content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def avg_pds_from_events( times, gti, segment_size, dt, norm="frac", use_common_mean=True, silent=False, fluxes=None, errors=None, ): """Calculate the average periodogram from a list of event times or a light curve. If the input is a light curve, the time array needs to be uniformly sampled inside GTIs (it can have gaps outside), and the fluxes need to be passed through the ``fluxes`` array. Otherwise, times are interpeted as photon arrival times. Parameters ---------- times : float `np.array` Array of times gti : [[gti00, gti01], [gti10, gti11], ...] good time intervals segment_size : float length of segments dt : float Time resolution of the light curves used to produce periodograms Other Parameters ---------------- norm : str, default "frac" The normalization of the periodogram. "abs" is absolute rms, "frac" is fractional rms, "leahy" is Leahy+83 normalization, and "none" is the unnormalized periodogram use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). Here we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars fluxes : float `np.array`, default None Array of counts per bin or fluxes errors : float `np.array`, default None Array of errors on the fluxes above Returns ------- freq : `np.array` The periodogram frequencies power : `np.array` The normalized periodogram powers n_bin : int the number of bins in the light curves used in each segment n_ave : int the number of averaged periodograms mean : float the mean flux """ if segment_size is None: segment_size = gti.max() - gti.min() n_bin = np.rint(segment_size / dt).astype(int) dt = segment_size / n_bin flux_iterable = get_flux_iterable_from_segments( times, gti, segment_size, n_bin, fluxes=fluxes, errors=errors ) cross = avg_pds_from_iterable( flux_iterable, dt, norm=norm, use_common_mean=use_common_mean, silent=silent ) if cross is not None: cross.meta["gti"] = gti return cross
904f43b36380e07e115d23c6677b61bca155d898
5,400
import random def check_random_state(seed): """ Turn seed into a random.Random instance If seed is None, return the Random singleton used by random. If seed is an int, return a new Random instance seeded with seed. If seed is already a Random instance, return it. Otherwise raise ValueError. """ # Code slightly adjusted from scikit-learn utils/validation.py if seed is None or isinstance(seed, int): rng = random.Random(seed) elif isinstance(seed, random.Random): rng = seed else: raise ValueError( "### error: '{}' cannot be used to seed random.Random instance.".format( seed ) ) return rng
347481de01f4a3bba59bc9a2c484c10d4857e1e2
5,401
def chunk(seq, size, groupByList=True): """Returns list of lists/tuples broken up by size input""" func = tuple if groupByList: func = list return [func(seq[i:i + size]) for i in range(0, len(seq), size)]
e7cece99822a01476b46351cebc1345793485cbd
5,402
def registerNamespace(namespace, prefix): """ Register a namespace in libxmp.exempi @namespace : the namespace to register @prefix : the prefix to use with this namespace """ try: registered_prefix = libxmp.exempi.namespace_prefix(namespace) # The namespace already exists, return actual prefix. return registered_prefix except libxmp.XMPError: # This namespace does not exist, that's cool pass try: libxmp.exempi.prefix_namespace_uri(prefix) # Prefix is already used, but not by us. raise NameError("Prefix is already used") except libxmp.XMPError: # This prefix is not used yet, that's cool pass return libxmp.exempi.register_namespace(namespace, prefix)[:-1]
6e7dbed515651f252222a283dc1cda08941fa4c5
5,403
def definition(): """ Lists the parent-child relationships through the curriculum structure. """ sql = """ --Course to session SELECT c.course_id as parent_id, CASE WHEN cc.course_id IS NULL THEN 0 ELSE 1 END as linked, cs.course_session_id as child_id, 'course' as parent, cs.description + ' ' + cast(cs.session as char(1)) as description, -1 as ratio,0 as changed FROM c_course c LEFT OUTER JOIN c_course_session cs on cs.curriculum_id = c.curriculum_id LEFT OUTER JOIN c_course_config cc on c.course_id = cc.course_id AND cc.course_session_id = cs.course_session_id UNION ALL --session to group SELECT a.course_session_id as parent_id, CASE WHEN c.course_session_id IS NULL THEN 0 ELSE 1 END as linked, b.cgroup_id as child_id, 'course_session' as parent, b.description, -1 as ratio, 0 as changed FROM c_course_session a LEFT OUTER JOIN c_cgroup b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_course_session_config c on a.course_session_id = c.course_session_id AND b.cgroup_id = c.cgroup_id UNION ALL --CGroup to component SELECT a.cgroup_id as parent_id, CASE WHEN c.component_id IS NULL THEN 0 ELSE 1 END as linked, b.component_id as child_id, 'cgroup' as parent, b.description, ISNULL(c.ratio, 1) as ratio, 0 as changed FROM c_cgroup a LEFT OUTER JOIN c_component b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_cgroup_config c on a.cgroup_id = c.cgroup_id AND b.component_id = c.component_id """ return sql
e8dc6a720dcd5f62854ce95e708a88b43859e2cc
5,404
def create_user(strategy, details, backend, user=None, *args, **kwargs): """Aggressively attempt to register and sign in new user""" if user: return None request = strategy.request settings = request.settings email = details.get("email") username = kwargs.get("clean_username") if not email or not username: return None try: validate_email(email) validate_new_registration(request, {"email": email, "username": username}) except ValidationError: return None activation_kwargs = {} if settings.account_activation == "admin": activation_kwargs = {"requires_activation": User.ACTIVATION_ADMIN} new_user = User.objects.create_user( username, email, joined_from_ip=request.user_ip, **activation_kwargs ) setup_new_user(settings, new_user) send_welcome_email(request, new_user) return {"user": new_user, "is_new": True}
afdff23d6ca578ef652872ba11bcfe57264b0a9b
5,405
def prendreTresorPlateau(plateau,lig,col,numTresor): """ prend le tresor numTresor qui se trouve sur la carte en lin,col du plateau retourne True si l'opération s'est bien passée (le trésor était vraiment sur la carte paramètres: plateau: le plateau considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte numTresor: le numéro du trésor à prendre sur la carte resultat: un booléen indiquant si le trésor était bien sur la carte considérée """ if getTresor(getVal(plateau,lig,col))==numTresor: prendreTresor(getVal(plateau,lig,col)) return True else: return False
5fa94fb875e34068f4e391c66952fe4cc4248ddf
5,406
import os import logging import yaml def load_styles(style_yaml) -> dict: """ Load point style dictionary """ default_style = {"icon_image": DEFAULT_ICON_IMAGE, "icon_color": DEFAULT_ICON_COLOR, "icon_scale": DEFAULT_ICON_SCALE, "text_scale": DEFAULT_TEXT_SCALE, } styles = {'Default': default_style} if style_yaml is None: return styles if not os.path.isfile(style_yaml): logging.error('Invalid style file location %s', style_yaml) return styles with open(style_yaml, 'r') as stream: new_styles = yaml.load(stream) for style in new_styles: if style in styles: logging.warning('Style %s already exists', style) continue else: styles[style] = dict() # Create new style for attr in ['icon_image', 'icon_color', 'icon_scale', 'text_scale']: if attr in new_styles[style]: attr_val = new_styles[style][attr] else: attr_val = default_style[attr] styles[style][attr] = attr_val return styles
940a540c5ee7bad266d5a51bfafee2a9d2197128
5,407
import os def everything_deployed(project, chain, web3, accounts, deploy_address) -> dict: """Deploy our token plan.""" yaml_filename = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..","crowdsales", "allocated-token-sale-acceptance-test.yml")) deployment_name = "testrpc" chain_data = load_crowdsale_definitions(yaml_filename, deployment_name) runtime_data, statistics, contracts = _deploy_contracts(project, chain, web3, yaml_filename, chain_data, deploy_address) return contracts
f486f63838cef1d4da6f5dfdacad28a1a0f560fe
5,408
def task_get_all(context, filters=None, marker=None, limit=None, sort_key='created_at', sort_dir='desc', admin_as_user=False): """ Get all tasks that match zero or more filters. :param filters: dict of filter keys and values. :param marker: task id after which to start page :param limit: maximum number of tasks to return :param sort_key: task attribute by which results should be sorted :param sort_dir: direction in which results should be sorted (asc, desc) :param admin_as_user: For backwards compatibility. If true, then return to an admin the equivalent set of tasks which it would see if it were a regular user :returns: tasks set """ filters = filters or {} session = get_session() query = session.query(models.Task) if not (context.is_admin or admin_as_user) and context.owner is not None: query = query.filter(models.Task.owner == context.owner) _task_soft_delete(context, session=session) showing_deleted = False if 'deleted' in filters: deleted_filter = filters.pop('deleted') query = query.filter_by(deleted=deleted_filter) showing_deleted = deleted_filter for (k, v) in filters.items(): if v is not None: key = k if hasattr(models.Task, key): query = query.filter(getattr(models.Task, key) == v) marker_task = None if marker is not None: marker_task = _task_get(context, marker, force_show_deleted=showing_deleted) sort_keys = ['created_at', 'id'] if sort_key not in sort_keys: sort_keys.insert(0, sort_key) query = _paginate_query(query, models.Task, limit, sort_keys, marker=marker_task, sort_dir=sort_dir) task_refs = query.all() tasks = [] for task_ref in task_refs: tasks.append(_task_format(task_ref, task_info_ref=None)) return tasks
4d03e8f7ae15411c2cb597aeb06e25cd40c4f033
5,409
def updateAppMonConf(AppID, requestModel): """Update an Application Monitoring Configuration for a given application Args: AppID (str): This is the application ID of the Web App you are interested in. requestModel: This is the data you wish to update and you need to put it in this format: { "enabled": true, "scanUrl": "https://mywebapp.com/directory" } explanation: { enabled (boolean): Enable Application Monitoring , scanUrl (string): Scan Url } Returns: dict: Dictionary with the following layout { "success": true, "errors": [ "string" ] } In the case of a return code 204, the update will take place but you will not get the above layout, instead you will get a custom layout like this: {'Response_Text': u'', 'Status_code': 204} """ url = "https://api.ams.fortify.com/api/v3/applications/{applicationId}/application-monitoring/configuration".format(applicationId=AppID) req = fodRequest() r = req.put(url, params=requestModel) return r #*******************************************************Applications**************************************************************
0b61eae04b79702b2722d0c0bc5dafe48dcdf21f
5,410
def plot_morphology(morphology, order=MORPHOLOGY_ORDER, colors=MORPHOLOGY_COLORS, metastases=None, metastasis_color=METASTASIS_COLOR, ax=None, bg_color='#f6f6f6', **kwargs): """Plots morphology matrix as 2D heatmap. Plots a morphology matrix (typically obtained from the parse_morphology function) as a 2D heatmap. Matrix is expected to correspond with the three categories returned by parse_morphology (ILC, Spindle cell and Squamous). Parameters ---------- morphology : pd.DataFrame Boolean matrix of samples-by-morphologies. order : colors : metastases : pd.DataFrame Optional dataframe (single column) indicating which samples have a metastasis. Used to draw metastases as an extra row in the heatmap. metastasis_color : ax : matplotlib.Axis Axis to use for plotting. bg_color : str **kwargs Any kwargs are passed to seaborns heatmap function. Returns ------- matplotlib.Axis Axis that was used for plotting. """ if ax is None: _, ax = plt.subplots() # Add metastasis data if given. if metastases is not None: morphology = pd.concat([morphology, metastases], axis=1) order = list(order) + [metastases.columns[0]] colors = list(colors) + [metastasis_color] # Sort by rows/columns. morphology = morphology[list(order)] morphology = sort_matrix(morphology, sort_columns=False) # Convert to numeric matrix (for heatmap). num_matrix = pd.DataFrame( { col: morphology[col].astype(int) * (i + 1) for i, col in enumerate(morphology) }, columns=morphology.columns) # Draw heatmap. cmap = ListedColormap([bg_color] + list(colors)) sns.heatmap( num_matrix.T, ax=ax, cbar=False, cmap=cmap, vmin=0, vmax=len(colors), **kwargs) ax.set_xticks([]) ax.set_xlim(0, num_matrix.shape[0]) ax.set_title('Tumor morphology') ax.set_xlabel('Samples ({})'.format(morphology.shape[0])) # Add counts to labels. ax.set_yticklabels( ['{} ({})'.format(k, v) for k, v in morphology.sum().items()][::-1], rotation=0) return ax
62048ced8ede14e9aa505c6e45dd5b196d12297d
5,411
import os def scores_summary(CurDataDir, steps = 300, population_size = 40, regenerate=False): """Obsolete for the one above! better and more automatic""" ScoreEvolveTable = np.full((steps, population_size,), np.NAN) ImagefnTable = [[""] * population_size for i in range(steps)] fncatalog = os.listdir(CurDataDir) if "scores_summary_table.npz" in fncatalog and (not regenerate): # if the summary table exist, just read from it! with np.load(os.path.join(CurDataDir, "scores_summary_table.npz")) as data: ScoreEvolveTable = data['ScoreEvolveTable'] ImagefnTable = data['ImagefnTable'] return ScoreEvolveTable, ImagefnTable startnum = 0 for stepi in range(startnum, steps): try: with np.load(os.path.join(CurDataDir, "scores_end_block{0:03}.npz".format(stepi))) as data: score_tmp = data['scores'] image_ids = data['image_ids'] ScoreEvolveTable[stepi, :len(score_tmp)] = score_tmp if stepi==0: image_fns = image_ids else: image_fns = [] for imgid in image_ids: fn_tmp_list = [fn for fn in fncatalog if (imgid in fn) and ('.npy' in fn)] assert len(fn_tmp_list) is 1, "Code file not found or wrong Code file number" image_fns.append(fn_tmp_list[0]) ImagefnTable[stepi][0:len(score_tmp)] = image_fns # FIXME: 1st generation natural stimuli is not in the directory! so it's not possible to get the file name there. Here just put the codeid except FileNotFoundError: if stepi == 0: startnum += 1 steps += 1 continue else: print("maximum steps is %d." % stepi) ScoreEvolveTable = ScoreEvolveTable[0:stepi, :] ImagefnTable = ImagefnTable[0:stepi] steps = stepi break ImagefnTable = np.asarray(ImagefnTable) savez(os.path.join(CurDataDir, "scores_summary_table.npz"), {"ScoreEvolveTable": ScoreEvolveTable, "ImagefnTable": ImagefnTable}) return ScoreEvolveTable, ImagefnTable
