content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def autoclean_cv(training_dataframe, testing_dataframe, drop_nans=False, copy=False, encoder=None, encoder_kwargs=None, ignore_update_check=False): """Performs a series of automated data cleaning transformations on the provided training and testing data sets Unlike `autoclean()`, this function takes cross-validation into account by learning the data transformations from only the training set, then applying those transformations to both the training and testing set. By doing so, this function will prevent information leak from the training set into the testing set. Parameters ---------- training_dataframe: pandas.DataFrame Training data set testing_dataframe: pandas.DataFrame Testing data set drop_nans: bool Drop all rows that have a NaN in any column (default: False) copy: bool Make a copy of the data set (default: False) encoder: category_encoders transformer The a valid category_encoders transformer which is passed an inferred cols list. Default (None: LabelEncoder) encoder_kwargs: category_encoders The a valid sklearn transformer to encode categorical features. Default (None) ignore_update_check: bool Do not check for the latest version of datacleaner Returns ---------- output_training_dataframe: pandas.DataFrame Cleaned training data set output_testing_dataframe: pandas.DataFrame Cleaned testing data set """ global update_checked if ignore_update_check: update_checked = True if not update_checked: update_check('datacleaner', __version__) update_checked = True if set(training_dataframe.columns.values) != set(testing_dataframe.columns.values): raise ValueError('The training and testing DataFrames do not have the same columns. ' 'Make sure that you are providing the same columns.') if copy: training_dataframe = training_dataframe.copy() testing_dataframe = testing_dataframe.copy() if drop_nans: training_dataframe.dropna(inplace=True) testing_dataframe.dropna(inplace=True) if encoder_kwargs is None: encoder_kwargs = {} for column in training_dataframe.columns.values: # Replace NaNs with the median or mode of the column depending on the column type try: column_median = training_dataframe[column].median() training_dataframe[column].fillna(column_median, inplace=True) testing_dataframe[column].fillna(column_median, inplace=True) except TypeError: column_mode = training_dataframe[column].mode()[0] training_dataframe[column].fillna(column_mode, inplace=True) testing_dataframe[column].fillna(column_mode, inplace=True) # Encode all strings with numerical equivalents if str(training_dataframe[column].values.dtype) == 'object': if encoder is not None: column_encoder = encoder(**encoder_kwargs).fit(training_dataframe[column].values) else: column_encoder = LabelEncoder().fit(training_dataframe[column].values) training_dataframe[column] = column_encoder.transform(training_dataframe[column].values) testing_dataframe[column] = column_encoder.transform(testing_dataframe[column].values) return training_dataframe, testing_dataframe
37b8221193c05db97dde355e06313a9372cd8193
3,659,500
import asyncio def make_coroutine_from_tree(tree, filename="<aexec>", symbol="single", local={}): """Make a coroutine from a tree structure.""" dct = {} tree.body[0].args.args = list(map(make_arg, local)) exec(compile(tree, filename, symbol), dct) return asyncio.coroutine(dct[CORO_NAME])(**local)
cbf4e0b0278abc0e929f4ed8b2a9c421b4e8f3c6
3,659,501
def update_Sigmai(Yi, Es, Vars): """ Return new Sigma_i: shape k """ return np.mean((Yi - Es) ** 2, axis=1) + np.mean(Vars, axis=1)
f2cb1fa7f5e6b48f033207ee6bb84b8e865c863c
3,659,502
def gather_indexes(sequence_tensor, positions): """Gathers the vectors at the specific positions over a minibatch.""" sequence_shape = get_shape_list(sequence_tensor, expected_rank=3) batch_size = sequence_shape[0] seq_length = sequence_shape[1] width = sequence_shape[2] flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_offsets = tf.cast(flat_offsets, tf.int64) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width]) # https://github.com/tensorflow/tensorflow/issues/36236 output_tensor = tf.gather(flat_sequence_tensor*1, flat_positions) return output_tensor
583ed7ce925ace45dd2a6c9a78efd0360bd141e0
3,659,503
import typing def check_sub_schema_dict(sub_schema: typing.Any) -> dict: """Check that a sub schema in an allOf is a dict.""" if not isinstance(sub_schema, dict): raise exceptions.MalformedSchemaError( "The elements of allOf must be dictionaries." ) return sub_schema
b64313b28ab63b8342de7b0422cc8c9087a28462
3,659,504
def get_proto_root(workspace_root): """Gets the root protobuf directory. Args: workspace_root: context.label.workspace_root Returns: The directory relative to which generated include paths should be. """ if workspace_root: return "/{}".format(workspace_root) else: return ""
35cff0b28ee6c1893e5dba93593126c996ba72cc
3,659,505
def bwimcp(J, K, x, tr=.2, alpha=.05): """ Multiple comparisons for interactions in a split-plot design. The analysis is done by taking difference scores among all pairs of dependent groups and determining which of these differences differ across levels of Factor A using trimmed means. FWE is controlled via Hochberg's method. For MOM or M-estimators (possibly not implemented yet), use spmcpi which uses a bootstrap method :param J: int Number of J levels associated with Factor A :param K: int Number of K levels associated with Factor B :param x: Pandas DataFrame Each column represents a cell in the factorial design. For example, a 2x3 design would correspond to a DataFrame with 6 columns (levels of Factor A x levels of Factor B). Order your columns according to the following pattern (traversing each row in a matrix): - the first column contains data for level 1 of Factor A and level 1 of Factor B - the second column contains data for level 1 of Factor A and level 2 of Factor B - column `K` contains the data for level 1 of Factor A and level `K` of Factor B - column `K` + 1 contains the data for level 2 of Factor A and level 1 of Factor B - and so on ... :param tr: float Proportion to trim (default is .2) :param alpha: float Alpha level (default is .05) :return: Dictionary of results con: array Contrast matrix output: DataFrame Difference score, p-value, and critical value for each contrast relating to the interaction """ x=pandas_to_arrays(x) x=remove_nans_based_on_design(x, [J, K], 'between_within') MJ = (J ** 2 - J) // 2 MK = (K ** 2 - K) // 2 JMK = J * MK MJMK = MJ * MK Jm = J - 1 #output = np.zeros([MJMK, 7]) output = np.zeros([MJMK, 4]) _, _, con = con2way(J,K) m = np.array(np.arange(J*K)).reshape(J,K) ic=0 test=np.array([]) for j in range(J): for jj in range(J): if j < jj: for k in range(K): for kk in range(K): if k<kk: #output[ic, 0]=j #output[ic, 1]=jj #output[ic, 2]=k output[ic, 0]=ic x1 = x[m[j, k]] - x[m[j, kk]] x2 = x[m[jj, k]] - x[m[jj, kk]] #print(f'X1 comparing cells {j, k} to {j, kk}') #print(f'X2 comparing cells {jj, k} to {jj, kk}') temp = yuen(x1, x2) output[ic, 1] = trim_mean(x1, tr) - trim_mean(x2, tr) #output[ic, 4] = trim_mean(x1, tr) - trim_mean(x2, tr) test=np.append(test, temp['p_value']) output[ic, 2] = test[ic] #output[ic, 5] = test[ic] ic+=1 ncon = len(test) dvec = alpha / np.arange(1, ncon+1) temp2 = (-test).argsort() zvec = dvec[0:ncon] #output[temp2, 6] = zvec output[temp2, 3] = zvec #output[:, 6] = output[:, 6] output[:, 3] = output[:, 3] col_names=["con_num", "psihat", "p_value", "p_crit"] #col_names=["A_x", "A_y", "B_x", "B_y", "psihat", "p_value", "p_crit"] results=pd.DataFrame(output, columns=col_names) results={'con': con, 'output': pd.DataFrame(output, columns=col_names)} return results
82d2b77464e5bc37fc101624ed0d88205ab11ff9
3,659,506
def trigger_decoder(mode: str, trigger_path: str=None) -> tuple: """Trigger Decoder. Given a mode of operation (calibration, copy phrase, etc) and a path to the trigger location (*.txt file), this function will split into symbols (A, ..., Z), timing info (32.222), and targetness (target, nontarget). It will also extract any saved offset information and pass that back. PARAMETERS ---------- :param: mode: mode of bci operation. Note the mode changes how triggers are saved. :param: trigger_path: [Optional] path to triggers.txt file :return: tuple: symbol_info, trial_target_info, timing_info, offset. """ # Load triggers.txt if not trigger_path: trigger_path = load_txt_data() # Get every line of trigger.txt with open(trigger_path, 'r+') as text_file: # most trigger files has three columns: # SYMBOL, TARGETNESS_INFO[OPTIONAL], TIMING trigger_txt = [line.split() for line in text_file] # extract stimuli from the text stimuli_triggers = [line for line in trigger_txt if line[1] == 'target' or line[1] == 'nontarget'] # from the stimuli array, pull our the symbol information symbol_info = list(map(lambda x: x[0], stimuli_triggers)) # If operating mode is free spell, it only has 2 columns # otherwise, it has 3 if mode != 'free_spell': trial_target_info = list(map(lambda x: x[1], stimuli_triggers)) timing_info = list(map(lambda x: eval(x[2]), stimuli_triggers)) else: trial_target_info = None timing_info = list(map(lambda x: eval(x[1]), stimuli_triggers)) # Get any offset or calibration triggers offset_array = [line[2] for line in trigger_txt if line[0] == 'offset'] calib_trigger_array = [line[2] for line in trigger_txt if line[0] == 'calibration_trigger'] # If present, calculate the offset between the DAQ and Triggers from display if len(offset_array) == 1 and len(calib_trigger_array) == 1: # Extract the offset and calibration trigger time offset_time = float(offset_array[0]) calib_trigger_time = float(calib_trigger_array[0]) # Calculate the offset (ASSUMES DAQ STARTED FIRST!) offset = offset_time - calib_trigger_time # Otherwise, assume no observed offset else: offset = 0 return symbol_info, trial_target_info, timing_info, offset
e4d19203e655173f638dc38c0123f88c7342aed1
3,659,507
def method_comparison(filename=None, extension="png", usetex=False, passed_ax=None, **kwargs): """ Create a plot comparing how estimated redshift changes as a function of dispersion measure for each DM-z relation. Parameters ---------- filename: string or None, optional The filename of the saved figure. Default: *None* extension: string, optional The format to save the figure. e.g "png", "pdf", "eps", etc... Default: "png" usetex: bool, optional Use LaTeX for for fonts. passed_ax: or None, optional Generates --------- A figure displaying how estimated redshift changes as a function of dispersion measure for each of the different cosmologies. """ set_rc_params(usetex) if passed_ax: ax = passed_ax else: fig = plt.figure(figsize=(8, 8), constrained_layout=True) ax = fig.add_subplot(111) method_list = methods.available_methods() dm_vals = np.linspace(0, 3000, 1000) colours = ["#1b9e77", "#d95f02", "#7570b3"] label = [r"$\rm{Ioka 2003}$", r"$\rm{Inoue 2004}$", r"$\rm{Zhang 2018}$"] for j, method in enumerate(method_list): z_vals = np.zeros(len(dm_vals)) if 'cosmology' in kwargs: cosmology = kwargs['cosmology'] else: cosmology = 'Planck18' table_name = "".join(["_".join([method, cosmology]), ".npz"]) lookup_table = table.load(table_name) for i, dm in enumerate(dm_vals): z_vals[i] = table.get_z_from_table(dm, lookup_table) ax.plot(dm_vals, z_vals, colours[j], label=label[j], **kwargs) if not passed_ax: ax.set_ylabel(r"$\rm{Redshift}$") ax.set_xlabel(r"$\rm{DM\ \left[pc \ cm^{-3}\right]}$") ax.legend(loc='lower right', frameon=False) if filename is not None: plt.savefig(".".join([filename, extension])) if passed_ax: return ax else: return fig
