content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def if_else(cond, a, b): """Work around Python 2.4 """ if cond: return a else: return b
4b11328dd20fbb1ca663f272ac8feae15a8b26d9
4,200
def _update_machine_metadata(esh_driver, esh_machine, data={}): """ NOTE: This will NOT WORK for TAGS until openstack allows JSONArrays as values for metadata! """ if not hasattr(esh_driver._connection, 'ex_set_image_metadata'): logger.info( "EshDriver %s does not have function 'ex_set_image_metadata'" % esh_driver._connection.__class__ ) return {} try: # Possible metadata that could be in 'data' # * application uuid # * application name # * specific machine version # TAGS must be converted from list --> String logger.info("New metadata:%s" % data) meta_response = esh_driver._connection.ex_set_image_metadata( esh_machine, data ) esh_machine.invalidate_machine_cache(esh_driver.provider, esh_machine) return meta_response except Exception as e: logger.exception("Error updating machine metadata") if 'incapable of performing the request' in e.message: return {} else: raise
2733a809ac8ca7d092001d2ce86a9597ef7c8860
4,201
from datetime import datetime def timedelta_to_time(data: pd.Series) -> pd.Series: """Convert ``datetime.timedelta`` data in a series ``datetime.time`` data. Parameters ---------- data : :class:`~pandas.Series` series with data as :class:`datetime.timedelta` Returns ------- :class:`~pandas.Series` series with data converted into :class:`datetime.time` """ data_cpy = data.copy() # ensure pd.Timedelta data = data + pd.Timedelta("0h") # convert to datetime data = datetime.datetime.min + data.dt.to_pytimedelta() # convert to time data = [d.time() if d is not pd.NaT else None for d in data] data = pd.Series(np.array(data), index=data_cpy.index, name=data_cpy.name) return data
d660e7fea7e9e97ae388f3968d776d9d08930beb
4,202
def nms(boxes, scores, iou_thresh, max_output_size): """ Input: boxes: (N,4,2) [x,y] scores: (N) Return: nms_mask: (N) """ box_num = len(boxes) output_size = min(max_output_size, box_num) sorted_indices = sorted(range(len(scores)), key=lambda k: -scores[k]) selected = [] for i in range(box_num): if len(selected) >= output_size: break should_select = True for j in range(len(selected) - 1, -1, -1): if ( polygon_iou(boxes[sorted_indices[i]], boxes[selected[j]])[0] > iou_thresh ): should_select = False break if should_select: selected.append(sorted_indices[i]) return np.array(selected, dtype=np.int32)
c6fe28e44d4e4375af39c22edd440e8cdff44917
4,203
def get_db(): """Connect to the application's configured database. The connection is unique for each request and will be reused if this is called again """ if 'db' not in g: g.db = pymysql.connect( host='localhost', port=3306, user='root', password='', database='qm', charset='utf8' ) return g.db
8a8ce077f98e1e6927c6578e7eff82e183cea829
4,204
def read_stb(library, session): """Reads a status byte of the service request. :param library: the visa library wrapped by ctypes. :param session: Unique logical identifier to a session. :return: Service request status byte. """ status = ViUInt16() library.viReadSTB(session, byref(status)) return status.value
96d74ae6909371f2349cc875bd5b893d41d550f8
4,205
import os from datetime import datetime def will_expire(certificate, days): """ Returns a dict containing details of a certificate and whether the certificate will expire in the specified number of days. Input can be a PEM string or file path. .. versionadded:: 2016.11.0 certificate: The certificate to be read. Can be a path to a certificate file, or a string containing the PEM formatted text of the certificate. CLI Example: .. code-block:: bash salt '*' x509.will_expire "/etc/pki/mycert.crt" days=30 """ ret = {} if os.path.isfile(certificate): try: ret["path"] = certificate ret["check_days"] = days cert = _get_certificate_obj(certificate) _check_time = datetime.datetime.utcnow() + datetime.timedelta(days=days) _expiration_date = cert.get_not_after().get_datetime() ret["cn"] = _parse_subject(cert.get_subject())["CN"] if _expiration_date.strftime("%Y-%m-%d %H:%M:%S") <= _check_time.strftime( "%Y-%m-%d %H:%M:%S" ): ret["will_expire"] = True else: ret["will_expire"] = False except ValueError: pass return ret
fb97236c2a47d4fee3a363ddc91700176bc0c91b
4,206
def one_particle_quasilocal(sp, chli, chlo, Es=None): """ Calculate the one-particle irreducible T-matrix T(1). Parameters ---------- s : Setup Setup object describing the setup chi : int Input schannel cho : int Output channel Es : ndarray List of particle energies """ T1 = np.zeros((Es.shape), dtype=np.complex128) # guess a suitable range of energies to probe if Es is None: maxt = np.max(np.abs(sp.model.links)) + np.max(np.abs(sp.model.omegas)) + 1 Es = np.linspace(- maxt, maxt, 1000) for i, E in enumerate(Es): # single particle eigenenergies E1, _, _ = sp.eigenbasis(1, E) # numerators num1 = sp.transition(0, chli, 1, E) num2 = sp.transition(1, chlo, 0, E) # initialize the matrix # num = sp.gs[chli] * sp.gs[chlo] * num2.T * num1 num = num2.T * num1 for k in range(len(E1)): T1[i] += num[k] / (E - E1[k]) return Es, T1
089204f48c9decb3bf58e909ec46e7ffb844ebf1
4,207
import logging def _CreateIssueForFlake(issue_generator, target_flake, create_or_update_bug): """Creates a monorail bug for a single flake. This function is used to create bugs for detected flakes and flake analysis results. Args: create_or_update_bug (bool): True to create or update monorail bug, otherwise False. Should always look for existing bugs for flakes, even if cannot update the bug. """ monorail_project = issue_generator.GetMonorailProject() # Re-uses an existing open bug if possible. issue_id = SearchOpenIssueIdForFlakyTest(target_flake.normalized_test_name, monorail_project) if not issue_id: # Reopens a recently closed bug if possible. issue_id = SearchRecentlyClosedIssueIdForFlakyTest( target_flake.normalized_test_name, monorail_project) if issue_id: logging.info('An existing issue %s was found, attach it to flake: %s.', FlakeIssue.GetLinkForIssue(monorail_project, issue_id), target_flake.key) _AssignIssueToFlake(issue_id, target_flake) if create_or_update_bug: monorail_util.UpdateIssueWithIssueGenerator( issue_id=issue_id, issue_generator=issue_generator, reopen=True) return issue_id if not create_or_update_bug: # No existing bug found, and cannot create bug, bail out. return None logging.info('No existing open issue was found, create a new one.') issue_id = monorail_util.CreateIssueWithIssueGenerator( issue_generator=issue_generator) if not issue_id: logging.warning('Failed to create monorail bug for flake: %s.', target_flake.key) return None logging.info('%s was created for flake: %s.', FlakeIssue.GetLinkForIssue(monorail_project, issue_id), target_flake.key) _AssignIssueToFlake(issue_id, target_flake) return issue_id
8f233b91f72bd3f48c67a4c53c6ec6d3c50d52e6
4,208
from typing import List def get_spilled_samples(spills: List, train_dataset: Dataset): """ Returns the actual data that was spilled. Notice that it returns everything that the __getitem__ returns ie. data and labels and potentially other stuff. This is done to be more general, not just work with datasets that return: (data, label), but also for datasets with (data, label, third_thing) or similar. Notice that the function only takes in one dataset but spill is a tuple with indexes for two datasets (the other is ignored). :param spills: :param train_dataset: :return: spilled_samples: """ spilled_samples = [] for spill in spills: spill_inx = spill[0] spilled_samples.append(train_dataset.__getitem__(spill_inx)) return spilled_samples
04414e59ed43b6068188bc3bb0042c4278bd3124
4,209
from typing import List from pathlib import Path import logging def reshard( inputs: List[Path], output: Path, tmp: Path = None, free_original: bool = False, rm_original: bool = False, ) -> Path: """Read the given files and concatenate them to the output file. Can remove original files on completion, or just write dummy content into them to free disk. """ if tmp is None: tmp = _get_tmp(output) logging.info(f"Resharding {inputs} to {tmp}, will move later to {output}") jsonql.run_pipes(file=inputs, output=tmp) tmp.replace(output) tmp_index = get_index(tmp) if tmp_index.exists(): tmp_index.replace(get_index(output)) if not (free_original or rm_original): return output for _input in inputs: if rm_original: _input.unlink() elif free_original: # Overwrite the previous file. # This frees up disk space and allows doit to properly track the success. _input.write_text(f"Resharded into {output}") if get_index(_input).is_file(): get_index(_input).unlink() return output
8c90c2d0e42d4e6d1bbb59d541284450d59f0cd1
4,210
def on_intent(intent_request, session): """ Called when the user specifies an intent for this skill """ print("on_intent requestId=" + intent_request['requestId'] + ", sessionId=" + session['sessionId']) intent = intent_request['intent'] intent_name = intent_request['intent']['name'] # Dispatch to your skill's intent handlers if intent_name == "StartIntent": '''if "attributes" in session.keys(): return answer_question(intent,session) ''' return start_feedback(intent, session) elif intent_name == "AnswerIntent": return answer_question(intent, session) elif intent_name == "AMAZON.ResumeIntent": return resume_feedback(intent, session) elif intent_name == "AMAZON.PauseIntent": return pause_feedback(intent, session) elif intent_name == "AMAZON.HelpIntent": return get_welcome_response() elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent": return handle_session_end_request(session) else: raise ValueError("Invalid intent")
040c0d80802503768969859a9fe6ccef8c9fdf06
4,211
def load_twitter(path, shuffle=True, rnd=1): """ load text files from twitter data :param path: path of the root directory of the data :param subset: what data will be loaded, train or test or all :param shuffle: :param rnd: random seed value :param vct: vectorizer :return: :raise ValueError: """ data = bunch.Bunch() data = convert_tweet_2_data(path, rnd) data = minimum_size_sraa(data) if shuffle: random_state = np.random.RandomState(rnd) indices = np.arange(data.target.shape[0]) random_state.shuffle(indices) data.target = data.target[indices] # Use an object array to shuffle: avoids memory copy data_lst = np.array(data.data, dtype=object) data_lst = data_lst[indices] data.data = data_lst return data
863f39faef6f4175dc18d076c3c9601d09331523
4,212