a0e31a9647dee013aa5d042cc41f3793a097e1c2
5,412
import requests def post(name,url,message,params=None): """Wrap a post in some basic error reporting""" start = dt.now() s = requests.session() if params is None: response = s.post(url,json=message) else: response = s.post(url,json=message,params=params) end = dt.now() if not response.status_code == 200: print(name, 'error:',response.status_code) print(response.json()) return response.json() print(f'{name} returned in {end-start}s') m = response.json() if 'message' in m: if 'results' in m['message']: print(f'Num Results: {len(m["message"]["results"])}') print_errors(m) return m
9180424171cdf4cb7bf16a938d7207a99af0987f
5,413
def get_lin_reg_results(est, true, zero_tol=0): """ Parameters ---------- est: an Estimator A covariance estimator. true: array-like, shape (n_features, n_features) zero_tol: float Output ------ out: dict with keys 'utri' and 'graph' """ est_coef = get_coef(est)[0] est_adj = fill_hollow_sym(est_coef) true_adj = fill_hollow_sym(est_coef) coef_results = compare_vecs(est=est_coef, truth=true, zero_tol=zero_tol) graph_results = compare_adj_mats(est=est_adj, truth=true_adj, zero_tol=zero_tol) results = merge_dicts(coef_results, graph_results, allow_key_overlap=False) return results
0f963c135d0bd74a70714ef47ed6f2b0191df846
5,414
import requests import logging def download_file(requested_url: str) -> str: """Download a file from github repository""" url = f"https://github.com/{requested_url.replace('blob', 'raw')}" resp = requests.get(url) logging.info(F"Requested URL: {requested_url}") if resp.status_code != 200: logging.info(f"Can not download {url}") raise NotebookDownloadException("Can not download the file. Please, check the URL") return resp.text
f96d68843f6291aa3497a6e7a5b1e30e2ea4005e
5,415
import warnings def readBody(response): """ Get the body of an L{IResponse} and return it as a byte string. This is a helper function for clients that don't want to incrementally receive the body of an HTTP response. @param response: The HTTP response for which the body will be read. @type response: L{IResponse} provider @return: A L{Deferred} which will fire with the body of the response. Cancelling it will close the connection to the server immediately. """ def cancel(deferred): """ Cancel a L{readBody} call, close the connection to the HTTP server immediately, if it is still open. @param deferred: The cancelled L{defer.Deferred}. """ abort = getAbort() if abort is not None: abort() d = defer.Deferred(cancel) protocol = _ReadBodyProtocol(response.code, response.phrase, d) def getAbort(): return getattr(protocol.transport, 'abortConnection', None) response.deliverBody(protocol) if protocol.transport is not None and getAbort() is None: warnings.warn( 'Using readBody with a transport that does not have an ' 'abortConnection method', category=DeprecationWarning, stacklevel=2) return d
bbc693fca1536a3699b0e088941d9577de94d8dd
5,416
def is_valid_mac(address): """Verify the format of a MAC address.""" class mac_dialect(netaddr.mac_eui48): word_fmt = '%.02x' word_sep = ':' try: na = netaddr.EUI(address, dialect=mac_dialect) except Exception: return False return str(na) == address.lower()
f8bb59a986773307f803dd52154ec03eaddb8597
5,417
def build_state_abstraction(similar_states, mdp, tol=0.1): """ """ bools = similar_states + np.eye(similar_states.shape[0]) < tol # approximate abstraction if bools.sum() == 0: raise ValueError('No abstraction') mapping, parts = partitions(bools) idx = list(set(np.array([p[0] for p in parts]))) # pick a representative set of states. one from each partition f = construct_abstraction_fn(mapping, idx, mdp.S, len(idx)) # print('Abstracting from {} states to {} states'.format(mdp.S, len(parts))) # print('idx', idx) # print('mapping', mapping) # print('parts', parts) # mapping, parts = fix_mapping(mapping) # print(f) # print(f.shape, abs_mdp.S) abs_mdp = abstract_the_mdp(mdp, idx) # want a way to do this stuff in numpy!? # should calculate the error of the abstraction?! check it is related to tol!? return idx, abs_mdp, f
d4d9354507172ee92ea11c915de0376f0c873878
5,418
def diagram(source, rstrip=True): """High level API to generate ASCII diagram. This function is equivalent to: .. code-block:: python Diagram(source).renders() :param source: The ADia source code. :type source: str or file-like :param rstrip: If ``True``, the trailing wihtespaces at the end of each line will be removed. :type rstrip: bool, optional, default: True :return: ASCII diagram. :rtype: str """ return Diagram(source).renders(rstrip)
2a386b49052a7f4dd31eb4f40dec15d774d86b94
5,419
def eng_to_kong(eng_word: str)-> list[str]: """ Translate given English word into Korean into matching pronounciation, matching the English Loanword Orthography. For example, "hello" will be translated into 헐로. # Panics When given a english word that it cannot translate, `eng_to_kong` will raise a KeyError. Example ```python import konglog def main(): word = "shrimp" print(konglog.eng_to_kong(word)) ``` """ # Parse word into phonemes string for passing to Prolog Query. prolog_arg_aras = "]" for phe in cmudict.dict()[eng_word.lower().strip()][0]: if phe[-1] == '0' or phe[-1] == '1' or phe[-1] == '2': phe = phe[:-1] prolog_arg_aras = "," + phe.lower() + prolog_arg_aras prolog_arg_aras = "[" + prolog_arg_aras[1:] # Execute Prolog query with PrologMQI() as mqi: with mqi.create_thread() as prolog_thread: assert(prolog_thread.query("consult(\"ipa.pl\")")) prolog_res = prolog_thread.query(f"ipa_to_kr(X,{prolog_arg_aras})") # Parse results jamo_lists = [] try: for jls in prolog_res: temp = jls['X'] temp.reverse() jamo_lists.append(temp) except TypeError: raise KeyError jamo_all = [] for jamo_list in jamo_lists: temp_jamo_all = [""] for jamos in jamo_list: if isinstance(jamos, str): for i in range(len(temp_jamo_all)): temp_jamo_all[i] += jamos else: temp = [] for jamo in jamos: for s in temp_jamo_all: temp.append(s + jamo) temp_jamo_all = temp jamo_all.extend(temp_jamo_all) # Combine jamos into Konglish word jamo_all.sort(key = lambda x : len(x)) for jamos in jamo_all: try: return join_jamos(jamos, False) except ValueError: continue
0b0d55fdacdea1493d73de85c21dc9c086352b99
5,420
import logging import os def visualize_demux(base_dir, data_artifact): """ :param base_dir: Main working directory filepath :param data_artifact: QIIME2 data artifact object :return: QIIME2 demux visualization object """ logging.info('Visualizing demux...') # Path setup export_path = os.path.join(base_dir, 'demux_summary.qzv') # Prepare and save demux summary visualization demux_viz = demux.visualizers.summarize(data=data_artifact) demux_viz.visualization.save(export_path) logging.info('Saved {}'.format(export_path)) return demux_viz
80d4e4d1eba50bdae09838e625628d9d860341f9
5,421
def socfaker_dns_answers(): """ A list of DNS answers during a DNS request Returns: list: A random list (count) of random DNS answers during a DNS request """ if validate_request(request): return jsonify(str(socfaker.dns.answers))
c1f641e1a0e977363067937487a6455800e6a25c
5,422
import os def create_app(): """Create and configure and instance of the Flask Application""" app = Flask(__name__) # app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3' app.config['SQLALCHEMY_DATABASE_URI'] = os.environ.get('HEROKU_POSTGRESQL_COPPER_URL') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['ENV'] = config('ENV') DB.init_app(app) @app.route('/') def root(): return render_template('base.html', title='Home', users=User.query.all()) @app.route('/update') def update(): update_all_users() return render_template('base.html', title='Update all users!', users=User.query.all()) @app.route('/user', methods=['POST']) @app.route('/user/<name>', methods=['GET']) def user(name=None, message=''): name = name or request.values['user_name'] try: if request.method == 'POST': add_or_update_user(name) message = "User {} successfully added".format(name) tweets = User.query.filter(User.name == name).one().tweets except Exception as e: message = "Error adding {}: {}".format(name, e) return message else: return render_template('user.html', title=name, tweets=tweets, message=message) @app.route('/compare', methods=['POST']) def predict(message=''): user1, user2 = sorted((request.values['user1'], request.values['user2'])) if user1 == user2: message = 'Cannot compare a user the same user in both fields!' else: comparison = predict_user(user1, user2, request.values['tweet_text']) user1_name = comparison.user1_name user2_name = comparison.user2_name user1_prob = comparison.user1_prob user2_prob = comparison.user2_prob prediction = comparison.predicted_user message = '"{}" is more likely to be said by {} than {}'.format( request.values['tweet_text'], user1_name if prediction else user2_name, user2_name if prediction else user1_name) return render_template('prediction.html', title='Prediction', message=message, user1_name=user1_name, user1_prob=user1_prob, user2_name=user2_name, user2_prob=user2_prob ) @app.route("/reset") def reset(): DB.drop_all() DB.create_all() add_users() return render_template('base.html', title='Reset database!') return app
a5a2a0022d3f204410db3669910e48e1cd518457
5,423
def bilin(x, y, data, datax, datay): # --DC """ x, y ARE COORDS OF INTEREST data IS 2x2 ARRAY CONTAINING NEARBY DATA datax, datay CONTAINS x & y COORDS OF NEARBY DATA""" lavg = ( (y - datay[0]) * data[1,0] + (datay[1] - y) * data[0,0] ) / (datay[1] - datay[0]) ravg = ( (y - datay[0]) * data[1,1] + (datay[1] - y) * data[0,1] ) / (datay[1] - datay[0]) return ( (x - datax[0]) * ravg + (datax[1] - x) * lavg ) / (datax[1] - datax[0])
59a740f65c7187a08cdc09cef8aa100b01c652cf
5,424
import array def slice_data(xdata, ydata, x_range): """ crops or slices the data in xdata,ydata in the range x_range on the x axis """ data = zip(xdata, ydata) sliced_data = [d for d in data if d[0] >= x_range[0] and d[0] <= x_range[1]] return array(zip(*sliced_data))
faf90781e2f073e74a7b11cd80d7c127c0db1bb3
5,425
def best_low_rank(A, rank): """ Finding the best low rank approximation by SVD """ u, s, vh = np.linalg.svd(A) s = np.sqrt(s[:rank]) return u[:, range(rank)] @ np.diag(s), np.diag(s) @ vh[range(rank)]
5df8197fc0113bfa74a36803445a6a300766880f
5,426
def get_bangumi(uid: int, type_: str = "bangumi", limit: int = 114514, callback=None, verify: utils.Verify = None): """ 自动循环获取追番/追剧列表 :param callback: 回调函数 :param uid: :param type_: :param limit: :param verify: :return: """ if verify is None: verify = utils.Verify() bangumi = [] page = 1 count = 0 while count < limit: data = get_bangumi_raw(uid=uid, pn=page, type_=type_, verify=verify) if len(data["list"]) == 0: break bangumi += data["list"] if callable(callback): callback(data["list"]) count += len(data["list"]) page += 1 return bangumi[:limit]
b5a2a553a3bf13ded7eb30c53ce536b4a2b9e043
5,427
def local_cases_range(start_date='2020-06-01',end_date='2020-07-01',areaname='Hartlepool'): """calculate new cases in a time range""" try: q=DailyCases.objects.filter(areaname=areaname,specimenDate=start_date)[0] start_total=q.totalLabConfirmedCases q=DailyCases.objects.filter(areaname=areaname,specimenDate=end_date)[0] end_total=q.totalLabConfirmedCases return end_total-start_total except Exception as e: log.info(e) return None
747f03f2ef9925f7dc252798bb7f3844cd31d2c0
5,428
def ecal_phisym_flattables(process, produce_by_run : bool=False): """ Add the NanoAOD flat table producers. This functions adjust also the output columns. Should be called once nMisCalib has been set in the EcalPhiSymRecHitProducer """ process.load('Calibration.EcalCalibAlgos.EcalPhiSymFlatTableProducers_cfi') nmis = process.EcalPhiSymRecHitProducerRun.nMisCalib.value() for imis in range(1, nmis+1): # get the naming and indexing right. if imis<nmis/2+1: var_name = 'sumEt_m'+str(abs(int(imis-(nmis/2)-1))) var = Var(f'sumEt({imis})', float, doc='ECAL PhiSym rechits: '+str(imis-(nmis/2)-1)+'*miscalib et', precision=23) else: var_name = 'sumEt_p'+str(int(imis-(nmis/2))) var = Var(f'sumEt({imis})', float, doc='ECAL PhiSym rechits: '+str(imis-(nmis/2))+'*miscalib et', precision=23) if produce_by_run: setattr(process.ecalPhiSymRecHitRunTableEB.variables, var_name, var) setattr(process.ecalPhiSymRecHitRunTableEE.variables, var_name, var) flattable_sequence = cms.Sequence( process.ecalPhiSymRecHitRunTableEB + process.ecalPhiSymRecHitRunTableEE + process.ecalPhiSymInfoRunTable ) else: setattr(process.ecalPhiSymRecHitLumiTableEB.variables, var_name, var) setattr(process.ecalPhiSymRecHitLumiTableEE.variables, var_name, var) flattable_sequence = cms.Sequence( process.ecalPhiSymRecHitLumiTableEB + process.ecalPhiSymRecHitLumiTableEE + process.ecalPhiSymInfoLumiTable ) return flattable_sequence
f6f48ab2e5b1df6a3e58c5e3130be56861eb1384
5,429
def nx_add_prefix(graph, prefix): """ Rename graph to obtain disjoint node labels """ assert isinstance(graph, nx.DiGraph) if prefix is None: return graph def label(x): if isinstance(x, str): name = prefix + x else: name = prefix + repr(x) return name return nx.relabel_nodes(graph, label)
