text
stringlengths 56
1.16k
|
|---|
[2023-09-01 18:59:55,990::train::INFO] [train] Iter 01294 | loss 1.3643 | loss(rot) 0.1365 | loss(pos) 1.2079 | loss(seq) 0.0199 | grad 4.2383 | lr 0.0010 | time_forward 3.8570 | time_backward 5.1000
|
[2023-09-01 19:00:11,342::train::INFO] [train] Iter 01295 | loss 2.4686 | loss(rot) 1.5148 | loss(pos) 0.4667 | loss(seq) 0.4871 | grad 5.1140 | lr 0.0010 | time_forward 8.0370 | time_backward 7.3110
|
[2023-09-01 19:00:14,012::train::INFO] [train] Iter 01296 | loss 1.3817 | loss(rot) 0.4834 | loss(pos) 0.8792 | loss(seq) 0.0191 | grad 3.8392 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4330
|
[2023-09-01 19:00:16,666::train::INFO] [train] Iter 01297 | loss 3.5605 | loss(rot) 3.1587 | loss(pos) 0.3523 | loss(seq) 0.0495 | grad 6.3464 | lr 0.0010 | time_forward 1.2690 | time_backward 1.3810
|
[2023-09-01 19:00:26,504::train::INFO] [train] Iter 01298 | loss 1.0870 | loss(rot) 0.0997 | loss(pos) 0.9762 | loss(seq) 0.0111 | grad 3.8406 | lr 0.0010 | time_forward 4.0980 | time_backward 5.7360
|
[2023-09-01 19:00:34,504::train::INFO] [train] Iter 01299 | loss 1.7385 | loss(rot) 0.7735 | loss(pos) 0.8676 | loss(seq) 0.0974 | grad 4.5041 | lr 0.0010 | time_forward 3.3400 | time_backward 4.6570
|
[2023-09-01 19:00:44,590::train::INFO] [train] Iter 01300 | loss 1.8501 | loss(rot) 0.9702 | loss(pos) 0.1891 | loss(seq) 0.6908 | grad 3.2527 | lr 0.0010 | time_forward 4.0800 | time_backward 6.0010
|
[2023-09-01 19:00:50,236::train::INFO] [train] Iter 01301 | loss 2.7815 | loss(rot) 1.6371 | loss(pos) 0.6003 | loss(seq) 0.5442 | grad 6.2818 | lr 0.0010 | time_forward 2.2900 | time_backward 3.3520
|
[2023-09-01 19:00:53,017::train::INFO] [train] Iter 01302 | loss 3.2888 | loss(rot) 2.6441 | loss(pos) 0.5930 | loss(seq) 0.0516 | grad 6.1926 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4620
|
[2023-09-01 19:00:55,725::train::INFO] [train] Iter 01303 | loss 2.8339 | loss(rot) 1.9887 | loss(pos) 0.3769 | loss(seq) 0.4683 | grad 4.9362 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4040
|
[2023-09-01 19:01:04,599::train::INFO] [train] Iter 01304 | loss 1.4292 | loss(rot) 0.1918 | loss(pos) 1.2126 | loss(seq) 0.0248 | grad 8.1247 | lr 0.0010 | time_forward 3.7850 | time_backward 5.0860
|
[2023-09-01 19:01:07,280::train::INFO] [train] Iter 01305 | loss 2.5238 | loss(rot) 1.6090 | loss(pos) 0.2809 | loss(seq) 0.6339 | grad 4.8907 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4190
|
[2023-09-01 19:01:18,350::train::INFO] [train] Iter 01306 | loss 0.9952 | loss(rot) 0.3939 | loss(pos) 0.5470 | loss(seq) 0.0543 | grad 3.9907 | lr 0.0010 | time_forward 4.2110 | time_backward 6.8560
|
[2023-09-01 19:01:28,143::train::INFO] [train] Iter 01307 | loss 1.8835 | loss(rot) 0.5626 | loss(pos) 0.9557 | loss(seq) 0.3652 | grad 3.4227 | lr 0.0010 | time_forward 3.7140 | time_backward 6.0750
|
