|
---
|
|
language:
|
|
- en
|
|
license: cc
|
|
size_categories:
|
|
- 10K<n<100K
|
|
task_categories:
|
|
- video-text-to-text
|
|
- video-classification
|
|
dataset_info:
|
|
features:
|
|
- name: mp4
|
|
dtype: binary
|
|
- name: json
|
|
struct:
|
|
- name: categories
|
|
dtype: string
|
|
- name: description
|
|
dtype: string
|
|
- name: file_name
|
|
dtype: string
|
|
- name: label
|
|
sequence: int32
|
|
---
|
|
|
|
# My Emotion Video Dataset
|
|
|
|
This dataset contains short video clips annotated with emotion categories. It is saved in `.parquet` format, with each row containing:
|
|
|
|
- a video (`mp4`) in binary
|
|
- a `json` object including:
|
|
- `file_name`: the name of the video
|
|
- `label`: list of integer emotion labels
|
|
- `categories`: emotion name (e.g., "happy", "neutral")
|
|
- `description`: short description of the clip
|
|
|
|
## Example usage
|
|
|
|
```python
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("ZebangCheng/test_hf_data_6", split="train")
|
|
print(ds[0]['json'])
|
|
# {'categories': 'neutral', 'description': "It's me.", 'file_name': '00019.mp4', 'label': [0]}
|
|
|