c8f05052c613adc17423637186867b70db31e70d
5,430
def infected_asymptomatic_20x80(): """ Real Name: b'Infected asymptomatic 20x80' Original Eqn: b'Infected asymptomatic 20+Infected asymptomatic 80' Units: b'person' Limits: (None, None) Type: component b'' """ return infected_asymptomatic_20() + infected_asymptomatic_80()
fd9cba446672bf8ebcc5fe2fc7f2f961129bdb71
5,431
import json import os def make_forecast_json(data: str): """Generate custom forecast file in JSON format :param data: JSON string containing weather.gov data """ try: if data: # Current conditions conditions_now: str = data["properties"]["periods"][0] # Determine where in the data object tomorrow's forecast will come from if is_day(data, 0): conditions_tomorrow: str = data["properties"]["periods"][2] else: conditions_tomorrow: str = data["properties"]["periods"][1] # Currently current_temperature: str = conditions_now["temperature"] current_wind: str = conditions_now["windSpeed"] current_advice: str = advice(current_temperature) # Tomorrow tomorrow_temperature: str = conditions_tomorrow["temperature"] tomorrow_wind: str = conditions_tomorrow["windSpeed"] tomorrow_advice: str = advice(tomorrow_temperature) weather_forecast: dict = { "current_conditions": f"It's currently {current_temperature}°f. {current_advice}. Wind speeds are {current_wind}.", "tomorrow_conditions": f"Tomorrow will be {tomorrow_temperature}°f. {tomorrow_advice}. Wind speeds will be {tomorrow_wind}." } # Convert forecast dict to JSON forecast_json = json.dumps(weather_forecast) # Save JSON file output_directory = os.path.sep.join(["json_output", "noaa"]) forecast_file = open( os.path.sep.join( [output_directory, "forecast.json"]), "w+" ) forecast_file.write(forecast_json) forecast_file.close() return print("Forecast creation complete.") except Exception as e: print(e)
9b65f30c3b26db8ffa1818db073723eef57fe7f0
5,432
def biosample_table_data(): """Return a dictionary containing the expected values of the BioSample Table""" columns = [ "id", "BioSample_id", "BioSampleAccession", "BioSampleAccessionSecondary", "BioSampleBioProjectAccession", "BioSampleSRAAccession", "BioSampleOrganism", "BioSampleStrain", "BioSampleSubmissionDate", "BioSampleComment", ] metadata = [ "1", "12991206", "SAMN12991206", "", "", "SRS5502739", "TestOrganism1", "TestStrain1", "2019-10-08T07:15:03.950", "", ] table_dict = {} # Populate the dict with data for i in range(0, len(columns)): key = columns[i] value = metadata[i] table_dict[key] = value return table_dict
65e5d5bb5416a8f113100562fba8f2e6fd66796a
5,433
def grid_adapter3D( out_dim=(100.0, 100.0), in_dim=(50.0, 50.0), z_dim=-10.0, out_res=(10.0, 10.0, 10.0), in_res=(5.0, 5.0, 5.0), out_pos=(0.0, 0.0), in_pos=(25.0, 25.0), z_pos=0.0, in_mat=0, out_mat=0, fill=False, ): """ Generate a grid adapter. 3D adapter from an outer grid resolution to an inner grid resolution with gmsh. Parameters ---------- out_dim : list of 2 float xy-Dimension of the outer block in_dim : list of 2 float xy-Dimension of the inner block z_dim : float z-Dimension of the whole block out_res : list of 3 float Grid resolution of the outer block in_res : list of 3 float Grid resolution of the inner block out_pos : list of 2 float xy-Position of the origin of the outer block in_pos : list of 2 float xy-Position of the origin of the inner block z_dim : float z-Position of the origin of the whole block in_mat : integer Material-ID of the inner block out_mat : integer Material-ID of the outer block fill : bool, optional State if the inner block should be filled with a rectangular mesh. Default: False. Returns ------- result : dictionary Result contains one '#FEM_MSH' block of the OGS mesh file with the following information (sorted by keys): mesh_data : dict dictionary containing information about - AXISYMMETRY (bool) - CROSS_SECTION (bool) - PCS_TYPE (str) - GEO_TYPE (str) - GEO_NAME (str) - LAYER (int) nodes : ndarray Array with all node postions elements : dict contains nodelists for elements sorted by element types material_id : dict contains material ids for each element sorted by element types element_id : dict contains element ids for each element sorted by element types """ out = gmsh( gmsh_grid_adapt3D( out_dim, in_dim, z_dim, out_res, in_res, out_pos, in_pos, z_pos ), import_dim=3, ) out["material_id"] = gen_std_mat_id(out["elements"], out_mat) if fill: element_no = [ int(in_dim[0] / in_res[0]), int(in_dim[1] / in_res[1]), int(abs(z_dim) / in_res[2]), ] mesh_in = rectangular( dim=3, mesh_origin=in_pos + (z_pos + min(z_dim, 0.0),), element_no=element_no, element_size=in_res, ) mesh_in["material_id"] = gen_std_mat_id(mesh_in["elements"], in_mat) dec = int(np.ceil(-np.log10(min(min(in_res), min(out_res)))) + 2.0) * 2 out = combine(mesh_in, out, dec) return out
9c14a4f9b27ec14cdc550f81fd861207a5674616
5,434
from typing import Sequence from typing import Tuple from typing import Mapping from typing import Any from functools import reduce from typing import cast def concat_dtypes(ds: Sequence[np.dtype]) -> np.dtype: """Concat structured datatypes.""" def _concat( acc: Tuple[Mapping[Any, Any], int], a: np.dtype ) -> Tuple[DTYPE_FIELDS_T, int]: acc_fields, acc_itemsize = acc fields = dtype_fields(a).throw() intersection = set(acc_fields).intersection(set(fields)) if intersection != set(): raise ValueError(f'dtypes have overlapping fields: {intersection}') return ( { **acc_fields, **{k: (d[0], d[1] + acc_itemsize) for k, d in fields.items()} }, acc_itemsize + a.itemsize ) # dtype.fields() doesn't match dtype constructor despite being compatible return np.dtype(reduce(_concat, ds, (cast(DTYPE_FIELDS_T, {}), 0))[0])
bef7d8ebe30f41297adbf8f1d8de9b93f646c8f4
5,435
def mutation(param_space, config, mutation_rate, list=False): """ Mutates given configuration. :param param_space: space.Space(), will give us information about parameters :param configs: list of configurations. :param mutation_rate: integer for how many parameters to mutate :param list: boolean whether returning one or more alternative configs :return: list of dicts, list of mutated configurations """ parameter_object_list = param_space.get_input_parameters_objects() rd_config = dict() for name, obj in parameter_object_list.items(): x = obj.randomly_select() single_valued_param = False param_type = param_space.get_type(name) if param_type == 'real' or param_type == 'integer': if obj.get_max() == obj.get_min(): single_valued_param = True else: if obj.get_size() == 1: single_valued_param = True mutation_attempts = 0 while x == config[name] and single_valued_param == False: x = obj.randomly_select() mutation_attempts += 1 if mutation_attempts > 1000000: break rd_config[name] = x parameter_names_list = param_space.get_input_parameters() nbr_params = len(parameter_names_list) configs = [] n_configs = nbr_params if list else 1 for _ in range(n_configs): indices = rd.permutation(nbr_params)[:mutation_rate] for idx in indices: mutation_param = parameter_names_list[idx] # Should I do something if they are the same? temp = config.copy() temp[mutation_param] = rd_config[mutation_param] configs.append(temp) return configs
38427cfee226589d72117f102d2befdbe8ebbcc0
5,436
from typing import Union from typing import Callable from typing import Optional from typing import Tuple def uncertainty_batch_sampling(classifier: Union[BaseLearner, BaseCommittee], X: Union[np.ndarray, sp.csr_matrix], n_instances: int = 20, metric: Union[str, Callable] = 'euclidean', n_jobs: Optional[int] = None, **uncertainty_measure_kwargs ) -> Tuple[np.ndarray, Union[np.ndarray, sp.csr_matrix]]: """ Batch sampling query strategy. Selects the least sure instances for labelling. This strategy differs from :func:`~modAL.uncertainty.uncertainty_sampling` because, although it is supported, traditional active learning query strategies suffer from sub-optimal record selection when passing `n_instances` > 1. This sampling strategy extends the interactive uncertainty query sampling by allowing for batch-mode uncertainty query sampling. Furthermore, it also enforces a ranking -- that is, which records among the batch are most important for labeling? Refer to Cardoso et al.'s "Ranked batch-mode active learning": https://www.sciencedirect.com/science/article/pii/S0020025516313949 Args: classifier: One of modAL's supported active learning models. X: Set of records to be considered for our active learning model. n_instances: Number of records to return for labeling from `X`. metric: This parameter is passed to :func:`~sklearn.metrics.pairwise.pairwise_distances` n_jobs: If not set, :func:`~sklearn.metrics.pairwise.pairwise_distances_argmin_min` is used for calculation of distances between samples. Otherwise it is passed to :func:`~sklearn.metrics.pairwise.pairwise_distances`. **uncertainty_measure_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier. Returns: Indices of the instances from `X` chosen to be labelled; records from `X` chosen to be labelled. """ uncertainty = classifier_uncertainty(classifier, X, **uncertainty_measure_kwargs) query_indices = ranked_batch(classifier, unlabeled=X, uncertainty_scores=uncertainty, n_instances=n_instances, metric=metric, n_jobs=n_jobs) return query_indices, X[query_indices]
eb95ad79f4326d89c94a42aa727e2e3c338e021e
5,437
import re def only_digits(raw, force_int=False): """Strips all not digit characters from string. Args: raw (str or unicode): source string. Kwargs: force_int (boolean): not to seek for dot, seek only for int value. Returns: int or float: in dependence of "raw" argument content. None: if raw is None, empty or not contains digits. """ if isinstance(raw, (unicode, str)) and len(raw): if not force_int and re.search(r'\d\.\d', raw): try: return float(u''.join(u'{0}'.format(one) for one in raw if one.isdigit() or one == one.__class__(u'.'))) except (TypeError, ValueError): return None else: try: return int(u''.join(u'{0}'.format(one) for one in raw if one.isdigit())) except (TypeError, ValueError): return None elif isinstance(raw, (float, int)): return raw else: return None
413763588b067f335f7401fb914f1d6f3f8972fa
5,438
def namedtuple(typename, field_names, verbose=False): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', 'x y') >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessable by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Parse and validate the field names. Validation serves two purposes, # generating informative error messages and preventing template injection attacks. if isinstance(field_names, basestring): field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas field_names = tuple(map(str, field_names)) for name in (typename,) + field_names: if not all(c.isalnum() or c=='_' for c in name): raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a keyword: %r' % name) if name[0].isdigit(): raise ValueError('Type names and field names cannot start with a number: %r' % name) seen_names = set() for name in field_names: if name.startswith('_'): raise ValueError('Field names cannot start with an underscore: %r' % name) if name in seen_names: raise ValueError('Encountered duplicate field name: %r' % name) seen_names.add(name) # Create and fill-in the class template numfields = len(field_names) argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes reprtxt = ', '.join('%s=%%r' % name for name in field_names) dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names)) template = '''class %(typename)s(tuple): '%(typename)s(%(argtxt)s)' \n __slots__ = () \n _fields = %(field_names)r \n def __new__(_cls, %(argtxt)s): return _tuple.__new__(_cls, (%(argtxt)s)) \n @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new %(typename)s object from a sequence or iterable' result = new(cls, iterable) if len(result) != %(numfields)d: raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result)) return result \n def __repr__(self): return '%(typename)s(%(reprtxt)s)' %% self \n def _asdict(t): 'Return a new dict which maps field names to their values' return {%(dicttxt)s} \n def _replace(_self, **kwds): 'Return a new %(typename)s object replacing specified fields with new values' result = _self._make(map(kwds.pop, %(field_names)r, _self)) if kwds: raise ValueError('Got unexpected field names: %%r' %% kwds.keys()) return result \n def __getnewargs__(self): return tuple(self) \n\n''' % locals() for i, name in enumerate(field_names): template += ' %s = _property(_itemgetter(%d))\n' % (name, i) if verbose: print template # Execute the template string in a temporary namespace and # support tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename, _property=property, _tuple=tuple) try: exec template in namespace except SyntaxError, e: raise SyntaxError(e.message + ':\n' + template) result = namespace[typename] # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in enviroments where # sys._getframe is not defined (Jython for example). if hasattr(_sys, '_getframe'): result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') return result
ce2e4b2f6fe0243a8ac5c418d10c6352c95ea302
5,439