[2023-09-01 19:01:37,728::train::INFO] [train] Iter 01308 | loss 1.8891 | loss(rot) 0.8777 | loss(pos) 0.8094 | loss(seq) 0.2020 | grad 4.9663 | lr 0.0010 | time_forward 4.0810 | time_backward 5.5020
|
[2023-09-01 19:01:46,207::train::INFO] [train] Iter 01309 | loss 1.7193 | loss(rot) 1.1922 | loss(pos) 0.2945 | loss(seq) 0.2326 | grad 3.4177 | lr 0.0010 | time_forward 3.6610 | time_backward 4.8140
|
[2023-09-01 19:01:54,197::train::INFO] [train] Iter 01310 | loss 2.0871 | loss(rot) 1.0093 | loss(pos) 0.5244 | loss(seq) 0.5534 | grad 3.6663 | lr 0.0010 | time_forward 3.5010 | time_backward 4.4850
|
[2023-09-01 19:02:02,286::train::INFO] [train] Iter 01311 | loss 2.2876 | loss(rot) 1.4717 | loss(pos) 0.4316 | loss(seq) 0.3843 | grad 3.1150 | lr 0.0010 | time_forward 3.3250 | time_backward 4.7600
|
[2023-09-01 19:02:04,950::train::INFO] [train] Iter 01312 | loss 1.2093 | loss(rot) 0.3133 | loss(pos) 0.8420 | loss(seq) 0.0540 | grad 4.6964 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4000
|
[2023-09-01 19:02:07,692::train::INFO] [train] Iter 01313 | loss 3.1468 | loss(rot) 2.5510 | loss(pos) 0.5337 | loss(seq) 0.0621 | grad 4.6668 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4350
|
[2023-09-01 19:02:16,932::train::INFO] [train] Iter 01314 | loss 2.5946 | loss(rot) 1.6895 | loss(pos) 0.4835 | loss(seq) 0.4216 | grad 4.6792 | lr 0.0010 | time_forward 4.0590 | time_backward 5.1770
|
[2023-09-01 19:02:26,354::train::INFO] [train] Iter 01315 | loss 2.6388 | loss(rot) 2.2996 | loss(pos) 0.2499 | loss(seq) 0.0893 | grad 3.7629 | lr 0.0010 | time_forward 3.6740 | time_backward 5.7440
|
[2023-09-01 19:02:37,183::train::INFO] [train] Iter 01316 | loss 2.5926 | loss(rot) 2.3647 | loss(pos) 0.2267 | loss(seq) 0.0013 | grad 3.7867 | lr 0.0010 | time_forward 4.9630 | time_backward 5.8630
|
[2023-09-01 19:02:46,012::train::INFO] [train] Iter 01317 | loss 3.0942 | loss(rot) 2.8087 | loss(pos) 0.2164 | loss(seq) 0.0691 | grad 3.6874 | lr 0.0010 | time_forward 3.5080 | time_backward 5.3170
|
[2023-09-01 19:02:55,384::train::INFO] [train] Iter 01318 | loss 4.1149 | loss(rot) 0.0181 | loss(pos) 4.0947 | loss(seq) 0.0022 | grad 5.4843 | lr 0.0010 | time_forward 3.6120 | time_backward 5.7560
|
[2023-09-01 19:02:58,201::train::INFO] [train] Iter 01319 | loss 3.5830 | loss(rot) 2.9903 | loss(pos) 0.3148 | loss(seq) 0.2779 | grad 3.5567 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4670
|
[2023-09-01 19:03:00,745::train::INFO] [train] Iter 01320 | loss 2.8941 | loss(rot) 2.4847 | loss(pos) 0.2524 | loss(seq) 0.1570 | grad 3.4597 | lr 0.0010 | time_forward 1.2560 | time_backward 1.2720
|
[2023-09-01 19:03:09,536::train::INFO] [train] Iter 01321 | loss 3.3285 | loss(rot) 3.1232 | loss(pos) 0.2020 | loss(seq) 0.0034 | grad 3.3389 | lr 0.0010 | time_forward 3.8280 | time_backward 4.9280
|
[2023-09-01 19:03:18,155::train::INFO] [train] Iter 01322 | loss 2.6594 | loss(rot) 1.4027 | loss(pos) 0.6864 | loss(seq) 0.5704 | grad 3.9986 | lr 0.0010 | time_forward 3.4170 | time_backward 5.2000
