content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def dot(p, q): """ Compute dot product between two 3D vectors p: array Cartesian coordinates for one of the vectors q: array Cartesian coordinates for one of the vectors """ return p[0] * q[0] + p[1] * q[1] + p[2] * q[2]
28a073690e1e89128a997ae75b8782ee0cfb7252
19,600
import os import sys import tempfile def create(protocol, host, port, objname): """ Sets up an environment through which the program can be re-invoked by itself. In this new environment, the output will be the username and password stored in the keyring for the specified server. Refer to `credentials.keyring` for what the arguments mean. """ # Set up an environment in which 'git fetch' will load username and # password from this script, not prompt the user in terminal. env = deepcopy(os.environ) env['GIT_ASKPASS'] = sys.argv[0] # Use the entry point of the script. env['SR_ASKPASS'] = '1' env['SR_ASKPASS_PROTOCOL'] = protocol if protocol else '' env['SR_ASKPASS_SERVER'] = host if host else '' env['SR_ASKPASS_PORT'] = str(port) if port else '0' env['SR_ASKPASS_OBJECT'] = objname if objname else '' handle, filepath = tempfile.mkstemp() os.write(handle, 'U'.encode('ascii')) os.close(handle) env['SR_ASKPASS_TEMP'] = filepath return env
a4e06f82338ec9e7445f5319b759f46cbab2f09e
19,601
import click_completion.core import click def install_completion(ctx, attr, value): # pragma: no cover """Install completion for the current shell.""" if not value or ctx.resilient_parsing: return value shell, path = click_completion.core.install() click.secho("{0} completion installed in {1}".format(shell, path), fg="green") ctx.exit()
b6c84744161d90cc1d33ac6effd5b7aec083c151
19,602
from datetime import datetime def _extractSetsSingleUser(df, time_window): """Get activity set and trip set for each individual.""" # total weeks and start week weeks = (df["endt"].max() - df["startt"].min()).days // 7 start_date = df["startt"].min().date() aSet = pd.DataFrame([], columns=["userid", "locid", "dur_s", "class", "timeStep"]) tSet = pd.DataFrame([], columns=["userid", "tripid", "length_m", "dur_s", "nloc", "class", "timeStep"]) # construct the sliding week gdf, i is the timestep for i in range(0, weeks - time_window + 1): # start and end time curr_start = datetime.datetime.combine(start_date + datetime.timedelta(weeks=i), datetime.time()) curr_end = datetime.datetime.combine(curr_start + datetime.timedelta(weeks=time_window), datetime.time()) ## determine activity set locations # get the currect time step points gdf curr_stps = df.loc[(df["startt"] >= curr_start) & (df["endt"] < curr_end) & (df["type"] == "points")] # extract the activity set (location) curr_ASet = curr_stps.groupby("locid", as_index=False).apply(_getActLocs, time_window=time_window).dropna() # if no location, jump to next time step if curr_ASet.empty: continue # result is the locations with stayed duration class curr_ASet["timeStep"] = i aSet = aSet.append(curr_ASet) ## determine activity set trips # select activity set location curr_ASet = curr_ASet.loc[curr_ASet["class"] > 0] # get the currect time step trips gdf curr_t = df.loc[(df["startt"] >= curr_start) & (df["endt"] < curr_end) & (df["type"] == "trips")] curr_tSet = _getCurrTrips(curr_t, curr_stps, curr_ASet) # result is the trips that ends at activity set locations curr_tSet["timeStep"] = i tSet = tSet.append(curr_tSet) # clean up aSet.reset_index(drop=True) tSet.reset_index(drop=True) aSet["type"] = "points" tSet["type"] = "trips" aSet["userid"] = df["userid"].unique()[0] tSet["userid"] = df["userid"].unique()[0] return aSet.append(tSet)
40f92857cd5684b8fbf8b01565ede7aeffab1fe8
19,603
def _ed25519(): """Edwards curve Ed25519. Link: https://en.wikipedia.org/wiki/EdDSA#Ed25519 """ q = 2 ** 255 - 19 order = 2 ** 252 + 27742317777372353535851937790883648493 gf = GF(q) ed = CurveParams(name="ED25519", order=order, gf=gf, is_cyclic = True) ed.set_constants(a=gf(-1), d=gf(-121665) / gf(121666)) ed.set_equation(set_edwards_eq(a=ed.a, c=ed.c, d=ed.d)) ed.set_base_pt( ( gf( 15112221349535400772501151409588531511454012693041857206046113283949847762202 ), gf(4) / gf(5), ) ) return ed
f1a07b9ebcb6033968f0e7d9c66ee2ff71f138e0
19,604
import json def from_raw_bytes(raw_bytes): """Take raw bytes and turn it into a DmailRequest""" return from_json(json.loads(raw_bytes.decode(encoding='UTF-8')))
01e989dfddcad20125ff608cdfa42673b1c0d0d8
19,605