from typing import Optional from typing import Sequence def get_users(compartment_id: Optional[str] = None, external_identifier: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetUsersFilterArgs']]] = None, identity_provider_id: Optional[str] = None, name: Optional[str] = None, state: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUsersResult: """ This data source provides the list of Users in Oracle Cloud Infrastructure Identity service. Lists the users in your tenancy. You must specify your tenancy's OCID as the value for the compartment ID (remember that the tenancy is simply the root compartment). See [Where to Get the Tenancy's OCID and User's OCID](https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm#five). ## Example Usage ```python import pulumi import pulumi_oci as oci test_users = oci.identity.get_users(compartment_id=var["tenancy_ocid"], external_identifier=var["user_external_identifier"], identity_provider_id=oci_identity_identity_provider["test_identity_provider"]["id"], name=var["user_name"], state=var["user_state"]) ``` :param str compartment_id: The OCID of the compartment (remember that the tenancy is simply the root compartment). :param str external_identifier: The id of a user in the identity provider. :param str identity_provider_id: The id of the identity provider. :param str name: A filter to only return resources that match the given name exactly. :param str state: A filter to only return resources that match the given lifecycle state. The state value is case-insensitive. """ __args__ = dict() __args__['compartmentId'] = compartment_id __args__['externalIdentifier'] = external_identifier __args__['filters'] = filters __args__['identityProviderId'] = identity_provider_id __args__['name'] = name __args__['state'] = state if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:identity/getUsers:getUsers', __args__, opts=opts, typ=GetUsersResult).value return AwaitableGetUsersResult( compartment_id=__ret__.compartment_id, external_identifier=__ret__.external_identifier, filters=__ret__.filters, id=__ret__.id, identity_provider_id=__ret__.identity_provider_id, name=__ret__.name, state=__ret__.state, users=__ret__.users)
4d404eb1069c829bb757f3870efc548583998434
5,440
def se_resnet20(num_classes: int = 10, in_channels: int = 3 ) -> ResNet: """ SEResNet by Hu+18 """ return resnet(num_classes, 20, in_channels, block=partial(SEBasicBlock, reduction=16))
da1d1327d5e5d1b55d3b4cc9d42dbf381ece029f
5,441
def parallel_threaded(function): """ A decorator for running a function within a parallel thread """ def decorator(*args, **kwargs): t = ParallelThread(target=function, args=args, kwargs=kwargs) t.daemon = True t.start() return t return decorator
9f4936b0ab7de3d550b404043d6b0e37dbb3a066
5,442
def Upsample(x, size): """ Wrapper Around the Upsample Call """ return nn.functional.interpolate(x, size=size, mode="bilinear", align_corners=True)
dfaabb3999047589b2d755a2cc631b1389d172b1
5,443
def get_user_playlists(spotipy_obj, username): """Gets and returns all Spotify playlists owned by the username specified. Parameters: spotipy_obj: Spotipy object username: Spotify username Returns: List of dictionaries, each dictionary a Spotify playlist object. """ # Grab all user playlists, including private ones initial_playlists = spotipy_obj.user_playlists(username) final_playlists = [] while initial_playlists: for playlist in initial_playlists["items"]: if playlist["owner"]["id"] == username: final_playlists.append(playlist) if initial_playlists["next"]: initial_playlists = spotipy_obj.next(initial_playlists) else: initial_playlists = None return final_playlists
90c06e0ddd91a7a84f4d905dd9334f9b4c27f890
5,444
import zipfile from . import mocap import os def osu_run1(data_set="osu_run1", sample_every=4): """Ohio State University's Run1 motion capture data set.""" path = os.path.join(access.DATAPATH, data_set) if not access.data_available(data_set): access.download_data(data_set) zip = zipfile.ZipFile(os.path.join(access.DATAPATH, data_set, "run1TXT.ZIP"), "r") for name in zip.namelist(): zip.extract(name, path) Y, connect = mocap.load_text_data("Aug210106", path) Y = Y[0:-1:sample_every, :] return access.data_details_return({"Y": Y, "connect": connect}, data_set)
db4687276c69c9bfdcbc30e7c6f46a26fa0f4c19
5,445
import os def package_data(pkg, root_list): """ Generic function to find package_data for `pkg` under `root`. """ data = [] for root in root_list: for dirname, _, files in os.walk(os.path.join(pkg, root)): for fname in files: data.append(os.path.relpath(os.path.join(dirname, fname), pkg)) return {pkg: data}
6ffe84ef045e460a7bc2613e14e1670a9f6a48e2
5,446
def create(dataset, target, features=None, l2_penalty=1e-2, l1_penalty=0.0, solver='auto', feature_rescaling=True, convergence_threshold = _DEFAULT_SOLVER_OPTIONS['convergence_threshold'], step_size = _DEFAULT_SOLVER_OPTIONS['step_size'], lbfgs_memory_level = _DEFAULT_SOLVER_OPTIONS['lbfgs_memory_level'], max_iterations = _DEFAULT_SOLVER_OPTIONS['max_iterations'], validation_set = "auto", verbose=True): """ Create a :class:`~turicreate.linear_regression.LinearRegression` to predict a scalar target variable as a linear function of one or more features. In addition to standard numeric and categorical types, features can also be extracted automatically from list- or dictionary-type SFrame columns. The linear regression module can be used for ridge regression, Lasso, and elastic net regression (see References for more detail on these methods). By default, this model has an l2 regularization weight of 0.01. Parameters ---------- dataset : SFrame The dataset to use for training the model. target : string Name of the column containing the target variable. features : list[string], optional Names of the columns containing features. 'None' (the default) indicates that all columns except the target variable should be used as features. The features are columns in the input SFrame that can be of the following types: - *Numeric*: values of numeric type integer or float. - *Categorical*: values of type string. - *Array*: list of numeric (integer or float) values. Each list element is treated as a separate feature in the model. - *Dictionary*: key-value pairs with numeric (integer or float) values Each key of a dictionary is treated as a separate feature and the value in the dictionary corresponds to the value of the feature. Dictionaries are ideal for representing sparse data. Columns of type *list* are not supported. Convert such feature columns to type array if all entries in the list are of numeric types. If the lists contain data of mixed types, separate them out into different columns. l2_penalty : float, optional Weight on the l2-regularizer of the model. The larger this weight, the more the model coefficients shrink toward 0. This introduces bias into the model but decreases variance, potentially leading to better predictions. The default value is 0.01; setting this parameter to 0 corresponds to unregularized linear regression. See the ridge regression reference for more detail. l1_penalty : float, optional Weight on l1 regularization of the model. Like the l2 penalty, the higher the l1 penalty, the more the estimated coefficients shrink toward 0. The l1 penalty, however, completely zeros out sufficiently small coefficients, automatically indicating features that are not useful for the model. The default weight of 0 prevents any features from being discarded. See the LASSO regression reference for more detail. solver : string, optional Solver to use for training the model. See the references for more detail on each solver. - *auto (default)*: automatically chooses the best solver for the data and model parameters. - *newton*: Newton-Raphson - *lbfgs*: limited memory BFGS - *fista*: accelerated gradient descent The model is trained using a carefully engineered collection of methods that are automatically picked based on the input data. The ``newton`` method works best for datasets with plenty of examples and few features (long datasets). Limited memory BFGS (``lbfgs``) is a robust solver for wide datasets (i.e datasets with many coefficients). ``fista`` is the default solver for l1-regularized linear regression. The solvers are all automatically tuned and the default options should function well. See the solver options guide for setting additional parameters for each of the solvers. See the user guide for additional details on how the solver is chosen. feature_rescaling : boolean, optional Feature rescaling is an important pre-processing step that ensures that all features are on the same scale. An l2-norm rescaling is performed to make sure that all features are of the same norm. Categorical features are also rescaled by rescaling the dummy variables that are used to represent them. The coefficients are returned in original scale of the problem. This process is particularly useful when features vary widely in their ranges. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance. For each row of the progress table, the chosen metrics are computed for both the provided training dataset and the validation_set. The format of this SFrame must be the same as the training set. By default this argument is set to 'auto' and a validation set is automatically sampled and used for progress printing. If validation_set is set to None, then no additional metrics are computed. The default value is 'auto'. convergence_threshold : float, optional Convergence is tested using variation in the training objective. The variation in the training objective is calculated using the difference between the objective values between two steps. Consider reducing this below the default value (0.01) for a more accurately trained model. Beware of overfitting (i.e a model that works well only on the training data) if this parameter is set to a very low value. lbfgs_memory_level : int, optional The L-BFGS algorithm keeps track of gradient information from the previous ``lbfgs_memory_level`` iterations. The storage requirement for each of these gradients is the ``num_coefficients`` in the problem. Increasing the ``lbfgs_memory_level`` can help improve the quality of the model trained. Setting this to more than ``max_iterations`` has the same effect as setting it to ``max_iterations``. max_iterations : int, optional The maximum number of allowed passes through the data. More passes over the data can result in a more accurately trained model. Consider increasing this (the default value is 10) if the training accuracy is low and the *Grad-Norm* in the display is large. step_size : float, optional (fista only) The starting step size to use for the ``fista`` and ``gd`` solvers. The default is set to 1.0, this is an aggressive setting. If the first iteration takes a considerable amount of time, reducing this parameter may speed up model training. verbose : bool, optional If True, print progress updates. Returns ------- out : LinearRegression A trained model of type :class:`~turicreate.linear_regression.LinearRegression`. See Also -------- LinearRegression, turicreate.boosted_trees_regression.BoostedTreesRegression, turicreate.regression.create Notes ----- - Categorical variables are encoded by creating dummy variables. For a variable with :math:`K` categories, the encoding creates :math:`K-1` dummy variables, while the first category encountered in the data is used as the baseline. - For prediction and evaluation of linear regression models with sparse dictionary inputs, new keys/columns that were not seen during training are silently ignored. - Any 'None' values in the data will result in an error being thrown. - A constant term is automatically added for the model intercept. This term is not regularized. - Standard errors on coefficients are only available when `solver=newton` or when the default `auto` solver option chooses the newton method and if the number of examples in the training data is more than the number of coefficients. If standard errors cannot be estimated, a column of `None` values are returned. References ---------- - Hoerl, A.E. and Kennard, R.W. (1970) `Ridge regression: Biased Estimation for Nonorthogonal Problems <http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634>`_. Technometrics 12(1) pp.55-67 - Tibshirani, R. (1996) `Regression Shrinkage and Selection via the Lasso <h ttp://www.jstor.org/discover/10.2307/2346178?uid=3739256&uid=2&uid=4&sid=2 1104169934983>`_. Journal of the Royal Statistical Society. Series B (Methodological) 58(1) pp.267-288. - Zhu, C., et al. (1997) `Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization <https://dl.acm.org/citation.cfm?id=279236>`_. ACM Transactions on Mathematical Software 23(4) pp.550-560. - Barzilai, J. and Borwein, J. `Two-Point Step Size Gradient Methods <http://imajna.oxfordjournals.org/content/8/1/141.short>`_. IMA Journal of Numerical Analysis 8(1) pp.141-148. - Beck, A. and Teboulle, M. (2009) `A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems <http://epubs.siam.org/doi/abs/10.1137/080716542>`_. SIAM Journal on Imaging Sciences 2(1) pp.183-202. - Zhang, T. (2004) `Solving large scale linear prediction problems using stochastic gradient descent algorithms <https://dl.acm.org/citation.cfm?id=1015332>`_. ICML '04: Proceedings of the twenty-first international conference on Machine learning p.116. Examples -------- Given an :class:`~turicreate.SFrame` ``sf`` with a list of columns [``feature_1`` ... ``feature_K``] denoting features and a target column ``target``, we can create a :class:`~turicreate.linear_regression.LinearRegression` as follows: >>> data = turicreate.SFrame('https://static.turi.com/datasets/regression/houses.csv') >>> model = turicreate.linear_regression.create(data, target='price', ... features=['bath', 'bedroom', 'size']) For ridge regression, we can set the ``l2_penalty`` parameter higher (the default is 0.01). For Lasso regression, we set the l1_penalty higher, and for elastic net, we set both to be higher. .. sourcecode:: python # Ridge regression >>> model_ridge = turicreate.linear_regression.create(data, 'price', l2_penalty=0.1) # Lasso >>> model_lasso = turicreate.linear_regression.create(data, 'price', l2_penalty=0., l1_penalty=1.0) # Elastic net regression >>> model_enet = turicreate.linear_regression.create(data, 'price', l2_penalty=0.5, l1_penalty=0.5) """ # Regression model names. model_name = "regression_linear_regression" solver = solver.lower() model = _sl.create(dataset, target, model_name, features=features, validation_set = validation_set, solver = solver, verbose = verbose, l2_penalty=l2_penalty, l1_penalty = l1_penalty, feature_rescaling = feature_rescaling, convergence_threshold = convergence_threshold, step_size = step_size, lbfgs_memory_level = lbfgs_memory_level, max_iterations = max_iterations) return LinearRegression(model.__proxy__)
