content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import argparse from pathlib import Path def _parse_args() -> argparse.Namespace: """Registers the script's arguments on an argument parser.""" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--source-root', type=Path, required=True, help='Prefix to strip from the source files') parser.add_argument('sources', type=Path, nargs='*', help='Files to mirror to the directory') parser.add_argument('--directory', type=Path, required=True, help='Directory to which to mirror the sources') parser.add_argument('--path-file', type=Path, help='File with paths to files to mirror') return parser.parse_args()
cda37a6282b95fca4db51e91bfe98cc44f46fd07
4,600
def qlist(q): """Convenience function that converts asyncio.Queues into lists. This is inefficient and should not be used in real code. """ l = [] # get the messages out while not q.empty(): l.append(q.get_nowait()) # now put the messages back (since we popped them out) for i in l[::-1]: q.put_nowait(item) return l
0ce6fb0d543646fb036c35c800d75bbadf670b0d
4,601
def is_stdin(name): """Tell whether or not the given name represents stdin.""" return name in STDINS
535ce3fee9e4a9a42ef24e4b35f84420a61cc529
4,602
def filter_marker_y_padding(markers_y_indexes, padding_y_top, padding_y_bottom): """ Filter the markers indexes for padding space in the top and bottom of answer sheet :param markers_y_indexes: :param padding_y_top: :param padding_y_bottom: :return: """ return markers_y_indexes[(markers_y_indexes > padding_y_top) & (markers_y_indexes < padding_y_bottom)]
b1eed0ac24bd6a6354072427be4375ad188572a5
4,603
import pandas as pd import os def budget_italy(path): """Budget Shares for Italian Households a cross-section from 1973 to 1992 *number of observations* : 1729 *observation* : households *country* : Italy A dataframe containing : wfood food share whouse housing and fuels share wmisc miscellaneous share pfood food price phouse housing and fuels price pmisc miscellaneous price totexp total expenditure year year income income size household size pct cellule weight Bollino, Carlo Andrea, Frederico Perali and Nicola Rossi (2000) “Linear household technologies”, *Journal of Applied Econometrics*, **15(3)**, 253–274. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `budget_italy.csv`. Returns: Tuple of np.ndarray `x_train` with 1729 rows and 11 columns and dictionary `metadata` of column headers (feature names). """ path = os.path.expanduser(path) filename = 'budget_italy.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Ecdat/BudgetItaly.csv' maybe_download_and_extract(path, url, save_file_name='budget_italy.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
dac6aa79f04bda47395a927c0aba950bc53ae33f
4,604
def hr_admin(request): """ Views for HR2 Admin page """ template = 'hr2Module/hradmin.html' # searched employee query = request.GET.get('search') if(request.method == "GET"): if(query != None): emp = ExtraInfo.objects.filter( Q(user__first_name__icontains=query) | Q(user__last_name__icontains=query) ).distinct() emp = emp.filter(user_type="faculty") else: emp = ExtraInfo.objects.all() emp = emp.filter(user_type="faculty") else: emp = ExtraInfo.objects.all() emp = emp.filter(user_type="faculty") context = {'emps': emp} return render(request, template, context)
b78f78c57282b60b527bbaa03eab9064d881aea1
4,605
def create_aws_clients(region='us-east-1'): """Creates an S3, IAM, and Redshift client to interact with. Parameters ---------- region : str The aws region to create each client (default 'us-east-1'). Returns ------- ec3 A boto3 ec2 resource. s3 A boto3 s3 resource. iam A boto3 iam client. redshift A boto3 redshift client. """ ec2 = boto3.resource( 'ec2', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) s3 = boto3.resource( 's3', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) iam = boto3.client( 'iam', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) redshift = boto3.client( 'redshift', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) return ec2, s3, iam, redshift
3a422ac88791e404d67127bc85bab12b6a8aa4d9
4,606
def apply_function(f, *args, **kwargs): """ Apply a function or staticmethod/classmethod to the given arguments. """ if callable(f): return f(*args, **kwargs) elif len(args) and hasattr(f, '__get__'): # support staticmethod/classmethod return f.__get__(None, args[0])(*args, **kwargs) else: assert False, "expected a function or staticmethod/classmethod"
374be0283a234d4121435dbd3fa873640f2b9ad1
4,607
def join_data(ycom_county, census, land_area_data): """ Getting one dataframe from the three datasets """ census['LogPopDensity'] = np.log10(census['TotalPop']/land_area_data['LND110200D']) data = pd.concat(([ycom_county, census]), axis=1) return data
171c08d0c5dac721c3100df9be747c90b299a6c1
4,608
def _createController(config): """ Creates the appropriate (hypervisor) controller based on the given configuration. This is the place where to perform particular initialization tasks for the particular hypervisor controller implementations. @param config: an instance of L{ConfigParser} """ hv = config.get('hypervisor', 'name') hvMod = None logger.debug("Hypervisor specified in config: '%s'" % hv) fqHvName = "%s.%s" % (CONTROLLERS_PATH, hv) try: hvPkg = __import__(fqHvName, globals=globals(), level=-1) hvMod = getattr(hvPkg, hv) except ImportError, e: msg = "Hypervisor '%s' is not supported. Error: %s" % (hv, e) logger.fatal(msg) raise exceptions.ConfigError(msg) logger.info("Using %s as the HyperVisor" % hvMod.__name__) return hvMod
eaaa80aed58e72de91e8d93288aec65544b39b45
4,609
def path_graph(): """Return a path graph of length three.""" G = nx.path_graph(3, create_using=nx.DiGraph) G.graph["name"] = "path" nx.freeze(G) return G
c5fd4ea322b512bd26755d94581d56ddfb4d52bf
4,610
def dropStudentsWithEvents(df, events, saveDroppedAs=None, studentId='BookletNumber', eventId='Label', verbose=True): """ Drop students with certain events. It finds students with the events, and use dropStudents() to drop them. :param df: input data frame with data from multiple students :param events: a list of events. Each event is a string of event name :param saveDroppedAs: optionally saving the dropped data to a csv or pickle file. Remember to specify .csv or .pickle :param studentId: name of the column containing the student ID info; default ot "BookletNumber" :param eventId: name of the column containing the event name; default to "Label" :param verbose: default to True :return: a data frame with students having any of these events dropped. """ # error checks assert (isinstance(df, pd.DataFrame)) for v in [studentId, eventId]: assert (v in df.columns) studentsToDrop = df.loc[df[eventId].isin(events), studentId].unique() if verbose: print("\ndropStudentsWithEvents:") print(events) return dropStudents(df, studentsToDrop, saveDroppedAs, studentId, verbose)
5308ec96c8d5d3c9704f4a42202656bc4126e645
4,611
import os def get_html_app_files_dirs(output_file): """ Return a tuple of (parent_dir, dir_name) directory named after the `output_file` file object file_base_name (stripped from extension) and a `_files` suffix Return empty strings if output is to stdout. """ if is_stdout(output_file): return '', '' file_name = output_file.name parent_dir = os.path.dirname(file_name) dir_name = fileutils.file_base_name(file_name) + '_files' return parent_dir, dir_name
36ac7b6cb1d2071c0728dc34fcdbd6d34da8f708
4,612
def create_slides(user, node, slideshow_data): """ Generate SlideshowSlides from data """ """ Returns a collection of SlideshowSlide objects """ slides = [] with transaction.atomic(): for slide in slideshow_data: slide_obj = SlideshowSlide( contentnode=node, sort_order=slide.get("sort_order"), metadata={ "caption": slide.get('caption'), "descriptive_text": slide.get('descriptive_text'), "checksum": slide.get('checksum'), "extension": slide.get('extension') } ) slide_obj.save() slides.append(slide_obj) return slides
6fc31c11f0dc24d17fd82eacd366a0026fb95157
4,613
def is_valid(sequence): """ A string is not valid if the knight moves onto a blank square and the string cannot contain more than two vowels. """ if any(letter == "_" for letter in sequence): return False # Check for vowels # Strings shorter than 3 letters are always ok, as they # can't contain more than two vowels if len(sequence) < 3: return True # Check longer sequences for number of vowels vowels="AEIUO" num_vowels = len([v for v in sequence if v in vowels]) if num_vowels > 2: return False # Check for duplicate characters. # The original question did not say anything about # repeated characters, but ignoring them would lead to infinite # sequences, such as AMAMAMA..., where the knight makes the same sequence # of moves over and over again if duplicate_characters(sequence): return False return True
0c3a72d05155eaf69ffeb7a734e9ceeabe0c44c2
4,614
def batch_dl1_to_dl2( dict_paths, config_file, jobid_from_training, batch_config, logs, ): """ Function to batch the dl1_to_dl2 stage once the lstchain train_pipe batched jobs have finished. Parameters ---------- dict_paths : dict Core dictionary with {stage: PATHS} information config_file : str Path to a configuration file. If none is given, a standard configuration is applied jobid_from_training : str string containing the jobid from the jobs batched in the train_pipe stage, to be passed to the dl1_to_dl2 function (as a slurm dependency) batch_config : dict Dictionary containing the (full) source_environment and the slurm_account strings to be passed to dl1_dl2 function logs: dict Dictionary with logs files Returns ------- jobid_for_dl2_to_dl3 : str string containing the jobids to be passed to the next stage of the workflow (as a slurm dependency) """ log_dl1_to_dl2 = {} jobid_for_dl2_to_dl3 = [] debug_log = {} log.info("==== START {} ==== \n".format("batch dl1_to_dl2_workflow")) for paths in dict_paths: job_logs, jobid = dl1_to_dl2( paths["input"], paths["output"], path_models=paths["path_model"], config_file=config_file, wait_jobid_train_pipe=jobid_from_training, batch_configuration=batch_config, slurm_options=paths.get("slurm_options", None), ) log_dl1_to_dl2.update(job_logs) # Single particle dl1_dl2 jobid to be appended jobid_for_dl2_to_dl3.append(jobid) debug_log[jobid] = f"dl1_to_dl2 jobid that depends on : {jobid_from_training} training job" jobid_for_dl2_to_dl3 = ",".join(jobid_for_dl2_to_dl3) save_log_to_file(log_dl1_to_dl2, logs["log_file"], workflow_step="dl1_to_dl2") save_log_to_file(debug_log, logs["debug_file"], workflow_step="dl1_to_dl2") log.info("==== END {} ====".format("batch dl1_to_dl2_workflow")) return jobid_for_dl2_to_dl3
673a65e2a4fb6e55339117da657734557858cec8
4,615