def BRepApprox_TheMultiLineToolOfApprox_FirstPoint(*args): """ :param ML: :type ML: BRepApprox_TheMultiLineOfApprox & :rtype: int """ return _BRepApprox.BRepApprox_TheMultiLineToolOfApprox_FirstPoint(*args)
26b8a2bffe094a8cc1e41edf56b92b75be75dc37
19,606
import time def push_message(token, user, message, **kwargs): """ Send message to selected user/group/device. :param str token: application token :param str user: user or group id to send the message to :param str message: your message :param str title: your message's title, otherwise your app's name is used :param str device: your user's device name to send the message directly to that device :param list device: your user's devices names to send the message directly to that device :param str url: a supplementary URL to show with your message :param str url_title: a title for your supplementary URL, otherwise just the URL is shown :param int priority: message priority (Use the Priority class to select) :param int retry: how often (in seconds) the Pushover servers will retry the notification to the user (required only with priority level of Emergency) :param int expire: how many seconds your notification will continue to be retried (required only with priority level of Emergency) :param datetime timestamp: a datetime object repr the timestamp of your message's date and time to display to the user :param str sound: the name of the sound to override the user's default sound choice (Use the Sounds consts to select) :param bool html: Enable rendering message on user device using HTML """ data_out = { 'token': token, 'user': user, # can be a user or group key 'message': message } # Support for non-required parameters of PushOver if 'title' in kwargs: data_out['title'] = kwargs['title'] if 'device' in kwargs: temp = kwargs['device'] if type(temp) == list: data_out['device'] = ','.join(temp) else: data_out['device'] = temp data_out['device'] = kwargs['device'] if 'url' in kwargs: data_out['url'] = kwargs['url'] if 'url_title' in kwargs: data_out['url_title'] = kwargs['url_title'] if 'priority' in kwargs: data_out['priority'] = kwargs['priority'] # Emergency prioritized messages require 'retry' and 'expire' to be defined if data_out['priority'] == PRIORITIES.EMERGENCY: if 'retry' not in kwargs: raise TypeError('Missing `retry` argument required for message priority of Emergency') else: retry_val = kwargs['retry'] # 'retry' val must be a minimum of _MIN_RETRY and max of _MAX_EXPIRE if not (_MIN_RETRY <= retry_val <= _MAX_EXPIRE): raise ValueError('`retry` argument must be at a minimum of {} and a maximum of {}'.format( _MIN_RETRY, _MAX_EXPIRE )) data_out['retry'] = retry_val if 'expire' not in kwargs: raise TypeError('Missing `expire` arguemnt required for message priority of Emergency') else: expire_val = kwargs['expire'] # 'expire' val must be a minimum of _MIN_RETRY and max of _MAX_EXPIRE if not(_MIN_RETRY <= expire_val <= _MAX_EXPIRE): raise ValueError('`expire` argument must be at a minimum of {} and a maximum of {}'.format( _MIN_RETRY, _MAX_EXPIRE )) data_out['expire'] = expire_val # Optionally a callback url may be supplied for the Emergency Message if 'callback' in kwargs: data_out['callback'] = kwargs['callback'] if 'timestamp' in kwargs: data_out['timestamp'] = int(time.mktime(kwargs['timestamp'].timetuple())) if 'sound' in kwargs: data_out['sound'] = kwargs['sound'] if 'html' in kwargs: data_out['html'] = int(kwargs['html']) return send(_push_url, data_out=data_out)
97b278482fb1ff88eea5f95c45f47563b61c905f
19,607
def _rrv_div_ ( s , o ) : """Division of RooRealVar and ``number'' >>> var = ... >>> num = ... >>> res = var / num """ if isinstance ( o , _RRV_ ) and not o.isConstant() : o = o.ve () elif hasattr ( o , 'getVal' ) : o = o.getVal () # v = s.getVal() if s.isConstant() else s.ve() # return v / o
bef100fa354dc1e090a7e1cb2ad66bc8c7144d1b
19,608
def getWindowsAt(x: int, y: int, app: AppKit.NSApplication = None, allWindows=None): """ Get the list of Window objects whose windows contain the point ``(x, y)`` on screen :param x: X screen coordinate of the window(s) :param y: Y screen coordinate of the window(s) :param app: (optional) NSApp() object. If passed, returns the list of windows at (x, y) position of given app :param allWindows: (optional) list of window objects (required to improve performance in Apple Script version) :return: list of Window objects """ matches = [] if not allWindows: allWindows = getAllWindows(app) for win in allWindows: box = win.box if pointInRect(x, y, box.left, box.top, box.width, box.height): matches.append(win) return matches