8c3714cca3aac5f0f7893dc981b68265bf6cea9f
3,659,508
def logCompression(pilImg): """Does log compression processing on a photo Args: pilImg (PIL Image format image): Image to be processed """ npImg = PILtoNumpy(pilImg) c = 255 / (np.log10(1 + np.amax(npImg))) for all_pixels in np.nditer(npImg, op_flags=['readwrite']): all_pixels[...] = c * np.log10(1 + all_pixels) return NumpytoPIL(npImg)
d6ab559182e7c836823d4c51fb6af395c1cd875f
3,659,509
def quantile_turnover(quantile_factor, quantile, period=1): """ Computes the proportion of names in a factor quantile that were not in that quantile in the previous period. Parameters ---------- quantile_factor : pd.Series DataFrame with date, asset and factor quantile. quantile : int Quantile on which to perform turnover analysis. period: int, optional Number of days over which to calculate the turnover. Returns ------- quant_turnover : pd.Series Period by period turnover for that quantile. """ quant_names = quantile_factor[quantile_factor == quantile] quant_name_sets = quant_names.groupby(level=['date']).apply( lambda x: set(x.index.get_level_values('asset'))) name_shifted = quant_name_sets.shift(period) new_names = (quant_name_sets - name_shifted).dropna() quant_turnover = new_names.apply( lambda x: len(x)) / quant_name_sets.apply(lambda x: len(x)) quant_turnover.name = quantile return quant_turnover
6c7b2afdd4c4f0a2dbf38064d2d8664a25370ca2
3,659,510
def dmp_div(f, g, u, K): """ Polynomial division with remainder in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ, QQ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_div(x**2 + x*y, 2*x + 2) (0, x**2 + x*y) >>> R, x,y = ring("x,y", QQ) >>> R.dmp_div(x**2 + x*y, 2*x + 2) (1/2*x + 1/2*y - 1/2, -y + 1) """ if K.is_Field: return dmp_ff_div(f, g, u, K) else: return dmp_rr_div(f, g, u, K)
1b8f2b2b9d57899862234233a70e7e76100b86be
3,659,511
def is_designated_holiday(timestamp): """ Returns True if the date is one of Piedmont’s "designated holidays": - New Years Day (January 1st) - Memorial Day (last Monday of May) - Independence Day (July 4th) - Labor Day (First Monday of September) - Thanksgiving Day (4th Thursday in November) - Christmas Day (December 25th) """ dow = timestamp.weekday() day = timestamp.day month = timestamp.month if month == JANUARY and timestamp.day == 1: return True elif month == MAY and dow == MONDAY and day > 25: return True elif month == JULY and day == 4: return True elif month == SEPTEMBER and dow == MONDAY and day < 8: return True elif month == NOVEMBER and dow == THURSDAY and 21 < day < 29: return True elif month == DECEMBER and day == 25: return True else: return False
e6137ac2c3258a3e51294ff432971c04f56137ec
3,659,512
def check(val, desc=None, as_warn=False) -> SimpleAssertions: """ function based assertion call :param val: val to check :param desc: optional, description of val :param as_warn: if set, convert assertion error to warning message :return: assertionClass """ return SimpleAssertions(as_warn=as_warn).check(val, desc)
2115a0b16387cea0fef483a26a6c27daaf72387e
3,659,513
def ChangeExtension(filename, newExtension): """ChangeExtension(filename, newExtension) -> str Replaces the extension of the filename with the given one. If the given filename has no extension, the new extension is simply appended. arguments: filename string corresponding to the filename whose extension to change. newExtension string corresponding to the new extension to append. Do not prepend with a period ('.'). returns: string corresponding to the new filename. """ try: # Isolate the filename slashIndex = filename.rfind('/') backslashIndex = filename.rfind('\\') if (backslashIndex > slashIndex): slashIndex = backslashIndex; # Look for an existing extension periodIndex = filename.rfind('.') if (periodIndex > slashIndex): return filename[0 : periodIndex] + "." + newExtension else: return filename + "." + newExtension except IndexError, e: return ""
0909060e01226520280aeabde906ab9a8f0dfc5d
3,659,514
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_masks": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "sent_label_ids": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100, seed=np.random.randint(10000)) d = d.apply(tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn
733ddf8b7add0cf9c610537cab0c31172260f0de
3,659,515
def synchrotron_thin_spectrum(freqs, ne, te, bfield): """Optically thin (unobsorbed) synchrotron spectrum. Units of erg/cm^3/s/Hz NY95b Eq 3.9 """ const = 4.43e-30 # erg/cm^3/s/Hz theta_e = K_BLTZ * te / (MELC * SPLC * SPLC) v0 = QELC * bfield / (2*np.pi*MELC*SPLC) xm = 2*freqs/(3*v0*np.square(theta_e)) iprime = _synch_fit_func_iprime(xm) esyn = const * 4*np.pi*ne*freqs*iprime/sp.special.kn(2, 1/theta_e) return esyn
1334cf0382eecd298472b4717b220a7ac3e96d0e
3,659,516
import os from pathlib import Path from re import DEBUG def extract_val_setup(timestamp, lat, lon, dataPath = "Data/IceData/"): """ Extracts a timestamped value from a NSIDC GeoTIFF File Inputs: timestamp = datetime struct of sample lat = sample latitude lon = sample longitude dataPath = path to GeoTIFF files Outputs: GeoTIFF raw value - please see https://nsidc.org/sites/nsidc.org/files/G02135-V3.0_0.pdf """ local_path = os.path.join(os.getcwd(), dataPath) Path(local_path).mkdir(parents=True, exist_ok=True) if lat < 0: filename = generate_NSIDC_filename(timestamp, "S") area = areas[0] elif lat >= 0: filename = generate_NSIDC_filename(timestamp, "N") area = areas[1] else: print("=== Invalid Ice Area? ===") raise ValueError local_filename = local_path + filename dataset = rasterio.open(local_filename) if DEBUG: rasterio.plot.show(dataset) ice_data = dataset.read(1) rev_xform = ~dataset.transform outProj = Proj(dataset.crs) inProj = Proj('epsg:4326') coordxform = Transformer.from_proj(inProj, outProj) # print("=== Proj Setup Complete ===") return [ice_data, coordxform, rev_xform, area]
b3af95af7edd50e18bf5a1bf8e760cb0f12fda02
3,659,517
import base64 def create_message(service, to, subject, message_text): """Create a message for an email. Args: sender: Email address of the sender. to: Email address of the receiver. subject: The subject of the email message. message_text: The text of the email message. Returns: An object containing a base64url encoded email object. """ message = MIMEText(message_text) users = service.users() myProfile = users.getProfile(userId='me').execute() message['to'] = to message['from'] = myProfile['emailAddress'] message['subject'] = subject return {'raw': base64.urlsafe_b64encode(message.as_bytes()).decode()}
6c6df7b1825c13cb8016840527b4dd81ac26d266
3,659,518
def numpy_ndarray(nb_arr): """Return a copy of numba DeviceNDArray data as a numpy.ndarray. """ return nb_arr.copy_to_host()
d6ee1c62428783344fe6232ef229a6dabc8f2a2f
3,659,519
def convert_to_dict(my_keys, my_values): """Merge a given list of keys and a list of values into a dictionary. Args: my_keys (list): A list of keys my_values (list): A list corresponding values Returns: Dict: Dictionary of the list of keys mapped to the list of values """ return dict(zip(my_keys, my_values))
e00690d27770539e6b9d2166835f6bd1b9c11c5a
3,659,520
def add_vit(request): """ Add a new vit with API, currently image and video are not supported """ user = KeyBackend().authenticate(request) if request.method == "POST": if request.user.is_authenticated: form = VitForm(request.POST) if form.is_valid(): vit = form.save(commit=False) vit.user = request.user vit.save() return JsonResponse({'status': 'success', 'vit': vit.to_json()}, status=201) else: return JsonResponse({'error': 'No vit body provided'}, status=400) else: return JsonResponse({'error': 'You must be logged in'}, status=401) else: return JsonResponse({'error': 'Invalid request'}, status=400)
726776e036678cb79051d6ac800d5d883b947320
3,659,521
def long_control_state_trans(active, long_control_state, v_ego, v_target, v_pid, output_gb, brake_pressed, cruise_standstill, min_speed_can): """Update longitudinal control state machine""" stopping_target_speed = min_speed_can + STOPPING_TARGET_SPEED_OFFSET stopping_condition = (v_ego < 2.0 and cruise_standstill) or \ (v_ego < STOPPING_EGO_SPEED and ((v_pid < stopping_target_speed and v_target < stopping_target_speed) or brake_pressed)) starting_condition = v_target > STARTING_TARGET_SPEED and not cruise_standstill if not active: long_control_state = LongCtrlState.off else: if long_control_state == LongCtrlState.off: if active: long_control_state = LongCtrlState.pid elif long_control_state == LongCtrlState.pid: if stopping_condition: long_control_state = LongCtrlState.stopping elif long_control_state == LongCtrlState.stopping: if starting_condition: long_control_state = LongCtrlState.starting elif long_control_state == LongCtrlState.starting: if stopping_condition: long_control_state = LongCtrlState.stopping elif output_gb >= -BRAKE_THRESHOLD_TO_PID: long_control_state = LongCtrlState.pid return long_control_state
f13a5db692ce92fe36204eade10ebb2d54b9caed
3,659,522
def load_group_to_namedtuple(group: h5py.Group): """Returns namedtuple with name of group and key: values of group attrs e.g. srs1 group which has gpib: 1... will be returned as an srs1 namedtuple with .gpib etc """ # Check it was stored as a namedTuple if group.attrs.get('description', None) != 'NamedTuple': raise ValueError( f'Trying to load_group_to_named_tuple which has description: {group.attrs.get("description", None)}') # Get the name of the NamedTuple either through the stored name or the group name name = group.attrs.get('NT_name', None) if name is None: logger.warning('Did not find "name" attribute for NamedTuple, using folder name instead') name = group.name.split('/')[-1] # d = {key: val for key, val in group.attrs.items()} d = {key: get_attr(group, key) for key in group.attrs.keys()} # Remove HDF only descriptors for k in ['description', 'NT_name']: if k in d.keys(): del d[k] # Make the NamedTuple ntuple = namedtuple(name, d.keys()) filled_tuple = ntuple(**d) # Put values into tuple return filled_tuple
e33c0e1b367ddd2ebb745397d473c00452ba853f
3,659,523
