Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1729, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1686, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1132, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1133, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
DART-LLM Tasks Dataset
Description
DART-LLM Tasks is a dataset designed for evaluating language models in robotic task planning and coordination through few-shot learning. It contains 102 natural language instructions paired with their corresponding structured task decompositions and execution plans.
Dataset Structure
- Total examples: 102
- Complexity levels:
- L1 (Basic): 47 examples
- L2 (Medium): 33 examples
- L3 (Complex): 22 examples
Features
- task_id: Unique identifier for each instruction
- text: Natural language instruction
- output: Structured task decomposition and execution plan
- tasks: List of sub-tasks
- task: Task name/identifier
- instruction_function: Function specification
- name: Function name
- robot_ids: Involved robots
- dependencies: Task dependencies
- object_keywords: Relevant objects/locations
- tasks: List of sub-tasks
Task Categories
- Movement Tasks: Navigation to specific areas
- Excavation Tasks: Digging operations
- Loading/Unloading: Material transfer
- Avoidance Tasks: Obstacle and hazard avoidance
- Coordination Tasks: Multi-robot operations
Usage
# Using the dataset for few-shot evaluation
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("path/to/dart_llm_tasks")
# Access examples
print(dataset[0]) # First example
- Downloads last month
- 0