3988ac27163873a8feff9fd34a5e8fe87e923487
5,447
def argument(*name_or_flags, **kwargs): """Convenience function to properly format arguments to pass to the subcommand decorator. """ args = list() for arg in name_or_flags: args.append(arg) return args, kwargs
0cae66e8b23211affc97fd8857f17b48a73cf286
5,448
def get_logger(): """ Provides the stem logger. :returns: **logging.Logger** for stem """ return LOGGER
8189cae16a244f0237f641e613783a484be5cf38
5,449
def get_graphql_type_for_model(model): """ Return the GraphQL type class for the given model. """ app_name, model_name = model._meta.label.split('.') # Object types for Django's auth models are in the users app if app_name == 'auth': app_name = 'users' class_name = f'{app_name}.graphql.types.{model_name}Type' try: return dynamic_import(class_name) except AttributeError: raise GraphQLTypeNotFound(f"Could not find GraphQL type for {app_name}.{model_name}")
d9f2b4093c290260db864cedd6b06958651bf713
5,450
from pathlib import Path def load_image_files(container_path, dimension=(64, 64)): """ Load image files with categories as subfolder names which performs like scikit-learn sample dataset """ image_dir = Path(container_path) folders = [directory for directory in image_dir.iterdir() if directory.is_dir()] categories = [fo.name for fo in folders] descr = "A image classification dataset" images = [] flat_data = [] target = [] for i, direc in enumerate(folders): for file in direc.iterdir(): img = imread(file) img_resized = resize(img, dimension, anti_aliasing=True, mode='reflect') flat_data.append(img_resized.flatten()) images.append(img_resized) target.append(i) flat_data = np.array(flat_data) target = np.array(target) images = np.array(images) print('done') return Bunch(data=flat_data, target=target, target_names=categories, images=images, DESCR=descr)
1c92309c7f8f0b99db841fed21901d37e143f41c
5,451
from datetime import datetime import calendar def create_calendar(year=None, month=None): """ Create an inline keyboard with the provided year and month :param int year: Year to use in the calendar, if None the current year is used. :param int month: Month to use in the calendar, if None the current month is used. :return: Returns the InlineKeyboardMarkup object with the calendar. """ now = datetime.datetime.now() if year is None: year = now.year if month is None: month = now.month data_ignore = create_callback_data("IGNORE", year, month, 0) keyboard = [] # First row - Month and Year row = [] row.append(InlineKeyboardButton( calendar.month_name[month]+" "+str(year), callback_data=data_ignore) ) keyboard.append(row) # Second row - Week Days row = [] for day in ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"]: row.append(InlineKeyboardButton(day, callback_data=data_ignore)) keyboard.append(row) my_calendar = calendar.monthcalendar(year, month) for week in my_calendar: row = [] for day in week: if day == 0: row.append(InlineKeyboardButton( " ", callback_data=data_ignore) ) else: row.append(InlineKeyboardButton( str(day), callback_data=create_callback_data( "DAY", year, month, day )) ) keyboard.append(row) # Last row - Buttons row = [] row.append(InlineKeyboardButton( "<", callback_data=create_callback_data( "PREV-MONTH", year, month, day )) ) row.append(InlineKeyboardButton( " ", callback_data=data_ignore) ) row.append(InlineKeyboardButton( ">", callback_data=create_callback_data( "NEXT-MONTH", year, month, day )) ) keyboard.append(row) return InlineKeyboardMarkup(keyboard)
232dd093b08c53f099b942d4497aef920002f5d4
5,452
def format_allowed_section(allowed): """Format each section of the allowed list""" if allowed.count(":") == 0: protocol = allowed ports = [] elif allowed.count(":") == 1: protocol, ports = allowed.split(":") else: return [] if ports.count(","): ports = ports.split(",") elif ports: ports = [ports] return_val = {"IPProtocol": protocol} if ports: return_val["ports"] = ports return return_val
0c07feec16562826a1f38a11b1d57782adf09b4d
5,453
import os def upload_image(): """ form-data: image: a jpeg picture :return: a file pathname, assigned by backend. """ if 'image' not in request.files: return '', 400 f = request.files['image'] if f.filename == '': return '', 400 if not _allowed_file(f.filename): return '', 400 # filename = secure_filename(f.filename) filename = hash_filename(f) pathname = os.path.join(app.config['UPLOAD_FOLDER'], filename) f.save(pathname) return pathname
f74f90a3acce30e550e92d3cec51039450db7401
5,454
def get_airmass(when, ra, dec): """Return the airmass of (ra,dec) at the specified observing time. Uses :func:`cos_zenith_to_airmass`. Parameters ---------- when : astropy.time.Time Observation time, which specifies the local zenith. ra : astropy.units.Quantity Target RA angle(s) dec : astropy.units.Quantity Target DEC angle(s) Returns ------- array or float Value of the airmass for each input (ra,dec). """ target = astropy.coordinates.ICRS(ra=ra, dec=dec) zenith = get_observer(when, alt=90 * u.deg, az=0 * u.deg ).transform_to(astropy.coordinates.ICRS) # Calculate zenith angle in degrees. zenith_angle = target.separation(zenith) # Convert to airmass. return cos_zenith_to_airmass(np.cos(zenith_angle))
2d2b25963cc5814c8189b117734963feda762d88
5,455
def get_metadata(class_): """Returns a list of MetaDataTuple structures. """ return list(get_metadata_iterator(class_))
95bc083464431cd8bc3c273989680732f711c5c1
5,456
def get_register(regname): """ Get register value. Exception will be raised if expression cannot be parse. This function won't catch on purpose. @param regname: expected register @return register value """ t = gdb.lookup_type("unsigned long") reg = gdb.parse_and_eval(regname) return long( reg.cast(t) )
43d077b59dc0b1cb8a6233538a2a1291216c1ec4
5,457
import re def create_queries(project_id, ticket_number, pids_project_id, pids_dataset_id, pids_table): """ Creates sandbox and truncate queries to run for EHR deactivated retraction :param project_id: bq name of project :param ticket_number: Jira ticket number to identify and title sandbox table :param pids_project_id: deactivated ehr pids table in bq's project_id :param pids_dataset_id: deactivated ehr pids table in bq's dataset_id :param pids_table: deactivated pids table in bq's table name :return: list of queries to run """ queries_list = [] dataset_list = set() final_date_column_df = pd.DataFrame() # Hit bq and receive df of deactivated ehr pids and deactivated date client = get_client(project_id) deactivated_ehr_pids_df = client.query( DEACTIVATED_PIDS_QUERY.render(project=pids_project_id, dataset=pids_dataset_id, table=pids_table)).to_dataframe() date_columns_df = get_date_info_for_pids_tables(project_id, client) LOGGER.info( "Dataframe creation complete. DF to be used for creation of retraction queries." ) for date_row in date_columns_df.itertuples(index=False): # Filter to only include tables containing deactivated pids with the earliest deactivated date LOGGER.info( f'Checking table: {date_row.project_id}.{date_row.dataset_id}.{date_row.table}' ) if check_pid_exist(date_row, client, pids_project_id, pids_dataset_id, pids_table): dataset_list.add(date_row.dataset_id) row = { 'project_id': date_row.project_id, 'dataset_id': date_row.dataset_id, 'table': date_row.table, 'date_column': date_row.date_column, 'start_date_column': date_row.start_date_column, 'end_date_column': date_row.end_date_column } final_date_column_df = final_date_column_df.append( row, ignore_index=True) LOGGER.info( "Looping through the deactivated PIDS df to create queries based on the retractions needed per PID table" ) for ehr_row in deactivated_ehr_pids_df.itertuples(index=False): LOGGER.info(f'Creating retraction queries for PID: {ehr_row.person_id}') for date_row in final_date_column_df.itertuples(index=False): # Determine if dataset is deid to correctly pull pid or research_id and check if ID exists in dataset or if # already retracted if re.match(DEID_REGEX, date_row.dataset_id): pid = get_research_id(date_row.project_id, date_row.dataset_id, ehr_row.person_id, client) else: pid = ehr_row.person_id # Get or create sandbox dataset sandbox_dataset = check_and_create_sandbox_dataset( date_row.project_id, date_row.dataset_id) # Create queries based on type of date field LOGGER.info( f'Creating Query to retract {pid} from {date_row.dataset_id}.{date_row.table}' ) if pd.isnull(date_row.date_column): sandbox_query = SANDBOX_QUERY_END_DATE.render( project=date_row.project_id, sandbox_dataset=sandbox_dataset, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, end_date_column=date_row.end_date_column, start_date_column=date_row.start_date_column) clean_query = CLEAN_QUERY_END_DATE.render( project=date_row.project_id, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, end_date_column=date_row.end_date_column, start_date_column=date_row.start_date_column) else: sandbox_query = SANDBOX_QUERY_DATE.render( project=date_row.project_id, sandbox_dataset=sandbox_dataset, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, date_column=date_row.date_column) clean_query = CLEAN_QUERY_DATE.render( project=date_row.project_id, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, date_column=date_row.date_column) queries_list.append({ clean_consts.QUERY: sandbox_query, clean_consts.DESTINATION: date_row.project_id + '.' + sandbox_dataset + '.' + (ticket_number + '_' + date_row.table), clean_consts.DESTINATION_DATASET: date_row.dataset_id, clean_consts.DESTINATION_TABLE: date_row.table, clean_consts.DISPOSITION: bq_consts.WRITE_APPEND, 'type': 'sandbox' }) queries_list.append({ clean_consts.QUERY: clean_query, clean_consts.DESTINATION: date_row.project_id + '.' + date_row.dataset_id + '.' + date_row.table, clean_consts.DESTINATION_DATASET: date_row.dataset_id, clean_consts.DESTINATION_TABLE: date_row.table, clean_consts.DISPOSITION: bq_consts.WRITE_TRUNCATE, 'type': 'retraction' }) LOGGER.info( f"Query list complete, retracting ehr deactivated PIDS from the following datasets: " f"{dataset_list}") return queries_list
2940468b76ccd4d16dfb1bbddf440be635eaaf8d
5,458
def load_and_estimate(file, arguments, denoise=medfilt, data=None): """Loads mean+std images and evaluates noise. Required for parallelization.""" # Pipeline for µCT data if data is not None: # Evaluate noise on data noises = np.zeros(len(metrics)) for m in range(len(metrics)): noise = estimate_noise(data, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noises[m] = noise return np.array(noises) # Pipeline for images # Get images path = arguments.image_path # Load images image_surf, image_deep, image_calc = load_vois_h5(path, file) # Auto crop if arguments.auto_crop: image_deep, cropped = auto_corner_crop(image_deep) image_calc, cropped = auto_corner_crop(image_calc) # Evaluate noise on mean+std images noises_surf, noises_deep, noises_calc = np.zeros(len(metrics)), np.zeros(len(metrics)), np.zeros(len(metrics)) for m in range(len(metrics)): noise_surf = estimate_noise(image_surf, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noise_deep = estimate_noise(image_deep, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noise_calc = estimate_noise(image_calc, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noises_surf[m] = noise_surf noises_deep[m] = noise_deep noises_calc[m] = noise_calc return np.array((noises_surf, noises_deep, noises_calc))
63b53eb5441dd9a2e9f4b558005b640109fea220
5,459
import torch def calc_self_attn( bert_model: BertModel, protein: dict, device="cuda:0", **kwargs ): """Calculate self-attention matrices given Bert model for one protein. Args: bert_model: a BertModel instance protein: a dict object from LM-GVP formatted data (json record). device: device to do the computation Returns: torch.tensor of shape: [n_maps, seqlen, seqlen] """ bert_model = bert_model.to(device) bert_model.eval() with torch.no_grad(): self_attn_mats = bert_model( protein["input_ids"].unsqueeze(0).to(device), attention_mask=protein["attention_mask"].unsqueeze(0).to(device), output_attentions=True, ).attentions # gather self-attention map from all layers together n_layers = len(self_attn_mats) batch_size, n_heads, seqlen, _ = self_attn_mats[0].size() self_attn_mats = torch.stack(self_attn_mats, dim=1).view( batch_size, n_layers * n_heads, seqlen, seqlen ) # remove [CLS] and [SEP] self_attn_mats = self_attn_mats[..., 1:-1, 1:-1] if self_attn_mats.size()[0] == 1: self_attn_mats = self_attn_mats.squeeze(0) self_attn_mats = self_attn_mats.detach().cpu() return self_attn_mats
4d076cc232207c9c446c4f9f52f1156af2afabf2
5,460
def compute_median_survival_time(times, surv_function): """ Computes a median survival time estimate by looking for where the survival function crosses 1/2. Parameters ---------- times : 1D numpy array Sorted list of unique times (in ascending order). surv_function : 1D numpy array A survival function evaluated at each of time in `times`, in the same order. Returns ------- output : float Median survival time estimate. """ t_left = times[0] t_right = times[-1] if surv_function[-1] > 1/2: # survival function never crosses 1/2; just output this last time point return t_right for t, s in zip(times, surv_function): if s >= 0.5: t_left = t for t, s in zip(reversed(times), reversed(surv_function)): if s <= 0.5: t_right = t return (t_left + t_right) / 2.