009a4d439e7948fc3829e132118716ea808b5185
19,609
def find_closest_vertices(surface_coords, point_coords): """Return the vertices on a surface mesh closest to some given coordinates. The distance metric used is Euclidian distance. Parameters ---------- surface_coords : numpy array Array of coordinates on a surface mesh point_coords : numpy array Array of coordinates to map to vertices Returns ------- closest_vertices : numpy array Array of mesh vertex ids """ point_coords = np.atleast_2d(point_coords) return np.argmin(cdist(surface_coords, point_coords), axis=0)
62adc1082d24ff70e8f285a6a457b6bff0768854
19,610
def blob_utils_get_loss_gradients(model, loss_blobs): """Generate a gradient of 1 for each loss specified in 'loss_blobs'""" loss_gradients = {} for b in loss_blobs: loss_grad = model.net.ConstantFill(b, [b + '_grad'], value=1.0) loss_gradients[str(b)] = str(loss_grad) return loss_gradients
2543dc532469405ad0ae1b1288b9956841565238
19,611
def _list_indexing(X, key, key_dtype): """ Index a Python list """ if np.isscalar(key) or isinstance(key, slice): # key is a slice or a scalar return X[key] if key_dtype == 'bool': # key is a boolean array-like return list(compress(X, key)) # key is a integer array-like of key return [X[idx] for idx in key]
47a5ae6be9db172c5ac194c7989540c79a27f89f
19,612
import collections import itertools import copy def extract_hubs_from_motifs(list_of_motifs: list, genes_to_remove: list, check_conflict: bool = True, debug: bool = False, gene_ids_file: str = None, top_pc: float = 1.): """ Parameters ========== list_of_motifs: list of lists of all the motifs found. Each item in the main list is a list of length 2: ['Motif_name', weight] genes_to_remove: if there are genes to be removed due to ID conflicts or discrepancies check_conflict: if True, check the overlap between the hubs and the list provided debug: if printing debug options gene_ids_file: file with gene_IDs that might generate conflict top_pc: to % of genes to consider Returns ======= hubs: list of all the genes perturbed with their connectivity, and hubs """ genes_p = collections.Counter(list(itertools.chain(*[m.split("_") for m in list_of_motifs]))) # this file corrects the list for discrepancies in the list for gene IDs path_tofile = gene_ids_file fin = open(path_tofile, mode='r') genelist = fin.readlines() genelist = [x.strip() for x in genelist] fin.close() if debug: print("Find top {}% of hubs".format(top_pc)) temp_genes = copy.deepcopy(genes_p) for g in genes_p: if g in genes_to_remove and g not in genelist: if debug: print("Removing gene for conflict: {}".format(g)) temp_genes.pop(g) if debug: print("Hubs before: {} and after: {}".format(len(genes_p), len(temp_genes))) list_of_genes = sorted(list(map(list, list(temp_genes.items()))), key=itemgetter(1), reverse=True) if check_conflict: top_pc = 100-top_pc top_pc_genes = list(np.array(list_of_genes).T[0][:top_pc]) notpert_hubs = list(set(top_pc_genes) - set(genelist)) nothubs_pert = list(set(genelist) - set(top_pc_genes)) for idx, gene in enumerate(notpert_hubs): temp1 = [gene, temp_genes[gene]] temp_genes.pop(gene) temp2 = [nothubs_pert[idx], temp_genes[nothubs_pert[idx]]] temp_genes.pop(nothubs_pert[idx]) temp_genes[temp2[0]] = temp1[1] temp_genes[temp1[0]] = temp2[1] temp_genes = collections.OrderedDict(sorted(temp_genes.items(), key=itemgetter(1), reverse=True)) full_genes = sorted(list(map(list, list(temp_genes.items()))), key=itemgetter(1), reverse=True) connectivity = np.array(full_genes).T[1].astype(np.float16) hubs = list(np.array(list(temp_genes.keys()))[np.where(connectivity > np.percentile(connectivity, top_pc))[0]]) return full_genes, hubs
3dc4bc8c8dd67ce0eb88d0f02b0021e575741503
19,613