|
[2023-09-01 19:03:27,658::train::INFO] [train] Iter 01323 | loss 1.3336 | loss(rot) 0.3740 | loss(pos) 0.9043 | loss(seq) 0.0553 | grad 3.3264 | lr 0.0010 | time_forward 3.8600 | time_backward 5.6400
|
[2023-09-01 19:03:31,093::train::INFO] [train] Iter 01324 | loss 3.1689 | loss(rot) 2.5673 | loss(pos) 0.4531 | loss(seq) 0.1486 | grad 2.9553 | lr 0.0010 | time_forward 1.6920 | time_backward 1.7390
|
[2023-09-01 19:03:40,327::train::INFO] [train] Iter 01325 | loss 2.6696 | loss(rot) 1.9911 | loss(pos) 0.3816 | loss(seq) 0.2969 | grad 4.2224 | lr 0.0010 | time_forward 3.9140 | time_backward 5.3160
|
[2023-09-01 19:03:49,658::train::INFO] [train] Iter 01326 | loss 2.2917 | loss(rot) 0.0493 | loss(pos) 2.2321 | loss(seq) 0.0104 | grad 5.6959 | lr 0.0010 | time_forward 3.8340 | time_backward 5.4930
|
[2023-09-01 19:03:58,926::train::INFO] [train] Iter 01327 | loss 3.2764 | loss(rot) 2.0241 | loss(pos) 0.7925 | loss(seq) 0.4599 | grad 3.3605 | lr 0.0010 | time_forward 3.9090 | time_backward 5.3560
|
[2023-09-01 19:04:08,807::train::INFO] [train] Iter 01328 | loss 2.4070 | loss(rot) 2.0744 | loss(pos) 0.2091 | loss(seq) 0.1235 | grad 3.1939 | lr 0.0010 | time_forward 4.0550 | time_backward 5.8220
|
[2023-09-01 19:04:18,667::train::INFO] [train] Iter 01329 | loss 2.2050 | loss(rot) 1.0845 | loss(pos) 0.4547 | loss(seq) 0.6659 | grad 2.5419 | lr 0.0010 | time_forward 4.0070 | time_backward 5.8500
|
[2023-09-01 19:04:21,771::train::INFO] [train] Iter 01330 | loss 3.1550 | loss(rot) 1.7102 | loss(pos) 0.8766 | loss(seq) 0.5682 | grad 4.3452 | lr 0.0010 | time_forward 1.6660 | time_backward 1.4250
|
[2023-09-01 19:04:24,554::train::INFO] [train] Iter 01331 | loss 3.1844 | loss(rot) 2.7107 | loss(pos) 0.2420 | loss(seq) 0.2317 | grad 3.9554 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4540
|
[2023-09-01 19:04:32,542::train::INFO] [train] Iter 01332 | loss 1.4203 | loss(rot) 0.1725 | loss(pos) 1.2303 | loss(seq) 0.0175 | grad 5.9869 | lr 0.0010 | time_forward 3.4100 | time_backward 4.5750
|
[2023-09-01 19:04:42,585::train::INFO] [train] Iter 01333 | loss 2.9326 | loss(rot) 2.6305 | loss(pos) 0.1743 | loss(seq) 0.1278 | grad 3.0627 | lr 0.0010 | time_forward 4.2040 | time_backward 5.8350
|
[2023-09-01 19:04:51,542::train::INFO] [train] Iter 01334 | loss 3.1911 | loss(rot) 2.7451 | loss(pos) 0.4447 | loss(seq) 0.0013 | grad 5.1353 | lr 0.0010 | time_forward 3.7500 | time_backward 5.2030
|
[2023-09-01 19:04:54,257::train::INFO] [train] Iter 01335 | loss 3.7045 | loss(rot) 3.1415 | loss(pos) 0.3146 | loss(seq) 0.2484 | grad 4.8107 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4570
|
[2023-09-01 19:04:56,927::train::INFO] [train] Iter 01336 | loss 3.0257 | loss(rot) 2.6356 | loss(pos) 0.3842 | loss(seq) 0.0059 | grad 5.1145 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4160
