ( c(k) s(k) ) */ /* > = ( -s(k) c(k) ). */ /* > */ /* > When PIVOT = 'V' (Variable pivot), the rotation is performed */ /* > for the plane (k,k+1), i.e., P(k) has the form */ /* > */ /* > P(k) = ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( c(k) s(k) ) */ /* > ( -s(k) c(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > */ /* > where R(k) appears as a rank-2 modification to the identity matrix in */ /* > rows and columns k and k+1. */ /* > */ /* > When PIVOT = 'T' (Top pivot), the rotation is performed for the */ /* > plane (1,k+1), so P(k) has the form */ /* > */ /* > P(k) = ( c(k) s(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( -s(k) c(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > */ /* > where R(k) appears in rows and columns 1 and k+1. */ /* > */ /* > Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is */ /* > performed for the plane (k,z), giving P(k) the form */ /* > */ /* > P(k) = ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( c(k) s(k) ) */ /* > ( 1 ) */ /* > ( ... ) */ /* > ( 1 ) */ /* > ( -s(k) c(k) ) */ /* > */ /* > where R(k) appears in rows and columns k and z. The rotations are */ /* > performed without ever forming P(k) explicitly. */ /* > \endverbatim */ /* Arguments: */ /* ========== */ /* > \param[in] SIDE */ /* > \verbatim */ /* > SIDE is CHARACTER*1 */ /* > Specifies whether the plane rotation matrix P is applied to */ /* > A on the left or the right. */ /* > = 'L': Left, compute A := P*A */ /* > = 'R': Right, compute A:= A*P**T */ /* > \endverbatim */ /* > */ /* > \param[in] PIVOT */ /* > \verbatim */ /* > PIVOT is CHARACTER*1 */ /* > Specifies the plane for which P(k) is a plane rotation */ /* > matrix. */ /* > = 'V': Variable pivot, the plane (k,k+1) */ /* > = 'T': Top pivot, the plane (1,k+1) */ /* > = 'B': Bottom pivot, the plane (k,z) */ /* > \endverbatim */ /* > */ /* > \param[in] DIRECT */ /* > \verbatim */ /* > DIRECT is CHARACTER*1 */ /* > Specifies whether P is a forward or backward sequence of */ /* > plane rotations. */ /* > = 'F': Forward, P = P(z-1)*...*P(2)*P(1) */ /* > = 'B': Backward, P = P(1)*P(2)*...*P(z-1) */ /* > \endverbatim */ /* > */ /* > \param[in] M */ /* > \verbatim */ /* > M is INTEGER */ /* > The number of rows of the matrix A. If m <= 1, an immediate */ /* > return is effected. */ /* > \endverbatim */ /* > */ /* > \param[in] N */ /* > \verbatim */ /* > N is INTEGER */ /* > The number of columns of the matrix A. If n <= 1, an */ /* > immediate return is effected. */ /* > \endverbatim */ /* > */ /* > \param[in] C */ /* > \verbatim */ /* > C is REAL array, dimension */ /* > (M-1) if SIDE = 'L' */ /* > (N-1) if SIDE = 'R' */ /* > The cosines c(k) of the plane rotations. */ /* > \endverbatim */ /* > */ /* > \param[in] S */ /* > \verbatim */ /* > S is REAL array, dimension */ /* > (M-1) if SIDE = 'L' */ /* > (N-1) if SIDE = 'R' */ /* > The sines s(k) of the plane rotations. The 2-by-2 plane */ /* > rotation part of the matrix P(k), R(k), has the form */ /* > R(k) = ( c(k) s(k) ) */ /* > ( -s(k) c(k) ). */ /* > \endverbatim */ /* > */ /* > \param[in,out] A */ /* > \verbatim */ /* > A is REAL array, dimension (LDA,N) */ /* > The M-by-N matrix A. On exit, A is overwritten by P*A if */ /* > SIDE = 'R' or by A*P**T if SIDE = 'L'. */ /* > \endverbatim */ /* > */ /* > \param[in] LDA */ /* > \verbatim */ /* > LDA is INTEGER */ /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */ /* > \endverbatim */ /* Authors: */ /* ======== */ /* > \author Univ. of Tennessee */ /* > \author Univ. of California Berkeley */ /* > \author Univ. of Colorado Denver */ /* > \author NAG Ltd. */ /* > \date December 2016 */ /* > \ingroup OTHERauxiliary */ /* ===================================================================== */ /* Subroutine */ int slasr_(char *side, char *pivot, char *direct, integer *m, integer *n, real *c__, real *s, real *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer info; real temp; integer i__, j; extern logical lsame_(char *, char *); real ctemp, stemp; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); /* -- LAPACK auxiliary routine (version 3.7.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* December 2016 */ /* ===================================================================== */ /* Test the input parameters */ /* Parameter adjustments */ --c__; --s; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; /* Function Body */ info = 0; if (! (lsame_(side, "L") || lsame_(side, "R"))) { info = 1; } else if (! (lsame_(pivot, "V") || lsame_(pivot, "T") || lsame_(pivot, "B"))) { info = 2; } else if (! (lsame_(direct, "F") || lsame_(direct, "B"))) { info = 3; } else if (*m < 0) { info = 4; } else if (*n < 0) { info = 5; } else if (*lda < f2cmax(1,*m)) { info = 9; } if (info != 0) { xerbla_("SLASR ", &info, (ftnlen)5); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } if (lsame_(side, "L")) { /* Form P * A */ if (lsame_(pivot, "V")) { if (lsame_(direct, "F")) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[j + 1 + i__ * a_dim1]; a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j + i__ * a_dim1]; /* L10: */ } } /* L20: */ } } else if (lsame_(direct, "B")) { for (j = *m - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[j + 1 + i__ * a_dim1]; a[j + 1 + i__ * a_dim1] = ctemp * temp - stemp * a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = stemp * temp + ctemp * a[j + i__ * a_dim1]; /* L30: */ } } /* L40: */ } } } else if (lsame_(pivot, "T")) { if (lsame_(direct, "F")) { i__1 = *m; for (j = 2; j <= i__1; ++j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = ctemp * temp - stemp * a[ i__ * a_dim1 + 1]; a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[ i__ * a_dim1 + 1]; /* L50: */ } } /* L60: */ } } else if (lsame_(direct, "B")) { for (j = *m; j >= 2; --j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = ctemp * temp - stemp * a[ i__ * a_dim1 + 1]; a[i__ * a_dim1 + 1] = stemp * temp + ctemp * a[ i__ * a_dim1 + 1]; /* L70: */ } } /* L80: */ } } } else if (lsame_(pivot, "B")) { if (lsame_(direct, "F")) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1] + ctemp * temp; a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * a_dim1] - stemp * temp; /* L90: */ } } /* L100: */ } } else if (lsame_(direct, "B")) { for (j = *m - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[j + i__ * a_dim1]; a[j + i__ * a_dim1] = stemp * a[*m + i__ * a_dim1] + ctemp * temp; a[*m + i__ * a_dim1] = ctemp * a[*m + i__ * a_dim1] - stemp * temp; /* L110: */ } } /* L120: */ } } } } else if (lsame_(side, "R")) { /* Form A * P**T */ if (lsame_(pivot, "V")) { if (lsame_(direct, "F")) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[i__ + (j + 1) * a_dim1]; a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp * a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = stemp * temp + ctemp * a[ i__ + j * a_dim1]; /* L130: */ } } /* L140: */ } } else if (lsame_(direct, "B")) { for (j = *n - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[i__ + (j + 1) * a_dim1]; a[i__ + (j + 1) * a_dim1] = ctemp * temp - stemp * a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = stemp * temp + ctemp * a[ i__ + j * a_dim1]; /* L150: */ } } /* L160: */ } } } else if (lsame_(pivot, "T")) { if (lsame_(direct, "F")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = ctemp * temp - stemp * a[ i__ + a_dim1]; a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + a_dim1]; /* L170: */ } } /* L180: */ } } else if (lsame_(direct, "B")) { for (j = *n; j >= 2; --j) { ctemp = c__[j - 1]; stemp = s[j - 1]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = ctemp * temp - stemp * a[ i__ + a_dim1]; a[i__ + a_dim1] = stemp * temp + ctemp * a[i__ + a_dim1]; /* L190: */ } } /* L200: */ } } } else if (lsame_(pivot, "B")) { if (lsame_(direct, "F")) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1] + ctemp * temp; a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * a_dim1] - stemp * temp; /* L210: */ } } /* L220: */ } } else if (lsame_(direct, "B")) { for (j = *n - 1; j >= 1; --j) { ctemp = c__[j]; stemp = s[j]; if (ctemp != 1.f || stemp != 0.f) { i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { temp = a[i__ + j * a_dim1]; a[i__ + j * a_dim1] = stemp * a[i__ + *n * a_dim1] + ctemp * temp; a[i__ + *n * a_dim1] = ctemp * a[i__ + *n * a_dim1] - stemp * temp; /* L230: */ } } /* L240: */ } } } } return 0; /* End of SLASR */ } /* slasr_ */
the_stack_data/15762868.c
/*Exercise 4 - Functions Implement the three functions minimum(), maximum() and multiply() below the main() function. Do not change the code given in the main() function when you are implementing your solution.*/ //Ex4 #include <stdio.h> int minimum(int num1,int num2); int maximum(int num1,int num2); int multiply(int num1,int num2); int main() { int no1, no2; printf("Enter a value for no 1 : "); scanf("%d", &no1); printf("Enter a value for no 2 : "); scanf("%d", &no2); printf("%d ", minimum(no1, no2)); printf("%d ", maximum(no1, no2)); printf("%d ", multiply(no1, no2)); return 0; } int minimum(int num1,int num2) { if(num1>num2) { return num2; } else { return num1; } } int maximum(int num1,int num2) { if(num1 > num2) { return num1; } else { return num2; } } int multiply(int num1,int num2) { int multiply; multiply = num1*num2; return multiply; }
the_stack_data/182952374.c
#include <ctype.h> int (isupper)(int c) { return isupper(c); }
the_stack_data/37637599.c
#include <stdio.h> #include <math.h> #define MIN -1 #define PI (2*acos(0)) int main(void) { printf("Value fo MIN: %d\n", MIN); printf("Value of PI: %f\n", PI); return 0; }
the_stack_data/181393244.c
/* * Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ void expand() { } void unroll_n() { } void schedule() { } void unroll() { } void cg_add_func() { } void garbage_collect() { }
the_stack_data/92329313.c
#include <string.h> char *strncat(char *dest, const char *src, size_t n) { char *tmpd = dest; int i; while ((*tmpd != 0)) tmpd++; for (i = 0; i < n; i++) { tmpd[i] = src[i]; if (src[i] == 0) break; } tmpd[i] = 0; return dest; }
the_stack_data/22548.c
/* * --INFO-- * Address: 80006B80 * Size: 000008 */ void Jac_GetCurrentSCounter() { /* .loc_0x0: lwz r3, 0x2B64(r13) blr */ } /* * --INFO-- * Address: 80006BA0 * Size: 000250 */ void DspbufProcess(DSPBUF_EVENTS) { /* .loc_0x0: mflr r0 cmpwi r3, 0x1 stw r0, 0x4(r1) lis r4, 0x802F stwu r1, -0x20(r1) stmw r28, 0x10(r1) subi r31, r4, 0x68D0 beq- .loc_0xB8 bge- .loc_0x30 cmpwi r3, 0 bge- .loc_0x3C b .loc_0x238 .loc_0x30: cmpwi r3, 0x3 bge- .loc_0x238 b .loc_0x13C .loc_0x3C: li r0, 0x2 li r29, 0 stb r0, 0x2B60(r13) li r28, 0 li r30, 0 stb r29, 0x2B61(r13) .loc_0x54: lwz r0, -0x7FF8(r13) rlwinm r3,r0,2,0,29 bl -0x147C add r5, r31, r30 li r4, 0 stw r3, 0x0(r5) lwz r6, -0x7FF8(r13) rlwinm r0,r6,1,0,30 mtctr r0 cmplwi r0, 0 ble- .loc_0x90 .loc_0x80: lwz r3, 0x0(r5) sthx r29, r3, r4 addi r4, r4, 0x2 bdnz+ .loc_0x80 .loc_0x90: lwz r3, 0x0(r5) rlwinm r4,r6,2,0,29 bl 0x1EFFE4 addi r28, r28, 0x1 addi r30, r30, 0x4 cmplwi r28, 0x3 blt+ .loc_0x54 li r0, 0 stb r0, 0x2B62(r13) b .loc_0x238 .loc_0xB8: bl 0x1EE8 lbz r3, 0x2B60(r13) addi r0, r3, 0x1 rlwinm r4,r0,0,24,31 cmplwi r4, 0x3 bne- .loc_0xD4 li r4, 0 .loc_0xD4: lbz r0, 0x2B61(r13) rlwinm r3,r4,0,24,31 cmplw r3, r0 bne- .loc_0xF0 li r0, 0 stb r0, 0x2B62(r13) b .loc_0x238 .loc_0xF0: stb r4, 0x2B60(r13) lwz r3, -0x7FFC(r13) bl -0x9D8 lis r4, 0x8022 li r3, 0x7 addi r4, r4, 0x2008 bl -0x16A8 lbz r3, 0x2B60(r13) lwz r0, -0x7FF8(r13) rlwinm r4,r3,2,0,29 lwz r3, -0x7FFC(r13) lwzx r4, r31, r4 rlwinm r0,r0,1,0,30 add r5, r4, r0 bl 0x1C18 li r0, 0x1 stb r0, 0x2B62(r13) bl 0x12C b .loc_0x238 .loc_0x13C: lbz r4, 0x2B61(r13) addi r0, r4, 0x1 rlwinm r5,r0,0,24,31 cmplwi r5, 0x3 bne- .loc_0x154 li r5, 0 .loc_0x154: lbz r0, 0x2B60(r13) rlwinm r3,r5,0,24,31 cmplw r3, r0 bne- .loc_0x1F8 rlwinm r0,r4,2,0,29 lwz r6, -0x7FF8(r13) lwzx r4, r31, r0 li r3, 0 lbz r0, 0x2B61(r13) rlwinm r5,r6,0,0,30 subi r7, r4, 0x2 rlwinm r4,r6,1,0,30 lhax r5, r7, r5 rlwinm r0,r0,2,0,29 lhax r7, r7, r4 mtctr r6 cmplwi r6, 0 ble- .loc_0x1AC .loc_0x19C: lwzx r4, r31, r0 sthx r5, r4, r3 addi r3, r3, 0x2 bdnz+ .loc_0x19C .loc_0x1AC: lwz r0, -0x7FF8(r13) rlwinm r3,r6,1,0,30 lbz r5, 0x2B61(r13) rlwinm r4,r0,1,0,30 sub r0, r4, r6 rlwinm r5,r5,2,0,29 mtctr r0 cmplw r6, r4 bge- .loc_0x1E0 .loc_0x1D0: lwzx r4, r31, r5 sthx r7, r4, r3 addi r3, r3, 0x2 bdnz+ .loc_0x1D0 .loc_0x1E0: lbz r0, 0x2B62(r13) cmplwi r0, 0 bne- .loc_0x228 li r3, 0x1 bl .loc_0x0 b .loc_0x228 .loc_0x1F8: stb r5, 0x2B61(r13) lwz r0, -0x7FF8(r13) lbz r3, 0x2B61(r13) rlwinm r4,r0,2,0,29 rlwinm r0,r3,2,0,29 lwzx r3, r31, r0 bl 0x1EFE08 lbz r0, 0x2B62(r13) cmplwi r0, 0 bne- .loc_0x228 li r3, 0x1 bl .loc_0x0 .loc_0x228: lbz r0, 0x2B61(r13) rlwinm r0,r0,2,0,29 lwzx r3, r31, r0 b .loc_0x23C .loc_0x238: li r3, 0 .loc_0x23C: lmw r28, 0x10(r1) lwz r0, 0x24(r1) addi r1, r1, 0x20 mtlr r0 blr */ } /* * --INFO-- * Address: 80006E00 * Size: 000054 */ void UpdateDSP() { /* .loc_0x0: mflr r0 lis r3, 0x8022 stw r0, 0x4(r1) addi r4, r3, 0x2014 li r3, 0x3 stwu r1, -0x8(r1) lwz r5, 0x2B64(r13) addi r0, r5, 0x1 stw r0, 0x2B64(r13) bl -0x1824 bl 0x4D38 bl 0x534 bl 0x4530 bl 0x194C bl 0x4A8 li r3, 0x3 bl -0x1820 lwz r0, 0xC(r1) addi r1, r1, 0x8 mtlr r0 blr */ } /* * --INFO-- * Address: 80006E60 * Size: 000040 */ void MixDsp(long) { /* .loc_0x0: mflr r0 stw r0, 0x4(r1) stwu r1, -0x8(r1) lbz r0, 0x2B6C(r13) extsb. r0, r0 bne- .loc_0x28 li r3, 0 li r0, 0x1 stw r3, 0x2B68(r13) stb r0, 0x2B6C(r13) .loc_0x28: li r3, 0x2 bl -0x2EC lwz r0, 0xC(r1) addi r1, r1, 0x8 mtlr r0 blr */ } /* * --INFO-- * Address: 80006EA0 * Size: 000024 */ void DspFrameEnd() { /* .loc_0x0: mflr r0 li r3, 0x1 stw r0, 0x4(r1) stwu r1, -0x8(r1) bl -0x310 lwz r0, 0xC(r1) addi r1, r1, 0x8 mtlr r0 blr */ }
the_stack_data/151706687.c