import json import requests def credit_rating(): """ credit_rating http api """ return_dict = {'rescode': '200', 'credit-rating': '1', 'description': 'Good credit'} if request.get_data() is None: return_dict['rescode'] = '5004' return json.dumps(return_dict, ensure_ascii=False) role_dict = {'farmer': 1, 'consumer': 2} sex_dict = {'male': 1, 'female': 2} location_dict = {'Cantwell city, Alaska, USA': 1, 'Queens, New York, NY, USA': 2} description_dict = {'0': 'Bad credit', '1': 'Good credit'} get_data = request.get_data() get_data = json.loads(get_data) role_name = get_data.get('rolename') sex = get_data.get('sex') user_name = get_data.get('username') location = get_data.get('location') carbon_credit = get_data.get('carbon_credit') footprint_names = get_data.get('footprint_name') carbon_credit = int(carbon_credit) footprint_count_dict = {'Buy': 0, 'Fertilize': 0, 'Seed': 0} for ftn in footprint_names: if ftn.startswith('Buy'): footprint_count_dict['Buy'] = footprint_count_dict['Buy'] + 1 elif ftn.startswith('Fertilize'): footprint_count_dict['Fertilize'] = footprint_count_dict['Fertilize'] + 1 elif ftn.startswith('Seed'): footprint_count_dict['Seed'] = footprint_count_dict['Seed'] + 1 x_predict_json = { 'x0': sex_dict.get(sex), 'x1': role_dict.get(role_name), 'x2': location_dict.get(location), 'x3': carbon_credit, 'x4': footprint_count_dict['Seed'], 'x5': footprint_count_dict['Buy'], 'x6': footprint_count_dict['Fertilize'] } value_dict = {'max_x0': 2, 'min_x0': 1, 'max_x1': 2, 'min_x1': 1, 'max_x2': 2, 'min_x2': 1, 'max_x3': 99, 'min_x3': 0, 'max_x4': 30, 'min_x4': 0, 'max_x5': 30, 'min_x5': 0, 'max_x6': 30, 'min_x6': 0} for i in range(7): x_predict_json['x' + str(i)] = normalization(x_predict_json['x' + str(i)], value_dict['max_x' + str(i)], value_dict['min_x' + str(i)]) body_json = { "head": { "serviceId": "cfc" }, "body": { 'featureData': x_predict_json, 'sendToRemoteFeatureData': { 'device_id': user_name } } } # guest node ip response = requests.post( 'http://IP:8059/federation/v1/inference', data=json.dumps(body_json)) response_data = json.loads(response.text).get('data') prob = response_data.get('prob') flag = "0" if float(prob) > 0.4: flag = "1" return_dict['credit-rating'] = flag return_dict['description'] = description_dict[flag] return json.dumps(return_dict, ensure_ascii=False)
06a12b6f0801a1b56b17eb53ec4009c4ab5777f5
19,614
def updateGlobalInventory(D_SKUs: pd.DataFrame, inventoryColumn: str): """ Update the global inventory of the warehouse Args: D_SKUs (pd.DataFrame): Input SKUs dataframe. inventoryColumn (str): column name with the inventory. Returns: D_inventory (pd.DataFrame): Output DataFrame with inventory values. """ D_inventory = pd.DataFrame([], columns=['WH_INVENTORY_VOLUME', 'WH_INVENTORY_NORMALISED']) givenVolumes = 0 # count the number of SKUs with a given volume for i in range(0, len(D_SKUs)): # i=33159 volume = D_SKUs.iloc[i]['VOLUME'] list_days = D_SKUs.iloc[i]['INVENTORY_DAYS'] # go on only if an inventory has been saved if isinstance(list_days, list): list_inventory = np.array(D_SKUs.iloc[i][inventoryColumn]) list_inventory = np.nan_to_num(list_inventory) # convert nan to 0 list_inventory_volume = list_inventory * volume list_inventory_normalised = (list_inventory - min(list_inventory)) / (max(list_inventory) - min(list_inventory)) D_temp = pd.DataFrame(list_inventory_normalised, index=list_days, columns=['SKU_INVENTORY_NORMALISED']) D_inventory = pd.concat([D_temp, D_inventory], axis=1, sort=False) D_inventory = D_inventory.fillna(0) D_inventory['WH_INVENTORY_NORMALISED'] = D_inventory['WH_INVENTORY_NORMALISED'] + D_inventory['SKU_INVENTORY_NORMALISED'] D_inventory = D_inventory.drop(columns=['SKU_INVENTORY_NORMALISED']) if str(volume) != 'nan': # if volume is not nan D_temp = pd.DataFrame(list_inventory_volume, index=list_days, columns=['SKU_INVENTORY_VOLUME']) D_inventory = pd.concat([D_temp, D_inventory], axis=1, sort=False) D_inventory = D_inventory.fillna(0) D_inventory['WH_INVENTORY_VOLUME'] = D_inventory['WH_INVENTORY_VOLUME'] + D_inventory['SKU_INVENTORY_VOLUME'] D_inventory = D_inventory.drop(columns=['SKU_INVENTORY_VOLUME']) givenVolumes = givenVolumes + 1 return D_inventory
7e9d824de8830b40a88ae5fbbffac89e69a57869
19,615
from datetime import datetime def _query_checks(start, end, owner_id=''): """Get the number of rules checks from `start` to `end` in 1-day windows""" series = [] assert (isinstance(end, datetime.datetime) and isinstance(start, datetime.datetime)) while start < end: stop = start + datetime.timedelta(days=1) results = _query_influxdb( _get_checks_or_datapoints_query('checks', start, stop, owner_id), owner_id ) series.append(('%sZ' % start.isoformat(), results)) start += datetime.timedelta(days=1) return _parse_checks_or_datapoints_series(series, 'checks', owner_id)
9df5e7dd9a6ea2f2bb1f4f1a6a89db6b16d6814b
19,616