def parse_vtables(f): """ Parse a given file f and constructs or extend the vtable function dicts of the module specified in f. :param f: file containing a description of the vtables in a module (*_vtables.txt file) :return: the object representing the module specified in f """ marx_module = Module(f.readline().strip()) for line in f: tokens = line.split() vtable = marx_module.vtables[int(tokens.pop(0), 16)] vtable.offset_to_top = int(tokens.pop(0)) index = 0 for target_address in tokens: if index not in vtable.functions: vtable.functions[index] = Addressable(int(target_address, 16), marx_module) index += 1 return marx_module
01786447982c15b55ee1411afe71990a1752dec3
4,213
import datasets def getCifar10Dataset(root, isTrain=True): """Cifar-10 Dataset""" normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) if isTrain: trans = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ]) else: trans = transforms.Compose([ transforms.ToTensor(), normalize, ]) return datasets.CIFAR10(root=root, train=isTrain, transform=trans, download=isTrain)
b5c103838e4c46c445e39526b61bb9c8fa3832ee
4,214
import pyclesperanto_prototype as cle def histogram(layer, num_bins : int = 256, minimum = None, maximum = None, use_cle=True): """ This function determines a histogram for a layer and caches it within the metadata of the layer. If the same histogram is requested, it will be taken from the cache. :return: """ if "bc_histogram_num_bins" in layer.metadata.keys() and "bc_histogram" in layer.metadata.keys(): if num_bins == layer.metadata["bc_histogram_num_bins"]: return layer.metadata["bc_histogram"] data = layer.data if "dask" in str(type(data)): # ugh data = np.asarray(data) intensity_range = None if minimum is not None and maximum is not None: intensity_range = (minimum, maximum) if use_cle: try: hist = np.asarray(cle.histogram(data, num_bins=num_bins, minimum_intensity=minimum, maximum_intensity=maximum, determine_min_max=False)) except ImportError: use_cle = False if not use_cle: hist, _ = np.histogram(data, bins=num_bins, range=intensity_range) # cache result if hasattr(layer.data, "bc_histogram_num_bins") and hasattr(layer.data, "bc_histogram"): if num_bins == layer.data.bc_histogram_num_bins: return layer.data.bc_histogram_num_bins # delete cache when data is changed def _refresh_data(event): reset_histogram_cache(layer) layer.events.data.disconnect(_refresh_data) layer.events.data.connect(_refresh_data) layer.metadata["bc_histogram_num_bins"] = num_bins layer.metadata["bc_histogram"] = hist return hist
65197010bfaec66a58798772e61f4e1640b7ea89
4,215
import re def get_tbl_type(num_tbl, num_cols, len_tr, content_tbl): """ obtain table type based on table features """ count_very_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^very common',x) ]) count_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^common',x) ]) count_uncommon = len([i for i, x in enumerate(content_tbl) if re.match(r'^uncommon',x) ]) count_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^rare',x) ]) count_very_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^very rare',x) ]) count_unknown = len([i for i, x in enumerate(content_tbl) if "known" in x]) count_feats = [count_very_common,count_common,count_uncommon,count_rare,count_very_rare,count_unknown] if num_cols>3 and sum(count_feats) > num_cols+5: tbl_type = 'table type: vertical' elif ((all(i <2 for i in count_feats) and num_tbl<=5) or num_cols>4) and len_tr>2: tbl_type = 'table type: horizontal' else: tbl_type = 'table type: vertical' return tbl_type
19c06766c932aab4385fa8b7b8cd3c56a2294c65
4,216
def decode_EAN13(codes): """ คืนสตริงของเลขที่ได้จากการถอดรหัสจากสตริง 0/1 ที่เก็บใน codes แบบ EAN-13 ถ้าเกิดกรณีต่อไปนี้ ให้คืนสตริงว่าง (สาเหตุเหล่านี้มักมาจากเครื่องอ่านบาร์โค้ดอ่านรหัส 0 และ 1 มาผิด) codes เก็บจำนวนบิต หรือรูปแบบไม่ตรงข้อกำหนด รหัสบางส่วนแปลงเป็นตัวเลขไม่ได้ เลขหลักที่ 13 ที่อ่านได้ ไม่ตรงกับค่า check digit ที่คำนวณได้ หมายเหตุ: เป็นไปได้ว่า ผู้ใช้เครื่องบาร์โค้ด อาจสแกนบาร์โค้ดที่วางกลับหัวก็ได้ ฟังก์ชันนี้ก็ต้องรองรับกรณีเช่นนี้ด้วย Doctest : >>> c = '10100100110011001010011100110110010111001001101010111001010111001001110110011011101001101100101' >>> decode_EAN13(c) '3210292045192' >>> c = '10111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111101' >>> decode_EAN13(c) '' """ result = '' try: if len(codes) != 95: return '' else: number_group1 = digits_of(codes[3:45]) code_group1 = digits_from(codes[3:45]) number_group2 = digits_of(codes[50:-3]) code_group2 = digits_from(codes[50:-3]) if code_group2 == 'RRRRRR': result = str(return_group1(code_group1)) + number_group1 + number_group2 elif code_group1 == 'RRRRRR': result = str(return_group1(code_group1)) + number_group1 + number_group2 else: # Support when barcode reader read a barcode upside down reverse_codes = codes reverse_codes.reverse() number_group1 = digits_of(codes[3:45]) code_group1 = digits_from(codes[3:45]) number_group2 = digits_of(codes[50:-3]) code_group2 = digits_from(codes[50:-3]) if code_group2 == 'RRRRRR': result = str(return_group1(code_group1)) + number_group1 + number_group2 elif code_group1 == 'RRRRRR': result = str(return_group1(code_group1)) + number_group1 + number_group2 return result except: return ''
2f65b488c61cbafae0c441d68f01e261141569dd
4,217
def GiveNewT2C(Hc, T2C): """ The main routine, which computes T2C that diagonalized Hc, and is close to the previous T2C transformation, if possible, and it makes the new orbitals Y_i = \sum_m T2C[i,m] Y_{lm} real, if possible. """ ee = linalg.eigh(Hc) Es = ee[0] Us0= ee[1] Us = matrix(ee[1]) #print 'In Eigensystem:' #mprint(Us.H * Hc * Us) # Us.H * Hc * Us === diagonal print 'Eigenvalues=', Es.tolist() print 'Starting with transformation in crystal harmonics=' mprint(Us) print # Finds if there are any degeneracies in eigenvalues. deg = FindDegeneracies(Es) print 'deg=', deg for ig in deg: if len(ig)>1: # Two or more states are degenerate, we transform them with a unitary transformation, # so that they are close to previous set of eigenvectors. # This is not necessary, but convenient to keep the character similar to previous iteration. This is useful # in particular when H has small off-diagonal elements, which we would like to eliminate, and we call this # routine iteratively Us = TransformToSimilar(ig, Us, Es) print 'Next, the transformation in crystal harmonics=' mprint(Us) print final = array( Us.T*T2C ) print 'And the same transformation in spheric harmonics=' mprint( final ) # Here we will try to make the transformation real, so that ctqmc will have minimal sign problem even when Full is used. for ig in deg: final = TransformToReal(final, ig, Es) # finally checking if all transformations are real for ig in deg: i0 = ig[0] i2 = ig[-1]+1 #print 'Checking the set of orbitals:', Es[i0:i2] UtU = ComputeUtU(final[i0:i2,:], ig) if allclose( UtU, identity(len(ig)), rtol=1e-04, atol=1e-04 ): print ':SUCCESS For orbital', ig, 'the final transformation is real' else: print """:WARNING: The set of rbitals """, ig, """ could not be made purely real. You should use only Coulomb='Ising' and avoid Coulomb='Full' """ print 'UtU=', mprint(UtU) print return final
d4ba72e57079ab18f7e29b9d1b2ce68f2c112fb4
4,218
import unicodedata def normalize(form, text): """Return the normal form form for the Unicode string unistr. Valid values for form are 'NFC', 'NFKC', 'NFD', and 'NFKD'. """ return unicodedata.normalize(form, text)
6d32604a951bb13ff649fd3e221c2e9b35d4f1a1
4,219
def handle_internal_validation_error(error): """ Error handler to use when a InternalValidationError is raised. Alert message can be modified here as needed. :param error: The error that is handled. :return: an error view """ alert_message = format_alert_message(error.__class__.__name__, str(error)) return _handle_error(alert_message)
996552cf26b01f5a4fd435a604fe1428669804bd
4,220
def bbox_encode(bboxes, targets): """ :param bboxes: bboxes :param targets: target ground truth boxes :return: deltas """ bw = bboxes[:, 2] - bboxes[:, 0] + 1.0 bh = bboxes[:, 3] - bboxes[:, 1] + 1.0 bx = bboxes[:, 0] + 0.5 * bw by = bboxes[:, 1] + 0.5 * bh tw = targets[:, 2] - targets[:, 0] + 1.0 th = targets[:, 3] - targets[:, 1] + 1.0 tx = targets[:, 0] + 0.5 * tw ty = targets[:, 1] + 0.5 * th dx = (tx - bx) / bw dy = (ty - by) / bh dw = np.log(tw / bw) dh = np.log(th / bh) deltas = np.vstack((dx, dy, dw, dh)).transpose() return deltas
547c098963b9932aa518774e32ca4e42301aa564
4,221
def cipher(text: str, key: str, charset: str = DEFAULT_CHARSET) -> str: """ Cipher given text using Vigenere method. Be aware that different languages use different charsets. Default charset is for english language, if you are using any other you should use a proper dataset. For instance, if you are ciphering an spanish text, you should use a charset with "ñ" character. This module uses only lowercase charsets. That means that caps will be kept but lowercase and uppercase will follow ths same substitutions. :param text: Text to be ciphered. :param key: Secret key. Both ends should know this and use the same one. The longer key you use the harder to break ciphered text. :param charset: Charset used for Vigenere method. Both ends, ciphering and deciphering, should use the same charset or original text won't be properly recovered. :return: Ciphered text. """ ciphered_text = _vigenere_offset(text, key, Vigenere.CIPHER, charset) return ciphered_text
ef6ac915f0daf063efbc587b66de014af48fbec6
4,222
def product_delete(product_id): """ Delete product from database """ product_name = product_get_name(product_id) res = False # Delete product from database if product_name: mongo.db.products.delete_one({"_id": (ObjectId(product_id))}) flash( product_name + " succesfully deleted from products", "success") res = True return res
600a4afa9aab54473cdeb423e12b779672f38186
4,223
import sys def alpha_072(enddate, index='all'): """ Inputs: enddate: 必选参数,计算哪一天的因子 index: 默认参数,股票指数,默认为所有股票'all' Outputs: Series:index 为成分股代码,values为对应的因子值 公式: (rank(decay_linear(correlation(((high + low) / 2), adv40, 8.93345), 10.1519)) / rank(decay_linear(correlation(Ts_Rank(vwap, 3.72469), Ts_Rank(volume, 18.5188), 6.86671), 2.95011))) """ enddate = to_date_str(enddate) func_name = sys._getframe().f_code.co_name return JQDataClient.instance().get_alpha_101(**locals())
f700619046d6f9d484f47345d82a03cfed1907ed
4,224