import json def export_json(blocks=None, subsections=False): """ Returns JSON representation of parsed config structure :param blocks: List of blocks to export :param subsections: Export all subblocks :return: JSON-dumped string """ if blocks is not None: blocks = [_canonicalize_blockid(b) for b in blocks] if subsections: blocks = get_subblocks(blocks) return json.dumps(_config_dict(blocks))
90ae2ee10d6d23f091d079bd87478fa10d3a4083
3,659,524
def get_dummy_message(text): """Get a dummy message with a custom text""" return botogram.objects.messages.Message({ "message_id": 1, "from": {"id": 123, "first_name": "Nobody"}, "chat": {"id": -123, "type": "chat", "title": "Something"}, "date": 1, "text": text, })
0f39712381157b46aed345ef6b46c6b3cfe32d95
3,659,525
import time def list_ga4_entities(admin_api): """Get a dictionary of GA4 entity settings based on type. Args: admin_api: The Admin API object. Returns: A dictionary of GA4 entity setting lists. """ entities = { 'ga4_account_summaries': [], 'ga4_accounts': [], 'ga4_properties': [], 'ga4_data_streams': [], 'ga4_measurement_protocol_secrets': [], 'ga4_conversion_events': [], 'ga4_custom_dimensions': [], 'ga4_custom_metrics': [], 'ga4_dv360_link_proposals': [], 'ga4_dv360_links': [], 'ga4_firebase_links': [], 'ga4_google_ads_links': [] } for account_summary in admin_api.list_account_summaries(): a_dict = { 'name': account_summary.name, 'display_name': account_summary.display_name, 'account': account_summary.account, 'property_summaries': [] } for property_summary in account_summary.property_summaries: p_dict = { 'property': property_summary.property, 'display_name': property_summary.display_name } a_dict['property_summaries'].append(p_dict) entities['ga4_account_summaries'].append(a_dict) time.sleep(REQUEST_DELAY) for account in admin_api.list_accounts(): account_dict = { 'name': account.name, 'display_name': account.display_name, 'create_time': account.create_time, 'update_time': account.update_time, 'region_code': account.region_code, 'deleted': account.deleted } entities['ga4_accounts'].append(account_dict) time.sleep(REQUEST_DELAY) for account_summary in entities['ga4_account_summaries']: prop_request = ListPropertiesRequest( filter=f"parent:{account_summary['account']}") for prop in admin_api.list_properties(prop_request): time.sleep(REQUEST_DELAY) data_retention_settings = admin_api.get_data_retention_settings( name=(prop.name + '/dataRetentionSettings')) time.sleep(REQUEST_DELAY) google_signals_settings = admin_api.get_google_signals_settings( name=(prop.name + '/googleSignalsSettings')) ic_enum = prop.industry_category sl_enum = prop.service_level gss_state_enum = google_signals_settings.state gss_consent_enum = google_signals_settings.consent edr_enum = data_retention_settings.event_data_retention prop_dict = { 'name': prop.name, 'create_time': prop.create_time, 'update_time': prop.update_time, 'parent': prop.parent, 'display_name': prop.display_name, 'industry_category': IndustryCategory(ic_enum).name, 'time_zone': prop.time_zone, 'currency_code': prop.currency_code, 'service_level': ServiceLevel(sl_enum).name, 'delete_time': prop.delete_time, 'expire_time': prop.expire_time, 'account': account_summary['account'], 'data_sharing_settings': { 'name': data_retention_settings.name, 'event_data_retention': (DataRetentionSettings .RetentionDuration(edr_enum).name), 'reset_user_data_on_new_activity': data_retention_settings.reset_user_data_on_new_activity }, 'google_signals_settings': { 'name': google_signals_settings.name, 'state': GoogleSignalsState(gss_state_enum).name, 'consent': GoogleSignalsConsent(gss_consent_enum).name } } entities['ga4_properties'].append(prop_dict) for property_summary in account_summary['property_summaries']: time.sleep(REQUEST_DELAY) for data_stream in admin_api.list_data_streams( parent=property_summary['property']): data_stream_dict = { 'name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'display_name': data_stream.display_name, 'create_time': data_stream.create_time, 'update_time': data_stream.update_time, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } if data_stream.web_stream_data != None: data_stream_dict['web_stream_data'] = { 'measurment_id': data_stream.web_stream_data.measurement_id, 'firebase_app_id': data_stream.web_stream_data.firebase_app_id, 'default_uri': data_stream.web_stream_data.default_uri } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) if data_stream.android_app_stream_data != None: data_stream_dict['android_app_stream_data'] = { 'firebase_app_id': (data_stream .android_app_stream_data.firebase_app_id), 'package_name': data_stream.android_app_stream_data.package_name } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) if data_stream.ios_app_stream_data != None: data_stream_dict['ios_app_stream_data'] = { 'firebase_app_id': data_stream.ios_app_stream_data.firebase_app_id, 'bundle_id': data_stream.ios_app_stream_data.bundle_id } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) entities['ga4_data_streams'].append(data_stream_dict) time.sleep(REQUEST_DELAY) for event in admin_api.list_conversion_events( parent=property_summary['property']): event_dict = { 'name': event.name, 'event_name': event.event_name, 'create_time': event.create_time, 'deletable': event.deletable, 'custom': event.custom, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_conversion_events'].append(event_dict) time.sleep(REQUEST_DELAY) for cd in admin_api.list_custom_dimensions( parent=property_summary['property']): cd_dict = { 'name': cd.name, 'parameter_name': cd.parameter_name, 'display_name': cd.display_name, 'description': cd.description, 'scope': cd.scope, 'disallow_ads_personalization': cd.disallow_ads_personalization, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_custom_dimensions'].append(cd_dict) time.sleep(REQUEST_DELAY) for cm in admin_api.list_custom_metrics( parent=property_summary['property']): cm_dict = { 'name': cm.name, 'parameter_name': cm.parameter_name, 'display_name': cm.display_name, 'description': cm.description, 'scope': cm.scope, 'measurement_unit': cm.measurement_unit, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_custom_metrics'].append(cm_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_google_ads_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'customer_id': link.customer_id, 'can_manage_clients': link.can_manage_clients, 'ads_personalization_enabled': link.ads_personalization_enabled, 'create_time': link.create_time, 'update_time': link.update_time, 'creator_email_address': link.creator_email_address, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_google_ads_links'].append(link_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_firebase_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'project': link.project, 'create_time': link.create_time, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_firebase_links'].append(link_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_display_video360_advertiser_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'advertiser_id': link.advertiser_id, 'advertiser_display_name': link.advertiser_display_name, 'ads_personalization_enabled': link.ads_personalization_enabled, 'campaign_data_sharing_enabled': link.campaign_data_sharing_enabled, 'cost_data_sharing_enabled': link.cost_data_sharing_enabled, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_dv360_links'].append(link_dict) time.sleep(REQUEST_DELAY) for proposal in ( admin_api.list_display_video360_advertiser_link_proposals( parent=property_summary['property'])): lpip_enum = (proposal.link_proposal_status_details .link_proposal_initiating_product) lps_enum = (proposal.link_proposal_status_details .link_proposal_state) proposals_dict = { 'name': proposal.name, 'advertiser_id': proposal.adveriser_id, 'link_proposal_status_details': { 'link_proposal_initiating_product': LinkProposalInitiatingProduct(lpip_enum).name, 'requestor_email': proposal.link_proposal_status_details.requestor_email, 'link_proposal_state': LinkProposalState(lps_enum).name }, 'advertiser_display_name': proposal.advertiser_display_name, 'validation_email': proposal.validation_email, 'ads_personalization_enabled': proposal.ads_personalization_enabled, 'campaign_data_sharing_enabled': proposal.campaign_data_sharing_enabled, 'cost_data_sharing_enabled': proposal.cost_data_sharing_enabled, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_dv360_link_proposals'].append(proposal_dict) return entities
83b11c1a001a593da07f6aeb4333bad623bb7ee4
3,659,526
import textwrap import os def text_detection_background(text, background=None, hsize=15, vsize=15): """ Given a string TEXT, generate a picture with text in it arguments: TEXT -- a string to be displayed HSIZE -- maximum number of characters in one line VSIZE -- maximum number of lines background -- a file for background. If None, then use white return: path to the desired photo, only one photo """ img_hsize = int(hsize * 640 / 15) img_vsize = int(vsize * 480 / 15) if not background: img = Image.new('RGB', (img_hsize, img_vsize), color = "white") color = (0,0,0) else: img = Image.open(background) # width, height = img.size # left, top, right, bottom = (0, 0, min(width, img_hsize), min(height, img_vsize)) # img = img.crop((left, top, right, bottom)) img = img.resize((img_hsize, img_vsize)) color = decide_font_color(background, pos=(30,30)) # Uses this font, can change to others if needed fnt = ImageFont.truetype(os.path.join(FONT_SRC, "Times_CE_Regular.ttf"), 30) d = ImageDraw.Draw(img) para = textwrap.wrap(text, width=3*hsize) if len(para)<=0: para = [""] try: d.multiline_text((30, 30), '\n'.join(para), fill=color, font=fnt) except: d.multiline_text((30, 30), '\n'.join(para), fill=(0), font=fnt) # d.text((30,30), text, font=fnt, fill=(0,0,0)) filename = os.path.join(TEXT_SRC, text+strftime("-%Y-%m-%d-%H-%M-%S.png", gmtime())) img.save(filename) return [filename]
d65677588130ffab84df210e772208fbfddba99f
3,659,527
def print_sig(expr): """ Arguments: - `expr`: """ return "{0!s} × {1!s}".format(expr.dom, expr.body)
be8d6fb1ad2256e2a825e383859f72db93318864
3,659,528
def is_grounded_concept(c: Concept) -> bool: """ Check if a concept is grounded """ return ( "UN" in c.db_refs and c.db_refs["UN"][0][0].split("/")[1] != "properties" )
2447b289cec20efc2aa359f37a795fd231004030
3,659,529
def _get_form(app, parent_form, factory_method, force_disable_csrf=False): """Create and fill a form.""" class AForm(parent_form): pass with app.test_request_context(): extra = _update_with_csrf_disabled() if force_disable_csrf else {} RF = factory_method(AForm) rf = RF(**extra) rf.profile.username.data = "my username" rf.profile.full_name.data = "My full name" rf.validate() return rf
b109d983dcf123812ede664719ab56f5462e84d4
3,659,530