def _FilterManufacturedEvents(results): """Return a list of results where first question is 'MANUFACTURED'. Manufactured events are either Recording events that correspond to an instrumented event in the browser, or Showed notification events that correspond to when the user was invited to take a survey. Args: results: Results parsed from JSON. Assumed to already be filtered by date. Returns: (1) List of results that are manufactured events. (2) Integer index into the results list indicating which list element's questions can be considered canonical and complete. """ manuf_events = [ r for r in results if r['responses'][0]['question'] == 'MANUFACTURED'] return manuf_events, _GetCanonicalIndex(manuf_events)
51fb34402e17249b63b8061bf70a2879925c8fba
19,617
def Max(data): """Returns the maximum value of a time series""" return data.max()
0d4781da4384eae65de4e13860995848ae8de678
19,618
def clean_words(words, remove_stopwords=False, language='portuguese'): """Stems and removes stopwords from a set of word-level tokens using the RSLPStemmer. Args: words (list): Tokens to be stemmed. remove_stopwords (bool): Whether stopwords should be removed or not. language (str): Identifier of stopwords' language. Returns: List of stemmed tokens. """ # Creates the RSLP stemmer stemmer = RSLPStemmer() if remove_stopwords: # Gathers the stopwords stop_words = stopwords.words(language) # Stems and removes the stopwords stemmed_words = [stemmer.stem(word) for word in words if word.lower() not in stop_words] else: # Just stems the words stemmed_words = [stemmer.stem(word) for word in words] return stemmed_words
4dd721a691e832dc3b8160c678fe7e1c05b6a015
19,619
import os import pickle def load_model(model_dir, model_file=None): """Loads the model. The model object is pickled in `model_dir` to make the model configuration optional for future runs. Args: model_dir: The model directory. model_file: An optional model configuration. Returns: A `opennmt.models.Model` object. """ serial_model_file = os.path.join(model_dir, "model_description.pkl") if model_file: if tf.train.latest_checkpoint(model_dir) is not None: tf.logging.warn( "You provided a model configuration but a checkpoint already exists. " "The model configuration must define the same model as the one used for " "the initial training. However, you can change non structural values like " "dropout.") model_config = load_model_module(model_file) model = model_config.model() with open(serial_model_file, "wb") as serial_model: pickle.dump(model, serial_model) elif not os.path.isfile(serial_model_file): raise RuntimeError("A model configuration is required.") else: tf.logging.info("Loading serialized model description from %s", serial_model_file) with open(serial_model_file, "rb") as serial_model: model = pickle.load(serial_model) return model
437fd8378113db11b9afa5133d57d6936ab722fa
19,620
def parse_healing_and_target(line): """Helper method that finds the amount of healing and who it was provided to""" split_line = line.split() target = ' '.join(split_line[3:split_line.index('for')]) target = target.replace('the ', '') amount = int(split_line[split_line.index('for')+1]) return [amount, target]
3f11c0807ab87d689e47a79fc7e12b32c00dbd95
19,621
from typing import Optional from typing import Sequence def _decode_and_center_crop( image_bytes: tf.Tensor, jpeg_shape: Optional[tf.Tensor] = None, image_size: Sequence[int] = (224, 224), ) -> tf.Tensor: """Crops to center of image with padding then scales.""" if jpeg_shape is None: jpeg_shape = get_shape(image_bytes) image_height = jpeg_shape[0] image_width = jpeg_shape[1] # Pad the image with at least 32px on the short edge and take a # crop that maintains aspect ratio. scale = tf.minimum(tf.cast(image_height, tf.float32) / (image_size[0] + 32), tf.cast(image_width, tf.float32) / (image_size[1] + 32)) padded_center_crop_height = tf.cast(scale * image_size[0], tf.int32) padded_center_crop_width = tf.cast(scale * image_size[1], tf.int32) offset_height = ((image_height - padded_center_crop_height) + 1) // 2 offset_width = ((image_width - padded_center_crop_width) + 1) // 2 crop_window = [offset_height, offset_width, padded_center_crop_height, padded_center_crop_width] image = crop(image_bytes, crop_window) return image
7a7ad3eb36099d560da126011845426bdcd1f326
19,622
