content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from functools import reduce def convert_array_to_df(emission_map): """ This function converts the emission map dict to a DataFrame where - 'emission_map' is a dictionary containing at least 'z_var_ave', 'count_var','std_var','q25_var' and'q75_var """ def reform_df(df, nr): """This subfunction will reform the format of the dataframe is such a way that it can be saved in the .map.txt file later on. The expected input is: df: pd.DataFrame nr: int The output is a dataframe that can contains all data of one map and is ready to be written to a .map.txt file""" df_temp_fin = pd.DataFrame() for key, value in df.items(): df_temp = pd.DataFrame() df_temp['Y'] = value.index # CO2_mF [g/s] df_temp['X'] = key # velocity_filtered [km/h] df_temp['Z{}'.format(nr)] = df[key].values # avgNOx [mg/s] df_temp = df_temp[['X', 'Y', 'Z{}'.format(nr)]] df_temp_fin = df_temp_fin.append(df_temp) return df_temp_fin numbering = {'z_var_ave': 1, 'std_var': 2, 'q25_var': 3, 'q75_var': 4, 'count_var': 5} map_df = [] for var in numbering.keys(): if type(emission_map[var]) == np.ndarray: map = emission_map[var] x_axis = np.arange(emission_map['binsizes'][0], emission_map['binsizes'][0] * map.shape[1] + 1, emission_map['binsizes'][0]) y_axis = np.arange(emission_map['binsizes'][1], (emission_map['binsizes'][1] * map.shape[0]) + emission_map['binsizes'][1], emission_map['binsizes'][1]) # check if shape of axis and indices are the same if map.shape[1] != len(x_axis): x_axis = x_axis[:map.shape[1]] elif map.shape[0] != len(y_axis): y_axis = y_axis[:map.shape[0]] ## Make Table for .map.txt outputfile df = pd.DataFrame(data=map, index=y_axis, columns=x_axis) reformed_df = reform_df(df, numbering[var]) map_df.append(reformed_df) final_df = reduce(lambda left, right: pd.merge(left, right, on=['X', 'Y']), map_df) return final_df
171e387ca51f543b522946a213e51040463aec74
6,500
def add_missing_flows(data): """There are some flows not given in ReCiPe that seem like they should be there, given the relatively coarse precision of these CFs.""" new_cfs = { "managed forest": { "amount": 0.3, "flows": [ "occupation, forest, unspecified", "occupation, field margin/hedgerow", ], }, "annual crops": { "amount": 1.0, "flows": [ "occupation, annual crop, flooded crop", "occupation, annual crop, irrigated, extensive", ], }, "pasture": { "amount": 0.55, "flows": [ "occupation, arable land, unspecified use", "occupation, grassland, natural, for livestock grazing", "occupation, heterogeneous, agricultural", ], }, "artificial area": {"amount": 0.73, "flows": [],}, "permanent crops": { "amount": 0.7, "flows": [ "occupation, permanent crop, irrigated", "occupation, permanent crop, irrigated, extensive", "occupation, permanent crop, non-irrigated", "occupation, permanent crop, non-irrigated, extensive", ], }, } """ The following were included in an earlier version of ReCiPe, but are skipped here, as we don't have enough info to use them consistently: * 'occupation, bare area (non-use)', * 'occupation, cropland fallow (non-use)', * 'occupation, forest, primary (non-use)', * 'occupation, forest, secondary (non-use)', * 'occupation, inland waterbody, unspecified', * 'occupation, lake, natural (non-use)', * 'occupation, river, natural (non-use)', * 'occupation, seabed, natural (non-use)', * 'occupation, seabed, unspecified', * 'occupation, snow and ice (non-use)', * 'occupation, unspecified', * 'occupation, unspecified, natural (non-use)', * 'occupation, wetland, coastal (non-use)', * 'occupation, wetland, inland (non-use)' """ for ds in data: ds["exchanges"].extend( [ {"name": flow, "amount": obj["amount"]} for obj in new_cfs.values() for flow in obj["flows"] ] ) return data
e23184bb7363db4777d9f693a3fdc4ace9f8ff14
6,501
from typing import List def cglb_conjugate_gradient( K: TensorType, b: TensorType, initial: TensorType, preconditioner: NystromPreconditioner, cg_tolerance: float, max_steps: int, restart_cg_step: int, ) -> tf.Tensor: """ Conjugate gradient algorithm used in CGLB model. The method of conjugate gradient (Hestenes and Stiefel, 1952) produces a sequence of vectors :math:`v_0, v_1, v_2, ..., v_N` such that :math:`v_0` = initial, and (in exact arithmetic) :math:`Kv_n = b`. In practice, the v_i often converge quickly to approximate :math:`K^{-1}b`, and the algorithm can be stopped without running N iterations. We assume the preconditioner, :math:`Q`, satisfies :math:`Q ≺ K`, and stop the algorithm when :math:`r_i = b - Kv_i` satisfies :math:`||rᵢᵀ||_{Q⁻¹r}^2 = rᵢᵀQ⁻¹rᵢ <= ϵ`. :param K: Matrix we want to backsolve from. Must be PSD. Shape [N, N]. :param b: Vector we want to backsolve. Shape [B, N]. :param initial: Initial vector solution. Shape [N]. :param preconditioner: Preconditioner function. :param cg_tolerance: Expected maximum error. This value is used as a decision boundary against stopping criteria. :param max_steps: Maximum number of CG iterations. :param restart_cg_step: Restart step at which the CG resets the internal state to the initial position using the currect solution vector :math:`v`. Can help avoid build up of numerical errors. :return: `v` where `v` approximately satisfies :math:`Kv = b`. """ CGState = namedtuple("CGState", ["i", "v", "r", "p", "rz"]) def stopping_criterion(state: CGState) -> bool: return (0.5 * state.rz > cg_tolerance) and (state.i < max_steps) def cg_step(state: CGState) -> List[CGState]: Ap = state.p @ K denom = tf.reduce_sum(state.p * Ap, axis=-1) gamma = state.rz / denom v = state.v + gamma * state.p i = state.i + 1 r = tf.cond( state.i % restart_cg_step == restart_cg_step - 1, lambda: b - v @ K, lambda: state.r - gamma * Ap, ) z, new_rz = preconditioner(r) p = tf.cond( state.i % restart_cg_step == restart_cg_step - 1, lambda: z, lambda: z + state.p * new_rz / state.rz, ) return [CGState(i, v, r, p, new_rz)] Kv = initial @ K r = b - Kv z, rz = preconditioner(r) p = z i = tf.constant(0, dtype=default_int()) initial_state = CGState(i, initial, r, p, rz) final_state = tf.while_loop(stopping_criterion, cg_step, [initial_state]) final_state = tf.nest.map_structure(tf.stop_gradient, final_state) return final_state[0].v
bc00f2423c4ffdaf0494ab6e6114222cbc694915
6,502
import os def build_docker_build(latest=True): """Create command used to (re)build the container. We store the Dockerfile (as that name) in dir .next or .latest so that we can have various templates and assets and so on in the 'context' directory. """ tmpl = "{} build -t {{tagname}}:{{tagtag}} {{pathtodockerfile}}".format(OCI_CMD) _latest = LATEST if latest else NEXT pathtodockerfile = os.path.join(CONFD["devstation_config_root"], "." + _latest) return tmpl.format( tagname=CONFD["tagname"], tagtag=_latest, pathtodockerfile=pathtodockerfile )
317b5d63cc941d6db57d704e1be76c7aa8b32799
6,503
def scrape_new_thread(thread_name, url): """Scrape data for a thread that isn't already in our database.""" logger.debug(f"Start of scrape_new_thread for {thread_name}, {url}") # URL Validation # TODO: write this function, then hand it off to scrape_existing_thread() logger.debug("Now that the thread exists in our db, hand it off to scrape_existing_thread()") scrape_existing_thread(thread_name) logger.debug("End of scrape_new_thread") return render_template('scrape_new_thread.html', title='Browse TalkBeer BIFs')
cbb583e262c938378562951af495d122b2db13bd
6,504
def num_fixed_points(permutation): """ Compute the number of fixed points (elements mapping to themselves) of a permutation. :param permutation: Permutation in one-line notation (length n tuple of the numbers 0, 1, ..., n-1). :return: Number of fixed points in the permutation. .. rubric:: Examples >>> num_fixed_points((0, 2, 1)) 1 """ n = 0 for i in range(len(permutation)): if permutation[i] == i: n += 1 return n
124713cd4c90988c43630a74881e7107ff748682
6,505
import os def load_messages(path, unique, verbose): """ Loads messages from the corpus and returns them as Message objects """ messages = [] signatures = set() for root, _, files in os.walk(path): if verbose: print("Processing {}".format(root)) for message_file in files: message = read_message(os.path.join(root, message_file)) if unique: sig = (message.sender, message.recipients, message.timestamp, message.subject, message.body) if sig in signatures: continue signatures.add(sig) messages.append(message) return messages
61e3abafb0bd6c20adf9dfbc45c03e510704880c
6,506
import numpy def mutate(grid): """ Alters the cycle by breaking it into two separate circuits, and then fusing them back together to recreate a (slightly different) cycle. This operation is called "sliding" in 'An Algorithm for Finding Hamiltonian Cycles in Grid Graphs Without Holes', and it's specifically mentioned because it is insuffient if you want to be able to reach all possible cycles for a given starting graph. That condition isn't really relevant to this project, so I use sliding since it's much easier to implement. """ working_grid = grid.copy().astype(numpy.uint8) above = shift_down(grid) below = shift_up(grid) left = shift_right(grid) right = shift_left(grid) # this mask highlights every grid location that could be turned off candidates = numpy.logical_and( numpy.logical_and(grid, above != left), numpy.logical_and(above == below, left == right) ) # the connected region is split into two coord = pick_candidate(candidates) flood_y, flood_x = coord working_grid[coord] = 0 # find the right spot to label one of the regions '2' if left[coord] == 1: flood_x -= 1 elif right[coord] == 1: flood_x += 1 elif above[coord] == 1: flood_y -= 1 elif below[coord] == 1: flood_y += 1 cv2.floodFill( working_grid, numpy.zeros([v + 2 for v in grid.shape], dtype=numpy.uint8), (flood_x, flood_y), 2 ) above = shift_down(working_grid) below = shift_up(working_grid) left = shift_right(working_grid) right = shift_left(working_grid) x_neighbors = left + right y_neighbors = above + below # this mask highlights every grid location that can fuse the two regions # back together while preserving a cycle fuse_candidates = numpy.logical_and( working_grid == 0, numpy.logical_or( numpy.logical_and(x_neighbors == 3, y_neighbors == 0), numpy.logical_and(x_neighbors == 0, y_neighbors == 3) ) ) fuse_location = pick_candidate(fuse_candidates) grid[coord] = 0 grid[fuse_location] = 1 return grid
35cc32385d090fa8091f872858fbeb0c32ecf43d
6,507
def reverse_permute(output_shape: np.array, order: np.array): """ Calculates Transpose op input shape based on output shape and permute order. :param output_shape: Transpose output shape :param order: permute order :return: Transpose input shape corresponding to the specified output shape """ return int64_array(output_shape[PermuteAttrs.get_inverse_permutation(order)])
ada631cc086a1dc0d2dce05f6d97a74a1f3861f4
6,508
def recursive_bisection(block, block_queue, epsilon_cut, depth_max, theta, lamb, delta, verbose=False): """Random cut and random converge Args: block_queue (multiprocessing.Queue): Shared queue to store blocks to be executed Returns: [{"range": {int: (int,int)}, "mondrian_budget": float, "depth": int}] """ # Random cut if verbose: print('Before cut', block.domain_dict) if block.depth > depth_max: axis, index = cut_random(block) else: axis, index = cut_exp_mech(block, epsilon_cut) if verbose: print(axis, index) left_block, right_block = block.split(axis, index) # Random converge converged_block_results = [] if left_block.size() == 1: converged_block_results.append(BlockResult(left_block.domain_dict, left_block.depth)) elif random_converge(left_block, left_block.depth, theta, lamb, delta): converged_block_results.append(BlockResult(left_block.domain_dict, left_block.depth)) else: block_queue.put(left_block) if right_block.size() == 1: converged_block_results.append(BlockResult(right_block.domain_dict, right_block.depth)) elif random_converge(right_block, right_block.depth, theta, lamb, delta): converged_block_results.append(BlockResult(right_block.domain_dict, right_block.depth)) else: block_queue.put(right_block) return converged_block_results
d65070c2cf64356277c4af044b97c5eaa8efdd3d
6,509
def _get_global_step_read(graph=None): """Gets global step read tensor in graph. Args: graph: The graph in which to create the global step read tensor. If missing, use default graph. Returns: Global step read tensor. Raises: RuntimeError: if multiple items found in collection GLOBAL_STEP_READ_KEY. """ graph = graph or ops.get_default_graph() global_step_read_tensors = graph.get_collection(GLOBAL_STEP_READ_KEY) if len(global_step_read_tensors) > 1: raise RuntimeError('There are multiple items in collection {}. ' 'There should be only one.'.format(GLOBAL_STEP_READ_KEY)) if len(global_step_read_tensors) == 1: return global_step_read_tensors[0] return None
46bf3b55b36216e4247d6d73226d22b20383321f
6,510
from unittest.mock import Mock def light_control() -> LightControl: """Returns the light_control mock object.""" mock_request = Mock() mock_request.return_value = "" return LightControl(mock_request)
cb135ed24d2e992eab64b298e5c9238576a37c5d
6,511