22103bc705acb791c0937a403aa9c34e9145e1c2
5,461
def TDMAsolver_no_vec(coeffs): """ TDMA solver, a b c d can be NumPy array type or Python list type. refer to http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm and to http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm) """ a = coeffs[1:, 0] b = coeffs[:, 1] c = coeffs[:-1, 2] d = coeffs[:, 3] nf = len(d) # number of equations ac, bc, cc, dc = map(np.array, (a, b, c, d)) # copy arrays for it in range(1, nf): mc = ac[it-1]/bc[it-1] bc[it] = bc[it] - mc*cc[it-1] dc[it] = dc[it] - mc*dc[it-1] xc = bc xc[-1] = dc[-1]/bc[-1] for il in range(nf-2, 1, -1): xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il] return xc
cdec1baa7ce0fe2baef71631b0ba678a0f7559dc
5,462
def aggregate_ant(data, sub_num, response_type="full"): """ Aggregate data from the ANT task. Calculates various summary statistics for the ANT task for a given subject. Parameters ---------- data : dataframe Pandas dataframe containing a single subjects trial data for the task. sub_num : str Subject number to which the data file belongs. response_type : {'full', 'correct', 'incorrect'}, optional Should the summary data be calculated using all trials? Only correct trials? Or only incorrect trials? This is not supported in all tasks. Returns ------- stats : list List containing the calculated data for the subject. """ # Calculate times following errors and correct responses df = data follow_error_rt = df.loc[df.correct.shift() == 0, "RT"].mean() follow_correct_rt = df.loc[df.correct.shift() == 1, "RT"].mean() if response_type == "correct": df = data[data["correct"] == 1] elif response_type == "incorrect": df = data[data["correct"] == 0] elif response_type == "full": df = data # Aggregated descriptives ## congruency conditions grouped_congruency = df.groupby("congruency") neutral_rt = grouped_congruency.mean().get_value("neutral", "RT") congruent_rt = grouped_congruency.mean().get_value("congruent", "RT") incongruent_rt = grouped_congruency.mean().get_value("incongruent", "RT") neutral_rtsd = grouped_congruency.std().get_value("neutral", "RT") congruent_rtsd = grouped_congruency.std().get_value("congruent", "RT") incongruent_rtsd = grouped_congruency.std().get_value("incongruent", "RT") neutral_rtcov = neutral_rtsd / neutral_rt congruent_rtcov = congruent_rtsd / congruent_rt incongruent_rtcov = incongruent_rtsd / incongruent_rt neutral_correct = grouped_congruency.sum().get_value("neutral", "correct") congruent_correct = grouped_congruency.sum().get_value("congruent", "correct") incongruent_correct = grouped_congruency.sum().get_value("incongruent", "correct") ## cue conditions grouped_cue = df.groupby("cue") nocue_rt = grouped_cue.mean().get_value("nocue", "RT") center_rt = grouped_cue.mean().get_value("center", "RT") spatial_rt = grouped_cue.mean().get_value("spatial", "RT") double_rt = grouped_cue.mean().get_value("double", "RT") nocue_rtsd = grouped_cue.std().get_value("nocue", "RT") center_rtsd = grouped_cue.std().get_value("center", "RT") spatial_rtsd = grouped_cue.std().get_value("spatial", "RT") double_rtsd = grouped_cue.std().get_value("double", "RT") nocue_rtcov = nocue_rtsd / nocue_rt center_rtcov = center_rtsd / center_rt spatial_rtcov = spatial_rtsd / spatial_rt double_rtcov = double_rtsd / double_rt nocue_correct = grouped_cue.sum().get_value("nocue", "correct") center_correct = grouped_cue.sum().get_value("center", "correct") spatial_correct = grouped_cue.sum().get_value("spatial", "correct") double_correct = grouped_cue.sum().get_value("double", "correct") # OLS regression conflict_intercept, conflict_slope = congruent_rt, incongruent_rt - congruent_rt conflict_slope_norm = conflict_slope / congruent_rt alerting_intercept, alerting_slope = double_rt, nocue_rt - double_rt alerting_slope_norm = alerting_slope / double_rt orienting_intercept, orienting_slope = spatial_rt, center_rt - spatial_rt orienting_slope_norm = orienting_slope / spatial_rt return [ sub_num, follow_error_rt, follow_correct_rt, neutral_rt, congruent_rt, incongruent_rt, neutral_rtsd, congruent_rtsd, incongruent_rtsd, neutral_rtcov, congruent_rtcov, incongruent_rtcov, neutral_correct, congruent_correct, incongruent_correct, nocue_rt, center_rt, spatial_rt, double_rt, nocue_rtsd, center_rtsd, spatial_rtsd, double_rtsd, nocue_rtcov, center_rtcov, spatial_rtcov, double_rtcov, nocue_correct, center_correct, spatial_correct, double_correct, conflict_intercept, conflict_slope, conflict_slope_norm, alerting_intercept, alerting_slope, alerting_slope_norm, orienting_intercept, orienting_slope, orienting_slope_norm, ]
be01651d450560a5c36bc6240025fe59352d6347
5,463
def parse_search_after(params): """Validate search_after and return it as a list of [score, ID].""" search_pair = params.get("search_after") sort = params.get("sort") if not search_pair or not sort: return if '_' not in search_pair or len(search_pair.split("_")) != 2: return _score, _id = search_pair.split("_") _sort = sort.split("_")[0] if _sort not in ["relevance", "created"]: log.error("{} is not a supported sort value.".format(_sort)) return if _sort == "relevance": score = test_float(_score) if score is None: log.error("Search_after relevance score is not a float.") return elif _sort == "created": if not str(_score).isdigit(): log.error("Search_after date score is not an integer.") return score = int(_score) return [score, _id]
f44228d4f5b47129218d122adcb29e41a81c5a1f
5,464
import torch def compute_cosine_distance( features, others=None, cuda=False, ): """Computes cosine distance. Args: input1 (torch.Tensor): 2-D feature matrix. input2 (torch.Tensor): 2-D feature matrix. Returns: torch.Tensor: distance matrix. """ if others is None: if cuda: features = features.cuda() features = F.normalize(features, p=2, dim=1) dist_m = 1 - torch.mm(features, features.t()) else: if cuda: features = features.cuda() others = others.cuda() features = F.normalize(features, p=2, dim=1) others = F.normalize(others, p=2, dim=1) dist_m = 1 - torch.mm(features, others.t()) return dist_m.cpu().numpy()
702fe068f99efc1b8dda7f03d361dcceb62c7426
5,465
from typing import Any def convert_dict_keys_case(obj: Any, case_style: str = CaseStyle.CAMEL): """ This function recursively changes the case of all the keys in the obj argument """ case_style = process_case_style(case_style=case_style) if isinstance(obj, (tuple, list)): return type(obj)( [convert_dict_keys_case(item, case_style) for item in obj] ) elif isinstance(obj, dict): return { convert_string_case(key, case_style): convert_dict_keys_case( value, case_style ) for key, value in obj.items() if key } else: return obj
2b09a7d8ace030ba2543f9bdb74e7201e07243e1
5,466
def chain_exception(new_exc, old_exc): """Set the __cause__ attribute on *new_exc* for explicit exception chaining. Returns the inplace modified *new_exc*. """ if DEVELOPER_MODE: new_exc.__cause__ = old_exc return new_exc
ce19e735a26fb03d170f74d6590fb256cd70d70a
5,467
def make_input_fn(x_out, prob_choice): """Use py_func to yield elements from the given generator.""" inp = {"inputs": np.array(x_out).astype(np.int32), "problem_choice": prob_choice} flattened = tf.contrib.framework.nest.flatten(inp) types = [t.dtype for t in flattened] shapes = [[None] * len(t.shape) for t in flattened] first_ex_list = [inp] def py_func(): if first_ex_list: example = first_ex_list.pop() else: example = inp return tf.contrib.framework.nest.flatten(example) def input_fn(): flat_example = tf.py_func(py_func, [], types) _ = [t.set_shape(shape) for t, shape in zip(flat_example, shapes)] example = tf.contrib.framework.nest.pack_sequence_as(inp, flat_example) return example return input_fn
1e5e8717cb348a9114dd15ddce50cb33af50b75c
5,468
import re def url_validate(url): """ URL验证 用于登录传递URL """ regex = r'^\?next=((/\w+)*)' if isinstance(url, str) and re.match(regex, url): return url.split('?next=')[-1] return '/'
7a5aa5866018d1bf16c0f4ede527a770da760e17
5,469
from typing import Tuple def mie_harmonics(x: np.ndarray, L: int) -> Tuple[np.ndarray]: """Calculates the spherical harmonics of the mie field. The harmonics are calculated up to order L using the iterative method. Parameters ---------- x : ndarray The cosine of the angle defined by the line passing through origo parallel to the propagation direction and the evaluation point, with the corner at origo. L : int The order up to which to evaluate the harmonics. The L:th Returns ------- ndarray, ndarray Tuple of ndarray of shape (L, *x.shape) """ PI = np.zeros((L, *x.shape)) TAU = np.zeros((L, *x.shape)) PI[0, :] = 1 PI[1, :] = 3 * x TAU[0, :] = x TAU[1, :] = 6 * x * x - 3 for i in range(3, L + 1): PI[i - 1] = (2 * i - 1) / (i - 1) * x * PI[i - 2] - i / (i - 1) * PI[i - 3] TAU[i - 1] = i * x * PI[i - 1] - (i + 1) * PI[i - 2] return PI, TAU
3998b065737db276142a3a25ee30c866ab52fbbd
5,470
def is_version_dir(vdir): """Check whether the given directory contains an esky app version. Currently it only need contain the "esky-files/bootstrap-mainfest.txt" file. """ if exists(pathjoin(vdir,ESKY_CONTROL_DIR,"bootstrap-manifest.txt")): return True return False
931d46c96523bd63d1087cb612a73d98d6338ae2
5,471
def session_decrypt_raw(encrypted_message, destination_key): """ Decrypts the message from a random session key, encrypted with the destination key. Superior alternative when the destination key is slow (ex RSA). """ block_size = destination_key.block_size encrypted_session_key = encrypted_message[:block_size] message = encrypted_message[block_size:] session_key = AesKey(destination_key.decrypt_raw(encrypted_session_key)) return session_key.decrypt_raw(message)
7b13ea5d689e050aba5f5a4c6de9c0ca5346bb76
5,472
def gef_pybytes(x): """Returns an immutable bytes list from the string given as input.""" return bytes(str(x), encoding="utf-8")
8e8cff61e035ac2ef9f6a2cf462a545a05c0ede8
5,473
def plot_2d_morphing_basis( morpher, xlabel=r"$\theta_0$", ylabel=r"$\theta_1$", xrange=(-1.0, 1.0), yrange=(-1.0, 1.0), crange=(1.0, 100.0), resolution=100, ): """ Visualizes a morphing basis and morphing errors for problems with a two-dimensional parameter space. Parameters ---------- morpher : PhysicsMorpher PhysicsMorpher instance with defined basis. xlabel : str, optional Label for the x axis. Default value: r'$\theta_0$'. ylabel : str, optional Label for the y axis. Default value: r'$\theta_1$'. xrange : tuple of float, optional Range `(min, max)` for the x axis. Default value: (-1., 1.). yrange : tuple of float, optional Range `(min, max)` for the y axis. Default value: (-1., 1.). crange : tuple of float, optional Range `(min, max)` for the color map. Default value: (1., 100.). resolution : int, optional Number of points per axis for the rendering of the squared morphing weights. Default value: 100. Returns ------- figure : Figure Plot as Matplotlib Figure instance. """ basis = morpher.basis assert basis is not None, "No basis defined" assert basis.shape[1] == 2, "Only 2d problems can be plotted with this function" xi, yi = (np.linspace(xrange[0], xrange[1], resolution), np.linspace(yrange[0], yrange[1], resolution)) xx, yy = np.meshgrid(xi, yi) xx, yy = xx.reshape((-1, 1)), yy.reshape((-1, 1)) theta_test = np.hstack([xx, yy]) squared_weights = [] for theta in theta_test: wi = morpher.calculate_morphing_weights(theta, None) squared_weights.append(np.sum(wi * wi) ** 0.5) squared_weights = np.array(squared_weights).reshape((resolution, resolution)) fig = plt.figure(figsize=(6.5, 5)) ax = plt.gca() pcm = ax.pcolormesh( xi, yi, squared_weights, norm=matplotlib.colors.LogNorm(vmin=crange[0], vmax=crange[1]), cmap="viridis_r" ) cbar = fig.colorbar(pcm, ax=ax, extend="both") plt.scatter(basis[:, 0], basis[:, 1], s=50.0, c="black") plt.xlabel(xlabel) plt.ylabel(ylabel) cbar.set_label(r"$\sqrt{\sum w_i^2}$") plt.xlim(xrange[0], xrange[1]) plt.ylim(yrange[0], yrange[1]) plt.tight_layout() return fig