import webbrowser import os import io def browse(): """ A browser for the bibmanager database. """ # Content of the text buffer: bibs = bm.load() keys = [bib.key for bib in bibs] compact_text = "\n".join(keys) expanded_text = "\n\n".join(bib.content for bib in bibs) # A list object, since I want this to be a global variable selected_content = [None] lex_style = style_from_pygments_cls( pygments.styles.get_style_by_name(cm.get('style'))) custom_style = Style.from_dict({ "status": "reverse", "status.position": "#aaaa00", "status.key": "#ffaa00", "shadow": "bg:#440044", "not-searching": "#888888", }) style = merge_styles([lex_style, custom_style]) def get_menubar_text(): return [ ("class:status", " ("), ("class:status.key", "enter"), ("class:status", ")select entry ("), ("class:status.key", "e"), ("class:status", ")xpand entry ("), ("class:status.key", "f"), ("class:status", ")ind ("), ("class:status.key", "s"), ("class:status", ")ave ("), ("class:status.key", "h"), ("class:status", ")elp ("), ("class:status.key", "q"), ("class:status", ")uit"), ] def get_menubar_right_text(): """Get index of entry under cursor.""" key = get_current_key(text_field.buffer.document, keys) return f" {keys.index(key) + 1} " def get_infobar_text(): """Get author-year-title of entry under cursor.""" key = get_current_key(text_field.buffer.document, keys) bib = bibs[keys.index(key)] year = '' if bib.year is None else bib.year title = 'NO_TITLE' if bib.title is None else bib.title return f"{bib.get_authors('ushort')}{year}: {title}" search_buffer = Buffer( completer=WordCompleter(keys), complete_while_typing=False, multiline=False) search_field = SearchToolbar( search_buffer=search_buffer, forward_search_prompt = "Search: ", backward_search_prompt = "Search backward: ", ignore_case=False) text_field = TextArea( text=compact_text, lexer=PygmentsLexer(BibTeXLexer), scrollbar=True, line_numbers=False, read_only=True, search_field=search_field, input_processors=[HighlightEntryProcessor()], ) text_field.buffer.name = 'text_area_buffer' text_field.is_expanded = False # Shortcut to HighlightEntryProcessor: for processor in text_field.control.input_processors: if processor.__class__.__name__ == 'HighlightEntryProcessor': text_field.bm_processor = processor # Do not highlight searched text: sp = text_field.control.default_input_processors[0] sp._classname = ' ' sp._classname_current = ' ' menu_bar = VSplit([ Window( FormattedTextControl(get_menubar_text), style="class:status"), Window( FormattedTextControl(get_menubar_right_text), style="class:status.right", width=9, align=WindowAlign.RIGHT), ], height=1, ) info_bar = Window( content=FormattedTextControl(get_infobar_text), height=D.exact(1), style="class:status", ) body = HSplit([ menu_bar, text_field, search_field, info_bar, ]) root_container = FloatContainer( content=body, floats=[ Float( xcursor=True, ycursor=True, content=CompletionsMenu(max_height=16, scroll_offset=1), ), ], ) # Key bindings: bindings = KeyBindings() text_focus = Condition( lambda: get_app().layout.current_window == text_field.window) dialog_focus = Condition( lambda: hasattr(get_app().layout.current_window, 'dialog')) @bindings.add("q", filter=text_focus) def _quit(event): event.app.exit() # Navigation: @bindings.add("g", filter=text_focus) def _go_to_first_line(event): event.current_buffer.cursor_position = 0 @bindings.add("G", filter=text_focus) def _go_to_last_line(event) -> None: event.current_buffer.cursor_position = len(event.current_buffer.text) @bindings.add("d", filter=text_focus) def _scroll_down(event): scroll_half_page_down(event) @bindings.add("u", filter=text_focus) def _scroll_up(event): scroll_half_page_up(event) @bindings.add("n", filter=text_focus) def _find_next(event): search_state = event.app.current_search_state event.current_buffer.apply_search( search_state, include_current_position=False, count=event.arg) @bindings.add("N", filter=text_focus) def _find_previous(event): search_state = event.app.current_search_state event.current_buffer.apply_search( ~search_state, include_current_position=False, count=event.arg) @bindings.add("h", filter=text_focus) def _show_help(event): show_message("Shortcuts", help_message) @bindings.add("f", filter=text_focus) def _start_search(event): search.start_search(direction=search.SearchDirection.FORWARD) @bindings.add("b", filter=text_focus) def _open_in_browser(event): key = get_current_key(event.current_buffer.document, keys) bib = bm.find(key=key, bibs=bibs) if bib.adsurl is not None: webbrowser.open(bib.adsurl, new=2) else: show_message("Message", f"Entry '{key}' does not have an ADS url.") @bindings.add("c-c", filter=dialog_focus) def _close_dialog(event): get_app().layout.current_window.dialog.future.set_result(None) @bindings.add("s", filter=text_focus) def _save_selected_to_file(event): selected = text_field.bm_processor.selected_entries if len(selected) == 0: show_message("Message", "Nothing to save.") return async def coroutine(): dialog = TextInputDialog( title="Save to File", label_text="\nEnter a file path or leave blank to quit " "and print to screen:\n(press Control-c to cancel)\n", completer=PathCompleter(), ) path = await show_dialog_as_float(dialog) content = '\n\n'.join( bibs[keys.index(key)].content for key in selected) if path == "": selected_content[0] = content # The program termination is in TextInputDialog() since I # need to close this coroutine first. return if path is not None: try: with open(path, "w") as f: f.write(content) except IOError as e: show_message("Error", str(e)) ensure_future(coroutine()) @bindings.add("enter", filter=text_focus) def _toggle_selected_entry(event): "Select/deselect entry pointed by the cursor." key = get_current_key(event.current_buffer.document, keys) text_field.bm_processor.toggle_selected_entry(key) @bindings.add("e", filter=text_focus) def _expand_collapse_entry(event): "Expand/collapse current entry." key, start_end, is_expanded = get_current_key( event.current_buffer.document, keys, get_start_end=True, get_expanded=True) bib = bm.find(key=key, bibs=bibs) if is_expanded: event.app.clipboard.set_text(bib.key) else: event.app.clipboard.set_text(bib.content + '\n') text_field.read_only = False event.current_buffer.cursor_position = start_end[0] event.current_buffer.delete(count=start_end[1] - start_end[0]) event.current_buffer.paste_clipboard_data( event.app.clipboard.get_data(), count=event.arg, paste_mode=PasteMode.VI_BEFORE) text_field.read_only = True if is_expanded: event.current_buffer.cursor_position = start_end[0] @bindings.add("E", filter=text_focus) def _expand_collapse_all(event): "Expand/collapse all entries." buffer = event.current_buffer key = get_current_key(buffer.document, keys) if text_field.is_expanded: text_field.text = compact_text else: text_field.text = expanded_text buffer.cursor_position = buffer.text.index(key) text_field.is_expanded = not text_field.is_expanded @bindings.add("o", filter=text_focus) def _open_pdf(event): buffer = event.current_buffer key = get_current_key(buffer.document, keys) bib = bm.find(key=key, bibs=bibs) has_pdf = bib.pdf is not None has_bibcode = bib.bibcode is not None is_missing = has_pdf and not os.path.exists(f'{u.BM_PDF()}{bib.pdf}') if not has_pdf and not has_bibcode: show_message("Message", f"BibTeX entry '{key}' does not have a PDF.") return if has_pdf and not is_missing: pm.open(key=key) #except Exception as e: # show_message("Message", textwrap.fill(str(e), width=70)) return if has_pdf and is_missing and not has_bibcode: show_message("Message", f"BibTeX entry has a PDF file: {bib.pdf}, but the file " "could not be found.") return # Need to fetch before opening: async def coroutine(): dialog = MessageDialog( "PDF file not found", "Fetch from ADS?\n(might take a few seconds ...)", asking=True) fetch = await show_dialog_as_float(dialog) if fetch: with io.StringIO() as buf, redirect_stdout(buf): fetched = pm.fetch(bib.bibcode, replace=True) fetch_output = buf.getvalue() if fetched is None: show_message("PDF fetch failed", fetch_output) else: show_message("PDF fetch succeeded.", fetch_output) pm.open(key=key) ensure_future(coroutine()) application = Application( layout=Layout(root_container, focused_element=text_field), key_bindings=bindings, enable_page_navigation_bindings=True, style=style, full_screen=True, ) application.run() if selected_content[0] is not None: tokens = list(pygments.lex(selected_content[0], lexer=BibTeXLexer())) print_formatted_text( PygmentsTokens(tokens), end="", style=lex_style, #output=create_output(sys.stdout), )
90f233a9f3a2088067c6e23efedf5a12a3db1b79
4,616
import sys def read_lines_from_input(file): """ Reads the provided file line by line to provide a list representation of the contained names. :param file: A text file containing one name per line. If it's None, the input is read from the standard input. :return: A list of the names contained in the provided text file """ if file is None: file = sys.stdin return map(lambda l: l.strip(), file.readlines())
4a653979ee51afea8e7199772199c1a93dbfecc3
4,617
import urllib def is_dataproc_VM(): """Check if this installation is being executed on a Google Compute Engine dataproc VM""" try: dataproc_metadata = urllib.request.urlopen("http://metadata.google.internal/0.1/meta-data/attributes/dataproc-bucket").read() if dataproc_metadata.decode("UTF-8").startswith("dataproc"): return True except: pass return False
21044a482b534ce3625b49080d1c472d587039ad
4,618
def lookup_all(base): """Looks up a subclass of a base class from the registry. Looks up a subclass of a base class with name provided from the registry. Returns a list of registered subclass if found, None otherwise. Args: base: The base class of the subclass to be found. Returns: A list of subclass of the name if found, None otherwise. """ basename = base.__name__ if basename not in _registries: return None registry = _registries[basename] output = [] for name in registry.keys(): init_args = registry[name][_INIT_ARGS] if init_args is not None: output.append(registry[name][_TYPE_TAG](**init_args)) else: output.append(registry[name][_TYPE_TAG]) return output
de6a8504d0c6cf6f149b597e4d8b41f7b5fc1eff
4,619
def makepyfile(testdir): """Fixture for making python files with single function and docstring.""" def make(*args, **kwargs): func_name = kwargs.pop('func_name', 'f') # content in args and kwargs is treated as docstring wrap = partial(_wrap_docstring_in_func, func_name) args = map(wrap, args) kwargs = dict(zip(kwargs.keys(), map(wrap, kwargs.values()))) return testdir.makepyfile(*args, **kwargs) return make
420733f4ee299514dba4172cfcc93b7429c635ca
4,620
from PIL import Image, ImageDraw, ImageFont def createTextWatermark(msg, size, loc, fontcolor='white', fontpath='arial.ttf', fontsize=18): """Creates a watermark image of the given text. Puts it at the given location in an RGBA image of the given size. Location should be a 2-tuple denoting the center location of the text.""" im = Image.new('RGBA', size, (0,0,0,0)) draw = ImageDraw.Draw(im) font = ImageFont.truetype(fontpath, fontsize) tw, th = draw.textsize(msg, font=font) loc = (loc[0] - tw//2, loc[1] - th//2) draw.text(loc, msg, font=font, fill=fontcolor) return im