def map_threshold(stat_img=None, mask_img=None, alpha=.001, threshold=3., height_control='fpr', cluster_threshold=0): """ Compute the required threshold level and return the thresholded map Parameters ---------- stat_img : Niimg-like object or None, optional statistical image (presumably in z scale) whenever height_control is 'fpr' or None, stat_img=None is acceptable. If it is 'fdr' or 'bonferroni', an error is raised if stat_img is None. mask_img : Niimg-like object, optional, mask image alpha: float, optional number controling the thresholding (either a p-value or q-value). Its actual meaning depends on the height_control parameter. This function translates alpha to a z-scale threshold. threshold: float, optional desired threshold in z-scale. This is used only if height_control is None height_control: string, or None optional false positive control meaning of cluster forming threshold: 'fpr'|'fdr'|'bonferroni'\|None cluster_threshold : float, optional cluster size threshold. In the returned thresholded map, sets of connected voxels (`clusters`) with size smaller than this number will be removed. Returns ------- thresholded_map : Nifti1Image, the stat_map thresholded at the prescribed voxel- and cluster-level threshold: float, the voxel-level threshold used actually Note ---- If the input image is not z-scaled (i.e. some z-transformed statistic) the computed threshold is not rigorous and likely meaningless """ # Check that height_control is correctly specified if height_control not in ['fpr', 'fdr', 'bonferroni', None]: raise ValueError( "height control should be one of ['fpr', 'fdr', 'bonferroni', None]") # if height_control is 'fpr' or None, we don't need to look at the data # to compute the threhsold if height_control == 'fpr': threshold = norm.isf(alpha) # In this case, and is stat_img is None, we return if stat_img is None: if height_control in ['fpr', None]: return None, threshold else: raise ValueError( 'Map_threshold requires stat_img not to be None' 'when the heigh_control procedure is bonferroni or fdr') # Masking if mask_img is None: masker = NiftiMasker(mask_strategy='background').fit(stat_img) else: masker = NiftiMasker(mask_img=mask_img).fit() stats = np.ravel(masker.transform(stat_img)) n_voxels = np.size(stats) # Thresholding if height_control == 'fdr': threshold = fdr_threshold(stats, alpha) elif height_control == 'bonferroni': threshold = norm.isf(alpha / n_voxels) stats *= (stats > threshold) # embed it back to 3D grid stat_map = get_data(masker.inverse_transform(stats)) # Extract connected components above threshold label_map, n_labels = label(stat_map > threshold) labels = label_map[get_data(masker.mask_img_) > 0] for label_ in range(1, n_labels + 1): if np.sum(labels == label_) < cluster_threshold: stats[labels == label_] = 0 return masker.inverse_transform(stats), threshold
ea7c1ca48641ed76eef2f2b0396b93fd522fdbaf
6,512
import time import random def grab_features(dataframe: pd.DataFrame) -> pd.DataFrame: """ Attempts to assign song features using the get_features function to all songs in given dataframe. This function creates a column that encompasses all features retuerned from Spotify in a json format for each track ID. It then explodes this column into a seperate dataframe and concatenates it with the original. Parameters: dataframe (pandas dataframe): Dataframe to assigned track IDs to. Must have a "trackID" column Returns: dataframe (pandas dataframe): original pandas dataframe with song features included """ start = time.time() print("Getting song features..") dataframe["features_json"] = dataframe["trackId"].progress_apply( get_features ) # progress apply allows for tqdm progress bar dataframe.dropna( axis=0, subset=["trackId"], inplace=True ) # cannot search for tracks that have no ID temp_list = [pd.json_normalize(x) for x in dataframe["features_json"]] features_df = pd.concat(x for x in temp_list).reset_index().drop(["index"], axis=1) dataframe = dataframe.reset_index().drop(["index"], axis=1) dataframe = pd.concat([dataframe, features_df], axis=1) dataframe.drop(["features_json"], axis=1, inplace=True) index_check = random.randint( 0, len(dataframe) ) # performing check that temporary song feature df matches orignal df assert ( dataframe["trackId"].iloc[index_check] == dataframe["id"].iloc[index_check] ), "track IDs do not match" del temp_list, features_df end = time.time() print( f".apply took {round((end - start),3)} seconds for {len(dataframe)} songs, around {round((end-start) / (len(dataframe)), 3)} seconds per song" ) return dataframe
7a2810b68815241a62f2ce753169bd982a17a211
6,513
def _build_geo_shape_query(field, geom, relation): """Crea una condición de búsqueda por relación con una geometría en formato GeoJSON. Args: field (str): Campo de la condición. geom (dict): Geometría GeoJSON. relation (str): Tipo de búsqueda por geometrías a realizar. Ver la documentación de Elasticsearch GeoShape Query para más detalles. Returns: Query: Condición para Elasticsearch. """ options = { 'shape': geom, 'relation': relation } return GeoShape(**{field: options})
f42fe6e21da30e3d6c8466be92143b215925686c
6,514
import os from sys import version def ProcessConfigurationFile(options): """Process configuration file, merge configuration with OptionParser. Args: options: optparse.OptionParser() object Returns: options: optparse.OptionParser() object global_ns: A list of global nameserver tuples. regional_ns: A list of regional nameservers tuples. Raises: ValueError: If we are unable to find a usable configuration file. """ config = ConfigParser.ConfigParser() full_path = util.FindDataFile(options.config) config.read(full_path) if not config or not config.has_section('general'): raise ValueError('Could not find usable configuration in %s (%s)' % (full_path, options.config)) general = dict(config.items('general')) if options.only or options.system_only: global_ns = [] regional_ns = [] else: global_ns = config.items('global') regional_ns = config.items('regional') + config.items('private') # -U implies -u if options.site_url: options.upload_results = True for option in general: if not getattr(options, option, None): if 'timeout' in option: value = float(general[option]) elif 'count' in option or 'num' in option or 'hide' in option: value = int(general[option]) else: value = general[option] setattr(options, option, value) for key in ('input_file', 'output_file', 'csv_file', 'input_source'): value = getattr(options, key, None) if value: setattr(options, key, os.path.expanduser(value)) options.version = version.VERSION return (options, global_ns, regional_ns)
e1d78fa2b904b2c46e27d67f3679d7192456db29
6,515
from typing import Optional def map_symptom(symptom_name: str) -> Optional[str]: """ Maps a *symptom_name* to current symptom values in ID3C warehouse. There is no official standard for symptoms, we are using the values created by Audere from year 1 (2018-2019). """ symptom_map = { 'feeling feverish': 'feelingFeverish', 'fever': 'feelingFeverish', 'headache': 'headaches', 'headaches': 'headaches', 'cough': 'cough', 'chills': 'chillsOrShivering', 'chills or shivering': 'chillsOrShivering', 'sweats': 'sweats', 'throat': 'soreThroat', 'sore throat or itchy/scratchy throat': 'soreThroat', 'nausea': 'nauseaOrVomiting', 'nausea or vomiting': 'nauseaOrVomiting', 'nose': 'runnyOrStuffyNose', 'runny or stuffy nose': 'runnyOrStuffyNose', 'runny / stuffy nose': 'runnyOrStuffyNose', 'tired': 'fatigue', 'feeling more tired than usual': 'fatigue', 'ache': 'muscleOrBodyAches', 'muscle or body aches': 'muscleOrBodyAches', 'diarrhea': 'diarrhea', 'ear': 'earPainOrDischarge', 'ear pain or ear discharge': 'earPainOrDischarge', 'rash': 'rash', 'breathe': 'increasedTroubleBreathing', 'increased trouble with breathing': 'increasedTroubleBreathing', 'eye': 'eyePain', 'smell_taste': 'lossOfSmellOrTaste', 'other': 'other', 'none': 'none', 'none of the above': 'none', } if symptom_name.lower() not in symptom_map: raise UnknownSymptomNameError(f"Unknown symptom name «{symptom_name}»") return symptom_map[symptom_name.lower()]
c86f0694715b434b1e3b2dc3f66ddfc3afadeaf0
6,516
def check_sbatch(cmd, call=True, num_cpus=1, mem="2G", time=None, partitions=None, dependencies=None, no_output=False, no_error=False, use_slurm=False, mail_type=['FAIL', 'TIME_LIMIT'], mail_user=None, stdout_file=None, stderr_file=None, args=None): """ This function wraps calls to sbatch. It adds the relevant command line options based on the parameters (either specified or extracted from args, if args is not None). The 'ntasks' option is always 1 with the function. Args: cmd (str): The command to execute call (bool): If this flag is false, then the commands will not be executed (but will be logged). num_cpus (int): The number of CPUs to use. This will be translated into an sbatch request like: "--ntasks 1 --cpus-per-task <num-cpus>". default: 1 mem (str): This will be translated into an sbatch request like: "--mem=<mem>". default: 10G time (str): The amount of time to request. This will be translated into an sbatch request like: "--time <time>". default: 0-05:59 partitions (str): The partitions to request. This will be translated into an sbatch request like: "-p <partitions>". default: general (N.B. This value should be a comma-separated list with no spaces, for example: partitions="general,long") dependencies (list of int-likes): A list of all of the job ids to use as dependencies for this call. This will be translated into an sbatch request like: "--dependency=afterok:<dependencies>". default: None (i.e., no dependencies) N.B. This IS NOT overwritten by args. no_output (bool): If this flag is True, stdout will be redirected to /dev/null. This will be translated into an sbatch request like: "--output=/dev/null". default: If the flag is not present, then stdout will be directed to a log file with the job number. This corresponds to "--output=slurm-%J.out" in the sbatch call. stdout_file (str): If this value is given and no_output is False, then this filename will be used for stdout rather than slurm-%J.out. This corresponds to "--output=<stdout_file>" in the sbatch call. no_error (bool): If this flag is True, stderr will be redirected to /dev/null. This will be translated into an sbatch request like: "--error=/dev/null". default: If the flag is not present, then stderr will be directed to a log file with the job number. This corresponds to "--error=slurm-%J.err" in the sbatch call. stderr_file (str): If this value is given and no_output is False, then this filename will be used for stderr rather than slurm-%J.err. This corresponds to "--output=<stdout_file>" in the sbatch call. use_slurm (bool): If this flag is True, then the commands will be submitted to SLURM via sbatch. default: By default, each command is executed sequentially within the current terminal. mail_type (list of strings): A list of the types of mail to send. This will be translated into an sbatch request like: "--mail-type type_1,type_2,...". default: ['FAIL', 'TIME_LIMIT'] mail_user (string): The email address (or user name if that is configured) of the recipient of the mails. This is translated into an sbatch request like: "--mail-user <user>" args (namespace): A namespace which contains values for all of the options (i.e., created from an argparse parser after calling add_sbatch_options on the parser) Returns: If use_slurm is False, None If use_slurm is True, the slurm job id """ # use args if they are present if args is not None: call = not args.do_not_call num_cpus = args.num_cpus mem = args.mem time = args.time partitions = args.partitions no_output = args.no_output no_error = args.no_error use_slurm = args.use_slurm mail_type = args.mail_type mail_user = args.mail_user stdout_file = args.stdout_file stderr_file = args.stderr_file output_str = "--output=slurm-%J.out" if stdout_file is not None: output_str = "--output={}".format(stdout_file) if no_output: output_str = "--output=/dev/null" error_str = "--error=slurm-%J.err" if stderr_file is not None: error_str = "--error={}".format(stderr_file) if no_error: error_str = "--error=/dev/null" dependencies_str = "" if dependencies is not None: dependencies_str = ':'.join(str(d) for d in dependencies) dependencies_str = "--dependency=afterok:{}".format(dependencies_str) # check if we actually want to use SLURM msg = "slurm.check_sbatch.use_slurm: {}, call: {}".format(use_slurm, call) logger.debug(msg) # anyway, make sure to remove the --use-slurm option cmd = cmd.replace("--use-slurm", "") if use_slurm: time_str = "" if time is not None: time_str = "--time {}".format(time) mem_str = "" if mem is not None: mem_str = "--mem={}".format(mem) partitions_str = "" if partitions is not None: partitions_str = "-p {}".format(partitions) num_cpus_str = "" if num_cpus is not None: num_cpus_str = "--cpus-per-task {}".format(num_cpus) mail_type_str = "" if mail_type is not None: mail_type_str = "--mail-type {}".format(','.join(mail_type)) mail_user_str = "" if mail_user is not None: mail_user_str = "--mail-user {}".format(mail_user) else: # if we did not give a mail user, then do not specify the mail types mail_type_str = "" cmd = ("sbatch {} {} --ntasks 1 {} {} " "{} {} {} {} {} {}".format(time_str, mem_str, partitions_str, num_cpus_str, dependencies_str, output_str, error_str, mail_type_str, mail_user_str, cmd)) output = shell_utils.check_output(cmd, call=call) # and parse out the job id if call: job_id = output.strip().split()[-1] else: job_id = None return job_id else: shell_utils.check_call(cmd, call=call) return None
