content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def calculate(over): """Returns the value of the first triangle number to have over the specified number of divisors""" triangle = 0 count = sum(range(triangle)) while True: if num_divisors(count) > over: answer = count return answer triangle += 1 count = sum(range(triangle))
e7391bea108261bb2b7abc64cbdd6ba6285deaae
2,600
import numpy def convert_image_to_kernel(im: Image, oversampling, kernelwidth): """ Convert an image to a griddata kernel :param im: Image to be converted :param oversampling: Oversampling of Image spatially :param kernelwidth: Kernel width to be extracted :return: numpy.ndarray[nchan, npol, oversampling, oversampling, kernelwidth, kernelwidth] """ naxis = len(im.shape) assert numpy.max(numpy.abs(im.data)) > 0.0, "Image is empty" nchan, npol, ny, nx = im.shape assert nx % oversampling == 0, "Oversampling must be even" assert ny % oversampling == 0, "Oversampling must be even" assert kernelwidth < nx and kernelwidth < ny, "Specified kernel width %d too large" assert im.wcs.wcs.ctype[0] == 'UU', 'Axis type %s inappropriate for construction of kernel' % im.wcs.wcs.ctype[0] assert im.wcs.wcs.ctype[1] == 'VV', 'Axis type %s inappropriate for construction of kernel' % im.wcs.wcs.ctype[1] newwcs = WCS(naxis=naxis + 2) for axis in range(2): newwcs.wcs.ctype[axis] = im.wcs.wcs.ctype[axis] newwcs.wcs.crpix[axis] = kernelwidth // 2 newwcs.wcs.crval[axis] = 0.0 newwcs.wcs.cdelt[axis] = im.wcs.wcs.cdelt[axis] * oversampling newwcs.wcs.ctype[axis + 2] = im.wcs.wcs.ctype[axis] newwcs.wcs.crpix[axis + 2] = oversampling // 2 newwcs.wcs.crval[axis + 2] = 0.0 newwcs.wcs.cdelt[axis + 2] = im.wcs.wcs.cdelt[axis] # Now do Stokes and Frequency newwcs.wcs.ctype[axis + 4] = im.wcs.wcs.ctype[axis + 2] newwcs.wcs.crpix[axis + 4] = im.wcs.wcs.crpix[axis + 2] newwcs.wcs.crval[axis + 4] = im.wcs.wcs.crval[axis + 2] newwcs.wcs.cdelt[axis + 4] = im.wcs.wcs.cdelt[axis + 2] newdata_shape = [nchan, npol, oversampling, oversampling, kernelwidth, kernelwidth] newdata = numpy.zeros(newdata_shape, dtype=im.data.dtype) assert oversampling * kernelwidth < ny assert oversampling * kernelwidth < nx ystart = ny // 2 - oversampling * kernelwidth // 2 xstart = nx // 2 - oversampling * kernelwidth // 2 yend = ny // 2 + oversampling * kernelwidth // 2 xend = nx // 2 + oversampling * kernelwidth // 2 for chan in range(nchan): for pol in range(npol): for y in range(oversampling): slicey = slice(yend + y, ystart + y, -oversampling) for x in range(oversampling): slicex = slice(xend + x, xstart + x, -oversampling) newdata[chan, pol, y, x, ...] = im.data[chan, pol, slicey, slicex] return create_image_from_array(newdata, newwcs, polarisation_frame=im.polarisation_frame)
fe1a2a81421a5f3c09e6c6439aeb7b52e217967f
2,601
def prob(X, w): """ X: Nxd w: dx1 --- prob: N x num_classes(2)""" y = tf.constant(np.array([0.0, 1.0]), dtype=tf.float32) prob = tf.exp(tf.matmul(X, w) * y) / (1 + tf.exp(tf.matmul(X, w))) return prob
b916f75bc3596bbbff701b6dbb3b43add0f06373
2,602
def get_similar_genes_Quantiles( gene_expr: np.array, n_genes: int, candidate_quants: np.ndarray, candidate_genes: np.array, quantiles=(0.5, 0.75, 0.85, 0.9, 0.95, 0.97, 0.98, 0.99, 1), ): """Gets genes with a similar expression distribution as the inputted gene, by measuring distance between the gene expression quantiles. Parameters ---------- gene_expr: np.array Expression of the gene of interest, or, if the same length as quantiles, then assumes is the pre-calculated quantiles. n_genes: int Number of equivalent genes to select. candidate_quants: np.ndarray Expression quantiles of gene candidates (quantiles*genes). candidate_genes: np.array Same as candidate_expr.shape[1], indicating gene names. quantiles: tuple The quantile to use Returns ------- similar_genes: np.array Array of strings for gene names. """ if type(quantiles) == float: quantiles = np.array([quantiles]) else: quantiles = np.array(quantiles) # Getting the quantiles for the gene # if len(gene_expr) != len(quantiles): # ref_quants = np.quantile(gene_expr, q=quantiles, interpolation='nearest') ref_quants = nonzero_quantile(gene_expr, q=quantiles, interpolation="nearest") else: ref_quants = gene_expr # Measuring distances from the desired gene # dists = np.apply_along_axis(canberra, 0, candidate_quants, ref_quants) order = np.argsort(dists) """ During debugging, plotting distribution of distances & selected genes. import matplotlib.pyplot as plt cutoff = dists[order[n_genes]] fig, ax = plt.subplots() ax.hist(dists[order[0:28000]], bins=1000) y_max = ax.get_ylim()[1] ax.vlines(cutoff, 0, y_max/2, color='r') plt.show() print(candidate_quants[:,order[0:3]]) # Showing the quantiles of selected print(candidate_quants[:,order[n_genes-3:n_genes]]) print(ref_quants) """ # Retrieving desired number of genes # similar_genes = candidate_genes[order[0:n_genes]] return similar_genes
c327e78a08f8da73af896a2e496f6c24258cc271
2,603
def get_date_strings(): """ Get date strings for last month and this month in "%Y%m" format, e.g. "202201" """ today = date.today() first = today.replace(day=1) last_month = first - timedelta(days=1) this_month_string = today.strftime("%Y%m") last_month_string = last_month.strftime("%Y%m") return this_month_string, last_month_string
cc09f710d86efcc73a7e653d30cc2d590ba865e6
2,604
import logging def get_gpa(cookie, sno, year='', term=''): """ 获取已取得的总基点: 专必 公必 公选 专选 """ logging.debug('Getting gpa: %s %s %s %s', sno, year, term, cookie) url = 'http://uems.sysu.edu.cn/jwxt/xscjcxAction/xscjcxAction.action?method=getAllJd' query_json = """ { header: { "code": -100, "message": { "title": "", "detail": "" } }, body: { dataStores: { jdStore: { rowSet: { "primary": [], "filter": [], "delete": [] }, name: "jdStore", pageNumber: 1, pageSize: 2147483647, recordCount: 0, rowSetName: "pojo_com.neusoft.education.sysu.djks.ksgl.model.TwoColumnModel" } }, parameters: { "args": [ "%s", "%s", "%s", "" ] } } } """ %(sno, year, term) return retrive_data(url, cookie, query_json)
d586aab689e40be763ccb907a4673e2da500e8a2
2,605
import torch from typing import Tuple def rotate( img: torch.Tensor, boxes: np.ndarray, angle: float, ) -> Tuple[torch.Tensor, np.ndarray]: """Rotate image around the center, interpolation=NEAREST, pad with 0 (black) Args: img: image to rotate boxes: array of boxes to rotate as well angle: angle in degrees. +: counter-clockwise, -: clockwise Returns: A tuple of rotated img (tensor), rotated boxes (np array) """ rotated_img = F.rotate(img, angle=angle, fill=0) # Interpolation NEAREST by default _boxes = deepcopy(boxes) if boxes.dtype == int: # Compute relative boxes _boxes = _boxes.astype(float) _boxes[:, [0, 2]] = _boxes[:, [0, 2]] / img.shape[2] _boxes[:, [1, 3]] = _boxes[:, [1, 3]] / img.shape[1] # Compute rotated bboxes: xmin, ymin, xmax, ymax --> x, y, w, h, alpha r_boxes = rotate_boxes(_boxes, angle=angle, min_angle=0) if boxes.dtype == int: # Back to absolute boxes r_boxes[:, [0, 2]] *= img.shape[2] r_boxes[:, [1, 3]] *= img.shape[1] return rotated_img, r_boxes
acd5c83a857b1bdb2312a078cfd972f9a1a0df9f
2,606
def _letterbox_image(img, w_in, h_in): """To get the image in boxed format.""" imc, imh, imw = img.shape if (w_in / imw) < (h_in / imh): new_w = w_in new_h = imh * w_in // imw else: new_h = h_in new_w = imw * h_in // imh resized = _resize_image(img, new_w, new_h) boxed = np.full((imc, h_in, w_in), 0.5, dtype=float) _, resizedh, resizedw = resized.shape boxed[:, int((h_in - new_h) / 2) :int((h_in - new_h) / 2) + resizedh, int((w_in - new_w) / 2) :int((w_in - new_w) / 2) + resizedw] = resized return boxed
918e96f3ac7f5b1c8f7177ad759dab0579763e77
2,607
def to_RRDB(**kwargs): """ Residual in Residual Dense Blocks """ kwargs["n_filer"] = (" ",) * len(kwargs["n_filer"]) # remove x label return _Box(fill="{rgb:white,1;black,3}", **kwargs)
2b1afd5f4a8c65364fcdee18fc8da3da71eade08
2,608
def continuous_agg_dict_features(n, n_feats, ks): """Listdict-like continuous aggregated features. Parameters ---------- n: int the number of the elements to create their features. n_feats: int the number of features. ks: int the number of perturbations. Returns ------- features: list the random features we want to compute. """ features = [] for k in range(ks): features.append(continuous_dict_features(n, n_feats)) return features
ec98930c124553a86ef50db58cf7e13107bf6e52
2,609
def counts_matrix(x, quantiles): """Count samples in strata Get eta, the number of samples in ``x`` binned by ``quantiles`` in each variable, for continuous variables. The shape of eta is the same as the shape of ``x``, and the shape of ``quantiles`` should be (``numpy.shape(x)[0] + 1``, ``numpy.shape(x)[1]``) for 2D, or (``numpy.size(x) + 1``,) for 1D Parameters ---------- x : :class:`numpy.ndarray` (Nx,) or (Nx, Npredictors) The sampled predictors, with observations as rows and predictors (if more than 1) as columns quantiles : :class:`numpy.ndarray` (Nx + 1,) or (Nx + 1, Npredictors) The quantiles which mark the edge of strata. The 0th axis must be one element longer than the 0th axis of ``x`` Returns ------- eta : :class:`numpy.ndarray`[``int``] (Nx,) or (Nx, Npredictors) The matrix of counts in strata, with the same shape as ``x`` """ if np.ndim(quantiles) == 1: eta = np.histogram(np.squeeze(x), bins=quantiles)[0].astype(int) else: eta = np.array([ np.histogram(xj, bins=qj)[0].astype(int) for xj, qj in zip( np.asarray(x).T, np.asarray(quantiles).T)]).T return eta
935cd19913e420ea6713ca74ead19f720bdef782
2,610
import logging def get_xml_string(stream_pointer): """ This function checks for valid xml in a stream and skips bytes until it hits something that looks like xml. In general, this 'skipping' should never be used, as we expect to see well-formed XML from the server. stream_pointer: input stream returns: string of xml """ # This function avoid stream_pointer.seek() for the vast majority # of cases (when xml is formatted correctly) just because i don't # like using 'seek' (never know when you're getting non-rewindable # streams c = stream_pointer.read(1) count = 0 while c != '<' and c != '': count = count + 1 c = stream_pointer.read(1) if c == '': stream_pointer.seek(0) logging.error("Poorly formatted schema - no '<' found", \ extra={'xml':stream_pointer.read()}) return xml_string = "<" + stream_pointer.read() if count > 0: stream_pointer.seek(0) logging.error("Poorly formatted schema", \ extra={'xml':stream_pointer.read()}) return xml_string
3fa2e3d05bfc66cee592c4c40cc1e9349e512c3a
2,611
import re def parse_header(header): """Parse header div for pub. title, authors journal, year, and doi.""" # TITLE title = header.find('h1').text.strip() # JOURNAL journal = header.find('button').text.strip() # PUBLICATION YEAR pub_date = header.find('span', attrs={'class': "cit"}).text year = re.search(r"(\d{4}).*?[\.;]", pub_date).group(1) # DOI doi_cit = header.find(attrs={'class': "citation-doi"}) doi = doi_cit.text.strip().lstrip("doi: ").rstrip(".") if doi_cit else "" # AUTHORS authors = [parse_author(a) for a in header.find_all( 'span', attrs={'class': "authors-list-item"})] authors = [a for a in authors if a] return (title, journal, year, doi, authors)
70dc1defbd9e6098e0754164d0dd23c7c79074d6
2,612