def get_root_disk_size(): """ Get size of the root disk """ context = pyudev.Context() rootfs_node = get_rootfs_node() size_gib = 0 for device in context.list_devices(DEVTYPE='disk'): # /dev/nvmeXn1 259 are for NVME devices major = device['MAJOR'] if (major == '8' or major == '3' or major == '253' or major == '259'): devname = device['DEVNAME'] if devname == rootfs_node: try: size_gib = parse_fdisk(devname) except Exception as e: LOG.error("Could not retrieve disk size - %s " % e) # Do not break config script, just return size 0 break break return size_gib
4c01e189dfb4460d118fbd9b94c6a07e420c3bb1
3,659,531
import numpy def convert_to_premultiplied_png(file): """ http://stackoverflow.com/questions/6591361/method-for-converting-pngs-to-premultiplied-alpha """ logger.info("converting to premultiplied alpha") im = Img.open(file).convert('RGBA') a = numpy.fromstring(im.tobytes(), dtype=numpy.uint8) a = a.astype(numpy.float64) alpha_layer = a[3::4] / 255.0 a[::4] *= alpha_layer a[1::4] *= alpha_layer a[2::4] *= alpha_layer im = Img.frombytes("RGBA", im.size, a.astype(numpy.uint8).tostring()) f = BytesIO() im.save(f, 'png') f.seek(0) return f
2a2ebf9e3d1152e2d143ba799aab0ff0927653a8
3,659,532
def DSQuery(dstype, objectname, attribute=None): """DirectoryServices query. Args: dstype: The type of objects to query. user, group. objectname: the object to query. attribute: the optional attribute to query. Returns: If an attribute is specified, the value of the attribute. Otherwise, the entire plist. Raises: DSException: Cannot query DirectoryServices. """ ds_path = '/%ss/%s' % (dstype.capitalize(), objectname) cmd = [_DSCL, '-plist', '.', '-read', ds_path] if attribute: cmd.append(attribute) (stdout, stderr, returncode) = RunProcess(cmd) if returncode: raise DSException('Cannot query %s for %s: %s' % (ds_path, attribute, stderr)) plist = NSString.stringWithString_(stdout).propertyList() if attribute: value = None if 'dsAttrTypeStandard:%s' % attribute in plist: value = plist['dsAttrTypeStandard:%s' % attribute] elif attribute in plist: value = plist[attribute] try: # We're copying to a new list to convert from NSCFArray return value[:] except TypeError: # ... unless we can't return value else: return plist
2dea68b5897a46c90d2f8cf24e42519c272e70f1
3,659,533
def calculate_offset(lon, first_element_value): """ Calculate the number of elements to roll the dataset by in order to have longitude from within requested bounds. :param lon: longitude coordinate of xarray dataset. :param first_element_value: the value of the first element of the longitude array to roll to. """ # get resolution of data res = lon.values[1] - lon.values[0] # calculate how many degrees to move by to have lon[0] of rolled subset as lower bound of request diff = lon.values[0] - first_element_value # work out how many elements to roll by to roll data by 1 degree index = 1 / res # calculate the corresponding offset needed to change data by diff offset = int(round(diff * index)) return offset
a55eee1dd11b1b052d67ab1abadfc8087c1a2fe0
3,659,534
def min_mean_col(m: ma.MaskedArray) -> int: """Calculate the index of the column with the smallest mean. """ if ma.count_masked(m) == m.size: return -1 col_mean = np.nanmean(m, axis=0) return np.argmin(col_mean)
499b7d5db38edc222aac6517d87d9df30285cb37
3,659,535
import resnet import sys import os import torch def load_simclrv2(init_args): """ Load pretrained SimCLR-v2 model. """ ckpt_file = init_args["ckpt_file"] model_dir = init_args["model_dir"] # Load the resnet.py that comes with the SimCLR-v2's PyTorch converter sys.path.insert( 0, os.path.join( model_dir, "SimCLRv2-Pytorch", ), ) backbone, _ = resnet.get_resnet(depth=50, width_multiplier=1, sk_ratio=0) backbone.load_state_dict(torch.load(ckpt_file, "cpu")["resnet"]) def forward(x): # return the tensor obtained at the end of the network # prior to global average pooling return backbone(x, apply_fc=False) return backbone, forward
3d5521cf19b2e5c91af8ed4ce55a22e0573445d4
3,659,536
def minekey_read(request, mk_hmac, mk_fid, mk_fversion, mk_iid, mk_depth, mk_type, mk_ext, **kwargs): """ arguments: request, mk_hmac, mk_fid, mk_fversion, mk_iid, mk_depth, mk_type, mk_ext, **kwargs implements: GET /key/(MK_HMAC)/(MK_FID)/(MK_FVERSION)/(MK_IID)/(MK_DEPTH)/(MK_TYPE).(MK_EXT) returns: a suitable HttpResponse object """ if mk_type not in ('data', 'icon'): diag = 'bad minekey method for GET' Event.alert(request, 'minekey_read', diag=diag) return HttpResponseNotFound(diag) try: mk = MineKey(request, hmac=mk_hmac, fid=mk_fid, fversion=mk_fversion, iid=mk_iid, depth=mk_depth, type=mk_type, ext=mk_ext, enforce_hmac_check=True) except: diag = 'bad minekey validation' Event.alert(request, 'minekey_read', diag=diag) if settings.DEBUG: raise return HttpResponseNotFound(diag) try: Event.log(request, 'minekey_read', feed=mk.get_feed(), item=mk.get_item()) return mk.response() except Exception as e: Event.alert(request, 'minekey_read', diag=str(e)) raise
b80db062c71d43759602410cd75decf5eadf3a71
3,659,537
import os def get_file_metadata(folder, video_relative_path): """ """ # SAMPLE FILENAME: XXCam_01_20180517203949574.mp4 # XXXXX_XX_YYYYMMDDHHMMSSmmm.mp4 # 2019/01/01/XXCam-20180502-1727-34996.mp4 # XXCam-01-20180502-1727-34996.mp4 video_filename = os.path.basename(video_relative_path) sub_folder = os.path.dirname(video_relative_path) basename, extension = os.path.splitext(video_filename) filename_parts_u = basename.split('_') filename_parts_d = basename.split('-') if len(filename_parts_u) == 3 and filename_parts_u[2].isdigit() and len(filename_parts_u[2]) == 17: file_date = filename_parts_u[2][0:8] file_time1 = filename_parts_u[2][8:12] file_time2 = filename_parts_u[2][12:17] basename_new = '%s-%s-%s-%s' % (filename_parts_u[0], file_date, file_time1, file_time2) elif len(filename_parts_u) == 3 and filename_parts_u[2].isdigit() and len(filename_parts_u[2]) == 14: # July2019 firmware update on Reolink camera changed filename format, therefore simplify mine! file_date = filename_parts_u[2][0:8] file_time1 = filename_parts_u[2][8:14] # file_time2 = filename_parts_u[2][12:14] basename_new = '%s-%s-%s' % (filename_parts_u[0], file_date, file_time1) # ,file_time2) elif (len(filename_parts_d) == 4 and filename_parts_d[1].isdigit() and len(filename_parts_d[1]) == 8 and filename_parts_d[2].isdigit() and len(filename_parts_d[2]) == 4 and filename_parts_d[3].isdigit() and len(filename_parts_d[3]) == 5): basename_new = basename file_date = filename_parts_d[1] elif (len(filename_parts_d) == 5 and filename_parts_d[2].isdigit() and len(filename_parts_d[2]) == 8 and filename_parts_d[3].isdigit() and len(filename_parts_d[3]) == 4 and filename_parts_d[4].isdigit() and len(filename_parts_d[4]) == 5): basename_new = basename file_date = filename_parts_d[2] else: basename_new = basename file_date = 'NO_DATE' return {'original': video_filename, 'sub_folder': sub_folder, 'source_fullpath': os.path.join(folder, video_relative_path), 'filename_new': '%s%s' % (basename_new, extension), 'basename_new': basename_new, 'basename_original': basename, 'file_date': file_date }
c8fcc163f1b3fa89206d752181d5f814219fe74a
3,659,538
def test_data_alignment(role_value, should_pass, check_model): """Test a custom model which returns a good and alignments from data(). qtmodeltest should capture this problem and fail when that happens. """ class MyModel(qt_api.QAbstractListModel): def rowCount(self, parent=qt_api.QtCore.QModelIndex()): return 1 if parent == qt_api.QtCore.QModelIndex() else 0 def data( self, index=qt_api.QtCore.QModelIndex(), role=qt_api.QtCore.Qt.DisplayRole ): if role == qt_api.QtCore.Qt.TextAlignmentRole: return role_value elif role == qt_api.QtCore.Qt.DisplayRole: if index == self.index(0, 0): return "Hello" return None check_model(MyModel(), should_pass=should_pass)
4ebed3384cf5c694d72235e703b6f9594de5ff7b
3,659,539
def cov(a, b): """Return the sample covariance of vectors a and b""" a = flex.double(a) b = flex.double(b) n = len(a) assert n == len(b) resid_a = a - flex.mean(a) resid_b = b - flex.mean(b) return flex.sum(resid_a*resid_b) / (n - 1)
94505852671e4652f96daa7b8e61f759aeca1dda
3,659,540
from bs4 import BeautifulSoup import re def beautify(soup: BeautifulSoup, rich_terminal: bool = True) -> str: """ Cleans up the raw HTML so it's more presentable. Parse BeautifulSoup HTML and return prettified string """ beautifiedText = str() for i in soup: if rich_terminal: term = Terminal() span_sub = r"{t.italic}\1{t.normal}".format(t=term) strong_sub = r"{t.bold}\1{t.normal}".format(t=term) else: span_sub = r"\1" strong_sub = r"\1" i = re.sub(r'<span class="\w+">(.+)</span>', span_sub, str(i),) i = re.sub(r"<strong>(.+)</strong>", strong_sub, str(i)) beautifiedText += " " + i # Remove leading whitespace. beautifiedText = re.sub(r"^\s+", "", beautifiedText) # Compress all whitespace to a single space. beautifiedText = re.sub(r"\s{2,}", " ", beautifiedText) # Trim whitespace immediately preceding common punctuation. beautifiedText = re.sub(r"\s+([,\)\].;:])", r"\g<1>", beautifiedText) # Trim whitespace immediately following common punctuation. beautifiedText = re.sub(r"([\(])\s+", r"\g<1>", beautifiedText) return beautifiedText
df79666ad0ec9592e1a24325813b59e2d9711636
3,659,541
def design_complexity(design: Design) -> int: """Returns an approximation of the design's complexity to create.""" diversity = 3 * len(design.required) abundance = 2 * sum(design.required.values()) return diversity + abundance + design.additional
b5be6336ce037d010bbb274dc6ce5538ac6ecae8
3,659,542
import torch def approx_q_y(q_z, mu_lookup, logvar_lookup, k=10): """ refer to eq.13 in the paper """ q_z_shape = list(q_z.size()) # (b, z_dim) mu_lookup_shape = [mu_lookup.num_embeddings, mu_lookup.embedding_dim] # (k, z_dim) logvar_lookup_shape = [logvar_lookup.num_embeddings, logvar_lookup.embedding_dim] # (k, z_dim) if not mu_lookup_shape[0] == k: raise ValueError("mu_lookup_shape (%s) does not match the given k (%s)" % ( mu_lookup_shape, k)) if not logvar_lookup_shape[0] == k: raise ValueError("logvar_lookup_shape (%s) does not match the given k (%s)" % ( logvar_lookup_shape, k)) if not q_z_shape[1] == mu_lookup_shape[1]: raise ValueError("q_z_shape (%s) does not match mu_lookup_shape (%s) in dimension of z" % ( q_z_shape, mu_lookup_shape)) if not q_z_shape[1] == logvar_lookup_shape[1]: raise ValueError("q_z_shape (%s) does not match logvar_lookup_shape (%s) in dimension of z" % ( q_z_shape, logvar_lookup_shape)) # TODO: vectorization and don't use for loop batch_size = q_z_shape[0] log_q_y_logit = torch.zeros(batch_size, k).type(q_z.type()) for k_i in torch.arange(0, k): mu_k, logvar_k = mu_lookup(k_i), logvar_lookup(k_i) log_q_y_logit[:, k_i] = log_gauss(q_z, mu_k, logvar_k) + np.log(1 / k) q_y = torch.nn.functional.softmax(log_q_y_logit, dim=1) return log_q_y_logit, q_y
4bc9e18f7c260e11f4085c7deea993e375b87124