6a1ae202a92b351f7d7301735dc825e826898522
4,621
def get_server_pull_config(config:dict): """ takes a config dictionary and returns the variables related to server deployment (pull from intersections). If there is any error in the configuration, returns a quadruple of -1 with a console output of the exception """ try: server = config["DataTransfer"]["server"] intersection = config["DataTransfer"]["intersection"] startHour = config["DataTransfer"]["StartTime_PullFromIntersections"]["hour"] startMinute = config["DataTransfer"]["StartTime_PullFromIntersections"]["minute"] return server, intersection, startHour, startMinute except Exception as e: print(e) return -1, -1, -1, -1
3a5a882bf91cb65462cdbf4fe202bbbc9d52ae2c
4,622
def buff_push(item: BufferItem): """ Add BufferItem to the buffer and execute if the buffer is full """ q.put(item) make_dependencies(item) if q.full(): return buff_empty_partial(q.maxsize - 1) return None
d45c0f67fa21cade7a0c2462e1cd8167f4939e0b
4,623
import os def installDirectory(): """ Return the software installation directory, by looking at location of this method. """ #path = os.path.abspath(os.path.join(os.path.realpath(__file__), os.pardir)) path = os.path.abspath(os.path.realpath(__file__)) path = os.path.abspath(os.path.join(path, '../..')) #path = path.replace("EGG-INFO/scripts/smodels-config", "") #path = path.replace("installation.py", "") return path + "/"
d79d57eea1eb38ec56a864246ac2388d7320a0fa
4,624
from rx.core.operators.take import _take from typing import Callable def take(count: int) -> Callable[[Observable], Observable]: """Returns a specified number of contiguous elements from the start of an observable sequence. .. marble:: :alt: take -----1--2--3--4----| [ take(2) ] -----1--2-| Example: >>> op = take(5) Args: count: The number of elements to return. Returns: An operator function that takes an observable source and returns an observable sequence that contains the specified number of elements from the start of the input sequence. """ return _take(count)
636cc982c6c8c9b13a2cecb675bb0ca7aadbcd91
4,625
from typing import List from typing import Union def format_fields_for_join( fields: List[Union[Field, DrivingKeyField]], table_1_alias: str, table_2_alias: str, ) -> List[str]: """Get formatted list of field names for SQL JOIN condition. Args: fields: Fields to be formatted. table_1_alias: Alias that should be used in the field on the left side of the equality sign. table_2_alias: alias that should be used in the field on the right side of the equality sign. Returns: Fields list formatted for an SQL JOIN condition. """ return [ JOIN_CONDITION_SQL_TEMPLATE.format( field_name=field.name, table_1_alias=table_1_alias, table_2_alias=table_2_alias, ) for field in fields ]
691a154f8b984b11ed177a7948fe74398c693b25
4,626
def get_payment_balance(currency): """ Returns available balance for selected currency This method requires authorization. """ result = get_data("/payment/balances", ("currency", currency)) payment_balance = namedtuple("Payment_balance", get_namedtuple(result[0])) return [payment_balance(**element) for element in result]
354abbf4e9bc1b22a32e31555106ce68a21e9cd1
4,627
import torch def build_scheduler(optimizer, config): """ """ scheduler = None config = config.__dict__ sch_type = config.pop('type') if sch_type == 'LambdaLR': burn_in, steps = config['burn_in'], config['steps'] # Learning rate setup def burnin_schedule(i): if i < burn_in: factor = pow(i / burn_in, 4) elif i < steps[0]: factor = 1.0 elif i < steps[1]: factor = 0.1 else: factor = 0.01 return factor scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule) elif sch_type == 'StepLR': # 等间隔调整学习率, 调整倍数为gamma倍,调整间隔为step_size,间隔单位是step,step通常是指epoch。 step_size, gamma = config['step_size'], config['gamma'] scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma) elif sch_type == 'ReduceLROnPlateau': # 当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=3, verbose=True, threshold=1e-4) return scheduler
b205b323db322336426f3c13195cb49735d7284d
4,628
def rpca_alm(X, lmbda=None, tol=1e-7, max_iters=1000, verbose=True, inexact=True): """ Augmented Lagrange Multiplier """ if lmbda is None: lmbda = 1.0 / np.sqrt(X.shape[0]) Y = np.sign(X) norm_two = svd(Y, 1)[1] norm_inf = np.abs(Y).max() / lmbda dual_norm = np.max([norm_two, norm_inf]) Y = Y / dual_norm A = np.zeros(Y.shape) E = np.zeros(Y.shape) dnorm = la.norm(X, ord='fro') tol_primal = 1e-6 * dnorm total_svd = 0 mu = 0.5 / norm_two rho = 6 sv = 5 n = Y.shape[0] for iter1 in xrange(max_iters): primal_converged = False sv = sv + np.round(n * 0.1) primal_iter = 0 while not primal_converged: Eraw = X - A + (1/mu) * Y Eupdate = np.maximum( Eraw - lmbda/mu, 0) + np.minimum(Eraw + lmbda / mu, 0) U, S, V = svd(X - Eupdate + (1 / mu) * Y, sv) svp = (S > 1/mu).sum() if svp < sv: sv = np.min([svp + 1, n]) else: sv = np.min([svp + round(.05 * n), n]) Aupdate = np.dot( np.dot(U[:, :svp], np.diag(S[:svp] - 1/mu)), V[:svp, :]) if primal_iter % 10 == 0 and verbose >= 2: print(la.norm(A - Aupdate, ord='fro')) if ((la.norm(A - Aupdate, ord='fro') < tol_primal and la.norm(E - Eupdate, ord='fro') < tol_primal) or (inexact and primal_iter > 5)): primal_converged = True A = Aupdate E = Eupdate primal_iter += 1 total_svd += 1 Z = X - A - E Y = Y + mu * Z mu *= rho if la.norm(Z, ord='fro') / dnorm < tol: if verbose: print('\nConverged at iteration {}'.format(iter1)) break if verbose: _verbose(A, E, X) return A, E
8c09f8f4b004b9a00655402e5466636aa9fc4390
4,629
def dwt_embed(wmImage, hostImage, alpha, beta): """Embeds a watermark image into a host image, using the First Level Discrete Wavelet Transform and Alpha Blending.\n The formula used for the alpha blending is: resultLL = alpha * hostLL + beta * watermarkLL Arguments: wmImage (NumPy array) -- the image to be embedded hostImage (NumPy array) -- the image to be watermarked alpha (float) -- the first embedding strength factor beta (float) -- the second embedding strength factor Returns: NumPy array type -- the watermarked image, in float64 format """ # Take the dimensions of the host and watermark images wmHeight, wmWidth = wmImage.shape[:2] hostHeight, hostWidth = hostImage.shape[:2] # Resize the watermark image so that it is the same size as the host image if wmHeight > hostHeight or wmWidth > hostWidth: # Scale down the watermark image wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_AREA) elif wmHeight < hostHeight or wmWidth < hostWidth: # Scale up the watermark image wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_LINEAR) # Take the new dimensions of the watermark image wmHeight, wmWidth = wmImage.shape[:2] # Split both images into channels hostB, hostG, hostR = cv2.split(hostImage) wmB, wmG, wmR = cv2.split(wmImage) # Compute the first level bidimensional DWT for each channel of both images # (LL, (HL, LH, HH)) cAhostB, (cHhostB, cVhostB, cDhostB) = pywt.dwt2(hostB, 'db2') cAhostG, (cHhostG, cVhostG, cDhostG) = pywt.dwt2(hostG, 'db2') cAhostR, (cHhostR, cVhostR, cDhostR) = pywt.dwt2(hostR, 'db2') cAhostHeight, cAhostWidth = cAhostB.shape cAwmB, (cHwmB, cVwmB, cDwmB) = pywt.dwt2(wmB, 'db2') cAwmG, (cHwmG, cVwmG, cDwmG) = pywt.dwt2(wmG, 'db2') cAwmR, (cHwmR, cVwmR, cDwmR) = pywt.dwt2(wmR, 'db2') cAwmHeight, cAwmWidth = cAwmB.shape # Generate image matrix for containing all four host coefficients images coeffsHost = np.zeros((cAhostHeight * 2, cAhostWidth * 2, 3), dtype = 'float64') # Merge channels for each of A, H, V and D and build the host coefficients image cAhost = cv2.merge([cAhostB, cAhostG, cAhostR]) coeffsHost[0:cAhostHeight, 0:cAhostWidth] = cAhost cHhost = cv2.merge([cHhostB, cHhostG, cHhostR]) coeffsHost[0:cAhostHeight, cAhostWidth:cAhostWidth * 2] = cHhost cVhost = cv2.merge([cVhostB, cVhostG, cVhostR]) coeffsHost[cAhostHeight:cAhostHeight * 2, 0:cAhostWidth] = cVhost cDhost = cv2.merge([cDhostB, cDhostG, cDhostR]) coeffsHost[cAhostHeight:cAhostHeight * 2, cAhostWidth:cAhostWidth * 2] = cDhost # Display the host coefficients image temp = np.uint8(np.rint(coeffsHost)) cv2.imshow('Host DWT', temp) # Generate image matrix for containing all four watermark coefficients images coeffsWm = np.zeros((cAwmHeight * 2, cAwmWidth * 2, 3), dtype = 'float64') # Merge channels for each of A, H, V and D and build the wm coefficients image cAwm = cv2.merge([cAwmB, cAwmG, cAwmR]) coeffsWm[0:cAwmHeight, 0:cAwmWidth] = cAwm cHwm = cv2.merge([cHwmB, cHwmG, cHwmR]) coeffsWm[0:cAwmHeight, cAwmWidth:cAwmWidth * 2] = cHwm cVwm = cv2.merge([cVwmB, cVwmG, cVwmR]) coeffsWm[cAwmHeight:cAwmHeight * 2, 0:cAwmWidth] = cVwm cDwm = cv2.merge([cDwmB, cDwmG, cDwmR]) coeffsWm[cAwmHeight:cAwmHeight * 2, cAwmWidth:cAwmWidth * 2] = cDwm # Display the watermark coefficients image temp = np.uint8(np.rint(coeffsWm)) cv2.imshow('Watermark DWT', temp) # Apply the Alpha Blending Technique # wmImageLL = alpha * hostLL + beta * wmLL cAresult = alpha * cAhost + beta * cAwm cAresultB, cAresultG, cAresultR = cv2.split(cAresult) # Compute the channels of the watermarked image by applying the inverse DWT resultB = pywt.idwt2((cAresultB, (cHhostB, cVhostB, cDhostB)), 'db2') resultG = pywt.idwt2((cAresultG, (cHhostG, cVhostG, cDhostG)), 'db2') resultR = pywt.idwt2((cAresultR, (cHhostR, cVhostR, cDhostR)), 'db2') # Merge the channels and obtain the final watermarked image resultImage = cv2.merge([resultB, resultG, resultR]) return resultImage
939e8d14ceb9452dc873f7b2d9472630211c0432
4,630
def make_file_iterator(filename): """Return an iterator over the contents of the given file name.""" # pylint: disable=C0103 with open(filename) as f: contents = f.read() return iter(contents.splitlines())
e7b612465717dafc3155d9df9fd007f7aa9af509
4,631
def build_summary(resource, children, attribute, summarizer, keep_details=False): """ Update the `resource` Resource with a summary of itself and its `children` Resources and this for the `attribute` key (such as copyrights, etc). - `attribute` is the name of the attribute ('copyrights', 'holders' etc.) - `summarizer` is a function that takes a list of texts and returns summarized texts with counts """ # Collect current data values = getattr(resource, attribute, []) no_detection_counter = 0 if values: # keep current data as plain strings candidate_texts = [entry.get('value') for entry in values] else: candidate_texts = [] if resource.is_file: no_detection_counter += 1 # Collect direct children existing summaries for child in children: child_summaries = get_resource_summary(child, key=attribute, as_attribute=keep_details) or [] for child_summary in child_summaries: count = child_summary['count'] value = child_summary['value'] if value: candidate_texts.append(Text(value, value, count)) else: no_detection_counter += count # summarize proper using the provided function summarized = summarizer(candidate_texts) # add back the counter of things without detection if no_detection_counter: summarized.update({None: no_detection_counter}) summarized = sorted_counter(summarized) if TRACE: logger_debug('COPYRIGHT summarized:', summarized) set_resource_summary(resource, key=attribute, value=summarized, as_attribute=keep_details) return summarized