def getBoxFolderPathName(annotationDict, newWidth, newHeight): """ getBoxFolderPathName returns the folder name which contains the resized image files for an original image file. Given image 'n02085620_7', you can find the resized images at: 'F:/dogs/images/n02085620-Chihuahua/boxes_64_64/' input: annotationDict: dictionary, contains filename newWidth: int, the new width for the image newHeight: int, the new height for the image output: returns a string, the folder path for the resized images """ folderName = getImageFolderPathName(annotationDict) boxFolder = BOX_FOLDER + str(newWidth) + '_' + str(newHeight) return IMAGE_PATH + folderName + '/' + boxFolder + '/'
75d5470373e4c119e7bb8bd327f6d83884680a9d
4,225
def _download_artifact_from_uri(artifact_uri, output_path=None): """ :param artifact_uri: The *absolute* URI of the artifact to download. :param output_path: The local filesystem path to which to download the artifact. If unspecified, a local output path will be created. """ store = _get_store(artifact_uri=artifact_uri) artifact_path_module =\ get_artifact_repository(artifact_uri, store).get_path_module() artifact_src_dir = artifact_path_module.dirname(artifact_uri) artifact_src_relative_path = artifact_path_module.basename(artifact_uri) artifact_repo = get_artifact_repository( artifact_uri=artifact_src_dir, store=store) return artifact_repo.download_artifacts( artifact_path=artifact_src_relative_path, dst_path=output_path)
219c4be3cd41741e6e93a1ca46696284c9ae1b80
4,226
import json def api_get_project_members(request, key=None, hproPk=True): """Return the list of project members""" if not check_api_key(request, key, hproPk): return HttpResponseForbidden if settings.PIAPI_STANDALONE: if not settings.PIAPI_REALUSERS: users = [generate_user(pk="-1"), generate_user(pk="-2"), generate_user(pk="-3")] else: users = DUser.object.all() else: (_, _, hproject) = getPlugItObject(hproPk) users = [] for u in hproject.getMembers(): u.ebuio_member = True u.ebuio_admin = hproject.isMemberWrite(u) u.subscription_labels = _get_subscription_labels(u, hproject) users.append(u) liste = [] for u in users: retour = {} for prop in settings.PIAPI_USERDATA: if hasattr(u, prop): retour[prop] = getattr(u, prop) retour['id'] = str(retour['pk']) liste.append(retour) return HttpResponse(json.dumps({'members': liste}), content_type="application/json")
653a60fccf7e81231790e4d00a1887c660f5ad4f
4,227
def random(n, mind): """Does not guarantee that it's connected (TODO)!""" return bidirectional({i: sample(range(n), mind) for i in range(n)})
0a64941c59173172c9e343a2e38c5e068a4c347c
4,228
import os import json def process_tare_drag(nrun, plot=False): """Processes a single tare drag run.""" print("Processing tare drag run", nrun) times = {0.2: (15, 120), 0.3: (10, 77), 0.4: (10, 56), 0.5: (8, 47), 0.6: (10, 40), 0.7: (8, 33), 0.8: (5, 31), 0.9: (8, 27), 1.0: (6, 24), 1.1: (9, 22), 1.2: (8, 21), 1.3: (7, 19), 1.4: (6, 18)} rdpath = os.path.join(raw_data_dir, "Tare-drag", str(nrun)) with open(os.path.join(rdpath, "metadata.json")) as f: metadata = json.load(f) speed = float(metadata["Tow speed (m/s)"]) nidata = loadhdf(os.path.join(rdpath, "nidata.h5")) time_ni = nidata["time"] drag = nidata["drag_left"] + nidata["drag_right"] drag = drag - np.mean(drag[:2000]) t1, t2 = times[speed] meandrag, x = ts.calcstats(drag, t1, t2, 2000) print("Tare drag =", meandrag, "N at", speed, "m/s") if plot: plt.figure() plt.plot(time_ni, drag, 'k') plt.show() return speed, meandrag
bc5fa8d3e6878f36c676084e7c0a2c03a45ca0aa
4,229
import re def clean_weight(v): """Clean the weight variable Args: v (pd.Series): Series containing all weight values Returns: v (pd.Series): Series containing all cleaned weight values """ # Filter out erroneous non-float values indices = v.astype(str).apply( lambda x: not re.match(reg_exps['re_lab_vals'], x)) v.loc[indices] = None # Convert values to float v = v.astype(float) # Sometimes the value is given in grams -- convert to kg indices_g = v > 100 v.loc[indices_g] = v[indices_g].apply(lambda x: x / 1000) return v
7bcfb05fdb765ad0cc7a6b3af48f8b6cfa2f709b
4,230
def get_yield(category): """ Get the primitive yield node of a syntactic category. """ if isinstance(category, PrimitiveCategory): return category elif isinstance(category, FunctionalCategory): return get_yield(category.res()) else: raise ValueError("unknown category type with instance %r" % category)
54fbbc67ea70b7b194f6abd2fd1286f7cd27b1f2
4,231
def box(type_): """Create a non-iterable box type for an object. Parameters ---------- type_ : type The type to create a box for. Returns ------- box : type A type to box values of type ``type_``. """ class c(object): __slots__ = 'value', def __init__(self, value): if not isinstance(value, type_): raise TypeError( "values must be of type '%s' (received '%s')" % ( type_.__name__, type(value).__name__, ), ) self.value = value c.__name__ = 'Boxed%s' + type_.__name__ return c
5b4721ab78ce17f9eeb93abcc59bed046917d296
4,232
def rssError(yArr, yHatArr): """ Desc: 计算分析预测误差的大小 Args: yArr:真实的目标变量 yHatArr:预测得到的估计值 Returns: 计算真实值和估计值得到的值的平方和作为最后的返回值 """ return ((yArr - yHatArr) ** 2).sum()
429dd6b20c20e6559ce7d4e57deaea58a664d22b
4,233
def initialize_vocabulary(vocabulary_file): """ Initialize vocabulary from file. :param vocabulary_file: file containing vocabulary. :return: vocabulary and reversed vocabulary """ if gfile.Exists(vocabulary_file): rev_vocab = [] with gfile.GFile(vocabulary_file, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [tf.compat.as_bytes(line.strip()) for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s doesn't exist.", vocabulary_file)
fcfbed41c5d1e34fcdcc998f52301bff0e1d5dd8
4,234
def mock_create_draft(mocker): """Mock the createDraft OpenAPI. Arguments: mocker: The mocker fixture. Returns: The patched mocker and response data. """ response_data = {"draftNumber": 1} return ( mocker.patch( f"{gas.__name__}.Client.open_api_do", return_value=mock_response(data=response_data) ), response_data, )
43f5fdc7991eefbf965662ccd0fadaa5015c2e00
4,235
import tqdm def to_csv(data_path="data"): """Transform data and save as CSV. Args: data_path (str, optional): Path to dir holding JSON dumps. Defaults to "data". save_path (str, optional): Path to save transformed CSV. Defaults to "data_transformed.csv". """ elements = [] for data in tqdm(list_data_dir(data_path)): try: data = load_json(data) add_gw_and_download_time( data["elements"], data["download_time"], get_game_week(data["events"]) ) add_unique_id(data["elements"]) elements.extend(data["elements"]) # Add transformations here except TypeError: print(f"Something is wrong in {data}") return pd.DataFrame(elements)
a6a28c4d2e1e1dfad9b7286e49289d012de0a9b4
4,236
def do_on_subscribe(source: Observable, on_subscribe): """Invokes an action on subscription. This can be helpful for debugging, logging, and other side effects on the start of an operation. Args: on_subscribe: Action to invoke on subscription """ def subscribe(observer, scheduler=None): on_subscribe() return source.subscribe_(observer.on_next, observer.on_error, observer.on_completed, scheduler) return Observable(subscribe)
266bdecb1dd4d567069be1e52cccc87a1d6cada1
4,237
def get_language_file_path(language): """ :param language: string :return: string: path to where the language file lies """ return "{lang}/localization_{lang}.json".format(lang=language)
9be9ee9511e0c82772ab73d17f689c181d63e67c
4,238
from typing import Union from typing import Dict import os import json def json_loader(path: str = None) -> Union[Dict, list]: """ Loads json or jsonl data Args: path (str, optional): path to file Returns: objs : Union[Dict, list]: Returns a list or dict of json data json_format : format of file (json or jsonl) """ check_extension = os.path.splitext(path)[1] objs = [] json_format = None with open(path, "r") as file_p: if check_extension == ".jsonl": lines = file_p.readlines() for line in lines: objs.append(json.loads(line)) json_format = "jsonl" elif check_extension == ".json": objs = json.loads(file_p) json_format = "json" return objs, json_format
09082ccdb0d5aa66a8321c01144dac49a416243f
4,239
def handle_response(request_object): """Parses the response from a request object. On an a resolvable error, raises a DataRequestException with a default error message. Parameters ---------- request_object: requests.Response The response object from an executed request. Returns ------- dict, str or None Note that this function checks the content-type of a response and returns the appropriate type. A Dictionary parsed from a JSON object, or a string. Returns None when a 204 is encountered. Users should be mindful of the expected response body from the API. Raises ------ sfa_dash.errors.DataRequestException If a recoverable 400 level error has been encountered. The errors attribute will contain a dict of errors. requests.exceptions.HTTPError If the status code received from the API could not be handled. """ if not request_object.ok: errors = {} if request_object.status_code == 400: errors = request_object.json() elif request_object.status_code == 401: errors = { '401': "Unauthorized." } elif request_object.status_code == 404: previous_page = request.headers.get('Referer', None) errors = {'404': ( 'The requested object could not be found. You may need to ' 'request access from the data owner.') } if previous_page is not None and previous_page != request.url: errors['404'] = errors['404'] + ( f' <a href="{escape(previous_page)}">Return to the ' 'previous page.</a>') elif request_object.status_code == 422: errors = request_object.json()['errors'] if errors: raise DataRequestException(request_object.status_code, **errors) else: # Other errors should be due to bugs and not by attempts to reach # inaccessible data. Allow exceptions to be raised # so that they can be reported to Sentry. request_object.raise_for_status() if request_object.request.method == 'GET': # all GET endpoints should return a JSON object if request_object.headers['Content-Type'] == 'application/json': return request_object.json() else: return request_object.text # POST responses should contain a single string uuid of a newly created # object unless a 204 No Content was returned. if request_object.request.method == 'POST': if request_object.status_code != 204: return request_object.text
7778a0971fd991dd4e3eaef31379895b9c74d6f2
4,240
from typing import List import os def _get_zoom_list_recordings_list() -> List[str]: """Get the list of all the recordings.""" # The local path for zoom recording is ~/Documents/Zoom # Get the home directory file_list = os.listdir(ZOOM_DIR) files = [] for f in file_list: files.append(f) files.append(Separator()) return files
10f8c6f4b1aca23aebd3575639ba07ec1003ca71