/* vim: tabstop=4 shiftwidth=4 noexpandtab * This file is part of ToaruOS and is released under the terms * of the NCSA / University of Illinois License - see LICENSE.md * Copyright (C) 2018 K. Lange * * hexify - Convert binary to hex. * * This is based on the output of xxd. * Does NOT a hex-to-bin option - something to consider. */ #include <stdio.h> #include <ctype.h> #include <errno.h> #include <unistd.h> #include <string.h> void print_line(unsigned char * buf, unsigned int width, unsigned int sizer, unsigned int offset) { fprintf(stdout, "%08x: ", sizer); for (unsigned int i = 0; i < width; ) { if (i >= offset) { fprintf(stdout, " "); } else { fprintf(stdout, "%02x", buf[i]); } i++; if (i == width) break; /* in case of odd width */ if (i >= offset) { fprintf(stdout, " "); } else { fprintf(stdout, "%02x ", buf[i]); } i++; } fprintf(stdout, " "); for (unsigned int i = 0; i < width; i++) { if (i >= offset) { fprintf(stdout, " "); } else { if (isprint(buf[i])) { fprintf(stdout, "%c", buf[i]); } else { fprintf(stdout, "."); } } } fprintf(stdout, "\n"); } static int stoih(int w, char c[w], unsigned int *out) { *out = 0; for (int i = 0; i < w; ++i) { (*out) <<= 4; if (c[i] >= '0' && c[i] <= '9') { *out |= (c[i] - '0'); } else if (c[i] >= 'A' && c[i] <= 'F') { *out |= (c[i] - 'A' + 0xA); } else if (c[i] >= 'a' && c[i] <= 'f') { *out |= (c[i] - 'a' + 0xA); } else { *out = 0; return 1; } } return 0; } int main(int argc, char * argv[]) { unsigned int width = 16; /* TODO make configurable */ int opt; int direction = 0; while ((opt = getopt(argc, argv, "?w:d")) != -1) { switch (opt) { default: case '?': fprintf(stderr, "%s: convert to/from hexadecimal dump\n", argv[0]); return 1; case 'w': width = atoi(optarg); break; case 'd': direction = 1; break; } } FILE * f; char * name; if (optind < argc) { f = fopen(argv[optind], "r"); name = argv[optind]; if (!f) { fprintf(stderr, "%s: %s: %s\n", argv[0], argv[optind], strerror(errno)); } } else { name = "[stdin]"; f = stdin; } if (direction == 0) { /* Convert to hexadecimal */ unsigned int sizer = 0; unsigned int offset = 0; unsigned char buf[width]; while (!feof(f)) { unsigned int r = fread(buf+offset, 1, width-offset, f); offset += r; if (offset == width) { print_line(buf, width, sizer, offset); offset = 0; sizer += width; } } if (offset != 0) { print_line(buf, width, sizer, offset); } } else { /* Convert from hexify's output format */ unsigned int eoffset = 0; unsigned int lineno = 1; while (!feof(f)) { /* Read offset */ char offset_bytes[8]; fread(&offset_bytes, 1, 8, f); /* Convert offset for verification */ unsigned int offset; if (stoih(8, offset_bytes, &offset)) { fprintf(stderr, "%s: %s: syntax error (bad offset) on line %d\n", argv[0], name, lineno); fprintf(stderr, "offset bytes: %8s\n", offset_bytes); return 1; } if (offset != eoffset) { fprintf(stderr, "%s: %s: offset mismatch on line %d\n", argv[0], name, lineno); fprintf(stderr, "expected 0x%x, got 0x%x\n", offset, eoffset); return 1; } /* Read ": " */ char tmp[2]; fread(&tmp, 1, 2, f); if (tmp[0] != ':' || tmp[1] != ' ') { fprintf(stderr, "%s: %s: syntax error (unexpected characters after offset) on line %d\n", argv[0], name, lineno); return 1; } /* Read [width] characters */ for (unsigned int i = 0; i < width; ) { unsigned int byte = 0; for (unsigned int j = 0; i < width && j < 2; ++j, ++i) { fread(&tmp, 1, 2, f); if (tmp[0] == ' ' && tmp[1] == ' ') { /* done; return */ return 0; } if (stoih(2, tmp, &byte)) { fprintf(stderr, "%s: %s: syntax error (bad byte) on line %d\n", argv[0], name, lineno); fprintf(stderr, "byte bytes: %2s\n", tmp); return 1; } fwrite(&byte, 1, 1, stdout); } /* Read space */ fread(&tmp, 1, 1, f); if (tmp[0] != ' ') { fprintf(stderr, "%s: %s: syntax error (unexpected characters after byte) on line %d\n", argv[0], name, lineno); fprintf(stderr, "unexpected character: %c\n", tmp[0]); return 1; } } fread(&tmp, 1, 1, f); if (tmp[0] != ' ') { fprintf(stderr, "%s: %s: syntax error (unexpected characters after bytes) on line %d\n", argv[0], name, lineno); } /* Read correct number of characters, plus line feed */ char tmp2[width+2]; fread(&tmp2, 1, width+1, f); tmp2[width+1] = '\0'; if (tmp2[width] != '\n') { fprintf(stderr, "%s: %s: syntax error: expected end of line, got garbage on line %d\n", argv[0], name, lineno); fprintf(stderr, "eol data: %s\n", tmp2); } lineno++; eoffset += width; } } return 0; }
the_stack_data/143933.c
/* Name : Anish Naskar M.Sc Data Science SEM 1 */ #include<stdio.h> #include<stdlib.h> struct Node { int data;struct Node *link; }; void Display(struct Node *Head) { if(Head==NULL) printf("\nLinked list is Empty\n"); struct Node *wezp=NULL; wezp=Head; while(wezp!=NULL) { printf("%d\t",wezp->data); wezp=wezp->link; } } struct Node* Insert_End(struct Node *Head) { int x; struct Node *wezp, *Temp; wezp=Head; Temp=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the value you want to enter inside node\n"); scanf("%d",&x); Temp->data=x; Temp->link=NULL; while(wezp->link!=NULL) { wezp=wezp->link; } wezp->link=Temp; return Head; } struct Node* create_list(struct Node *Head) { int x,x1,x2; char choice; printf("\nEnter 1 to create node Else Enter 0\n"); scanf("%d",&x2); if(x2==1) { Head=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the number you want to put inside Node\n"); scanf("%d",&x1); Head->data=x1; Head->link=NULL; pnt : printf("\nDo You Want To Continue(y/n)?\n"); scanf("%s",&choice); if(choice=='y') { Insert_End(Head); goto pnt; } else if(choice=='n') { printf("\nLinked list Creation is Done!\n"); return Head; } } else if(x2==0) { printf("\nNo Node is created!\n"); return Head; } printf("\nWrong Input!\n"); return Head; } struct Node* Insert_Beg(struct Node *Head) { int x; struct Node *wezp; wezp=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the number you want to put inside Node\n"); scanf("%d",&x); wezp->data=x; wezp->link=NULL; wezp->link=Head; Head=wezp; return Head; } struct Node* Insert_At_A_Specific_Position(struct Node *Head) { int x,y; struct Node *wezp, *wezp2; wezp=Head; wezp2=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the number you want to put inside Node\n"); scanf("%d",&x); wezp2->data=x; wezp2->link=NULL; printf("\nEnter the position where you want to put the Node\n"); scanf("%d",&y); while(y!=2) { wezp=wezp->link; y--; } wezp2->link=wezp->link; wezp->link=wezp2; return Head; } struct Node* After_a_Node(struct Node *Head) { int x,y,p; struct Node *wezp, *wezp2; wezp=Head; wezp2=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the number you want to put inside Node\n"); scanf("%d",&x); wezp2->data=x; wezp2->link=NULL; printf("\nEnter the node number after which you want to enter this node\n"); scanf("%d",&p); for(y=1;y<p;y++) { wezp=wezp->link; } wezp2->link=wezp->link; wezp->link=wezp2; return Head; } struct Node* Before_a_Node(struct Node *Head) { int x,p,y; struct Node *wezp, *wezp2; wezp=Head; wezp2=(struct Node *)malloc(sizeof(struct Node)); printf("\nEnter the number you want to put inside Node\n"); scanf("%d",&x); wezp2->data=x; wezp2->link=NULL; printf("\nEnter the node number before which you want to enter this node\n"); scanf("%d",&p); for(y=1;y<p-2;y++) { wezp=wezp->link; } wezp2->link=wezp->link; wezp->link=wezp2; return Head; } int main() { struct Node *Head; Head=NULL; printf("Only Integers will work in case of this program\n\n "); int x,y,z; while(99) { printf("\n=================================\n"); printf("\n1 Create list\n"); printf("\n2 Insert\n"); printf("\n3 Display\n"); printf("\n4 Exit\n"); printf("\n=================================\n"); printf("\nEnter Your Choice\n"); scanf("%d",&x); switch(x) { case 1: Head=create_list(Head); break; case 2: printf("\n=================================\n"); printf("\n5 Insert at beginning\n"); printf("\n6 Insert at end\n"); printf("\n7 Insert at any Position\n"); printf("\n8 goto main menu\n"); printf("\n=================================\n"); printf("\nEnter Your Choice\n"); scanf("%d",&y); if(y==5) { Head=Insert_Beg(Head); } else if(y==6) { Head=Insert_End(Head); } else if(y==7) { printf("\n=================================\n"); printf("\n9 Insert after a node\n"); printf("\n10 Insert Before a node\n"); printf("\n11 Insert at Specific position\n"); printf("\n12 goto main menu\n"); printf("\n=================================\n"); printf("\nEnter Your Choice\n"); scanf("%d",&z); if(z==9) { Head=After_a_Node(Head); } else if(z==10) { Head=Before_a_Node(Head); } else if(z==11) { Head=Insert_At_A_Specific_Position(Head); } else if(z==12) { continue; } else printf("\n wrong choice , you have returned to main menu\n"); } else if(y==8) { continue; } else { printf("\nwrong choice , you have returned to main menu\n"); } break; case 3: Display(Head); break; case 4: { printf("\n=================================\n"); printf("\nProcess Ends\n\n***Thank You***\n\n"); printf("\n=================================\n"); return 0; } break; default : printf("\nYou Entered Incorrect Choice\n"); } } return 0; }
the_stack_data/198580287.c
/* Test: implicit data flow due to the length of loop. m should be 33 */ #include "stdio.h" #include "stdint.h" #include "stdlib.h" #include "string.h" int main (int argc, char** argv) { if (argc < 2) return 0; FILE *fp; char buf[255]; size_t ret; fp = fopen(argv[1], "rb"); if (!fp) { printf("st err\n"); return 0; } int len = 20; ret = fread(buf, sizeof *buf, len, fp); fclose(fp); if (ret < len) { printf("input fail \n"); return 0; } int32_t y = 0; int32_t m = 0; memcpy(&m, buf + 15, 4); int i = 0; for (; i < 100; i++) { if (m == i) break; } if (i == 33) { abort(); } return 0; }
the_stack_data/126701871.c
#include <stdio.h> #define max(a,b) a > b ? a : b int cup[10000] = { 0 }; int dp[10000] = { 0 }; int calc(int index) { int a = (dp[index - 2] ? dp[index - 2] : calc(index - 2)); int b = (dp[index - 3] ? dp[index - 3] : calc(index - 3)) + cup[index - 1]; int c = (dp[index - 1] ? dp[index - 1] : calc(index - 1)); dp[index] = max(a, b); dp[index] += cup[index]; dp[index] = max(dp[index], c); return dp[index]; } int main() { int n, i = 0; for (scanf("%d", &n); i < n; i++) { dp[i] = 0; scanf("%d", cup + i); } dp[0] = cup[0]; dp[1] = cup[0] + cup[1]; dp[2] = max(cup[0], cup[1]); dp[2] += cup[2]; dp[2] = max(dp[2], dp[1]); int a = (n > 3 ? calc(n - 1) : dp[n - 1]); printf("%d", a); }
the_stack_data/104826815.c
#include <stdio.h> int main() { int age = 10; int height = 72; printf("I am %d years old.\n", age); printf("I am %d inches tall.\n", height); return 0; }
the_stack_data/232955701.c
#include <stdio.h> #include <stdlib.h> typedef struct node { int value; struct node *left; struct node *right; struct node *parent; } node; typedef struct tree { node *root; } tree; typedef struct stack_node { node *data; struct stack_node *next; } stack_node; typedef struct stack { stack_node *head; } stack; //stack functions void init_stack(stack *s) { s->head = NULL; } int push(stack *s, node *n) { stack_node *snode = malloc(sizeof(stack_node)); snode->data = n; snode->next = s->head; s->head = snode; return 0; } node* pop(stack *s) { stack_node *snode = s->head; node *n = s->head->data; s->head = s->head->next; free(snode); return n; } void clear_stack(stack *s) { stack_node *sn = s->head; while (sn != NULL) { stack_node *temp = sn->next; free(sn); sn = temp; } s->head = NULL; } //tree functions void init(tree *t) { t->root = NULL; } node* clear_impl(node *n) { if (n != NULL) { clear_impl(n->left); clear_impl(n->right); n = NULL; return n; } return NULL; } void clear(tree *t) { clear_impl(t->root); } int insert(tree *t, int value) { node *n = malloc(sizeof(node)); n->value = value; n->parent = NULL; n->left = NULL; n->right = NULL; node *p = t->root; node *tmp = NULL; if (t->root == NULL) { t->root = n; } else { while (p != NULL) { tmp = p; if (value < p->value) { p = p->left; } else if (value > p->value) { p = p->right; } else if (value == p->value) { return 1; } } n->parent = tmp; if (value < tmp->value) { tmp->left = n; } else if (value > tmp->value) { tmp->right = n; } } return 0; } void preorderTraversal(node *n) { if (n == NULL) { return; } stack *s = malloc(sizeof(stack)); init_stack(s); push(s, n); while (s->head != NULL) { n = pop(s); printf("%d ", n->value); if (n->right != NULL) { push(s, n->right); } if (n->left != NULL) { push(s, n->left); } if (s->head != NULL) { printf(" "); } } printf("%c", '\n'); clear_stack(s); } int main() { tree *t = malloc(sizeof(tree)); init(t); int n = 7; int a; for (int i = 0; i < n; ++i) { scanf("%d", &a); insert(t, a); } preorderTraversal(t->root); clear(t); return 0; }
the_stack_data/92326305.c
int main() { int x; int y; do { y = 10; goto label; x = 1; // dead code, makes sure the above goto is not removed label: _Bool nondet; if(nondet) __CPROVER_assert(y != 10, "violated via first loop"); else __CPROVER_assert(y != 20, "violated via second loop"); if(x % 2) break; // this statement must not cause the loop counter to be reset } while(1); y = 20; goto label; }
the_stack_data/124367.c
/* offsetof example : This macro with functional form returns the offset value in bytes of a member in the structure type.*/ #include <stdio.h> #include <stddef.h> struct mystruct { char singlechar; char arraymember[10]; char anotherchar; }; typedef struct mystruct str; int main () { printf ("offsetof(mystruct,singlechar) is %lu\n",offsetof(str,singlechar)); printf ("offsetof(mystruct,arraymember) is %lu\n",offsetof(str,arraymember)); printf ("offsetof(mystruct,anotherchar) is %lu\n",offsetof(str,anotherchar)); return 0; }
the_stack_data/103421.c
#ifdef HAVE_CONFIG_H #include <config.h> #endif #include <stdio.h> #include <ctype.h> #include <string.h> static char *radixN = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static char pad = '='; radix_encode(inbuf, outbuf, len, decode) unsigned char inbuf[], outbuf[]; int *len, decode; { int i,j,D; char *p; unsigned char c; if (decode) { for (i=0,j=0; inbuf[i] && inbuf[i] != pad; i++) { if ((p = strchr(radixN, inbuf[i])) == NULL) return(1); D = p - radixN; switch (i&3) { case 0: outbuf[j] = D<<2; break; case 1: outbuf[j++] |= D>>4; outbuf[j] = (D&15)<<4; break; case 2: outbuf[j++] |= D>>2; outbuf[j] = (D&3)<<6; break; case 3: outbuf[j++] |= D; } } switch (i&3) { case 1: return(3); case 2: if (D&15) return(3); if (strcmp((char *)&inbuf[i], "==")) return(2); break; case 3: if (D&3) return(3); if (strcmp((char *)&inbuf[i], "=")) return(2); } *len = j; } else { for (i=0,j=0; i < *len; i++) switch (i%3) { case 0: outbuf[j++] = radixN[inbuf[i]>>2]; c = (inbuf[i]&3)<<4; break; case 1: outbuf[j++] = radixN[c|inbuf[i]>>4]; c = (inbuf[i]&15)<<2; break; case 2: outbuf[j++] = radixN[c|inbuf[i]>>6]; outbuf[j++] = radixN[inbuf[i]&63]; c = 0; } if (i%3) outbuf[j++] = radixN[c]; switch (i%3) { case 1: outbuf[j++] = pad; case 2: outbuf[j++] = pad; } outbuf[*len = j] = '\0'; } return(0); } char * radix_error(e) { switch (e) { case 0: return("Success"); case 1: return("Bad character in encoding"); case 2: return("Encoding not properly padded"); case 3: return("Decoded # of bits not a multiple of 8"); default: return("Unknown error"); } } #ifdef STANDALONE usage(s) char *s; { fprintf(stderr, "Usage: %s [ -d ] [ string ]\n", s); exit(2); } static int n; putbuf(inbuf, outbuf, len, decode) unsigned char inbuf[], outbuf[]; int len, decode; { int c; if (c = radix_encode(inbuf, outbuf, &len, decode)) { fprintf(stderr, "Couldn't %scode input: %s\n", decode ? "de" : "en", radix_error(c)); exit(1); } if (decode) write(1, outbuf, len); else for (c = 0; c < len;) { putchar(outbuf[c++]); if (++n%76 == 0) putchar('\n'); } } main(argc,argv) int argc; char *argv[]; { unsigned char *inbuf, *outbuf; int c, len = 0, decode = 0; extern int optind; while ((c = getopt(argc, argv, "d")) != EOF) switch(c) { default: usage(argv[0]); case 'd': decode++; } switch (argc - optind) { case 0: inbuf = (unsigned char *) malloc(5); outbuf = (unsigned char *) malloc(5); while ((c = getchar()) != EOF) if (c != '\n') { inbuf[len++] = c; if (len == (decode ? 4 : 3)) { inbuf[len] = '\0'; putbuf(inbuf, outbuf, len, decode); len=0; } } if (len) { inbuf[len] = '\0'; putbuf(inbuf, outbuf, len, decode); } break; case 1: inbuf = (unsigned char *)argv[optind]; len = strlen(inbuf); outbuf = (unsigned char *) malloc((len * (decode?3:4)) / (decode?4:3) + 1); putbuf(inbuf, outbuf, len, decode); break; default: fprintf(stderr, "Only one argument allowed\n"); usage(argv[0]); } if (n%76) putchar('\n'); exit(0); } #endif /* STANDALONE */