292757f8a9901a722d10d3d9f76f7e584d802b3b
6,517
def get_project_details(p): """Extract from the pickle object detailed information about a given project and parse it in a comprehensive dict structure.""" res = {} project = p['projects'][0] fields = {'Owner(s)': 'project_owners', 'Member(s)': 'project_members', 'Collaborator(s)': 'project_collabs', 'User(s)': 'project_users', 'last_accessed': 'project_last_access'} for k, v in fields.items(): res[k] = project[v].strip().split(' <br/> ') if res[k][0] == '': res[k] = ['None'] for e in ['insert_user', 'insert_date', 'project_access', 'name', 'project_last_workflow']: res[e] = project[e] return res
f8ba3debdd8be7cc7a906851a6a6fb1e3c5f039a
6,518
def get_category(name: str) -> Category: """Returns a category with a given name""" return Category.objects.get(name=name)
4dc99ed672bbb3d7843692da797d0cd901c2c44c
6,519
def log_report(): """ The log report shows the log file. The user can filter and search the log. """ log_main = open(main_log, 'r').readlines() data_main = [] for line in log_main: split_line = line.split(' ') data_main.append([' '.join(split_line[:2]), ' '.join(split_line[2:])]) return render_template( 'log.html', title="Logs", data_main=data_main)
53905c90bed2666c7e668bf76ff03a6ba93eca5b
6,520
def int_or_none(x) -> int: """Either convert x to an int or return None.""" try: return int(x) except TypeError: return None except ValueError: return None
e7fbd422a6c61293c9f4f71df211a85570d4400e
6,521
import argparse import logging def create_parser_for_docs() -> argparse.ArgumentParser: """Create a parser showing all options for the default CLI documentation. Returns: The primary parser, specifically for generating documentation. """ daiquiri.setup(level=logging.FATAL) # load default plugins plugin.initialize_default_plugins() ext_commands = plug.manager.hook.create_extension_command() return create_parser( show_all_opts=True, ext_commands=ext_commands, config_file=_repobee.constants.DEFAULT_CONFIG_FILE, )
97fca333d2e5893f21070efc0016bcf3634d7977
6,522
def needed_to_build_multi(deriv_outputs, existing=None, on_server=None): """ :param deriv_outputs: A mapping from derivations to sets of outputs. :type deriv_outputs: ``dict`` of ``Derivation`` to ``set`` of ``str`` """ if existing is None: existing = {} if on_server is None: on_server = {} needed, need_fetch = {}, {} for deriv, outputs in deriv_outputs.items(): needed_to_build(deriv, outputs, needed=needed, need_fetch=need_fetch, existing=existing, on_server=on_server) return needed, need_fetch
d05083ea9c71c982d312e8b420b21bba92b80ee4
6,523
def iscode(c): """ Tests if argument type could be lines of code, i.e. list of strings """ if type(c) == type([]): if c: return type(c[0]) == type('') else: return True else: return False
e60da6c05922ff1e67db15fa4caa1500a8f470c7
6,524
def get_comment_list(request, thread_id, endorsed, page, page_size, requested_fields=None): """ Return the list of comments in the given thread. Arguments: request: The django request object used for build_absolute_uri and determining the requesting user. thread_id: The id of the thread to get comments for. endorsed: Boolean indicating whether to get endorsed or non-endorsed comments (or None for all comments). Must be None for a discussion thread and non-None for a question thread. page: The page number (1-indexed) to retrieve page_size: The number of comments to retrieve per page requested_fields: Indicates which additional fields to return for each comment. (i.e. ['profile_image']) Returns: A paginated result containing a list of comments; see discussion.rest_api.views.CommentViewSet for more detail. """ response_skip = page_size * (page - 1) cc_thread, context = _get_thread_and_context( request, thread_id, retrieve_kwargs={ "with_responses": True, "recursive": False, "user_id": request.user.id, "response_skip": response_skip, "response_limit": page_size, } ) # Responses to discussion threads cannot be separated by endorsed, but # responses to question threads must be separated by endorsed due to the # existing comments service interface if cc_thread["thread_type"] == "question": if endorsed is None: # lint-amnesty, pylint: disable=no-else-raise raise ValidationError({"endorsed": ["This field is required for question threads."]}) elif endorsed: # CS does not apply resp_skip and resp_limit to endorsed responses # of a question post responses = cc_thread["endorsed_responses"][response_skip:(response_skip + page_size)] resp_total = len(cc_thread["endorsed_responses"]) else: responses = cc_thread["non_endorsed_responses"] resp_total = cc_thread["non_endorsed_resp_total"] else: if endorsed is not None: raise ValidationError( {"endorsed": ["This field may not be specified for discussion threads."]} ) responses = cc_thread["children"] resp_total = cc_thread["resp_total"] # The comments service returns the last page of results if the requested # page is beyond the last page, but we want be consistent with DRF's general # behavior and return a PageNotFoundError in that case if not responses and page != 1: raise PageNotFoundError("Page not found (No results on this page).") num_pages = (resp_total + page_size - 1) // page_size if resp_total else 1 results = _serialize_discussion_entities(request, context, responses, requested_fields, DiscussionEntity.comment) paginator = DiscussionAPIPagination(request, page, num_pages, resp_total) return paginator.get_paginated_response(results)
980e52645e96853339df0525359ddba4698bf7e7
6,525
from typing import List def files(name: str, dependencies=False, excludes=None) -> List[PackagePath]: """ List all files belonging to a distribution. Arguments: name: The name of the distribution. dependencies: Recursively collect files of dependencies too. excludes: Distributions to ignore if **dependencies** is true. Returns: All filenames belonging to the given distribution. With ``dependencies=False``, this is just a shortcut for:: conda_support.distribution(name).files """ return [file for dist in _iter_distributions(name, dependencies, excludes) for file in dist.files]
cfda01bb7e6858e378aadeea47e6e4a0d76dda2f
6,526
def ready_to_delete_data_node(name, has_executed, graph): """ Determines if a DataPlaceholderNode is ready to be deleted from the cache. Args: name: The name of the data node to check has_executed: set A set containing all operations that have been executed so far graph: The networkx graph containing the operations and data nodes Returns: A boolean indicating whether the data node can be deleted or not. """ data_node = get_data_node(name, graph) return set(gr.successors(graph, data_node)).issubset(has_executed)
7da3c6053146a1772223e29e1eca15107e0347b6
6,527
import hashlib def extract_hash_parts(repo): """Extract hash parts from repo""" full_hash = hashlib.sha1(repo.encode("utf-8")).hexdigest() return full_hash[:2], full_hash[2:]
aa1aebaf9b8330539eb0266c4ff97fd3459753c8
6,528
def create_cloud_mask(im_QA, satname, cloud_mask_issue): """ Creates a cloud mask using the information contained in the QA band. KV WRL 2018 Arguments: ----------- im_QA: np.array Image containing the QA band satname: string short name for the satellite: ```'L5', 'L7', 'L8' or 'S2'``` cloud_mask_issue: boolean True if there is an issue with the cloud mask and sand pixels are being erroneously masked on the images Returns: ----------- cloud_mask : np.array boolean array with True if a pixel is cloudy and False otherwise """ # convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission) if satname == 'L8': cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908] elif satname == 'L7' or satname == 'L5' or satname == 'L4': cloud_values = [752, 756, 760, 764] elif satname == 'S2': cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds # find which pixels have bits corresponding to cloud values cloud_mask = np.isin(im_QA, cloud_values) # remove cloud pixels that form very thin features. These are beach or swash pixels that are # erroneously identified as clouds by the CFMASK algorithm applied to the images by the USGS. if sum(sum(cloud_mask)) > 0 and sum(sum(~cloud_mask)) > 0: morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True) if cloud_mask_issue: elem = morphology.square(3) # use a square of width 3 pixels cloud_mask = morphology.binary_opening(cloud_mask,elem) # perform image opening # remove objects with less than 25 connected pixels morphology.remove_small_objects(cloud_mask, min_size=25, connectivity=1, in_place=True) return cloud_mask
5143c1c61425a131bdb3b0f91018643c9a9d4123
6,529
import re def split_bucket(s3_key): """ Returns the bucket name and the key from an s3 location string. """ match = re.match(r'(?:s3://)?([^/]+)/(.*)', s3_key, re.IGNORECASE) if not match: return None, s3_key return match.group(1), match.group(2)
6b854bdc9d105643a9fa528e6fefd19672451e63
6,530
def contains_chinese(ustr): """ 将字符串中的中文去除 Args: ustr: 字符串 Returns: 去除中文的字符串 """ return any('\u4e00' <= char <= '\u9fff' for char in ustr)
8d53a214e1754e1c129f1583a298f5a19e1f76d3
6,531
def payment_activity(): """Request for extra-curricular activity""" try: req_json = request.get_json(force=True) except TypeError: return jsonify(message='Invalid json input'), 400 activity_info = req_json['activity'] student = req_json['student'] envelope_args = { 'signer_client_id': 1000, 'ds_return_url': req_json['callback-url'], 'gateway_account_id': session.get('payment_gateway_account_id'), 'gateway_name': session.get('payment_gateway'), 'gateway_display_name': session.get('payment_display_name') } try: # Create envelope with payment envelope = DsDocument.create_with_payment( 'payment-activity.html', student, activity_info, envelope_args ) # Submit envelope to Docusign envelope_id = Envelope.send(envelope, session) except ApiException as exc: return process_error(exc) user_documents = session.get('ds_documents') if not user_documents: session['ds_documents'] = [envelope_id] else: session['ds_documents'].append(envelope_id) try: # Get the recipient view result = Envelope.get_view(envelope_id, envelope_args, student, session) except ApiException as exc: return process_error(exc) return jsonify({'envelope_id': envelope_id, 'redirect_url': result.url})
a313b6e5ed00ffc9b3685ce28a9c640e96276347
6,532
def gdc_to_dos_list_response(gdcr): """ Takes a GDC list response and converts it to GA4GH. :param gdc: :return: """ mres = {} mres['data_objects'] = [] for id_ in gdcr.get('ids', []): mres['data_objects'].append({'id': id_}) if len(gdcr.get('ids', [])) > 0: mres['next_page_token'] = gdcr['ids'][-1:][0] return mres
a237a64f55c15fb10070d76b6f3cc4f283460a96
6,533
def get_labels_by_db_and_omic_from_graph(graph): """Return labels by db and omic given a graph.""" db_subsets = defaultdict(set) db_entites = defaultdict(dict) entites_db = defaultdict(dict) # entity_type_map = {'Gene':'genes', 'mirna_nodes':'mirna', 'Abundance':'metabolites', 'BiologicalProcess':'bps'} for u, v, k in graph.edges(keys=True): if ANNOTATIONS not in graph[u][v][k]: continue if 'database' not in graph[u][v][k][ANNOTATIONS]: continue for database in graph[u][v][k][ANNOTATIONS]['database']: db_subsets[database].add(u) db_subsets[database].add(v) for database, nodes in db_subsets.items(): db_entites[database] = calculate_database_sets_as_dict(nodes, database) database_sets = calculate_database_sets_as_dict(nodes, database) db_entites[database] = database_sets for entity_type, entities in database_sets.items(): entites_db[entity_type][database] = entities return db_entites, entites_db
14374977afb09fded25f78e14fced607bb8f9ea1
6,534
import os def python_modules(): """Determine if there are python modules in the cwd. Returns: list of python modules as strings """ ignored = ["setup.py", "conftest.py"] py_modules = [] for file_ in os.listdir(os.path.abspath(os.curdir)): if file_ in ignored or not os.path.isfile(file_): continue file_name, file_ext = os.path.splitext(file_) if file_ext == ".py": py_modules.append(file_name) return sorted(py_modules)
eba262b38bddb0f76f614c74a9a0b1c090e48e6b
6,535
import logging def covid_API_england (): """Function retrieves date, hospital admissions, total deaths and daily cases using government API""" england_only = [ 'areaType=nation', 'areaName=England' ] dates_and_cases = { "date": "date", "newCasesByPublishDate": "newCasesByPublishDate", "newAdmissions": "newAdmissions", "cumDailyNsoDeathsByDeathDate":"cumDailyNsoDeathsByDeathDate" } api = Cov19API(filters=england_only, structure=dates_and_cases) logging.info('API has received query for national data') global DATA2 DATA2 = api.get_json() return DATA2
a13090a052a35dd675c1fb31b861cbcc4b9e7c4a
6,536
from meerschaum.actions.shell import default_action_completer from typing import Optional from typing import List from typing import Any def _complete_uninstall( action : Optional[List[str]] = None, **kw : Any ) -> List[str]: """ Override the default Meerschaum `complete_` function. """ if action is None: action = [] options = { 'plugin': _complete_uninstall_plugins, 'plugins': _complete_uninstall_plugins, } if len(action) > 0 and action[0] in options: sub = action[0] del action[0] return options[sub](action=action, **kw) return default_action_completer(action=(['uninstall'] + action), **kw)