4,241
def evaluate(expn): """ Evaluate a simple mathematical expression. @rtype: C{Decimal} """ try: result, err = CalcGrammar(expn).apply('expn') return result except ParseError: raise SyntaxError(u'Could not evaluate the provided mathematical expression')
94518c3a225f62540e045336f230a5fb2d99dcaf
4,242
import os def is_device_removable(device): """ This function returns whether a given device is removable or not by looking at the corresponding /sys/block/<device>/removable file @param device: The filesystem path to the device, e.g. /dev/sda1 """ # Shortcut the case where the device an SD card. The kernel/udev currently # consider SD cards (mmcblk devices) to be non-removable. if os.path.basename(device).startswith("mmcblk"): return True path = _get_device_removable_file_path(device) if not path: return False contents = None try: with open(path, "r") as f: contents = f.readline() except IOError: return False if contents.strip() == "1": return True return False
02aa63734a011bda7d5c63d96a063e643118f6bb
4,243
from typing import Optional def get_user(is_external: Optional[bool] = None, name: Optional[str] = None, username: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUserResult: """ Use this data source to retrieve information about a Rancher v2 user ## Example Usage ```python import pulumi import pulumi_rancher2 as rancher2 foo = rancher2.get_user(username="foo") ``` :param bool is_external: Set is the user if the user is external. Default: `false` (bool) :param str name: The name of the user (string) :param str username: The username of the user (string) """ __args__ = dict() __args__['isExternal'] = is_external __args__['name'] = name __args__['username'] = username if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('rancher2:index/getUser:getUser', __args__, opts=opts, typ=GetUserResult).value return AwaitableGetUserResult( annotations=__ret__.annotations, enabled=__ret__.enabled, id=__ret__.id, is_external=__ret__.is_external, labels=__ret__.labels, name=__ret__.name, principal_ids=__ret__.principal_ids, username=__ret__.username)
c15a13e6a0633bc46fd1bdc8a3d914bfbd1d6b34
4,244
import random def randbytes(size) -> bytes: """Custom implementation of random.randbytes, since that's a Python 3.9 feature """ return bytes(random.sample(list(range(0, 255)), size))
0ea312376de3f90894befb29ec99d86cfc861910
4,245
def path_to_model(path): """Return model name from path.""" epoch = str(path).split("phase")[-1] model = str(path).split("_dir/")[0].split("/")[-1] return f"{model}_epoch{epoch}"
78b10c8fb6f9821e6be6564738d40f822e675cb6
4,246
def _cpp_het_stat(amplitude_distribution, t_stop, rates, t_start=0.*pq.ms): """ Generate a Compound Poisson Process (CPP) with amplitude distribution A and heterogeneous firing rates r=r[0], r[1], ..., r[-1]. Parameters ---------- amplitude_distribution : np.ndarray CPP's amplitude distribution :math:`A`. `A[j]` represents the probability of a synchronous event of size `j` among the generated spike trains. The sum over all entries of :math:`A` must be equal to one. t_stop : pq.Quantity The end time of the output spike trains rates : pq.Quantity Array of firing rates of each spike train generated with t_start : pq.Quantity, optional The start time of the output spike trains Default: 0 pq.ms Returns ------- list of neo.SpikeTrain List of neo.SpikeTrains with different firing rates, forming a CPP with amplitude distribution `A`. """ # Computation of Parameters of the two CPPs that will be merged # (uncorrelated with heterog. rates + correlated with homog. rates) n_spiketrains = len(rates) # number of output spike trains # amplitude expectation expected_amplitude = np.dot( amplitude_distribution, np.arange(n_spiketrains + 1)) r_sum = np.sum(rates) # sum of all output firing rates r_min = np.min(rates) # minimum of the firing rates # rate of the uncorrelated CPP r_uncorrelated = r_sum - n_spiketrains * r_min # rate of the correlated CPP r_correlated = r_sum / expected_amplitude - r_uncorrelated # rate of the hidden mother process r_mother = r_uncorrelated + r_correlated # Check the analytical constraint for the amplitude distribution if amplitude_distribution[1] < (r_uncorrelated / r_mother).rescale( pq.dimensionless).magnitude: raise ValueError('A[1] too small / A[i], i>1 too high') # Compute the amplitude distribution of the correlated CPP, and generate it amplitude_distribution = \ amplitude_distribution * (r_mother / r_correlated).magnitude amplitude_distribution[1] = \ amplitude_distribution[1] - r_uncorrelated / r_correlated compound_poisson_spiketrains = _cpp_hom_stat( amplitude_distribution, t_stop, r_min, t_start) # Generate the independent heterogeneous Poisson processes poisson_spiketrains = \ [StationaryPoissonProcess( rate=rate - r_min, t_start=t_start, t_stop=t_stop ).generate_spiketrain() for rate in rates] # Pool the correlated CPP and the corresponding Poisson processes return [_pool_two_spiketrains(compound_poisson_spiketrain, poisson_spiketrain) for compound_poisson_spiketrain, poisson_spiketrain in zip(compound_poisson_spiketrains, poisson_spiketrains)]
fd62c73f5ef6464d61b96ebf69b868f12245c305
4,247
def validate_uncles(state, block): """Validate the uncles of this block.""" # Make sure hash matches up if utils.sha3(rlp.encode(block.uncles)) != block.header.uncles_hash: raise VerificationFailed("Uncle hash mismatch") # Enforce maximum number of uncles if len(block.uncles) > state.config['MAX_UNCLES']: raise VerificationFailed("Too many uncles") # Uncle must have lower block number than blockj for uncle in block.uncles: if uncle.number >= block.header.number: raise VerificationFailed("Uncle number too high") # Check uncle validity MAX_UNCLE_DEPTH = state.config['MAX_UNCLE_DEPTH'] ancestor_chain = [block.header] + \ [a for a in state.prev_headers[:MAX_UNCLE_DEPTH + 1] if a] # Uncles of this block cannot be direct ancestors and cannot also # be uncles included 1-6 blocks ago ineligible = [b.hash for b in ancestor_chain] for blknum, uncles in state.recent_uncles.items(): if state.block_number > int( blknum) >= state.block_number - MAX_UNCLE_DEPTH: ineligible.extend([u for u in uncles]) eligible_ancestor_hashes = [x.hash for x in ancestor_chain[2:]] for uncle in block.uncles: if uncle.prevhash not in eligible_ancestor_hashes: raise VerificationFailed("Uncle does not have a valid ancestor") parent = [x for x in ancestor_chain if x.hash == uncle.prevhash][0] if uncle.difficulty != calc_difficulty( parent, uncle.timestamp, config=state.config): raise VerificationFailed("Difficulty mismatch") if uncle.number != parent.number + 1: raise VerificationFailed("Number mismatch") if uncle.timestamp < parent.timestamp: raise VerificationFailed("Timestamp mismatch") if uncle.hash in ineligible: raise VerificationFailed("Duplicate uncle") if uncle.gas_used > uncle.gas_limit: raise VerificationFailed("Uncle used too much gas") if not check_pow(state, uncle): raise VerificationFailed('uncle pow mismatch') ineligible.append(uncle.hash) return True
5a0d51caae5ca42a31644316008cd949862713cb
4,248
def quote_index(q_t,tr_t): """Get start and end index of quote times in `q_t` with the same timestamp as trade times in `tr_t`.""" left, right = get_ind(q_t,tr_t) right[left<right] -=1 # last quote cannot be traded on, so shift index left -=1 # consider last quote from before the timestamp of the trade left[left<0] = 0 return left, right
2de223b3d08e99113db56c8e9522a1d0066c76b7
4,249
def calculate_learning_curves_train_test(K, y, train_indices, test_indices, sampled_order_train, tau, stop_t=None): """Calculate learning curves (train, test) from running herding algorithm Using the sampled order from the sampled_order indexing array calculate the learning curves on the train set using GKRR. Note that we pass K instead of calculating it on the fly, that's why we don't use s2 explicitly, it's already used in calculating K. :param K: (np.ndarray, (n, n)) full kernel matrix from dataset :param y: (np.ndarray, (n, 1)) output array :param train_indices: (np.ndarray, (n_train,)) train indices from the original dataset :param test_indices: (np.ndarray, (n_train,)) test indices from the original dataset :param sampled_order_train: (np.ndarray, (n_train,)) order of the sampled training indices :param tau: (float) regularisation parameter used in GKRR :param stop_t: (int) final step of calculations :return learning_curve_train: (np.ndarray, (stop_t,)) array of mse for train set :return learning_curve_test: (np.ndarray, (stop_t,)) array of mse for test set """ gaussian_kr = GaussianKernelRidgeRegression( tau=tau, s2=None, precompute_K=True) # Index K differently depending on what we do. # When predicting, we need the kernel matrix to be # K_mn, where m indexes the set to predict over and # n indexes the set we train over K_train = K[np.ix_(train_indices, train_indices)] K_test = K[np.ix_(test_indices, test_indices)] K_test_train = K[np.ix_(test_indices, train_indices)] K_sampled_train = K_train[np.ix_(sampled_order_train, sampled_order_train)] y_train = y[train_indices] y_test = y[test_indices] y_sampled_train = y_train[sampled_order_train] n_train = K_train.shape[0] n_test = K_test.shape[0] if stop_t is None: stop_t = n_train learning_curve_train = np.zeros(stop_t) learning_curve_test = np.zeros(stop_t) for t in range(stop_t): K_sampled_train_t = K_sampled_train[0:t+1, 0:t+1] gaussian_kr.fit(X=K_sampled_train_t, y=y_sampled_train[:t+1]) # Predict for train set K_xn_train = K_train[np.ix_( np.arange(n_train), sampled_order_train[:t+1])] y_train_ = gaussian_kr.predict(K_xn_train) learning_curve_train[t] = mean_squared_error(y_train, y_train_) # Then test set K_xn_test = K_test_train[np.ix_( np.arange(n_test), sampled_order_train[:t+1])] y_test_ = gaussian_kr.predict(K_xn_test) learning_curve_test[t] = mean_squared_error(y_test, y_test_) return learning_curve_train, learning_curve_test
d7bf3484e95d7e97eac4ba8b68b485e634b2f7f2
4,250
def removeString2(string, removeLen): """骚操作 直接使用字符串替换""" alphaNums = [] for c in string: if c not in alphaNums: alphaNums.append(c) while True: preLength = len(string) for c in alphaNums: replaceStr = c * removeLen string = string.replace(replaceStr, '') if preLength == len(string): break return string
57d01d7c2a244b62a173fef35fd0acf1b622beed
4,251