3,659,543
def svn_repos_get_logs2(*args): """ svn_repos_get_logs2(svn_repos_t repos, apr_array_header_t paths, svn_revnum_t start, svn_revnum_t end, svn_boolean_t discover_changed_paths, svn_boolean_t strict_node_history, svn_repos_authz_func_t authz_read_func, svn_log_message_receiver_t receiver, apr_pool_t pool) -> svn_error_t """ return apply(_repos.svn_repos_get_logs2, args)
8580b4df10d6a6ebecbea960e14cd2ca79720beb
3,659,544
def error_function(theta, X, y): """Error function J definition""" diff = np.dot(X, theta) - y return (1. / 2 * m) * np.dot(np.transpose(diff), diff)
0762651fe9f33107a4e198e70319f77a5ae50e0b
3,659,545
def register(operation_name): """ Registers the decorated class as an Operation with the supplied operation name :param operation_name: The identifying name for the Operation """ def wrapper(clazz): if operation_name not in OPERATIONS: OPERATIONS[operation_name] = clazz return clazz return wrapper
036612a64d987ede2546bd5dbc9d848e6ed6c48b
3,659,546
def url_exists(video): """ check each source for a url for this video; return True as soon as one is found. If none are found, return False """ max_timeout = int(kodi.get_setting('source_timeout')) logger.log('Checking for Url Existence: |%s|' % (video), log_utils.LOGDEBUG) for cls in relevant_scrapers(video.video_type): if kodi.get_setting('%s-sub_check' % (cls.get_name())) == 'true': scraper_instance = cls(max_timeout) url = scraper_instance.get_url(video) if url: logger.log('Found url for |%s| @ %s: %s' % (video, cls.get_name(), url), log_utils.LOGDEBUG) return True logger.log('No url found for: |%s|' % (video), log_utils.LOGDEBUG) return False
ee3c507e824255031e90eac92fbc0e3cc54ca788
3,659,547
import os def test_actions_explicit_get_collector_action_for_unexisting_terminal(): """ Test for situation when `get_collector` has an action for un-existing terminal. """ action = get_collector() @action def INT(context, value): return int(value) @action def STRING(context, value): return "#{}#".format(value) @action def STRING2(context, value): return "#{}#".format(value) grammar = Grammar.from_file(os.path.join(THIS_FOLDER, 'grammar.pg')) Parser(grammar, actions=action.all)
896e4cf91f2c6ce8949974e501c06ac3f9a8745f
3,659,548
def log2_grad(orig, grad): """Returns [grad * 1 / (log(2) * x)]""" x = orig.args[0] ones = ones_like(x) two = const(2.0, dtype=x.checked_type.dtype) return [grad * ones / (log(two) * x)]
c17d7eeee43e64e0eeb7feb86f357374cc2516e4
3,659,549
import posixpath import requests def _stream_annotation(file_name, pn_dir): """ Stream an entire remote annotation file from Physionet. Parameters ---------- file_name : str The name of the annotation file to be read. pn_dir : str The PhysioNet directory where the annotation file is located. Returns ------- ann_data : ndarray The resulting data stream in numpy array format. """ # Full url of annotation file url = posixpath.join(config.db_index_url, pn_dir, file_name) # Get the content response = requests.get(url) # Raise HTTPError if invalid url response.raise_for_status() # Convert to numpy array ann_data = np.fromstring(response.content, dtype=np.dtype('<u1')) return ann_data
8a1168562b87f27cc035d21b7f91cb23a611d0b4
3,659,550
def get_scenarios(): """ Return a list scenarios and values for parameters in each of them :return: """ # Recover InteractiveSession isess = deserialize_isession_and_prepare_db_session() if isess and isinstance(isess, Response): return isess scenarios = get_scenarios_in_state(isess.state) return build_json_response(scenarios, 200)
2812cab14347f03e208d5c3b6399ffa954dfe843
3,659,551
def download() -> str: """ Returns a download of the active files. :return: the zip files needs to be downloaded. """ file_manager = utility.load_file_manager() response = make_response(file_manager.zip_active_files( "scrubbed_documents.zip")) # Disable download caching response.headers["Cache-Control"] = \ "max-age=0, no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response
a507c6fd2281226a0db4f4e9e84d2c4f0e6e9562
3,659,552
import subprocess def evaluate_test_arff(model_path, test_arff_path, out_path): """ Obtain predictions of test_file using the trained model in model_path :param output_folder: :param output_name: :param model_path: :param test_file: """ # PREDICTIONS FILE HEADERS: INSTANCE, ACTUAL, PREDICTED, ERROR bash_file_path = "../../data/bash_scripts/explorer_test_model.sh " with open(out_path, 'w') as fi: fi.close() command = "".join([bash_file_path, test_arff_path, " ", model_path, " ", out_path]) print(command) subprocess.call(command, shell=True) remove_lines(out_path) # remove headers of prediction file df_participant = pd.read_csv(out_path, header=0, sep=",") return df_participant
46f311efe952e63eceb8c93f56c8d53487ed13ae
3,659,553
import pickle def load_from_pickle_file(filepath): """ Loads a pickle file into a python variable """ with open(filepath, "rb") as f: python_obj = pickle.load(f) return python_obj
8ad8b947e762590d1be8d6b3ca4b519293692f09
3,659,554
from aiida.orm import Dict from aiida_quantumespresso.utils.resources import get_default_options def generate_inputs_pw(fixture_code, generate_structure, generate_kpoints_mesh, generate_upf_data): """Generate default inputs for a `PwCalculation.""" def _generate_inputs_pw(): """Generate default inputs for a `PwCalculation.""" inputs = { 'code': fixture_code('quantumespresso.pw'), 'structure': generate_structure(), 'kpoints': generate_kpoints_mesh(2), 'parameters': Dict(dict={ 'CONTROL': { 'calculation': 'scf' }, 'SYSTEM': { 'ecutrho': 240.0, 'ecutwfc': 30.0 } }), 'pseudos': { 'Si': generate_upf_data('Si') }, 'metadata': { 'options': get_default_options() } } return inputs return _generate_inputs_pw
fbe0a332a011b1909380275b1f70444b2dfb5d17
3,659,555
def connected_components(edge_index, num_nodes=None): """Find the connected components of a given graph. Args: edge_index (LongTensor): Edge coordinate matrix. num_nodes (int, optional): Number of nodes. Defaults to None. Returns: LongTensor: Vector assigning each node to its component index. """ if num_nodes is None: num_nodes = edge_index.max().item() + 1 device = edge_index.device row, col = edge_index.cpu() out = cc_cpu.connected_components(row, col, num_nodes) return out.to(device)
cb0b620fbd5577375b2ac79d62194537e61a1204
3,659,556
import tqdm def assembly2graph(path=DATA_PATH): """Convert assemblies (assembly.json) to graph format""" """Return a list of NetworkX graphs""" graphs = [] input_files = get_input_files(path) for input_file in tqdm(input_files, desc="Generating Graphs"): ag = AssemblyGraph(input_file) graph = ag.get_graph_networkx() graphs.append(graph) return graphs, input_files
46f2ed913c5047d68ee523f1a23382c2036fc1d7
3,659,557
def _get_default_backing(backing): """ _get_default_backing(backing) Returns the prefered backing store - if user provides a valid Backing object, use it - if there is a default_backing object instantiated, use it - if the user provided a configuration dict, use it to create a new default_backing object - otherwise, create a default_backing object using our defaults. """ # Probably they didn't mean to do this... global default_backing, default_backing_config if isinstance(backing, Backing): return backing if default_backing: return default_backing elif type(backing) is dict: default_backing = Backing(**backing) else: # create a new default backing default_backing = Backing(**default_backing_config) return default_backing
60f878ee730bea33b93b88e88dfe29885f6fac85
3,659,558
def slice(request, response, start, end=None): """Send a byte range of the response body :param start: The starting offset. Follows python semantics including negative numbers. :param end: The ending offset, again with python semantics and None (spelled "null" in a query string) to indicate the end of the file. """ content = resolve_content(response) response.content = content[start:end] return response
450e43afb988736dee991bcf284d5b92e11aec74
3,659,559
import warnings def get_ps(sdfits, scan, ifnum=0, intnum=None, plnum=0, fdnum=0, method='vector', avgf_min=256): """ Parameters ---------- sdfits : scan : int Scan number. plnum : int Polarization number. method : {'vector', 'classic'}, optional Method used to compute the source temperature. If set to ``'vector'`` it will use Eq. (16) of Winkel et al. (2012). If set to ``'classic'`` it will use the same method as GBTIDL. The default is ``'vector'``. Returns ------- """ ps_scan = sdfits.get_scans(scan, ifnum=ifnum, intnum=intnum, plnum=plnum) rows = ps_scan.table obsmode = rows["OBSMODE"] last_on = rows["LASTON"] last_off = rows["LASTOFF"] procnum = rows["PROCSEQN"] source = np.unique(rows['OBJECT'])[0] tcal = np.average(rows['TCAL'], axis=0) procname, swstate, swtchsig = obsmode[0].split(':') if procname not in ["OffOn", "OnOff"]: warnings.warn(f"Selected scan is not OnOff or OffOn, it is: {procname}." f"Cannot get Tcal from this scan.") return None scan_on, scan_off = utils.get_ps_scan_pair(scan, procnum, procname) sou_on = sdfits.get_scans(scan_on, sig="T", cal="T", ifnum=ifnum, intnum=intnum, plnum=plnum) sou_off = sdfits.get_scans(scan_on, sig="T", cal="F", ifnum=ifnum, intnum=intnum, plnum=plnum) off_on = sdfits.get_scans(scan_off, sig="T", cal="T", ifnum=ifnum, intnum=intnum, plnum=plnum) off_off = sdfits.get_scans(scan_off, sig="T", cal="F", ifnum=ifnum, intnum=intnum, plnum=plnum) if method == 'vector': sou_on.average() sou_off.average() off_on.average() off_off.average() off_freq = off_off.freq sou_freq = sou_on.freq nchan = off_on.data.shape[0] facs = utils.factors(nchan) avgf = np.min(facs[facs >= avgf_min]) kappa_off = get_kappa(off_on.data, off_off.data, avgf=avgf) kappa_freq = off_freq.reshape(nchan//avgf, avgf).mean(axis=1) # Interpolate back to high frequency resolution. pt = np.argsort(kappa_freq) pi = np.argsort(sou_freq) kappa_interp = np.interp(sou_freq.to('Hz').value[pi], kappa_freq.to('Hz').value[pt], kappa_off) # Compute the source temperature (Eq. (16) in Winkel et al. 2012). tsou_on = (kappa_interp + 1.)*tcal*(sou_on.data - off_on.data)/off_on.data tsou_off = kappa_interp*tcal*(sou_off.data - off_off.data)/off_off.data # Average. tsou = 0.5*(tsou_on + tsou_off) elif method == 'gbtidl': # Eqs. (1) and (2) from Braatz (2009, GBTIDL calibration guide) # https://www.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf tsys = gbtidl_tsys(off_on.data, off_off.data, tcal) sig = 0.5*(sou_on.data + sou_off.data) ref = 0.5*(off_on.data + off_off.data) ta = gbtidl_sigref2ta(sig, ref, tsys) tint_sou = 0.5*(sou_on.table["EXPOSURE"] + sou_off.table["EXPOSURE"]) tint_off = 0.5*(off_on.table["EXPOSURE"] + off_off.table["EXPOSURE"]) tint = 0.5*(tint_sou + tint_off) dnu = np.mean(sou_on.table["CDELT1"]) tsou = np.average(ta, axis=0, weights=dnu*tint*np.power(tsys, -2.)) elif method == 'classic': tsys = classic_tsys(off_on.data, off_off.data, tcal) ta_on = (sou_on.data - off_on.data)/off_on.data*(tsys[:,np.newaxis] + tcal) ta_off = (sou_off.data - off_off.data)/off_off.data*(tsys[:,np.newaxis]) tint_sou = 0.5*(sou_on.table["EXPOSURE"] + sou_off.table["EXPOSURE"]) tint_off = 0.5*(off_on.table["EXPOSURE"] + off_off.table["EXPOSURE"]) tint = 0.5*(tint_sou + tint_off) dnu = np.mean(sou_on.table["CDELT1"]) ta_on = np.average(ta_on, axis=0, weights=dnu*tint_sou*np.power(tsys, -2.)) ta_off = np.average(ta_off, axis=0, weights=dnu*tint_off*np.power(tsys, -2.)) tsou = 0.5*(ta_on + ta_off) return tsou