a99fc0a710d42557ec35be646171a25ce640c01e
5,474
import numpy def single_lut_conversion(lookup_table): """ This constructs the function to convert data using a single lookup table. Parameters ---------- lookup_table : numpy.ndarray Returns ------- callable """ _validate_lookup(lookup_table) def converter(data): if not isinstance(data, numpy.ndarray): raise ValueError('requires a numpy.ndarray, got {}'.format(type(data))) if data.dtype.name not in ['uint8', 'uint16']: raise ValueError('requires a numpy.ndarray of uint8 or uint16 dtype, ' 'got {}'.format(data.dtype.name)) if len(data.shape) == 3 and data.shape[2] != 1: raise ValueError('Requires a three-dimensional numpy.ndarray, ' 'with single band in the last dimension. Got shape {}'.format(data.shape)) return lookup_table[data[:, :, 0]] return converter
6d01aa69053d964933bf330d8cf2340ea3f13eba
5,475
def signal_average(cov,bin_edges=None,bin_width=40,kind=3,lmin=None,dlspace=True,return_bins=False,**kwargs): """ dcov = cov * ellfact bin dcov in annuli interpolate back on to ell cov = dcov / ellfact where ellfact = ell**2 if dlspace else 1 """ modlmap = cov.modlmap() assert np.all(np.isfinite(cov)) dcov = cov*modlmap**2. if dlspace else cov.copy() if lmin is None: minell = maps.minimum_ell(dcov.shape,dcov.wcs) else: minell = modlmap[modlmap<=lmin].max() if bin_edges is None: bin_edges = np.append([2],np.arange(minell,modlmap.max(),bin_width)) binner = stats.bin2D(modlmap,bin_edges) cents,c1d = binner.bin(dcov) outcov = enmap.enmap(maps.interp(cents,c1d,kind=kind,fill_value=c1d[-1],**kwargs)(modlmap),dcov.wcs) with np.errstate(invalid='ignore'): outcov = outcov / modlmap**2. if dlspace else outcov outcov[modlmap<2] = 0 assert np.all(np.isfinite(outcov)) if return_bins: return cents,c1d,outcov else: return outcov
3075cdef1a7063c295a60c06b368bd337870c883
5,476
def find_tree_diameter(g): """ Standard awesome problem So for each node, I want to find the maximum distance to another node :param n: :param g: :return: """ # First finding the arbitary node that is maximum distance from root # DFS - First time q = deque() q.append((1,0)) arbitrary_node = None visited = set() curr_max_length = 0 while q: node, length = q.pop() visited.add(node) if length > curr_max_length: curr_max_length = length arbitrary_node = node for nei in g[node]: if nei not in visited: q.append((nei, length + 1)) # Now keep this arbitary node as root, and find the node that is the maximum depth to it # That is the diameter of the tree # DFS second time q2 = deque() q2.append((arbitrary_node, 0)) diameter_of_tree = 0 visited2 = set() while q2: node, length = q2.pop() visited2.add(node) if length >= diameter_of_tree: diameter_of_tree = length for nei in g[node]: if nei not in visited2: q2.append((nei, length + 1)) return diameter_of_tree
393e6f9b95316c005a3a056bdd291047f96853ec
5,477
def edge_list_to_adjacency(edges): """ Create adjacency dictionary based on a list of edges :param edges: edges to create adjacency for :type edges: :py:list :rtype: :py:dict """ adjacency = dict([(n, []) for n in edge_list_to_nodes(edges)]) for edge in edges: adjacency[edge[0]].append(edge[1]) return adjacency
c756baf0cb1182ab79df0846afd97296a0b42679
5,478
def __renormalized_likelihood_above_threshold_lnlikelihood(data, thr=__thr, alpha=models.__alpha, beta=models.__beta, num_mc=models.__num_mc, **kwargs): """ only include data that is above thr, treats them all as signals, and renormalizes the likelihood so that it only covers "detectable data" """ truth = data[:,0]>=thr if np.any(truth): norm = 1-np.exp(models.signalData_lncdf(thr, alpha=alpha, beta=beta, num_mc=num_mc)) ### normalization of likelihood for data above threshold return np.sum(models.signalData_lnpdf(data[truth][:,0], alpha=alpha, beta=beta, num_mc=num_mc) - np.log(norm)) else: return 0
47d8d75ef136eb809fa62f77226734ad5201d49e
5,479
def _build_tags(model_uri, model_python_version=None, user_tags=None): """ :param model_uri: URI to the MLflow model. :param model_python_version: The version of Python that was used to train the model, if the model was trained in Python. :param user_tags: A collection of user-specified tags to append to the set of default tags. """ tags = dict(user_tags) if user_tags is not None else {} tags["model_uri"] = model_uri if model_python_version is not None: tags["python_version"] = model_python_version return tags
8807967b3e9d89dbb7a24542d2709bc9293992df
5,480
def test_token(current_user: usermodels.User = Depends(get_current_user)): """ Test access token """ return current_user
b74580436bba2d02c14a0840fcc0a139e637abd2
5,481
def student_list_prof_request(): """Return a JSON containing adding instructor requests, or raise 401 if not authorized.""" role_student = Role.query.filter_by(name='student').first() if current_user.is_authenticated and has_membership(current_user.id, role_student): list_approved = request.args.get('approved', type=int) or 0 list_pending = request.args.get('pending', type=int) or 0 list_declined = request.args.get('declined', type=int) or 0 prof_requests = [] if list_approved: prof_requests.extend(AddProfRequest.query.filter_by( user_id=current_user.id, approved=ApprovalType.APPROVED, ).all()) if list_pending: prof_requests.extend(AddProfRequest.query.filter_by( user_id=current_user.id, approved=ApprovalType.PENDING, ).all()) if list_declined: prof_requests.extend(AddProfRequest.query.filter_by( user_id=current_user.id, approved=ApprovalType.DECLINED, ).all()) ret = [] for prof_request in prof_requests: ret.append({ 'id': prof_request.id, 'name': prof_request.name, 'department_id': prof_request.department.id, 'course_id': prof_request.course.id, 'term_id': prof_request.term.id, 'approved': prof_request.approved.value, }) return jsonify(ret) else: abort(401)
488a5b342cdb8a83ff94f0c234f5a0996c0c0203
5,482
def set_complete(request, id): """ Marque un ticket comme complet :param request: :param id: """ ticket = Tickets.objects.get(pk=id) ticket.complete = 1 ticket.save() return redirect('/ticket/id=%s' % id)
a37e24751e6899c1cc9f413c6d0a356825b1c79f
5,483
import pathlib def parse_version_from_path(path): """Get version parts from a path name.""" path = pathlib.Path(path).absolute() version = path.name try: parts = version.split("_") ret = {} ret["major"] = try_int(parts[0]) ret["minor"] = try_int(parts[1]) ret["protocol"] = try_int(parts[2]) ret["build"] = try_int(parts[3]) ret["string"] = version.replace("_", ".") ret["file"] = version except Exception: error = "Bad API version in '{p}', must look like: '7_2_314_3181'" error = error.format(p=path) raise Exception(error) return ret
56abb214d6c3b6033a77b10c4d1a1d836ce0f8bd
5,484
from typing import Dict from typing import Any from typing import Sequence import math import itertools def assign_partitions_to_actors( ip_to_parts: Dict[int, Any], actor_rank_ips: Dict[int, str]) -> Dict[int, Sequence[Any]]: """Assign partitions from a distributed dataframe to actors. This function collects distributed partitions and evenly distributes them to actors, trying to minimize data transfer by respecting co-locality. This function currently does _not_ take partition sizes into account for distributing data. It assumes that all partitions have (more or less) the same length. Instead, partitions are evenly distributed. E.g. for 8 partitions and 3 actors, each actor gets assigned 2 or 3 partitions. Which partitions are assigned depends on the data locality. The algorithm is as follows: For any number of data partitions, get the Ray object references to the shards and the IP addresses where they currently live. Calculate the minimum and maximum amount of partitions per actor. These numbers should differ by at most 1. Also calculate how many actors will get more partitions assigned than the other actors. First, each actor gets assigned up to ``max_parts_per_actor`` co-located partitions. Only up to ``num_actors_with_max_parts`` actors get the maximum number of partitions, the rest try to fill the minimum. The rest of the partitions (all of which cannot be assigned to a co-located actor) are assigned to actors until there are none left. """ num_partitions = sum(len(parts) for parts in ip_to_parts.values()) num_actors = len(actor_rank_ips) min_parts_per_actor = max(0, math.floor(num_partitions / num_actors)) max_parts_per_actor = max(1, math.ceil(num_partitions / num_actors)) num_actors_with_max_parts = num_partitions % num_actors # This is our result dict that maps actor objects to a list of partitions actor_to_partitions = defaultdict(list) # First we loop through the actors and assign them partitions from their # own IPs. Do this until each actor has `min_parts_per_actor` partitions partition_assigned = True while partition_assigned: partition_assigned = False # Loop through each actor once, assigning for rank, actor_ip in actor_rank_ips.items(): num_parts_left_on_ip = len(ip_to_parts[actor_ip]) num_actor_parts = len(actor_to_partitions[rank]) if num_parts_left_on_ip > 0 and \ num_actor_parts < max_parts_per_actor: if num_actor_parts >= min_parts_per_actor: # Only allow up to `num_actors_with_max_parts actors to # have the maximum number of partitions assigned. if num_actors_with_max_parts <= 0: continue num_actors_with_max_parts -= 1 actor_to_partitions[rank].append(ip_to_parts[actor_ip].pop(0)) partition_assigned = True # The rest of the partitions, no matter where they are located, could not # be assigned to co-located actors. Thus, we assign them # to actors who still need partitions. rest_parts = list(itertools.chain(*ip_to_parts.values())) partition_assigned = True while len(rest_parts) > 0 and partition_assigned: partition_assigned = False for rank in actor_rank_ips: num_actor_parts = len(actor_to_partitions[rank]) if num_actor_parts < max_parts_per_actor: if num_actor_parts >= min_parts_per_actor: if num_actors_with_max_parts <= 0: continue num_actors_with_max_parts -= 1 actor_to_partitions[rank].append(rest_parts.pop(0)) partition_assigned = True if len(rest_parts) <= 0: break if len(rest_parts) != 0: raise RuntimeError( "There are still partitions left to assign, but no actor " "has capacity for more. This is probably a bug. Please go " "to https://github.com/ray-project/xgboost_ray to report it.") return actor_to_partitions
884b2b05f965c8e3517f9e49019b0bfbf06f0298
5,485
from typing import Tuple def unsorted_array(arr: list) -> Tuple[list, int, Tuple[int, int]]: """ Time Complexity: O(n) """ start, end = 0, len(arr) - 1 while start < end and arr[start] < arr[start + 1]: start += 1 while start < end and arr[end] > arr[end - 1]: end -= 1 for el in arr[start : end + 1]: # another way of implementing this part would be to find the min and # max of the subarray and keep on decrementing start/incrementing end while el < arr[start]: start -= 1 while el > arr[end]: end += 1 if start + 1 < end - 1: return arr[start + 1 : end], end - start - 1, (start + 1, end - 1) return [], 0, (-1, -1)
c3370a3e76009ef26ae3e1086e773463c312c6bb
5,486
def get_tol_values(places): # type: (float) -> list """List of tolerances to test Returns: list[tuple[float, float]] -- [(abs_tol, rel_tol)] """ abs_tol = 1.1 / pow(10, places) return [(None, None), (abs_tol, None)]
5af82438abbc0889374d62181ca7f0b7ee3c0fbe
5,487
def index(atom: Atom) -> int: """Index within the parent molecule (int). """ return atom.GetIdx()
64d385588f683a048dfa9d54ea25d85c14f04cb7
5,488
def specification_config() -> GeneratorConfig: """A spec cache of r4""" return load_config("python_pydantic")
ca4936fac7499cf986fb7ae201a07b77d6b7d917
5,489