|
[2023-09-01 19:05:06,230::train::INFO] [train] Iter 01337 | loss 1.9078 | loss(rot) 0.0699 | loss(pos) 1.3782 | loss(seq) 0.4597 | grad 5.4719 | lr 0.0010 | time_forward 3.7690 | time_backward 5.5300
|
[2023-09-01 19:05:14,589::train::INFO] [train] Iter 01338 | loss 2.7553 | loss(rot) 2.0070 | loss(pos) 0.2514 | loss(seq) 0.4969 | grad 3.6858 | lr 0.0010 | time_forward 3.3450 | time_backward 5.0110
|
[2023-09-01 19:05:23,933::train::INFO] [train] Iter 01339 | loss 3.4034 | loss(rot) 3.1183 | loss(pos) 0.2830 | loss(seq) 0.0021 | grad 3.2725 | lr 0.0010 | time_forward 3.6860 | time_backward 5.6540
|
[2023-09-01 19:05:32,509::train::INFO] [train] Iter 01340 | loss 2.9610 | loss(rot) 2.6122 | loss(pos) 0.3488 | loss(seq) 0.0000 | grad 5.1601 | lr 0.0010 | time_forward 3.6510 | time_backward 4.9220
|
[2023-09-01 19:05:40,717::train::INFO] [train] Iter 01341 | loss 2.4763 | loss(rot) 1.9490 | loss(pos) 0.1200 | loss(seq) 0.4073 | grad 2.5551 | lr 0.0010 | time_forward 3.3220 | time_backward 4.8820
|
[2023-09-01 19:05:43,355::train::INFO] [train] Iter 01342 | loss 3.2631 | loss(rot) 2.8738 | loss(pos) 0.3893 | loss(seq) 0.0000 | grad 4.1941 | lr 0.0010 | time_forward 1.2000 | time_backward 1.4350
|
[2023-09-01 19:05:46,104::train::INFO] [train] Iter 01343 | loss 3.1484 | loss(rot) 2.8824 | loss(pos) 0.2062 | loss(seq) 0.0598 | grad 3.2472 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4530
|
[2023-09-01 19:05:48,927::train::INFO] [train] Iter 01344 | loss 2.8756 | loss(rot) 1.8884 | loss(pos) 0.4109 | loss(seq) 0.5763 | grad 3.2029 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4800
|
[2023-09-01 19:05:58,514::train::INFO] [train] Iter 01345 | loss 3.3317 | loss(rot) 3.1695 | loss(pos) 0.1622 | loss(seq) 0.0000 | grad 2.4989 | lr 0.0010 | time_forward 3.7740 | time_backward 5.8090
|
[2023-09-01 19:06:01,276::train::INFO] [train] Iter 01346 | loss 3.5904 | loss(rot) 3.3278 | loss(pos) 0.2625 | loss(seq) 0.0001 | grad 4.0053 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4840
|
[2023-09-01 19:06:09,228::train::INFO] [train] Iter 01347 | loss 3.1403 | loss(rot) 2.9323 | loss(pos) 0.1363 | loss(seq) 0.0716 | grad 3.6049 | lr 0.0010 | time_forward 3.3630 | time_backward 4.5850
|
[2023-09-01 19:06:17,886::train::INFO] [train] Iter 01348 | loss 2.8061 | loss(rot) 2.6189 | loss(pos) 0.0817 | loss(seq) 0.1056 | grad 2.3311 | lr 0.0010 | time_forward 3.6240 | time_backward 5.0310
|
[2023-09-01 19:06:27,348::train::INFO] [train] Iter 01349 | loss 3.2680 | loss(rot) 2.3915 | loss(pos) 0.2789 | loss(seq) 0.5976 | grad 2.7408 | lr 0.0010 | time_forward 3.6630 | time_backward 5.7950
|
[2023-09-01 19:06:37,390::train::INFO] [train] Iter 01350 | loss 1.9741 | loss(rot) 0.4565 | loss(pos) 1.1834 | loss(seq) 0.3341 | grad 3.2250 | lr 0.0010 | time_forward 3.9050 | time_backward 6.1350
|