1cfdc5694a069c924316f57e4804ae04d63bb4af
6,537
def test_bucket(): """Universal bucket name for use throughout testing""" return 'test_bucket'
2f78b1b1bf7ccfff07ca29213d975f3b20f0e9a5
6,538
import os import sys def validate_args(args): """ Validate all of the arguments parsed. Args: args (argparser.ArgumentParser) : Args parsed by the argument parser. Returns: args (CoreclrArguments) : Args parsed Notes: If the arguments are valid then return them all in a tuple. If not, raise an exception stating x argument is incorrect. """ coreclr_setup_args = CoreclrArguments(args, require_built_test_dir=False, require_built_core_root=True, require_built_product_dir=False) coreclr_setup_args.verify(args, "base_root", lambda directory: os.path.isdir(directory) if directory is not None else True, "Base root is not a valid directory") coreclr_setup_args.verify(args, "diff_root", lambda directory: os.path.isdir(directory) if directory is not None else True, "Diff root is not a valid directory", modify_arg=lambda directory: nth_dirname(os.path.abspath(sys.argv[0]), 3) if directory is None else os.path.abspath(directory)) coreclr_setup_args.verify(args, "scratch_root", lambda unused: True, "Error setting scratch_root", modify_arg=lambda directory: os.path.join(coreclr_setup_args.diff_root, '_', 'pmi') if directory is None else os.path.abspath(directory)) coreclr_setup_args.verify(args, "skip_baseline_build", lambda unused: True, "Error setting baseline build") coreclr_setup_args.verify(args, "skip_diffs", lambda unused: True, "Error setting skip_diffs") coreclr_setup_args.verify(args, "target_branch", lambda unused: True, "Error setting target_branch") coreclr_setup_args.verify(args, "commit_hash", lambda unused: True, "Error setting commit_hash") coreclr_setup_args.verify(args, "ci_arch", lambda ci_arch: ci_arch in coreclr_setup_args.valid_arches + ['x86_arm_altjit', 'x64_arm64_altjit'], "Error setting ci_arch") args = ( coreclr_setup_args.arch, coreclr_setup_args.ci_arch, coreclr_setup_args.build_type, coreclr_setup_args.base_root, coreclr_setup_args.diff_root, coreclr_setup_args.scratch_root, coreclr_setup_args.skip_baseline_build, coreclr_setup_args.skip_diffs, coreclr_setup_args.target_branch, coreclr_setup_args.commit_hash ) log('Configuration:') log(' arch: %s' % coreclr_setup_args.arch) log(' ci_arch: %s' % coreclr_setup_args.ci_arch) log(' build_type: %s' % coreclr_setup_args.build_type) log(' base_root: %s' % coreclr_setup_args.base_root) log(' diff_root: %s' % coreclr_setup_args.diff_root) log(' scratch_root: %s' % coreclr_setup_args.scratch_root) log(' skip_baseline_build: %s' % coreclr_setup_args.skip_baseline_build) log(' skip_diffs: %s' % coreclr_setup_args.skip_diffs) log(' target_branch: %s' % coreclr_setup_args.target_branch) log(' commit_hash: %s' % coreclr_setup_args.commit_hash) return args
35f9446ba1d52c0ec824e0184b5e17ddd16bbb76
6,539
import os def _path_restrict(path, repo): """Generate custom package restriction from a given path. This drops the repo restriction (initial entry in path restrictions) since runs can only be made against single repo targets so the extra restriction is redundant and breaks several custom sources involving raw pkgs (lacking a repo attr) or faked repos. """ restrictions = [] path = os.path.realpath(path) restrictions = repo.path_restrict(path)[1:] restrict = packages.AndRestriction(*restrictions) if restrictions else packages.AlwaysTrue # allow location specific scopes to override the path restrict scope for scope in (x for x in base.scopes.values() if x.level == 0): scope_path = os.path.realpath(pjoin(repo.location, scope.desc)) if path.startswith(scope_path): break else: scope = _restrict_to_scope(restrict) return scope, restrict
dbcff06e3cc32b0ff606459ce13cfc275bfae173
6,540
def us_send_code(): """ Send code view. This takes an identity (as configured in USER_IDENTITY_ATTRIBUTES) and a method request to send a code. """ form_class = _security.us_signin_form if request.is_json: if request.content_length: form = form_class(MultiDict(request.get_json()), meta=suppress_form_csrf()) else: form = form_class(formdata=None, meta=suppress_form_csrf()) else: form = form_class(meta=suppress_form_csrf()) form.submit_send_code.data = True if form.validate_on_submit(): # send code user = form.user if not user.us_totp_secret: after_this_request(_commit) user.us_totp_secret = _security._totp_factory.generate_totp_secret() _datastore.put(user) send_security_token( user, form.chosen_method.data, user.us_totp_secret, user.us_phone_number, send_magic_link=True, ) if _security._want_json(request): # Not authenticated yet - so don't send any user info. return base_render_json(form, include_user=False) return _security.render_template( config_value("US_SIGNIN_TEMPLATE"), us_signin_form=form, methods=config_value("US_ENABLED_METHODS"), chosen_method=form.chosen_method.data, code_sent=True, skip_loginmenu=True, **_security._run_ctx_processor("us_signin") ) # Here on GET or failed validation if _security._want_json(request): payload = {"methods": config_value("US_ENABLED_METHODS")} return base_render_json(form, include_user=False, additional=payload) return _security.render_template( config_value("US_SIGNIN_TEMPLATE"), us_signin_form=form, methods=config_value("US_ENABLED_METHODS"), skip_loginmenu=True, **_security._run_ctx_processor("us_signin") )
7ca09dc6d6fdc7840d893e01b4166d65a1b9cc02
6,541
def merge_texts(files, file_index, data_type): """ merge the dataframes in your list """ dfs, filenames = get_dataframe_list(files, file_index, data_type) # enumerate over the list, merge, and rename columns try: df = dfs[0] # print(*[df_.columns for df_ in dfs],sep='\n') for i, frame in enumerate(dfs[1:]): if data_type == 'gene': try: # rename first columns to metadata value df = df.rename(columns={'raw_counts': get_metadata_tag(filenames[0])}) df = df.merge(frame, on='gene').rename(columns={'raw_counts':'raw_counts_' + get_metadata_tag(filenames[i-1])}) except: continue elif data_type == 'transcript': try: df = df.merge(frame, on='transcript') # df = df.merge(frame, on=frame.index) except: continue return df except: print("Could not merge dataframe")
4e336a240afd100797b707efc9ccc96feb8d2919
6,542
def create_dictionary(names, months, years, max_sustained_winds, areas_affected, updated_damages, deaths): """Create dictionary of hurricanes with hurricane name as the key and a dictionary of hurricane data as the value.""" hurricanes = dict() num_hurricanes = len(names) for i in range(num_hurricanes): hurricanes[names[i]] = {"Name": names[i], "Month": months[i], "Year": years[i], "Max Sustained Wind": max_sustained_winds[i], "Areas Affected": areas_affected[i], "Damage": updated_damages[i], "Deaths": deaths[i]} return hurricanes
5a27d5349113f29d2af55df27a2ee2c2cc524549
6,543
def create_variable_type(parent, nodeid, bname, datatype): """ Create a new variable type args are nodeid, browsename and datatype or idx, name and data type """ nodeid, qname = _parse_nodeid_qname(nodeid, bname) if datatype and isinstance(datatype, int): datatype = ua.NodeId(datatype, 0) if datatype and not isinstance(datatype, ua.NodeId): raise RuntimeError("Data type argument must be a nodeid or an int refering to a nodeid, received: {}".format(datatype)) return node.Node(parent.server, _create_variable_type(parent.server, parent.nodeid, nodeid, qname, datatype))
b2202b929bc51e2a2badfef6ec31df45e9736268
6,544
def load_NWP(input_nc_path_decomp, input_path_velocities, start_time, n_timesteps): """Loads the decomposed NWP and velocity data from the netCDF files Parameters ---------- input_nc_path_decomp: str Path to the saved netCDF file containing the decomposed NWP data. input_path_velocities: str Path to the saved numpy binary file containing the estimated velocity fields from the NWP data. start_time: numpy.datetime64 The start time of the nowcasting. Assumed to be a numpy.datetime64 type n_timesteps: int Number of time steps to forecast Returns ------- R_d: list A list of dictionaries with each element in the list corresponding to a different time step. Each dictionary has the same structure as the output of the decomposition function uv: array-like Array of shape (timestep,2,m,n) containing the x- and y-components of the advection field for the (NWP) model field per forecast lead time. """ if not NETCDF4_IMPORTED: raise MissingOptionalDependency( "netCDF4 package is required to load the decomposed NWP data, " "but it is not installed" ) # Open the file ncf_decomp = netCDF4.Dataset(input_nc_path_decomp, "r", format="NETCDF4") velocities = np.load(input_path_velocities) # Initialise the decomposition dictionary decomp_dict = dict() decomp_dict["domain"] = ncf_decomp.domain decomp_dict["normalized"] = bool(ncf_decomp.normalized) decomp_dict["compact_output"] = bool(ncf_decomp.compact_output) # Convert the start time and the timestep to datetime64 and timedelta64 type zero_time = np.datetime64("1970-01-01T00:00:00", "ns") analysis_time = np.timedelta64(int(ncf_decomp.analysis_time), "ns") + zero_time timestep = ncf_decomp.timestep timestep = np.timedelta64(timestep, "m") valid_times = ncf_decomp.variables["valid_times"][:] valid_times = np.array( [np.timedelta64(int(valid_times[i]), "ns") for i in range(len(valid_times))] ) valid_times = valid_times + zero_time # Find the indices corresponding with the required start and end time start_i = (start_time - analysis_time) // timestep assert analysis_time + start_i * timestep == start_time end_i = start_i + n_timesteps + 1 # Add the valid times to the output decomp_dict["valid_times"] = valid_times[start_i:end_i] # Slice the velocity fields with the start and end indices uv = velocities[start_i:end_i, :, :, :] # Initialise the list of dictionaries which will serve as the output (cf: the STEPS function) R_d = list() for i in range(start_i, end_i): decomp_dict_ = decomp_dict.copy() cascade_levels = ncf_decomp.variables["pr_decomposed"][i, :, :, :] # In the netcdf file this is saved as a masked array, so we're checking if there is no mask assert not cascade_levels.mask means = ncf_decomp.variables["means"][i, :] assert not means.mask stds = ncf_decomp.variables["stds"][i, :] assert not stds.mask # Save the values in the dictionary as normal arrays with the filled method decomp_dict_["cascade_levels"] = np.ma.filled(cascade_levels) decomp_dict_["means"] = np.ma.filled(means) decomp_dict_["stds"] = np.ma.filled(stds) # Append the output list R_d.append(decomp_dict_) return R_d, uv
d96dacc14404f59b15a428e62608765486623460
6,545
def get_ts(fn, tc, scale=0): """Returns timestamps from a frame number and timecodes file or cfr fps fn = frame number tc = (timecodes list or Fraction(fps),tc_type) scale default: 0 (ns) examples: 3 (µs); 6 (ms); 9 (s) """ scale = 9 - scale tc, tc_type = tc if tc_type == 'cfr': ts = round(10 ** scale * fn * Fraction(tc.denominator, tc.numerator)) return ts elif tc_type == 'vfr': ts = round(float(tc[fn]) * 10 ** (scale - 3)) return ts
845b2600268a2942ca0fe2b09336ab724b00e299
6,546
import numpy def adapt_array(array): """ Using the numpy.save function to save a binary version of the array, and BytesIO to catch the stream of data and convert it into a BLOB. :param numpy.array array: NumPy array to turn into a BLOB :return: NumPy array as BLOB :rtype: BLOB """ out = BytesIO() numpy.save(out, array) out.seek(0) return out.read()
36a62c745de0e933b520821ea7cce70f5013c5d2
6,547
def make_queue(paths_to_image, labels, num_epochs=None, shuffle=True): """returns an Ops Tensor with queued image and label pair""" images = tf.convert_to_tensor(paths_to_image, dtype=tf.string) labels = tf.convert_to_tensor(labels, dtype=tf.uint8) input_queue = tf.train.slice_input_producer( tensor_list=[images, labels], num_epochs=num_epochs, shuffle=shuffle) return input_queue
7a2ad9338642a5d6c7af59fe972ee9fd07f128b8
6,548
def display_import(request, import_id): """Display the details of an import.""" import_object = get_object_or_404(RegisteredImport, pk=import_id) context_data = {'import': import_object} return render(request, 'eats/edit/display_import.html', context_data)
b5676dd5da1791fb6eda3d6989b9c7c0c8b02b8c
6,549
def TransformContainerAnalysisData(image_name, occurrence_filter=None, deployments=False): """Transforms the occurrence data from Container Analysis API.""" analysis_obj = container_analysis_data_util.ContainerAndAnalysisData( image_name) occs = FetchOccurrencesForResource(image_name, occurrence_filter) for occ in occs: analysis_obj.add_record(occ) if deployments: depl_occs = FetchDeploymentsForImage(image_name, occurrence_filter) for depl_occ in depl_occs: analysis_obj.add_record(depl_occ) analysis_obj.resolveSummaries() return analysis_obj
d7021dde08a77ac6922274f3e69d841983728f4e
6,550