from typing import Union from datetime import datetime import hashlib def process_filing(client, file_path: str, filing_buffer: Union[str, bytes] = None, store_raw: bool = False, store_text: bool = False): """ Process a filing from a path or filing buffer. :param file_path: path to process; if filing_buffer is none, retrieved from here :param filing_buffer: buffer; if not present, s3_path must be set :param store_raw: :param store_text: :return: """ # Log entry logger.info("Processing filing {0}...".format(file_path)) # Check for existing record first try: filing = Filing.objects.get(s3_path=file_path) if filing is not None: logger.error("Filing {0} has already been created in record {1}".format(file_path, filing)) return None except Filing.DoesNotExist: logger.info("No existing record found.") except Filing.MultipleObjectsReturned: logger.error("Multiple existing record found.") return None # Get buffer if filing_buffer is None: logger.info("Retrieving filing buffer from S3...") filing_buffer = client.get_buffer(file_path) # Get main filing data structure filing_data = openedgar.parsers.edgar.parse_filing(filing_buffer, extract=store_text) if filing_data["cik"] is None: logger.error("Unable to parse CIK from filing {0}; assuming broken and halting...".format(file_path)) return None try: # Get company company = Company.objects.get(cik=filing_data["cik"]) logger.info("Found existing company record.") # Check if record exists for date try: _ = CompanyInfo.objects.get(company=company, date=filing_data["date_filed"]) logger.info("Found existing company info record.") except CompanyInfo.DoesNotExist: # Create company info record company_info = CompanyInfo() company_info.company = company company_info.name = filing_data["company_name"] company_info.sic = filing_data["sic"] company_info.state_incorporation = filing_data["state_incorporation"] company_info.state_location = filing_data["state_location"] company_info.date = filing_data["date_filed"].date() if isinstance(filing_data["date_filed"], datetime.datetime) else \ filing_data["date_filed"] company_info.save() logger.info("Created new company info record.") except Company.DoesNotExist: # Create company company = Company() company.cik = filing_data["cik"] try: # Catch race with another task/thread company.save() try: _ = CompanyInfo.objects.get(company=company, date=filing_data["date_filed"]) except CompanyInfo.DoesNotExist: # Create company info record company_info = CompanyInfo() company_info.company = company company_info.name = filing_data["company_name"] company_info.sic = filing_data["sic"] company_info.state_incorporation = filing_data["state_incorporation"] company_info.state_location = filing_data["state_location"] company_info.date = filing_data["date_filed"] company_info.save() except django.db.utils.IntegrityError: company = Company.objects.get(cik=filing_data["cik"]) logger.info("Created company and company info records.") # Now create the filing record try: filing = Filing() filing.form_type = filing_data["form_type"] filing.accession_number = filing_data["accession_number"] filing.date_filed = filing_data["date_filed"] filing.document_count = filing_data["document_count"] filing.company = company filing.sha1 = hashlib.sha1(filing_buffer).hexdigest() filing.s3_path = file_path filing.is_processed = False filing.is_error = True filing.save() except Exception as e: # pylint: disable=broad-except logger.error("Unable to create filing record: {0}".format(e)) return None # Create filing document records try: create_filing_documents(client, filing_data["documents"], filing, store_raw=store_raw, store_text=store_text) filing.is_processed = True filing.is_error = False filing.save() return filing except Exception as e: # pylint: disable=broad-except logger.error("Unable to create filing documents for {0}: {1}".format(filing, e)) return None
aafbe010615b6aeb1a21760a43a9680fa9c2a37f
4,252
import os import glob def metadata_file(): """ Return the path to the first (as per a descending alphabetic sort) .csv file found at the expected location (<ffmeta_package_dir>/data/*.csv) This is assumed to be the latest metadata csv file. :return: The absolute path of the latest metadata csv file. """ dirname = os.path.dirname(ffmeta.__file__) valid_files = list(glob.glob(os.path.join(dirname, 'data', '*.csv'))) if not valid_files: raise RuntimeError('No valid metadata csv files found.') else: return sorted(valid_files)[-1]
6020667119ca48ec2312c6b854936d0236b9f3f2
4,253
def _get_anchor_negative_triplet_mask(labels): """Return a 2D mask where mask[a, n] is True iff a and n have distinct labels. Args: labels: tf.int32 `Tensor` with shape [batch_size] Returns: mask: tf.bool `Tensor` with shape [batch_size, batch_size] """ # Check if labels[i] != labels[k] # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1) return ~(labels.unsqueeze(0) == labels.unsqueeze(1)).all(-1)
4c67bcc4e17e091c039c72a1324f501226561557
4,254
def random_k_edge_connected_graph(size, k, p=.1, rng=None): """ Super hacky way of getting a random k-connected graph Example: >>> from graphid import util >>> size, k, p = 25, 3, .1 >>> rng = util.ensure_rng(0) >>> gs = [] >>> for x in range(4): >>> G = random_k_edge_connected_graph(size, k, p, rng) >>> gs.append(G) >>> # xdoc: +REQUIRES(--show) >>> pnum_ = util.PlotNums(nRows=2, nSubplots=len(gs)) >>> fnum = 1 >>> for g in gs: >>> util.show_nx(g, fnum=fnum, pnum=pnum_()) """ for count in it.count(0): seed = None if rng is None else rng.randint((2 ** 31 - 1)) # Randomly generate a graph g = nx.fast_gnp_random_graph(size, p, seed=seed) conn = nx.edge_connectivity(g) # If it has exactly the desired connectivity we are one if conn == k: break # If it has more, then we regenerate the graph with fewer edges elif conn > k: p = p / 2 # If it has less then we add a small set of edges to get there elif conn < k: # p = 2 * p - p ** 2 # if count == 2: aug_edges = list(k_edge_augmentation(g, k)) g.add_edges_from(aug_edges) break return g
98609e31790fc40229135f3a2c0dedd2eb123e9b
4,255
import os from datetime import datetime from shutil import copyfile import csv def finish_round(): """Clean up the folders at the end of the round. After round N, the cur-round folder is renamed to round-N. """ last_round = get_last_round_num() cur_round = last_round + 1 round_dir = os.path.join("rounds", f"round-{cur_round}") os.rename(CUR_ROUND_DIR, round_dir) timestamp = datetime.datetime.now().strftime("%y%m%d%H%M%S") # Keep only the machines that actually have a team assigned machine_team = machine2team(cur_round) for cur_src, cur_team in machine_team.items(): log_name = f"{timestamp}-log" dst_path = os.path.join(TEAMS_DIR, cur_team, LOGS_SUBDIR, log_name) copyfile(os.path.join(round_dir, SOURCE_SUBDIR, cur_src, LOGNAME), dst_path) # Gather the scores sink_dir = os.path.join(round_dir, SINK_SUBDIR) results = defaultdict(dict) for cur_sink in os.listdir(sink_dir): with open(os.path.join(sink_dir, cur_sink, SCORE_FILE), 'r') as infile: reader = csv.reader(infile, delimiter='\t') for line in reader: # results: (src, dst, bytes) results[line[0]][cur_sink] = int(line[1]) # Scores goals, src2team = load_goals(os.path.join(CONFIGS_DIR, f"config_round_{cur_round}.csv")) scores = score_run(goals, results) # If there is no src entry in the scores, set the score to zero teamscores = {team: scores[src] if src in scores else 0 for src, team in src2team.items()} print(teamscores) # Send scores to influx _push_to_influxdb(teamscores, cur_round) return "Round finished and scores pushed"
0529f3a7edec1eee67288420c85403db02003801
4,256
from typing import Optional from typing import Dict from typing import Any from typing import FrozenSet import json def _SendGerritJsonRequest( host: str, path: str, reqtype: str = 'GET', headers: Optional[Dict[str, str]] = None, body: Any = None, accept_statuses: FrozenSet[int] = frozenset([200]), ) -> Optional[Any]: """Send a request to Gerrit, expecting a JSON response.""" result = _SendGerritHttpRequest( host, path, reqtype, headers, body, accept_statuses) # The first line of the response should always be: )]}' s = result.readline() if s and s.rstrip() != ")]}'": raise GerritError(200, 'Unexpected json output: %s' % s) # Read the rest of the response. s = result.read() if not s: return None return json.loads(s)
81bd115083c1d8ae4a705270394cf43ca1918862
4,257
def readTableRules(p4info_helper, sw, table): """ Reads the table entries from all tables on the switch. :param p4info_helper: the P4Info helper :param sw: the switch connection """ print '\n----- Reading tables rules for %s -----' % sw.name ReadTableEntries1 = {'table_entries': []} ReadTableEntries2 = [] for response in sw.ReadTableEntries(): for entity in response.entities: ReadTableEntry = {} entry = entity.table_entry table_name = p4info_helper.get_tables_name(entry.table_id) if table==None or table==table_name: # if table==None: ReadTableEntry['table'] = table_name print '%s: ' % table_name, for m in entry.match: print p4info_helper.get_match_field_name(table_name, m.field_id), try: print "\\x00"+"".join("\\x"+"{:02x}".format(ord(c)) for c in "".join([d for d in (p4info_helper.get_match_field_value(m))])), except: print '%r' % (p4info_helper.get_match_field_value(m),), match_name = p4info_helper.get_match_field_name(table_name, m.field_id) tmp_match_value = (p4info_helper.get_match_field_value(m),) ReadTableEntry['match']={} ReadTableEntry['match'][match_name] = tmp_match_value action = entry.action.action action_name = p4info_helper.get_actions_name(action.action_id) ReadTableEntry['action_name'] = action_name print '->', action_name, for p in action.params: print p4info_helper.get_action_param_name(action_name, p.param_id), print '%r' % p.value, action_params = p4info_helper.get_action_param_name(action_name, p.param_id) tmp_action_value = p.value ### possibly needs bytify =>> struct. pack and unpack ReadTableEntry['action_params'] = {} ReadTableEntry['action_params'][action_params] = tmp_action_value print ReadTableEntries1.setdefault('table_entries',[]).append(ReadTableEntry) ReadTableEntries2.append(ReadTableEntry) return ReadTableEntries2
267bb6dcdf2d3adf37bcfa62f8d4581d9a9deda7
4,258
import sys def alpha_043(code, end_date=None, fq="pre"): """ 公式: SUM((CLOSE>DELAY(CLOSE,1)?VOLUME:(CLOSE<DELAY(CLOSE,1)?-VOLUME:0)),6) Inputs: code: 股票池 end_date: 查询日期 Outputs: 因子的值 """ end_date = to_date_str(end_date) func_name = sys._getframe().f_code.co_name return JQDataClient.instance().get_alpha_191(**locals())
ef6cacc33efd4f66b0b9661bd55be7694fd2c737
4,259