the_stack_data/162642367.c
#include <stdio.h> #include <stdlib.h> int main() { int a, a1, a2, a3; int *p, *p1, *p2, *p3, *p4, *p5; int **pp; a = 1; a1 = 2; a2 = 3, a3 = 4; p = &a; p1 = p; p1 = &a1; p2 = &a2; p4 = &a3; pp = &p1; pp = &p2; p3 = *pp; *pp = p4; p5 = (int *)malloc(3 * sizeof(int)); p5[2] = 5; //printf("%d, %d\n", **pp, p5[2]); free(p5); } /* p {a} p1 {a, a1, a3} p2 {a2, a3} p4 {a3} pp {p1, p2} p3 {a, a1, a2, a3} p5 {heap} */
the_stack_data/232954489.c
#include <iconv.h> iconv_t tnt_iconv_open(const char *tocode, const char *fromcode) { return iconv_open(tocode, fromcode); } int tnt_iconv_close(iconv_t cd) { return iconv_close(cd); } size_t tnt_iconv(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t *outbytesleft) { return iconv(cd, inbuf, inbytesleft, outbuf, outbytesleft); }
the_stack_data/90763679.c
/*- * Copyright 2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Example of using EVP_MD_fetch and EVP_Digest* methods to calculate * a digest of static buffers */ #include <string.h> #include <stdio.h> #include <openssl/err.h> #include <openssl/evp.h> /*- * This demonstration will show how to digest data using * the soliloqy from Hamlet scene 1 act 3 * The soliloqy is split into two parts to demonstrate using EVP_DigestUpdate * more than once. */ const char * hamlet_1 = "To be, or not to be, that is the question,\n" "Whether tis nobler in the minde to suffer\n" "The ſlings and arrowes of outragious fortune,\n" "Or to take Armes again in a sea of troubles,\n" "And by opposing, end them, to die to sleep;\n" "No more, and by a sleep, to say we end\n" "The heart-ache, and the thousand natural shocks\n" "That flesh is heir to? tis a consumation\n" "Devoutly to be wished. To die to sleep,\n" "To sleepe, perchance to dreame, Aye, there's the rub,\n" "For in that sleep of death what dreams may come\n" "When we haue shuffled off this mortal coil\n" "Must give us pause. There's the respect\n" "That makes calamity of so long life:\n" "For who would bear the Ships and Scorns of time,\n" "The oppressor's wrong, the proud man's Contumely,\n" "The pangs of dispised love, the Law's delay,\n" ; const char * hamlet_2 = "The insolence of Office, and the spurns\n" "That patient merit of the'unworthy takes,\n" "When he himself might his Quietas make\n" "With a bare bodkin? Who would fardels bear,\n" "To grunt and sweat under a weary life,\n" "But that the dread of something after death,\n" "The undiscovered country, from whose bourn\n" "No traveller returns, puzzles the will,\n" "And makes us rather bear those ills we have,\n" "Then fly to others we know not of?\n" "Thus conscience does make cowards of us all,\n" "And thus the native hue of Resolution\n" "Is sickled o'er with the pale cast of Thought,\n" "And enterprises of great pith and moment,\n" "With this regard their currents turn awry,\n" "And lose the name of Action. Soft you now,\n" "The fair Ophelia? Nymph in thy Orisons\n" "Be all my sins remember'd.\n" ; /* The known value of the SHA3-512 digest of the above soliloqy */ const unsigned char known_answer[] = { 0xbb, 0x69, 0xf8, 0x09, 0x9c, 0x2e, 0x00, 0x3d, 0xa4, 0x29, 0x5f, 0x59, 0x4b, 0x89, 0xe4, 0xd9, 0xdb, 0xa2, 0xe5, 0xaf, 0xa5, 0x87, 0x73, 0x9d, 0x83, 0x72, 0xcf, 0xea, 0x84, 0x66, 0xc1, 0xf9, 0xc9, 0x78, 0xef, 0xba, 0x3d, 0xe9, 0xc1, 0xff, 0xa3, 0x75, 0xc7, 0x58, 0x74, 0x8e, 0x9c, 0x1d, 0x14, 0xd9, 0xdd, 0xd1, 0xfd, 0x24, 0x30, 0xd6, 0x81, 0xca, 0x8f, 0x78, 0x29, 0x19, 0x9a, 0xfe, }; int demonstrate_digest(void) { OSSL_LIB_CTX *library_context; int result = 0; const char *option_properties = NULL; EVP_MD *message_digest = NULL; EVP_MD_CTX *digest_context = NULL; unsigned int digest_length; unsigned char *digest_value = NULL; int j; library_context = OSSL_LIB_CTX_new(); if (library_context == NULL) { fprintf(stderr, "OSSL_LIB_CTX_new() returned NULL\n"); goto cleanup; } /* * Fetch a message digest by name * The algorithm name is case insensitive. * See providers(7) for details about algorithm fetching */ message_digest = EVP_MD_fetch(library_context, "SHA3-512", option_properties); if (message_digest == NULL) { fprintf(stderr, "EVP_MD_fetch could not find SHA3-512."); goto cleanup; } /* Determine the length of the fetched digest type */ digest_length = EVP_MD_get_size(message_digest); if (digest_length <= 0) { fprintf(stderr, "EVP_MD_get_size returned invalid size.\n"); goto cleanup; } digest_value = OPENSSL_malloc(digest_length); if (digest_value == NULL) { fprintf(stderr, "No memory.\n"); goto cleanup; } /* * Make a message digest context to hold temporary state * during digest creation */ digest_context = EVP_MD_CTX_new(); if (digest_context == NULL) { fprintf(stderr, "EVP_MD_CTX_new failed.\n"); goto cleanup; } /* * Initialize the message digest context to use the fetched * digest provider */ if (EVP_DigestInit(digest_context, message_digest) != 1) { fprintf(stderr, "EVP_DigestInit failed.\n"); goto cleanup; } /* Digest parts one and two of the soliloqy */ if (EVP_DigestUpdate(digest_context, hamlet_1, strlen(hamlet_1)) != 1) { fprintf(stderr, "EVP_DigestUpdate(hamlet_1) failed.\n"); goto cleanup; } if (EVP_DigestUpdate(digest_context, hamlet_2, strlen(hamlet_2)) != 1) { fprintf(stderr, "EVP_DigestUpdate(hamlet_2) failed.\n"); goto cleanup; } if (EVP_DigestFinal(digest_context, digest_value, &digest_length) != 1) { fprintf(stderr, "EVP_DigestFinal() failed.\n"); goto cleanup; } for (j=0; j<digest_length; j++) { fprintf(stdout, "%02x", digest_value[j]); } fprintf(stdout, "\n"); /* Check digest_value against the known answer */ if ((size_t)digest_length != sizeof(known_answer)) { fprintf(stdout, "Digest length(%d) not equal to known answer length(%lu).\n", digest_length, sizeof(known_answer)); } else if (memcmp(digest_value, known_answer, digest_length) != 0) { for (j=0; j<sizeof(known_answer); j++) { fprintf(stdout, "%02x", known_answer[j] ); } fprintf(stdout, "\nDigest does not match known answer\n"); } else { fprintf(stdout, "Digest computed properly.\n"); result = 1; } cleanup: if (result != 1) ERR_print_errors_fp(stderr); /* OpenSSL free functions will ignore NULL arguments */ EVP_MD_CTX_free(digest_context); OPENSSL_free(digest_value); EVP_MD_free(message_digest); OSSL_LIB_CTX_free(library_context); return result; } int main(void) { return demonstrate_digest() == 0; }
the_stack_data/73575247.c
// RUN: %theta "%s" | FileCheck "%s" // CHECK: Verification SUCCESSFUL #include <limits.h> int __VERIFIER_nondet_int(void); void __VERIFIER_error(void) __attribute__((__noreturn__)); void __VERIFIER_assume(int expression); int b = 1; int c = 2; int main(void) { int a = __VERIFIER_nondet_int(); int d = 3; int* ptr; if (a == 0) { ptr = &b; } else { ptr = &c; } if (*ptr > d) { __VERIFIER_error(); } return 0; }
the_stack_data/231394631.c
#include <stdio.h> #include <stdlib.h> #include <time.h> void selection(int [],int); int main() { clock_t t; int i,size; printf("\n\t------- Selection sorting method -------\n\n"); printf("Enter total no. of elements : "); scanf("%d",&size); int arr[size]; printf("The array is :\n"); for(i=0; i<size; i++) { arr[i]=rand(); printf("%d, \t",arr[i]); } printf("\n"); t=clock(); selection(arr,size); t=clock()-t; double time_taken = ((double)t)/CLOCKS_PER_SEC; printf("\n\t------- Selection sorting result -------\n\n"); for(i=0;i<size;i++) printf(" %d ",arr[i]); printf("\n"); printf("Selection-Sort took %f seconds to execute \n", time_taken); return 0; } void selection(int array[], int size) { int i,j,min,pmin,y; for(i=0;i<size;i++) { min=array[i]; pmin=i; for(j=i+1;j<size;j++) { if(min>array[j]) { min=array[j]; pmin=j; } } y=array[i]; array[i]=min; array[pmin]=y; } }
the_stack_data/12638960.c
/* * Taken from the newlib * * strftime.c * Original Author: G. Haley * Additions from: Eric Blake * * Places characters into the array pointed to by s as controlled by the string * pointed to by format. If the total number of resulting characters including * the terminating null character is not more than maxsize, returns the number * of characters placed into the array pointed to by s (not including the * terminating null character); otherwise zero is returned and the contents of * the array indeterminate. */ /* FUNCTION <<strftime>>---flexible calendar time formatter INDEX strftime ANSI_SYNOPSIS #include <time.h> size_t strftime(char *<[s]>, size_t <[maxsize]>, const char *<[format]>, const struct tm *<[timp]>); TRAD_SYNOPSIS #include <time.h> size_t strftime(<[s]>, <[maxsize]>, <[format]>, <[timp]>) char *<[s]>; size_t <[maxsize]>; char *<[format]>; struct tm *<[timp]>; DESCRIPTION <<strftime>> converts a <<struct tm>> representation of the time (at <[timp]>) into a null-terminated string, starting at <[s]> and occupying no more than <[maxsize]> characters. You control the format of the output using the string at <[format]>. <<*<[format]>>> can contain two kinds of specifications: text to be copied literally into the formatted string, and time conversion specifications. Time conversion specifications are two- and three-character sequences beginning with `<<%>>' (use `<<%%>>' to include a percent sign in the output). Each defined conversion specification selects only the specified field(s) of calendar time data from <<*<[timp]>>>, and converts it to a string in one of the following ways: o+ o %a A three-letter abbreviation for the day of the week. [tm_wday] o %A The full name for the day of the week, one of `<<Sunday>>', `<<Monday>>', `<<Tuesday>>', `<<Wednesday>>', `<<Thursday>>', `<<Friday>>', or `<<Saturday>>'. [tm_wday] o %b A three-letter abbreviation for the month name. [tm_mon] o %B The full name of the month, one of `<<January>>', `<<February>>', `<<March>>', `<<April>>', `<<May>>', `<<June>>', `<<July>>', `<<August>>', `<<September>>', `<<October>>', `<<November>>', `<<December>>'. [tm_mon] o %c A string representing the complete date and time, in the form `<<"%a %b %e %H:%M:%S %Y">>' (example "Mon Apr 01 13:13:13 1992"). [tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday] o %C The century, that is, the year divided by 100 then truncated. For 4-digit years, the result is zero-padded and exactly two characters; but for other years, there may a negative sign or more digits. In this way, `<<%C%y>>' is equivalent to `<<%Y>>'. [tm_year] o %d The day of the month, formatted with two digits (from `<<01>>' to `<<31>>'). [tm_mday] o %D A string representing the date, in the form `<<"%m/%d/%y">>'. [tm_mday, tm_mon, tm_year] o %e The day of the month, formatted with leading space if single digit (from `<<1>>' to `<<31>>'). [tm_mday] o %E<<x>> In some locales, the E modifier selects alternative representations of certain modifiers <<x>>. But in the "C" locale supported by newlib, it is ignored, and treated as %<<x>>. o %F A string representing the ISO 8601:2000 date format, in the form `<<"%Y-%m-%d">>'. [tm_mday, tm_mon, tm_year] o %g The last two digits of the week-based year, see specifier %G (from `<<00>>' to `<<99>>'). [tm_year, tm_wday, tm_yday] o %G The week-based year. In the ISO 8601:2000 calendar, week 1 of the year includes January 4th, and begin on Mondays. Therefore, if January 1st, 2nd, or 3rd falls on a Sunday, that day and earlier belong to the last week of the previous year; and if December 29th, 30th, or 31st falls on Monday, that day and later belong to week 1 of the next year. For consistency with %Y, it always has at least four characters. Example: "%G" for Saturday 2nd January 1999 gives "1998", and for Tuesday 30th December 1997 gives "1998". [tm_year, tm_wday, tm_yday] o %h A three-letter abbreviation for the month name (synonym for "%b"). [tm_mon] o %H The hour (on a 24-hour clock), formatted with two digits (from `<<00>>' to `<<23>>'). [tm_hour] o %I The hour (on a 12-hour clock), formatted with two digits (from `<<01>>' to `<<12>>'). [tm_hour] o %j The count of days in the year, formatted with three digits (from `<<001>>' to `<<366>>'). [tm_yday] o %k The hour (on a 24-hour clock), formatted with leading space if single digit (from `<<0>>' to `<<23>>'). Non-POSIX extension. [tm_hour] o %l The hour (on a 12-hour clock), formatted with leading space if single digit (from `<<1>>' to `<<12>>'). Non-POSIX extension. [tm_hour] o %m The month number, formatted with two digits (from `<<01>>' to `<<12>>'). [tm_mon] o %M The minute, formatted with two digits (from `<<00>>' to `<<59>>'). [tm_min] o %n A newline character (`<<\n>>'). o %O<<x>> In some locales, the O modifier selects alternative digit characters for certain modifiers <<x>>. But in the "C" locale supported by newlib, it is ignored, and treated as %<<x>>. o %p Either `<<AM>>' or `<<PM>>' as appropriate. [tm_hour] o %r The 12-hour time, to the second. Equivalent to "%I:%M:%S %p". [tm_sec, tm_min, tm_hour] o %R The 24-hour time, to the minute. Equivalent to "%H:%M". [tm_min, tm_hour] o %S The second, formatted with two digits (from `<<00>>' to `<<60>>'). The value 60 accounts for the occasional leap second. [tm_sec] o %t A tab character (`<<\t>>'). o %T The 24-hour time, to the second. Equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %u The weekday as a number, 1-based from Monday (from `<<1>>' to `<<7>>'). [tm_wday] o %U The week number, where weeks start on Sunday, week 1 contains the first Sunday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). See also <<%W>>. [tm_wday, tm_yday] o %V The week number, where weeks start on Monday, week 1 contains January 4th, and earlier days are in the previous year. Formatted with two digits (from `<<01>>' to `<<53>>'). See also <<%G>>. [tm_year, tm_wday, tm_yday] o %w The weekday as a number, 0-based from Sunday (from `<<0>>' to `<<6>>'). [tm_wday] o %W The week number, where weeks start on Monday, week 1 contains the first Monday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). [tm_wday, tm_yday] o %x A string representing the complete date, equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year] o %X A string representing the full time of day (hours, minutes, and seconds), equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %y The last two digits of the year (from `<<00>>' to `<<99>>'). [tm_year] o %Y The full year, equivalent to <<%C%y>>. It will always have at least four characters, but may have more. The year is accurate even when tm_year added to the offset of 1900 overflows an int. [tm_year] o %z The offset from UTC. The format consists of a sign (negative is west of Greewich), two characters for hour, then two characters for minutes (-hhmm or +hhmm). If tm_isdst is negative, the offset is unknown and no output is generated; if it is zero, the offset is the standard offset for the current time zone; and if it is positive, the offset is the daylight savings offset for the current timezone. The offset is determined from the TZ environment variable, as if by calling tzset(). [tm_isdst] o %Z The time zone name. If tm_isdst is negative, no output is generated. Otherwise, the time zone name is based on the TZ environment variable, as if by calling tzset(). [tm_isdst] o %% A single character, `<<%>>'. o- RETURNS When the formatted time takes up no more than <[maxsize]> characters, the result is the length of the formatted string. Otherwise, if the formatting operation was abandoned due to lack of room, the result is <<0>>, and the string starting at <[s]> corresponds to just those parts of <<*<[format]>>> that could be completely filled in within the <[maxsize]> limit. PORTABILITY ANSI C requires <<strftime>>, but does not specify the contents of <<*<[s]>>> when the formatted string would require more than <[maxsize]> characters. Unrecognized specifiers and fields of <<timp>> that are out of range cause undefined results. Since some formats expand to 0 bytes, it is wise to set <<*<[s]>>> to a nonzero value beforehand to distinguish between failure and an empty string. This implementation does not support <<s>> being NULL, nor overlapping <<s>> and <<format>>. <<strftime>> requires no supporting OS subroutines. */ #include <stddef.h> #include <stdio.h> #include <time.h> #include <string.h> #include <stdlib.h> #define YEAR_BASE 1900 #define isleap(y) ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0) #define _CONST const static _CONST int dname_len[7] = {6, 6, 7, 9, 8, 6, 8}; static _CONST char *_CONST dname[7] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"}; static _CONST int mname_len[12] = {7, 8, 5, 5, 3, 4, 4, 6, 9, 7, 8, 8}; static _CONST char *_CONST mname[12] = {"January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"}; /* Using the tm_year, tm_wday, and tm_yday components of TIM_P, return -1, 0, or 1 as the adjustment to add to the year for the ISO week numbering used in "%g%G%V", avoiding overflow. */ static int iso_year_adjust(_CONST struct tm *tim_p) { /* Account for fact that tm_year==0 is year 1900. */ int leap = isleap(tim_p->tm_year + (YEAR_BASE - (tim_p->tm_year < 0 ? 0 : 2000))); /* Pack the yday, wday, and leap year into a single int since there are so many disparate cases. */ #define PACK(yd, wd, lp) (((yd) << 4) + (wd << 1) + (lp)) switch (PACK (tim_p->tm_yday, tim_p->tm_wday, leap)) { case PACK (0, 5, 0): /* Jan 1 is Fri, not leap. */ case PACK (0, 6, 0): /* Jan 1 is Sat, not leap. */ case PACK (0, 0, 0): /* Jan 1 is Sun, not leap. */ case PACK (0, 5, 1): /* Jan 1 is Fri, leap year. */ case PACK (0, 6, 1): /* Jan 1 is Sat, leap year. */ case PACK (0, 0, 1): /* Jan 1 is Sun, leap year. */ case PACK (1, 6, 0): /* Jan 2 is Sat, not leap. */ case PACK (1, 0, 0): /* Jan 2 is Sun, not leap. */ case PACK (1, 6, 1): /* Jan 2 is Sat, leap year. */ case PACK (1, 0, 1): /* Jan 2 is Sun, leap year. */ case PACK (2, 0, 0): /* Jan 3 is Sun, not leap. */ case PACK (2, 0, 1): /* Jan 3 is Sun, leap year. */ return -1; /* Belongs to last week of previous year. */ case PACK (362, 1, 0): /* Dec 29 is Mon, not leap. */ case PACK (363, 1, 1): /* Dec 29 is Mon, leap year. */ case PACK (363, 1, 0): /* Dec 30 is Mon, not leap. */ case PACK (363, 2, 0): /* Dec 30 is Tue, not leap. */ case PACK (364, 1, 1): /* Dec 30 is Mon, leap year. */ case PACK (364, 2, 1): /* Dec 30 is Tue, leap year. */ case PACK (364, 1, 0): /* Dec 31 is Mon, not leap. */ case PACK (364, 2, 0): /* Dec 31 is Tue, not leap. */ case PACK (364, 3, 0): /* Dec 31 is Wed, not leap. */ case PACK (365, 1, 1): /* Dec 31 is Mon, leap year. */ case PACK (365, 2, 1): /* Dec 31 is Tue, leap year. */ case PACK (365, 3, 1): /* Dec 31 is Wed, leap year. */ return 1; /* Belongs to first week of next year. */ } return 0; /* Belongs to specified year. */ #undef PACK } /******************************************************************************* * wceex_strftime - Format date and time * * Description: * This function is similar to the sprintf function, but the conversion specifications * that can appear in the format template template are specialized for printing components * of the date and time brokentime according to the locale currently specified for time * conversion (see Locales). * * Reference: * The GNU C Library * *******************************************************************************/ size_t wceex_strftime(char *s, size_t maxsize, const char *format, const struct tm *tim_p) { size_t count = 0; int i; for (;;) { while (*format && *format != '%') { if (count < maxsize - 1) s[count++] = *format++; else return 0; } if (*format == '\0') break; format++; if (*format == 'E' || *format == 'O') format++; switch (*format) { case 'a': for (i = 0; i < 3; i++) { if (count < maxsize - 1) s[count++] = dname[tim_p->tm_wday][i]; else return 0; } break; case 'A': for (i = 0; i < dname_len[tim_p->tm_wday]; i++) { if (count < maxsize - 1) s[count++] = dname[tim_p->tm_wday][i]; else return 0; } break; case 'b': case 'h': for (i = 0; i < 3; i++) { if (count < maxsize - 1) s[count++] = mname[tim_p->tm_mon][i]; else return 0; } break; case 'B': for (i = 0; i < mname_len[tim_p->tm_mon]; i++) { if (count < maxsize - 1) s[count++] = mname[tim_p->tm_mon][i]; else return 0; } break; case 'c': { /* Length is not known because of %C%y, so recurse. */ size_t adjust = wceex_strftime (&s[count], maxsize - count, "%a %b %e %H:%M:%S %C%y", tim_p); if (adjust > 0) count += adjust; else return 0; } break; case 'C': { /* Examples of (tm_year + YEAR_BASE) that show how %Y == %C%y with 32-bit int. %Y %C %y 2147485547 21474855 47 10000 100 00 9999 99 99 0999 09 99 0099 00 99 0001 00 01 0000 00 00 -001 -0 01 -099 -0 99 -999 -9 99 -1000 -10 00 -10000 -100 00 -2147481748 -21474817 48 Be careful of both overflow and sign adjustment due to the asymmetric range of years. */ int neg = tim_p->tm_year < -YEAR_BASE; int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; count += _snprintf (&s[count], maxsize - count, "%s%.*d", neg ? "-" : "", 2 - neg, century); if (count >= maxsize) return 0; } break; case 'd': case 'e': if (count < maxsize - 2) { sprintf (&s[count], *format == 'd' ? "%.2d" : "%2d", tim_p->tm_mday); count += 2; } else return 0; break; case 'D': case 'x': /* %m/%d/%y */ if (count < maxsize - 8) { sprintf (&s[count], "%.2d/%.2d/%.2d", tim_p->tm_mon + 1, tim_p->tm_mday, tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100); count += 8; } else return 0; break; case 'F': { /* Length is not known because of %C%y, so recurse. */ size_t adjust = wceex_strftime (&s[count], maxsize - count, "%C%y-%m-%d", tim_p); if (adjust > 0) count += adjust; else return 0; } break; case 'g': if (count < maxsize - 2) { /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ int adjust = iso_year_adjust (tim_p); int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) adjust = 1; else if (adjust > 0 && tim_p->tm_year < -YEAR_BASE) adjust = -1; sprintf (&s[count], "%.2d", ((year + adjust) % 100 + 100) % 100); count += 2; } else return 0; break; case 'G': { /* See the comments for 'C' and 'Y'; this is a variable length field. Although there is no requirement for a minimum number of digits, we use 4 for consistency with 'Y'. */ int neg = tim_p->tm_year < -YEAR_BASE; int adjust = iso_year_adjust (tim_p); int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) neg = adjust = 1; else if (adjust > 0 && neg) adjust = -1; year += adjust; if (year == -1) { year = 99; --century; } else if (year == 100) { year = 0; ++century; } count += _snprintf (&s[count], maxsize - count, "%s%.*d%.2d", neg ? "-" : "", 2 - neg, century, year); if (count >= maxsize) return 0; } break; case 'H': case 'k': if (count < maxsize - 2) { sprintf (&s[count], *format == 'k' ? "%2d" : "%.2d", tim_p->tm_hour); count += 2; } else return 0; break; case 'I': case 'l': if (count < maxsize - 2) { if (tim_p->tm_hour == 0 || tim_p->tm_hour == 12) { s[count++] = '1'; s[count++] = '2'; } else { sprintf (&s[count], *format == 'I' ? "%.2d" : "%2d", tim_p->tm_hour % 12); count += 2; } } else return 0; break; case 'j': if (count < maxsize - 3) { sprintf (&s[count], "%.3d", tim_p->tm_yday + 1); count += 3; } else return 0; break; case 'm': if (count < maxsize - 2) { sprintf (&s[count], "%.2d", tim_p->tm_mon + 1); count += 2; } else return 0; break; case 'M': if (count < maxsize - 2) { sprintf (&s[count], "%.2d", tim_p->tm_min); count += 2; } else return 0; break; case 'n': if (count < maxsize - 1) s[count++] = '\n'; else return 0; break; case 'p': if (count < maxsize - 2) { if (tim_p->tm_hour < 12) s[count++] = 'A'; else s[count++] = 'P'; s[count++] = 'M'; } else return 0; break; case 'r': if (count < maxsize - 11) { if (tim_p->tm_hour == 0 || tim_p->tm_hour == 12) { s[count++] = '1'; s[count++] = '2'; } else { sprintf (&s[count], "%.2d", tim_p->tm_hour % 12); count += 2; } s[count++] = ':'; sprintf (&s[count], "%.2d", tim_p->tm_min); count += 2; s[count++] = ':'; sprintf (&s[count], "%.2d", tim_p->tm_sec); count += 2; s[count++] = ' '; if (tim_p->tm_hour < 12) s[count++] = 'A'; else s[count++] = 'P'; s[count++] = 'M'; } else return 0; break; case 'R': if (count < maxsize - 5) { sprintf (&s[count], "%.2d:%.2d", tim_p->tm_hour, tim_p->tm_min); count += 5; } else return 0; break; case 'S': if (count < maxsize - 2) { sprintf (&s[count], "%.2d", tim_p->tm_sec); count += 2; } else return 0; break; case 't': if (count < maxsize - 1) s[count++] = '\t'; else return 0; break; case 'T': case 'X': if (count < maxsize - 8) { sprintf (&s[count], "%.2d:%.2d:%.2d", tim_p->tm_hour, tim_p->tm_min, tim_p->tm_sec); count += 8; } else return 0; break; case 'u': if (count < maxsize - 1) { if (tim_p->tm_wday == 0) s[count++] = '7'; else s[count++] = '0' + tim_p->tm_wday; } else return 0; break; case 'U': if (count < maxsize - 2) { sprintf (&s[count], "%.2d", (tim_p->tm_yday + 7 - tim_p->tm_wday) / 7); count += 2; } else return 0; break; case 'V': if (count < maxsize - 2) { int adjust = iso_year_adjust (tim_p); int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; int week = (tim_p->tm_yday + 10 - wday) / 7; if (adjust > 0) week = 1; else if (adjust < 0) /* Previous year has 53 weeks if current year starts on Fri, and also if current year starts on Sat and previous year was leap year. */ week = 52 + (4 >= (wday - tim_p->tm_yday - isleap (tim_p->tm_year + (YEAR_BASE - 1 - (tim_p->tm_year < 0 ? 0 : 2000))))); sprintf (&s[count], "%.2d", week); count += 2; } else return 0; break; case 'w': if (count < maxsize - 1) s[count++] = '0' + tim_p->tm_wday; else return 0; break; case 'W': if (count < maxsize - 2) { int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; sprintf (&s[count], "%.2d", (tim_p->tm_yday + 7 - wday) / 7); count += 2; } else return 0; break; case 'y': if (count < maxsize - 2) { /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; sprintf (&s[count], "%.2d", year); count += 2; } else return 0; break; case 'Y': { /* Length is not known because of %C%y, so recurse. */ size_t adjust = wceex_strftime (&s[count], maxsize - count, "%C%y", tim_p); if (adjust > 0) count += adjust; else return 0; } break; case 'z': break; case 'Z': break; case '%': if (count < maxsize - 1) s[count++] = '%'; else return 0; break; } if (*format) format++; else break; } if (maxsize) s[count] = '\0'; return count; }
the_stack_data/153869.c
#include <stdio.h> int main() { int n, c, d, a[100], b[100]; scanf("%d", &n); for (c = 0; c < n ; c++) scanf("%d", &a[c]); /* * Copying elements into array b starting from end of array a */ for (c = n - 1, d = 0; c >= 0; c--, d++) b[d] = a[c]; /* * Copying reversed array into the original. * Here we are modifying original array, this is optional. */ for (c = 0; c < n; c++) a[c] = b[c]; for (c = 0; c < n; c++) printf("%d ", a[c]); return 0; }
the_stack_data/32412.c
/* Copyright (c) 2019 The Mode Group Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include<stdio.h> #include<stdlib.h> #include<errno.h> #include<unistd.h> #include<string.h> #include<sys/types.h> #include<netinet/in.h> #include<sys/socket.h> #include<sys/wait.h> #include<netdb.h> #include<arpa/inet.h> #define PORT 53005 #define FILE_NAME "46403o.pdf" int main(int argc, char *argv[]) { int sockfd, numbytes; struct sockaddr_in their_addr; /* client's address information */ struct hostent *he; int str_len = 50000; char str[str_len]; if (argc != 2) { fprintf(stderr,"usage: client hostname\n"); exit(1); } if ((he=gethostbyname(argv[1])) == NULL) { herror("gethostbyname"); exit(1); } if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { perror("socket"); exit(1); } their_addr.sin_family = AF_INET; their_addr.sin_port = htons(PORT); their_addr.sin_addr = *((struct in_addr *)he->h_addr); bzero(&(their_addr.sin_zero), 8); if (sendto(sockfd, NULL, 0, MSG_FASTOPEN, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1) { perror("sendto"); exit(1); } printf("Successfully connected.\n"); FILE *fd = fopen(FILE_NAME, "wb"); if(fd == NULL) { perror("fopen"); } int n; while (1) { if ( (n = recv(sockfd, str, str_len, 0)) == 0) { printf("Server has closed connection!\n"); break; } fwrite(str, 1, n, fd); } printf("Finish.\n"); fclose(fd); close(sockfd); return 0; }
the_stack_data/192330083.c