[2023-09-01 19:06:47,738::train::INFO] [train] Iter 01351 | loss 2.9023 | loss(rot) 0.3948 | loss(pos) 2.3431 | loss(seq) 0.1645 | grad 6.4598 | lr 0.0010 | time_forward 3.9460 | time_backward 6.3980
|
[2023-09-01 19:06:57,918::train::INFO] [train] Iter 01352 | loss 2.1146 | loss(rot) 0.0608 | loss(pos) 2.0464 | loss(seq) 0.0074 | grad 4.2569 | lr 0.0010 | time_forward 4.1550 | time_backward 6.0210
|
[2023-09-01 19:07:00,554::train::INFO] [train] Iter 01353 | loss 3.4314 | loss(rot) 3.3136 | loss(pos) 0.1177 | loss(seq) 0.0000 | grad 2.5550 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4140
|
[2023-09-01 19:07:10,629::train::INFO] [train] Iter 01354 | loss 2.8149 | loss(rot) 2.0671 | loss(pos) 0.3988 | loss(seq) 0.3491 | grad 4.7674 | lr 0.0010 | time_forward 4.0740 | time_backward 5.9780
|
[2023-09-01 19:07:12,856::train::INFO] [train] Iter 01355 | loss 2.8929 | loss(rot) 0.0575 | loss(pos) 2.8299 | loss(seq) 0.0055 | grad 7.4129 | lr 0.0010 | time_forward 1.0360 | time_backward 1.1870
|
[2023-09-01 19:07:22,498::train::INFO] [train] Iter 01356 | loss 3.1235 | loss(rot) 2.4594 | loss(pos) 0.5099 | loss(seq) 0.1543 | grad 5.6425 | lr 0.0010 | time_forward 3.9020 | time_backward 5.7370
|
[2023-09-01 19:07:31,684::train::INFO] [train] Iter 01357 | loss 3.1895 | loss(rot) 2.7862 | loss(pos) 0.4026 | loss(seq) 0.0007 | grad 4.1913 | lr 0.0010 | time_forward 3.7930 | time_backward 5.3900
|
[2023-09-01 19:07:36,429::train::INFO] [train] Iter 01358 | loss 2.7746 | loss(rot) 1.5932 | loss(pos) 0.6769 | loss(seq) 0.5045 | grad 5.4575 | lr 0.0010 | time_forward 2.1000 | time_backward 2.6420
|
[2023-09-01 19:07:39,165::train::INFO] [train] Iter 01359 | loss 3.2629 | loss(rot) 3.0639 | loss(pos) 0.1591 | loss(seq) 0.0399 | grad 3.2190 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4930
|
[2023-09-01 19:07:47,679::train::INFO] [train] Iter 01360 | loss 3.3603 | loss(rot) 2.8523 | loss(pos) 0.2214 | loss(seq) 0.2866 | grad 2.7412 | lr 0.0010 | time_forward 3.5520 | time_backward 4.9590
|
[2023-09-01 19:07:50,336::train::INFO] [train] Iter 01361 | loss 3.7496 | loss(rot) 3.4471 | loss(pos) 0.3022 | loss(seq) 0.0004 | grad 4.2680 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4240
|
[2023-09-01 19:07:52,651::train::INFO] [train] Iter 01362 | loss 3.2789 | loss(rot) 3.0914 | loss(pos) 0.1588 | loss(seq) 0.0286 | grad 2.7280 | lr 0.0010 | time_forward 1.0490 | time_backward 1.2310
|
[2023-09-01 19:08:01,914::train::INFO] [train] Iter 01363 | loss 1.5095 | loss(rot) 0.3850 | loss(pos) 0.7339 | loss(seq) 0.3906 | grad 5.0492 | lr 0.0010 | time_forward 4.0300 | time_backward 5.2310
|
[2023-09-01 19:08:11,498::train::INFO] [train] Iter 01364 | loss 3.1238 | loss(rot) 2.3742 | loss(pos) 0.2304 | loss(seq) 0.5191 | grad 2.8650 | lr 0.0010 | time_forward 3.6260 | time_backward 5.9550
|
[2023-09-01 19:08:14,252::train::INFO] [train] Iter 01365 | loss 3.3231 | loss(rot) 0.0130 | loss(pos) 3.3097 | loss(seq) 0.0004 | grad 5.6671 | lr 0.0010 | time_forward 1.3110 | time_backward 1.4400