def binary_to_string(bin_string: str): """ >>> binary_to_string("01100001") 'a' >>> binary_to_string("a") Traceback (most recent call last): ... ValueError: bukan bilangan biner >>> binary_to_string("") Traceback (most recent call last): ... ValueError: tidak ada yang diinputkan >>> binary_to_string("39") Traceback (most recent call last): ... ValueError: bukan bilangan biner >>> binary_to_string(1010) Traceback (most recent call last): ... TypeError: bukan string """ if not isinstance(bin_string, str): raise TypeError("bukan string") if not bin_string: raise ValueError("tidak ada yang diinputkan") if not all(char in "01" for char in bin_string): raise ValueError("bukan bilangan biner") return "".join([chr(int(i, 2)) for i in bin_string.split()])
f22dd64027ee65acd4d782a6a1ce80520f016770
4,260
from faker import Faker import json def create_fake_record(): """Create records for demo purposes.""" fake = Faker() data_to_use = { "access": { "record": "public", "files": "public", }, "files": { "enabled": False, }, "pids": { }, "metadata": { "resource_type": fake_resource_type(), "creators": [{ "person_or_org": { "family_name": fake.last_name(), "given_name": fake.first_name(), "type": "personal", "identifiers": [{ "scheme": "orcid", "identifier": "0000-0002-1825-0097", }], }, "affiliations": [{ "name": fake.company(), "identifiers": [{ "scheme": "ror", "identifier": "03yrm5c26", }] }] } for i in range(4)], "title": fake.company() + "'s gallery", "additional_titles": [{ "title": "a research data management platform", "type": "subtitle", "lang": "eng" }, { "title": fake.company() + "'s gallery", "type": "alternativetitle", "lang": "eng" }], "publisher": "InvenioRDM", "publication_date": fake_edtf_level_0(), "subjects": [{ "subject": fake.word(), "identifier": "03yrm5c26", "scheme": "ror" }, { "subject": fake.word(), "identifier": "03yrm5c26", "scheme": "ror" }], "contributors": [{ "person_or_org": { "family_name": fake.last_name(), "given_name": fake.first_name(), "type": "personal", }, "affiliations": [{ "name": fake.company(), "identifiers": [{ "scheme": "ror", "identifier": "03yrm5c26", }] }], "role": "rightsholder" } for i in range(3)], # "dates": [{ # # No end date to avoid computations based on start # "date": fake.date(pattern='%Y-%m-%d'), # "description": "Random test date", # "type": "other" # }], # TODO: Add when we have PIDs for languages vocabulary # "languages": [{"id": "eng"}], # "related_identifiers": [{ # "identifier": "10.9999/rdm.9999988", # "scheme": "doi", # "relation_type": "requires", # "resource_type": fake_resource_type() # }], "sizes": [ "11 pages" ], "formats": [ "application/pdf" ], "version": "v0.0.1", # "rights": [{ # "rights": "Berkeley Software Distribution 3", # "uri": "https://opensource.org/licenses/BSD-3-Clause", # "identifier": "03yrm5c26", # "scheme": "ror", # }], "description": fake.text(max_nb_chars=3000), "additional_descriptions": [{ "description": fake.text(max_nb_chars=200), "type": "methods", "lang": "eng" } for i in range(2)], "funding": [{ "funder": { "name": "European Commission", "identifier": "03yrm5c26", "scheme": "ror" }, "award": { "title": "OpenAIRE", "number": "246686", "identifier": "0000-0002-1825-0097", "scheme": "orcid" } }], # "locations": [{ # 'geometry': { # 'type': 'Point', # 'coordinates': [ # float(fake.latitude()), float(fake.longitude()) # ] # }, # "place": fake.location_on_land()[2], # "description": "Random place on land...", # 'identifiers': [{ # 'scheme': 'ror', # 'identifier': '03yrm5c26', # }, { # 'scheme': 'orcid', # 'identifier': '0000-0002-1825-0097', # }] # }, { # 'geometry': { # 'type': 'MultiPoint', # 'coordinates': [ # [float(fake.latitude()), float(fake.longitude())], # [float(fake.latitude()), float(fake.longitude())] # ] # }, # "place": fake.location_on_land()[2], # } # ], "references": [{ "reference": "Reference to something et al.", "identifier": "0000000114559647", "scheme": "isni" }], "identifiers": [{ "identifier": "ark:/123/456", "scheme": "ark" }], } } return json.loads(json.dumps(data_to_use))
0a9b2618745273def5d6030b74dca769f35dbd5d
4,261
def load_texture_pair(filename): """Function what loads two verions of the texture for left/right movement""" return [ arcade.load_texture(filename), arcade.load_texture(filename, flipped_horizontally=True) ]
782a79395fe25c8f391877dc9be52bf9d29f63f9
4,262
from typing import Tuple def bytes2bson(val: bytes) -> Tuple[bytes, bytes]: """Encode bytes as BSON Binary / Generic.""" assert isinstance(val, (bytes, bytearray)) return BSON_BINARY, pack_i32(len(val)) + BSON_BINARY_GENERIC + val
2c481d6585c12732f4b26a2c25f5738a5f8352bb
4,263
def tabindex(field, index): """Set the tab index on the filtered field.""" field.field.widget.attrs["tabindex"] = index return field
c42b64b3f94a2a8a35b8b0fa3f14fe6d44b2f755
4,264
def compute_GridData(xvals, yvals, f, ufunc=0, **keyw): """Evaluate a function of 2 variables and store the results in a GridData. Computes a function 'f' of two variables on a rectangular grid using 'tabulate_function', then store the results into a 'GridData' so that it can be plotted. After calculation the data are written to a file; no copy is kept in memory. Note that this is quite different than 'Func' (which tells gnuplot to evaluate the function). Arguments: 'xvals' -- a 1-d array with dimension 'numx' 'yvals' -- a 1-d array with dimension 'numy' 'f' -- the function to plot--a callable object for which 'f(x,y)' returns a number. 'ufunc=<bool>' -- evaluate 'f' as a ufunc? Other keyword arguments are passed to the 'GridData' constructor. 'f' should be a callable object taking two arguments. 'f(x,y)' will be computed at all grid points obtained by combining elements from 'xvals' and 'yvals'. If called with 'ufunc=1', then 'f' should be a function that is composed entirely of ufuncs, and it will be passed the 'xvals' and 'yvals' as rectangular matrices. Thus if you have a function 'f' and two vectors 'xvals' and 'yvals' and a Gnuplot instance called 'g', you can plot the function by typing 'g.splot(compute_GridData(f, xvals, yvals))'. """ xvals = utils.float_array(xvals) yvals = utils.float_array(yvals) # evaluate function: data = tabulate_function(f, xvals, yvals, ufunc=ufunc) return Gnuplot.GridData(data, xvals, yvals, **keyw)
64c95b4ce6e7735869a31eb29e06c6e6c324a844
4,265
import functools from typing import Any import collections def decorator_with_option( decorator_fn, ): """Wraps a decorator to correctly forward decorator options. `decorator_with_option` is applied on decorators. Usage: ``` @jax3d.utils.decorator_with_option def my_decorator(fn, x=None, y=None): ... ``` The decorated decorator can then be used with or without options, or called directly. ``` @my_decorator(x, y=y) def fn(): ... @my_decorator def fn(): ... fn = my_decorator(fn, x, y=y) ``` Args: decorator_fn: The decorator with signature `(fn, *option, **option_kwargs)` Returns: The `decorator_fn` which now can be used as decorator with option. """ @functools.wraps(decorator_fn) def decorated(*args: Any, **kwargs: Any) -> Any: fn = args[0] if args else None if not isinstance(fn, collections.abc.Callable): def decorated_with_options(fn): return decorator_fn(fn, *args, **kwargs) return decorated_with_options return decorator_fn(fn, *args[1:], **kwargs) return decorated
2e9a4a772d7c072b579ac49e183d6ca00e9feacf
4,266
import math def chebyshev_parameters(rxn_dstr, a_units='moles'): """ Parses the data string for a reaction in the reactions block for the lines containing the Chebyshevs fitting parameters, then reads the parameters from these lines. :param rxn_dstr: data string for species in reaction block :type rxn_dstr: str :return params: Chebyshev fitting parameters :rtype: dict[param: value] """ original_rxn_dstr = rxn_dstr rxn_dstr = apf.remove(COMMENTS_PATTERN, rxn_dstr) tcheb_pattern = ( 'TCHEB' + app.zero_or_more(app.SPACE) + app.escape('/') + app.zero_or_more(app.SPACE) + app.capturing(app.NUMBER) + app.one_or_more(app.SPACE) + app.capturing(app.NUMBER) + app.zero_or_more(app.SPACE) + app.escape('/') ) pcheb_pattern = ( 'PCHEB' + app.zero_or_more(app.SPACE) + app.escape('/') + app.zero_or_more(app.SPACE) + app.capturing(app.NUMBER) + app.one_or_more(app.SPACE) + app.capturing(app.NUMBER) + app.zero_or_more(app.SPACE) + app.escape('/') ) cheb_pattern = ( app.not_preceded_by(app.one_of_these(['T', 'P'])) + 'CHEB' + app.zero_or_more(app.SPACE) + app.escape('/') + app.capturing(app.one_or_more(app.WILDCARD2) ) + app.escape('/') ) cheb_params_raw = apf.all_captures(cheb_pattern, rxn_dstr) if cheb_params_raw: params = {} # Get the temp and pressure limits; # add the Chemkin default values if they don't exist cheb_temps = apf.first_capture(tcheb_pattern, rxn_dstr) cheb_pressures = apf.first_capture(pcheb_pattern, rxn_dstr) if cheb_temps is None: cheb_temps = ('300.00', '2500.00') print( 'No Chebyshev temperature limits specified' + ' for the below reaction.' + f' Assuming 300 and 2500 K. \n \n {original_rxn_dstr}\n') if cheb_pressures is None: cheb_pressures = ('0.001', '100.00') print( 'No Chebyshev pressure limits specified' + ' for the below reaction.' + f' Assuming 0.001 and 100 atm. \n \n {original_rxn_dstr}\n') # Get all the numbers from the CHEB parameters cheb_params = [] for cheb_line in cheb_params_raw: cheb_params.extend(cheb_line.split()) # Get the cheb array dimensions N and M, which are the first two # entries of the CHEB params cheb_n = int(math.floor(float(cheb_params[0]))) cheb_m = int(math.floor(float(cheb_params[1]))) # Start on the third value (after N and M) # and get all the polynomial coefficients coeffs = [] for idx, coeff in enumerate(cheb_params[2:]): # extra coefficients are allowed but ignored if idx+1 > (cheb_n*cheb_m): break coeffs.append(coeff) assert len(coeffs) == (cheb_n*cheb_m), ( f'For the below reaction, there should be {cheb_n*cheb_m}' + ' Chebyshev polynomial' + f' coefficients, but there are only {len(coeffs)}.' + f' \n \n {original_rxn_dstr}\n' ) alpha = np.array(list(map(float, coeffs))) params['t_limits'] = [float(val) for val in cheb_temps] params['p_limits'] = [float(val) for val in cheb_pressures] params['alpha_elm'] = alpha.reshape([cheb_n, cheb_m]) params['a_units'] = a_units else: params = None return params
fb1ae476d17a7f6546f99c729139bf55b4834174
4,267