//@ ltl invariant negative: ( ( ([] (<> ( AP((p0_l0 != 0)) && AP((p0_l1 != 0))))) || (! ([] (<> ( AP((p0_l0 != 0)) && (! AP((p0_l1 != 0)))))))) || (! ([] (<> AP((1.0 <= _diverge_delta)))))); extern float __VERIFIER_nondet_float(void); extern int __VERIFIER_nondet_int(void); char __VERIFIER_nondet_bool(void) { return __VERIFIER_nondet_int() != 0; } float _diverge_delta, _x__diverge_delta; float p16_x, _x_p16_x; float p15_x, _x_p15_x; float p14_x, _x_p14_x; char p12_l0, _x_p12_l0; float p12_x, _x_p12_x; char p11_l0, _x_p11_l0; float p11_x, _x_p11_x; char p16_l1, _x_p16_l1; char p10_l0, _x_p10_l0; float p10_x, _x_p10_x; float p9_x, _x_p9_x; char p2_l1, _x_p2_l1; float p6_x, _x_p6_x; char p8_l1, _x_p8_l1; char p2_l0, _x_p2_l0; char p13_l0, _x_p13_l0; float p2_x, _x_p2_x; char p1_l1, _x_p1_l1; float delta, _x_delta; float p13_x, _x_p13_x; char p0_l0, _x_p0_l0; char p7_l1, _x_p7_l1; float p0_x, _x_p0_x; char p12_l1, _x_p12_l1; char p6_l0, _x_p6_l0; int turn, _x_turn; int id, _x_id; char p14_l0, _x_p14_l0; float p3_x, _x_p3_x; char p15_l1, _x_p15_l1; char p9_l0, _x_p9_l0; float p1_x, _x_p1_x; char p5_l1, _x_p5_l1; char p9_l1, _x_p9_l1; char p3_l0, _x_p3_l0; char p3_l1, _x_p3_l1; char p0_l1, _x_p0_l1; float p7_x, _x_p7_x; char p15_l0, _x_p15_l0; float p4_x, _x_p4_x; char p10_l1, _x_p10_l1; char p4_l0, _x_p4_l0; char p1_l0, _x_p1_l0; char p4_l1, _x_p4_l1; float p8_x, _x_p8_x; char p16_l0, _x_p16_l0; float p5_x, _x_p5_x; char p11_l1, _x_p11_l1; char p5_l0, _x_p5_l0; char p6_l1, _x_p6_l1; char p13_l1, _x_p13_l1; char p7_l0, _x_p7_l0; char p14_l1, _x_p14_l1; char p8_l0, _x_p8_l0; int main() { _diverge_delta = __VERIFIER_nondet_float(); p16_x = __VERIFIER_nondet_float(); p15_x = __VERIFIER_nondet_float(); p14_x = __VERIFIER_nondet_float(); p12_l0 = __VERIFIER_nondet_bool(); p12_x = __VERIFIER_nondet_float(); p11_l0 = __VERIFIER_nondet_bool(); p11_x = __VERIFIER_nondet_float(); p16_l1 = __VERIFIER_nondet_bool(); p10_l0 = __VERIFIER_nondet_bool(); p10_x = __VERIFIER_nondet_float(); p9_x = __VERIFIER_nondet_float(); p2_l1 = __VERIFIER_nondet_bool(); p6_x = __VERIFIER_nondet_float(); p8_l1 = __VERIFIER_nondet_bool(); p2_l0 = __VERIFIER_nondet_bool(); p13_l0 = __VERIFIER_nondet_bool(); p2_x = __VERIFIER_nondet_float(); p1_l1 = __VERIFIER_nondet_bool(); delta = __VERIFIER_nondet_float(); p13_x = __VERIFIER_nondet_float(); p0_l0 = __VERIFIER_nondet_bool(); p7_l1 = __VERIFIER_nondet_bool(); p0_x = __VERIFIER_nondet_float(); p12_l1 = __VERIFIER_nondet_bool(); p6_l0 = __VERIFIER_nondet_bool(); turn = __VERIFIER_nondet_int(); id = __VERIFIER_nondet_int(); p14_l0 = __VERIFIER_nondet_bool(); p3_x = __VERIFIER_nondet_float(); p15_l1 = __VERIFIER_nondet_bool(); p9_l0 = __VERIFIER_nondet_bool(); p1_x = __VERIFIER_nondet_float(); p5_l1 = __VERIFIER_nondet_bool(); p9_l1 = __VERIFIER_nondet_bool(); p3_l0 = __VERIFIER_nondet_bool(); p3_l1 = __VERIFIER_nondet_bool(); p0_l1 = __VERIFIER_nondet_bool(); p7_x = __VERIFIER_nondet_float(); p15_l0 = __VERIFIER_nondet_bool(); p4_x = __VERIFIER_nondet_float(); p10_l1 = __VERIFIER_nondet_bool(); p4_l0 = __VERIFIER_nondet_bool(); p1_l0 = __VERIFIER_nondet_bool(); p4_l1 = __VERIFIER_nondet_bool(); p8_x = __VERIFIER_nondet_float(); p16_l0 = __VERIFIER_nondet_bool(); p5_x = __VERIFIER_nondet_float(); p11_l1 = __VERIFIER_nondet_bool(); p5_l0 = __VERIFIER_nondet_bool(); p6_l1 = __VERIFIER_nondet_bool(); p13_l1 = __VERIFIER_nondet_bool(); p7_l0 = __VERIFIER_nondet_bool(); p14_l1 = __VERIFIER_nondet_bool(); p8_l0 = __VERIFIER_nondet_bool(); int __ok = (((id == 0) && (((((( !(p16_l0 != 0)) && ( !(p16_l1 != 0))) && (p16_x == 0.0)) && (((( !(p16_l0 != 0)) && ( !(p16_l1 != 0))) || ((p16_l0 != 0) && ( !(p16_l1 != 0)))) || (((p16_l1 != 0) && ( !(p16_l0 != 0))) || ((p16_l0 != 0) && (p16_l1 != 0))))) && ((p16_x <= 2.0) || ( !((p16_l1 != 0) && ( !(p16_l0 != 0)))))) && (((((( !(p15_l0 != 0)) && ( !(p15_l1 != 0))) && (p15_x == 0.0)) && (((( !(p15_l0 != 0)) && ( !(p15_l1 != 0))) || ((p15_l0 != 0) && ( !(p15_l1 != 0)))) || (((p15_l1 != 0) && ( !(p15_l0 != 0))) || ((p15_l0 != 0) && (p15_l1 != 0))))) && ((p15_x <= 2.0) || ( !((p15_l1 != 0) && ( !(p15_l0 != 0)))))) && (((((( !(p14_l0 != 0)) && ( !(p14_l1 != 0))) && (p14_x == 0.0)) && (((( !(p14_l0 != 0)) && ( !(p14_l1 != 0))) || ((p14_l0 != 0) && ( !(p14_l1 != 0)))) || (((p14_l1 != 0) && ( !(p14_l0 != 0))) || ((p14_l0 != 0) && (p14_l1 != 0))))) && ((p14_x <= 2.0) || ( !((p14_l1 != 0) && ( !(p14_l0 != 0)))))) && (((((( !(p13_l0 != 0)) && ( !(p13_l1 != 0))) && (p13_x == 0.0)) && (((( !(p13_l0 != 0)) && ( !(p13_l1 != 0))) || ((p13_l0 != 0) && ( !(p13_l1 != 0)))) || (((p13_l1 != 0) && ( !(p13_l0 != 0))) || ((p13_l0 != 0) && (p13_l1 != 0))))) && ((p13_x <= 2.0) || ( !((p13_l1 != 0) && ( !(p13_l0 != 0)))))) && (((((( !(p12_l0 != 0)) && ( !(p12_l1 != 0))) && (p12_x == 0.0)) && (((( !(p12_l0 != 0)) && ( !(p12_l1 != 0))) || ((p12_l0 != 0) && ( !(p12_l1 != 0)))) || (((p12_l1 != 0) && ( !(p12_l0 != 0))) || ((p12_l0 != 0) && (p12_l1 != 0))))) && ((p12_x <= 2.0) || ( !((p12_l1 != 0) && ( !(p12_l0 != 0)))))) && (((((( !(p11_l0 != 0)) && ( !(p11_l1 != 0))) && (p11_x == 0.0)) && (((( !(p11_l0 != 0)) && ( !(p11_l1 != 0))) || ((p11_l0 != 0) && ( !(p11_l1 != 0)))) || (((p11_l1 != 0) && ( !(p11_l0 != 0))) || ((p11_l0 != 0) && (p11_l1 != 0))))) && ((p11_x <= 2.0) || ( !((p11_l1 != 0) && ( !(p11_l0 != 0)))))) && (((((( !(p10_l0 != 0)) && ( !(p10_l1 != 0))) && (p10_x == 0.0)) && (((( !(p10_l0 != 0)) && ( !(p10_l1 != 0))) || ((p10_l0 != 0) && ( !(p10_l1 != 0)))) || (((p10_l1 != 0) && ( !(p10_l0 != 0))) || ((p10_l0 != 0) && (p10_l1 != 0))))) && ((p10_x <= 2.0) || ( !((p10_l1 != 0) && ( !(p10_l0 != 0)))))) && (((((( !(p9_l0 != 0)) && ( !(p9_l1 != 0))) && (p9_x == 0.0)) && (((( !(p9_l0 != 0)) && ( !(p9_l1 != 0))) || ((p9_l0 != 0) && ( !(p9_l1 != 0)))) || (((p9_l1 != 0) && ( !(p9_l0 != 0))) || ((p9_l0 != 0) && (p9_l1 != 0))))) && ((p9_x <= 2.0) || ( !((p9_l1 != 0) && ( !(p9_l0 != 0)))))) && (((((( !(p8_l0 != 0)) && ( !(p8_l1 != 0))) && (p8_x == 0.0)) && (((( !(p8_l0 != 0)) && ( !(p8_l1 != 0))) || ((p8_l0 != 0) && ( !(p8_l1 != 0)))) || (((p8_l1 != 0) && ( !(p8_l0 != 0))) || ((p8_l0 != 0) && (p8_l1 != 0))))) && ((p8_x <= 2.0) || ( !((p8_l1 != 0) && ( !(p8_l0 != 0)))))) && (((((( !(p7_l0 != 0)) && ( !(p7_l1 != 0))) && (p7_x == 0.0)) && (((( !(p7_l0 != 0)) && ( !(p7_l1 != 0))) || ((p7_l0 != 0) && ( !(p7_l1 != 0)))) || (((p7_l1 != 0) && ( !(p7_l0 != 0))) || ((p7_l0 != 0) && (p7_l1 != 0))))) && ((p7_x <= 2.0) || ( !((p7_l1 != 0) && ( !(p7_l0 != 0)))))) && (((((( !(p6_l0 != 0)) && ( !(p6_l1 != 0))) && (p6_x == 0.0)) && (((( !(p6_l0 != 0)) && ( !(p6_l1 != 0))) || ((p6_l0 != 0) && ( !(p6_l1 != 0)))) || (((p6_l1 != 0) && ( !(p6_l0 != 0))) || ((p6_l0 != 0) && (p6_l1 != 0))))) && ((p6_x <= 2.0) || ( !((p6_l1 != 0) && ( !(p6_l0 != 0)))))) && (((((( !(p5_l0 != 0)) && ( !(p5_l1 != 0))) && (p5_x == 0.0)) && (((( !(p5_l0 != 0)) && ( !(p5_l1 != 0))) || ((p5_l0 != 0) && ( !(p5_l1 != 0)))) || (((p5_l1 != 0) && ( !(p5_l0 != 0))) || ((p5_l0 != 0) && (p5_l1 != 0))))) && ((p5_x <= 2.0) || ( !((p5_l1 != 0) && ( !(p5_l0 != 0)))))) && (((((( !(p4_l0 != 0)) && ( !(p4_l1 != 0))) && (p4_x == 0.0)) && (((( !(p4_l0 != 0)) && ( !(p4_l1 != 0))) || ((p4_l0 != 0) && ( !(p4_l1 != 0)))) || (((p4_l1 != 0) && ( !(p4_l0 != 0))) || ((p4_l0 != 0) && (p4_l1 != 0))))) && ((p4_x <= 2.0) || ( !((p4_l1 != 0) && ( !(p4_l0 != 0)))))) && (((((( !(p3_l0 != 0)) && ( !(p3_l1 != 0))) && (p3_x == 0.0)) && (((( !(p3_l0 != 0)) && ( !(p3_l1 != 0))) || ((p3_l0 != 0) && ( !(p3_l1 != 0)))) || (((p3_l1 != 0) && ( !(p3_l0 != 0))) || ((p3_l0 != 0) && (p3_l1 != 0))))) && ((p3_x <= 2.0) || ( !((p3_l1 != 0) && ( !(p3_l0 != 0)))))) && (((((( !(p2_l0 != 0)) && ( !(p2_l1 != 0))) && (p2_x == 0.0)) && (((( !(p2_l0 != 0)) && ( !(p2_l1 != 0))) || ((p2_l0 != 0) && ( !(p2_l1 != 0)))) || (((p2_l1 != 0) && ( !(p2_l0 != 0))) || ((p2_l0 != 0) && (p2_l1 != 0))))) && ((p2_x <= 2.0) || ( !((p2_l1 != 0) && ( !(p2_l0 != 0)))))) && (((((( !(p1_l0 != 0)) && ( !(p1_l1 != 0))) && (p1_x == 0.0)) && (((( !(p1_l0 != 0)) && ( !(p1_l1 != 0))) || ((p1_l0 != 0) && ( !(p1_l1 != 0)))) || (((p1_l1 != 0) && ( !(p1_l0 != 0))) || ((p1_l0 != 0) && (p1_l1 != 0))))) && ((p1_x <= 2.0) || ( !((p1_l1 != 0) && ( !(p1_l0 != 0)))))) && (((((( !(p0_l0 != 0)) && ( !(p0_l1 != 0))) && (p0_x == 0.0)) && (((( !(p0_l0 != 0)) && ( !(p0_l1 != 0))) || ((p0_l0 != 0) && ( !(p0_l1 != 0)))) || (((p0_l1 != 0) && ( !(p0_l0 != 0))) || ((p0_l0 != 0) && (p0_l1 != 0))))) && ((p0_x <= 2.0) || ( !((p0_l1 != 0) && ( !(p0_l0 != 0)))))) && (((0.0 <= delta) && ((id == 17) || ((id == 16) || ((id == 15) || ((id == 14) || ((id == 13) || ((id == 12) || ((id == 11) || ((id == 10) || ((id == 9) || ((id == 8) || ((id == 7) || ((id == 6) || ((id == 5) || ((id == 4) || ((id == 3) || ((id == 2) || ((id == 0) || (id == 1))))))))))))))))))) && ((turn == 17) || ((turn == 16) || ((turn == 15) || ((turn == 14) || ((turn == 13) || ((turn == 12) || ((turn == 11) || ((turn == 10) || ((turn == 9) || ((turn == 8) || ((turn == 7) || ((turn == 6) || ((turn == 5) || ((turn == 4) || ((turn == 3) || ((turn == 1) || (turn == 2)))))))))))))))))))))))))))))))))))) && (delta == _diverge_delta)); while (__ok) { _x__diverge_delta = __VERIFIER_nondet_float(); _x_p16_x = __VERIFIER_nondet_float(); _x_p15_x = __VERIFIER_nondet_float(); _x_p14_x = __VERIFIER_nondet_float(); _x_p12_l0 = __VERIFIER_nondet_bool(); _x_p12_x = __VERIFIER_nondet_float(); _x_p11_l0 = __VERIFIER_nondet_bool(); _x_p11_x = __VERIFIER_nondet_float(); _x_p16_l1 = __VERIFIER_nondet_bool(); _x_p10_l0 = __VERIFIER_nondet_bool(); _x_p10_x = __VERIFIER_nondet_float(); _x_p9_x = __VERIFIER_nondet_float(); _x_p2_l1 = __VERIFIER_nondet_bool(); _x_p6_x = __VERIFIER_nondet_float(); _x_p8_l1 = __VERIFIER_nondet_bool(); _x_p2_l0 = __VERIFIER_nondet_bool(); _x_p13_l0 = __VERIFIER_nondet_bool(); _x_p2_x = __VERIFIER_nondet_float(); _x_p1_l1 = __VERIFIER_nondet_bool(); _x_delta = __VERIFIER_nondet_float(); _x_p13_x = __VERIFIER_nondet_float(); _x_p0_l0 = __VERIFIER_nondet_bool(); _x_p7_l1 = __VERIFIER_nondet_bool(); _x_p0_x = __VERIFIER_nondet_float(); _x_p12_l1 = __VERIFIER_nondet_bool(); _x_p6_l0 = __VERIFIER_nondet_bool(); _x_turn = __VERIFIER_nondet_int(); _x_id = __VERIFIER_nondet_int(); _x_p14_l0 = __VERIFIER_nondet_bool(); _x_p3_x = __VERIFIER_nondet_float(); _x_p15_l1 = __VERIFIER_nondet_bool(); _x_p9_l0 = __VERIFIER_nondet_bool(); _x_p1_x = __VERIFIER_nondet_float(); _x_p5_l1 = __VERIFIER_nondet_bool(); _x_p9_l1 = __VERIFIER_nondet_bool(); _x_p3_l0 = __VERIFIER_nondet_bool(); _x_p3_l1 = __VERIFIER_nondet_bool(); _x_p0_l1 = __VERIFIER_nondet_bool(); _x_p7_x = __VERIFIER_nondet_float(); _x_p15_l0 = __VERIFIER_nondet_bool(); _x_p4_x = __VERIFIER_nondet_float(); _x_p10_l1 = __VERIFIER_nondet_bool(); _x_p4_l0 = __VERIFIER_nondet_bool(); _x_p1_l0 = __VERIFIER_nondet_bool(); _x_p4_l1 = __VERIFIER_nondet_bool(); _x_p8_x = __VERIFIER_nondet_float(); _x_p16_l0 = __VERIFIER_nondet_bool(); _x_p5_x = __VERIFIER_nondet_float(); _x_p11_l1 = __VERIFIER_nondet_bool(); _x_p5_l0 = __VERIFIER_nondet_bool(); _x_p6_l1 = __VERIFIER_nondet_bool(); _x_p13_l1 = __VERIFIER_nondet_bool(); _x_p7_l0 = __VERIFIER_nondet_bool(); _x_p14_l1 = __VERIFIER_nondet_bool(); _x_p8_l0 = __VERIFIER_nondet_bool(); __ok = (((((((((((((( !(_x_p16_l0 != 0)) && ( !(_x_p16_l1 != 0))) || ((_x_p16_l0 != 0) && ( !(_x_p16_l1 != 0)))) || (((_x_p16_l1 != 0) && ( !(_x_p16_l0 != 0))) || ((_x_p16_l0 != 0) && (_x_p16_l1 != 0)))) && ((_x_p16_x <= 2.0) || ( !((_x_p16_l1 != 0) && ( !(_x_p16_l0 != 0)))))) && (((((p16_l0 != 0) == (_x_p16_l0 != 0)) && ((p16_l1 != 0) == (_x_p16_l1 != 0))) && ((delta + (p16_x + (-1.0 * _x_p16_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 17)))))) && ((((id == 0) && ((_x_p16_l1 != 0) && ( !(_x_p16_l0 != 0)))) && ((id == _x_id) && (_x_p16_x == 0.0))) || ( !((( !(p16_l0 != 0)) && ( !(p16_l1 != 0))) && ((delta == 0.0) && (turn == 17)))))) && (((((_x_p16_l0 != 0) && ( !(_x_p16_l1 != 0))) && (p16_x <= 2.0)) && ((_x_p16_x == 0.0) && (_x_id == 17))) || ( !(((p16_l1 != 0) && ( !(p16_l0 != 0))) && ((delta == 0.0) && (turn == 17)))))) && (((( !(_x_p16_l0 != 0)) && ( !(_x_p16_l1 != 0))) || ((_x_p16_l0 != 0) && (_x_p16_l1 != 0))) || ( !(((p16_l0 != 0) && ( !(p16_l1 != 0))) && ((delta == 0.0) && (turn == 17)))))) && ((((id == _x_id) && (_x_p16_x == 0.0)) && (( !(p16_x <= 2.0)) && ( !(id == 17)))) || ( !(((delta == 0.0) && (turn == 17)) && ((( !(_x_p16_l0 != 0)) && ( !(_x_p16_l1 != 0))) && ((p16_l0 != 0) && ( !(p16_l1 != 0)))))))) && ((((id == _x_id) && (p16_x == _x_p16_x)) && (( !(p16_x <= 2.0)) && (id == 17))) || ( !(((delta == 0.0) && (turn == 17)) && (((p16_l0 != 0) && ( !(p16_l1 != 0))) && ((_x_p16_l0 != 0) && (_x_p16_l1 != 0))))))) && (((( !(_x_p16_l0 != 0)) && ( !(_x_p16_l1 != 0))) && ((_x_id == 0) && (p16_x == _x_p16_x))) || ( !(((p16_l0 != 0) && (p16_l1 != 0)) && ((delta == 0.0) && (turn == 17)))))) && ((((((((((((( !(_x_p15_l0 != 0)) && ( !(_x_p15_l1 != 0))) || ((_x_p15_l0 != 0) && ( !(_x_p15_l1 != 0)))) || (((_x_p15_l1 != 0) && ( !(_x_p15_l0 != 0))) || ((_x_p15_l0 != 0) && (_x_p15_l1 != 0)))) && ((_x_p15_x <= 2.0) || ( !((_x_p15_l1 != 0) && ( !(_x_p15_l0 != 0)))))) && (((((p15_l0 != 0) == (_x_p15_l0 != 0)) && ((p15_l1 != 0) == (_x_p15_l1 != 0))) && ((delta + (p15_x + (-1.0 * _x_p15_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 16)))))) && ((((id == 0) && ((_x_p15_l1 != 0) && ( !(_x_p15_l0 != 0)))) && ((id == _x_id) && (_x_p15_x == 0.0))) || ( !((( !(p15_l0 != 0)) && ( !(p15_l1 != 0))) && ((delta == 0.0) && (turn == 16)))))) && (((((_x_p15_l0 != 0) && ( !(_x_p15_l1 != 0))) && (p15_x <= 2.0)) && ((_x_p15_x == 0.0) && (_x_id == 16))) || ( !(((p15_l1 != 0) && ( !(p15_l0 != 0))) && ((delta == 0.0) && (turn == 16)))))) && (((( !(_x_p15_l0 != 0)) && ( !(_x_p15_l1 != 0))) || ((_x_p15_l0 != 0) && (_x_p15_l1 != 0))) || ( !(((p15_l0 != 0) && ( !(p15_l1 != 0))) && ((delta == 0.0) && (turn == 16)))))) && ((((id == _x_id) && (_x_p15_x == 0.0)) && (( !(p15_x <= 2.0)) && ( !(id == 16)))) || ( !(((delta == 0.0) && (turn == 16)) && ((( !(_x_p15_l0 != 0)) && ( !(_x_p15_l1 != 0))) && ((p15_l0 != 0) && ( !(p15_l1 != 0)))))))) && ((((id == _x_id) && (p15_x == _x_p15_x)) && (( !(p15_x <= 2.0)) && (id == 16))) || ( !(((delta == 0.0) && (turn == 16)) && (((p15_l0 != 0) && ( !(p15_l1 != 0))) && ((_x_p15_l0 != 0) && (_x_p15_l1 != 0))))))) && (((( !(_x_p15_l0 != 0)) && ( !(_x_p15_l1 != 0))) && ((_x_id == 0) && (p15_x == _x_p15_x))) || ( !(((p15_l0 != 0) && (p15_l1 != 0)) && ((delta == 0.0) && (turn == 16)))))) && ((((((((((((( !(_x_p14_l0 != 0)) && ( !(_x_p14_l1 != 0))) || ((_x_p14_l0 != 0) && ( !(_x_p14_l1 != 0)))) || (((_x_p14_l1 != 0) && ( !(_x_p14_l0 != 0))) || ((_x_p14_l0 != 0) && (_x_p14_l1 != 0)))) && ((_x_p14_x <= 2.0) || ( !((_x_p14_l1 != 0) && ( !(_x_p14_l0 != 0)))))) && (((((p14_l0 != 0) == (_x_p14_l0 != 0)) && ((p14_l1 != 0) == (_x_p14_l1 != 0))) && ((delta + (p14_x + (-1.0 * _x_p14_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 15)))))) && ((((id == 0) && ((_x_p14_l1 != 0) && ( !(_x_p14_l0 != 0)))) && ((id == _x_id) && (_x_p14_x == 0.0))) || ( !((( !(p14_l0 != 0)) && ( !(p14_l1 != 0))) && ((delta == 0.0) && (turn == 15)))))) && (((((_x_p14_l0 != 0) && ( !(_x_p14_l1 != 0))) && (p14_x <= 2.0)) && ((_x_p14_x == 0.0) && (_x_id == 15))) || ( !(((p14_l1 != 0) && ( !(p14_l0 != 0))) && ((delta == 0.0) && (turn == 15)))))) && (((( !(_x_p14_l0 != 0)) && ( !(_x_p14_l1 != 0))) || ((_x_p14_l0 != 0) && (_x_p14_l1 != 0))) || ( !(((p14_l0 != 0) && ( !(p14_l1 != 0))) && ((delta == 0.0) && (turn == 15)))))) && ((((id == _x_id) && (_x_p14_x == 0.0)) && (( !(p14_x <= 2.0)) && ( !(id == 15)))) || ( !(((delta == 0.0) && (turn == 15)) && ((( !(_x_p14_l0 != 0)) && ( !(_x_p14_l1 != 0))) && ((p14_l0 != 0) && ( !(p14_l1 != 0)))))))) && ((((id == _x_id) && (p14_x == _x_p14_x)) && (( !