|
[2023-09-01 19:08:17,052::train::INFO] [train] Iter 01366 | loss 2.9566 | loss(rot) 2.7724 | loss(pos) 0.1339 | loss(seq) 0.0502 | grad 2.9279 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4630
|
[2023-09-01 19:08:23,610::train::INFO] [train] Iter 01367 | loss 3.7960 | loss(rot) 3.1150 | loss(pos) 0.4686 | loss(seq) 0.2124 | grad 5.1407 | lr 0.0010 | time_forward 2.8150 | time_backward 3.7400
|
[2023-09-01 19:08:32,644::train::INFO] [train] Iter 01368 | loss 2.4330 | loss(rot) 1.7795 | loss(pos) 0.5023 | loss(seq) 0.1512 | grad 5.0867 | lr 0.0010 | time_forward 3.7920 | time_backward 5.2380
|
[2023-09-01 19:08:40,541::train::INFO] [train] Iter 01369 | loss 3.6229 | loss(rot) 3.4152 | loss(pos) 0.2058 | loss(seq) 0.0019 | grad 2.8504 | lr 0.0010 | time_forward 3.2960 | time_backward 4.5980
|
[2023-09-01 19:08:51,137::train::INFO] [train] Iter 01370 | loss 2.4355 | loss(rot) 1.3469 | loss(pos) 0.4931 | loss(seq) 0.5955 | grad 2.4719 | lr 0.0010 | time_forward 4.3720 | time_backward 6.2210
|
[2023-09-01 19:08:53,846::train::INFO] [train] Iter 01371 | loss 2.1303 | loss(rot) 1.8750 | loss(pos) 0.2421 | loss(seq) 0.0132 | grad 3.0485 | lr 0.0010 | time_forward 1.3110 | time_backward 1.3950
|
[2023-09-01 19:09:02,264::train::INFO] [train] Iter 01372 | loss 3.1180 | loss(rot) 2.5488 | loss(pos) 0.2161 | loss(seq) 0.3531 | grad 3.3292 | lr 0.0010 | time_forward 3.4440 | time_backward 4.9420
|
[2023-09-01 19:09:08,393::train::INFO] [train] Iter 01373 | loss 3.0046 | loss(rot) 2.9026 | loss(pos) 0.1020 | loss(seq) 0.0000 | grad 2.0638 | lr 0.0010 | time_forward 2.4170 | time_backward 3.7080
|
[2023-09-01 19:09:13,172::train::INFO] [train] Iter 01374 | loss 1.7862 | loss(rot) 0.3216 | loss(pos) 1.4115 | loss(seq) 0.0531 | grad 5.8745 | lr 0.0010 | time_forward 2.1600 | time_backward 2.6170
|
[2023-09-01 19:09:15,797::train::INFO] [train] Iter 01375 | loss 2.7276 | loss(rot) 1.9585 | loss(pos) 0.3521 | loss(seq) 0.4170 | grad 3.8609 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3760
|
[2023-09-01 19:09:25,707::train::INFO] [train] Iter 01376 | loss 2.7879 | loss(rot) 0.1810 | loss(pos) 2.3378 | loss(seq) 0.2692 | grad 5.9499 | lr 0.0010 | time_forward 4.0110 | time_backward 5.8950
|
[2023-09-01 19:09:33,901::train::INFO] [train] Iter 01377 | loss 1.9340 | loss(rot) 0.9674 | loss(pos) 0.4607 | loss(seq) 0.5058 | grad 3.7421 | lr 0.0010 | time_forward 3.1560 | time_backward 5.0350
|
[2023-09-01 19:09:36,636::train::INFO] [train] Iter 01378 | loss 1.6456 | loss(rot) 0.8134 | loss(pos) 0.4164 | loss(seq) 0.4157 | grad 3.3199 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4500
|
[2023-09-01 19:09:44,664::train::INFO] [train] Iter 01379 | loss 1.8490 | loss(rot) 0.9868 | loss(pos) 0.5069 | loss(seq) 0.3553 | grad 4.3618 | lr 0.0010 | time_forward 3.2290 | time_backward 4.7950