def inq_affine(inp, n_outmaps, base_axis=1, num_bits=4, inq_iterations=(), selection_algorithm='random', seed=-1, w_init=None, i_init=None, b_init=None, fix_parameters=False, rng=None, with_bias=True): """Incremental Network Quantization Affine Layer During training, the weights are sequentially quantized to power-of-two values, which allows the training of a multiplierless network. Using `inq_iterations`, one can specify after how many forward passes half of the learnable weights are fixed and quantized to powers-of-two. After reaching the last value in `inq_iterations`, all weights are fixed. For more details, please refer to the reference. Reference: Zhou A, Yao A, Guo Y, Xu L, Chen Y. Incremental network quantization: Towards lossless CNNs with low-precision weights. <https://arxiv.org/abs/1702.03044> Args: inp (~nnabla.Variable): Input N-D array with shape (:math:`M_0 \\times \ldots \\times M_{B-1} \\times D_B \\times \ldots \\times D_N`). Dimensions before and after base_axis are flattened as if it was a matrix. n_outmaps (int or :obj:`tuple` of :obj:`int`): Number of output neurons per data. base_axis (int): Dimensions up to `base_axis` are treated as the sample dimensions. num_bits (int): Number of bits per weight. Value has to be larger than 1 as one bit is already used to code the value "0" inq_iterations (tuple of int): Tuple of iteration numbers at which we fix half of the weights. selection_algorithm (str): Chooses algorithm that is used to decide which weights are fixed. ("largest_abs" ... fix weights with largest absolute value, "random" ... fix weights randomly) seed (int): Random seed for INQ algorithm w_init (~nnabla.initializer.BaseInitializer): Initializer for the weight. i_init (~nnabla.initializer.BaseInitializer): Initializer for the indicators (0 ... learnable, 1 ... fixed). b_init (~nnabla.initializer.BaseInitializer): Initializer for the bias. fix_parameters (bool): When set to `True`, the weight and bias will not be updated. rng (numpy.random.RandomState): Random generator for Initializer. with_bias (bool): Specify whether to include the bias term. Returns: :class:`~nnabla.Variable` """ if not hasattr(n_outmaps, '__iter__'): n_outmaps = [n_outmaps] n_outmaps = list(n_outmaps) n_outmap = int(np.prod(n_outmaps)) if w_init is None: fan_in = np.prod(inp.shape[base_axis:]) w_init = UniformInitializer( calc_uniform_lim_glorot(fan_in, n_outmap), rng=rng) if i_init is None: fan_in = np.prod(inp.shape[base_axis:]) i_init = ConstantInitializer() if b_init is None: b_init = ConstantInitializer() w = get_parameter_or_create( "W", [int(np.prod(inp.shape[base_axis:]))] + n_outmaps, w_init, not fix_parameters) i = get_parameter_or_create( "I", [int(np.prod(inp.shape[base_axis:]))] + n_outmaps, i_init, False) b = None if with_bias: b = get_parameter_or_create( "b", n_outmaps, b_init, not fix_parameters) return F.inq_affine(inp, w, i, b, base_axis, num_bits, inq_iterations, selection_algorithm, seed)
7654d925a13276002419c9d08342e4e7974bdc31
19,623
def is_greater_equal(min_value): """Check if the attribute value is greater than or equal to a minimum value. This validator can handle both lists and single element attributes. If it is a list, it checks if the element with the smallest value is greater than or equal to the specified minimum value. """ def compare(self, attribute, value): if type(value) is not list: value = [value] if np.min(value) < min_value: _logger.error( f"{attribute.name} cannot be smaller than {min_value}!", _logger.ExceptionTypes.ValueError, ) return compare
a95cc24afcae6d11689b872f2178f6b38b864ca7
19,624
from typing import List def save_lyrics(list_: List[Text], location: Text) -> None: """Writes 'list_' to 'location' as txt file. Returns None.""" with open(location, "w+") as f: for element in list_: f.write(element) f.write("\n") return None
1fff7cf838fdaea32f6875beab90b172a84f379c
19,625
def translate_provider_for_icon(sync_server, project, site): """ Get provider for 'site' This is used for getting icon, 'studio' should have different icon then local sites, even the provider 'local_drive' is same """ if site == sync_server.DEFAULT_SITE: return sync_server.DEFAULT_SITE return sync_server.get_provider_for_site(site=site)
58867a6dd44c83582d85fc1baf48121eff714232
19,626
def server_delete_ip(body=None): # noqa: E501 """delete server IP Send by server during shutdown. # noqa: E501 :param body: port of iperf server. Ip and time could be emply :type body: dict | bytes :rtype: List[InlineResponse200] """ if connexion.request.is_json: body = ServerAddr.from_dict(connexion.request.get_json()) # noqa: E501 return 'do some magic!'