(p14_x <= 2.0)) && (id == 15))) || ( !(((delta == 0.0) && (turn == 15)) && (((p14_l0 != 0) && ( !(p14_l1 != 0))) && ((_x_p14_l0 != 0) && (_x_p14_l1 != 0))))))) && (((( !(_x_p14_l0 != 0)) && ( !(_x_p14_l1 != 0))) && ((_x_id == 0) && (p14_x == _x_p14_x))) || ( !(((p14_l0 != 0) && (p14_l1 != 0)) && ((delta == 0.0) && (turn == 15)))))) && ((((((((((((( !(_x_p13_l0 != 0)) && ( !(_x_p13_l1 != 0))) || ((_x_p13_l0 != 0) && ( !(_x_p13_l1 != 0)))) || (((_x_p13_l1 != 0) && ( !(_x_p13_l0 != 0))) || ((_x_p13_l0 != 0) && (_x_p13_l1 != 0)))) && ((_x_p13_x <= 2.0) || ( !((_x_p13_l1 != 0) && ( !(_x_p13_l0 != 0)))))) && (((((p13_l0 != 0) == (_x_p13_l0 != 0)) && ((p13_l1 != 0) == (_x_p13_l1 != 0))) && ((delta + (p13_x + (-1.0 * _x_p13_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 14)))))) && ((((id == 0) && ((_x_p13_l1 != 0) && ( !(_x_p13_l0 != 0)))) && ((id == _x_id) && (_x_p13_x == 0.0))) || ( !((( !(p13_l0 != 0)) && ( !(p13_l1 != 0))) && ((delta == 0.0) && (turn == 14)))))) && (((((_x_p13_l0 != 0) && ( !(_x_p13_l1 != 0))) && (p13_x <= 2.0)) && ((_x_p13_x == 0.0) && (_x_id == 14))) || ( !(((p13_l1 != 0) && ( !(p13_l0 != 0))) && ((delta == 0.0) && (turn == 14)))))) && (((( !(_x_p13_l0 != 0)) && ( !(_x_p13_l1 != 0))) || ((_x_p13_l0 != 0) && (_x_p13_l1 != 0))) || ( !(((p13_l0 != 0) && ( !(p13_l1 != 0))) && ((delta == 0.0) && (turn == 14)))))) && ((((id == _x_id) && (_x_p13_x == 0.0)) && (( !(p13_x <= 2.0)) && ( !(id == 14)))) || ( !(((delta == 0.0) && (turn == 14)) && ((( !(_x_p13_l0 != 0)) && ( !(_x_p13_l1 != 0))) && ((p13_l0 != 0) && ( !(p13_l1 != 0)))))))) && ((((id == _x_id) && (p13_x == _x_p13_x)) && (( !(p13_x <= 2.0)) && (id == 14))) || ( !(((delta == 0.0) && (turn == 14)) && (((p13_l0 != 0) && ( !(p13_l1 != 0))) && ((_x_p13_l0 != 0) && (_x_p13_l1 != 0))))))) && (((( !(_x_p13_l0 != 0)) && ( !(_x_p13_l1 != 0))) && ((_x_id == 0) && (p13_x == _x_p13_x))) || ( !(((p13_l0 != 0) && (p13_l1 != 0)) && ((delta == 0.0) && (turn == 14)))))) && ((((((((((((( !(_x_p12_l0 != 0)) && ( !(_x_p12_l1 != 0))) || ((_x_p12_l0 != 0) && ( !(_x_p12_l1 != 0)))) || (((_x_p12_l1 != 0) && ( !(_x_p12_l0 != 0))) || ((_x_p12_l0 != 0) && (_x_p12_l1 != 0)))) && ((_x_p12_x <= 2.0) || ( !((_x_p12_l1 != 0) && ( !(_x_p12_l0 != 0)))))) && (((((p12_l0 != 0) == (_x_p12_l0 != 0)) && ((p12_l1 != 0) == (_x_p12_l1 != 0))) && ((delta + (p12_x + (-1.0 * _x_p12_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 13)))))) && ((((id == 0) && ((_x_p12_l1 != 0) && ( !(_x_p12_l0 != 0)))) && ((id == _x_id) && (_x_p12_x == 0.0))) || ( !((( !(p12_l0 != 0)) && ( !(p12_l1 != 0))) && ((delta == 0.0) && (turn == 13)))))) && (((((_x_p12_l0 != 0) && ( !(_x_p12_l1 != 0))) && (p12_x <= 2.0)) && ((_x_p12_x == 0.0) && (_x_id == 13))) || ( !(((p12_l1 != 0) && ( !(p12_l0 != 0))) && ((delta == 0.0) && (turn == 13)))))) && (((( !(_x_p12_l0 != 0)) && ( !(_x_p12_l1 != 0))) || ((_x_p12_l0 != 0) && (_x_p12_l1 != 0))) || ( !(((p12_l0 != 0) && ( !(p12_l1 != 0))) && ((delta == 0.0) && (turn == 13)))))) && ((((id == _x_id) && (_x_p12_x == 0.0)) && (( !(p12_x <= 2.0)) && ( !(id == 13)))) || ( !(((delta == 0.0) && (turn == 13)) && ((( !(_x_p12_l0 != 0)) && ( !(_x_p12_l1 != 0))) && ((p12_l0 != 0) && ( !(p12_l1 != 0)))))))) && ((((id == _x_id) && (p12_x == _x_p12_x)) && (( !(p12_x <= 2.0)) && (id == 13))) || ( !(((delta == 0.0) && (turn == 13)) && (((p12_l0 != 0) && ( !(p12_l1 != 0))) && ((_x_p12_l0 != 0) && (_x_p12_l1 != 0))))))) && (((( !(_x_p12_l0 != 0)) && ( !(_x_p12_l1 != 0))) && ((_x_id == 0) && (p12_x == _x_p12_x))) || ( !(((p12_l0 != 0) && (p12_l1 != 0)) && ((delta == 0.0) && (turn == 13)))))) && ((((((((((((( !(_x_p11_l0 != 0)) && ( !(_x_p11_l1 != 0))) || ((_x_p11_l0 != 0) && ( !(_x_p11_l1 != 0)))) || (((_x_p11_l1 != 0) && ( !(_x_p11_l0 != 0))) || ((_x_p11_l0 != 0) && (_x_p11_l1 != 0)))) && ((_x_p11_x <= 2.0) || ( !((_x_p11_l1 != 0) && ( !(_x_p11_l0 != 0)))))) && (((((p11_l0 != 0) == (_x_p11_l0 != 0)) && ((p11_l1 != 0) == (_x_p11_l1 != 0))) && ((delta + (p11_x + (-1.0 * _x_p11_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 12)))))) && ((((id == 0) && ((_x_p11_l1 != 0) && ( !(_x_p11_l0 != 0)))) && ((id == _x_id) && (_x_p11_x == 0.0))) || ( !((( !(p11_l0 != 0)) && ( !(p11_l1 != 0))) && ((delta == 0.0) && (turn == 12)))))) && (((((_x_p11_l0 != 0) && ( !(_x_p11_l1 != 0))) && (p11_x <= 2.0)) && ((_x_p11_x == 0.0) && (_x_id == 12))) || ( !(((p11_l1 != 0) && ( !(p11_l0 != 0))) && ((delta == 0.0) && (turn == 12)))))) && (((( !(_x_p11_l0 != 0)) && ( !(_x_p11_l1 != 0))) || ((_x_p11_l0 != 0) && (_x_p11_l1 != 0))) || ( !(((p11_l0 != 0) && ( !(p11_l1 != 0))) && ((delta == 0.0) && (turn == 12)))))) && ((((id == _x_id) && (_x_p11_x == 0.0)) && (( !(p11_x <= 2.0)) && ( !(id == 12)))) || ( !(((delta == 0.0) && (turn == 12)) && ((( !(_x_p11_l0 != 0)) && ( !(_x_p11_l1 != 0))) && ((p11_l0 != 0) && ( !(p11_l1 != 0)))))))) && ((((id == _x_id) && (p11_x == _x_p11_x)) && (( !(p11_x <= 2.0)) && (id == 12))) || ( !(((delta == 0.0) && (turn == 12)) && (((p11_l0 != 0) && ( !(p11_l1 != 0))) && ((_x_p11_l0 != 0) && (_x_p11_l1 != 0))))))) && (((( !(_x_p11_l0 != 0)) && ( !(_x_p11_l1 != 0))) && ((_x_id == 0) && (p11_x == _x_p11_x))) || ( !(((p11_l0 != 0) && (p11_l1 != 0)) && ((delta == 0.0) && (turn == 12)))))) && ((((((((((((( !(_x_p10_l0 != 0)) && ( !(_x_p10_l1 != 0))) || ((_x_p10_l0 != 0) && ( !(_x_p10_l1 != 0)))) || (((_x_p10_l1 != 0) && ( !(_x_p10_l0 != 0))) || ((_x_p10_l0 != 0) && (_x_p10_l1 != 0)))) && ((_x_p10_x <= 2.0) || ( !((_x_p10_l1 != 0) && ( !(_x_p10_l0 != 0)))))) && (((((p10_l0 != 0) == (_x_p10_l0 != 0)) && ((p10_l1 != 0) == (_x_p10_l1 != 0))) && ((delta + (p10_x + (-1.0 * _x_p10_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 11)))))) && ((((id == 0) && ((_x_p10_l1 != 0) && ( !(_x_p10_l0 != 0)))) && ((id == _x_id) && (_x_p10_x == 0.0))) || ( !((( !(p10_l0 != 0)) && ( !(p10_l1 != 0))) && ((delta == 0.0) && (turn == 11)))))) && (((((_x_p10_l0 != 0) && ( !(_x_p10_l1 != 0))) && (p10_x <= 2.0)) && ((_x_p10_x == 0.0) && (_x_id == 11))) || ( !(((p10_l1 != 0) && ( !(p10_l0 != 0))) && ((delta == 0.0) && (turn == 11)))))) && (((( !(_x_p10_l0 != 0)) && ( !(_x_p10_l1 != 0))) || ((_x_p10_l0 != 0) && (_x_p10_l1 != 0))) || ( !(((p10_l0 != 0) && ( !(p10_l1 != 0))) && ((delta == 0.0) && (turn == 11)))))) && ((((id == _x_id) && (_x_p10_x == 0.0)) && (( !(p10_x <= 2.0)) && ( !(id == 11)))) || ( !(((delta == 0.0) && (turn == 11)) && ((( !(_x_p10_l0 != 0)) && ( !(_x_p10_l1 != 0))) && ((p10_l0 != 0) && ( !(p10_l1 != 0)))))))) && ((((id == _x_id) && (p10_x == _x_p10_x)) && (( !(p10_x <= 2.0)) && (id == 11))) || ( !(((delta == 0.0) && (turn == 11)) && (((p10_l0 != 0) && ( !(p10_l1 != 0))) && ((_x_p10_l0 != 0) && (_x_p10_l1 != 0))))))) && (((( !(_x_p10_l0 != 0)) && ( !(_x_p10_l1 != 0))) && ((_x_id == 0) && (p10_x == _x_p10_x))) || ( !(((p10_l0 != 0) && (p10_l1 != 0)) && ((delta == 0.0) && (turn == 11)))))) && ((((((((((((( !(_x_p9_l0 != 0)) && ( !(_x_p9_l1 != 0))) || ((_x_p9_l0 != 0) && ( !(_x_p9_l1 != 0)))) || (((_x_p9_l1 != 0) && ( !(_x_p9_l0 != 0))) || ((_x_p9_l0 != 0) && (_x_p9_l1 != 0)))) && ((_x_p9_x <= 2.0) || ( !((_x_p9_l1 != 0) && ( !(_x_p9_l0 != 0)))))) && (((((p9_l0 != 0) == (_x_p9_l0 != 0)) && ((p9_l1 != 0) == (_x_p9_l1 != 0))) && ((delta + (p9_x + (-1.0 * _x_p9_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 10)))))) && ((((id == 0) && ((_x_p9_l1 != 0) && ( !(_x_p9_l0 != 0)))) && ((id == _x_id) && (_x_p9_x == 0.0))) || ( !((( !(p9_l0 != 0)) && ( !(p9_l1 != 0))) && ((delta == 0.0) && (turn == 10)))))) && (((((_x_p9_l0 != 0) && ( !(_x_p9_l1 != 0))) && (p9_x <= 2.0)) && ((_x_p9_x == 0.0) && (_x_id == 10))) || ( !(((p9_l1 != 0) && ( !(p9_l0 != 0))) && ((delta == 0.0) && (turn == 10)))))) && (((( !(_x_p9_l0 != 0)) && ( !(_x_p9_l1 != 0))) || ((_x_p9_l0 != 0) && (_x_p9_l1 != 0))) || ( !(((p9_l0 != 0) && ( !(p9_l1 != 0))) && ((delta == 0.0) && (turn == 10)))))) && ((((id == _x_id) && (_x_p9_x == 0.0)) && (( !(p9_x <= 2.0)) && ( !(id == 10)))) || ( !(((delta == 0.0) && (turn == 10)) && ((( !(_x_p9_l0 != 0)) && ( !(_x_p9_l1 != 0))) && ((p9_l0 != 0) && ( !(p9_l1 != 0)))))))) && ((((id == _x_id) && (p9_x == _x_p9_x)) && (( !(p9_x <= 2.0)) && (id == 10))) || ( !(((delta == 0.0) && (turn == 10)) && (((p9_l0 != 0) && ( !(p9_l1 != 0))) && ((_x_p9_l0 != 0) && (_x_p9_l1 != 0))))))) && (((( !(_x_p9_l0 != 0)) && ( !(_x_p9_l1 != 0))) && ((_x_id == 0) && (p9_x == _x_p9_x))) || ( !(((p9_l0 != 0) && (p9_l1 != 0)) && ((delta == 0.0) && (turn == 10)))))) && ((((((((((((( !(_x_p8_l0 != 0)) && ( !(_x_p8_l1 != 0))) || ((_x_p8_l0 != 0) && ( !(_x_p8_l1 != 0)))) || (((_x_p8_l1 != 0) && ( !(_x_p8_l0 != 0))) || ((_x_p8_l0 != 0) && (_x_p8_l1 != 0)))) && ((_x_p8_x <= 2.0) || ( !((_x_p8_l1 != 0) && ( !(_x_p8_l0 != 0)))))) && (((((p8_l0 != 0) == (_x_p8_l0 != 0)) && ((p8_l1 != 0) == (_x_p8_l1 != 0))) && ((delta + (p8_x + (-1.0 * _x_p8_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 9)))))) && ((((id == 0) && ((_x_p8_l1 != 0) && ( !(_x_p8_l0 != 0)))) && ((id == _x_id) && (_x_p8_x == 0.0))) || ( !((( !(p8_l0 != 0)) && ( !(p8_l1 != 0))) && ((delta == 0.0) && (turn == 9)))))) && (((((_x_p8_l0 != 0) && ( !(_x_p8_l1 != 0))) && (p8_x <= 2.0)) && ((_x_p8_x == 0.0) && (_x_id == 9))) || ( !(((p8_l1 != 0) && ( !(p8_l0 != 0))) && ((delta == 0.0) && (turn == 9)))))) && (((( !(_x_p8_l0 != 0)) && ( !(_x_p8_l1 != 0))) || ((_x_p8_l0 != 0) && (_x_p8_l1 != 0))) || ( !(((p8_l0 != 0) && ( !(p8_l1 != 0))) && ((delta == 0.0) && (turn == 9)))))) && ((((id == _x_id) && (_x_p8_x == 0.0)) && (( !(p8_x <= 2.0)) && ( !(id == 9)))) || ( !(((delta == 0.0) && (turn == 9)) && ((( !(_x_p8_l0 != 0)) && ( !(_x_p8_l1 != 0))) && ((p8_l0 != 0) && ( !(p8_l1 != 0)))))))) && ((((id == _x_id) && (p8_x == _x_p8_x)) && (( !(p8_x <= 2.0)) && (id == 9))) || ( !(((delta == 0.0) && (turn == 9)) && (((p8_l0 != 0) && ( !(p8_l1 != 0))) && ((_x_p8_l0 != 0) && (_x_p8_l1 != 0))))))) && (((( !(_x_p8_l0 != 0)) && ( !(_x_p8_l1 != 0))) && ((_x_id == 0) && (p8_x == _x_p8_x))) || ( !(((p8_l0 != 0) && (p8_l1 != 0)) && ((delta == 0.0) && (turn == 9)))))) && ((((((((((((( !(_x_p7_l0 != 0)) && ( !(_x_p7_l1 != 0))) || ((_x_p7_l0 != 0) && ( !(_x_p7_l1 != 0)))) || (((_x_p7_l1 != 0) && ( !(_x_p7_l0 != 0))) || ((_x_p7_l0 != 0) && (_x_p7_l1 != 0)))) && ((_x_p7_x <= 2.0) || ( !((_x_p7_l1 != 0) && ( !(_x_p7_l0 != 0)))))) && (((((p7_l0 != 0) == (_x_p7_l0 != 0)) && ((p7_l1 != 0) == (_x_p7_l1 != 0))) && ((delta + (p7_x + (-1.0 * _x_p7_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 8)))))) && ((((id == 0) && ((_x_p7_l1 != 0) && ( !(_x_p7_l0 != 0)))) && ((id == _x_id) && (_x_p7_x == 0.0))) || ( !((( !(p7_l0 != 0)) && ( !(p7_l1 != 0))) && ((delta == 0.0) && (turn == 8)))))) && (((((_x_p7_l0 != 0) && ( !(_x_p7_l1 != 0))) && (p7_x <= 2.0)) && ((_x_p7_x == 0.0) && (_x_id == 8))) || ( !(((p7_l1 != 0) && ( !(p7_l0 != 0))) && ((delta == 0.0) && (turn == 8)))))) && (((( !(_x_p7_l0 != 0)) && ( !(_x_p7_l1 != 0))) || ((_x_p7_l0 != 0) && (_x_p7_l1 != 0))) || ( !(((p7_l0 != 0) && ( !(p7_l1 != 0))) && ((delta == 0.0) && (turn == 8)))))) && ((((id == _x_id) && (_x_p7_x == 0.0)) && (( !(p7_x <= 2.0)) && ( !(id == 8)))) || ( !(((delta == 0.0) && (turn == 8)) && ((( !(_x_p7_l0 != 0)) && ( !(_x_p7_l1 != 0))) && ((p7_l0 != 0) && ( !(p7_l1 != 0)))))))) && ((((id == _x_id) && (p7_x == _x_p7_x)) && (( !(p7_x <= 2.0)) && (id == 8))) || ( !(((delta == 0.0) && (turn == 8)) && (((p7_l0 != 0) && ( !(p7_l1 != 0))) && ((_x_p7_l0 != 0) && (_x_p7_l1 != 0))))))) && (((( !(_x_p7_l0 != 0)) && ( !(_x_p7_l1 != 0))) && ((_x_id == 0) && (p7_x == _x_p7_x))) || ( !(((p7_l0 != 0) && (p7_l1 != 0)) && ((delta == 0.0) && (turn == 8)))))) && ((((((((((((( !(_x_p6_l0 != 0)) && ( !(_x_p6_l1 != 0))) || ((_x_p6_l0 != 0) && ( !(_x_p6_l1 != 0)))) || (((_x_p6_l1 != 0) && ( !(_x_p6_l0 != 0))) || ((_x_p6_l0 != 0) && (_x_p6_l1 != 0)))) && ((_x_p6_x <= 2.0) || ( !((_x_p6_l1 != 0) && ( !(_x_p6_l0 != 0)))))) && (((((p6_l0 != 0) == (_x_p6_l0 != 0)) && ((p6_l1 != 0) == (_x_p6_l1 != 0))) && ((delta + (p6_x + (-1.0 * _x_p6_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 7)))))) && ((((id == 0) && ((_x_p6_l1 != 0) && ( !(_x_p6_l0 != 0)))) && ((id == _x_id) && (_x_p6_x == 0.0))) || ( !((( !(p6_l0 != 0)) && ( !(p6_l1 != 0))) && ((delta == 0.0) && (turn == 7)))))) && (((((_x_p6_l0 != 0) && ( !(_x_p6_l1 != 0))) && (p6_x <= 2.0)) && ((_x_p6_x == 0.0) && (_x_id == 7))) || ( !(((p6_l1 != 0) && ( !(p6_l0 != 0))) && ((delta == 0.0) && (turn == 7)))))) && (((( !(_x_p6_l0 != 0)) && ( !(_x_p6_l1 != 0))) || ((_x_p6_l0 != 0) && (_x_p6_l1 != 0))) || ( !(((p6_l0 != 0) && ( !(p6_l1 != 0))) && ((delta == 0.0) && (turn == 7)))))) && ((((id == _x_id) && (_x_p6_x == 0.0)) && (( !(p6_x <= 2.0)) && ( !(id == 7)))) || ( !(((delta == 0.0) && (turn == 7)) && ((( !(_x_p6_l0 != 0)) && ( !(_x_p6_l1 != 0))) && ((p6_l0 != 0) && ( !(p6_l1 != 0)))))))) && ((((id == _x_id) && (p6_x == _x_p6_x)) && (( !(p6_x <= 2.0)) && (id == 7))) || ( !(((delta == 0.0) && (turn == 7)) && (((p6_l0 != 0) && ( !(p6_l1 != 0))) && ((_x_p6_l0 != 0) && (_x_p6_l1 != 0))))))) && (((( !(_x_p6_l0 != 0)) && ( !(_x_p6_l1 != 0))) && ((_x_id == 0) && (p6_x == _x_p6_x))) || ( !(((p6_l0 != 0) && (p6_l1 != 0)) && ((delta == 0.0) && (turn == 7)))))) && ((((((((((((( !(_x_p5_l0 != 0)) && ( !(_x_p5_l1 != 0))) || ((_x_p5_l0 != 0) && ( !(_x_p5_l1 != 0)))) || (((_x_p5_l1 != 0) && ( !(_x_p5_l0 != 0))) || ((_x_p5_l0 != 0) && (_x_p5_l1 != 0)))) && ((_x_p5_x <= 2.0) || ( !((_x_p5_l1 != 0) && ( !(_x_p5_l0 != 0)))))) && (((((p5_l0 != 0) == (_x_p5_l0 != 0)) && ((p5_l1 != 0) == (_x_p5_l1 != 0))) && ((delta + (p5_x + (-1.0 * _x_p5_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 6)))))) && ((((id == 0) && ((_x_p5_l1 != 0) && ( !(_x_p5_l0 != 0)))) && ((id == _x_id) && (_x_p5_x == 0.0))) || ( !((( !(p5_l0 != 0)) && ( !(p5_l1 != 0))) && ((delta == 0.0) && (turn == 6)))))) && (((((_x_p5_l0 != 0) && ( !(_x_p5_l1 != 0))) && (p5_x <= 2.0)) && ((_x_p5_x == 0.0) && (_x_id == 6))) || ( !(((p5_l1 != 0) && ( !(p5_l0 != 0))) && ((delta == 0.0) && (turn == 6)))))) && (((( !(_x_p5_l0 != 0)) && ( !(_x_p5_l1 != 0))) || ((_x_p5_l0 != 0) && (_x_p5_l1 != 0))) || ( !(((p5_l0 != 0) && ( !(p5_l1 != 0))) && ((delta == 0.0) && (turn == 6)))))) && ((((id == _x_id) && (_x_p5_x == 0.0)) && (( !(p5_x <= 2.0)) && ( !(id == 6)))) || ( !(((delta == 0.0) && (turn == 6)) && ((( !(_x_p5_l0 != 0)) && ( !(_x_p5_l1 != 0))) && ((p5_l0 != 0) && ( !(p5_l1 != 0)))))))) && ((((id == _x_id) && (p5_x == _x_p5_x)) && (( !(p5_x <= 2.0)) && (id == 6))) || ( !(((delta == 0.0) && (turn == 6)) && (((p5_l0 != 0) && ( !(p5_l1 != 0))) && ((_x_p5_l0 != 0) && (_x_p5_l1 != 0))))))) && (((( !(_x_p5_l0 != 0)) && ( !(_x_p5_l1 != 0))) && ((_x_id == 0) && (p5_x == _x_p5_x))) || ( !(((p5_l0 != 0) && (p5_l1 != 0)) && ((delta == 0.0) && (turn == 6)))))) && ((((((((((((( !(_x_p4_l0 != 0)) && ( !(_x_p4_l1 != 0))) || ((_x_p4_l0 != 0) && ( !(_x_p4_l1 != 0)))) || (((_x_p4_l1 != 0) && ( !