import argparse def parse_arguments(): """Parse user args There are three subparsers, one for each mode: full, visit, and moab. Full mode runs both the visit and moab steps. Each parser should have a full help message, simplified usage statement, and examples. """ mode_examples = """ To view full options for each mode, use 'generate_isogeom MODE -h'. Example usage: (1) Run all the steps start to finish (full mode) starting with meshfile 'cw_mesh', scalar data 'wwn', and defining 3 values for the level information at runtime: generate_isogeom full cw_mesh wwn -lv 0.1 5.2 12.3 (2) Run just the first step (visit mode), generating logarithmically spaced levels between 0.1 and 1e+14 and specifying where to write the generated database: generate_isogeom visit cw_mesh wwn -gl log -lx 0.1 1e14 -db my_database (3) Run only the second step (moab mode), using the levelfile and database from the MOAB step, and specifying a file name for file produced: generate_isogeom moab -lf my_database/levelfile -db my_database -g geom1.h5m """ mode_description = """ Use this to generate a full isosurface geometry from a starting Cartesian mesh file containing scalar data using VisIt and MOAB. This tool can be run in three different modes: full: run both steps starting from the Cartesian mesh file to produce a full DAGMC-compliant isosurface geom. This step first runs the visit step then the moab step. visit: run only the first step using VisIt. This will generate a database of individual mesh isosurfaces from the Cartesian mesh fileself. moab: run only the second step using MOAB. This will generate a full DAGMC- compliant isosurface geometry starting from the database generated from the visit step. """ parser = argparse.ArgumentParser(description=mode_description, usage='generate_isogeom MODE [OPTIONS]', epilog=mode_examples, formatter_class=formatter) subparsers = parser.add_subparsers(title='Modes', help='Select which steps to run for ' + 'generating the geometry.') # set full mode options full_description = """ Start-to-finish generation from a Cartesian mesh file to a DAGMC-compliant geometry. Levels information must be provided with either the -lf, -lv, or -gl option. If using the -gl option (generate levels), then options -lx and -N must also be provided. """ full_usage = \ 'generate_isogeom full meshfile dataname [-lf/-lv/-gl] [OPTIONS]' full_examples = """ Example Usage: (1) Create an isosurface geometry called 'my_isogeom.h5m' with assigned level values of 0.1 0.4 and 1.0, and tag the surfaces with data for vizualization: generate_isogeom full meshfile my_data -lv 0.1 0.4 1.0 -g my_isogeom.h5m --viz (2) Generate a geometry with 5 levels lograthmically spaced from 1e-5 and 1e+3. Also tag the geometry two metadata tags called E1 and E2 with values of 1.0 and 10.0, respectively: generate_isogeom full meshfile my_data -gl log -lx 1e-5 1e+3 -N 5 -t E1 1.0 -t E2 10.0 (3) Store the generated database in a different folder called 'my_isogeom/' and read level information from a file called 'levelfile' located in the current directory: generate_isogeom full meshfile my_data -lf levelfile -db my_isogeom/ """ full_parser = subparsers.add_parser('full', description=full_description, usage=full_usage, epilog=full_examples, formatter_class=formatter) set_visit_only_options(full_parser) set_shared_options(full_parser) set_moab_only_options(full_parser) full_parser.set_defaults(which='full') # set visit only mode options visit_description = """ Only generate the isosurface mesh file database using VisIt. Levels information must be provided with either the -lf, -lv, or -gl option. If using the -gl option (generate levels), then options -lx and -N must also be provided. """ visit_usage = \ 'generate_isogeom visit meshfile dataname [-lf/-lv/-gl] [OPTIONS]' visit_examples = """ Example Usage: (1) Generate a database located at 'my_database/' with assigned level values of 0.1 0.4 and 1.0: generate_isogeom visit meshfile my_data -lv 0.1 0.4 1.0 -db my_isogeom/ (2) Generate a database in the default location using levels between 1.0 2e+4 that are spaced with a ratio of 20: generate_isogeom visit meshfile my_data -gl ratio -lx 1.0 2.e4 -N 20 (3) Generate a database in the default location using 15 levels between 1.0 2e+4 that are spaced logarithmically: generate_isogeom visit meshfile my_data -gl log -lx 1.0 2.e4 -N 15 (4) Generate a database in a folder called 'my_isogeom/' and read the level information from a file in the current directory called 'levelfile': generate_isogeom visit meshfile my_data -lf levelfile -db my_isogeom/ """ visit_parser = subparsers.add_parser('visit', description=visit_description, usage=visit_usage, epilog=visit_examples, formatter_class=formatter) set_visit_only_options(visit_parser) set_shared_options(visit_parser) visit_parser.set_defaults(which='visit') # set moab only mode options moab_description = """ Only generate the DAGMC-compliant geometry with MOAB starting from the VisIt mesh file database. Levels information must be provided with either the -lf or -lv option. """ moab_usage = 'generate_isogeom moab dataname [-lf/-lv] [OPTIONS]' moab_examples = """ Example Usage: (1) Create an isosurface geometry called 'my_isogeom.h5m' with assigned level values of 0.1 0.4 and 1.0, and tag the surfaces with data for vizualization (assume default database location): generate_isogeom moab -lv 0.1 0.4 1.0 -g my_isogeom.h5m --viz (2) Generate a geometry from a database located in 'my_isogeom/', read the level info from a file called 'levelinfo', mutliply all data by a factor of 2e4, and save the file as 'my_isogeom.vtk' in a new folder called 'output_folder/': generate_isogeom moab -db my_isogeom/ -lf levelinfo -n 2e4 -g my_isogeom.vtk -sp output_folder/ (3) Generate a geometry from a database in the default location, read levels from a file called 'levelfile' located in the database, tag the geometry two metadata tags called E1 and E2 with values of 1.0 and 10.0, respectively, and tag the geometry with the level information for vizualization: generate_isogeom moab -lf tmp/levelfile -t E1 1.0 -t E2 10.0 -v """ moab_parser = subparsers.add_parser('moab', description=moab_description, usage=moab_usage, epilog=moab_examples, formatter_class=formatter) set_shared_options(moab_parser, moab=True) set_moab_only_options(moab_parser) moab_parser.set_defaults(which='moab') args = parser.parse_args() return args
9cd3809479ab49a53343c6a7007e34fbf08dc23b
2,613
def put_this_into_the_db(query, param): """put this value into the database see : find_by_exactly_this_query() Arguments: query {[type]} -- [description] param {[type]} -- [description] Returns: bool -- [description] """ # Connect to the database connection = pymysql.connect(host='localhost', user='root', password='(drElizabeth)', db='communications', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) try: with connection.cursor() as cursor: # Create a new record sql = query cursor.execute(sql, param) # connection is not autocommit by default. So you must commit to save # your changes. connection.commit() except Exception as e: print(e) connection.close() return False connection.close() return True
08cebe330cea5f10189342c6f3ec4f9f7cc022e1
2,614
def _gen_new_aux_page(label: str, is_title: bool) -> str: """Generate latex for auxillary pages""" page = [] if is_title: page.append("\\thispagestyle{empty}") page.append("\\begin{center}") page.append("\t\\vfil") page.append("\t\\vspace*{0.4\\textheight}\n") page.append("\t\\Huge") page.append(f"\t\\bf{{{label}}}\n") page.append("\t\\normalsize") page.append("\\end{center}") return "\n".join(page)
3ff31ae80f007fd5da2dd6153ea605978421c086
2,615
def expand_matrix_col(matrix, max_size, actual_size): """ add columns of zeros to the right of the matrix """ return np.append(matrix, np.zeros((matrix.shape[0], max_size - actual_size), dtype=matrix.dtype), axis=1)
23b20b443c880d1658eeec89910f9f3384576e6e
2,616
import logging def vms_list(access_token, config_id): """List FlexVM Virtual Machines""" logging.info("--> List FlexVM Virtual Machines...") uri = FLEXVM_API_BASE_URI + "vms/list" headers = COMMON_HEADERS.copy() headers["Authorization"] = f"Bearer {access_token}" body = {"configId": config_id} results = requests_post(uri, body, headers) return results
eed35eefae4e26d743e0e96e791b6f5dd84d0c2f
2,617
def formulate_hvdc_flow(problem: LpProblem, angles, Pinj, rates, active, Pt, control_mode, dispatchable, r, F, T, logger: Logger = Logger(), inf=999999): """ :param problem: :param nc: :param angles: :param Pinj: :param t: :param logger: :param inf: :return: """ nhvdc, nt = rates.shape flow_f = np.zeros((nhvdc, nt), dtype=object) overload1 = np.zeros((nhvdc, nt), dtype=object) overload2 = np.zeros((nhvdc, nt), dtype=object) hvdc_control1 = np.zeros((nhvdc, nt), dtype=object) hvdc_control2 = np.zeros((nhvdc, nt), dtype=object) for t, i in product(range(nt), range(nhvdc)): if active[i, t]: _f = F[i] _t = T[i] hvdc_control1[i, t] = LpVariable('hvdc_control1_{0}_{1}'.format(i, t), 0, inf) hvdc_control2[i, t] = LpVariable('hvdc_control2_{0}_{1}'.format(i, t), 0, inf) P0 = Pt[i, t] if control_mode[i] == HvdcControlType.type_0_free: if rates[i, t] <= 0: logger.add_error('Rate = 0', 'HVDC:{0} t:{1}'.format(i, t), rates[i, t]) # formulate the hvdc flow as an AC line equivalent bk = 1.0 / r[i] # TODO: yes, I know... DC... flow_f[i, t] = P0 + bk * (angles[_f, t] - angles[_t, t]) + hvdc_control1[i, t] - hvdc_control2[i, t] # add the injections matching the flow Pinj[_f, t] -= flow_f[i, t] Pinj[_t, t] += flow_f[i, t] # rating restriction in the sense from-to: eq.17 overload1[i, t] = LpVariable('overload_hvdc1_{0}_{1}'.format(i, t), 0, inf) problem.add(flow_f[i, t] <= (rates[i, t] + overload1[i, t]), "hvdc_ft_rating_{0}_{1}".format(i, t)) # rating restriction in the sense to-from: eq.18 overload2[i, t] = LpVariable('overload_hvdc2_{0}_{1}'.format(i, t), 0, inf) problem.add((-rates[i, t] - overload2[i, t]) <= flow_f[i, t], "hvdc_tf_rating_{0}_{1}".format(i, t)) elif control_mode[i] == HvdcControlType.type_1_Pset and not dispatchable[i]: # simple injections model: The power is set by the user flow_f[i, t] = P0 + hvdc_control1[i, t] - hvdc_control2[i, t] Pinj[_f, t] -= flow_f[i, t] Pinj[_t, t] += flow_f[i, t] elif control_mode[i] == HvdcControlType.type_1_Pset and dispatchable[i]: # simple injections model, the power is a variable and it is optimized P0 = LpVariable('hvdc_pf_{0}_{1}'.format(i, t), -rates[i, t], rates[i, t]) flow_f[i, t] = P0 + hvdc_control1[i, t] - hvdc_control2[i, t] Pinj[_f, t] -= flow_f[i, t] Pinj[_t, t] += flow_f[i, t] return flow_f, overload1, overload2, hvdc_control1, hvdc_control2
b9fb1d6d7fdf19ee97f1b29f4e4b279130aab530
2,618
from unittest.mock import patch def method_mock(cls, method_name, request): """ Return a mock for method *method_name* on *cls* where the patch is reversed after pytest uses it. """ _patch = patch.object(cls, method_name) request.addfinalizer(_patch.stop) return _patch.start()
b14d991c42e0c05a51d9c193c3769b1e1e71dd1f
2,619
def get_eps_float32(): """Return the epsilon value for a 32 bit float. Returns ------- _ : np.float32 Epsilon value. """ return np.finfo(np.float32).eps
e0506637aa3f9c29dc33d1256ce21d7dc686a4cd
2,620