|
[2023-09-01 19:09:53,969::train::INFO] [train] Iter 01380 | loss 3.5481 | loss(rot) 2.7991 | loss(pos) 0.4451 | loss(seq) 0.3039 | grad 6.1973 | lr 0.0010 | time_forward 3.7790 | time_backward 5.5240
|
[2023-09-01 19:10:03,164::train::INFO] [train] Iter 01381 | loss 3.4400 | loss(rot) 2.5034 | loss(pos) 0.5183 | loss(seq) 0.4182 | grad 6.4084 | lr 0.0010 | time_forward 3.8760 | time_backward 5.3150
|
[2023-09-01 19:10:10,323::train::INFO] [train] Iter 01382 | loss 3.5026 | loss(rot) 2.8095 | loss(pos) 0.3019 | loss(seq) 0.3913 | grad 4.5809 | lr 0.0010 | time_forward 2.8520 | time_backward 4.3040
|
[2023-09-01 19:10:19,260::train::INFO] [train] Iter 01383 | loss 3.1480 | loss(rot) 2.0797 | loss(pos) 0.9398 | loss(seq) 0.1285 | grad 9.5614 | lr 0.0010 | time_forward 3.7260 | time_backward 5.2080
|
[2023-09-01 19:10:21,942::train::INFO] [train] Iter 01384 | loss 1.8691 | loss(rot) 1.3181 | loss(pos) 0.3680 | loss(seq) 0.1830 | grad 4.1629 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4480
|
[2023-09-01 19:10:31,319::train::INFO] [train] Iter 01385 | loss 3.0575 | loss(rot) 0.3281 | loss(pos) 2.5499 | loss(seq) 0.1794 | grad 6.9631 | lr 0.0010 | time_forward 3.6390 | time_backward 5.7340
|
[2023-09-01 19:10:40,004::train::INFO] [train] Iter 01386 | loss 3.0144 | loss(rot) 2.7114 | loss(pos) 0.3029 | loss(seq) 0.0001 | grad 3.3173 | lr 0.0010 | time_forward 3.6070 | time_backward 5.0750
|
[2023-09-01 19:10:42,729::train::INFO] [train] Iter 01387 | loss 2.9028 | loss(rot) 2.6151 | loss(pos) 0.2874 | loss(seq) 0.0003 | grad 4.8468 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4750
|
[2023-09-01 19:10:51,884::train::INFO] [train] Iter 01388 | loss 3.2445 | loss(rot) 2.9173 | loss(pos) 0.2432 | loss(seq) 0.0839 | grad 3.3107 | lr 0.0010 | time_forward 3.9010 | time_backward 5.2500
|
[2023-09-01 19:11:01,386::train::INFO] [train] Iter 01389 | loss 3.2625 | loss(rot) 2.9504 | loss(pos) 0.3089 | loss(seq) 0.0032 | grad 2.3215 | lr 0.0010 | time_forward 4.1140 | time_backward 5.3840
|
[2023-09-01 19:11:04,142::train::INFO] [train] Iter 01390 | loss 2.5665 | loss(rot) 1.5756 | loss(pos) 0.5622 | loss(seq) 0.4287 | grad 3.9827 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4360
|
[2023-09-01 19:11:13,570::train::INFO] [train] Iter 01391 | loss 2.0357 | loss(rot) 0.6544 | loss(pos) 1.2428 | loss(seq) 0.1385 | grad 3.9945 | lr 0.0010 | time_forward 4.0870 | time_backward 5.3370
|
[2023-09-01 19:11:22,089::train::INFO] [train] Iter 01392 | loss 3.8230 | loss(rot) 3.7100 | loss(pos) 0.1113 | loss(seq) 0.0018 | grad 1.8250 | lr 0.0010 | time_forward 3.6090 | time_backward 4.9060
|
[2023-09-01 19:11:31,234::train::INFO] [train] Iter 01393 | loss 3.1767 | loss(rot) 2.7760 | loss(pos) 0.1907 | loss(seq) 0.2101 | grad 2.1644 | lr 0.0010 | time_forward 3.5550 | time_backward 5.5870
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.