622a560c257eceae6d82dc93ffc15718fca0152d
4,632
def little_endian_bytes_to_int(little_endian_byte_seq): """Converts a pair of bytes into an integer. The `little_endian_byte_seq` input must be a 2 bytes sequence defined according to the little-endian notation (i.e. the less significant byte first). For instance, if the `little_endian_byte_seq` input is equals to ``(0xbc, 0x02)`` this function returns the decimal value ``700`` (0x02bc in hexadecimal notation). :param bytes little_endian_byte_seq: the 2 bytes sequence to be converted. It must be compatible with the "bytes" type and defined according to the little-endian notation. """ # Check the argument and convert it to "bytes" if necessary. # Assert "little_endian_byte_seq" items are in range (0, 0xff). # "TypeError" and "ValueError" are sent by the "bytes" constructor if # necessary. # The statement "tuple(little_endian_byte_seq)" implicitely rejects # integers (and all non-iterable objects) to compensate the fact that the # bytes constructor doesn't reject them: bytes(2) is valid and returns # b'\x00\x00' little_endian_byte_seq = bytes(tuple(little_endian_byte_seq)) # Check that the argument is a sequence of two items if len(little_endian_byte_seq) != 2: raise ValueError("A sequence of two bytes is required.") integer = little_endian_byte_seq[1] * 0x100 + little_endian_byte_seq[0] return integer
d8d0c6d4ebb70ea541e479b21deb913053886748
4,633
def higher_follower_count(A, B): """ Compares follower count key between two dictionaries""" if A['follower_count'] >= B['follower_count']: return "A" return "B"
d4d182ca5a3c5bff2bc7229802603a82d44a4d67
4,634
def _element_or_none(germanium, selector, point): """ Function to check if the given selector is only a regular element without offset clicking. If that is the case, then we enable the double hovering in the mouse actions, to solve a host of issues with hovering and scrolling, such as elements appearing on mouse in, or edge not hovering correctly. :param germanium: :param selector: :param point: :return: """ if isinstance(selector, Point): return None if point: return None return _element(germanium, selector)
b3de13ecefc7b8593d4b61e7caf63eee41d1521a
4,635
def ENDLEMuEpP_TransferMatrix( style, tempInfo, crossSection, productFrame, angularData, EMuEpPData, multiplicity, comment = None ) : """This is LLNL I = 1, 3 type data.""" logFile = tempInfo['logFile'] workDir = tempInfo['workDir'] s = versionStr + '\n' s += "Process: 'Double differential EMuEpP data transfer matrix'\n" s += commonDataToString( comment, style, tempInfo, crossSection, productFrame, multiplicity = multiplicity ) s += angularToString( angularData, crossSection ) s += EMuEpPDataToString( EMuEpPData ) return( executeCommand( logFile, transferMatrixExecute, s, workDir, tempInfo['workFile'], tempInfo['restart'] ) )
224e72f52ad6b143e51a50962d548084a8e7c283
4,636
def _fit_gaussian(f, grid, image_spot, p0, lower_bound=None, upper_bound=None): """Fit a gaussian function to a 3-d or 2-d image. # TODO add equations and algorithm Parameters ---------- f : func A 3-d or 2-d gaussian function with some parameters fixed. grid : np.ndarray, np.float Grid data to compute the gaussian function for different voxel within a volume V or surface S. In nanometer, with shape (3, V_z * V_y * V_x), or (2, S_y * S_x). image_spot : np.ndarray, np.uint A 3-d or 2-d image with detected spot and shape (z, y, x) or (y, x). p0 : List List of parameters to estimate. lower_bound : List List of lower bound values for the different parameters. upper_bound : List List of upper bound values for the different parameters. Returns ------- popt : np.ndarray Fitted parameters. pcov : np.ndarray Estimated covariance of 'popt'. """ # TODO check that we do not fit a 2-d gaussian function to a 3-d image or # the opposite # compute lower bound and upper bound if lower_bound is None: lower_bound = [-np.inf for _ in p0] if upper_bound is None: upper_bound = [np.inf for _ in p0] bounds = (lower_bound, upper_bound) # Apply non-linear least squares to fit a gaussian function to a 3-d image y = np.reshape(image_spot, (image_spot.size,)).astype(np.float32) popt, pcov = curve_fit(f=f, xdata=grid, ydata=y, p0=p0, bounds=bounds) return popt, pcov
6fa75997af8dfee3cf90bdcab7919c6eeea0578e
4,637
def createfourierdesignmatrix_chromatic(toas, freqs, nmodes=30, Tspan=None, logf=False, fmin=None, fmax=None, idx=4): """ Construct Scattering-variation fourier design matrix. :param toas: vector of time series in seconds :param freqs: radio frequencies of observations [MHz] :param nmodes: number of fourier coefficients to use :param freq: option to output frequencies :param Tspan: option to some other Tspan :param logf: use log frequency spacing :param fmin: lower sampling frequency :param fmax: upper sampling frequency :param idx: Index of chromatic effects :return: F: Chromatic-variation fourier design matrix :return: f: Sampling frequencies """ # get base fourier design matrix and frequencies F, Ffreqs = utils.createfourierdesignmatrix_red( toas, nmodes=nmodes, Tspan=Tspan, logf=logf, fmin=fmin, fmax=fmax) # compute the DM-variation vectors Dm = (1400/freqs) ** idx return F * Dm[:, None], Ffreqs
59420ea9bde77f965f4571bdec5112d026c63478
4,638
def get_word_data(char_data): """ 获取分词的结果 :param char_data: :return: """ seq_data = [''.join(l) for l in char_data] word_data = [] # stop_words = [line.strip() for line in open(stop_word_file, 'r', encoding='utf-8')] for seq in seq_data: seq_cut = jieba.cut(seq, cut_all=False) word_data.append([w for w in seq_cut ]) return word_data
8ca306d0f3f4c94f6d67cdc7b865ddef4f639291
4,639
import os def make_non_absolute(path): """ Make a path non-absolute (so it can be joined to a base directory) @param path: The file path """ drive, path = os.path.splitdrive(path) index = 0 while os.path.isabs(path[index:]): index = index + 1 return path[index:]
51eefa84423077273931a3a4c77b4e53669a6599
4,640
from typing import List from typing import Dict from typing import Any def get_output_stream(items: List[Dict[str, Any]]) -> List[OutputObject]: """Convert a list of items in an output stream into a list of output objects. The element in list items are expected to be in default serialization format for output objects. Paramaters ---------- items: list(dict) Items in the output stream in default serialization format Returns ------- list(vizier.viztrail.module.OutputObject) """ result = list() for item in items: result.append( OutputObject( type=item[KEY_OUTPUT_TYPE], value=item[KEY_OUTPUT_VALUE] ) ) return result
841bffba3f0e4aeab19ca31b62807a5a30e818f1
4,641
def lvnf_stats(**kwargs): """Create a new module.""" return RUNTIME.components[LVNFStatsWorker.__module__].add_module(**kwargs)
1bdf94687101b8ab90684b67227acec35205e320
4,642
import re def parse_float(string): """ Finds the first float in a string without casting it. :param string: :return: """ matches = re.findall(r'(\d+\.\d+)', string) if matches: return matches[0] else: return None
4adea9226d0f67cd4d2dfe6a2b65bfd24f3a7ecb
4,643
def objectproxy_realaddress(obj): """ Obtain a real address as an integer from an objectproxy. """ voidp = QROOT.TPython.ObjectProxy_AsVoidPtr(obj) return C.addressof(C.c_char.from_buffer(voidp))
6c2f1a2b0893ef2fd90315a2cd3a7c5c5524707f
4,644
def CollateRevisionHistory(builds, repo): """Sorts builds and revisions in repository order. Args: builds: a dict of the form: ``` builds := { master: { builder: [Build, ...], ..., }, ... } ``` repo (GitWrapper): repository in which the revision occurs. Returns: A 2-tuple of (build_history, revisions), where: ``` build_history := { master: { builder: [Build, ...], ..., }, ... } ``` and ``` revisions := [revision, ...] ``` """ build_history = {} revisions = set() for master, master_data in builds.iteritems(): LOGGER.debug('Collating master %s', master) master_history = build_history.setdefault(master, {}) for builder, builder_data in master_data.iteritems(): LOGGER.debug('Collating builder %s', builder) for build in builder_data: revisions.add(str(build.revision)) master_history[builder] = repo.sort( builder_data, keyfunc=lambda b: b.revision) revisions = repo.sort(revisions) return (build_history, revisions)
e092d5c77c3767dbcf02ba7e19ba5c923bd9aad7
4,645
def delta_shear(observed_gal, psf_deconvolve, psf_reconvolve, delta_g1, delta_g2): """ Takes in an observed galaxy object, two PSFs for metacal (deconvolving and re-convolving), and the amount by which to shift g1 and g2, and returns a tuple of tuples of modified galaxy objects. ((g1plus, g1minus), (g2plus, g2minus)) """ # Deconvolving by psf_deconvolve inv_psf = galsim.Deconvolve(psf_deconvolve) deconvolved = galsim.Convolve(observed_gal, inv_psf) # Applying second shear in g1 sheared_plus_g1 = deconvolved.shear(g1=delta_g1, g2=0) sheared_minus_g1 = deconvolved.shear(g1=-delta_g1, g2=0) # Applying second shear in g2 sheared_plus_g2 = deconvolved.shear(g1=0, g2=delta_g2) sheared_minus_g2 = deconvolved.shear(g1=0, g2=-delta_g2) # Reconvolving by psf_reconvolve for g1 reconvolved_plus_g1 = galsim.Convolve(sheared_plus_g1, psf_reconvolve) reconvolved_minus_g1 = galsim.Convolve(sheared_minus_g1, psf_reconvolve) g1_plus_minus = (reconvolved_plus_g1, reconvolved_minus_g1) # Reconvolving by psf_reconvolve for g2 reconvolved_plus_g2 = galsim.Convolve(sheared_plus_g2, psf_reconvolve) reconvolved_minus_g2 = galsim.Convolve(sheared_minus_g2, psf_reconvolve) g2_plus_minus = (reconvolved_plus_g2, reconvolved_minus_g2) # g1_plus_minus = (sheared_plus_g1, sheared_minus_g1) # g2_plus_minus = (sheared_plus_g2, sheared_minus_g2) # adding noshear reconvolved for testing reconvolved_noshear = galsim.Convolve(deconvolved, psf_reconvolve) return g1_plus_minus, g2_plus_minus, reconvolved_noshear
13ab29088a1a88305e9f74ab1b43351f2d19b3c6
4,646
def estimateModifiedPiSquared(n): """ Estimates that value of Pi^2 through a formula involving partial sums. n is the number of terms to be summed; the larger the more accurate the estimation of Pi^2 tends to be (but not always). The modification relative to estimatePiSquared() is that the n terms are added in reverse order (i.e. the smallest values are added first). """ partialSum = 0 # Initializing # Implementation of the mathematical formula involving summing for k in range(n, 0, -1): # Order reversed partialSum += 1 / (k ** 2) estimate = 6*partialSum return estimate
652376bf0964990905bf25b12ad8ab5156975dea
4,647