def _gen_matrix(n, *args): """Supports more matrix construction routines. 1. Usual contruction (from a 2d list or a single scalar). 2. From a 1-D array of n*n elements (glsl style). 3. From a list of n-D vectors (glsl style). """ if len(args) == n * n: # initialize with n*n scalars data = [[args[k * n + i] for i in range(n)] for k in range(n)] return ti.Matrix(data, float) if len(args) == n: # initialize with n vectors # Matrix.rows() will do implict type inference data = [list(x) for x in args] return ti.Matrix(data, float) if len(args) == 1: # initialize with a scalar, a matrix or a 1d list x = args[0] if isinstance(x, ti.Matrix): return x if hasattr(x, "__len__") and len(x) == n * n: data = [[x[k * n + i] for i in range(n)] for k in range(n)] return ti.Matrix(data, float) return ti.types.matrix(n, n, float)(*args)
eea482c20dfa5c30c9077185eba81bc3bd1ba8ce
4,268
import time import math def temperature(analog_pin, power_pin = None, ground_pin = None, R = 20000, n = 100): """Function for computing thermister temperature Parameters ---------- adc_pin: :obj:'pyb.Pin' Any pin connected to an analog to digital converter on a pyboard power_pin: :obj:'pyb.Pin', optional Used if a digital pin is to be used to power the thermistor. Note that the thermistor may also be powered by the 3.3V pin. In that case, this argument is not required. ground_pin: :obj:'pyb.Pin', optional Used if a digital pin is used to ground the thermistor. Note that the thermistor may also be grounded by the GND pin. In that case, this argument is not required. R: float, optional Value of the fixed resistor in the resistor divider. Default is 20,000 ohm n: int, optional Number of readings to make--returns average of middle two quartiles. Defaults to 100. Returns ------- Float Temperature (Celsius degrees) """ #Define constants for conversion A = 0.001125308852122 B = 0.000234711863267 C = 0.000000085663516 #Allocate array for storing temperature readings T = arr.array('f',[0]*n) #Turn on the power if necessary, then wait a moment if power_pin is not None: power_pin.off() time.sleep_ms(1) #Turn off the ground if necessary, then wait a moment if ground_pin is not None: ground_pin.off() time.sleep_ms(1) #Loop through readings, computing thermistor resistance #and temperature, then storing in array for i in range(n): #if possible, switch current on pins to ensure #no net accumulation of charge if this is in parallel with pins that have a capacitance if power_pin is not None: power_pin.on() ontick = time.ticks_us() time.sleep_us(1000) count = analog_pin.read() power_pin.off() offtick = time.ticks_us() time_on = time.ticks_diff(offtick, ontick) power_pin.off() if ground_pin is not None: ground_pin.on() time.sleep_us(time_on) ground_pin.off() #calculate resistance and temperature, being careful not to cause an overload if count>0: if count < 4095: R_t = ((count/4095)*R)/(1-count/4095) T[i] = 1/((A+B*(math.log(R_t)))+C*((math.log(R_t))**3))-273.15 else: T[i] = -55 else: T[i] =150 #Turn the power back off if possible if power_pin is not None: power_pin.off() #Define and analyze the middle two quartiles upper_index = math.ceil(3*n/4) lower_index = math.floor(n/4) sampled_length = (upper_index - lower_index) T_mean_of_mid_quartiles = sum(sorted(T)[lower_index:upper_index])/sampled_length return T_mean_of_mid_quartiles
a526595bcab6e824a82de7ec4d62fbfc12ee39f8
4,269
import json def submit_form(): """ Submits survey data to SQL database. """ if request.method == "POST": data = request.data if data: data = json.loads(data.decode("utf-8").replace("'",'"')) student, enrollments, tracks = processSurveyData(data) insert = 'INSERT INTO student_info.student (net_id, student_name, pass_word, start_semester, current_semester,' \ 'expected_graduation, total_semesters) VALUES("%s", "%s", "%s", "%s", "%s", "%s", %i)' % (student) insert += 'ON DUPLICATE KEY UPDATE student_name="%s", pass_word="%s", start_semester="%s", current_semester="%s", ' \ 'expected_graduation="%s", total_semesters=%i' % tuple(student[1:]) engine.raw_operation(insert) for e in enrollments: insert = 'INSERT INTO student_info.enrollments VALUES("%s", "%s", "%s", "%s", %i)' % tuple(e) insert += 'ON DUPLICATE KEY UPDATE semester="%s", semester_taken="%s", rating=%i' % tuple(e[2:]) engine.raw_operation(insert) for t in tracks: insert = 'INSERT INTO student_info.track VALUES("%s", "%s", %i, "%s")' % tuple(t) insert += 'ON DUPLICATE KEY UPDATE interest = "{}", credit_hours={}'.format(t[1], t[2]) engine.raw_operation(insert) if 'DeletedMajor' in data or 'DeletedMinor' in data: tracks_to_delete = data['DeletedMajor'] + data['DeletedMinor'] for track in tracks_to_delete: engine.drop_rows('DELETE FROM student_info.track WHERE \ track.net_id = "%s" AND track.field_name = "%s"' % (student[0], track)) return 'Successful submission' return "Invalid input"
2d5a10c5af906a7993559cf71f23eea1a35ec993
4,270
def get_target_external_resource_ids(relationship_type, ctx_instance): """Gets a list of target node ids connected via a relationship to a node. :param relationship_type: A string representing the type of relationship. :param ctx: The Cloudify ctx context. :returns a list of security group ids. """ ids = [] if not getattr(ctx_instance, 'relationships', []): ctx.logger.info('Skipping attaching relationships, ' 'because none are attached to this node.') return ids for r in ctx_instance.relationships: if relationship_type in r.type: ids.append( r.target.instance.runtime_properties[ constants.EXTERNAL_RESOURCE_ID]) return ids
27077d3118ca10a6896ba856d9d261f1b8ab9d56
4,271
def split_multibody(beam, tstep, mb_data_dict, ts): """ split_multibody This functions splits a structure at a certain time step in its different bodies Args: beam (:class:`~sharpy.structure.models.beam.Beam`): structural information of the multibody system tstep (:class:`~sharpy.utils.datastructures.StructTimeStepInfo`): timestep information of the multibody system mb_data_dict (dict): Dictionary including the multibody information ts (int): time step number Returns: MB_beam (list(:class:`~sharpy.structure.models.beam.Beam`)): each entry represents a body MB_tstep (list(:class:`~sharpy.utils.datastructures.StructTimeStepInfo`)): each entry represents a body """ MB_beam = [] MB_tstep = [] for ibody in range(beam.num_bodies): ibody_beam = None ibody_tstep = None ibody_beam = beam.get_body(ibody = ibody) ibody_tstep = tstep.get_body(beam, ibody_beam.num_dof, ibody = ibody) ibody_beam.FoR_movement = mb_data_dict['body_%02d' % ibody]['FoR_movement'] if ts == 1: ibody_beam.ini_info.pos_dot *= 0 ibody_beam.timestep_info.pos_dot *= 0 ibody_tstep.pos_dot *= 0 ibody_beam.ini_info.psi_dot *= 0 ibody_beam.timestep_info.psi_dot *= 0 ibody_tstep.psi_dot *= 0 MB_beam.append(ibody_beam) MB_tstep.append(ibody_tstep) return MB_beam, MB_tstep
25d3d3496bdf0882e732ddfb14d3651d54167adc
4,272
def qname_decode(ptr, message, raw=False): """Read a QNAME from pointer and respect labels.""" def _rec(name): ret = [] while name and name[0] > 0: length = int(name[0]) if (length & 0xC0) == 0xC0: offset = (length & 0x03) << 8 | int(name[1]) comps, _ = _rec(message[offset:]) ret += comps name = name[1:] break ret.append(name[1 : 1 + length]) name = name[length + 1 :] return ret, name name_components, rest = _rec(ptr) if raw: return name_components, rest[1:] return ".".join([x.decode("utf-8") for x in name_components]), rest[1:]
d08a6c286e2520807a05cbd2c2aa5eb8ce7a7602
4,273
def coordinates_within_board(n: int, x: int, y: int) -> bool: """Are the given coordinates inside the board?""" return x < n and y < n and x >= 0 and y >= 0
6359343bde0c9d7658a484c45d9cd07893b4e00d
4,274
import sys def check_for_header(header, include_dirs, define_macros): """Check for the existence of a header file by creating a small program which includes it and see if it compiles.""" program = "#include <%s>\n" % header sys.stdout.write("Checking for <%s>... " % header) success = see_if_compiles(program, include_dirs, define_macros) if (success): sys.stdout.write("OK\n"); else: sys.stdout.write("Not found\n"); return success
1d5ec438a96580de8d3b4f75544d37764cd4a75f
4,275
def hook_name_to_env_name(name, prefix='HOOKS'): """ >>> hook_name_to_env_name('foo.bar_baz') HOOKS_FOO_BAR_BAZ >>> hook_name_to_env_name('foo.bar_baz', 'PREFIX') PREFIX_FOO_BAR_BAZ """ return '_'.join([prefix, name.upper().replace('.', '_')])
b0dabce88da8ddf8695303ac4a22379baa4ddffa
4,276
def get_coefficients(): """ Returns the global scaling dictionary. """ global COEFFICIENTS if COEFFICIENTS is None: COEFFICIENTS = TransformedDict() COEFFICIENTS["[length]"] = 1.0 * u.meter COEFFICIENTS["[mass]"] = 1.0 * u.kilogram COEFFICIENTS["[time]"] = 1.0 * u.year COEFFICIENTS["[temperature]"] = 1.0 * u.degK COEFFICIENTS["[substance]"] = 1.0 * u.mole return COEFFICIENTS
7acd77fdbb0604ff97aa24bb7ce4f29bb32889b0
4,277
def get_distance_from_guide_alignment(data, guide_data, reference_index_key="position", minus_strand=False): """Calculate the distance of input data alignment to the guide alignment. :param data: input data with at least "raw_start", "raw_length", and reference_index_key fields :param guide_data: guide alignmnet data :param reference_index_key: key to grab reference index from data :param minus_strand: boolean option if data is aligned to minus strand :return: modified data with "guide_delta" field """ variant_data = data.sort_values(by=reference_index_key) if minus_strand: guide_data = guide_data[::-1] distance_to_guide = [] variant_index = 0 len_variant_data = len(variant_data) v_position = variant_data.iloc[variant_index][reference_index_key] for i, guide in enumerate(guide_data.itertuples()): if getattr(guide, "reference_index") >= v_position: if getattr(guide, "reference_index") == v_position: guide_index = i else: guide_index = i - 1 v_position_middle = (variant_data.iloc[variant_index]["raw_start"] + (variant_data.iloc[variant_index]["raw_length"] / 2)) guide_middle_position = np.round( (guide_data.iloc[guide_index]["raw_start"] + (guide_data.iloc[guide_index]["raw_length"] / 2))) distance_to_guide.append(v_position_middle - guide_middle_position) variant_index += 1 if variant_index < len_variant_data: v_position = variant_data.iloc[variant_index][reference_index_key] else: break distance = pd.DataFrame(distance_to_guide, columns=['guide_delta']) final_data = pd.concat([variant_data, distance], axis=1) return final_data
1a1150a470c75e4e836278fafb263839a67f7da4
4,278
def get_info(font): """ currently wraps the infoFont call, but I would like to add a JSON represenation of this data to better display the individual details of the font.""" return pyfiglet.FigletFont.infoFont(font)
40ae5238701754a12c4b1c75fff54412f7e33d4f
4,279
def readline_skip_comments(f): """ Read a new line while skipping comments. """ l = f.readline().strip() while len(l) > 0 and l[0] == '#': l = f.readline().strip() return l