def setup_milp(model, target, remove_blocked=False, exclude_reaction_ids=set()): """ This function constructs the MILP. exclude_reaction_ids takes a list of reaction ids that shouldn't be considered for heterologous addition (i.e. spontaneous reactions and exchange reactions). These reactions are thus always allowed to have flux within their model bounds. """ original_model = model model = model.copy() model.objective=target for i in heterologous_reactions.keys(): # turns off each heterologous reaction in order to get the only the native metabolic network. model.reactions.get_by_id(i).lower_bound=0 model.reactions.get_by_id(i).upper_bound=0 for r in model.reactions: if r.id.find('MetaCyc')>-1: r.type='heterologous' else: r.type='native' # Set the solver to Gurobi for the fastest result. Set to CPLEX if Gurobi is not available. if "gurobi" in cobra.util.solver.solvers.keys(): logger.info("Changing solver to Gurobi and tweaking some parameters.") if "gurobi_interface" not in model.solver.interface.__name__: model.solver = "gurobi" # The tolerances are set to the minimum value. This gives maximum precision. problem = model.solver.problem problem.params.NodeMethod = 1 # primal simplex node relaxation problem.params.FeasibilityTol = 1e-9 #If a flux limited to 0 by a constraint, which range around it is still considered the same as 0 > set smallest possible problem.params.OptimalityTol = 1e-3 #how sure the solver has to be about this optimum being really the best it has. problem.params.IntFeasTol = 1e-9 #If a value is set to an integer, how much may it still vary? > set smallest possible problem.params.MIPgapAbs = 1e-9 problem.params.MIPgap = 1e-9 problem.params.Threads=1 #In order to reduce memory usage (increased calculation time) problem.params.TimeLimit = 200 # Use max 200 seconds when called, return best solution after that problem.params.PoolSearchMode = 1 #0 for only finding the optimum, 1 for finding more solutions (but no quality guaranteed), 2 for finding the n best possible solutions problem.params.PoolSolutions = 10 # Number of solutions kept when finding the optimal solution problem.params.PoolGap = 0.9 # only store solutions within 90% of the optimal objective value elif "cplex" in cobra.util.solver.solvers.keys(): logger.warning("Changing solver to CPLEX, as Gurobi is not available. This may cause a big slowdown and limit options afterwards.") if "cplex_interface" not in model.solver.interface.__name__: model.solver = "cplex" # The tolerances are set to the minimum value. This gives maximum precision. problem = model.solver.problem problem.parameters.mip.strategy.startalgorithm.set(1) # primal simplex node relaxation problem.parameters.simplex.tolerances.feasibility.set(1e-9) #If a flux limited to 0 by a constraint, which range around it is still considered the same as 0 > set smallest possible problem.parameters.simplex.tolerances.optimality.set(1e-3) #possibly fine with 1e-3, try if allowed. Is how sure the solver has to be about this optimum being really the best it has. problem.parameters.mip.tolerances.integrality.set(1e-9) #If a value is set to an integer, how much may it still vary? > set smallest possible problem.parameters.mip.tolerances.absmipgap.set(1e-9) problem.parameters.mip.tolerances.mipgap.set(1e-9) problem.parameters.mip.pool.relgap.set(0.9) # For populate: find all solutions within 10% of the optimum for relgap = 0.1 problem.parameters.timelimit.set(200) # Use max 200 seconds for solving problem.parameters.mip.limits.populate.set(20) # Find max 20 solutions (=default) else: logger.warning("You are trying to run 'Hamlet Hot Rig' with %s. This might not end well." % model.solver.interface.__name__.split(".")[-1]) pass # Remove reactions that are blocked: no flux through these reactions possible. This will reduce the search space for the solver, if not done already. if remove_blocked: blocked_reactions = cameo.flux_analysis.analysis.find_blocked_reactions(model) model.remove_reactions(blocked_reactions) # Make dual model_with = model.copy() # This variable looks unnecessary, but is kept out of fear of messing stuff up model_with.optimize() dual_problem = convert_linear_problem_to_dual(model_with.solver) logger.debug("Dual problem successfully created") # Combine primal and dual primal_problem = model.solver for var in dual_problem.variables: # All variables in the dual are copied to the primal var = primal_problem.interface.Variable.clone(var) primal_problem.add(var) for const in dual_problem.constraints: # All constraints in the dual are copied to the primal const = primal_problem.interface.Constraint.clone(const, model=primal_problem) primal_problem.add(const) logger.debug("Dual and primal combined") dual_problem.optimize() # Dictionaries to hold the binary control variables: heterologous_y_vars = {} # 1 for 'knockin', 0 for inactive medium_y_vars = {} # 1 for medium addition (up to -10), 0 for no addition # Now the fun stuff constrained_dual_vars = set() # For the knockins and medium additions: for reaction in [r for r in model.reactions if r.type == "heterologous"]: # Add constraint variables interface = model.solver.interface y_var = interface.Variable("y_" + reaction.id, type="binary") # Constrain the primal: flux through reactions maximum within (-1000, 1000), or smaller boundaries defined before model.solver.add(interface.Constraint(reaction.flux_expression - 1000 * y_var, ub=0, name="primal_y_const_"+reaction.id+"_ub")) model.solver.add(interface.Constraint(reaction.flux_expression + 1000 * y_var, lb=0, name="primal_y_const_"+reaction.id+"_lb")) # Constrain the dual constrained_vars = [] if reaction.upper_bound != 0: dual_forward_ub = model.solver.variables["dual_" + reaction.forward_variable.name + "_ub"] model.solver.add(interface.Constraint(dual_forward_ub - 1000 * (1 - y_var), ub=0)) constrained_vars.append(dual_forward_ub) if reaction.lower_bound != 0: dual_reverse_ub = model.solver.variables["dual_" + reaction.reverse_variable.name + "_ub"] model.solver.add(interface.Constraint(dual_reverse_ub - 1000 * (1 - y_var), ub=0)) constrained_vars.append(dual_reverse_ub) constrained_dual_vars.update(constrained_vars) # Add y variable to the corresponding modifications dictionary heterologous_y_vars[y_var] = reaction logger.debug("Control variables created") # Add number of heterologous switch contraint constraint heterologous_turn_on = model.solver.interface.Constraint( optlang.symbolics.Add(*heterologous_y_vars), lb=0, ub=0, name="heterologous_reaction_constraint" ) model.solver.add(heterologous_turn_on) # Set the objective primal_objective = model.solver.objective dual_objective = interface.Objective.clone( dual_problem.objective, model=model.solver ) switch_objective=interface.Objective(heterologous_turn_on.expression, direction='min') full_objective = interface.Objective(primal_objective.expression-dual_objective.expression, direction="max") model.objective = full_objective return model,primal_objective,dual_objective,full_objective,switch_objective
ddefa4b44ac0dce087367762ead2cb0ce9bbb14b
6,551
def bilinear_initializer(shape, dtype, partition_info): """ Bilinear initializer for deconvolution filters """ kernel = get_bilinear_kernel(shape[0], shape[1], shape[2]) broadcasted_kernel = np.repeat(kernel.reshape(shape[0], shape[1], shape[2], -1), repeats=shape[3], axis=3) return broadcasted_kernel
48a7cc2808e72df816c9b6ff7a8975eb52e4185e
6,552
def pdf(): """ Демо-версия PDF отчеа, открывается прямо в браузере, это удобнее, чем каждый раз скачивать """ render_pdf(sample_payload_obj, './output.pdf') upload_file('./output.pdf') return send_file('./output.pdf', attachment_filename='output.pdf')
a2a60c26df9844e605606538d40d1402cd5a4985
6,553
def run_clear_db_es(app, arg_env, arg_skip_es=False): """ This function actually clears DB/ES. Takes a Pyramid app as well as two flags. _Use with care!_ For safety, this function will return without side-effect on any production system. Also does additional checks based on arguments supplied: If an `arg_env` (default None) is given as a non-empty string value, this function will return without side-effect if the current app environment does not match the given value. If `arg_skip_es` (default False) is True, this function will return after DB clear and before running create_mapping. Args: app: Pyramid application arg_env (str): if provided, only run if environment matches this value arg_skip_es (bool): if True, do not run create_mapping after DB clear Returns: bool: True if DB was cleared (regardless of ES) """ env = app.registry.settings.get('env.name', '') # for now, do NOT allow clearing of production systems if is_stg_or_prd_env(env): log.error('clear_db_es_contents: will NOT run on env %s. Exiting...' % env) return False if arg_env and arg_env != env: log.error('clear_db_es_contents: environment mismatch! Given --env %s ' 'does not match current env %s. Exiting....' % (arg_env, env)) return False log.info('clear_db_es_contents: clearing DB tables...') db_success = clear_db_tables(app) if not db_success: log.error('clear_db_es_contents: clearing DB failed! Try to run again.' ' This command can fail if there are external DB connections') return False log.info('clear_db_es_contents: successfully cleared DB') # create mapping after clear DB to remove ES contents if not arg_skip_es: log.info('clear_db_es_contents: clearing ES with create_mapping...') run_create_mapping(app, purge_queue=True) log.info('clear_db_es_contents: done!') return True
e7d865dec8691c4d0db7bef71b68bab9bc5174a2
6,554
def init_total_population(): """ Real Name: b'init total population' Original Eqn: b'init Infected asymptomatic+init Susceptible' Units: b'person' Limits: (None, None) Type: component b'' """ return init_infected_asymptomatic() + init_susceptible()
cf742a00d0140c48dbdb4692dabbb8bbd6c5c6b2
6,555
def one_hot(dim: int, idx: int): """ Get one-hot vector """ v = np.zeros(dim) v[idx] = 1 return v
84b87b357dc7b7bf54af4718885aa1d6fbcb35e4
6,556
import re def process_priors(prior_flat, initial_fit): """Process prior input array into fit object.""" if any( [float(val) <= 0 for key, val in prior_flat.items() if key.endswith("sdev")] ): raise ValueError("Standard deviations must be larger than zero.") prior = {} for key, val in initial_fit.prior.items(): if hasattr(val, "__len__"): nmax = len( [k for k in prior_flat if re.match(f"{key}__array_[0-9]+-mean", k)] ) prior[key] = gv.gvar( [prior_flat[f"{key}__array_{n}-mean"] for n in range(nmax)], [prior_flat[f"{key}__array_{n}-sdev"] for n in range(nmax)], ) else: prior[key] = gv.gvar(prior_flat[f"{key}-mean"], prior_flat[f"{key}-sdev"]) fit = nonlinear_fit(initial_fit.data, initial_fit.fcn, prior) for attr in ["models", "meta"]: if hasattr(initial_fit, attr): setattr(fit, attr, getattr(initial_fit, attr)) return fit
32358fb494a221e5e7d5d4d73776993f1c363f0f
6,557
def _sample_data(ice_lines, frac_to_plot): """ Get sample ice lines to plot :param ice_lines: all ice lines :param frac_to_plot: fraction to plot :return: the sampled ice lines """ if frac_to_plot < 1.: ice_plot_data = ice_lines.sample(int(ice_lines.shape[0] * frac_to_plot)) elif frac_to_plot > 1: ice_plot_data = ice_lines.sample(frac_to_plot) else: ice_plot_data = ice_lines.copy() ice_plot_data = ice_plot_data.reset_index(drop=True) return ice_plot_data
e5da9b1ecaf615863504e81cdd246336de97b319
6,558
def fast_dot(M1, M2): """ Specialized interface to the numpy.dot function This assumes that A and B are both 2D arrays (in practice) When A or B are represented by 1D arrays, they are assumed to reprsent diagonal arrays This function then exploits that to provide faster multiplication """ if len(M1.shape) in [1, 2] and len(M2.shape) == 1: return M1*M2 elif len(M1.shape) == 1 and len(M2.shape) == 2: return M1[:,None]*M2 elif len(M1.shape) == 2 and len(M2.shape) == 2: return M1.dot(M2) else: raise Exception('fast_dot requires shapes to be 1 or 2')
b34e44787f48dfb25af4975e74262f3d8eaa5096
6,559
async def autoredeem( bot: commands.Bot, guild_id: int ) -> bool: """Iterates over the list of users who have enabled autoredeem for this server, and if one of them does redeem some of their credits and alert the user.""" await bot.wait_until_ready() conn = bot.db.conn guild = bot.get_guild(guild_id) if guild is None: return False async with bot.db.lock: async with conn.transaction(): ar_members = await conn.fetch( """SELECT * FROM members WHERE guild_id=$1 AND autoredeem=True""", guild_id ) redeemed = False for m in ar_members: ms = await get_members([int(m['user_id'])], guild) if len(ms) == 0: continue current_credits = await get_credits( bot, int(m['user_id']) ) if current_credits < bot_config.PREMIUM_COST: continue try: await alert_user( bot, int(m['user_id']), f"You have autoredeem enabled in {guild.name}, " f"so {bot_config.PREMIUM_COST} credits were taken " "from your account since they ran out of premium." ) except Exception: continue try: await redeem( bot, int(m['user_id']), guild_id, 1 ) redeemed = True except errors.NotEnoughCredits: pass return redeemed
ee0a34e4aa9d85e9402dcbec8a1ecce5a2ca58e1
6,560