def pattern_match(template, image, upsampling=16, metric=cv2.TM_CCOEFF_NORMED, error_check=False): """ Call an arbitrary pattern matcher using a subpixel approach where the template and image are upsampled using a third order polynomial. Parameters ---------- template : ndarray The input search template used to 'query' the destination image image : ndarray The image or sub-image to be searched upsampling : int The multiplier to upsample the template and image. func : object The function to be used to perform the template based matching Options: {cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED} In testing the first two options perform significantly better with Apollo data. error_check : bool If True, also apply a different matcher and test that the values are not too divergent. Default, False. Returns ------- x : float The x offset y : float The y offset strength : float The strength of the correlation in the range [-1, 1]. """ if upsampling < 1: raise ValueError # Fit a 3rd order polynomial to upsample the images if upsampling != 1: u_template = zoom(template, upsampling, order=3) u_image = zoom(image, upsampling, order=3) else: u_template = template u_image = image result = cv2.matchTemplate(u_image, u_template, method=metric) _, max_corr, min_loc, max_loc = cv2.minMaxLoc(result) if metric == cv2.TM_SQDIFF or metric == cv2.TM_SQDIFF_NORMED: x, y = (min_loc[0], min_loc[1]) else: x, y = (max_loc[0], max_loc[1]) # Compute the idealized shift (image center) ideal_y = u_image.shape[0] / 2 ideal_x = u_image.shape[1] / 2 # Compute the shift from template upper left to template center y += (u_template.shape[0] / 2) x += (u_template.shape[1] / 2) x = (x - ideal_x) / upsampling y = (y - ideal_y) / upsampling return x, y, max_corr, result
adb98b96d9ca778a909868c0c0851bf52b1f0a1b
4,648
def main(argv=[__name__]): """Raspi_x10 command line interface. """ try: try: devices_file, rules_file, special_days_file = argv[1:] except ValueError: raise Usage('Wrong number of arguments') sched = Schedule() try: sched.load_conf(devices_file, 'x10_devices', 'devices') sched.load_conf(rules_file, 'x10_rules', 'rules') sched.load_conf(special_days_file, 'special_days', 'special_days') except IOError: raise Usage except KeyError as err: raise Usage('KeyError: {0}'.format(err)) sched.build() sched.write() return 0 except Usage as err: log.error('{0.msg}\n{0.usage}'.format(err)) return 2
583df25dc3fb3059d6ed5b87d61a547fc1a11935
4,649
def HexaMeshIndexCoord2VoxelValue(nodes, elements, dim, elementValues): """ Convert hexamesh (bricks) in index coordinates to volume in voxels with value of voxels assigned according to elementValues. dim: dimension of volume in x, y and z in voxels (tuple) elementValues: len(elements) == len(elementValues) Example: to retrieve nodes corresponding to element 217: nodesSortedUnique[elements[217],:] Given the default voxelSize and origin, coordinates range from (-0.5 to dimXYZ+0.5) nodesSortedUnique.shape = (nodes,3) """ volume = np.zeros(dim, dtype=elementValues.dtype) # initialize volume of False xyz = nodes[elements,:][:,0,:] + 0.5 # voxel coordinates of bone xyz = xyz.astype(int) volume[tuple(xyz.T)] = elementValues return volume
8dcab059dd137173e780b7dd9941c80c89d7929c
4,650
def hamiltonian(latt: Lattice, eps: (float, np.ndarray) = 0., t: (float, np.ndarray) = 1.0, dense: bool = True) -> (csr_matrix, np.ndarray): """Computes the Hamiltonian-matrix of a tight-binding model. Parameters ---------- latt : Lattice The lattice the tight-binding model is defined on. eps : array_like, optional The on-site energies of the model. t : array_like, optional The hopping energies of the model. dense : bool, optional If ``True`` the hamiltonian matrix is returned as a ``np.ndarray`` Returns ------- ham : csr_matrix or np.ndarray The Hamiltonian-matrix as a sparse or dense matrix. """ dmap = latt.data.map() data = np.zeros(dmap.size) data[dmap.onsite()] = eps data[dmap.hopping()] = t ham = csr_matrix((data, dmap.indices)) if dense: ham = ham.toarray() return ham
63df0f8557ba13fe3501506974c402faca1811f5
4,651
def pad_in(string: str, space: int) -> str: """ >>> pad_in('abc', 0) 'abc' >>> pad_in('abc', 2) ' abc' """ return "".join([" "] * space) + string
325c0751da34982e33e8fae580af6f439a2dcac0
4,652
def get_notifies(request): """页面展示全部通知""" user = request.siteuser if not user: return HttpResponseRedirect(reverse('siteuser_login')) notifies = Notify.objects.filter(user=user).select_related('sender').order_by('-notify_at') # TODO 分页 ctx = get_notify_context(request) ctx['notifies'] = notifies return render_to_response( notify_template, ctx, context_instance=RequestContext(request) )
8042b42f03a7ce48b7355a7ba51f02937c00d9d0
4,653
def get_existing_rule(text): """ Return the matched rule if the text is an existing rule matched exactly, False otherwise. """ matches = get_license_matches(query_string=text) if len(matches) == 1: match = matches[0] if match.matcher == MATCH_HASH: return match.rule
9c41241532977b0a30485c7b7609da3c6e75b59c
4,654
import time def confirm_channel(bitcoind, n1, n2): """ Confirm that a channel is open between two nodes """ assert n1.id() in [p.pub_key for p in n2.list_peers()] assert n2.id() in [p.pub_key for p in n1.list_peers()] for i in range(10): time.sleep(0.5) if n1.check_channel(n2) and n2.check_channel(n1): return True addr = bitcoind.rpc.getnewaddress("", "bech32") bhash = bitcoind.rpc.generatetoaddress(1, addr)[0] n1.block_sync(bhash) n2.block_sync(bhash) # Last ditch attempt return n1.check_channel(n2) and n2.check_channel(n1)
bcbf895b286b446f7bb0ad2d7890a0fa902cdbd1
4,655
def has_permissions(**perms): """A :func:`check` that is added that checks if the member has any of the permissions necessary. The permissions passed in must be exactly like the properties shown under :class:`discord.Permissions`. Parameters ------------ perms An argument list of permissions to check for. Example --------- .. code-block:: python @bot.command() @commands.has_permissions(manage_messages=True) async def test(): await bot.say('You can manage messages.') """ def predicate(ctx): msg = ctx.message ch = msg.channel permissions = ch.permissions_for(msg.author) return all(getattr(permissions, perm, None) == value for perm, value in perms.items()) return check(predicate)
bf9432f136db8cd2643fe7d64807194c0479d3cd
4,656
def extend_params(params, more_params): """Extends dictionary with new values. Args: params: A dictionary more_params: A dictionary Returns: A dictionary which combines keys from both dictionaries. Raises: ValueError: if dicts have the same key. """ for yak in more_params: if yak in params: raise ValueError('Key "%s" is already in dict' % yak) params.update(more_params) return params
626db0ae8d8a249b8c0b1721b7a2e0f1d4c084b8
4,657
import logging def __compute_libdeps(node): """ Computes the direct library dependencies for a given SCons library node. the attribute that it uses is populated by the Libdeps.py script """ if getattr(node.attributes, 'libdeps_exploring', False): raise DependencyCycleError(node) env = node.get_env() deps = set() node.attributes.libdeps_exploring = True try: try: for child in env.Flatten(getattr(node.attributes, 'libdeps_direct', [])): if not child: continue deps.add(child) except DependencyCycleError as e: if len(e.cycle_nodes) == 1 or e.cycle_nodes[0] != e.cycle_nodes[ -1]: e.cycle_nodes.insert(0, node) logging.error("Found a dependency cycle" + str(e.cycle_nodes)) finally: node.attributes.libdeps_exploring = False return deps
93e44b55bb187ae6123e22845bd4da69b260b107
4,658
def _AccumulatorResultToDict(partition, feature, grads, hessians): """Converts the inputs to a dictionary since the ordering changes.""" return {(partition[i], feature[i, 0], feature[i, 1]): (grads[i], hessians[i]) for i in range(len(partition))}
20cc895cf936749a35c42a1158c9ea6645019e7d
4,659
def scale_rotor_pots(rotors, scale_factor=((), None)): """ scale the pots """ # Count numbers numtors = 0 for rotor in rotors: numtors += len(rotor) # Calculate the scaling factors scale_indcs, factor = scale_factor nscale = numtors - len(scale_indcs) if nscale > 0: sfactor = factor**(2.0/nscale) ioprinter.debug_message( 'scale_coeff test:', factor, nscale, sfactor) for rotor in rotors: for tidx, torsion in enumerate(rotor): if tidx not in scale_indcs and factor is not None: torsion.pot = automol.pot.scale(torsion.pot, sfactor) # following is being used in a test to see how effective # a scaling of fixed scan torsional pots can be torsion.pot = automol.pot.relax_scale(torsion.pot) return rotors
f89a04a86029debdef79d2d39ad3fb005d9a28a0
4,660
async def create(payload: ProductIn): """Create new product from sent data.""" product_id = await db.add_product(payload) apm.capture_message(param_message={'message': 'Product with %s id created.', 'params': product_id}) return ProductOut(**payload.dict(), product_id=product_id)
77f9ef1699cba57aa8e0cfd5a09550f6d03b8f72
4,661
def get_glove_info(glove_file_name): """Return the number of vectors and dimensions in a file in GloVe format.""" with smart_open(glove_file_name) as f: num_lines = sum(1 for line in f) with smart_open(glove_file_name) as f: num_dims = len(f.readline().split()) - 1 return num_lines, num_dims
4fde6a034197e51e3901b22c46d946330e2e213e
4,662
from typing import Dict from typing import List def retrieve_database_inputs(db_session: Session) -> ( Dict[str, List[RevenueRate]], Dict[str, MergeAddress], List[Driver]): """ Retrieve the static inputs of the model from the database :param db_session: SQLAlchemy Database connection session :return: level of service mapped to List of RevenueRate objects, merge addresses mapped to MergeAddress objects, List of driver objects """ revenue_table = load_revenue_table_from_db(db_session) merge_details = load_merge_details_from_db(db_session) drivers_table = load_drivers_from_db(db_session) return revenue_table, merge_details, drivers_table
f5242680576d7e07b87fb8fd31e26efc1b0c30f0
4,663
def _evolve_cx(base_pauli, qctrl, qtrgt): """Update P -> CX.P.CX""" base_pauli._x[:, qtrgt] ^= base_pauli._x[:, qctrl] base_pauli._z[:, qctrl] ^= base_pauli._z[:, qtrgt] return base_pauli
5d0529bc4bfe74a122c24069eccb20fa2b69f153
4,664
def tp_pixel_num_cal(im, gt): """ im is the prediction result; gt is the ground truth labelled by biologists;""" tp = np.logical_and(im, gt) tp_pixel_num = tp.sum() return tp_pixel_num
197c1f64df3430cfbb6f45413b83360a1b9c44bf
4,665
import time def xsg_data(year=None, month=None, retry_count=3, pause=0.001): """ 获取限售股解禁数据 Parameters -------- year:年份,默认为当前年 month:解禁月份,默认为当前月 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ------ DataFrame code:股票代码 name:名称 date:解禁日期 count:解禁数量(万股) ratio:占总盘比率 """ year = du.get_year() if year is None else year month = du.get_month() if month is None else month for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.XSG_URL%(ct.P_TYPE['http'], ct.DOMAINS['em'], ct.PAGES['emxsg'], year, month)) lines = urlopen(request, timeout = 10).read() lines = lines.decode('utf-8') if ct.PY3 else lines except Exception as e: print(e) else: da = lines[3:len(lines)-3] list = [] for row in da.split('","'): list.append([data for data in row.split(',')]) df = pd.DataFrame(list) df = df[[1, 3, 4, 5, 6]] for col in [5, 6]: df[col] = df[col].astype(float) df[5] = df[5]/10000 df[6] = df[6]*100 df[5] = df[5].map(ct.FORMAT) df[6] = df[6].map(ct.FORMAT) df.columns = rv.XSG_COLS return df raise IOError(ct.NETWORK_URL_ERROR_MSG)