def distributions_to_params(nest): """Convert distributions to its parameters, keep Tensors unchanged. Only returns parameters that have tf.Tensor values. Args: nest (nested Distribution and Tensor): Each Distribution will be converted to dictionary of its Tensor parameters. Returns: A nest of Tensor/Distribution parameters. Each leaf is a Tensor or a dict corresponding to one distribution, with keys as parameter name and values as tensors containing parameter values. """ def _to_params(dist_or_tensor): if isinstance(dist_or_tensor, tfp.distributions.Distribution): params = dist_or_tensor.parameters return { k: params[k] for k in params if isinstance(params[k], tf.Tensor) } elif isinstance(dist_or_tensor, tf.Tensor): return dist_or_tensor else: raise ValueError( "Only Tensor or Distribution is allowed in nest, ", "got %s. nest is %s" % (dist_or_tensor, nest)) return tf.nest.map_structure(_to_params, nest)
bfa1cfd043bd46667de8ed07fd54fef959b272ae
2,621
def _return_xarray_system_ids(xarrs: dict): """ Return the system ids for the given xarray object Parameters ---------- xarrs Dataset or DataArray that we want the sectors from Returns ------- list system identifiers as string within a list """ return list(xarrs.keys())
8380d1c2ae9db48eb4b97138dcd910d58085073e
2,622
def sub(a, b): """Subtracts b from a and stores the result in a.""" return "{b} {a} ?+1\n".format(a=a, b=b)
dcc0ddfc9dbefe05d79dea441b362f0ddfe82627
2,623
def metrics_cluster(models = None, ytrain = None, ytest = None, testlabels = None, trainlabels = None, Xtrain = None, Xtest = None): """ Calculates Metrics such as accuracy, balanced accuracy, specificity, sensitivity, precision, True Positives, True Negatives etc. These metrics are calculated for each cluster: models: predictive models trained in each cluster ytrain: Target labels of training set ytest: target labels of test set testlabels: a matrix with numbers from 0 to c-1 number of clusters indicating in which cluster each data point belongs in the test set trainlabels: the same as testlabels but for training data Xtrain: trainiing data Xtest: testing data """ # matrix with metrics for each cluster metricsTrain = [] #metrics for test data in each cluster metricsTest = [] columns = ['cluster', 'size', 'high_cost%','low_cost%', 'TP', 'TN', 'FP', 'FN', 'FPR', 'specificity', 'sensitivity', 'precision', 'accuracy', 'balanced accuracy', 'f1', 'auc'] #Calculate the Metrics for Each Cluster for cluster in np.arange( len( models ) ): #INDEXES OF CLUSTER "cluster" inC = np.where( trainlabels == cluster )[0] inCT = np.where( testlabels == cluster )[0] #predict probabilities of data in cluster "cluster" #to be 1 probTrain = models[cluster].predict_proba(Xtrain[inC])[:, 1] probTest = models[cluster].predict_proba(Xtest[inCT])[:, 1] #calculate optimal tau based on F1 try: tau = optimalTau(probTrain, ytrain[inC]) except: tau = 0.5 print(" Warning tau setted to 0.5 due to error(s) \ in <<optimalTau>> function" ) #CALCULATE METRICS : ACCURACY, RECALL, PRECISION , #BALANCED ACCURACY ETC metTrain , _= calc_metrics( custom_prob = probTrain, y = ytrain[inC], cluster = cluster, tau = tau ) metTest, _ = calc_metrics( custom_prob = probTest, y = ytest[inCT], cluster = cluster, tau = tau) metricsTrain.append( metTrain ) metricsTest.append( metTest ) #Create a dataframe with metrics for better Visualization metricsTrain = pd.DataFrame ( metricsTrain, columns = columns ) metricsTest = pd.DataFrame( metricsTest, columns = columns ) return metricsTrain, metricsTest
c9c131385a47df3de511db0e85ece20131647d4e
2,624
def prune_cloud_borders (numpy_cloud, clearance=1.2 ): """Delete points at the clouds' borders in range of distance, restricting the x-y plane (ground)""" # get min/max of cloud cloud_max_x = np.max (numpy_cloud[:, 0]) cloud_min_x = np.min (numpy_cloud[:, 0]) cloud_max_y = np.max (numpy_cloud[:, 1]) cloud_min_y = np.min (numpy_cloud[:, 1]) # define 4 borders borders = [cloud_max_x - clearance, cloud_min_x + clearance, cloud_max_y - clearance, cloud_min_y + clearance] # index all points within borders numpy_cloud = numpy_cloud[numpy_cloud[:, 0] < borders[0]] numpy_cloud = numpy_cloud[numpy_cloud[:, 0] > borders[1]] numpy_cloud = numpy_cloud[numpy_cloud[:, 1] < borders[2]] numpy_cloud = numpy_cloud[numpy_cloud[:, 1] > borders[3]] return numpy_cloud
f208c9778343c3240803b52ff3e5f4701a8bb1cb
2,625
def factory(name, Base, Deriveds): """Find the base or derived class by registered name. Parameters ---------- Base: class Start the lookup here. Deriveds: iterable of (name, class) A list of derived classes with their names. Returns ------- class """ Derived = Base for (nm, NmCl) in Deriveds: if nm == name: Derived = NmCl break return Derived
1bce29651004cf1f04740fd95a4f62c6c2277a72
2,626
def root_sum_square(values, ax_val, index, Nper, is_aper, is_phys, unit): """Returns the root sum square (arithmetic or integral) of values along given axis Parameters ---------- values: ndarray array to derivate ax_val: ndarray axis values index: int index of axis along which to derivate Nper: int number of periods to replicate is_aper: bool True if values is anti-periodic along axis is_phys: bool True if physical quantity (time/angle/z) Returns ------- values: ndarray root sum square of values """ # To sum dB or dBA if "dB" in unit: return my_sum(values, index, Nper, is_aper, unit) else: if is_aper and Nper is not None: # Remove anti-periodicity since values is squared is_aper = False if ax_val.size == 1: # Do not use integrate for single point axes is_phys = False if is_phys: values = integrate(values ** 2, ax_val, index, Nper, is_aper, is_phys) else: values = my_sum(values ** 2, index, Nper, is_aper, unit) return np.sqrt(values)
2af20718dc4d7a6b8d40e939a46d140fda5bf375
2,627
import json def comment_on_tweet(): """" http://127.0.0.1:5000/user/comment_on_tweet body = { "id": "5da61dbed78b3b2b10a53582", "comments" : { "commenter" : "[email protected]", "comment" : "comments against tweet : 7" } } """ data = request.get_json() tweet_id = data['id'] record = tweetDB.find({'_id': ObjectId(tweet_id)}) if record is None: return json.dumps({'error': "No collaborations to update matched id"}) else: try: if 'comments' in data and isinstance(data['comments'], object): result = tweetDB.update( {"_id": ObjectId(tweet_id)}, { '$push': { "comments": data['comments'] } } ) return json.dumps({"success": True}) except Exception as e: return json.dumps({"error": "Exception found"})
232854a883a4bbd99a46dc3dc46e9a47fb1993dc
2,628
def generate_git_api_header(event, sig): """ Create header for GitHub API Request, based on header information from https://developer.github.com/webhooks/. :param event: Name of the event type that triggered the delivery. :param sig: The HMAC hex digest of the response body. The HMAC hex digest is generated using the sha1 hash function and the secret as the HMAC key. """ return Headers([ ('X-GitHub-Event', event), ('X-GitHub-Delivery', "72d3162e-cc78-11e3-81ab-4c9367dc0958"), ('X-Hub-Signature', f"sha1={sig}"), ('User-Agent', "GitHub-Hookshot/044aadd"), ('Content-Type', "application/json"), ('Content-Length', 6615) ])
9b60d9eb6a8ea962bb7426970f2c2b82a229ef12
2,629
def var_gaussian(r, level=5, modified=False): """ Returns the Parametric Gauusian VaR of a Series or DataFrame If "modified" is True, then the modified VaR is returned, using the Cornish-Fisher modification """ # compute the Z score assuming it was Gaussian z = norm.ppf(level/100) if modified: # modify the Z score based on observed skewness and kurtosis s = skewness(r) k = kurtosis(r) z = (z + (z**2 - 1)*s/6 + (z**3 -3*z)*(k-3)/24 - (2*z**3 - 5*z)*(s**2)/36 ) return -(r.mean() + z*r.std(ddof=0))
2ff13a6b222663a200b77e526475331bfacd9c07
2,630
import math def lnglat_to_tile(lon, lat, zoom): """Get the tile which contains longitude and latitude. :param lon: longitude :param lat: latitude :param zoom: zoom level :return: tile tuple """ lon, lat = truncate(lon, lat) n = 1 << zoom tx = int((lon + 180.0) / 360.0 * n) ty = int((1.0 - math.asinh(math.tan(math.radians(lat))) / math.pi) / 2.0 * n) return Tile(tx, ty, zoom)
84e1c103b03a2ec80a9585c8c852045c5d58cb76
2,631
from typing import Union from typing import Optional from typing import Callable from typing import Any def group_obs_annotation( adata: AnnData, gdata: AnnData, *, groups: Union[str, ut.Vector], name: str, formatter: Optional[Callable[[Any], Any]] = None, method: str = "majority", min_value_fraction: float = 0.5, conflict: Optional[Any] = None, inplace: bool = True, ) -> Optional[ut.PandasSeries]: """ Transfer per-observation data from the per-observation (cell) ``adata`` to the per-group-of-observations (metacells) ``gdata``. **Input** Annotated ``adata``, where the observations are cells and the variables are genes, and the ``gdata`` containing the per-metacells summed data. **Returns** Observations (Cell) Annotations ``<name>`` The per-group-observation annotation computed based on the per-observation annotation. If ``inplace`` (default: {inplace}), this is written to the ``gdata``, and the function returns ``None``. Otherwise this is returned as a pandas series (indexed by the group observation names). **Computation Parameters** 1. Iterate on all the observations (groups, metacells) in ``gdata``. 2. Consider all the cells whose ``groups`` annotation maps them into this group. 3. Consider all the ``name`` annotation values of these cells. 4. Compute an annotation value for the whole group of cells using the ``method``. Supported methods are: ``unique`` All the values of all the cells in the group are expected to be the same, use this unique value for the whole groups. ``majority`` Use the most common value across all cells in the group as the value for the whole group. If this value doesn't have at least ``min_value_fraction`` (default: {min_value_fraction}) of the cells, use the ``conflict`` (default: {conflict}) value instead. """ group_of_cells = ut.get_o_numpy(adata, groups, formatter=ut.groups_description) values_of_cells = ut.get_o_numpy(adata, name, formatter=formatter) value_of_groups = np.empty(gdata.n_obs, dtype=values_of_cells.dtype) assert method in ("unique", "majority") if method == "unique": with ut.timed_step(".unique"): value_of_groups[group_of_cells] = values_of_cells else: assert method == "majority" with ut.timed_step(".majority"): for group_index in range(gdata.n_obs): cells_mask = group_of_cells == group_index cells_count = np.sum(cells_mask) assert cells_count > 0 values_of_cells_of_group = values_of_cells[cells_mask] unique_values_of_group, unique_counts_of_group = np.unique(values_of_cells_of_group, return_counts=True) majority_index = np.argmax(unique_counts_of_group) majority_count = unique_counts_of_group[majority_index] if majority_count / cells_count < min_value_fraction: value_of_groups[group_index] = conflict else: majority_value = unique_values_of_group[majority_index] value_of_groups[group_index] = majority_value if inplace: ut.set_o_data(gdata, name, value_of_groups) return None return ut.to_pandas_series(value_of_groups, index=gdata.obs_names)
fc9abd9a983d24869f46efb71d29cd2db53508da
2,632