92b2f425ae7cca1e3e42c58382f3d21b2e96f016
19,627
import re def extract_key_and_index(field): """Returns the key type, key name and if key is a compound list then returns the index pointed by the field Arguments: field: csv header field """ for key_type, value in KEY_TYPES.items(): regex = re.compile(value["regex"]) match = regex.match(field) if match: return tuple([key_type] + list(match.groups())) return None
aba66922117cd14f2c670df839c3ca522856caa3
19,628
import torch def as_mask(indexes, length): """ Convert indexes into a binary mask. Parameters: indexes (LongTensor): positive indexes length (int): maximal possible value of indexes """ mask = torch.zeros(length, dtype=torch.bool, device=indexes.device) mask[indexes] = 1 return mask
0235d66f9ee5bdc7447819122b285d29efd238c9
19,629
def interpolate_array(x, y, smooth_rate=500): """ :param x: :param y: :return: """ interp_obj = interpolate.PchipInterpolator(x, y) new_x = np.linspace(x[0], x[-1], smooth_rate) new_y = interp_obj(new_x) return new_x, new_y
4c6f79c3071496e6314d772651d2e6cc6a449c74
19,630
from typing import Sequence from typing import Counter import copy def calculate_resource_utilization_for_slaves( slaves: Sequence[_SlaveT], tasks: Sequence[MesosTask] ) -> ResourceUtilizationDict: """ Given a list of slaves and a list of tasks, calculate the total available resource available in that list of slaves, and the resources consumed by tasks running on those slaves. :param slaves: a list of slaves to calculate resource usage for :param tasks: the list of tasks running in the mesos cluster :returns: a dict, containing keys for "free" and "total" resources. Each of these keys is a ResourceInfo tuple, exposing a number for cpu, disk and mem. """ resource_total_dict: _Counter[str] = Counter() for slave in slaves: filtered_resources = filter_mesos_state_metrics(slave["resources"]) resource_total_dict.update(Counter(filtered_resources)) resource_free_dict = copy.deepcopy(resource_total_dict) for task in tasks: task_resources = task["resources"] resource_free_dict.subtract(Counter(filter_mesos_state_metrics(task_resources))) for slave in slaves: filtered_resources = filter_mesos_state_metrics( reserved_maintenence_resources(slave["reserved_resources"]) ) resource_free_dict.subtract(Counter(filtered_resources)) return { "free": ResourceInfo( cpus=resource_free_dict["cpus"], disk=resource_free_dict["disk"], mem=resource_free_dict["mem"], gpus=resource_free_dict.get("gpus", 0), ), "total": ResourceInfo( cpus=resource_total_dict["cpus"], disk=resource_total_dict["disk"], mem=resource_total_dict["mem"], gpus=resource_total_dict.get("gpus", 0), ), "slave_count": len(slaves), }
13b4856b3ef0bdf06410a58ecc0fbc29bfda4483
19,631
def check_pass(value): """ This test always passes (it is used for 'checking' things like the workshop address, for which no sensible validation is feasible). """ return True
aa3a5f536b5bc729dc37b7f09c3b997c664b7481
19,632
def state_array_to_int(s): """translates a state s into an integer by interpreting the state as a binary represenation""" return int(state_array_to_string(s), 2)
b0b50dd879b74af27946cde49e1bf805c2d6e504
19,633
import asyncio import traceback def async_task(coro, loop=asyncio.get_event_loop(), error_cb=None): """ Wrapper to always print exceptions for asyncio tasks. """ future = asyncio.ensure_future(coro) def exception_logging_done_cb(future): try: e = future.exception() except asyncio.CancelledError: return if e is not None: log.critical('Unhandled exception in async future: {}: {}\n{}', type(e).__name__, e, ''.join(traceback.format_tb(e.__traceback__))) if error_cb is not None: error_cb() loop.call_exception_handler({ 'message': 'Unhandled exception in async future', 'future': future, 'exception': e, }) future.add_done_callback(exception_logging_done_cb) return future
5520aafebca17cbe32c79b69e41856f6076179f3
19,634
def is_valid_charts_yaml(content): """ Check if 'content' contains mandatory keys :param content: parsed YAML file as list of dictionary of key values :return: True if dict contains mandatory values, else False """ # Iterate on each list cell for chart_details in content: # If one of the keys is missing or, is None if not all(chart_details.get(x) is not None and x in chart_details for x in ['chart_name', 'helm_repo_name', 'name_space', 'values_file', 'private_image']): return False # If one of the keys is not a string if not all(type(chart_details.get(x)) is str for x in ['chart_name', 'helm_repo_name', 'name_space', 'values_file']): return False # If one of the keys is not a boolean if not all(type(chart_details.get(x)) is bool for x in ['private_image']): return False if not all(type(chart_details.get(x)) is list for x in ['extra_executes']): return False return True