0ca7070a63ec9ee58bb590b82d9bcdb8e4801d33
4,666
def crm_ybquery_v2(): """ crm根据用户手机号查询subId :return: """ resp = getJsonResponse() try: jsonStr = request.data # 调用业务逻辑 resp = {"message":"","status":200,"timestamp":1534844188679,"body":{"password":"21232f297a57a5a743894a0e4a801fc3","username":"admin"},"result":{"id":"4291d7da9005377ec9aec4a71ea837f","name":"Ronald Thompson","username":"admin","password":"","avatar":"https://gw.alipayobjects.com/zos/rmsportal/jZUIxmJycoymBprLOUbT.png","status":1,"telephone":"","lastLoginIp":"127.0.0.1","lastLoginTime":1534837621348,"creatorId":"admin","createTime":1497160610259,"deleted":0,"roleId":"admin","token":"4291d7da9005377ec9aec4a71ea837f"}} except BaseException as e: current_app.logger.error("=========异常============") current_app.logger.error(e) current_app.logger.error("=========异常============") resp = getJsonResponse(code="101", msg="系统异常" + str(e)) return jsonify(resp)
02b7ff4e1f44643537b4549376aa637dcdbf5261
4,667
from typing import Dict from typing import List from typing import Union from pathlib import Path from typing import Iterable from typing import Tuple import tqdm import logging def get_split_file_ids_and_pieces( data_dfs: Dict[str, pd.DataFrame] = None, xml_and_csv_paths: Dict[str, List[Union[str, Path]]] = None, splits: Iterable[float] = (0.8, 0.1, 0.1), seed: int = None, ) -> Tuple[Iterable[Iterable[int]], Iterable[Piece]]: """ Get the file_ids that should go in each split of a split dataset. Parameters ---------- data_dfs : Dict[str, pd.DataFrame] If using dataframes, a mapping of 'files', 'measures', 'chords', and 'notes' dfs. xml_and_csv_paths : Dict[str, List[Union[str, Path]]] If using the MusicXML ('xmls') and label csvs ('csvs'), a list of paths of the matching xml and csv files. splits : Iterable[float] An Iterable of floats representing the proportion of pieces which will go into each split. This will be normalized to sum to 1. seed : int A numpy random seed, if given. Returns ------- split_ids : Iterable[Iterable[int]] An iterable, the length of `splits` containing the file_ids for each data point in each split. pieces : Iterable[Iterable[Piece]] The loaded Pieces of each split. """ assert sum(splits) != 0 splits = np.array(splits) / sum(splits) if seed is not None: np.random.seed(seed) indexes = [] pieces = [] if data_dfs is not None: for i in tqdm(data_dfs["files"].index): file_name = ( f"{data_dfs['files'].loc[i].corpus_name}/{data_dfs['files'].loc[i].file_name}" ) logging.info("Parsing %s (id %s)", file_name, i) dfs = [data_dfs["chords"], data_dfs["measures"], data_dfs["notes"]] names = ["chords", "measures", "notes"] exists = [i in df.index.get_level_values(0) for df in dfs] if not all(exists): for exist, name in zip(exists, names): if not exist: logging.warning( "%s_df does not contain %s data (id %s).", name, file_name, i ) continue try: piece = get_score_piece_from_data_frames( data_dfs["notes"].loc[i], data_dfs["chords"].loc[i], data_dfs["measures"].loc[i] ) pieces.append(piece) indexes.append(i) except Exception: logging.exception("Error parsing index %s", i) continue elif xml_and_csv_paths is not None: for i, (xml_path, csv_path) in tqdm( enumerate(zip(xml_and_csv_paths["xmls"], xml_and_csv_paths["csvs"])), desc="Parsing MusicXML files", total=len(xml_and_csv_paths["xmls"]), ): piece = get_score_piece_from_music_xml(xml_path, csv_path) pieces.append(piece) indexes.append(i) # Shuffle the pieces and the df_indexes the same way shuffled_indexes = np.arange(len(indexes)) np.random.shuffle(shuffled_indexes) pieces = np.array(pieces)[shuffled_indexes] indexes = np.array(indexes)[shuffled_indexes] split_pieces = [] split_indexes = [] prop = 0 for split_prop in splits: start = int(round(prop * len(pieces))) prop += split_prop end = int(round(prop * len(pieces))) length = end - start if length == 0: split_pieces.append([]) split_indexes.append([]) elif length == 1: split_pieces.append([pieces[start]]) split_indexes.append([indexes[start]]) else: split_pieces.append(pieces[start:end]) split_indexes.append(indexes[start:end]) return split_indexes, split_pieces
d01768fddcef9428e5dd3a22592dca8dd083fc9c
4,668
def calc_full_dist(row, vert, hor, N, site_collection_SM): """ Calculates full distance matrix. Called once per row. INPUTS: :param vert: integer, number of included rows :param hor: integer, number of columns within radius :param N: integer, number of points in row :param site_collection_SM: site collection object, for ShakeMap data :returns: dict, with following keys grid_indices- indices of points included in distance matrix distance_matrix- full distance matrix """ # gathers indices for full distance matrix for each row grid_indices = [None]*(vert*(2*hor+1)) n_grid_indices = 0 for k in range(row-vert+1, row+1): if k == row: for j in range(0,hor+1): grid_indices[n_grid_indices] = j + N*k n_grid_indices += 1 else: for j in range(0,2*hor+1): grid_indices[n_grid_indices] = j + N*k n_grid_indices += 1 del grid_indices[n_grid_indices:] distance_matrix = np.zeros([np.size(grid_indices), np.size(grid_indices)]) # Create full distance matrix for row for k in range(0, np.size(grid_indices)): distance_matrix[k, k:] = geodetic_distance( site_collection_SM.lons[grid_indices[k ]], site_collection_SM.lats[grid_indices[k]], site_collection_SM.lons[grid_indices[k:]], site_collection_SM.lats[grid_indices[k:]]).flatten() distance_matrix = distance_matrix + distance_matrix.T return {'grid_indices':grid_indices, 'distance_matrix':distance_matrix}
e332b3b51cf4dadb764865f7c75eb361aa0cc100
4,669
def background_upload_do(): """Handle the upload of a file.""" form = request.form # Is the upload using Ajax, or a direct POST by the form? is_ajax = False if form.get("__ajax", None) == "true": is_ajax = True print form.items() # Target folder for these uploads. # target = os.sep.join(['app', 'static', 'photo_albums', 'Test', 'Dave']) script_dir = os.path.dirname(os.path.abspath(__file__)) target = os.sep.join([script_dir, 'static', 'photo_albums', form.items()[0][1], form.items()[1][1]]) for upload in request.files.getlist("file"): filename = upload.filename.rsplit(os.sep)[0] if not os.path.exists(target): print "Creating directory:", target os.makedirs(target) destination = os.sep.join([target, filename]) print "Accept incoming file:", filename print "Save it to:", destination upload.save(destination) # if is_ajax: return ajax_response(True, msg="DONE!") # else: # return redirect(url_for('upload'))
267608fa9c93a75ca260eb742fed9023ec350b65
4,670
def catch_list(in_dict, in_key, default, len_highest=1): """Handle list and list of list dictionary entries from parameter input files. Casts list entries of input as same type as default_val. Assign default values if user does not provide a given input parameter. Args: in_dict: Dictionary in input parameters, within which in_key is a key. in_key: Key of parameter to retrieve from in_dict. default: Default list to assign at output if in_key does not exist in in_dict. The type of the list entries in default implicitly defines the type which the parameter is cast to, if it exists in in_dict. len_highest: Expected length of topmost list. Returns: Input parameter list retrieved from in_dict, or default if not provided. """ # TODO: needs to throw an error if input list of lists is longer than len_highest # TODO: could make a recursive function probably, just hard to define appropriate list lengths at each level list_of_lists_flag = type(default[0]) == list try: inList = in_dict[in_key] if len(inList) == 0: raise ValueError # List of lists if list_of_lists_flag: val_list = [] for list_idx in range(len_highest): # If default value is None, trust user if default[0][0] is None: val_list.append(inList[list_idx]) else: type_default = type(default[0][0]) cast_in_list = [type_default(inVal) for inVal in inList[list_idx]] val_list.append(cast_in_list) # Normal list else: # If default value is None, trust user if default[0] is None: val_list = inList else: type_default = type(default[0]) val_list = [type_default(inVal) for inVal in inList] except: if list_of_lists_flag: val_list = [] for list_idx in range(len_highest): val_list.append(default[0]) else: val_list = default return val_list
e001d35a12f3826be78903f03b6e6539c8d07192
4,671
import os import re def _load_candidate_scorings (spec, input_dir_candidates, predictor): """ Load the msms-based scores for the candidates of the specified msms-spectra. :param spec: string, identifier of the spectra and candidate list. Currently we use the inchikey of the structure represented by the spectra. :param input_dir_candidates: string, directory containing the scoring and fingerprints of the candidates (compare also 'build_candidate_structure'). :param predictor: list of strings, containing the predictors used to train the model. Currently only 'maccs' and 'maccsCount_f2dcf0b3' are supported. :return: pandas.DataFrame, {"id1": [...], "score": [...]} E.g.: id1,score "InChI=1S/C10H10N4O2S/c11-8-1-3-9(4-2-8)17...",0.601026809509167 "InChI=1S/C10H10N4O2S/c11-8-2-4-9(5-3-8)17...",0.59559886408 ... NOTE: 'id1' here to the InChI, this can be changed, but we also need to modify '_process_single_candidate_list'. """ if predictor[0] == "maccs": fps_fn = "maccs_binary" elif predictor[0] == "maccsCount_f2dcf0b3": fps_fn = "maccs_count" else: raise ValueError ("Unsupported predictor for candidates: %s" % predictor[0]) l_scoring_files = os.listdir (input_dir_candidates + "/scorings/" + fps_fn + "/") scores_fn = list (filter (re.compile ("scoring_list.*=%s.csv" % spec).match, l_scoring_files)) assert (len (scores_fn) == 1) scores_fn = input_dir_candidates + "/scorings/" + fps_fn + "/" + scores_fn[0] # Return scores in descending order return DataFrame.from_csv (scores_fn, index_col = None).sort_values ("score", ascending = False)
dfbc53dc0651cf427ca8e5050e4523c8779415d1
4,672
def load_dict_data(selected_entities=None, path_to_data_folder=None): """Loads up data from .pickle file for the selected entities. Based on the selected entities, loads data from storage, into memory, if respective files exists. Args: selected_entities: A list of string entity names to be loaded. Default is load all available entitites. path_to_data_folder: A string specifying the absolute path to the data folder that contains the entity dataset files. By default, uses the built-in entity datasets. Returns: A dictionary mapping entity type (key) to all entity values of that type. Values are dictionary of dictionaries. { 'genre': { 'comedy': { 'action': {1:1}, 'drama': {1:1} }, 'action': { 'thriller': {1:1} } } } Always returns a dictionary. If .pickle files of selected entitites are not found, or if no .pickle files are found, returns an empty dictionary. """ return load_entities( selected_entities=selected_entities, from_pickle=True, path_to_data_folder=path_to_data_folder )