import os import yaml import json def load_pipeline(path, tunables=True, defaults=True): """Load a d3m json or yaml pipeline.""" if not os.path.exists(path): base_path = os.path.abspath(os.path.dirname(__file__)) path = os.path.join('templates', path) path = os.path.join(base_path, path) if not os.path.isfile(path): raise ValueError('Could not find pipeline: {}'.format(path)) LOGGER.warn('Loading pipeline from %s', path) with open(path) as pipeline: if path.endswith('yml'): data = yaml.safe_load(pipeline) else: data = json.load(pipeline) pipeline = Pipeline.from_json_structure(data) if tunables: # extract tunable hyperparameters tunable_hyperparameters = extract_tunable_hyperparams(pipeline) return pipeline, tunable_hyperparameters return pipeline
386683e91af1a5f568e329f70690e676c5c9383d
2,633
def generate_languages(request): """ Returns the languages list. """ validate_api_secret_key(request.data.get('app_key')) request_serializer = GenerateLanguagesRequest(data=request.data) if request_serializer.is_valid(): get_object_or_404(TheUser, auth_token=request.data.get('user_token')) list_of_languages = Language.objects.all() return Response({'detail': 'successful', 'data': [language.language for language in list_of_languages]}, status=status.HTTP_200_OK) else: return invalid_data_response(request_serializer)
67856b4bac293e272debb0ac9f2a2e0c863f4cdb
2,634
def all_stocks(): """ #查询当前所有正常上市交易的股票列表 :return: """ data = pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,name,area,industry,list_date') return data["symbol"].values
582381319bd0b613758f41de2005e192c802a923
2,635
import requests import json def getBotHash(userID, isCompile=False): """Gets the checksum of a user's bot's zipped source code""" params = {"apiKey": API_KEY, "userID": userID} if isCompile: params["compile"] = 1 result = requests.get(MANAGER_URL+"botHash", params=params) print("Getting bot hash:") print(result.text) return json.loads(result.text).get("hash")
700d5418212836e1ad20a3a336587436cf1e93de
2,636
def next_remote_buffer_uuid(number=1): """Return the next uuid of a remote buffer.""" global remote_buffer_counter if number == 1: ret = remote_buffer_counter else: ret = np.arange(remote_buffer_counter, remote_buffer_counter + number) remote_buffer_counter = (remote_buffer_counter + number) % (1 << 60) return ret
da31c68dd199ff765ec6eaab17912dd4e3ea8ee4
2,637
def ball_collide(i): """ This function will handle the ball collide interaction between brick and paddle :param i: (int) The index of the ball to interact :return: (Bool) If this ball collide with brick or paddle """ global score collide = False for j in range(2): for k in range(2): object_get = graphics.window.get_object_at(graphics.ball[i].x + graphics.ball[i].width * j, graphics.ball[i].y + graphics.ball[i].height * k) if object_get in graphics.brick: # brick lose life when being hit by ball index = graphics.brick.index(object_get) graphics.brick_collide(index) score += 1 collide = True elif object_get is graphics.paddle: collide = True return collide
33ee97dde1302578067e16b8251e5c3787901697
2,638
from pathlib import Path import tqdm def gen_sparse_graph(destination_folder: Path, vertices_number: int, edge_probability: float) -> Path: """ Generates sparse graph :param destination_folder: directory to save the graph :type destination_folder: Path :param vertices_number: number of vertices in the graph :type vertices_number: int :param edge_probability: probability of edge existence in the graph :type edge_probability: float :return: path to generated graph :rtype: Path """ tmp_graph = nx.generators.fast_gnp_random_graph(vertices_number, edge_probability) output_graph = rdflib.Graph() edges = list() for v, to in tmp_graph.edges(): edges.append((v, 'A', to)) edges.append((v, 'AR', to)) for subj, pred, obj in tqdm( edges, desc=f'G{vertices_number}-{edge_probability} generation' ): add_rdf_edge(subj, pred, obj, output_graph) target = destination_folder / f'G{vertices_number}-{edge_probability}.xml' write_to_rdf(target, output_graph) return target
79369b7c436ca903e5cbc620b95d6425d5646a55
2,639
from pyapprox.cython.barycentric_interpolation import \ def multivariate_hierarchical_barycentric_lagrange_interpolation( x, abscissa_1d, barycentric_weights_1d, fn_vals, active_dims, active_abscissa_indices_1d): """ Parameters ---------- x : np.ndarray (num_vars, num_samples) The samples at which to evaluate the interpolant abscissa_1d : [np.ndarray] List of interpolation nodes in each active dimension. Each array has ndim==1 barycentric_weights_1d : [np.ndarray] List of barycentric weights in each active dimension, corresponding to each of the interpolation nodes. Each array has ndim==1 fn_vals : np.ndarray (num_samples, num_qoi) The function values at each of the interpolation nodes Each column is a flattened array that assumes the nodes were created with the same ordering as generated by the function cartesian_product. if active_abscissa_1d is not None the fn_vals must be same size as the tensor product of the active_abscissa_1d. Warning: Python code takes fn_vals as num_samples x num_qoi but c++ code takes num_qoi x num_samples. Todo change c++ code also look at c++ code to compute barycentric weights. min() on line 154 seems to have no effect. active_dims : np.ndarray (num_active_dims) The dimensions which have more than one interpolation node. TODO check if this can be simply extracted in this function by looking at abscissa_1d. active_abscissa_indices_1d : [np.ndarray] The list (over each dimension) of indices for which we will compute barycentric basis functions. This is useful when used with heirarchical interpolation where the function values will be zero at some nodes and thus there is no need to compute associated basis functions Returns ------- result : np.ndarray (num_samples,num_qoi) The values of the interpolant at the samples x """ num_act_dims = active_dims.shape[0] num_abscissa_1d, num_active_abscissa_1d, shifts, abscissa_and_weights, \ active_abscissa_indices_1d = \ barycentric_lagrange_interpolation_precompute( num_act_dims, abscissa_1d, barycentric_weights_1d, active_abscissa_indices_1d) try: multivariate_hierarchical_barycentric_lagrange_interpolation_pyx result = \ multivariate_hierarchical_barycentric_lagrange_interpolation_pyx( x, fn_vals, active_dims, active_abscissa_indices_1d.astype(np.int_), num_abscissa_1d.astype(np.int_), num_active_abscissa_1d.astype(np.int_), shifts.astype(np.int_), abscissa_and_weights) if np.any(np.isnan(result)): raise ValueError('Error values not finite') except (ImportError, ModuleNotFoundError) as e: msg = 'multivariate_hierarchical_barycentric_lagrange_interpolation extension failed' trace_error_with_msg(msg, e) result = __multivariate_hierarchical_barycentric_lagrange_interpolation( x, abscissa_1d, fn_vals, active_dims, active_abscissa_indices_1d, num_abscissa_1d, num_active_abscissa_1d, shifts, abscissa_and_weights) return result
da527f226ea2c95fcec160616b060eed08e83e87
2,640
import pandas as pd import os def deaths(path): """Monthly Deaths from Lung Diseases in the UK A time series giving the monthly deaths from bronchitis, emphysema and asthma in the UK, 1974-1979, both sexes (`deaths`), P. J. Diggle (1990) *Time Series: A Biostatistical Introduction.* Oxford, table A.3 Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `deaths.csv`. Returns: Tuple of np.ndarray `x_train` with 72 rows and 2 columns and dictionary `metadata` of column headers (feature names). """ path = os.path.expanduser(path) filename = 'deaths.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/MASS/deaths.csv' maybe_download_and_extract(path, url, save_file_name='deaths.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
05ff7646d2c7a5a6368b9453ef7c8c80f1348b1c
2,641
def read_csv(path): """Reads the CSV file at the indicated path and returns a list of rows. Parameters: path (str): The path to a CSV file. Returns: list[row]: A list of rows. Each row is a list of strings and numbers. """ with open(path, 'rb') as f: return decode_csv(f.read())
7b979a9e15ae07cbdb2733ec071ea82664df5bab
2,642
def obj_mask(im): """Computes the mask for an image with transparent background Keyword arguments: im -- the input image (must be RGBA) """ A = im.split()[-1] T = ImageOps.invert(A) return Image.merge("RGBA", (T, T, T, A))
bfcb6c9c8877dc2507bc9bc658eeb1140fc950bc
2,643
def rnn(rnn_type, inputs, length, hidden_size, layer_num=1, dropout_keep_prob=None, concat=True): """ Implements (Bi-)LSTM, (Bi-)GRU and (Bi-)RNN 在这个module中,rnn是主要的接口,所以把rnn放在上面 Args: rnn_type: the type of rnn, such as lstm inputs: padded inputs into rnn, usually a d*p or l*p matrix length: the valid length of the inputs, usually the length of the sentence hidden_size: the size of hidden units layer_num: multiple rnn layer are stacked if layer_num > 1 dropout_keep_prob: dropout in RNN concat: When the rnn is bidirectional, the forward outputs and backward outputs are concatenated (such as a 2l*p matrix) if this is True, else we add them (add two matrices). Returns: RNN outputs and final state (such as the state of lstm) """ if not rnn_type.startswith('bi'): cell = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # 得到cell,在z轴、y轴已经展开,但是在x轴上并没有延展 outputs, state = tf.nn.dynamic_rnn(cell, inputs, sequence_length=length, dtype=tf.float32) # 利用dynamic_rnn函数对cell在x轴方向上进行延展,并且把cell的inputs输入 # outputs的维度是hidden_size*length, state的维度是hidden_size*layer_num*2 if rnn_type.endswith('lstm'): c, h = state state = h # 把hidden state作为state else: # bidirectional rnn cell_fw = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # forward cell cell_bw = get_cell(rnn_type, hidden_size, layer_num, dropout_keep_prob) # backward cell outputs, state = tf.nn.bidirectional_dynamic_rnn( cell_bw, cell_fw, inputs, sequence_length=length, dtype=tf.float32 ) # 双向rnn相比单向rnn,在hidden_size这个维度上变成了之前的2倍 state_fw, state_bw = state # 首先把state分离成forward state和backward state if rnn_type.endswith('lstm'): c_fw, h_fw = state_fw c_bw, h_bw = state_bw state_fw, state_bw = h_fw, h_bw # 对于lstm来说,我们要的state是hidden state if concat: outputs = tf.concat(outputs, 2) # 把两个tensor沿着hidden_size的维度连起来 state = tf.concat([state_fw, state_bw], 1) # state同样要沿着hidden_size的维度连起来 else: outputs = outputs[0] + outputs[1] state = state_fw + state_bw # 简单向量(张量)相加或者做平均处理 return outputs, state
80d06ed499c4668bd398efdf9358c8d72e2e3192
2,644
def find_expired(bucket_items, now): """ If there are no expired items in the bucket returns empty list >>> bucket_items = [('k1', 1), ('k2', 2), ('k3', 3)] >>> find_expired(bucket_items, 0) [] >>> bucket_items [('k1', 1), ('k2', 2), ('k3', 3)] Expired items are returned in the list and deleted from the bucket >>> find_expired(bucket_items, 2) ['k1'] >>> bucket_items [('k2', 2), ('k3', 3)] """ expired_keys = [] for i in range(len(bucket_items) - 1, -1, -1): key, expires = bucket_items[i] if expires < now: expired_keys.append(key) del bucket_items[i] return expired_keys
476fd079616e9f5c9ed56ee8c85171fcb0ddb172
2,645