def get_ISO_369_3_from_string(term: str, default: str = None, strict: bool = False, hdp_lkg: dict = None) -> str: """Convert an individual item to a ISO 369-3 language code, UPPERCASE Args: term (str): The input term to search default (str, optional): Default no match found. Defaults to None. strict (bool, optional): If require exact match on hdp_lkg. hdp_lkg (dict, optional): HDP localization knowledge graph dictionary. Default to use internal HDP localization knowledge graph. Returns: str: An ISO 369-3 language code, UPPERCASE Examples: >>> import hxlm.core.localization as l10n >>> l10n.get_ISO_369_3_from_string(term='pt') 'POR' >>> l10n.get_ISO_369_3_from_string(term='en') 'ENG' >>> l10n.get_ISO_369_3_from_string(term='ZZZ', strict=False) 'ZZZ' >>> l10n.get_ISO_369_3_from_string(term='pt_BR') >>> # inputs like 'pt_BR' still not implemented... yet >>> # But when using system languages, like 'pt_BR:pt:en', >>> # often the next term would be PT anyway """ if _IS_DEBUG: print('get_ISO_369_3_from_string') print(' term', term) print(' term.upper', term.upper()) print(' default', default) print(' strict', strict) # print(' hdp_lkg', hdp_lkg) result = default if hdp_lkg is None: hdp_lkg = get_localization_knowledge_graph() # Since the HDP localization knowledge may not contain the full ISO 639-3 # language codes, without strict = True, if the input already is 3 letter # uppercase ASCII letters, we will fallback to this if not strict and (len(term) == 3 and term.isalpha() and term.isupper()): result = term if hdp_lkg is None or 'linguam23' not in hdp_lkg: return result if term.upper() in hdp_lkg['linguam23']: return hdp_lkg['linguam23'][term.upper()] if len(term) >= 5 and len(term) >= 12: if _IS_DEBUG: print(' TODO: implement some type of search by language name') return result
434c39cad948bf7e4e33e9f5a6bd8da7c8a708ab
6,561
from typing import Optional from typing import Sequence def plot_heatmap( data: DataFrame, columns: Optional[Sequence[str]] = None, droppable: bool = True, sort: bool = True, cmap: Optional[Sequence[str]] = None, names: Optional[Sequence[str]] = None, yaxis: bool = False, xaxis: bool = True, legend_kws: dict = None, sb_kws: dict = None) -> SubplotBase: """NA heatmap. Plots NA values as red lines and normal values as black lines. Parameters ---------- data : DataFrame Input data. columns : Optional[Sequence[str]], optional Columns names. droppable : bool, optional Show values to be dropped by :py:meth:`pandas.DataFrame.dropna()` method. sort : bool, optional Sort DataFrame by selected columns. cmap : Optional[Sequence[str]], optional Heatmap and legend colormap: non-missing values, droppable values, NA values, correspondingly. Passed to :py:meth:`seaborn.heatmap()` method. names : Optional[Sequence[str]], optional Legend labels: non-missing values, droppable values, NA values, correspondingly. yaxis : bool, optional Show Y axis. xaxis : bool, optional Show X axis. legend_kws : dict, optional Keyword arguments passed to :py:meth:`matplotlib.axes._subplots.AxesSubplot()` method. sb_kws : dict, optional Keyword arguments passed to :py:meth:`seaborn.heatmap` method. Returns ------- matplotlib.axes._subplots.AxesSubplot AxesSubplot object. """ if not cmap: cmap = ['green', 'orange', 'red'] if not names: names = ['Filled', 'Droppable', 'NA'] if not sb_kws: sb_kws = {'cbar': False} cols = _select_cols(data, columns).tolist() data_na = data.loc[:, cols].isna().copy() if sort: data_na.sort_values(by=cols, inplace=True) if droppable: non_na_mask = ~data_na.values na_rows_mask = data_na.any(axis=1).values[:, None] droppable_mask = non_na_mask & na_rows_mask data_na = data_na.astype(float) data_na.values[droppable_mask] = 0.5 labels = names else: labels = [names[0], names[-1]] if not legend_kws: legend_kws = {'bbox_to_anchor': (0.5, 1.15), 'loc': 'upper center', 'ncol': len(labels)} ax_heatmap = heatmap(data_na, cmap=cmap, **sb_kws) ax_heatmap.yaxis.set_visible(yaxis) ax_heatmap.xaxis.set_visible(xaxis) legend_elements = [Patch(facecolor=cmap[0]), Patch(facecolor=cmap[-1])] if droppable: legend_elements.insert(1, Patch(facecolor=cmap[1])) ax_heatmap.legend(legend_elements, labels, **legend_kws) return ax_heatmap
84233ee9293131ce98072f880a3c1a57fc71b321
6,562
def iadd_tftensor(left, right, scale=1): """This function performs an in-place addition. However, TensorFlow returns a new object after a mathematical operation. This means that in-place here only serves to avoid the creation of a TfTensor instance. We do not have any control over the memory where the Tensor is stored.""" _check_shape(left, right) # If scale=1 we obtain a x2 speed-up if we do not multiply by the scale. if scale == 1: left._tf = left._tf + right._tf else: left._tf = left._tf + scale*right._tf return left
3f14de3df3544b74f0a900fca33eb6cdf6e11c00
6,563
import sys def bookmark_desc_cmd(query): """describe: desc [num.. OR url/tag substr..].""" split_query = query[4:].strip().split() if not split_query: sys.stderr.write(BOOKMARK_HELP) return False bk_indices = find_bookmark_indices(split_query) if bk_indices: return describe_bookmark(bk_indices) return False
2572ffbb801f01bdff4706a2823d2ca385943290
6,564
def encode(string_): """Change String to Integers""" return (lambda f, s: f(list( ord(c) for c in str(string_) ) , \ s))(lambda f, s: sum(f[i] * 256 ** i for i in \ range(len(f))), str(string_))
da3a729c2024d80792e08424745dc267ca67dff7
6,565
def generate_file_prefix(bin_params): """ Use the bin params to generate a file prefix.""" prefix = "bin_" for j in range(0, len(bin_params)): if (j + 1) % 2 != 0: prefix += str(bin_params[j]) + "-" else: prefix += str(bin_params[j]) + "_" return prefix
cc058a64fcab77f6a4794a8bf7edb1e0e86c040c
6,566
def extract_features_from_html(html, depth, height): """Given an html text, extract the node based features including the descendant and ancestor ones if depth and height are respectively nonzero.""" root = etree.HTML(html.encode('utf-8')) # get the nodes, serve bytes, unicode fails if html has meta features = extract_features_from_nodes(list(root.iter()), depth, height) # add the paths to the elements for identification features.loc[:, 'path'] = pd.Series((node.getroottree().getpath(node) for node in root.iter())) return features
ee7b627bf7c859fc886eab10f6a8b6b793653262
6,567
def __clean_field(amazon_dataset, option): """Cleanes the Text field from the datset """ clean = [] if option == 1: for i in amazon_dataset['Text']: clean.append(__one(i)) elif option == 2: for i in amazon_dataset['Summary']: clean.append(__one(i)) else: pass return clean
1e8ef28c810413b87804a42514059c347d715972
6,568
import os def write_bruker_search_path(ftype, destfile, sourcefile=None, sourcetext=None): """Will copy a file from sourcefile (out of the add_files directory) or text to destfile in first directory of Bruker search path for ftype = cpd, f1, gp, ... with checks for overwrite, identity, etc. """ if pp.run_flag not in pp.run_flags: raise Exception('unknown run_flag: ' + pp.run_flag) destfile = destfile + pp.name_tag ut.putcomment('write_bruker_search_path: start', 2) ut.putcomment('ftype: %s, destfile: %s' % (ftype, destfile), 2, ornament=False) if sourcetext and sourcefile: raise Exception('both sourcefile and sourcetext defined') if sourcetext: source = sourcetext sourcestring = 'sourcetext' ut.putcomment('input is from sourcetext', 2, ornament=False) ut.putcomment(source, 2, ornament=False) else: ut.putcomment('input is from sourcefile: ' + pp.addfiles_path + '/' + sourcefile, 2, ornament=False) sourcestring = 'sourcefile <%s>' % sourcefile f = open(os.path.join(pp.addfiles_path, sourcefile)) source = f.read() f.close() ut.putcomment(source, 3, ornament=False) (destfilefullpath, destdir) = ut.find_file_dir(destfile, ftype) if destfilefullpath: ut.putcomment('destination file exists: ' + destfilefullpath, 2, ornament=False) if not ut.cmp_text_file(source, destfilefullpath): outstring = ('PP_FILE NO_ACTION: %s equals destfile <%s>' % (sourcestring, destfilefullpath)) ut.putcomment(outstring, 1, ornament=False) pp.pp_log_fd.write('%s\n' % outstring) else: outstring = ('PP_FILE CONFLICT: %s is not equal to destfile <%s>' % (sourcestring, destfilefullpath)) ut.putcomment(outstring, 0, ornament=False) pp.pp_log_fd.write('%s\n' % outstring) if pp.run_flag == 'DRY': outstring = ('PP_FILE OVERWRITE: %s will overwrite destfile <%s>' % (sourcestring, destfilefullpath)) pp.pp_log_fd.write('%s\n' % outstring) elif pp.run_flag == 'NORMAL': raise Exception('%s\nPP_FILE NO_OVERWRITE: run_flag is %s\n' % (outstring, pp.run_flag)) elif pp.run_flag == 'FORCE': outstring = ('PP_FILE OVERWRITE: %s overwrites destfile <%s>' % (sourcestring, destfilefullpath)) ut.putcomment(outstring, 0, ornament=False) pp.pp_log_fd.write('%s\n' % outstring) ut.write_text_file(source, destfilefullpath) elif pp.run_flag == 'INTERACTIVE': raise Exception('%s\nPP_FILE NO_OVERWRITE: run_flag is %s\n' % (outstring, pp.run_flag)) else: df1 = os.path.join(destdir, destfile) outstring = ('PP_FILE CREATE: destfile <%s> from %s' % (df1, sourcestring)) ut.putcomment(outstring, 1, ornament=False) pp.pp_log_fd.write('%s\n' % outstring) if pp.run_flag == 'DRY': pass elif pp.run_flag in ['FORCE', 'NORMAL', 'INTERACTIVE']: ut.write_text_file(source, df1) else: raise Exception('unknown run_flag: ' + pp.run_flag) ut.putcomment('write_bruker_search_path: end', 2) return destfile
eaeaac026502308cbeb50932decfcc79d83d127c
6,569
import warnings def _read_atom_line(line): """ COLUMNS DATATYPE FIELD DEFINITION ------------------------------------------------------------------------------------- 1 - 6 RecordName "ATOM " 7 - 11 Integer serial Atom serial number. 13 - 16 Atom name Atom name. 17 Character altLoc Alternate location indicator. 18 - 20 Residue name resName Residue name. 22 Character chainID Chain identifier. 23 - 26 Integer resSeq Residue sequence number. 27 AChar iCode Code for insertion of residues. 31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms. 39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms. 47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms. 55 - 60 Real(6.2) occupancy Occupancy. 61 - 66 Real(6.2) tempFactor Temperature factor. 77 - 78 LString(2) element Element symbol, right-justified. 79 - 80 LString(2) charge Charge on the atom. """ lineInfo = {} lineInfo['RecordName'] = line[0:6] lineInfo['serial'] = int(line[7:12].strip()) lineInfo['name'] = line[12:16].strip() lineInfo['altLoc'] = line[16].strip() lineInfo['resName'] = line[17:21].strip() lineInfo['chainID'] = line[21].strip() lineInfo['resSeq'] = int(line[22:26].strip()) lineInfo['iCode'] = line[26].strip() try: lineInfo['position'] = np.array( [float(line[30:38]), float(line[38:46]), float(line[46:54])], ) except ValueError: raise ValueError("Invalid or missing coordinate(s)") try: lineInfo['occupancy'] = float(line[54:60]) except ValueError: lineInfo['occupancy'] = None # Rather than arbitrary zero or one if lineInfo['occupancy'] is not None and lineInfo['occupancy'] < 0: warnings.warn("Negative occupancy in one or more atoms") try: lineInfo['bfactor'] = float(line[60:66]) except ValueError: # The PDB use a default of zero if the data is missing lineInfo['bfactor'] = 0.0 lineInfo['segid'] = line[72:76].strip() lineInfo['element'] = line[76:78].strip().upper() lineInfo['charge'] = line[79:81].strip() return lineInfo
e511352dcc0bfcdec98035673adf759256c13e4c
6,570
from typing import List def semantic_parse_entity_sentence(sent: str) -> List[str]: """ @param sent: sentence to grab entities from @return: noun chunks that we consider "entities" to work with """ doc = tnlp(sent) ents_ke = textacy.ke.textrank(doc, normalize="lemma") entities = [ent for ent, _ in ents_ke] return entities
c65fa1d8da74b86b3e970cbf7f351e03d5a3fcec
6,571
import json import os def extract_to_files(pkr_path, verbose=False): """ Extract data and image to .json and .png (if any) next to the .pkr """ title, buttons, png_data = parse_animschool_picker(pkr_path, verbose) # Save to json with open(pkr_path + '.json', 'w') as f: json.dump([title, buttons], f, indent=4) # Write PNG to file: png_path = pkr_path + '.png' if png_data and not os.path.exists(png_path): save_png(png_data, png_path) return title, buttons, png_data
097a4ceb87f456b4a333ed18f7fa961aba2a2cad
6,572
def readLog(jobpath): """ Reads log to determine disk/mem usage, runtime For processing time, it will only grab the last execution/evict/terminated times. And runTime supercedes evictTime (eg. an exec->evict combination will not be written if a later exec-termination combination exists in the log) To be appended to processing database, so that structure is: ocr_processing["tag"]["jobs"] = [ {startTime: xxx, execTime: yyy, ... }, {reports from other jobs...} ] :jobid: id of the job within the submit/output directories :basedir: base directory for job output :returns: If successful, returns dict of the form jobReport = { subTime: (time of submission), execTime: (start time of latest execution), evictTime: (time of job eviction, if any), termTime: (time of job termination, if any), runTime: (time between execution start and termination/eviction time), usage: { usage dictionary from above}, } """ try: with open(jobpath + "/process.log") as file: chunk = "" subTime = None execTime = None evictTime = None termTime = None runTime = None jobReport = {} jobReport["path"] = jobpath for line in file: if line.startswith("..."): if chunk.startswith("000"): # submitted jobReport["subTime"] = parseTime(chunk.split('\n')[0]) elif chunk.startswith("001"): # executing jobReport["execTime"] = parseTime(chunk.split('\n')[0]) elif chunk.startswith("004"): # evicted, has partitionable table jobReport["evictTime"] = parseTime(chunk.split('\n')[0]) runTime = (jobReport["evictTime"] - jobReport["execTime"]) jobReport["runTime"] = runTime.days * 86400 + runTime.seconds jobReport["usage"] = parseResources(chunk) elif chunk.startswith("005"): # termination, has partitionable table jobReport["termTime"] = parseTime(chunk.split('\n')[0]) runTime = (jobReport["termTime"] - jobReport["execTime"]) jobReport["runTime"] = runTime.days * 86400 + runTime.seconds jobReport["usage"] = parseResources(chunk) elif chunk.startswith("006"): pass elif chunk.startswith("009"): pass else: if DEBUG: print "UNKNOWN CODE" print chunk chunk="" else: chunk+=line return jobReport except IOError: print "Couldn't find file at %s/process.log" % jobpath return None