(_x_p4_l0 != 0))) || ((_x_p4_l0 != 0) && (_x_p4_l1 != 0)))) && ((_x_p4_x <= 2.0) || ( !((_x_p4_l1 != 0) && ( !(_x_p4_l0 != 0)))))) && (((((p4_l0 != 0) == (_x_p4_l0 != 0)) && ((p4_l1 != 0) == (_x_p4_l1 != 0))) && ((delta + (p4_x + (-1.0 * _x_p4_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 5)))))) && ((((id == 0) && ((_x_p4_l1 != 0) && ( !(_x_p4_l0 != 0)))) && ((id == _x_id) && (_x_p4_x == 0.0))) || ( !((( !(p4_l0 != 0)) && ( !(p4_l1 != 0))) && ((delta == 0.0) && (turn == 5)))))) && (((((_x_p4_l0 != 0) && ( !(_x_p4_l1 != 0))) && (p4_x <= 2.0)) && ((_x_p4_x == 0.0) && (_x_id == 5))) || ( !(((p4_l1 != 0) && ( !(p4_l0 != 0))) && ((delta == 0.0) && (turn == 5)))))) && (((( !(_x_p4_l0 != 0)) && ( !(_x_p4_l1 != 0))) || ((_x_p4_l0 != 0) && (_x_p4_l1 != 0))) || ( !(((p4_l0 != 0) && ( !(p4_l1 != 0))) && ((delta == 0.0) && (turn == 5)))))) && ((((id == _x_id) && (_x_p4_x == 0.0)) && (( !(p4_x <= 2.0)) && ( !(id == 5)))) || ( !(((delta == 0.0) && (turn == 5)) && ((( !(_x_p4_l0 != 0)) && ( !(_x_p4_l1 != 0))) && ((p4_l0 != 0) && ( !(p4_l1 != 0)))))))) && ((((id == _x_id) && (p4_x == _x_p4_x)) && (( !(p4_x <= 2.0)) && (id == 5))) || ( !(((delta == 0.0) && (turn == 5)) && (((p4_l0 != 0) && ( !(p4_l1 != 0))) && ((_x_p4_l0 != 0) && (_x_p4_l1 != 0))))))) && (((( !(_x_p4_l0 != 0)) && ( !(_x_p4_l1 != 0))) && ((_x_id == 0) && (p4_x == _x_p4_x))) || ( !(((p4_l0 != 0) && (p4_l1 != 0)) && ((delta == 0.0) && (turn == 5)))))) && ((((((((((((( !(_x_p3_l0 != 0)) && ( !(_x_p3_l1 != 0))) || ((_x_p3_l0 != 0) && ( !(_x_p3_l1 != 0)))) || (((_x_p3_l1 != 0) && ( !(_x_p3_l0 != 0))) || ((_x_p3_l0 != 0) && (_x_p3_l1 != 0)))) && ((_x_p3_x <= 2.0) || ( !((_x_p3_l1 != 0) && ( !(_x_p3_l0 != 0)))))) && (((((p3_l0 != 0) == (_x_p3_l0 != 0)) && ((p3_l1 != 0) == (_x_p3_l1 != 0))) && ((delta + (p3_x + (-1.0 * _x_p3_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 4)))))) && ((((id == 0) && ((_x_p3_l1 != 0) && ( !(_x_p3_l0 != 0)))) && ((id == _x_id) && (_x_p3_x == 0.0))) || ( !((( !(p3_l0 != 0)) && ( !(p3_l1 != 0))) && ((delta == 0.0) && (turn == 4)))))) && (((((_x_p3_l0 != 0) && ( !(_x_p3_l1 != 0))) && (p3_x <= 2.0)) && ((_x_p3_x == 0.0) && (_x_id == 4))) || ( !(((p3_l1 != 0) && ( !(p3_l0 != 0))) && ((delta == 0.0) && (turn == 4)))))) && (((( !(_x_p3_l0 != 0)) && ( !(_x_p3_l1 != 0))) || ((_x_p3_l0 != 0) && (_x_p3_l1 != 0))) || ( !(((p3_l0 != 0) && ( !(p3_l1 != 0))) && ((delta == 0.0) && (turn == 4)))))) && ((((id == _x_id) && (_x_p3_x == 0.0)) && (( !(p3_x <= 2.0)) && ( !(id == 4)))) || ( !(((delta == 0.0) && (turn == 4)) && ((( !(_x_p3_l0 != 0)) && ( !(_x_p3_l1 != 0))) && ((p3_l0 != 0) && ( !(p3_l1 != 0)))))))) && ((((id == _x_id) && (p3_x == _x_p3_x)) && (( !(p3_x <= 2.0)) && (id == 4))) || ( !(((delta == 0.0) && (turn == 4)) && (((p3_l0 != 0) && ( !(p3_l1 != 0))) && ((_x_p3_l0 != 0) && (_x_p3_l1 != 0))))))) && (((( !(_x_p3_l0 != 0)) && ( !(_x_p3_l1 != 0))) && ((_x_id == 0) && (p3_x == _x_p3_x))) || ( !(((p3_l0 != 0) && (p3_l1 != 0)) && ((delta == 0.0) && (turn == 4)))))) && ((((((((((((( !(_x_p2_l0 != 0)) && ( !(_x_p2_l1 != 0))) || ((_x_p2_l0 != 0) && ( !(_x_p2_l1 != 0)))) || (((_x_p2_l1 != 0) && ( !(_x_p2_l0 != 0))) || ((_x_p2_l0 != 0) && (_x_p2_l1 != 0)))) && ((_x_p2_x <= 2.0) || ( !((_x_p2_l1 != 0) && ( !(_x_p2_l0 != 0)))))) && (((((p2_l0 != 0) == (_x_p2_l0 != 0)) && ((p2_l1 != 0) == (_x_p2_l1 != 0))) && ((delta + (p2_x + (-1.0 * _x_p2_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 3)))))) && ((((id == 0) && ((_x_p2_l1 != 0) && ( !(_x_p2_l0 != 0)))) && ((id == _x_id) && (_x_p2_x == 0.0))) || ( !((( !(p2_l0 != 0)) && ( !(p2_l1 != 0))) && ((delta == 0.0) && (turn == 3)))))) && (((((_x_p2_l0 != 0) && ( !(_x_p2_l1 != 0))) && (p2_x <= 2.0)) && ((_x_p2_x == 0.0) && (_x_id == 3))) || ( !(((p2_l1 != 0) && ( !(p2_l0 != 0))) && ((delta == 0.0) && (turn == 3)))))) && (((( !(_x_p2_l0 != 0)) && ( !(_x_p2_l1 != 0))) || ((_x_p2_l0 != 0) && (_x_p2_l1 != 0))) || ( !(((p2_l0 != 0) && ( !(p2_l1 != 0))) && ((delta == 0.0) && (turn == 3)))))) && ((((id == _x_id) && (_x_p2_x == 0.0)) && (( !(p2_x <= 2.0)) && ( !(id == 3)))) || ( !(((delta == 0.0) && (turn == 3)) && ((( !(_x_p2_l0 != 0)) && ( !(_x_p2_l1 != 0))) && ((p2_l0 != 0) && ( !(p2_l1 != 0)))))))) && ((((id == _x_id) && (p2_x == _x_p2_x)) && (( !(p2_x <= 2.0)) && (id == 3))) || ( !(((delta == 0.0) && (turn == 3)) && (((p2_l0 != 0) && ( !(p2_l1 != 0))) && ((_x_p2_l0 != 0) && (_x_p2_l1 != 0))))))) && (((( !(_x_p2_l0 != 0)) && ( !(_x_p2_l1 != 0))) && ((_x_id == 0) && (p2_x == _x_p2_x))) || ( !(((p2_l0 != 0) && (p2_l1 != 0)) && ((delta == 0.0) && (turn == 3)))))) && ((((((((((((( !(_x_p1_l0 != 0)) && ( !(_x_p1_l1 != 0))) || ((_x_p1_l0 != 0) && ( !(_x_p1_l1 != 0)))) || (((_x_p1_l1 != 0) && ( !(_x_p1_l0 != 0))) || ((_x_p1_l0 != 0) && (_x_p1_l1 != 0)))) && ((_x_p1_x <= 2.0) || ( !((_x_p1_l1 != 0) && ( !(_x_p1_l0 != 0)))))) && (((((p1_l0 != 0) == (_x_p1_l0 != 0)) && ((p1_l1 != 0) == (_x_p1_l1 != 0))) && ((delta + (p1_x + (-1.0 * _x_p1_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 2)))))) && ((((id == 0) && ((_x_p1_l1 != 0) && ( !(_x_p1_l0 != 0)))) && ((id == _x_id) && (_x_p1_x == 0.0))) || ( !((( !(p1_l0 != 0)) && ( !(p1_l1 != 0))) && ((delta == 0.0) && (turn == 2)))))) && (((((_x_p1_l0 != 0) && ( !(_x_p1_l1 != 0))) && (p1_x <= 2.0)) && ((_x_p1_x == 0.0) && (_x_id == 2))) || ( !(((p1_l1 != 0) && ( !(p1_l0 != 0))) && ((delta == 0.0) && (turn == 2)))))) && (((( !(_x_p1_l0 != 0)) && ( !(_x_p1_l1 != 0))) || ((_x_p1_l0 != 0) && (_x_p1_l1 != 0))) || ( !(((p1_l0 != 0) && ( !(p1_l1 != 0))) && ((delta == 0.0) && (turn == 2)))))) && ((((id == _x_id) && (_x_p1_x == 0.0)) && (( !(p1_x <= 2.0)) && ( !(id == 2)))) || ( !(((delta == 0.0) && (turn == 2)) && ((( !(_x_p1_l0 != 0)) && ( !(_x_p1_l1 != 0))) && ((p1_l0 != 0) && ( !(p1_l1 != 0)))))))) && ((((id == _x_id) && (p1_x == _x_p1_x)) && (( !(p1_x <= 2.0)) && (id == 2))) || ( !(((delta == 0.0) && (turn == 2)) && (((p1_l0 != 0) && ( !(p1_l1 != 0))) && ((_x_p1_l0 != 0) && (_x_p1_l1 != 0))))))) && (((( !(_x_p1_l0 != 0)) && ( !(_x_p1_l1 != 0))) && ((_x_id == 0) && (p1_x == _x_p1_x))) || ( !(((p1_l0 != 0) && (p1_l1 != 0)) && ((delta == 0.0) && (turn == 2)))))) && ((((((((((((( !(_x_p0_l0 != 0)) && ( !(_x_p0_l1 != 0))) || ((_x_p0_l0 != 0) && ( !(_x_p0_l1 != 0)))) || (((_x_p0_l1 != 0) && ( !(_x_p0_l0 != 0))) || ((_x_p0_l0 != 0) && (_x_p0_l1 != 0)))) && ((_x_p0_x <= 2.0) || ( !((_x_p0_l1 != 0) && ( !(_x_p0_l0 != 0)))))) && (((((p0_l0 != 0) == (_x_p0_l0 != 0)) && ((p0_l1 != 0) == (_x_p0_l1 != 0))) && ((delta + (p0_x + (-1.0 * _x_p0_x))) == 0.0)) || ( !(( !(delta <= 0.0)) || ( !(turn == 1)))))) && (((((_x_p0_l1 != 0) && ( !(_x_p0_l0 != 0))) && (id == 0)) && ((_x_p0_x == 0.0) && (id == _x_id))) || ( !((( !(p0_l0 != 0)) && ( !(p0_l1 != 0))) && ((turn == 1) && (delta == 0.0)))))) && (((((_x_p0_l0 != 0) && ( !(_x_p0_l1 != 0))) && (p0_x <= 2.0)) && ((_x_p0_x == 0.0) && (_x_id == 1))) || ( !(((p0_l1 != 0) && ( !(p0_l0 != 0))) && ((turn == 1) && (delta == 0.0)))))) && (((( !(_x_p0_l0 != 0)) && ( !(_x_p0_l1 != 0))) || ((_x_p0_l0 != 0) && (_x_p0_l1 != 0))) || ( !(((p0_l0 != 0) && ( !(p0_l1 != 0))) && ((turn == 1) && (delta == 0.0)))))) && ((((_x_p0_x == 0.0) && (id == _x_id)) && (( !(p0_x <= 2.0)) && ( !(id == 1)))) || ( !(((turn == 1) && (delta == 0.0)) && ((( !(_x_p0_l0 != 0)) && ( !(_x_p0_l1 != 0))) && ((p0_l0 != 0) && ( !(p0_l1 != 0)))))))) && ((((id == _x_id) && (p0_x == _x_p0_x)) && (( !(p0_x <= 2.0)) && (id == 1))) || ( !(((turn == 1) && (delta == 0.0)) && (((p0_l0 != 0) && ( !(p0_l1 != 0))) && ((_x_p0_l0 != 0) && (_x_p0_l1 != 0))))))) && (((( !(_x_p0_l0 != 0)) && ( !(_x_p0_l1 != 0))) && ((p0_x == _x_p0_x) && (_x_id == 0))) || ( !(((p0_l0 != 0) && (p0_l1 != 0)) && ((turn == 1) && (delta == 0.0)))))) && (((((id == 17) || ((id == 16) || ((id == 15) || ((id == 14) || ((id == 13) || ((id == 12) || ((id == 11) || ((id == 10) || ((id == 9) || ((id == 8) || ((id == 7) || ((id == 6) || ((id == 5) || ((id == 4) || ((id == 3) || ((id == 2) || ((id == 0) || (id == 1)))))))))))))))))) && (((((((((((((((((_x_turn == 1) || (_x_turn == 2)) || (_x_turn == 3)) || (_x_turn == 4)) || (_x_turn == 5)) || (_x_turn == 6)) || (_x_turn == 7)) || (_x_turn == 8)) || (_x_turn == 9)) || (_x_turn == 10)) || (_x_turn == 11)) || (_x_turn == 12)) || (_x_turn == 13)) || (_x_turn == 14)) || (_x_turn == 15)) || (_x_turn == 16)) || (_x_turn == 17))) && (0.0 <= _x_delta)) && ((delta <= 0.0) || ((id == _x_id) && (turn == _x_turn))))))))))))))))))))) && (((delta == _x__diverge_delta) || ( !(1.0 <= _diverge_delta))) && ((1.0 <= _diverge_delta) || ((delta + (_diverge_delta + (-1.0 * _x__diverge_delta))) == 0.0)))); _diverge_delta = _x__diverge_delta; p16_x = _x_p16_x; p15_x = _x_p15_x; p14_x = _x_p14_x; p12_l0 = _x_p12_l0; p12_x = _x_p12_x; p11_l0 = _x_p11_l0; p11_x = _x_p11_x; p16_l1 = _x_p16_l1; p10_l0 = _x_p10_l0; p10_x = _x_p10_x; p9_x = _x_p9_x; p2_l1 = _x_p2_l1; p6_x = _x_p6_x; p8_l1 = _x_p8_l1; p2_l0 = _x_p2_l0; p13_l0 = _x_p13_l0; p2_x = _x_p2_x; p1_l1 = _x_p1_l1; delta = _x_delta; p13_x = _x_p13_x; p0_l0 = _x_p0_l0; p7_l1 = _x_p7_l1; p0_x = _x_p0_x; p12_l1 = _x_p12_l1; p6_l0 = _x_p6_l0; turn = _x_turn; id = _x_id; p14_l0 = _x_p14_l0; p3_x = _x_p3_x; p15_l1 = _x_p15_l1; p9_l0 = _x_p9_l0; p1_x = _x_p1_x; p5_l1 = _x_p5_l1; p9_l1 = _x_p9_l1; p3_l0 = _x_p3_l0; p3_l1 = _x_p3_l1; p0_l1 = _x_p0_l1; p7_x = _x_p7_x; p15_l0 = _x_p15_l0; p4_x = _x_p4_x; p10_l1 = _x_p10_l1; p4_l0 = _x_p4_l0; p1_l0 = _x_p1_l0; p4_l1 = _x_p4_l1; p8_x = _x_p8_x; p16_l0 = _x_p16_l0; p5_x = _x_p5_x; p11_l1 = _x_p11_l1; p5_l0 = _x_p5_l0; p6_l1 = _x_p6_l1; p13_l1 = _x_p13_l1; p7_l0 = _x_p7_l0; p14_l1 = _x_p14_l1; p8_l0 = _x_p8_l0; } }
the_stack_data/34513069.c
#include <stdio.h> #include <stddef.h> //============================================================================= // search the last occur of C in D //============================================================================= char* strrchr (char *d, int c) { char *tmp = d; while ('\0' != *d) d++; while (tmp <= d) { if (c == *d) return d; d--; } return NULL; }
the_stack_data/15354.c
/** ****************************************************************************** * @file stm32wbxx_ll_tim.c * @author MCD Application Team * @brief TIM LL module driver. ****************************************************************************** * @attention * * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ #if defined(USE_FULL_LL_DRIVER) /* Includes ------------------------------------------------------------------*/ #include "stm32wbxx_ll_tim.h" #include "stm32wbxx_ll_bus.h" #ifdef USE_FULL_ASSERT #include "stm32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ /** @addtogroup STM32WBxx_LL_Driver * @{ */ #if defined (TIM1) || defined (TIM2) || defined (TIM16) || defined (TIM7) /** @addtogroup TIM_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup TIM_LL_Private_Macros * @{ */ #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN)) #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \ || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \ || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4)) #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \ || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \ || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \ || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \ || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \ || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2)) #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \ || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE)) #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \ || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW)) #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \ || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH)) #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \ || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \ || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC)) #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV8)) #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8)) #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE)) #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \ || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \ || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12)) #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING)) #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \ || ((__VALUE__) == LL_TIM_OSSR_ENABLE)) #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \ || ((__VALUE__) == LL_TIM_OSSI_ENABLE)) #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \ || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \ || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \ || ((__VALUE__) == LL_TIM_LOCKLEVEL_3)) #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \ || ((__VALUE__) == LL_TIM_BREAK_ENABLE)) #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \ || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH)) #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \ || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8)) #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \ || ((__VALUE__) == LL_TIM_BREAK2_ENABLE)) #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \ || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH)) #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \ || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8)) #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \ || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE)) /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup TIM_LL_Private_Functions TIM Private Functions * @{ */ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup TIM_LL_Exported_Functions * @{ */ /** @addtogroup TIM_LL_EF_Init * @{ */ /** * @brief Set TIMx registers to their reset values. * @param TIMx Timer instance * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: invalid TIMx instance */ ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx) { ErrorStatus result = SUCCESS; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(TIMx)); if (TIMx == TIM1) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1); } else if (TIMx == TIM2) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2); } else if (TIMx == TIM16) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16); } else if (TIMx == TIM17) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17); } else { result = ERROR; } return result; } /** * @brief Set the fields of the time base unit configuration data structure * to their default values. * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure) * @retval None */ void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct) { /* Set the default configuration */ TIM_InitStruct->Prescaler = (uint16_t)0x0000; TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct->Autoreload = 0xFFFFFFFFU; TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; TIM_InitStruct->RepetitionCounter = (uint8_t)0x00; } /** * @brief Configure the TIMx time base unit. * @param TIMx Timer Instance * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct) { uint32_t tmpcr1; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(TIMx)); assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode)); assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision)); tmpcr1 = LL_TIM_ReadReg(TIMx, CR1); if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) { /* Select the Counter Mode */ MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode); } if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) { /* Set the clock division */ MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision); } /* Write to TIMx CR1 */ LL_TIM_WriteReg(TIMx, CR1, tmpcr1); /* Set the Autoreload value */ LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload); /* Set the Prescaler value */ LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler); if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) { /* Set the Repetition Counter value */ LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter); } /* Generate an update event to reload the Prescaler and the repetition counter value (if applicable) immediately */ LL_TIM_GenerateEvent_UPDATE(TIMx); return SUCCESS; } /** * @brief Set the fields of the TIMx output channel configuration data * structure to their default values. * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure) * @retval None */ void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) { /* Set the default configuration */ TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN; TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct->CompareValue = 0x00000000U; TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH; TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH; TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW; TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW; } /** * @brief Configure the TIMx output channel. * @param TIMx Timer Instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @arg @ref LL_TIM_CHANNEL_CH5 * @arg @ref LL_TIM_CHANNEL_CH6 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx output channel is initialized * - ERROR: TIMx output channel is not initialized */ ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) { ErrorStatus result = ERROR; switch (Channel) { case LL_TIM_CHANNEL_CH1: result = OC1Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH2: result = OC2Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH3: result = OC3Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH4: result = OC4Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH5: result = OC5Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH6: result = OC6Config(TIMx, TIM_OC_InitStruct); break; default: break; } return result; } /** * @brief Set the fields of the TIMx input channel configuration data * structure to their default values. * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure) * @retval None */ void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Set the default configuration */ TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING; TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1; TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1; } /** * @brief Configure the TIMx input channel. * @param TIMx Timer Instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx output channel is initialized * - ERROR: TIMx output channel is not initialized */ ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct) { ErrorStatus result = ERROR; switch (Channel) { case LL_TIM_CHANNEL_CH1: result = IC1Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH2: result = IC2Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH3: result = IC3Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH4: result = IC4Config(TIMx, TIM_IC_InitStruct); break; default: break; } return result; } /** * @brief Fills each TIM_EncoderInitStruct field with its default value * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure) * @retval None */ void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) { /* Set the default configuration */ TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1; TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING; TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1; TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1; } /** * @brief Configure the encoder interface of the timer instance. * @param TIMx Timer Instance * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) { uint32_t tmpccmr1; uint32_t tmpccer; /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx)); assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter)); /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Configure TI1 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U); /* Configure TI2 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U); /* Set TI1 and TI2 polarity and enable TI1 and TI2 */ tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity); tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U); tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Set encoder mode */ LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Set the fields of the TIMx Hall sensor interface configuration data * structure to their default values. * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure) * @retval None */ void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) { /* Set the default configuration */ TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; TIM_HallSensorInitStruct->CommutationDelay = 0U; } /** * @brief Configure the Hall sensor interface of the timer instance. * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR * to the TI1 input channel * @note TIMx slave mode controller is configured in reset mode. Selected internal trigger is TI1F_ED. * @note Channel 1 is configured as input, IC1 is mapped on TRC. * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed * between 2 changes on the inputs. It gives information about motor speed. * @note Channel 2 is configured in output PWM 2 mode. * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay. * @note OC2REF is selected as trigger output on TRGO. * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used * when TIMx operates in Hall sensor interface mode. * @param TIMx Timer Instance * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) { uint32_t tmpcr2; uint32_t tmpccmr1; uint32_t tmpccer; uint32_t tmpsmcr; /* Check the parameters */ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity)); assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter)); /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx SMCR register value */ tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR); /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */ tmpcr2 |= TIM_CR2_TI1S; /* OC2REF signal is used as trigger output (TRGO) */ tmpcr2 |= LL_TIM_TRGO_OC2REF; /* Configure the slave mode controller */ tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS); tmpsmcr |= LL_TIM_TS_TI1F_ED; tmpsmcr |= LL_TIM_SLAVEMODE_RESET; /* Configure input channel 1 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U); tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U); tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U); /* Configure input channel 2 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE); tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U); /* Set Channel 1 polarity and enable Channel 1 and Channel2 */ tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity); tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx SMCR */ LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); /* Write to TIMx CCR2 */ LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay); return SUCCESS; } /** * @brief Set the fields of the Break and Dead Time configuration data structure * to their default values. * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure) * @retval None */ void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) { /* Set the default configuration */ TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE; TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE; TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF; TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00; TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE; TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW; TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1; TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE; TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW; TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1; TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE; } /** * @brief Configure the Break and Dead Time feature of the timer instance. * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR * and DTG[7:0] can be write-locked depending on the LOCK configuration, it * can be necessary to configure all of them during the first write access to * the TIMx_BDTR register. * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides a break input. * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides a second break input. * @param TIMx Timer Instance * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: Break and Dead Time is initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct) { uint32_t tmpbdtr = 0; /* Check the parameters */ assert_param(IS_TIM_BREAK_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState)); assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState)); assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel)); assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState)); assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity)); assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput)); /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, the OSSI State, the dead time value and the Automatic Output Enable Bit */ /* Set the BDTR bits */ MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime); MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel); MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState); MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState); MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState); MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity); MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput); MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput); if (IS_TIM_ADVANCED_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter)); MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter); } if (IS_TIM_BKIN2_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State)); assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity)); assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter)); /* Set the BREAK2 input related BDTR bit-fields */ MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter)); MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State); MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity); } /* Set TIMx_BDTR */ LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr); return SUCCESS; } /** * @} */ /** * @} */ /** @addtogroup TIM_LL_Private_Functions TIM Private Functions * @brief Private functions * @{ */ /** * @brief Configure the TIMx output channel 1. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr1; uint32_t tmpccer; uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 1: Reset the CC1E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S); /* Set the Output Compare Mode */ MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 2. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr1; uint32_t tmpccer; uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 2: Reset the CC2E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 3. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr2; uint32_t tmpccer; uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 3: Reset the CC3E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR2 register value */ tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR2 */ LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 4. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr2; uint32_t tmpccer; uint32_t tmpcr2; /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 4: Reset the CC4E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR2 register value */ tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR2 */ LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 5. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr3; uint32_t tmpccer; /* Check the parameters */ assert_param(IS_TIM_CC5_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 5: Reset the CC5E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CCMR3 register value */ tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U); } /* Write to TIMx CCMR3 */ LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 6. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr3; uint32_t tmpccer; /* Check the parameters */ assert_param(IS_TIM_CC6_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 5: Reset the CC6E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CCMR3 register value */ tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U); } /* Write to TIMx CCMR3 */ LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx input channel 1. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR1, (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); /* Select the Polarity and set the CC1E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P | TIM_CCER_CC1NP), (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 2. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR1, (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); /* Select the Polarity and set the CC2E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC2P | TIM_CCER_CC2NP), ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 3. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 3: Reset the CC3E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR2, (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); /* Select the Polarity and set the CC3E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC3P | TIM_CCER_CC3NP), ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 4. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR2, (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); /* Select the Polarity and set the CC2E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC4P | TIM_CCER_CC4NP), ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E)); return SUCCESS; } /** * @} */ /** * @} */ #endif /* TIM1 || TIM2 || TIM16 || TIM17 */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/