import array def find_sprites(image=None, background_color=None): """ Find sprites @image: MUST be an Image object @background_color: optinal, whether tuple (RGB/ RGBA) or int (grayscale) """ def find_sprites_corners(sprite, label_map, numpy_array): columns = set() rows = set() for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = label_map[row_index][column_index] if current_pixel.label == sprite: columns.add(current_pixel.column) rows.add(current_pixel.row) return min(columns), min(rows), max(columns), max(rows) def collect_sprites(exist_sprites_label, label_map, numpy_array): """ Return A dictionary with key:the label of a sprite and value:it's Sprite object """ sprites = {} for sprite in exist_sprites_label: top_left_column, top_left_row, bottom_right_column, bottom_right_row = find_sprites_corners(sprite, label_map, numpy_array) sprites[sprite] = Sprite(sprite, top_left_column, top_left_row, bottom_right_column, bottom_right_row) return sprites def search_exist_sprites_label(pixels_to_sprites): """ Return a set of exist sprite's label inside the map """ exist_sprites = set() for key in pixels_to_sprites: exist_sprites.add(pixels_to_sprites[key]) return exist_sprites def unify_sprites(pixels_to_sprites, unified_matrix, numpy_array): """ Unify all pixels that are in a same sprite Return a 2D-array map of sprites """ for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = pixels_matrix[row_index][column_index] current_label = current_pixel.label # Ignore background pixels if current_label == 0 or current_label not in pixels_to_sprites: continue current_pixel.label = pixels_to_sprites[current_label] return unified_matrix def analyze_connected_sprites(connected_sprites): """ Find all pixels that are connected (belong to a same sprite) Return a dict: key: pixel'label value: sprite's label that key belong to """ pixels_to_sprites = {} for key in list(connected_sprites.keys()): if key not in connected_sprites or len(connected_sprites[key]) == 1: continue in_progress = True old_length = len(connected_sprites[key]) while in_progress: for value in connected_sprites[key]: if value not in connected_sprites: continue connected_sprites[key] = connected_sprites[key] | connected_sprites[value] if value in connected_sprites and value != key: del connected_sprites[value] if old_length == len(connected_sprites[key]): in_progress = False else: old_length = len(connected_sprites[key]) for key in connected_sprites: for value in connected_sprites[key]: pixels_to_sprites[value] = key return pixels_to_sprites def is_new_sprite(current_row, current_column, pixels_matrix, background_color): """ Return False if there is a non-background pixel adjacent to current pixel Ignores background pixels. """ neighbor_coordinates = [(-1, -1), (-1, 0), (-1, 1), (0, -1)] current_pixel = pixels_matrix[current_row][current_column] is_new_sprite = True # Ignore background pixels if current_pixel.is_background_pixel: return False # Check 4 neighbor of current pixels for coordinate in neighbor_coordinates: neighbor_row = current_row + coordinate[0] neighbor_column = current_column + coordinate[1] if 0 <= neighbor_row < image_height and 0 <= neighbor_column < image_width: neighbor_pixel = pixels_matrix[neighbor_row][neighbor_column] if neighbor_pixel.label == 0: continue if current_pixel.label != 0 and current_pixel.label != neighbor_pixel.label: connected_sprites.setdefault(current_pixel.label, set()).add(neighbor_pixel.label) else: pixels_matrix[current_row][current_column].label = neighbor_pixel.label is_new_sprite = False return is_new_sprite def is_ignored_pixel(current_pixel, numpy_array): """ Check if that pixel is considered background pixel Return False by default """ if (background_color == (0,0,0,0) and current_pixel[-1] == 0) or (current_pixel == array(background_color)).all() or (image.mode == "L" and current_pixel == background_color): return True return False def analyze_numpy_array(background_color): """ Convert image to numpy array then analyze each pixel @background_color: RGBA or RGB or grayscale formats Return Maps of pixels under format matrix and numpy array (multi-dimensional) """ numpy_array = array(image) pixels_matrix = zeros(numpy_array.shape, dtype=int).tolist() for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): current_pixel = numpy_array[row_index, column_index] pixels_matrix[row_index][column_index] = Pixel(row_index, column_index, is_ignored_pixel(current_pixel, numpy_array)) for row_index, row in enumerate(numpy_array): for column_index, column in enumerate(row): if is_new_sprite(row_index, column_index, pixels_matrix, background_color): new_label = sprites_label[-1] + 1 pixels_matrix[row_index][column_index].label = new_label sprites_label.append(new_label) connected_sprites.setdefault(new_label, set()).add(new_label) return pixels_matrix, numpy_array def is_valid_background_color(): """ Check if arg @background_color is valid Return True by default """ # Not int or tuple if type(background_color) not in (int, tuple): return False # Invalid grayscale format if type(background_color) == int: if not 255 >= background_color >= 0 or image.mode != "L": return False # Invalid RGB/ RGBA format if type(background_color) == tuple: if len(background_color) not in (3,4) or image.mode == "L": return False for element in background_color: if type(element) != int or not 255 >= element >= 0: return False return True if background_color: pass elif image.mode == "RGBA": background_color = (0,0,0,0) else: background_color = find_most_common_color(image) # Check validation of arg background_color if not is_valid_background_color() or not image: print("Invalid arguments! Please try again!") return image_width, image_height = image.size # Store all connected sprites that can be unified latter connected_sprites = {} # List of pixels label exist inside the map sprites_label = [0] # Maps of pixels under format matrix and numpy array pixels_matrix, numpy_array = analyze_numpy_array(background_color) # Dict of pixels'label corresponding to sprite's label pixels_to_sprites = analyze_connected_sprites(connected_sprites) # Map of sprites under format 2D-matrix label_map = unify_sprites(pixels_to_sprites, pixels_matrix, numpy_array) # Set of sprite-label that exist inside the map exist_sprites_label = search_exist_sprites_label(pixels_to_sprites) # A dictionary with key:the label of a sprite and value:it's Sprite object sprites = collect_sprites(exist_sprites_label, label_map, numpy_array) return (sprites, label_map)
67a544e916ebd01fbddd16f755e386d820507433
2,646
def get_java_package(path): """Extract the java package from path""" segments = path.split("/") # Find different root start indecies based on potential java roots java_root_start_indecies = [_find(segments, root) for root in ["java", "javatests"]] # Choose the root that starts earliest start_index = min(java_root_start_indecies) if start_index == len(segments): fail("Cannot find java root: " + path) return ".".join(segments[start_index + 1:])
253e503a146cffe6a8c00786539d8e3a2d6374f7
2,647
import os def generate_seekr2_model_and_filetree(model_input, force_overwrite): """ Using the Model_input from the user, prepare the Model object and the filetree. Then prepare all building files for each anchor and serialize the Model to XML. """ model = common_prepare.model_factory(model_input) common_prepare.prepare_model_cvs_and_anchors(model, model_input) root_directory = os.path.expanduser(model_input.root_directory) xml_path = os.path.join(root_directory, "model.xml") if os.path.exists(xml_path): # then a model file already exists at this location: update # the anchor directories. old_model = base.Model() old_model.deserialize(xml_path) common_prepare.modify_model(old_model, model, root_directory, force_overwrite) filetree.generate_filetree(model, root_directory) filetree.copy_building_files(model, model_input, root_directory) common_prepare.generate_bd_files(model, root_directory) model.serialize(xml_path) return model, xml_path
1309c8106f4b52b14c6b6c6760cefec5ea7749a5
2,648
def get_plugin(): """Return the filter.""" return TextFilter
b0d43cab9c3b887fd9735ecfdc5372a8e2aefb49
2,649
import time def caltech256(root): """Caltech256 dataset from http://www.vision.caltech.edu/Image_Datasets/Caltech256 Pictures of objects belonging to 256 categories. About 80 to 800 images per category. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc 'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a matlab script to view the annotaitons, 'show_annotations.m'. Attention: if exist dirs `root/caltech256`, api will delete it and create it. Data storage directory: root = `/user/.../mydata` caltech256 data: `root/caltech256/train/007.bat/xx.jpg` `root/caltech256/train/010.beer-mug/xx.ipg` `root/caltech256/train/064.elephant-101/xx.jpg` Args: root: str, Store the absolute path of the data directory. example:if you want data path is `/user/.../mydata/caltech256`, root should be `/user/.../mydata`. Returns: Store the absolute path of the data directory, is `root/caltech256`. """ start = time.time() task_path = assert_dirs(root, 'caltech256', make_root_dir=False) url = "http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar" rq.files(url, gfile.path_join(root, url.split('/')[-1])) un_tar(gfile.path_join(root, url.split('/')[-1]), task_path) gfile.rename(gfile.path_join(task_path, '256_ObjectCategories'), gfile.path_join(task_path, 'train')) gfile.remove(gfile.path_join(root, '256_ObjectCategories.tar')) print('caltech256 dataset download completed, run time %d min %.2f sec' %divmod((time.time()-start), 60)) return task_path
972cec00a3360fe0ace5b1fb8165e45718c137c1
2,650
def draw__mask_with_edge(cv2_image: np.ndarray, edge_size: int = 10) -> np.ndarray: """ From a color image, get a black white image each instance separated by a border. 1. Change a color image to black white image. 2. Get edge image from `cv2_image`, then invert it to separate instance by a border. 3. Merge 1 and 2. .. image:: https://i.imgur.com/YAHVVSl.png :width: 2496px :height: 1018px :scale: 25% :alt: mask_with_edge :align: center Parameters ---------- cv2_image : np.ndarray BGR color Image edge_size : int Edge size, by default 10 Returns ------- np.ndarray Grayscale image each instance separated by a border. Examples -------- >>> cv2_img: np.ndarray = cv2.imread("...") >>> edge_masked_image: np.ndarray = mask_with_edge(cv2_img, edge_size=10) """ img_edge = draw__edge_only(cv2_image, edge_size) not_img_edge = cv2.bitwise_not(img_edge) bw_image = img_color_to_bw(cv2_image) return mask_image(bw_image, mask_image=not_img_edge)
50a25b60fdfa83f8cd1ec707f4c0e63b3c621695
2,651
def get_functions(pdb_file): """Get the offset for the functions we are interested in""" methods = {'ssl3_new': 0, 'ssl3_free': 0, 'ssl3_connect': 0, 'ssl3_read_app_data': 0, 'ssl3_write_app_data': 0} try: # Do this the hard way to avoid having to load # the types stream in mammoth PDB files pdb = pdbparse.parse(pdb_file, fast_load=True) pdb.STREAM_DBI.load() pdb._update_names() pdb.STREAM_GSYM = pdb.STREAM_GSYM.reload() if pdb.STREAM_GSYM.size: pdb.STREAM_GSYM.load() pdb.STREAM_SECT_HDR = pdb.STREAM_SECT_HDR.reload() pdb.STREAM_SECT_HDR.load() # These are the dicey ones pdb.STREAM_OMAP_FROM_SRC = pdb.STREAM_OMAP_FROM_SRC.reload() pdb.STREAM_OMAP_FROM_SRC.load() pdb.STREAM_SECT_HDR_ORIG = pdb.STREAM_SECT_HDR_ORIG.reload() pdb.STREAM_SECT_HDR_ORIG.load() except AttributeError: pass try: sects = pdb.STREAM_SECT_HDR_ORIG.sections omap = pdb.STREAM_OMAP_FROM_SRC except AttributeError: sects = pdb.STREAM_SECT_HDR.sections omap = DummyOmap() gsyms = pdb.STREAM_GSYM if not hasattr(gsyms, 'globals'): gsyms.globals = [] #names = [] for sym in gsyms.globals: try: name = sym.name.lstrip('_').strip() if name.startswith('?'): end = name.find('@') if end >= 0: name = name[1:end] #names.append(name) if name in methods: off = sym.offset virt_base = sects[sym.segment-1].VirtualAddress addr = omap.remap(off+virt_base) if methods[name] == 0: methods[name] = addr else: methods[name] = -1 except IndexError: pass except AttributeError: pass #with open('names.txt', 'wb') as f_out: # for name in names: # f_out.write(name + "\n") return methods