0236d69d6ed6c663c3bba5edabd59ced9755c546
4,673
def cart_del(request, pk): """ remove an experiment from the analysis cart and return""" pk=int(pk) # make integer for lookup within template analyze_list = request.session.get('analyze_list', []) if pk in analyze_list: analyze_list.remove(pk) request.session['analyze_list'] = analyze_list return HttpResponseRedirect(request.META.get('HTTP_REFERER'))
210a0fd58d9470aa365906420f3769b57815839a
4,674
def get_block_devices(bdms=None): """ @type bdms: list """ ret = "" if bdms: for bdm in bdms: ret += "{0}\n".format(bdm.get('DeviceName', '-')) ebs = bdm.get('Ebs') if ebs: ret += " Status: {0}\n".format(ebs.get('Status', '-')) ret += " Snapshot Id: {0}\n".format(ebs.get('SnapshotId', '-')) ret += " Volume Size: {0}\n".format(ebs.get('VolumeSize', '-')) ret += " Volume Type: {0}\n".format(ebs.get('VolumeType', '-')) ret += " Encrypted: {0}\n".format(str(ebs.get('Encrypted', '-'))) ret += " Delete on Termination: {0}\n".format(ebs.get('DeleteOnTermination', '-')) ret += " Attach Time: {0}\n".format(str(ebs.get('AttachTime', '-'))) return ret.rstrip() else: return ret
bd375f988b13d8fe5949ebdc994210136acc3405
4,675
from scipy import stats # lazy import from pandas import DataFrame def outlier_test(model_results, method='bonf', alpha=.05, labels=None, order=False, cutoff=None): """ Outlier Tests for RegressionResults instances. Parameters ---------- model_results : RegressionResults instance Linear model results method : str - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : - `holm` : - `simes-hochberg` : - `hommel` : - `fdr_bh` : Benjamini/Hochberg - `fdr_by` : Benjamini/Yekutieli See `statsmodels.stats.multitest.multipletests` for details. alpha : float familywise error rate labels : None or array_like If `labels` is not None, then it will be used as index to the returned pandas DataFrame. See also Returns below order : bool Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted. cutoff : None or float in [0, 1] If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if there are no outlier candidates at the specified cutoff. Returns ------- table : ndarray or DataFrame Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method. Notes ----- The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1. """ if labels is None: labels = getattr(model_results.model.data, 'row_labels', None) infl = getattr(model_results, 'get_influence', None) if infl is None: results = maybe_unwrap_results(model_results) raise AttributeError("model_results object %s does not have a " "get_influence method." % results.__class__.__name__) resid = infl().resid_studentized_external if order: idx = np.abs(resid).argsort()[::-1] resid = resid[idx] if labels is not None: labels = np.asarray(labels)[idx] df = model_results.df_resid - 1 unadj_p = stats.t.sf(np.abs(resid), df) * 2 adj_p = multipletests(unadj_p, alpha=alpha, method=method) data = np.c_[resid, unadj_p, adj_p[1]] if cutoff is not None: mask = data[:, -1] < cutoff data = data[mask] else: mask = slice(None) if labels is not None: return DataFrame(data, columns=['student_resid', 'unadj_p', method+"(p)"], index=np.asarray(labels)[mask]) return data
39219cf5ad86f91cf6da15ea66dc2d18f0a371af
4,676
def move(request, content_type_id, obj_id, rank): """View to be used in the django admin for changing a :class:`RankedModel` object's rank. See :func:`admin_link_move_up` and :func:`admin_link_move_down` for helper functions to incoroprate in your admin models. Upon completion this view sends the caller back to the referring page. :param content_type_id: ``ContentType`` id of object being moved :param obj_id: ID of object being moved :param rank: New rank of the object """ content_type = ContentType.objects.get_for_id(content_type_id) obj = get_object_or_404(content_type.model_class(), id=obj_id) obj.rank = int(rank) obj.save() return HttpResponseRedirect(request.META['HTTP_REFERER'])
0a8e73d83d7d7c575a8ed5abe43524b22d701a38
4,677
def test_second_playback_enforcement(mocker, tmp_path): """ Given: - A mockable test When: - The mockable test fails on the second playback Then: - Ensure that it exists in the failed_playbooks set - Ensure that it does not exists in the succeeded_playbooks list """ class RunIncidentTestMock: call_count = 0 count_response_mapping = { 1: PB_Status.FAILED, # The first playback run 2: PB_Status.COMPLETED, # The record run 3: PB_Status.FAILED # The second playback run } @staticmethod def run_incident_test(*_): # First playback run RunIncidentTestMock.call_count += 1 return RunIncidentTestMock.count_response_mapping[RunIncidentTestMock.call_count] filtered_tests = ['mocked_playbook'] tests = [generate_test_configuration(playbook_id='mocked_playbook', integrations=['mocked_integration'])] integrations_configurations = [generate_integration_configuration('mocked_integration')] secret_test_conf = generate_secret_conf_json(integrations_configurations) content_conf_json = generate_content_conf_json(tests=tests) build_context = get_mocked_build_context(mocker, tmp_path, secret_conf_json=secret_test_conf, content_conf_json=content_conf_json, filtered_tests_content=filtered_tests) mocked_demisto_client = DemistoClientMock(integrations=['mocked_integration']) server_context = generate_mocked_server_context(build_context, mocked_demisto_client, mocker) mocker.patch('demisto_sdk.commands.test_content.TestContentClasses.TestContext._run_incident_test', RunIncidentTestMock.run_incident_test) server_context.execute_tests() assert 'mocked_playbook (Second Playback)' in build_context.tests_data_keeper.failed_playbooks assert 'mocked_playbook' not in build_context.tests_data_keeper.succeeded_playbooks
314cbfb4f659b34adfdafb6b1c1153c8560249b0
4,678
import re def decode_textfield_ncr(content): """ Decodes the contents for CIF textfield from Numeric Character Reference. :param content: a string with contents :return: decoded string """ def match2str(m): return chr(int(m.group(1))) return re.sub('&#(\d+);', match2str, content)
28bf8017869d1ad47dce4362ec2b57131f587bba
4,679
def reflect_or_create_tables(options): """ returns a dict of classes make 'em if they don't exist "tables" is {'wfdisc': mapped table class, ...} """ tables = {} # this list should mirror the command line table options for table in list(mapfns.keys()) + ['lastid']: # if options.all_tables: fulltabnm = getattr(options, table, None) if fulltabnm: try: tables[table] = ps.get_tables(session.bind, [fulltabnm])[0] except NoSuchTableError: print("{0} doesn't exist. Adding it.".format(fulltabnm)) tables[table] = ps.make_table(fulltabnm, PROTOTYPES[table]) tables[table].__table__.create(session.bind, checkfirst=True) return tables
8974f6e6299240c69cf9deffdb3efb7ba9dc771f
4,680
def config_section_data(): """Produce the default configuration section for app.config, when called by `resilient-circuits config [-c|-u]` """ config_data = u"""[fn_grpc_interface] interface_dir=<<path to the parent directory of your Protocol Buffer (pb2) files>> #<<package_name>>=<<communication_type>>, <<secure connection type>>, <<certificate_path or google API token>> # 'package_name' is a CSV list of length 3, where each possible value is described in the documentation # Note: to setup, in your interface_dir, create a sub-directory that has # the same name as your package, and copy the Protocol Buffer pb2 files # into that directory. # # If the package_name was 'helloworld', your app.config would look like: # [fn_grpc_interface] # interface_dir=/home/admin/integrations/grpc_interface_files # helloworld=unary, None, None""" return config_data
cb26012ff6ad1a2dbccbbcc5ef81c7a91def7906
4,681
import multiprocessing import os def get_workers_count_based_on_cpu_count(): """ Returns the number of workers based available virtual or physical CPUs on this system. """ # Python 2.6+ try: return multiprocessing.cpu_count() * 2 + 1 except (ImportError, NotImplementedError): pass try: res = int(os.sysconf('SC_NPROCESSORS_ONLN')) if res > 0: return res * 2 + 1 except (AttributeError, ValueError): pass raise Exception('Can not determine number of CPUs on this system')
0f42840196e596a371a78f16443b4bc22a89c460
4,682
def color_print(path: str, color = "white", attrs = []) -> None: """Prints colorized text on terminal""" colored_text = colored( text = read_warfle_text(path), color = color, attrs = attrs ) print(colored_text) return None
c3f587d929f350c86d166e809c9a63995063cf95
4,683
def create_cluster_spec(parameters_server: str, workers: str) -> tf.train.ClusterSpec: """ Creates a ClusterSpec object representing the cluster. :param parameters_server: comma-separated list of hostname:port pairs to which the parameter servers are assigned :param workers: comma-separated list of hostname:port pairs to which the workers are assigned :return: a ClusterSpec object representing the cluster """ # extract the parameter servers and workers from the given strings ps_hosts = parameters_server.split(",") worker_hosts = workers.split(",") # Create a cluster spec from the parameter server and worker hosts cluster_spec = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) return cluster_spec
2b4555b68821327451c48220e64bc92ecd5f3acc
4,684
def bq_client(context): """ Initialize and return BigQueryClient() """ return BigQueryClient( context.resource_config["dataset"], )
839a72d82b29e0e57f5973aee418360ef6b3e2fc
4,685
def longascnode(x, y, z, u, v, w): """Compute value of longitude of ascending node, computed as the angle between x-axis and the vector n = (-hy,hx,0), where hx, hy, are respectively, the x and y components of specific angular momentum vector, h. Args: x (float): x-component of position y (float): y-component of position z (float): z-component of position u (float): x-component of velocity v (float): y-component of velocity w (float): z-component of velocity Returns: float: longitude of ascending node """ res = np.arctan2(y*w-z*v, x*w-z*u) # remember atan2 is atan2(y/x) if res >= 0.0: return res else: return res+2.0*np.pi
d108847fa6835bc5e3ff70eb9673f6650ddf795a
4,686
def volumetric_roi_info(atlas_spec): """Returns a list of unique ROIs, their labels and centroids""" if is_image(atlas_spec) and is_image_3D(atlas_spec): if atlas_spec.__class__ in nibabel.all_image_classes: atlas_labels = atlas_spec.get_fdata() else: atlas_labels = np.array(atlas_spec) elif isinstance(atlas_spec, str): atlas_path, atlas_name = get_atlas_path(atlas_spec) atlas_labels = nibabel.load(atlas_path).get_fdata() else: raise ValueError('Unrecognized atlas specification!' 'Must be a predefined name, or' 'a preloaded image!') # TODO names for ROIs are not read and used! uniq_rois, roi_size, num_nodes = roi_info(atlas_labels, freesurfer_annot=False) centroids = dict() for roi in uniq_rois: centroids[roi] = np.median(np.nonzero(atlas_labels==roi), axis=1) return uniq_rois, centroids, atlas_labels