4bc3f6b79d3eb18544ea54dd5b6ac173da43f83b
6,573
from numpy import array def match_cam_time(events, frame_times): """ Helper function for mapping ephys events to camera times. For each event in events, we return the nearest camera frame before the event. Parameters ---------- events : 1D numpy array Events of interest. Sampled at a higher rate than frame_times. frame_times : 1D numpy array Timepoints of camera frames to be assigned to events. Sampled at a lower rate than events. """ output = [] for a in events: lags = array(a - frame_times) before = len(lags[lags > 0]) - 1 if before >= 0: output.append(before) return array(output)
3f086a0f65a34183a429cf3c50e90fdc742672d3
6,574
import ctypes def _glibc_version_string_ctypes() -> Optional[str]: """ Fallback implementation of glibc_version_string using ctypes. """ try: except ImportError: return None # ctypes.CDLL(None) internally calls dlopen(NULL), and as the dlopen # manpage says, "If filename is NULL, then the returned handle is for the # main program". This way we can let the linker do the work to figure out # which libc our process is actually using. # # We must also handle the special case where the executable is not a # dynamically linked executable. This can occur when using musl libc, # for example. In this situation, dlopen() will error, leading to an # OSError. Interestingly, at least in the case of musl, there is no # errno set on the OSError. The single string argument used to construct # OSError comes from libc itself and is therefore not portable to # hard code here. In any case, failure to call dlopen() means we # can proceed, so we bail on our attempt. try: process_namespace = ctypes.CDLL(None) except OSError: return None try: gnu_get_libc_version = process_namespace.gnu_get_libc_version except AttributeError: # Symbol doesn't exist -> therefore, we are not linked to # glibc. return None # Call gnu_get_libc_version, which returns a string like "2.5" gnu_get_libc_version.restype = ctypes.c_char_p version_str: str = gnu_get_libc_version() # py2 / py3 compatibility: if not isinstance(version_str, str): version_str = version_str.decode("ascii") return version_str
86ae885182585eeb1c5e53ee8109036dd93d06d3
6,575
from typing import Sequence from typing import List from typing import Tuple def encode_instructions( stream: Sequence[Instruction], func_pool: List[bytes], string_pool: List[bytes], ) -> Tuple[bytearray, List[bytes], List[bytes]]: """ Encode the bytecode stream as a single `bytes` object that can be written to file or kept in memory. Parameters ---------- stream: Sequence[Instruction] The bytecode instruction objects to be encoded. func_pool: List[bytes] Where the generated bytecode for function objects is stored before being put in the final bytecode stream. string_pool: List[bytes] Where string objects are stored before being put in the final bytecode stream. Returns ------- bytes The encoded stream of bytecode instructions. It is guaranteed to have a length proportional to the length of `stream`. """ result_stream = bytearray(len(stream) * 8) for index, instruction in enumerate(stream): start = index * 8 end = start + 8 opcode_space = instruction.opcode.value.to_bytes(1, BYTE_ORDER) operand_space = encode_operands( instruction.opcode, instruction.operands, func_pool, string_pool ) operand_space = operand_space.ljust(7, b"\x00") result_stream[start:end] = opcode_space + operand_space return result_stream, func_pool, string_pool
0a371731f627b96ca3a07c5ac992fd46724a7817
6,576
def get_random(selector): """Return one random game""" controller = GameController return controller.get_random(MySQLFactory.get(), selector)
89f458a434cd20e10810d03e7addb1c5d6f1475a
6,577
def get_ssh_dispatcher(connection, context): """ :param Message context: The eliot message context to log. :param connection: The SSH connection run commands on. """ @deferred_performer def perform_run(dispatcher, intent): context.bind( message_type="flocker.provision.ssh:run", command=intent.log_command_filter(intent.command), ).write() endpoint = SSHCommandClientEndpointWithTTY.existingConnection( connection, intent.command) d = Deferred() connectProtocol(endpoint, CommandProtocol( deferred=d, context=context)) return d return TypeDispatcher({ Run: perform_run, Sudo: perform_sudo, Put: perform_put, Comment: perform_comment, })
1cb965c4e175276672173d5696e3196da5725fce
6,578
def read_ac(path, cut_off, rnalen): """Read the RNA accessibility file and output its positions and values The file should be a simple table with two columns: The first column is the position and the second one is the value '#' will be skipped """ access = [] with open(path) as f: i = 0 while i < rnalen: for line in f: line = line.split() if not line: continue elif line[0][0] == "#": continue elif len(line) < 2: continue else: v = line[1] if v == "NA": access.append(0) else: try: v = 2 ** (-float(v)) except: continue if v >= cut_off: access.append(1) else: access.append(0) i += 1 return access
0a8b6c2ff6528cf3f21d3b5efce14d59ff8ad2b6
6,579
def subtableD0(cxt: DecoderContext, fmt: Format): """ ORI """ fmt = FormatVI(fmt) return MNEM.ORI, [Imm(fmt.imm16, width=16, signed=False), Reg(fmt.reg1), Reg(fmt.reg2)], 2
2bb307bd74568745b7f453365f7667c383cae9ff
6,580
from datetime import datetime def format_date(unix_timestamp): """ Return a standardized date format for use in the two1 library. This function produces a localized datetime string that includes the UTC timezone offset. This offset is computed as the difference between the local version of the timestamp (python's datatime.fromtimestamp) and the utc representation of the input timestamp. Args: unix_timestamp (float): a floating point unix timestamp Returns: string: A string formatted with "%Y-%m-%d %H:%M:%S %Z" """ local_datetime = datetime.fromtimestamp(unix_timestamp) utz_offset = local_datetime - datetime.utcfromtimestamp(unix_timestamp) local_date = local_datetime.replace( tzinfo=timezone(utz_offset) ).strftime("%Y-%m-%d %H:%M:%S %Z") return local_date
cc1a6ee0c604e14f787741ff2cb0e118134c9b92
6,581
import copy from operator import and_ def or_(kb, goals, substitutions=dict(), depth=0, mask=None, k_max=None, max_depth=1): """Base function of prover, called recursively. Calls and_, which in turn calls or_, in order to recursively calculate scores for every possible proof in proof tree. Args: kb: dict of facts / rules goals: goal to be proved substitutions: dict which contains current variable substitutions and scores of current proof path depth: current proof depth mask: mask to apply so that goal facts (which are drawn from kb) cannot be proved by unifying with themselves k_max: number of fact unifications to retain from unifications with all facts in kb max_depth: maximum allowed proof depth before termination Returns: List of proof paths of goal with corresponding scores """ proofs = [] # initialize history and substitutions as empty if substitutions == {}: substitutions['VARSUBS'] = {} substitutions['HISTORY'] = [] for struct in kb: # avoid fake added struct if struct == 'goal': continue # Check if struct order matches if len(struct[0]) != len(goals): continue rule = rule_struct_form(kb[struct], struct) head = substitute(rule[0], substitutions, kb) body = rule[1:] mask_id = None if mask is not None: mask_key, mask_id = mask mask_id = mask_id if mask_key == struct else None is_fact = len(struct) == 1 and all([not is_variable(x) for x in struct[0]]) if not is_fact and depth == max_depth: # maximum depth reached continue # rule has been applied before elif applied_before(rule, substitutions, kb): continue substitutions_copy = copy.deepcopy(substitutions) substitutions_copy['HISTORY'].append([struct, depth]) substitutions_ = unify(head, goals, substitutions_copy, kb, depth, mask_id, transpose=is_fact) if is_fact and k_max is not None: new_success, success_indices = tf.nn.top_k(substitutions_["SUCCESS"], k_max) substitutions_["SUCCESS"] = new_success for value in substitutions_['VARSUBS'].values(): if value['struct'] != 'goal' and not 'subset' in value: value['subset'] = success_indices if substitutions_ != 'FAILURE': proof = and_(kb, body, substitutions_, depth, mask, k_max=k_max, max_depth=max_depth) if not isinstance(proof, list): proof = [proof] else: proof = flatten_proofs(proof) for proof_substitutions in proof: if proof_substitutions != 'FAILURE': proofs.append(proof_substitutions) return flatten_proofs(proofs)
d19382167143ffc3b5267fda126cc4f8d45fc86c
6,582
import copy def print_term(thy, t): """More sophisticated printing function for terms. Handles printing of operators. Note we do not yet handle name collisions in lambda terms. """ def get_info_for_operator(t): return thy.get_data("operator").get_info_for_fun(t.head) def get_priority(t): if nat.is_binary(t) or hol_list.is_literal_list(t): return 100 # Nat atom case elif t.is_comb(): op_data = get_info_for_operator(t) if op_data is not None: return op_data.priority elif t.is_all() or logic.is_exists(t) or logic.is_if(t): return 10 else: return 95 # Function application elif t.is_abs(): return 10 else: return 100 # Atom case def helper(t, bd_vars): LEFT, RIGHT = OperatorData.LEFT_ASSOC, OperatorData.RIGHT_ASSOC # Some special cases: # Natural numbers: if nat.is_binary(t): return N(str(nat.from_binary(t))) if hol_list.is_literal_list(t): items = hol_list.dest_literal_list(t) res = N('[') + commas_join(helper(item, bd_vars) for item in items) + N(']') if hasattr(t, "print_type"): return N("(") + res + N("::") + print_type(thy, t.T) + N(")") else: return res if set.is_literal_set(t): empty_set = "∅" if settings.unicode() else "{}" if hasattr(t, "print_type"): return N("(") + N(empty_set) + N("::") + print_type(thy, t.T) + N(")") else: return N(empty_set) if logic.is_if(t): P, x, y = t.args return N("if ") + helper(P, bd_vars) + N(" then ") + helper(x, bd_vars) + \ N(" else ") + helper(y, bd_vars) if t.is_var(): return V(t.name) elif t.is_const(): if hasattr(t, "print_type") and t.print_type: return N("(" + t.name + "::") + print_type(thy, t.T) + N(")") else: return N(t.name) elif t.is_comb(): op_data = get_info_for_operator(t) # First, we take care of the case of operators if op_data and op_data.arity == OperatorData.BINARY and t.is_binop(): arg1, arg2 = t.args # Obtain output for first argument, enclose in parenthesis # if necessary. if (op_data.assoc == LEFT and get_priority(arg1) < op_data.priority or op_data.assoc == RIGHT and get_priority(arg1) <= op_data.priority): str_arg1 = N("(") + helper(arg1, bd_vars) + N(")") else: str_arg1 = helper(arg1, bd_vars) if settings.unicode() and op_data.unicode_op: str_op = N(' ' + op_data.unicode_op + ' ') else: str_op = N(' ' + op_data.ascii_op + ' ') # Obtain output for second argument, enclose in parenthesis # if necessary. if (op_data.assoc == LEFT and get_priority(arg2) <= op_data.priority or op_data.assoc == RIGHT and get_priority(arg2) < op_data.priority): str_arg2 = N("(") + helper(arg2, bd_vars) + N(")") else: str_arg2 = helper(arg2, bd_vars) return str_arg1 + str_op + str_arg2 # Unary case elif op_data and op_data.arity == OperatorData.UNARY: if settings.unicode() and op_data.unicode_op: str_op = N(op_data.unicode_op) else: str_op = N(op_data.ascii_op) if get_priority(t.arg) < op_data.priority: str_arg = N("(") + helper(t.arg, bd_vars) + N(")") else: str_arg = helper(t.arg, bd_vars) return str_op + str_arg # Next, the case of binders elif t.is_all(): all_str = "!" if not settings.unicode() else "∀" if hasattr(t.arg, "print_type"): var_str = B(t.arg.var_name) + N("::") + print_type(thy, t.arg.var_T) else: var_str = B(t.arg.var_name) body_repr = helper(t.arg.body, [t.arg.var_name] + bd_vars) return N(all_str) + var_str + N(". ") + body_repr elif logic.is_exists(t): exists_str = "?" if not settings.unicode() else "∃" if hasattr(t.arg, "print_type"): var_str = B(t.arg.var_name) + N("::") + print_type(thy, t.arg.var_T) else: var_str = B(t.arg.var_name) body_repr = helper(t.arg.body, [t.arg.var_name] + bd_vars) return N(exists_str) + var_str + N(". ") + body_repr # Function update elif function.is_fun_upd(t): f, upds = function.strip_fun_upd(t) upd_strs = [helper(a, bd_vars) + N(" := ") + helper(b, bd_vars) for a, b in upds] return N("(") + helper(f, bd_vars) + N(")(") + commas_join(upd_strs) + N(")") # Finally, usual function application else: if get_priority(t.fun) < 95: str_fun = N("(") + helper(t.fun, bd_vars) + N(")") else: str_fun = helper(t.fun, bd_vars) if get_priority(t.arg) <= 95: str_arg = N("(") + helper(t.arg, bd_vars) + N(")") else: str_arg = helper(t.arg, bd_vars) return str_fun + N(" ") + str_arg elif t.is_abs(): lambda_str = "%" if not settings.unicode() else "λ" if hasattr(t, "print_type"): var_str = B(t.var_name) + N("::") + print_type(thy, t.var_T) else: var_str = B(t.var_name) body_repr = helper(t.body, [t.var_name] + bd_vars) return N(lambda_str) + var_str + N(". ") + body_repr elif t.is_bound(): if t.n >= len(bd_vars): raise OpenTermException else: return B(bd_vars[t.n]) else: raise TypeError() t = copy(t) # make copy here, because infer_printed_type may change t. infertype.infer_printed_type(thy, t) res = helper(t, []) if settings.highlight(): res = optimize_highlight(res) return res