e2a36d3799004c1f96d5bccb3c4f0a8ad3ce2607
2,652
import typing def empty_iterable() -> typing.Iterable: """ Return an empty iterable, i.e., an empty list. :return: an iterable :Example: >>> from flpy.iterators import empty_iterable >>> empty_iterable() [] """ return list()
904fe365abf94f790f962c9a49f275a6068be4f0
2,653
from re import M def nearest_pow_2(x): """ Finds the nearest integer that is a power of 2. In contrast to :func:`next_pow_2` also searches for numbers smaller than the input and returns them if they are closer than the next bigger power of 2. """ a = M.pow(2, M.ceil(M.log(x, 2))) b = M.pow(2, M.floor(M.log(x, 2))) if abs(a - x) < abs(b - x): return int(a) else: return int(b)
c9dba6f38badcedee02f7071fc5fcf82519dbdcb
2,654
def timestamp_preprocess(ds, column, name): """This function takes the timestamp in the dataset and create from it features according to the settings above Args: ds ([dataframe]): dataset column ([integer]): column index name ([string]): column name Returns: [dataframe]: dataset after transformation """ ts = pd.to_datetime(ds[name]) for feature in TIMESTAMP_FEATURES.keys(): if TIMESTAMP_FEATURES[feature] is not None: if feature == "timestamp": ds[feature] = ts elif feature == "day_of_week": ds[feature] = ts.apply(lambda X: X.day_of_week) elif feature == "day_of_month": ds[feature] = ts.apply(lambda X: X.day) elif feature == "month": ds[feature] = ts.apply(lambda X: X.month) elif feature == "hour": ds[feature] = ts.apply(lambda X: X.hour) elif feature == "minute": ds[feature] = ts.apply(lambda X: X.minute) elif feature == "year": ds[feature] = ts.apply(lambda X: X.year) return ds
18203f8e9a016d3302d5fe06d498d68403eb5805
2,655
def make_taubin_loss_function(x, y): """closure around taubin_loss_function to make surviving pixel positions availaboe inside. x, y: positions of pixels surviving the cleaning should not be quantities """ def taubin_loss_function(xc, yc, r): """taubin fit formula reference : Barcelona_Muons_TPA_final.pdf (slide 6) """ upper_term = (((x - xc) ** 2 + (y - yc) ** 2 - r ** 2) ** 2).sum() lower_term = (((x - xc) ** 2 + (y - yc) ** 2)).sum() return np.abs(upper_term) / np.abs(lower_term) return taubin_loss_function
b11aae3586cb387a6e280f5b0e985dcf6364306e
2,656
def init_rf_estimator(): """ Instantiate a Random forest estimator with the optimized hyper-parameters. :return: The RandomForest estimator instance. """ rf = RandomForestClassifier( criterion=RF_CRIT, min_samples_leaf=RF_MIN_SAMPLES_LEAF, max_features='auto', n_estimators=RF_N_ESTS, n_jobs=-1) return rf
1171b5582869151823da29c61545c857e04ffed6
2,657
def dict_filter(d, exclude=()): """ Exclude specified keys from a nested dict """ def fix_key(k): return str(k) if isinstance(k, builtin_str) else k if isinstance(d, list): return [dict_filter(e, exclude) for e in d] if isinstance(d, dict): items = ((fix_key(k), v) for k, v in d.items()) return { k: dict_filter(v, exclude) for k, v in items if k not in exclude } return d
afa87c730fd105741a3bf95601d682fa817b903d
2,658
async def mongoengine_multiple_objects_exception_handler(request, exc): """ Error handler for MultipleObjectsReturned. Logs the MultipleObjectsReturned error detected and returns the appropriate message and details of the error. """ logger.exception(exc) return JSONResponse( Response(success=False, error_code=422, message=str(exc)).dict() )
c0e3d8d25ee02b9240cbf02f532cb853cbc693ee
2,659
def _get_sample_times(*traces, **kwargs): """Get sample times for all the traces.""" # Set the time boundaries for the DataFrame. max_stop_time = max( [trace.stop_time() for trace in traces if isinstance(trace, Trace)] ) stop_time = kwargs.pop("stop_time", max_stop_time) min_start_time = min( [trace.start_time() for trace in traces if isinstance(trace, Trace)] ) start_time = kwargs.pop("start_time", min_start_time) # Get all the sample times of all the traces between the start and stop times. times = set([start_time, stop_time]) for trace in traces: times.update( set(trace.get_sample_times(start_time=start_time, stop_time=stop_time)) ) # If requested, fill in additional times between sample times. step = kwargs.pop("step", 0) if step: times.update(set(range(start_time, stop_time + 1, step))) # Sort sample times in increasing order. times = sorted(list(times)) return times
3e20bed62017e8306b3489ec41b7f6cd59a4c916
2,660
import math def get_weak_model(op, diff_type, nonzero2nonzero_weight, zero2zero_weight=0, zero2nonzero_weight=math.inf, nonzero2zero_weight=math.inf, precision=0): """Return the weak model of the given bit-vector operation ``op``. Given the `Operation` ``op``, return the `WeakModel` of ``op`` for the `Difference` type ``diff_type`` with given class attributes ``nonzero2nonzero_weight``, ``zero2zero_weight``, ``zero2nonzero_weight``, ``nonzero2zero_weight`` and ``precision`` (see `WeakModel`). The returned model is a subclass of `WeakModel` and `OpModel`. .. note:: To link the returned model ``MyModel`` to ``op`` such that ``MyModel`` is used in ``propagate``, set the ``xor_model`` or ``rx_model`` attribute of ``op`` to ``MyModel`` (e.g., ``op.xor_model = MyModel``). See also `differential.difference.XorDiff.propagate` or `differential.difference.RXDiff.propagate`. :: >>> from cascada.bitvector.core import Constant, Variable >>> from cascada.bitvector.secondaryop import LutOperation >>> from cascada.differential.difference import XorDiff >>> from cascada.differential.opmodel import get_weak_model >>> class MyLut(LutOperation): pass # a 2-bit function >>> XorWeakModelMyLut = get_weak_model(MyLut, XorDiff, decimal.Decimal(1.5), precision=1) >>> alpha, beta = XorDiff(Variable("a", 2)), XorDiff(Variable("b", 2)) >>> f = XorWeakModelMyLut(alpha) >>> print(f.vrepr()) XorWeakModelMyLut(XorDiff(Variable('a', width=2))) >>> f.validity_constraint(beta) (((a == 0b00) & (b == 0b00)) == 0b1) | ((~(a == 0b00) & ~(b == 0b00)) == 0b1) >>> f.bv_weight(beta) Ite(((a == 0b00) & (b == 0b00)) == 0b1, 0b00, 0b11) >>> f.max_weight(), f.weight_width(), f.error(), f.num_frac_bits() (3, 2, 0, 1) """ assert issubclass(op, operation.Operation) if diff_type == difference.XorDiff: prefix = "Xor" assert zero2zero_weight == 0 # for XOR differentials with Pr. 1, an input property propagates to a unique output property assert zero2nonzero_weight == math.inf elif diff_type == difference.RXDiff: prefix = "RX" else: raise ValueError(f"invalid diff_type {diff_type}") _op, _diff_type = op, diff_type _zero2zero_weight = zero2zero_weight _nonzero2nonzero_weight = nonzero2nonzero_weight _zero2nonzero_weight, _nonzero2zero_weight = zero2nonzero_weight, nonzero2zero_weight _precision = precision class MyWeakModel(abstractproperty.opmodel.WeakModel, OpModel): op, diff_type = _op, _diff_type zero2zero_weight = _zero2zero_weight nonzero2nonzero_weight = _nonzero2nonzero_weight zero2nonzero_weight = _zero2nonzero_weight nonzero2zero_weight = _nonzero2zero_weight precision = _precision # def error(self): # maximum weight of a differential with n-bit input is n # return sum(p.val.width for p in self.input_prop) MyWeakModel.__name__ = f"{prefix}{abstractproperty.opmodel.WeakModel.__name__}{op.__name__}" return MyWeakModel
be34db3112ff7788bb96e6d6cc467d4d98d8af51
2,661
def get_temp(): """ 読み込んだ温度を返す """ return sensor.t
a4c7ed616af202599581cd47be87cb10ea571947
2,662
def load_clean_yield_data(yield_data_filepath): """ Cleans the yield data by making sure any Nan values in the columns we care about are removed """ important_columns = ["Year", "State ANSI", "County ANSI", "Value"] yield_data = pd.read_csv(yield_data_filepath).dropna( subset=important_columns, how="any" ) return yield_data
14c5facc947d1ff8bcc7714447e9da3b7842bcee
2,663
def create_element_mapping(repnames_bedfile): """Create a mapping of the element names to their classes and families""" elem_key = defaultdict(lambda : defaultdict(str)) with open(repnames_bedfile, "r") as bed: for line in bed: l = line.strip().split("\t") name = l[3] class_ = l[4] family = l[5] elem_key[name]["class"] = class_ elem_key[name]["family"] = family return elem_key
d3bc0491625d318b8f049c71a10571c21caf03d8
2,664
def _get_CRABI_iterators(captcha_dataframe, train_indices, validation_indices, batch_size, image_height, image_width, character_length, categories): """ (HELPER FUNCTION) Args: captcha_dataframe (pandas.DataFrame): the dataset for training train_indices (numpy.ndarray): indices of the CAPTCHA dataset used for training data validation_indices (numpy.ndarray): indices of the CAPTCHA dataset used for validation data batch_size (int): number of samples to process before the model is updated image_height (int): height (in pixels) of expected input CAPTCHA image image_width (int): width (in pixels) of expected input CAPTCHA image character_length (int): number of characters in expected input CAPTCHA image categories (int): number of possible characters in expected input CAPTCHA image, specifying category count in the output layer ('10' for digits 0-9, '26' for alphabet, '36' for alphanumeric) Returns: pair of generator objects -> (training_set_iterator, validation_set_iterator) """ training_set_iterator = generate_CRABI_preprocessed_images(captcha_dataframe, train_indices, for_training=True, batch_size=batch_size, image_height=image_height, image_width=image_width, categories=categories) validation_set_iterator = generate_CRABI_preprocessed_images(captcha_dataframe, validation_indices, for_training=True, batch_size=batch_size, image_height=image_height, image_width=image_width, categories=categories) return training_set_iterator, validation_set_iterator
7e01586f359860b5d1e461e9612b164e6cf9365f
2,665
import uuid def run(request, context): """Creates a template. Args: request (orchestrate_pb2.CreateTemplateRequest): Request payload. context: Context. Returns: A orchestrate_pb2.CreateTemplate with the status of the request. """ template = request.template print('Orchestrate.CreateTemplate name={name} project={project}'.format( name=template.name, project=template.project, )) request_id = uuid.uuid4().hex try: # Make sure data is valid before creating individual sizes - don't want to # clean-up half-way or leave incomplete template families. for size in template.sizes: validate_metadata(template, size) # Data checks out. let's create all template sizes. for size in template.sizes: create_template_size(template, size) return orchestrate_pb2.CreateTemplateResponse( status='CREATED', request_id=str(request_id), ) except errors.HttpError as exception: if exception.resp.status == 409: message = 'A template with name {name} already exists.'.format( name=template.name) raise OrchestrateTemplateCreationError(message) else: raise
484de4399b23bbc71e35ad70b054c1a62c41952e
2,666