c4b36af14cc48b1ed4cd72b06845e131015da6c6
4,280
def _verify_weight_parameters(weight_parameters): """Verifies that the format of the input `weight_parameters`. Checks that the input parameters is a 2-tuple of tensors of equal shape. Args: weight_parameters: The parameters to check. Raises: RuntimeError: If the input is not a 2-tuple of tensors with equal shape. Returns: The input `weight_parameters`. """ if len(weight_parameters) != 2: raise RuntimeError("Incorrect number of weight parameters. Expected " "2 tensors, got {}".format(len(weight_parameters))) if weight_parameters[0].shape != weight_parameters[1].shape: raise RuntimeError("Expected theta and log alpha parameter tensor " "to be same shape. Got shapes {} and {}" .format(weight_parameters[0].get_shape().as_list(), weight_parameters[1].get_shape().as_list())) return weight_parameters
9ec018c66d48e830250fd299cd50f370118132cc
4,281
import requests def send_notification(lira_url, auth_dict, notification): """Send a notification to a given Lira. Args: lira_url (str): A typical Lira url, e.g. https://pipelines.dev.data.humancellatlas.org/ auth_dict (dict): Dictionary contains credentials for authenticating with Lira. It should have 'method' and 'value' as keys. notification (dict): A dict of notification content. Returns: requests.Response: The response object returned by Lira. """ if auth_dict['method'] == 'token': response = requests.post( url=harmonize_url(lira_url) + 'notifications', json=notification, params={'auth': auth_dict['value']['auth_token']}, ) else: auth = HTTPSignatureAuth( key_id=auth_dict['value']['hmac_key_id'], key=auth_dict['value']['hmac_key_value'].encode('utf-8'), ) response = requests.post( url=harmonize_url(lira_url) + 'notifications', json=notification, auth=auth ) return response
1f6c28f9b12458cd2af6c3f12f5a9a6df6e64f49
4,282
from exojax.spec.molinfo import molmass from exojax.utils.constants import kB, m_u def calc_vfactor(atm="H2",LJPparam=None): """ Args: atm: molecule consisting of atmosphere, "H2", "O2", and "N2" LJPparam: Custom Lennard-Jones Potential Parameters (d (cm) and epsilon/kB) Returns: vfactor: dynamic viscosity factor for Rosner eta = viscosity*T**0.66 applicable tempature range (K,K) Note: The dynamic viscosity is from the Rosner book (3-2-12) and caption in p106 Hirschfelder et al. (1954) within Trange. """ mu=molmass(atm) if LJPparam is None: LJPparam_d,LJPparam_epsilon_per_kB=get_LJPparam() epsilon_per_kB=LJPparam_epsilon_per_kB[atm] d=LJPparam_d[atm] else: epsilon_per_kB=LJPparam[0] d=LJPparam[1] vfactor=5.0/16.0*np.sqrt(np.pi*kB*mu*m_u)/(np.pi*d*d)/1.22*(1.0/epsilon_per_kB)**0.16 Trange=[3.0*epsilon_per_kB,200.0*epsilon_per_kB] return vfactor, Trange
a48fe55216bcf9848eece92d45f03d2c1e3fdee3
4,283
def _crc16_checksum(bytes): """Returns the CRC-16 checksum of bytearray bytes Ported from Java implementation at: http://introcs.cs.princeton.edu/java/61data/CRC16CCITT.java.html Initial value changed to 0x0000 to match Stellar configuration. """ crc = 0x0000 polynomial = 0x1021 for byte in bytes: for i in range(8): bit = (byte >> (7 - i) & 1) == 1 c15 = (crc >> 15 & 1) == 1 crc <<= 1 if c15 ^ bit: crc ^= polynomial return crc & 0xFFFF
2b00d11f1b451f3b8a4d2f42180f6f68d2fbb615
4,284
import os def is_absolute_href(href): """Determines if an HREF is absolute or not. Args: href (str): The HREF to consider. Returns: bool: True if the given HREF is absolute, False if it is relative. """ parsed = urlparse(href) return parsed.scheme != '' or os.path.isabs(parsed.path)
44aa394f34f4d7d36e546593ea627d79dd3c7e23
4,285
from typing import Callable from typing import Dict import select import math def method_get_func(model, fields="__all__", need_user=False, **kwargs)->Callable: """生成一个model的get访问""" async def list(page: Dict[str, int] = Depends(paging_query_depend), user: User = Depends(create_current_active_user(need_user))): """ get :return: """ table = model.__table__ if fields == "__all__": query = table.select().offset((page['page_number'] - 1) * page['page_size']).limit( page['page_size']) # 第一页,每页20条数据。 默认第一页。 else: query = table.select([getattr(model.__table__.c, i) for i in fields]).offset( (page['page_number'] - 1) * page['page_size']).limit( page['page_size']) # 第一页,每页20条数据。 默认第一页。 paginate_obj = await AdminDatabase().database.fetch_all(query) query2 = select([func.count(table.c.id)]) total_page = await AdminDatabase().database.fetch_val(query2) print("注意需要考虑查询两次的两倍代价") return { "page_count": int(math.ceil(total_page * 1.0 / page['page_size'])), "rows_total": total_page, "page_number": page['page_number'], "page_size": page['page_size'], "data": paginate_obj } return list
2a9b31aa6261d99da94f7a971a9096dfec291e86
4,286
def get_mysqlops_connections(): """ Get a connection to mysqlops for reporting Returns: A mysql connection """ (reporting_host, port, _, _) = get_mysql_connection('mysqlopsdb001') reporting = HostAddr(''.join((reporting_host, ':', str(port)))) return connect_mysql(reporting, 'scriptrw')
25fb3cba8db11d28450e142a35ff763313c4c360
4,287
def _get_params(conv_layer, bn_layer, relu_layer=None): """Retrieve conv_bn params within wrapped layers.""" if 'use_bias' in conv_layer['config']: if conv_layer['config']['use_bias']: raise ValueError( 'use_bias should not be set to True in a Conv layer when followed ' 'by BatchNormalization. The bias in the Conv would be redundant ' 'with the one in the BatchNormalization.') del conv_layer['config']['use_bias'] if 'name' in bn_layer['config']: del bn_layer['config']['name'] # TODO(pulkitb): remove key conflicts params = dict( list(conv_layer['config'].items()) + list(bn_layer['config'].items())) if relu_layer is not None: params['post_activation'] = keras.layers.deserialize(relu_layer) return params
e2bca5b31d12196efae30af455644a39bb257bea
4,288
def reverse(segment): """Reverses the track""" return segment.reverse()
74632b8a8a192970187a89744b2e8c6fa77fb2cf
4,289
def rmse(y, y_pred): """Returns the root mean squared error between ground truths and predictions. """ return np.sqrt(mse(y, y_pred))
c3d2e20d1e9ebf40c704c5f14fb0dd35758f2458
4,290
from typing import Dict from typing import Any def cdm_cluster_location_command(client: PolarisClient, args: Dict[str, Any]): """ Find the CDM GeoLocation of a CDM Cluster. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ cluster_id = validate_required_arg("clusterId", args.get('clusterId')) raw_response = client.get_cdm_cluster_location(cluster_id) if raw_response == "No Location Configured": return CommandResults(readable_output=MESSAGES['NO_RESPONSE']) hr_content = {"Location": raw_response} hr = tableToMarkdown("CDM Cluster Location", hr_content, headers="Location", removeNull=True) context = { "ClusterId": cluster_id.lower(), "Cluster": { "Location": raw_response } } return CommandResults(outputs_prefix=OUTPUT_PREFIX['CDM_CLUSTER'], outputs_key_field="ClusterId", readable_output=hr, outputs=context, raw_response=raw_response)
b0001969177dcceb144d03edece589a84af48dc1
4,291
def prepare_cases(cases, cutoff=25): """ clean cases per day for Rt estimation. """ new_cases = cases.diff() smoothed = new_cases.rolling(7, win_type='gaussian', min_periods=1, center=True).mean(std=2).round() idx_start = np.searchsorted(smoothed, cutoff) smoothed = smoothed.iloc[idx_start:] original = new_cases.loc[smoothed.index] return original, smoothed
71b41959178e6fb8480ba2f6549bfeb6f02aded4
4,292
def utility(board): """ Returns 1 if X has won the game, -1 if O has won, 0 otherwise. """ if winner(board) == 'X': return 1 elif winner(board) == 'O': return -1 else: return 0
77f4e503882a6c1a6445167d2b834f342adbc21e
4,293
def shard(group, num_shards): """Breaks the group apart into num_shards shards. Args: group: a breakdown, perhaps returned from categorize_files. num_shards: The number of shards into which to break down the group. Returns: A list of shards. """ shards = [] for i in range(num_shards): shards.append(LanguageBreakdown()) pos = 0 for kind, files in group.kinds.items(): for filename in files: shards[pos].kinds[kind].append(filename) pos = (pos + 1) % num_shards return shards
635af47ac15c5b3aeeec8ab73ea8a6a33cd0d964
4,294
def is_bond_member(yaml, ifname): """Returns True if this interface is a member of a BondEthernet.""" if not "bondethernets" in yaml: return False for _bond, iface in yaml["bondethernets"].items(): if not "interfaces" in iface: continue if ifname in iface["interfaces"]: return True return False
521186221f2d0135ebcf1edad8c002945a56da26
4,295
def get_id(group): """ Get the GO identifier from a list of GO term properties. Finds the first match to the id pattern. Args: group (List[str]) Returns: str """ return first_match(group, go_id).split(':',1)[1].strip()
de99e159c3de1f8984cce40f952ff14568c8a1a5
4,296
import random import math def generateLogNormalVariate(mu, sigma): """ RV generated using rejection method """ variateGenerated = False while not variateGenerated: u1 = random.uniform(0, 1) u2 = random.uniform(0, 1) x = -1*math.log(u1) if u2 > math.exp(-1*math.pow((x-1), 2)/2): continue else: return math.exp(mu+(sigma*x))
048bc1c2123fbdd9a750aac86bd6922aaf42de27
4,297
import re def replace_color_codes(text, replacement): """Replace ANSI color sequence from a given string. Args: text (str): Original string to replacement from. replacement (str): String to replace color codes with. Returns: str: Mutated string after the replacement. """ return re.sub(COLOR_CODE_REGEX, replacement, text)
a0c3e1b1060ae475a16b936c237669edab8cfc91
4,298
def get_uti_for_extension(extension): """get UTI for a given file extension""" if not extension: return None # accepts extension with or without leading 0 if extension[0] == ".": extension = extension[1:] if (OS_VER, OS_MAJOR) <= (10, 16): # https://developer.apple.com/documentation/coreservices/1448939-uttypecreatepreferredidentifierf with objc.autorelease_pool(): uti = CoreServices.UTTypeCreatePreferredIdentifierForTag( CoreServices.kUTTagClassFilenameExtension, extension, None ) if uti: return uti # on MacOS 10.12, HEIC files are not supported and UTTypeCopyPreferredTagWithClass will return None for HEIC if extension.lower() == "heic": return "public.heic" return None uti = _get_uti_from_ext_dict(extension) if uti: return uti uti = _get_uti_from_mdls(extension) if uti: # cache the UTI EXT_UTI_DICT[extension.lower()] = uti UTI_EXT_DICT[uti] = extension.lower() return uti return None
50e147d9fb267d7c4686dd9e53cd3404a9eaae6f
4,299