745b378dac77411ba678911c478b6f5c8915c762
6,583
def build_model(): """Builds the model.""" return get_model()()
f843bce4edf099efd138a198f12c392aa2e723cd
6,584
def truncate_field_data(model, data): """Truncate all data fields for model by its ``max_length`` field attributes. :param model: Kind of data (A Django Model instance). :param data: The data to truncate. """ fields = dict((field.name, field) for field in model._meta.fields) return dict((name, truncate_by_field(fields[name], value)) for name, value in data.items())
3f0c77d279e712258d3a064ca9fed06cd64d9eaf
6,585
import io def get_all_students(zip): """Returns student tuple for all zipped submissions found in the zip file.""" students = [] # creating all the student objects that we can zip files of for filename in zip.namelist(): if not filename.endswith(".zip"): continue firstname, surname = split_zipname(filename) student_zip_data = io.BytesIO(zip.open(filename).read()) student_zipfile = zf.ZipFile(student_zip_data) students.append(Student(firstname, surname, student_zipfile)) return students
d5088ecf43275664e8420f30f508e70fad7cef77
6,586
def is_shipping_method_applicable_for_postal_code( customer_shipping_address, method ) -> bool: """Return if shipping method is applicable with the postal code rules.""" results = check_shipping_method_for_postal_code(customer_shipping_address, method) if not results: return True if all( map( lambda rule: rule.inclusion_type == PostalCodeRuleInclusionType.INCLUDE, results.keys(), ) ): return any(results.values()) if all( map( lambda rule: rule.inclusion_type == PostalCodeRuleInclusionType.EXCLUDE, results.keys(), ) ): return not any(results.values()) # Shipping methods with complex rules are not supported for now return False
cca519a35ab01dddac71ac18bdf8a40e1b032b83
6,587
def populate_api_servers(): """ Find running API servers. """ def api_server_info(entry): prefix, port = entry.rsplit('-', 1) project_id = prefix[len(API_SERVER_PREFIX):] return project_id, int(port) global api_servers monit_entries = yield monit_operator.get_entries() server_entries = [api_server_info(entry) for entry in monit_entries if entry.startswith(API_SERVER_PREFIX)] for project_id, port in server_entries: api_servers[project_id] = port
0543e350917c3fe419022aebdd9002098021923a
6,588
import torch def gen_classification_func(model, *, state_file=None, transform=None, pred_func=None, device=None): """ 工厂函数,生成一个分类器函数 用这个函数做过渡的一个重要目的,也是避免重复加载模型 :param model: 模型结构 :param state_file: 存储参数的文件 :param transform: 每一个输入样本的预处理函数 :param pred_func: model 结果的参数的后处理 :return: 返回的函数结构见下述 cls_func """ if state_file: model.load_state_dict(torch.load(str(state_file), map_location=get_device())) model.train(False) device = device or get_device() model.to(device) def cls_func(raw_in): """ :param raw_in: 输入可以是路径、np.ndarray、PIL图片等,都为转为batch结构的tensor im,一张图片路径、np.ndarray、PIL图片 [im1, im2, ...],多张图片清单 :return: 输入如果只有一张图片,则返回一个结果 否则会存在list,返回多个结果 """ dataset = InputDataset(raw_in, transform) # TODO batch_size根据device空间大小自适应设置 xs = torch.utils.data.DataLoader(dataset, batch_size=8) res = None for x in xs: # 每个batch可能很大,所以每个batch依次放到cuda,而不是一次性全放入 x = x.to(device) y = model(x) if pred_func: y = pred_func(y) res = y if res is None else (res + y) return res return cls_func
4d905dfc9bd330cd68a2cc78b121debe04669720
6,589
def create_recipe_json(image_paths: list) -> dict: """ Orchestrate the various services to respond to a create recipe request. """ logger.info('Creating recipe json from image paths: {}'.format(image_paths)) full_text = load_images_return_text(image_paths) recipe_json = assign_text_to_recipe(full_text) return recipe_json
25ef26d15bf20384df81f46da519c07ea883d5a7
6,590
def rstrip_extra(fname): """Strip extraneous, non-discriminative filename info from the end of a file. """ to_strip = ("_R", "_", "fastq", ".", "-") while fname.endswith(to_strip): for x in to_strip: if fname.endswith(x): fname = fname[:len(fname) - len(x)] break return fname
281ff6dcfae1894dd4685acf433bde89538fe87e
6,591
def run(preprocessors, data, preprocessing=defaultdict(lambda: None), fit=True): """Applies preprocessing to data. It currently suppoerts StandardScaler and OneHotEncoding Parameters ---------- preprocessors : list preprocessors to be applied data : pd.DataFrame data to be preprocessed preprocessing : dict, optional encoders of each preprocessor, by default defaultdict(lambda: None) fit : bool, optional if False, it applies to current encoder, by default True Returns ------- pd.DataFrame dict preprocessed data and preprocessors used """ scaler_to_data_type = { 'StandardScaler': 'numeric', 'OneHotEncoder': 'object'} if len(preprocessors) == 0: return data, preprocessing preprocessor = preprocessors[0] data_type = scaler_to_data_type[preprocessor] splited_data = split_by_type(data) splited_data[data_type], preprocessing[preprocessor] = \ apply_preprocessor(splited_data[data_type], preprocessor, fit=fit, encoder=preprocessing[preprocessor]) processed_data = pd.concat(splited_data.values(), axis=1) return run(preprocessors[1:], processed_data, preprocessing, fit)
94b10007896062760a278cdeaf60388152c96f73
6,592
def vouchers_tab(request, voucher_group, deleted=False, template_name="manage/voucher/vouchers.html"): """Displays the vouchers tab """ vouchers = voucher_group.vouchers.all() paginator = Paginator(vouchers, 20) page = paginator.page((request.POST if request.method == 'POST' else request.GET).get("page", 1)) taxes = Tax.objects.all() if (request.method == "POST") and (deleted is False): voucher_form = VoucherForm(data=request.POST) else: voucher_form = VoucherForm() return render_to_string(template_name, request=request, context={ "voucher_group": voucher_group, "taxes": taxes, "form": voucher_form, "vouchers_inline": vouchers_inline(request, voucher_group, vouchers, paginator, page), })
f488c21a83b6b22e3c0e4d5fa2e35156435bada7
6,593
import torch def normalise_intensity(x, mode="minmax", min_in=0.0, max_in=255.0, min_out=0.0, max_out=1.0, clip=False, clip_range_percentile=(0.05, 99.95), ): """ Intensity normalisation (& optional percentile clipping) for both Numpy Array and Pytorch Tensor of arbitrary dimensions. The "mode" of normalisation indicates different ways to normalise the intensities, including: 1) "meanstd": normalise to 0 mean 1 std; 2) "minmax": normalise to specified (min, max) range; 3) "fixed": normalise with a fixed ratio Args: x: (ndarray / Tensor, shape (N, *size)) mode: (str) indicate normalisation mode min_in: (float) minimum value of the input (assumed value for fixed mode) max_in: (float) maximum value of the input (assumed value for fixed mode) min_out: (float) minimum value of the output max_out: (float) maximum value of the output clip: (boolean) value clipping if True clip_range_percentile: (tuple of floats) percentiles (min, max) to determine the thresholds for clipping Returns: x: (same as input) in-place op on input x """ # determine data dimension dim = x.ndim - 1 image_axes = tuple(range(1, 1 + dim)) # (1,2) for 2D; (1,2,3) for 3D # for numpy.ndarray if type(x) is np.ndarray: # Clipping if clip: # intensity clipping clip_min, clip_max = np.percentile(x, clip_range_percentile, axis=image_axes, keepdims=True) x = np.clip(x, clip_min, clip_max) # Normalise meanstd if mode == "meanstd": mean = np.mean(x, axis=image_axes, keepdims=True) # (N, *range(dim)) std = np.std(x, axis=image_axes, keepdims=True) # (N, *range(dim)) x = (x - mean) / std # axis should match & broadcast # Normalise minmax elif mode == "minmax": min_in = np.amin(x, axis=image_axes, keepdims=True) # (N, *range(dim)) max_in = np.amax(x, axis=image_axes, keepdims=True) # (N, *range(dim))) x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) # (!) multiple broadcasting) # Fixed ratio elif mode == "fixed": x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) else: raise ValueError("Intensity normalisation mode not understood." "Expect either one of: 'meanstd', 'minmax', 'fixed'") # cast to float 32 x = x.astype(np.float32) # for torch.Tensor elif type(x) is torch.Tensor: # todo: clipping not supported at the moment (requires Pytorch version of the np.percentile() # Normalise meanstd if mode == "meanstd": mean = torch.mean(x, dim=image_axes, keepdim=True) # (N, *range(dim)) std = torch.std(x, dim=image_axes, keepdim=True) # (N, *range(dim)) x = (x - mean) / std # axis should match & broadcast # Normalise minmax elif mode == "minmax": # get min/max across dims by flattening first min_in = x.flatten(start_dim=1, end_dim=-1).min(dim=1)[0].view(-1, *(1,)*dim) # (N, (1,)*dim) max_in = x.flatten(start_dim=1, end_dim=-1).max(dim=1)[0].view(-1, *(1,)*dim) # (N, (1,)*dim) x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) # (!) multiple broadcasting) # Fixed ratio elif mode == "fixed": x = (x - min_in) * (max_out - min_out) / (max_in - min_in + 1e-12) else: raise ValueError("Intensity normalisation mode not recognised." "Expect: 'meanstd', 'minmax', 'fixed'") # cast to float32 x = x.float() else: raise TypeError("Input data type not recognised, support numpy.ndarray or torch.Tensor") return x
4dace59c8c12dda2c01c6c8a4bcd631b1e562c48
6,594
def spots_rmsd(spots): """ Calculate the rmsd for a series of small_cell_spot objects @param list of small_cell_spot objects @param RMSD (pixels) of each spot """ rmsd = 0 count = 0 print 'Spots with no preds', [spot.pred is None for spot in spots].count(True), 'of', len(spots) for spot in spots: if spot.pred is None: continue rmsd += measure_distance(col((spot.spot_dict['xyzobs.px.value'][0],spot.spot_dict['xyzobs.px.value'][1])),col(spot.pred))**2 count += 1 if count == 0: return 0 return math.sqrt(rmsd/count)
13809a7a0353dc18b037cd2d78944ed5f9cdc596
6,595
def sanitize_df(data_df, schema, setup_index=True, missing_column_procedure='fill_zero'): """ Sanitize dataframe according to provided schema Returns ------- data_df : pandas DataFrame Will have fields provided by schema Will have field types (categorical, datetime, etc) provided by schema. """ data_df = data_df.reset_index() for ff, field_name in enumerate(schema.field_names): type_ff = schema.fields[ff].descriptor['type'] if field_name not in data_df.columns: if missing_column_procedure == 'fill_zero': if type_ff == 'integer': data_df[field_name] = 0 elif type_ff == 'number': data_df[field_name] = 0.0 # Reorder columns to match schema data_df = data_df[schema.field_names] # Cast fields to required type (categorical / datetime) for ff, name in enumerate(schema.field_names): ff_spec = schema.descriptor['fields'][ff] if 'pandas_dtype' in ff_spec and ff_spec['pandas_dtype'] == 'category': data_df[name] = data_df[name].astype('category') elif 'type' in ff_spec and ff_spec['type'] == 'datetime': data_df[name] = pd.to_datetime(data_df[name]) if hasattr(schema, 'primary_key'): data_df = data_df.sort_values(schema.primary_key) if setup_index: data_df = data_df.set_index(schema.primary_key) return data_df
8664f9dd8feea60044397072d85d21c8b5dfd6d4
6,596
def get_id_argument(id_card): """ 获取身份证号码信息 :param id_card: :return: """ id_card = id_card.upper() id_length = len(id_card) if id_length == 18: code = { 'body': id_card[0:17], 'address_code': id_card[0:6], 'birthday_code': id_card[6:14], 'order_code': id_card[14:17], 'check_bit': id_card[17:18], 'type': 18 } else: code = { 'body': id_card, 'address_code': id_card[0:6], 'birthday_code': '19' + id_card[6:12], 'order_code': id_card[12:15], 'check_bit': '', 'type': 15 } return code
ae4cad97e787fe1b0697b6a0f842f0da09795d6a
6,597
def rhypergeometric(n, m, N, size=None): """ Returns hypergeometric random variates. """ if n == 0: return np.zeros(size, dtype=int) elif n == N: out = np.empty(size, dtype=int) out.fill(m) return out return np.random.hypergeometric(n, N - n, m, size)
e8ea95bb742891037de264462be168fab9d68923
6,598
from typing import Tuple def _validate_query( hgnc_manager: HgncManager, query_result, original_identifier: str, original_namespace: str, ) -> Tuple[str, str, str]: """Process and validate HGNC query. :param hgnc_manager: hgnc manager :param query_result: :param original_identifier: :param original_namespace: """ # If invalid entry from HGNC, try to find updated symbol if not query_result and original_namespace == HGNC: return _get_update_alias_symbol(hgnc_manager, original_identifier, HGNC) # Invalid entry, proceed with invalid identifier if not query_result: logger.debug('No found HGNC Symbol for id %s in (%s)', original_identifier, original_namespace) return original_namespace, original_identifier, original_identifier # Multiple entries are returned, for UniProt identifiers if isinstance(query_result, list): if len(query_result) > 1: logger.debug('UniProt identifier with multiple HGNC:s %s', query_result) query_result = query_result[0] # Correct entry, use HGNC identifier return HGNC, query_result.symbol, query_result.identifier
0dd516d3f1a1a178015835ee1dc72b657757d789
6,599