def fit_2dgaussian(data, error=None, mask=None): """ Fit a 2D Gaussian to a 2D image. Parameters ---------- data : array_like The 2D array of the image. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- result : `~astropy.modeling.functional_models.Gaussian2D` instance The best-fitting Gaussian 2D model. """ if error is not None: weights = 1.0 / error else: weights = None if mask is not None: if weights is None: weights = np.ones_like(data) # down-weight masked pixels weights[mask] = 1.e-20 props = data_properties(data, mask=mask) init_amplitude = np.ptp(data) g_init = models.Gaussian2D( init_amplitude, props.xcentroid.value, props.ycentroid.value, props.semimajor_axis_sigma.value, props.semiminor_axis_sigma.value, props.orientation.value) fitter = LevMarLSQFitter() y, x = np.indices(data.shape) gfit = fitter(g_init, x, y, data, weights=weights) return gfit
6ac3c7b7cba17baba719bd1d1fc87030f9c45dca
2,667
from typing import List from pathlib import Path import os def list_dir_files(path: str, suffix: str = "") -> List[str]: """ Lists all files (and only files) in a directory, or return [path] if path is a file itself. :param path: Directory or a file :param suffix: Optional suffix to match (case insensitive). Default is none. :return: list of absolute paths to files """ if suffix: suffix = suffix.lower() if Path(path).is_file(): files = [os.path.abspath(path)] else: files = [] for f in os.listdir(path): file_path = os.path.join(path, f) if Path(file_path).is_file(): if not suffix or f.lower().endswith(suffix): files.append(os.path.abspath(file_path)) return list(sorted(files))
aaba7de5d5f67c5addc054010c5a2bd811475a3e
2,668
def to_roman(number): """ Converts an arabic number within range from 1 to 4999 to the corresponding roman number. Returns None on error conditions. """ try: return roman.toRoman(number) except (roman.NotIntegerError, roman.OutOfRangeError): return None
48fbe99caa527e711f8d0285577d96941a34b9c9
2,669
def GDAL_like(filename, fileout=""): """ GDAL_like """ BSx, BSy, Mb, Nb, M, N = 0,0, 0,0, 0,0 dataset1 = gdal.Open(filename, gdal.GA_ReadOnly) dataset2 = None if dataset1: band1 = dataset1.GetRasterBand(1) M, N = int(dataset1.RasterYSize), int(dataset1.RasterXSize) B = dataset1.RasterCount BSx, BSy = band1.GetBlockSize() Nb = int(N / BSx) + (0 if N % BSx == 0 else 1) Mb = int(M / BSy) + (0 if M % BSy == 0 else 1) CO = ["BIGTIFF=YES"] options = dataset1.GetMetadata("IMAGE_STRUCTURE") if BSy > 1: CO += ["TILED=YES", "BLOCKXSIZE=%d" % BSx, "BLOCKYSIZE=%d" % BSy] for key in options: if key == "COMPRESSION": CO.append("COMPRESS=" + options[key]) else: CO.append(key + "=" + options[key]) driver = gdal.GetDriverByName("GTiff") fileout = fileout if fileout else forceext(filename, "copy.tif") dataset2 = driver.Create(fileout, N, M, B, band1.DataType, CO) dataset2.SetProjection(dataset1.GetProjection()) dataset2.SetGeoTransform(dataset1.GetGeoTransform()) for j in range(1, B + 1): band1 = dataset1.GetRasterBand(j) band2 = dataset2.GetRasterBand(j) if band1.GetNoDataValue() != None: band2.SetNoDataValue(band1.GetNoDataValue()) else: band2.SetNoDataValue(np.nan) dataset1 = None return (dataset2, BSx, BSy, Mb, Nb, M, N)
34d4ea83a7c7e1726aa1d5a4d89e16bbed50cdd1
2,670
def take_attendance(methodcnt): """global setup_bool if (setup_bool == False or methodcnt == False): print ("in if statement") setup_bool = True else:""" print ("checking in - F.R.") react_with_sound(attendance_final) client.CheckIn() return 2
0ecdf80e59de5d968f7adc042d6be369367f4195
2,671
def feature_selection(data, features): """ Choose which features to use for training. :param data: preprocessed dataset :param features: list of features to use :return: data with selected features """ return data[features]
6303e52a9c64acfbb5dcfd115b07b3bef2942821
2,672
def parse_docstring(docstring, line=0, filename='<string>', logger=None, format_name=None, options=None): # type: (str, int, Any, Optional[logging.Logger], Optional[str], Any) -> Tuple[OrderedDict[str, Arg], Optional[Arg]] """ Parse the passed docstring. The OrderedDict holding parsed parameters may be sparse. Parameters ---------- docstring : str line : int start line of the docstring logger : Optional[logging.Logger] format_name : Optional[str] Returns ------- params : OrderedDict[str, Arg] results : Optional[Arg] """ if format_name is None or format_name == 'auto': format_cls = guess_format(docstring) if format_cls is None: format_cls = RestFormat else: format_cls = format_map[format_name] format = format_cls(line, filename=filename, logger=logger, options=options) return format.parse(docstring)
47cd0318f24ec1a26233ad6e98a398a4c9e95db6
2,673
def srCyrillicToLatin(cyrillic_text): """ Return a conversion of the given string from cyrillic to latin, using 'digraph' letters (this means that e.g. "nj" is encoded as one character). Unknown letters remain unchanged. CAVEAT: this will ONLY change letters from the cyrillic subset of Unicode. For instance, the plain ASCII letter "C" (code point 0x0043) will NOT be converted to "S", as opposed to the cyrillic letter "C" (code point 0x0421), which WILL be converted. If you are sure that your cyrillic string does not contain latin portions (e.g. quoted text, company names), you can "normalize" it to cyrillic by using srNormalizeToCyrillic first. """ return __translate_string(cyrillic_text, __cyrillic_to_latin)
cd4850b6c0bcf9b27aa1340dc98956c026e8f557
2,674
def from_phone(func=None): """来自手机的消息(给自己发的) FriendMsg""" if func is None: return from_phone async def inner(ctx): assert isinstance(ctx, FriendMsg) if ctx.MsgType == MsgTypes.PhoneMsg: return await func(ctx) return None return inner
8e47e82e014d3d727a615e310997cd2c634ae821
2,675
from typing import Iterator from typing import Tuple from typing import List from typing import Callable import torch import sys def fit_and_validate_readout(data: Iterator[Tuple[Tensor, Tensor]], regularization_constants: List[float], get_validation_error: Callable[[Tuple[Tensor, Tensor]], float], verbose: bool = False) -> Tuple[Tensor, Tensor]: """ Ridge regression for big data, with efficient regularization selection Fits a linear model :math:`y = W x + b` with regularization. See: T. Zhang & B. Yang (2017). An exact approach to ridge regression for big data. Computational Statistics, 32(3), 909–928. https://doi.org/10.1007/s00180-017-0731-5 :param data: Batch dataset of pairs (x, y) with samples on rows :param regularization_constants: Regularization constants for ridge regression (including none) :param get_validation_error: Evaluate validation error for a regression pair (W, b) :param verbose: Whether to print validation info (default false) :return: A pair of tensors (W, b) """ # Compute sufficient statistics for regression x, y = next(data) Syy = y.square().sum(dim=0) # (targets) Sxy = x.t() @ y # (features × targets) Sxx = x.t() @ x # (features × features) Sy = y.sum(dim=0) # (targets) Sx = x.sum(dim=0) # (features) n = float(x.shape[0]) # samples for x, y in data: Syy += y.square().sum(dim=0) Sxy += x.t() @ y Sxx += x.t() @ x Sy += y.sum(dim=0) Sx += x.sum(dim=0) n += x.shape[0] # Compute ridge matrices Vxx = Sxx.diag() - (Sx.square() / n) Vyy = Syy - (Sy.square() / n) XX = (Sxx - torch.outer(Sx, Sx) / n) / torch.outer(Vxx, Vxx).sqrt() Xy = (Sxy - torch.outer(Sx, Sy) / n) / torch.outer(Vxx, Vyy).sqrt() # Compute and select weights best_validation_error, best_W, best_b = None, None, None for regularization in regularization_constants: # Compute weights XXr = (XX + torch.eye(n=XX.shape[0]).to(XX) * regularization) if regularization else XX Ws = torch.linalg.solve(XXr, Xy) W = Ws * torch.sqrt(Vyy.expand_as(Ws) / Vxx.unsqueeze(-1)) b = (Sy / n) - (Sx / n) @ W # Validate, select validation_error = get_validation_error((W.t(), b)) if best_validation_error is None or validation_error < best_validation_error: best_validation_error, best_W, best_b = validation_error, W.t(), b if verbose: print(f'{regularization:e}: {validation_error}', file=sys.stderr) return best_W, best_b
d179e70aa53da0ff38ede9bbbf3fbe58b81c2886
2,676
import pathlib def create_scan_message(): """Creates a dummy message of type v3.asset.file to be used by the agent for testing purposes. The files used is the EICAR Anti-Virus Test File. """ file_content = (pathlib.Path(__file__).parents[0] / 'files/malicious_dummy.com').read_bytes() selector = 'v3.asset.file' msg_data = {'content': file_content, 'path': 'some/dummy/path'} return message.Message.from_data(selector, data=msg_data)
e899e705fc022046876dd2a1584e7db74c4b7105
2,677
def is_permutation_matrix( m ): """ Test whether a numpy array is a `permutation matrix`_. .. _permutation_matrix: https://en.wikipedia.org/wiki/Permutation_matrix Args: m (mp.matrix): The matrix. Returns: (bool): True | False. """ m = np.asanyarray(m) return (m.ndim == 2 and m.shape[0] == m.shape[1] and (m.sum(axis=0) == 1).all() and (m.sum(axis=1) == 1).all() and ((m == 1) | (m == 0)).all())
7cfe48fd0cd36c4ff151ebe248c79e685ee99cc8
2,678
def create_security_role(connection, body, error_msg=None): """Create a new security role. Args: connection: MicroStrategy REST API connection object body: JSON-formatted definition of the dataset. Generated by `utils.formjson()`. error_msg (string, optional): Custom Error Message for Error Handling Returns: Complete HTTP response object. """ return connection.session.post( url=f'{connection.base_url}/api/securityRoles', headers={'X-MSTR-ProjectID': None}, json=body, )
fbae3596e0cdcc430b2a7a30fc9ed594f3717ba3
2,679
def dbm_to_w(dbm): """Convert dBm to W.""" return 10 ** (dbm / 10.) * sc.milli
b6b782f35a3a07a2f372958363609b3b0f00a43a
2,680
from operator import inv def lml(alpha, beta, Phi, Y): """ 4 marks :param alpha: float :param beta: float :param Phi: array of shape (N, M) :param Y: array of shape (N, 1) :return: the log marginal likelihood, a scalar """ N = len(Phi) M = len(Phi[0]) part1 = (-N*0.5)*np.log(2*np.pi) wholePhi = np.dot(np.dot(Phi, alpha*np.identity(M)), Phi.T) wholeBeta = beta*np.identity(N) part2 = - 0.5*np.log(np.linalg.det(wholePhi + wholeBeta)) part3 = -0.5*np.dot(np.dot(Y.T, inv((wholePhi + wholeBeta))), Y) logFunc = part1 + part2 + part3 return logFunc[0][0]
a6d17ed0f6c81958360687d5758cd8a35147dd56
2,681
from typing import Callable from typing import Any import os def convert_env_var(var_name: str, *, cast_type: Callable[..., Any] = float, default: Any = None) -> Any: """ Attempts to read an environment variable value and cast it to a type. For example it permits getting numeric value(s) from os.environ :param var_name: Key to lookup from environment variables. :param cast_type: The callable instance to run the env string through if exists. :param default: Default value to return if the specified var_name does not exist in os.environ """ try: return cast_type(os.environ.get(var_name, default)) except (TypeError, ValueError): raise EnvironFetchException(f"Unable to cast to: {type(cast_type)}")
8b01cdca21f32aad2471946c39a2fc5962e316ef
2,682