8226f4e38ab7fce3c1c7f66c88b275e7c7798d86
3,659,560
import click def choiceprompt(variable: Variable) -> Binding: """Prompt to choose from several values for the given name.""" if not variable.choices: raise ValueError("variable with empty choices") choices = {str(number): value for number, value in enumerate(variable.choices, 1)} lines = [ f"Select {variable.name}:", *[f"{number} - {value}" for number, value in choices.items()], "Choose from {}".format(", ".join(choices.keys())), ] choice = click.prompt( "\n".join(lines), type=click.Choice(list(choices)), default="1", show_choices=False, ) return bind(variable, choices[choice])
78700032f93abaca2227d653d5f199e6dbf3b4ba
3,659,561
import urllib import certifi import urllib3 import http import logging def GetCLInfo(review_host, change_id, auth_cookie='', include_messages=False, include_detailed_accounts=False): """Get the info of the specified CL by querying the Gerrit API. Args: review_host: Base URL to the API endpoint. change_id: Identity of the CL to query. auth_cookie: Auth cookie if the API is not public. include_messages: Whether to pull and return the CL messages. include_detailed_accounts: Whether to pull and return the email of users in CL messages. Returns: An instance of `CLInfo`. Optional fields might be `None`. Raises: GitUtilException if error occurs while querying the Gerrit API. """ url = f'{review_host}/changes/{change_id}' params = [] if include_messages: params.append(('o', 'MESSAGES')) if include_detailed_accounts: params.append(('o', 'DETAILED_ACCOUNTS')) if params: url = url + '?' + urllib.parse.urlencode(params) pool_manager = PoolManager(ca_certs=certifi.where()) pool_manager.headers['Cookie'] = auth_cookie pool_manager.headers['Content-Type'] = 'application/json' pool_manager.headers['Connection'] = 'close' try: r = pool_manager.urlopen('GET', url) except urllib3.exceptions.HTTPError: raise GitUtilException(f'invalid url {url}') if r.status != http.client.OK: raise GitUtilException(f'request unsuccessfully with code {r.status}') try: # the response starts with a magic prefix line for preventing XSSI which # should be stripped. stripped_json = r.data.split(b'\n', 1)[1] json_data = json_utils.LoadStr(stripped_json) except Exception: raise GitUtilException('Response format Error: %r' % (r.data, )) def _ConvertGerritCLMessage(json_data): return CLMessage( json_data['message'], json_data['author']['email'] if include_detailed_accounts else None) try: return CLInfo(json_data['change_id'], json_data['_number'], _GERRIT_CL_STATUS_TO_CL_STATUS[json_data['status']], [_ConvertGerritCLMessage(x) for x in json_data['messages']] if include_messages else None) except Exception as ex: logging.debug('Unexpected Gerrit API response for CL info: %r', json_data) raise GitUtilException('failed to parse the Gerrit API response') from ex
b43f5f47ca957aefaaf0764b61318d87c4a614ec
3,659,562
import base64 import hashlib def rehash(file_path): """Return (hash, size) for a file with path file_path. The hash and size are used by pip to verify the integrity of the contents of a wheel.""" with open(file_path, 'rb') as file: contents = file.read() hash = base64.urlsafe_b64encode(hashlib.sha256(contents).digest()).decode('latin1').rstrip('=') size = len(contents) return hash, size
167449640e8cbf17d36e7221df3490a12381dd8e
3,659,563
import requests def _magpie_update_services_conflict(conflict_services, services_dict, request_cookies): # type: (List[Str], ServicesSettings, AnyCookiesType) -> Dict[Str, int] """ Resolve conflicting services by name during registration by updating them only if pointing to different URL. """ magpie_url = get_magpie_url() statuses = dict() for svc_name in conflict_services: statuses[svc_name] = 409 svc_url_new = services_dict[svc_name]["url"] svc_url_db = "{magpie}/services/{svc}".format(magpie=magpie_url, svc=svc_name) svc_resp = requests.get(svc_url_db, cookies=request_cookies) svc_info = get_json(svc_resp).get(svc_name) svc_url_old = svc_info["service_url"] if svc_url_old != svc_url_new: svc_info["service_url"] = svc_url_new res_svc_put = requests.patch(svc_url_db, data=svc_info, cookies=request_cookies) statuses[svc_name] = res_svc_put.status_code print_log("[{url_old}] => [{url_new}] Service URL update ({svc}): {resp}" .format(svc=svc_name, url_old=svc_url_old, url_new=svc_url_new, resp=res_svc_put.status_code), logger=LOGGER) return statuses
71f72680aebd1fd781c5cbd9e77eeba06a64062e
3,659,564
def rtc_runner(rtc): """Resolved tool contract runner.""" return run_main(polish_chunks_pickle_file=rtc.task.input_files[0], sentinel_file=rtc.task.input_files[1], subreads_file=rtc.task.input_files[2], output_json_file=rtc.task.output_files[0], max_nchunks=rtc.task.max_nchunks)
c9d5a1c23e5b88c6d7592dde473dc41123616a77
3,659,565
from typing import Any import json def dict_to_json_str(o: Any) -> str: """ Converts a python object into json. """ json_str = json.dumps(o, cls=EnhancedJSONEncoder, sort_keys=True) return json_str
8377cee2e25d5daeefd7a349ede02f7134e052b2
3,659,566
def paramid_to_paramname(paramid): """Turn a parameter id number into a parameter name""" try: return param_info[paramid]['n'] except KeyError: return "UNKNOWN_%s" % str(hex(paramid))
c5e47c6754448a20d79c33b6b501039b1463108e
3,659,567
def max_dist_comp(G, cc0, cc1): """ Maximum distance between components Parameters ---------- G : nx.graph Graph cc0 : list Component 0 cc1 : list Compoennt 1 Returns ------- threshold : float Maximum distance """ # Assertions assert isinstance(G, nx.Graph), "G is not a NetworkX graph" # Calculation threshold = 0 for n0 in cc0: for n1 in cc1: distance = metrics.distance_between_nodes(G, n0, n1) if distance > threshold: threshold = distance return threshold
5df633ee746d537462b84674dc5adadd6f6f7e53
3,659,568
def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids) ) return features
02e4a731c818e0833152aa8e44d6a49e523ef1fb
3,659,569
def exp(var): """ Returns variable representing exp applied to the input variable var """ result = Var(np.exp(var.val)) result.parents[var] = var.children[result] = np.exp(var.val) return result
d2811bbb240da33ce158a8bff5739ace2275da0e
3,659,570
from typing import List from typing import Any from typing import Callable def invalidate_cache( key: str = None, keys: List = [], obj: Any = None, obj_attr: str = None, namespace: str = None, ): """Invalidates a specific cache key""" if not namespace: namespace = HTTPCache.namespace if key: keys = [key] def wrapper(func: Callable): @wraps(func) async def inner(*args, **kwargs): try: # extracts the `id` attribute from the `obj_attr` giparameter passed to the `@cache` method _obj = kwargs.get(f"{obj}", None) _keys = await HTTPKeys.generate_keys( keys=keys, config=HTTPCache, obj=_obj, obj_attr=obj_attr ) _cache = HTTPCacheBackend( redis=HTTPCache.redis_client, namespace=namespace ) await _cache.invalidate_all(keys=_keys) _computed_response = await func(*args, **kwargs) return _computed_response except Exception as e: log_error(msg=f"Cache Error: {e}", e=e, method="cache") return await func(*args, **kwargs) return inner return wrapper
1b200db81db9d1134bbbbb8a09d3b57f5c6623dc
3,659,571
def read_dataset(filename): """Reads in the TD events contained in the N-MNIST/N-CALTECH101 dataset file specified by 'filename'""" # NMIST: 34×34 pixels big f = open(filename, 'rb') raw_data = np.fromfile(f, dtype=np.uint8) f.close() raw_data = np.uint32(raw_data) all_y = raw_data[1::5] all_x = raw_data[0::5] all_p = (raw_data[2::5] & 128) >> 7 #bit 7 all_ts = ((raw_data[2::5] & 127) << 16) | (raw_data[3::5] << 8) | (raw_data[4::5]) #Process time stamp overflow events time_increment = 2 ** 13 overflow_indices = np.where(all_y == 240)[0] for overflow_index in overflow_indices: all_ts[overflow_index:] += time_increment #Everything else is a proper td spike td_indices = np.where(all_y != 240)[0] events = np.stack([all_x[td_indices], all_y[td_indices], all_ts[td_indices], all_p[td_indices]], axis=1).astype(np.float32) # events[:,3] = 2*events[:,3]-1 return events
74861968e36d3e357ce62f615456aa02eb3bd28b
3,659,572
def prge_annotation(): """Returns an annotation with protein/gene entities (PRGE) identified. """ annotation = {"ents": [{"text": "p53", "label": "PRGE", "start": 0, "end": 0}, {"text": "MK2", "label": "PRGE", "start": 0, "end": 0}], "text": "p53 and MK2", "title": ""} return annotation
dda417c1c1a1146482f4a3340741d938714dbf30
3,659,573
from scipy.spatial import Delaunay def inner_points_mask(points): """Mask array into `points` where ``points[msk]`` are all "inner" points, i.e. `points` with one level of edge points removed. For 1D, this is simply points[1:-1,:] (assuming ordered points). For ND, we calculate and remove the convex hull. Parameters ---------- points : nd array (npoints, ndim) Returns ------- msk : (npoints, ndim) Bool array. """ msk = np.ones((points.shape[0],), dtype=bool) if points.shape[1] == 1: assert (np.diff(points[:,0]) >= 0.0).all(), ("points not monotonic") msk[0] = False msk[-1] = False else: tri = Delaunay(points) edge_idx = np.unique(tri.convex_hull) msk.put(edge_idx, False) return msk
d81788fdbe3f19f67719951b319bcdd5e01d4d60
3,659,574
from typing import Union import torch from typing import Tuple from typing import List def array2list(X_train: Union[np.ndarray, torch.Tensor], y_train: Union[np.ndarray, torch.Tensor], X_test: Union[np.ndarray, torch.Tensor], y_test: Union[np.ndarray, torch.Tensor], batch_size: int, memory_alloc: float = 4 ) -> Union[Tuple[List[np.ndarray]], Tuple[List[torch.Tensor]]]: """ Splits train and test numpy arrays or torch tensors into lists of arrays/tensors of a specified size. The remainders are not included. """ all_data = [X_train, y_train, X_test, y_test] arrsize = sum([get_array_memsize(x) for x in all_data]) store_on_cpu = (arrsize / 1e9) > memory_alloc X_train = array2list_(X_train, batch_size, store_on_cpu) y_train = array2list_(y_train, batch_size, store_on_cpu) X_test = array2list_(X_test, batch_size, store_on_cpu) y_test = array2list_(y_test, batch_size, store_on_cpu) return X_train, y_train, X_test, y_test
8b4703b9296a786d24ae97edf142fc917d9a3b07
3,659,575