427d421e53712ddd34982e32c87d77918ecca716
4,687
def predictFuture(bo:board, sn:snake, snakes:list, foods:list): """ Play forward (futuremoves) turns Check for enemy moves before calculating route boards == bo: boardClass as board sn: snakeClass as snake snakes: list[] of snakes == return: none (set board routing) board.updateCell() """ # Update / modify routes # Enemy kills us -- playing forward X turns numfuture = CONST.lookAheadPredictFuture # Update enemy future paths to depth of N = numfuture bo.getEnemyFuture(snakes, numfuture) # Check for any possible futures where we die (rr, avoid) = checkFutureDeath(bo, sn, snakes, numfuture=numfuture) # Update board to avoid these cells them = [] for sid in snakes: enemy = snakes[sid] if (enemy.getType() == 'enemy'): enemy_head = enemy.getHead() them.append(enemy_head) else: head = enemy.getHead() # TODO: Further modify this to capture closer & larger same = True # include squares where we get there same time closest = bo.closestDist(head, them, same=same) # Update squares to avoid because of head on collisions # Update squares to avoid because of head on deadend(deprecate) if (len(avoid)): # If enemy can get to location before us # If enemy kill path found # print(avoid) for path in avoid: # Set future markov board, where # * length of steps reflects turn, and # * routing logic looks at next markov board for step in path: # print("PREDICT FUTURE DEATH", step) for i in range(0, len(path)): bo.updateCell(path[i], CONST.routeSolid/2, i, replace=True) bo.updateCell(path[i], CONST.routeSolid/2, i+1, replace=True) # bo.updateCell(step, CONST.routeSolid/4, len(path)+1, replace=True) # Update eating for snakes based on path # Update cells that enemy snakes can get to before us for sid in snakes: # Ignore us -- we have better calculation because we know our route if (snakes[sid].getType() != "us"): # Uses every possible path based on self.predictEnemyMoves paths = snakes[sid].getNextSteps() length = snakes[sid].getLength() # threat = CONST.routeSolid/2 for path in paths: # Todo: only paint squares in each path based on turn for pt in path: # Print out hazard for N = enemy length or width of board for turn in range(0, min(length, bo.width)): if not closest[pt[0], pt[1]]: bo.updateCell(pt, threat, turn) # bo.updateCell(pt, CONST.routeSolid/(turn+1), turn) # threat = int(threat / 5) food_in_route = 0 # Check if there is food one square from them .. try: food_path = 0 # Check if food is in future moves for path in paths: pt = path[0] # truncate to first point only for now if pt in foods: food_in_route = 1 # print("DEBUG ENEMY PATH", sid, pt, path, food_path) # lookAheadPredictFuture except: pass # Check if snake ate this turn (don't we already accommodate?) snakes[sid].setEatingFuture(food_in_route) # print(sid, food_in_route) # Performance monitoring return rr
78020678691e41f447c25cb2bd807c9db7a04c86
4,688
def convert_to_distance(primer_df, tm_opt, gc_opt, gc_clamp_opt=2): """ Convert tm, gc%, and gc_clamp to an absolute distance (tm_dist, gc_dist, gc_clamp_dist) away from optimum range. This makes it so that all features will need to be minimized. """ primer_df['tm_dist'] = get_distance( primer_df.tm.values, tm_opt, tm_opt) primer_df['gc_dist'] = get_distance( primer_df.gc.values, gc_opt['min'], gc_opt['max']) primer_df['gc_clamp_dist'] = get_distance( primer_df.gc_clamp.values, gc_clamp_opt, gc_clamp_opt) # primer_df.drop(['tm', 'gc', 'gc_clamp'], axis=1, inplace=True) return primer_df
4d556fd79c2c21877b3cb59712a923d5645b5eba
4,689
import copy def _tmap_error_detect(tmap: TensorMap) -> TensorMap: """Modifies tm so it returns it's mean unless previous tensor from file fails""" new_tm = copy.deepcopy(tmap) new_tm.shape = (1,) new_tm.interpretation = Interpretation.CONTINUOUS new_tm.channel_map = None def tff(_: TensorMap, hd5: h5py.File, dependents=None): return tmap.tensor_from_file(tmap, hd5, dependents).mean() new_tm.tensor_from_file = tff return new_tm
263a16a5cb92e0a9c3d42357280eeb6d15a59773
4,690
def generate_dataset(config, ahead=1, data_path=None): """ Generates the dataset for training, test and validation :param ahead: number of steps ahead for prediction :return: """ dataset = config['dataset'] datanames = config['datanames'] datasize = config['datasize'] testsize = config['testsize'] vars = config['vars'] lag = config['lag'] btc = {} # Reads numpy arrays for all sites and keep only selected columns btcdata = np.load(data_path + 'bitcoin_price_history.npz') for d in datanames: btc[d] = btcdata[d] if vars is not None: btc[d] = btc[d][:, vars] if dataset == 0: return _generate_dataset_one_var(btc[datanames[0]][:, WEIGHTED_PRICE_INDEX].reshape(-1, 1), datasize, testsize, lag=lag, ahead=ahead) # Just add more options to generate datasets with more than one variable for predicting one value # or a sequence of values raise NameError('ERROR: No such dataset type')
89136efffbbd6e115b1d0b887fe7a3c904405bda
4,691
def search(isamAppliance, name, check_mode=False, force=False): """ Search UUID for named Web Service connection """ ret_obj = get_all(isamAppliance) return_obj = isamAppliance.create_return_object() return_obj["warnings"] = ret_obj["warnings"] for obj in ret_obj['data']: if obj['name'] == name: logger.info("Found Web Service connection {0} id: {1}".format(name, obj['uuid'])) return_obj['data'] = obj['uuid'] return_obj['rc'] = 0 return return_obj
f642e9e62203b490a347c21899d45968f6258eba
4,692
def flask_app(initialize_configuration) -> Flask: """ Fixture for making a Flask instance, to be able to access application context manager. This is not possible with a FlaskClient, and we need the context manager for creating JWT tokens when is required. @return: A Flask instance. """ flask_application = vcf_handler_api('TESTING') flask_application.config['TESTING'] = True flask_application.config['PROPAGATE_EXCEPTIONS'] = False return flask_application
265c912833025d13d06c2470443e68110ce4f60f
4,693
import requests def http_request(method, url_suffix, params=None, data=None, headers=HEADERS, safe=False): """ A wrapper for requests lib to send our requests and handle requests and responses better. :type method: ``str`` :param method: HTTP method for the request. :type url_suffix: ``str`` :param url_suffix: The suffix of the URL (endpoint) :type params: ``dict`` :param params: The URL params to be passed. :type data: ``str`` :param data: The body data of the request. :type headers: ``dict`` :param headers: Request headers :type safe: ``bool`` :param safe: If set to true will return None in case of http error :return: Returns the http request response json :rtype: ``dict`` """ headers['Authorization'] = get_token() url = BASE_URL + url_suffix try: res = requests.request(method, url, verify=USE_SSL, params=params, data=data, headers=headers) # Try to create a new token if res.status_code == 401: headers['Authorization'] = get_token(new_token=True) res = requests.request(method, url, verify=USE_SSL, params=params, data=data, headers=headers) except requests.exceptions.RequestException: return_error('Error in connection to the server. Please make sure you entered the URL correctly.') # Handle error responses gracefully if res.status_code not in {200, 201, 202}: try: result_msg = res.json() finally: reason = result_msg if result_msg else res.reason err_msg = f'Error in API call. code:{res.status_code}; reason: {reason}' if safe: return None return_error(err_msg) return res.json()
9fbd5123e4f1a39f5fa10fbc6a8f41db7ed1775b
4,694
import time import torch import sys def train(train_loader, model, criterion, average, optimizer, epoch, opt): """one epoch training""" model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() end = time.time() for i, (images, labels, _) in enumerate(train_loader): data_time.update(time.time() - end) # modify labels with their new indexes - we are not using all the labels anymore at the training for ind, label in enumerate(labels): labels[ind] = opt.original_index.index(label) # images = torch.cat([images[0], images[1]], dim=0) if torch.cuda.is_available(): images = images.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) #idxs = idxs.cuda(non_blocking=True) bsz = labels.shape[0] # warm-up learning rate warmup_learning_rate(opt, epoch, i, len(train_loader), optimizer) # compute loss features, _ = model(images) bs = features.size(0) outs, prob = average(features, i) loss = criterion(outs) # update metric losses.update(loss.item(), bsz) # SGD optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # print info if (i + 1) % opt.print_freq == 0: print('Train: [{0}][{1}/{2}]\t' 'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'DT {data_time.val:.3f} ({data_time.avg:.3f})\t' 'loss {loss.val:.3f} ({loss.avg:.3f})'.format( epoch, i + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) sys.stdout.flush() return losses.avg
ad2f4379cf283c1716c9d3befb0ee2f50c28c081
4,695
def FP(target, prediction): """ False positives. :param target: target value :param prediction: prediction value :return: """ return ((target == 0).float() * prediction.float().round()).sum()
9c8b21ecbc4f48b737c92fbaf73ef820fe035218
4,696
import math def get_angle(A, B, C): """ Return the angle at C (in radians) for the triangle formed by A, B, C a, b, c are lengths C / \ b / \a / \ A-------B c """ (col_A, row_A) = A (col_B, row_B) = B (col_C, row_C) = C a = pixel_distance(C, B) b = pixel_distance(A, C) c = pixel_distance(A, B) try: cos_angle = (math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b) except ZeroDivisionError as e: log.warning( "get_angle: A %s, B %s, C %s, a %.3f, b %.3f, c %.3f" % (A, B, C, a, b, c) ) raise e # If CA and CB are very long and the angle at C very narrow we can get an # invalid cos_angle which will cause math.acos() to raise a ValueError exception if cos_angle > 1: cos_angle = 1 elif cos_angle < -1: cos_angle = -1 angle_ACB = math.acos(cos_angle) # log.info("get_angle: A %s, B %s, C %s, a %.3f, b %.3f, c %.3f, cos_angle %s, angle_ACB %s" % # (A, B, C, a, b, c, pformat(cos_angle), int(math.degrees(angle_ACB)))) return angle_ACB
30e1681bf2c065c4094b2dd909322158a9968c3c
4,697
def single_labels(interesting_class_id): """ :param interesting_class_id: integer in range [0,2] to specify class :return: number of labels for the "interesting_class" """ def s_l(y_true, y_pred): class_id_true = K.argmax(y_true, axis=-1) accuracy_mask = K.cast(K.equal(class_id_true, interesting_class_id), 'int32') return K.cast(K.maximum(K.sum(accuracy_mask), 1), 'int32') return s_l
d137bbd4bba4bcb19e9bc296e4cecdbd7d8effe6
4,698
def get_iam_policy(client=None, **kwargs): """ service_account='string' """ service_account=kwargs.pop('service_account') resp = client.projects().serviceAccounts().getIamPolicy( resource=service_account).execute() # TODO(supertom): err handling, check if 'bindings' is correct if 'bindings' in resp: return resp['bindings'] else: return None
b777a317e9637a410b78847d05a6725f7600c04f
4,699