def balance_set(X, Y, adr_labels_size, nonadr_labels_size): """balances the set by doing up- and down -sampling to converge into the same class size # Arguments X - set samples Y - set labels adr_labels_size - ADR_MENTION_CLASS size nonadr_labels_size - NON_ADR_MENTION_CLASS size # Returns new_X - new balanced samples new_Y - new labels corresponding to new_X """ print("Performing Class Balancing...") adr_samples_needed = nonadr_labels_size - adr_labels_size new_X = [] new_Y = [] adr_labels_size = 0 nonadr_labels_size = 0 for index, example in enumerate(X): if adr_samples_needed > 0: if Y[index] == ADR_MENTION_CLASS_LABEL: new_X.append(example) # add original 'ADR' sample new_Y.append(ADR_MENTION_CLASS_LABEL) new_X.append(example) # add duplicate 'ADR' sample to perform Over-Sampling new_Y.append(ADR_MENTION_CLASS_LABEL) adr_labels_size += 2 adr_samples_needed -= 1 else: # we don't add original 'No ADR Mention' sample to perform Under-Sampling adr_samples_needed -= 1 else: if Y[index] == ADR_MENTION_CLASS_LABEL: adr_labels_size += 1 else: nonadr_labels_size += 1 new_X.append(example) # add original sample new_Y.append(Y[index]) # add original label print(" Updated dataset size: {}".format(len(new_X))) print(" {} class size: {}".format(ADR_MENTION_CLASS_NAME, adr_labels_size)) print(" {} class size: {}".format(NON_ADR_MENTION_CLASS_NAME, nonadr_labels_size)) return new_X, new_Y
e73468dd600a9d6f9b13a46356110d35fba8ce59
2,683
from pathlib import Path def load_det_lcia(result_dir, method, act_code, det_lcia_dict=None): """Return precalculated deterministic LCIA score""" result_dir = Path(_check_result_dir(result_dir)) method = _check_method(method) if not det_lcia_dict: det_lcia_dict = _get_det_lcia_dict(result_dir, method) if not act_code in det_lcia_dict: raise ValueError("No deterministic result for activity with code {} " "in deterministic LCIA dictionary".format( act_code )) return det_lcia_dict[act_code]
c9ba6532f674bcbe988cdc645b7dd86a93ed27e5
2,684
def get_geometry(location, geolevel): """ Get geometry of a single location code/name """ if not utils.is_number(location) and location != "BR": assert geolevel, "You need to specify which geographic level this location is" location = ibgetools.ibge_encode(location, geolevel) if location == -1: return shapely.geometry.Polygon([]) url = build_url(location) geojson = get_geojson(url) features = utils.get_features(geojson) return shapely.geometry.shape(features[0]["geometry"])
da53cfe7845c7adffbcbd941dc3f0b62bdb15e2f
2,685
def render_to_string(template, context={}, processors=None): """ A function for template rendering adding useful variables to context automatically, according to the CONTEXT_PROCESSORS settings. """ if processors is None: processors = () else: processors = tuple(processors) for processor in get_standard_processors() + processors: context.update(processor(get_request())) template = local.app.jinja2_env.get_template(template) return template.render(context)
678eab60113a05fba86591ee7bb47e26ecfb0b37
2,686
def find_node_names(structure): """ Return the names of the nodes for the structure """ # Look through all of the items in the structure for names # Check through each of the lists and sub-lists names=set() for i in xrange(len(structure)): if isinstance(structure[i],basestring): # do not return joins if not structure[i] in [AND_DELIMITER, OR_DELIMITER, " "]: names.add(structure[i]) elif isinstance(structure[i], list): names.update(find_node_names(structure[i])) return names
812194e2d8dbd34741e9f03a6c775bb30f551341
2,687
import os def run_calcs(run_id, year, no_ef_countries, export_data=True, include_TD_losses=True, BEV_lifetime=180000, ICEV_lifetime=180000, flowtrace_el=True, allocation=True, production_el_intensity=679, incl_ei=False, energy_sens=False): """Run all electricity mix and vehicle calculations and exports results.""" # Korean el-mix 679 g CO2/kWh, from ecoinvent fp = os.path.curdir production, trades, trade_ef, country_total_prod_disagg, country_total_cons_disagg, g_raw, C = load_prep_el_data(fp, year) codecheck_file, elmixes, trade_only, country_el, CFEL, CFCI = el_calcs(flowtrace_el, run_id, fp, C, production, country_total_prod_disagg, country_total_cons_disagg, g_raw, trades, trade_ef, include_TD_losses, incl_ei, export_data) # Leontief electricity calculations results_toSI, ICEV_total_impacts, ICEV_prodEOL_impacts, ICEV_op_int = BEV_calcs(fp, country_el, production, elmixes, BEV_lifetime, ICEV_lifetime, production_el_intensity, CFCI, allocation, energy_sens) SI_fp = export_SI(run_id, results_toSI, production, trades, C, CFEL, no_ef_countries) pickle_results(run_id, results_toSI, CFEL, ICEV_total_impacts, codecheck_file, export_data) return results_toSI['BEV footprint'].xs('Consumption mix', level=1, axis=1), ICEV_prodEOL_impacts, ICEV_op_int, SI_fp
7bb80133ec3ee684c8db229f9f41940c994c3634
2,688
def handle_question(): """Save response and redirect to next question.""" # get the response choice choice = request.form['answer'] # add this response to the session responses = session[RESPONSES_KEY] responses.append(choice) session[RESPONSES_KEY] = responses if (len(responses) == len(survey.questions)): # They've answered all the questions! Thank them. return redirect("/complete") else: return redirect(f"/questions/{len(responses)}")
184dc816303f48e134320f602126d381ee820b59
2,689
from typing import Callable def makeNotePlayer(seq: Sequencer, out: PortInfo ) -> Callable[[int, bool], None]: """Returns a callable object that plays midi notes on a port.""" def playNote(note: int, enabled: bool) -> None: if enabled: seq.sendEvent(NoteOn(0, 0, note, 127), out) else: seq.sendEvent(NoteOff(0, 0, note, 0), out) return playNote
7cb9741944f6f71fbfd55b825c2c7e4638bfa317
2,690
def se_resnet152(**kwargs): """TODO: Add Doc""" return _resnet("se_resnet152", **kwargs)
52dd9fa145f6216519282633aa54e6e17802aaa9
2,691
import base64 def file_to_attachment(filename): """ Convert a file to attachment """ with open(filename, 'rb') as _file: return {'_name':filename, 'content':base64.b64encode(_file.read()) }
9b64fe8a4329eae000cd76d58450c32644a736f6
2,692
def ratio_selection( strain_lst, ratio_lst, pressure_lst, temperature_lst, ratio_boundary, debug_plot=True, ): """ Args: strain_lst: ratio_lst: pressure_lst: temperature_lst: ratio_boundary: debug_plot: Returns: """ if debug_plot: plt.plot(strain_lst, ratio_lst) plt.axhline(0.5 + ratio_boundary, color="red", linestyle="--") plt.axhline(0.5, color="black", linestyle="--") plt.axhline(0.5 - ratio_boundary, color="red", linestyle="--") plt.xlabel("Strain") plt.ylabel("ratio solid vs. liquid") rat_lst, rat_col_lst = [], [] for rat in ratio_lst: if (0.5 - ratio_boundary) < rat < (0.5 + ratio_boundary): rat_lst.append(rat) elif len(rat_lst) != 0: rat_col_lst.append(rat_lst) rat_lst = [] if len(rat_lst) != 0: rat_col_lst.append(rat_lst) if len(rat_col_lst) != 0: rat_max_ind = np.argmax([len(lst) for lst in rat_col_lst]) ratio_ind = [r in rat_col_lst[rat_max_ind] for r in ratio_lst] strain_value_lst = np.array(strain_lst)[ratio_ind] ratio_value_lst = np.array(ratio_lst)[ratio_ind] pressure_value_lst = np.array(pressure_lst)[ratio_ind] temperature_value_lst = np.array(temperature_lst)[ratio_ind] if debug_plot: plt.axvline(np.min(strain_value_lst), color="blue", linestyle="--") plt.axvline(np.max(strain_value_lst), color="blue", linestyle="--") plt.show() if np.mean(ratio_value_lst) > 0.5: return ( strain_value_lst, ratio_value_lst, pressure_value_lst, temperature_value_lst, 1, ) else: return ( strain_value_lst, ratio_value_lst, pressure_value_lst, temperature_value_lst, -1, ) else: if np.mean(ratio_lst) > 0.5: return [], [], [], [], 1 else: return [], [], [], [], -1
f4260649c50b33d9ee818ebdc0469d693720937d
2,693
def diff_mean(rolling_window, axis=-1): """For M5 purposes, used on an object generated by the rolling_window function. Returns the mean of the first difference of a window of sales.""" return np.diff(rolling_window, axis=axis).mean(axis=axis)
85294f16c89658eaca9562e1ff4652d5865a5a59
2,694
import numpy def noiseFraction(truth_h5, measured_h5, tolerance): """ Return the fraction of measured localizations that are greater than tolerance pixels from the nearest truth localization. Note: This will return 0 if there are no measured localizations. truth_h5 - A saH5Py.SAH5Py object with the ground truth localizations. measured_h5 - A saH5Py.SAH5Py object with the found localizations. tolerance - The search radius in pixels. """ if (measured_h5.getNLocalizations() == 0): return [0, truth_h5.getNLocalizations()] noise_locs = 0 total_locs = 0 for i in range(truth_h5.getMovieLength()): t_locs = truth_h5.getLocalizationsInFrame(i) m_locs = measured_h5.getLocalizationsInFrame(i) if bool(t_locs) and bool(m_locs): dist = iaUtilsC.peakToPeakDistAndIndex(t_locs['x'], t_locs['y'], m_locs['x'], m_locs['y'], max_distance = tolerance)[0] noise_locs += numpy.count_nonzero((dist < 0.0)) total_locs += dist.size elif bool(t_locs): total_locs += t_locs['x'].size return [noise_locs, total_locs]
282e8c835906cf218e6eb1ef94cbb595419419f5
2,695
import os def prepare(compute: dict, script_id: str): """Prepare the script :param compute: The instance to be attacked. :param script_id: The script's filename without the filename ending. Is named after the activity name. :return: A tuple of the Command Id and the script content """ os_type = __get_os_type(compute) if os_type == OS_LINUX: command_id = 'RunShellScript' script_name = "{}.sh".format(script_id) else: if script_id in UNSUPPORTED_WINDOWS_SCRIPTS: raise InterruptExecution("'{}' is not supported for os '{}'" .format(script_id, OS_WINDOWS)) command_id = 'RunPowerShellScript' script_name = "{}.ps1".format(script_id) file_path = os.path.join(os.path.dirname(__file__), "../scripts", script_name) with open(file_path) as file_path: script_content = file_path.read() return command_id, script_content
547662decdc541ba398a273a91280ce9b60b2006
2,696
def compute_rigid_flow(depth, pose, intrinsics, reverse_pose=False): """Compute the rigid flow from target image plane to source image Args: depth: depth map of the target image [batch, height_t, width_t] pose: target to source (or source to target if reverse_pose=True) camera transformation matrix [batch, 6], in the order of tx, ty, tz, rx, ry, rz; intrinsics: camera intrinsics [batch, 3, 3] Returns: Rigid flow from target image to source image [batch, height_t, width_t, 2] """ with tf.variable_scope('compute_rigid_flow'): batch, height, width = depth.get_shape().as_list() # Convert pose vector to matrix pose = pose_vec2mat(pose) if reverse_pose: pose = tf.matrix_inverse(pose) # Construct pixel grid coordinates pixel_coords = meshgrid(batch, height, width) tgt_pixel_coords = tf.transpose(pixel_coords[:,:2,:,:], [0, 2, 3, 1]) # Convert pixel coordinates to the camera frame cam_coords = pixel2cam(depth, pixel_coords, intrinsics) # Construct a 4x4 intrinsic matrix filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4]) filler = tf.tile(filler, [batch, 1, 1]) intrinsics = tf.concat([intrinsics, tf.zeros([batch, 3, 1])], axis=2) intrinsics = tf.concat([intrinsics, filler], axis=1) # Get a 4x4 transformation matrix from 'target' camera frame to 'source' # pixel frame. proj_tgt_cam_to_src_pixel = tf.matmul(intrinsics, pose) src_pixel_coords = cam2pixel(cam_coords, proj_tgt_cam_to_src_pixel) rigid_flow = src_pixel_coords - tgt_pixel_coords return rigid_flow
5b01bfb9768bc1f180b06f599e71c4808c945854
2,697
def get_versions(script_name): """ 返回指定名称脚本含有的所有版本。""" versions = repository.get(script_name, None) if not versions: return None return sorted(versions, reverse=True)
4399c5531bbf0d10f750d64ce3a63e156d62ba1b
2,698
import os def data_static(filename): """ Get files :param filename: :return: """ _p, _f = os.path.split(filename) print(_p, _f) return flask.send_from_directory(os.path.join( '/Users/dmitryduev/_caltech/python/deep-asteroids/data-raw/', _p), _f)
ebaf91e16fc3f0a83da47c61723c62a03533fa1c
2,699