def livecoding_redirect_view(request): """ livecoding oath2 fetch access token after permission dialog """ code = request.GET.get('code') if code is None: return HttpResponse("code param is empty/not found") try: url = "https://www.livecoding.tv/o/token/" data = dict(code=code, grant_type='authorization_code', redirect_uri=LIVECODING_REDIRECT_URI, client_id=LIVECODING_KEY, client_secret=LIVECODING_SECRET) response = requests.post(url, data=data) except urllib2.URLError as e: print(e) return HttpResponse("Failed to make POST request to fetch token") res = json.loads(response.content) print res access_token = res['access_token'] print(access_token) user = User.objects.get(username='admin') print user a, created = AccessToken.objects.get_or_create(user=user) print a, created a.access_token = access_token a.save() print(a) redirect = request.GET.get('redirect') if redirect is None: return HttpResponse(response.content) else: return HttpResponseRedirect(redirect)
acf06a996da8b70d982fa670080b48faeb452f60
3,659,576
from typing import OrderedDict def sort_dict(value): """Sort a dictionary.""" return OrderedDict((key, value[key]) for key in sorted(value))
93e03b64d44ab79e8841ba3ee7a3546c1e38d6e4
3,659,577
def hyb_stor_capacity_rule(mod, prj, prd): """ Power capacity of a hybrid project's storage component. """ return 0
86ed72e48738df66fca945ff8aaf976f0a7d14e0
3,659,578
def gilr_layer_cpu(X, hidden_size, nonlin=tf.nn.elu, name='gilr'): """ g_t = sigmoid(Ux_t + b) h_t = g_t h_{t-1} + (1-g_t) f(Vx_t + c) """ with vscope(name): n_dims = X.get_shape()[-1].value act = fc_layer(X, 2 * hidden_size, nonlin=tf.identity) gate, impulse = tf.split(act, 2, len(act.shape) - 1) gate = tf.sigmoid(gate) impulse = nonlin(impulse) return s_linear_recurrence_cpu(gate, (1-gate) * impulse)
fce2d10be0b8ccb5923d1781795d08b562d602bf
3,659,579
from typing import Callable from typing import Awaitable from re import A from typing import Tuple import asyncio async def retry(f: Callable[..., Awaitable[A]], schedule: Schedule[Exception, Tuple[OpinionT, float]]): """ Run an awaitable computation, retrying on failures according to a schedule. """ while True: try: result = await f() except Exception as ex: try: opinion, delay = schedule.update(ex) except ScheduleConcluded: raise ex from None else: await asyncio.sleep(delay) # TODO: do something with opinion yield (ex, opinion) else: return result
d59367da8ae63a4932948b55c7ffcdcc5c8b3c2d
3,659,580
import torch import os def dual_solve_u(v, s, alpha, eps, verbose=False, n_iters=100, gtol=0): """ min_{u>=0} max_pi L(pi, u, v) = E_xy [ u(x)alpha(x) + v(y)beta(y) + Softplus(1/eps)(s-u-v) ], where u = min{u>=0 : E_y[pi(x,y)] <= alpha(x)} find exact u s.t. E_y[pi(x,y)] == alpha(x) """ alpha = torch.as_tensor(alpha, device=s.device).clip(0, 1) eps = torch.as_tensor(eps, device=s.device) z = alpha.log() - (1 - alpha).log() if alpha.amax() <= 0 or alpha.amin() >= 1: # z = +-infinity u = -z * torch.ones_like(s[:, 0]) return u, 0 v_inp = torch.as_tensor(v, device=s.device).reshape((1, -1)) if 'CVX_STABLE' in os.environ and int(os.environ['CVX_STABLE']): v = v_inp else: s = s_u_v(s, None, v) v = None u_min = s_u_v(s, None, v).amin(1) - z * eps - 1e-3 u_max = s_u_v(s, None, v).amax(1) - z * eps + 1e-3 u_guess = [ # avoids large negative prior_score when s>=0 if most valid cases torch.zeros_like(u_min) + (0 - v_inp).amin() - z * eps - 1e-3, ] # u_guess.extend( # s_u_v(s, None, v).topk( # (alpha * s.shape[1] + 1).clip(None, s.shape[1]).int() # ).values[:, -3:].T # ) assert (grad_u(u_min, v, s, alpha, eps) <= 0).all() assert (grad_u(u_max, v, s, alpha, eps) >= 0).all() for i in range(n_iters): if i < len(u_guess): u = u_guess[i] else: u = (u_min + u_max) / 2 g = grad_u(u, v, s, alpha, eps) assert not u.isnan().any() if g.abs().max() < gtol: break u_min = torch.where(g < 0, u, u_min) u_max = torch.where(g > 0, u, u_max) return u, (i + 1)
867f02897568b84a33f5fe5c5c41795e69b3b08d
3,659,581
import urllib import json def activation(formula=None, instrument=None, flux=None, cdratio=0, fastratio=0, mass=None, exposure=24, getdata=False): """Calculate sample activation using the FRM II activation web services. ``formula``: the chemical formula, see below for possible formats The *flux* can be specified either by: ``instrument``: the instrument name to select flux data or: ``flux``: The thermal flux (for cold instruments use the equivalent thermal flux) ``cdratio``: The ratio between full flux and flux with 1mm Cd in the beam, 0 to deactivate ``fastratio``: Thermal/fast neutron ratio, 0 to deactivate ``mass``: the sample mass in g ``exposure``: exposure time in h, default 24h ``getdata``: In addition to printing the result table, return a dict with the full results for further processing **Formula input format** Formula: ``CaCO3`` Formula with fragments: ``CaCO3+6H2O`` Formula with parentheses: ``HO ((CH2)2O)6 H`` Formula with isotope: ``CaCO[18]3+6H2O`` Counts can be integer or decimal: ``CaCO3+(3HO1.5)2`` Mass fractions use %wt, with the final portion adding to 100%: ``10%wt Fe // 15% Co // Ni`` Volume fractions use %vol, with the final portion adding to 100%: ``10%vol [email protected] // [email protected]`` For volume fractions you have to specify the density using ``@<density>``! Mixtures can nest. The following is a 10% salt solution by weight \ mixed 20:80 by volume with D2O: ``20%vol (10%wt [email protected] // H2O@1) // D2O@1`` """ if formula is None: try: # preparation for a future enhanced sample class formula = session.experiment.sample.formula except (ConfigurationError, AttributeError): # ConfigurationError is raised if no experiment is in session pass if formula is None: raise UsageError('Please give a formula') if flux: instrument = 'Manual' if instrument is None: try: instrument = session.instrument.instrument or None except ConfigurationError: pass if instrument is None: raise UsageError('Please specifiy an instrument or flux') if mass is None: try: formula = session.experiment.sample.mass except (ConfigurationError, AttributeError): pass if mass is None: raise UsageError('Please specify the sample mass') qs = '?json=1&formula=%(formula)s&instrument=%(instrument)s&mass=%(mass)g' \ % locals() if flux: qs += '&fluence=%(flux)f&cdratio=%(cdratio)f&fastratio=%(fastratio)f' \ % locals() qs = ACTIVATIONURL + qs try: with urllib.request.urlopen(qs) as response: data = json.load(response) except urllib.error.HTTPError as e: session.log.warning('Error opening: %s', qs) session.log.warning(e) return None if data['ecode'] == 'unknown instrument' and flux is None: session.log.warning('Instrument %s unknown to calculator, ' 'specify flux manually', instrument) session.log.info('Known instruments') printTable(['instrument'], [(d, ) for d in data['instruments']], session.log.info) if data['result']['activation']: h = data['result']['activation']['headers'] th = [h['isotope'], h['daughter'], h['reaction'], h['Thalf_str']] for ha in h['activities']: th.append(ha) rows = [] for r in data['result']['activation']['rows']: rd = [r['isotope'], r['daughter'], r['reaction'], r['Thalf_str']] for a in r['activities']: rd.append('%.3g' % a if a > 1e-6 else '<1e-6') rows.append(rd) dr = ['', '', '', 'Dose (uSv/h)'] for d in data['result']['activation']['doses']: dr.append('%.3g' % d) rows.append(dr) printTable(th, rows, session.log.info) else: session.log.info('No activation') if getdata: return data return
40588f5d5d76625b759f6642205b28aba8b9ceb8
3,659,582
def wrap_parfor_blocks(parfor, entry_label = None): """wrap parfor blocks for analysis/optimization like CFG""" blocks = parfor.loop_body.copy() # shallow copy is enough if entry_label == None: entry_label = min(blocks.keys()) assert entry_label > 0 # we are using 0 for init block here # add dummy jump in init_block for CFG to work blocks[0] = parfor.init_block blocks[0].body.append(ir.Jump(entry_label, blocks[0].loc)) for block in blocks.values(): if len(block.body) == 0 or (not block.body[-1].is_terminator): block.body.append(ir.Jump(entry_label, block.loc)) return blocks
03528c18c9cd1f8d9671d12e0a4fa8668003305b
3,659,583
from typing import Counter def frequency_of_occurrence(words, specific_words=None): """ Returns a list of (instance, count) sorted in total order and then from most to least common Along with the count/frequency of each of those words as a tuple If specific_words list is present then SUM of frequencies of specific_words is returned """ freq = sorted(sorted(Counter(words).items(), key=itemgetter(0)), key=itemgetter(1), reverse=True) if not specific_words or specific_words==None: return freq else: frequencies = 0 for (inst, count) in freq: if inst in specific_words: frequencies += count return float(frequencies)
a98670a89e843774bd1237c0d2e518d2cd8fb242
3,659,584
from typing import Union def cache_remove_all( connection: 'Connection', cache: Union[str, int], binary=False, query_id=None, ) -> 'APIResult': """ Removes all entries from cache, notifying listeners and cache writers. :param connection: connection to Ignite server, :param cache: name or ID of the cache, :param binary: (optional) pass True to keep the value in binary form. False by default, :param query_id: (optional) a value generated by client and returned as-is in response.query_id. When the parameter is omitted, a random value is generated, :return: API result data object. Contains zero status on success, non-zero status and an error description otherwise. """ query_struct = Query( OP_CACHE_REMOVE_ALL, [ ('hash_code', Int), ('flag', Byte), ], query_id=query_id, ) return query_struct.perform( connection, query_params={ 'hash_code': cache_id(cache), 'flag': 1 if binary else 0, }, )
81e7cdbae9b3a04e205e15275dee2c45caa96d36
3,659,585
import json from typing import OrderedDict import os import re def transform_bundle(bundle_uuid, bundle_version, bundle_path, bundle_manifest_path, extractor=None): """ This function is used with the ETL interface in dcplib.etl.DSSExtractor.extract. Given a bundle ID and directory containing its medatata JSON files, it produces an intermediate representation of the bundle and its files ready to be inserted into the database by BundleLoader. """ result = dict(uuid=bundle_uuid, version=bundle_version, manifest=json.load(open(bundle_manifest_path)), aggregate_metadata={}, files=OrderedDict()) # Load and process all the metadata files; construct the "aggregate_metadata" doc: # - Singleton metadata files get inserted under their name minus the extension (project.json => {"project": {...}}) # - Numbered metadata files are put in an array (assay_0.json, assay_1.json => {"assay": [{...0...}, {...1...}]}) bundle_fetched_files = sorted(os.listdir(bundle_path)) if os.path.exists(bundle_path) else [] for f in bundle_fetched_files: if re.match(r"(.+)_(\d+).json", f): metadata_key, index = re.match(r"(.+)_(\d+).json", f).groups() elif re.match(r"(.+).json", f): metadata_key, index = re.match(r"(.+).json", f).group(1), None else: metadata_key, index = f, None with open(os.path.join(bundle_path, f)) as fh: file_doc = json.load(fh) if index is None: result["aggregate_metadata"][metadata_key] = file_doc else: result["aggregate_metadata"].setdefault(metadata_key, []) result["aggregate_metadata"][metadata_key].append(file_doc) for fm in result["manifest"]["files"]: if f == fm["name"] and "schema_type" in file_doc: result["files"][fm["name"]] = dict(fm, body=file_doc, schema_type=file_doc['schema_type']) # For all other (non-metadata) files from the bundle manifest, insert them with a default body # indicating an empty schema type. for fm in result["manifest"]["files"]: if fm["name"] not in result["files"]: result["files"][fm["name"]] = dict(fm, body=None, schema_type=None) # Flatten the file list while preserving order. result["files"] = list(result["files"].values()) return result