def _wait_for_stack_ready(stack_name, region, proxy_config): """ Verify if the Stack is in one of the *_COMPLETE states. :param stack_name: Stack to query for :param region: AWS region :param proxy_config: Proxy configuration :return: true if the stack is in the *_COMPLETE status """ log.info("Waiting for stack %s to be ready", stack_name) cfn_client = boto3.client("cloudformation", region_name=region, config=proxy_config) stacks = cfn_client.describe_stacks(StackName=stack_name) stack_status = stacks["Stacks"][0]["StackStatus"] log.info("Stack %s is in status: %s", stack_name, stack_status) return stack_status in [ "CREATE_COMPLETE", "UPDATE_COMPLETE", "UPDATE_ROLLBACK_COMPLETE", "CREATE_FAILED", "UPDATE_FAILED", ]
b9ed5cd161b2baef23da40bc0b67b8b7dfc2f2ea
5,490
from typing import Optional def create_order_number_sequence( shop_id: ShopID, prefix: str, *, value: Optional[int] = None ) -> OrderNumberSequence: """Create an order number sequence.""" sequence = DbOrderNumberSequence(shop_id, prefix, value=value) db.session.add(sequence) try: db.session.commit() except IntegrityError as exc: db.session.rollback() raise OrderNumberSequenceCreationFailed( f'Could not create order number sequence with prefix "{prefix}"' ) from exc return _db_entity_to_order_number_sequence(sequence)
49484a1145e0d2c0dde9fdf2935428b5f68cd190
5,491
import os import shutil import csv def move_wheel_files(name, req, wheeldir, user=False, home=None): """Install a wheel""" scheme = distutils_scheme(name, user=user, home=home) if scheme['purelib'] != scheme['platlib']: # XXX check *.dist-info/WHEEL to deal with this obscurity raise NotImplemented("purelib != platlib") info_dir = [] data_dirs = [] source = wheeldir.rstrip(os.path.sep) + os.path.sep location = dest = scheme['platlib'] installed = {} changed = set() def normpath(src, p): return make_path_relative(src, p).replace(os.path.sep, '/') def record_installed(srcfile, destfile, modified=False): """Map archive RECORD paths to installation RECORD paths.""" oldpath = normpath(srcfile, wheeldir) newpath = normpath(destfile, location) installed[oldpath] = newpath if modified: changed.add(destfile) def clobber(source, dest, is_base, fixer=None): if not os.path.exists(dest): # common for the 'include' path os.makedirs(dest) for dir, subdirs, files in os.walk(source): basedir = dir[len(source):].lstrip(os.path.sep) if is_base and basedir.split(os.path.sep, 1)[0].endswith('.data'): continue for s in subdirs: destsubdir = os.path.join(dest, basedir, s) if is_base and basedir == '' and destsubdir.endswith('.data'): data_dirs.append(s) continue elif (is_base and s.endswith('.dist-info') # is self.req.project_name case preserving? and s.lower().startswith(req.project_name.replace('-', '_').lower())): assert not info_dir, 'Multiple .dist-info directories' info_dir.append(destsubdir) if not os.path.exists(destsubdir): os.makedirs(destsubdir) for f in files: srcfile = os.path.join(dir, f) destfile = os.path.join(dest, basedir, f) shutil.move(srcfile, destfile) changed = False if fixer: changed = fixer(destfile) record_installed(srcfile, destfile, changed) clobber(source, dest, True) assert info_dir, "%s .dist-info directory not found" % req for datadir in data_dirs: fixer = None for subdir in os.listdir(os.path.join(wheeldir, datadir)): fixer = None if subdir == 'scripts': fixer = fix_script source = os.path.join(wheeldir, datadir, subdir) dest = scheme[subdir] clobber(source, dest, False, fixer=fixer) record = os.path.join(info_dir[0], 'RECORD') temp_record = os.path.join(info_dir[0], 'RECORD.pip') with open_for_csv(record, 'r') as record_in: with open_for_csv(temp_record, 'w+') as record_out: reader = csv.reader(record_in) writer = csv.writer(record_out) for row in reader: row[0] = installed.pop(row[0], row[0]) if row[0] in changed: row[1], row[2] = rehash(row[0]) writer.writerow(row) for f in installed: writer.writerow((installed[f], '', '')) shutil.move(temp_record, record)
8e466a16a965f5955ff49cdbee1027b3e3d3074b
5,492
import os def read_hdulist (fits_file, get_data=True, get_header=False, ext_name_indices=None, dtype=None, columns=None, memmap=True): """Function to read the data (if [get_data] is True) and/or header (if [get_header] is True) of the input [fits_file]. The fits file can be an image or binary table, and can be compressed (with the compressions that astropy.io can handle, such as .gz and .fz files). If [ext_name_indices] is defined, which can be an integer, a string matching the extension's keyword EXTNAME or a list or numpy array of integers, those extensions are retrieved. """ if os.path.exists(fits_file): fits_file_read = fits_file else: # if fits_file does not exist, look for compressed versions or # files without the .fz or .gz extension if os.path.exists('{}.fz'.format(fits_file)): fits_file_read = '{}.fz'.format(fits_file) elif os.path.exists(fits_file.replace('.fz','')): fits_file_read = fits_file.replace('.fz','') elif os.path.exists('{}.gz'.format(fits_file)): fits_file_read = '{}.gz'.format(fits_file) elif os.path.exists(fits_file.replace('.gz','')): fits_file_read = fits_file.replace('.gz','') else: raise FileNotFoundError ('file not found: {}'.format(fits_file)) # open fits file into hdulist with fits.open(fits_file_read, memmap=memmap) as hdulist: n_exts = len(hdulist) # if [ext_name_indices] is a range, or list or numpy ndarray # of integers, loop over these extensions and concatenate the # data into one astropy Table; it is assumed the extension # formats are identical to one another - this is used to read # specific extensions from e.g. the calibration catalog. if type(ext_name_indices) in [list, range, np.ndarray]: for i_ext, ext in enumerate(ext_name_indices): # get header from first extension as they should be # all identical, except for NAXIS2 (nrows) if get_header and i_ext==0: header = hdulist[ext].header if get_data: # read extension data_temp = hdulist[ext].data # convert to table, as otherwise concatenation of # extensions below using [stack_arrays] is slow data_temp = Table(data_temp) # could also read fits extension into Table directly, # but this is about twice as slow as the 2 steps above #data_temp = Table.read(fits_file_read, hdu=ext) if i_ext==0: data = data_temp else: #data = stack_arrays((data, data_temp),asrecarray=True, # usemask=False) # following does not work if data is a fitsrec # array and the array contains boolean fields, as # these are incorrectly converted; therefore the # conversion to a Table above data = np.concatenate([data, data_temp]) else: # otherwise read the extension defined by [ext_name_indices] # or simply the last extension if type(ext_name_indices) in [int, str]: ext = ext_name_indices else: ext = n_exts-1 if get_data: data = hdulist[ext].data # convert to [dtype] if it is defined if dtype is not None: data = data.astype(dtype, copy=False) if get_header: header = hdulist[ext].header if columns is not None: # only return defined columns return [data[col] for col in columns if col in data.dtype.names] else: # return data and header depending on whether [get_data] # and [get_header] are defined or not if get_data: if get_header: return data, header else: return data else: if get_header: return header else: return
54188e63edb3432035fe851bd81d9e478138b728
5,493
def calcMFCC(signal, sample_rate=16000, win_length=0.025, win_step=0.01, filters_num=26, NFFT=512, low_freq=0, high_freq=None, pre_emphasis_coeff=0.97, cep_lifter=22, append_energy=True, append_delta=False): """Calculate MFCC Features. Arguments: signal: 1-D numpy array. sample_rate: Sampling rate. Defaulted to 16KHz. win_length: Window length. Defaulted to 0.025, which is 25ms/frame. win_step: Interval between the start points of adjacent frames. Defaulted to 0.01, which is 10ms. filters_num: Numbers of filters. Defaulted to 26. NFFT: Size of FFT. Defaulted to 512. low_freq: Lowest frequency. high_freq: Highest frequency. pre_emphasis_coeff: Coefficient for pre-emphasis. Pre-emphasis increase the energy of signal at higher frequency. Defaulted to 0.97. cep_lifter: Numbers of lifter for cepstral. Defaulted to 22. append_energy: Whether to append energy. Defaulted to True. append_delta: Whether to append delta to feature. Defaulted to False. Returns: 2-D numpy array with shape (NUMFRAMES, features). Each frame containing filters_num of features. """ (feat, energy) = _fbank(signal, sample_rate, win_length, win_step, filters_num, NFFT, low_freq, high_freq, pre_emphasis_coeff) feat = np.log(feat) feat = dct(feat, type=2, axis=1, norm='ortho') feat = _lifter(feat, cep_lifter) if append_energy: feat[:, 0] = np.log(energy) if append_delta: feat_delta = _delta(feat) feat_delta_delta = _delta(feat_delta) feat = np.concatenate((feat, feat_delta, feat_delta_delta), axis=1) return feat
b10429bec859af3f5e6302e7f2f185bf64178922
5,494
def get_user(domain_id=None, enabled=None, idp_id=None, name=None, password_expires_at=None, protocol_id=None, region=None, unique_id=None): """ Use this data source to get the ID of an OpenStack user. """ __args__ = dict() __args__['domainId'] = domain_id __args__['enabled'] = enabled __args__['idpId'] = idp_id __args__['name'] = name __args__['passwordExpiresAt'] = password_expires_at __args__['protocolId'] = protocol_id __args__['region'] = region __args__['uniqueId'] = unique_id __ret__ = pulumi.runtime.invoke('openstack:identity/getUser:getUser', __args__) return GetUserResult( default_project_id=__ret__.get('defaultProjectId'), domain_id=__ret__.get('domainId'), region=__ret__.get('region'), id=__ret__.get('id'))
e7f6a874816673ebab1fe2f5e807def02fe232d1
5,495
def use(workflow_id, version, client=None): """ Use like ``import``: load the proxy object of a published `Workflow` version. Parameters ---------- workflow_id: str ID of the `Workflow` to retrieve version: str Version of the workflow to retrive client: `.workflows.client.Client`, optional Allows you to use a specific client instance with non-default auth and parameters Returns ------- obj: Proxytype Proxy object of the `Workflow` version. Example ------- >>> import descarteslabs.workflows as wf >>> @wf.publish("[email protected]:ndvi", "0.0.1") # doctest: +SKIP ... def ndvi(img: wf.Image) -> wf.Image: ... nir, red = img.unpack_bands("nir red") ... return (nir - red) / (nir + red) >>> same_function = wf.use("[email protected]:ndvi", "0.0.1") # doctest: +SKIP >>> same_function # doctest: +SKIP <descarteslabs.workflows.types.function.function.Function[Image, {}, Image] object at 0x...> >>> img = wf.Image.from_id("sentinel-2:L1C:2019-05-04_13SDV_99_S2B_v1") >>> same_function(img).compute(geoctx) # geoctx is an arbitrary geocontext for 'img' # doctest: +SKIP ImageResult: ... """ return VersionedGraft.get(workflow_id, version, client=client).object
d8f34e521af161e8840e11c8c888fd959e8584c9
5,496
def logout(): """ Route for logout page. """ logout_user() return redirect(url_for('index'))
4e59dd9a6b59639e24053be072f4ade4fb23d922
5,497
def ipv4_size_check(ipv4_long): """size chek ipv4 decimal Args: ipv4_long (int): ipv4 decimal Returns: boole: valid: True """ if type(ipv4_long) is not int: return False elif 0 <= ipv4_long <= 4294967295: return True else: return False
97c5d5c7472fb81e280f91275b5a88b032ee7927
5,498
def generate_gate_hadamard_mat() -> np.ndarray: """Return the Hilbert-Schmidt representation matrix for an Hadamard (H) gate with respect to the orthonormal Hermitian matrix basis with the normalized identity matrix as the 0th element. The result is a 4 times 4 real matrix. Parameters ---------- Returns ---------- np.ndarray The real Hilbert-Schmidt representation matrix for the gate. """ l = [[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0], [0, 1, 0, 0]] mat = np.array(l, dtype=np.float64) return mat
8dd36adb0cef79cbc758267fb7adf371f7b698b0
5,499