dc42d07ff69a0a6b6f1778064153cd521151da4e
3,659,586
from typing import List def choices_function() -> List[str]: """Choices functions are useful when the choice list is dynamically generated (e.g. from data in a database)""" return ['a', 'dynamic', 'list', 'goes', 'here']
30b4b05435bacc0a42c91a3f0be09a90098a012f
3,659,587
def GetInfraPythonPath(hermetic=True, master_dir=None): """Returns (PythonPath): The full working Chrome Infra utility path. This path is consistent for master, slave, and tool usage. It includes (in this order): - Any environment PYTHONPATH overrides. - If 'master_dir' is supplied, the master's python path component. - The Chrome Infra build path. - The system python path. Args: hermetic (bool): True, prune any non-system path from the system path. master_dir (str): If not None, include a master path component. """ path = PythonPath() if master_dir: path += GetMasterPythonPath(master_dir) path += GetBuildPythonPath() path += GetSysPythonPath(hermetic=hermetic) return path
a43486c68559e42606a3a55444c998640529ef2b
3,659,588
import uuid def nodeid(): """nodeid() -> UUID Generate a new node id >>> nodeid() UUID('...') :returns: node id :rtype: :class:`uuid.UUID` """ return uuid.uuid4()
88a3ddc335ce2ca07bfc0e2caf8487dc2342e80f
3,659,589
def drop_redundant_cols(movies_df): """ Drop the following redundant columns: 1. `release_data_wiki` - after dropping the outlier 2. `revenue` - after using it to fill `box_office` missing values 3. `budget_kaggle` - after using it to fill `budget_wiki` missing values 4. `duration` - after using it to fill `runtime` missing values Parameters ---------- movies_df : Pandas dataframe Joined movie data Returns ------- Pandas dataframe Movie data with redundant columns dropped """ # Drop record with `release_date` outlier and `release_date_wiki` column outlier_index = movies_df.loc[(movies_df['release_date_wiki'] > '2000') & (movies_df['release_date_kaggle'] < '1960')].index movies_df.drop(outlier_index, inplace=True) movies_df.drop('release_date_wiki', axis=1, inplace=True) # Pairs of redundant columns redundant_pairs = [ ['box_office', 'revenue'], ['budget_wiki', 'budget_kaggle'], ['runtime', 'duration'] ] # Fill the first column and drop the second column for each pair for a, b in redundant_pairs: movies_df = filla_dropb(a, b, movies_df) return movies_df
f4fb2c98eafc4ec9074cbc659510af30c7155b9c
3,659,590
import pickle import gzip import collections import re import fnmatch def get_msids_for_add_msids(opt, logger): """ Parse MSIDs spec file (opt.add_msids) and return corresponding list of MSIDs. This implements support for a MSID spec file like:: # MSIDs that match the name or pattern are included, where * matches # anything (0 or more characters) while ? matches exactly one character: # aopcadm? aacccd* # MSIDs with the same subsystem and sampling rate as given MSIDs are included. # Example: */1wrat gives all acis4eng engineering telemetry. */1wrat # MSIDs with the same subsystem regardless of sampling rate. # Example: **/3tscpos gives all engineering SIM telemetry **/3tscpos :param opt: options :param logger: logger :return: msids_out, msids_content (mapping of MSID to content type) """ logger.info(f'Reading available cheta archive MSIDs from {opt.sync_root}') with get_readable(opt.sync_root, opt.is_url, sync_files['msid_contents']) as (tmpfile, uri): if tmpfile is None: # If index_file is not found then get_readable returns None logger.info(f'No cheta MSIDs list file found at{uri}') return None logger.info(f'Reading cheta MSIDs list file {uri}') msids_content = pickle.load(gzip.open(tmpfile, 'rb')) content_msids = collections.defaultdict(list) for msid, content in msids_content.items(): content_msids[content].append(msid) logger.info(f'Reading MSID specs from {opt.add_msids}') with open(opt.add_msids) as fh: lines = [line.strip() for line in fh.readlines()] msid_specs = [line.upper() for line in lines if (line and not line.startswith('#'))] logger.info('Assembling list of MSIDs that match MSID specs') msids_out = [] for msid_spec in msid_specs: if msid_spec.startswith('**/'): msid_spec = msid_spec[3:] content = msids_content[msid_spec] subsys = re.match(r'([^\d]+)', content).group(1) for content, msids in content_msids.items(): if content.startswith(subsys): logger.info(f' Found {len(msids)} MSIDs for **/{msid_spec} with ' f'content = {content}') msids_out.extend(msids) elif msid_spec.startswith('*/'): msid_spec = msid_spec[2:] content = msids_content[msid_spec] msids = content_msids[content] logger.info(f' Found {len(msids)} MSIDs for */{msid_spec} with ' f'content = {content}') msids_out.extend(msids) else: msids = [msid for msid in msids_content if fnmatch(msid, msid_spec)] if not msids: raise ValueError(f'no MSID matching {msid} (remember derived params like PITCH ' 'must be written as"dp_<MSID>"') logger.info(f' Found {len(msids)} MSIDs for {msid_spec}') msids_out.extend(msids) logger.info(f' Found {len(msids_out)} matching MSIDs total') return msids_out, msids_content
b7f2a5b9f1452c8f43684223313716253e27848b
3,659,591
def gaussian_similarity(stimulus_representation, i, j, w, c, r): """ Function that calculates and returns the gaussian similarity of stimuli i and j (equation 4b in [Noso86]_) Parameters ---------- stimulus_representation : np.array The stimuli are given to this function in the form of a n x N matrix, where n is the number of stimuli and N is the number of dimensions of each stimuli in the psychological space i : int Stimulus i j : int Stimulus j w : list This is the list of weights corresponding to each dimension of the stimulus in the psychological space c : int This is the scale parameter used in the distance calculation r : int This is the Minkowski's distance metric. A value of 1 corresponds to city-block metric (generally used when the stimuli has separable dimensions) ; A value of 2 corresponds to eucledian distance metric (generally used when the stimuli has integral dimensions) Returns ------- np.float64 The Gaussian similarity between the two stimulus """ def distance(): """ Calculates the distance between two stimulus (equation 6 in [Noso86]_) Returns ------- np.float64 Distance scaled by the scale parameter 'c' """ sum = 0.0 N = np.shape(stimulus_representation)[1] for idx in range(N): sum += (w[idx] * (stimulus_representation[i, idx] - stimulus_representation[j, idx]) ** r) sum = sum ** (1 / r) return c * sum return np.exp(-(distance()) ** 2)
e1436a26d4f028f237e03d40590cb6b7405b3f16
3,659,592
def windShearVector(u, v, top, bottom, unit=None): """ calculate the u and v layer difference and return as vector """ udiff = layerDiff(u, top, bottom, unit) vdiff = layerDiff(v, top, bottom, unit) return makeVector(udiff, vdiff)
fa9fe1869621c04f00004a8a5c01e78d4faa3221
3,659,593
def withdraw_entry(contest): """Withdraws a submitted entry from the contest. After this step the submitted entry will be seen as a draft. """ return _update_sketch(contest, code=None, action="withdraw")
fdedfeb61e0fe3b47918b66ca1f9dfd56450e39c
3,659,594
def _conditional_field(if_, condition, colon, comment, eol, indent, body, dedent): """Formats an `if` construct.""" del indent, dedent # Unused # The body of an 'if' should be columnized with the surrounding blocks, so # much like an inline 'bits', its body is treated as an inline list of blocks. header_row = _Row('if', ['{} {}{} {}'.format(if_, condition, colon, comment)]) indented_body = _indent_blocks(body) assert indented_body, 'Expected body of if condition.' return [_Block([header_row] + eol + indented_body[0].prefix, indented_body[0].header, indented_body[0].body)] + indented_body[1:]
09c357659d5f78946d74cddc83f3e4c5c9cad0ed
3,659,595
def check_sum_cases(nation='England'): """check total data""" ck=LocalLatest() fail=False data=ck.data.get('data') latest={} data=clean_cases(data) #repair glitches #check latest data matches stored data for nation for i in data: _code=i['areaCode'] latest[_code]=i try: _nation=ons_week.nation[_code] except Exception as e: log.error(e) log.error(i['areaName']) continue if _nation==nation: if _code in ons_week.stored_names: place=ons_week.stored_names[_code] _total=DailyCases.objects.filter(areaname=place).aggregate(Max('totalLabConfirmedCases')).get('totalLabConfirmedCases__max') _latest=i['cumCasesByPublishDate'] if _total !=_latest: print(f'Mismatch: {place} Latest total{_latest} != stored {_total}') fail=True else: #print(f'{place} up to date') pass else: place=i['areaName'] print(f'{place} not counted / not in TR tally') sumtotal=0 for _code in ons_week.stored_names: if ons_week.nation[_code]==nation: i=latest.get(_code) if i: _latest=i['cumCasesByPublishDate'] _total=DailyCases.objects.filter(areacode=_code).aggregate(Max('totalLabConfirmedCases')).get('totalLabConfirmedCases__max') if _latest!=_total: print(f'Mismatch: {_code} Latest total{_latest} != stored {_total}') else: if _latest: sumtotal +=_latest else: print(f'Missing place {_code} in PHE published cases') print(f'Sum total of stored names for {nation} is {sumtotal}') return fail
5f30d4a856c21c1397e2f1cdd9a0ee03d026b5a2
3,659,596
def get_module_name() -> str: """Gets the name of the module that called a function Is meant to be used within a function. :returns: The name of the module that called your function """ return getmodulename(stack()[2][1])
12541aa8445ebd796657d76d3001523882202ea0
3,659,597
def hand_points(work_hand): """returns the point value of a given hand""" debug_level = 1 work_points = 0 for card in work_hand: work_points += card_point_value(card) return work_points
996c0f9f1836495d99836eab8ef3a26e7b592be6
3,659,598
def elements_counter(arr, count=0): """递归计算列表包含的元素数 Arguments: arr {[list]} -- [列表] Keyword Arguments: count {int} -- [列表包含的元素数] (default: {0}) Returns: [int] -- [列表包含的元素数] """ if len(arr): arr.pop(0) count += 1 return elements_counter(arr, count) return count
80809781fd2d6a7a2fa92a4b7d5713771a07f8eb
3,659,599