cc68ba6bc9166f8d2f8c37da756accec667f471a
19,635
def get_trader_fcas_availability_agc_status_condition(params) -> bool: """Get FCAS availability AGC status condition. AGC must be enabled for regulation FCAS.""" # Check AGC status if presented with a regulating FCAS offer if params['trade_type'] in ['L5RE', 'R5RE']: # AGC is active='1', AGC is inactive='0' return True if params['agc_status'] == '1' else False # Return True if a presented with a contingency FCAS offer (AGC doesn't need to be enabled) else: return True
fa73ae12a0934c76f12c223a05161280a6dc01f1
19,636
import importlib def load_class(full_class_string): """ dynamically load a class from a string """ class_data = full_class_string.split(".") module_path = ".".join(class_data[:-1]) class_str = class_data[-1] module = importlib.import_module(module_path) # Finally, we retrieve the Class return getattr(module, class_str)
95ab0a0b27d508b5bd41468cf6a4e3c008799fdf
19,637
def request_credentials_from_console(): """ Requests the credentials interactive and returns them in form (username, password) """ username = raw_input('Username: ') password = raw_input('Password: ') return username, password
43102d8528502f700ab96714831c94abb6a3b0f8
19,638
def prettify_url(url): """Return a URL without its schema """ if not url: return url split = url.split('//', 1) if len(split) == 2: schema, path = split else: path = url return path.rstrip('/')
0beed0522355e4ea8170cac22e61f92e0c21ccca
19,639
def CDLMORNINGDOJISTAR(data: xr.DataArray, penetration: float = 0.3) -> xr.DataArray: """ Morning Doji Star (Pattern Recognition) Inputs: data:['open', 'high', 'low', 'close'] Parameters: penetration: 0.3 Outputs: double series (values are -1, 0 or 1) """ return multiple_series_call(talib.CDLMORNINGDOJISTAR, data, ds.TIME, ds.FIELD, [f.OPEN, f.HIGH, f.LOW, f.CLOSE], [penetration], result_divider=100)
be1f4954dda5109d067070fc97c340233085b043
19,640
def panerror_to_dict(obj): """Serializer function for POCS custom exceptions.""" name_match = error_pattern.search(str(obj.__class__)) if name_match: exception_name = name_match.group(1) else: msg = f"Unexpected obj type: {obj}, {obj.__class__}" raise ValueError(msg) return {"__class__": "PanError", "exception_name": exception_name, "args": obj.args}
8841d2c4b6f3ba1deae5057a6b85b70830c412a1
19,641
from typing import Optional def build_class_instance(module_path: str, init_params: Optional[dict] = None): """ Create an object instance from absolute module_path string. Parameters ---------- module_path: str Full module_path that is valid for your project or some external package. init_params: optional dict These parameters will be used as init parameters for the given type. Returns ------- Some object instance """ class_ = get_type_from_module_path(module_path=module_path) result = class_(**(init_params or {})) return result
d50ffdbb8bbeed36b572e6e555376febabecb745
19,642
def maintainers_mapper(maintainers, package): """ Update package maintainers and return package. https://docs.npmjs.com/files/package.json#people-fields-author-contributors npm also sets a top-level "maintainers" field with your npm user info. """ # note this is the same code as contributors_mappers... should be refactored maintains = [] if isinstance(maintainers, list): for contrib in maintainers: name, email, url = parse_person(contrib) maintains.append(models.Party(type=models.party_person, name=name, email=email, url=url)) else: # a string or dict name, email, url = parse_person(maintainers) maintains.append(models.Party(type=models.party_person, name=name, email=email, url=url)) package.maintainers = maintains return package
57e76ec2cbc1727778bfe980c5cd6d82798a1800
19,643
def calc_original_pressure(pressure_ratio): """ calculates the original pressure value given the <code>AUDITORY_THRESHOLD</code>. The results are only correct if the pressure ratio is build using the <code>AUDITORY_THRESHOLD</code>. :param pressure_ratio: the pressure ration that shall be converted to the original value :return: the pressure value the ratio is based on """ return pressure_ratio * (AUDITORY_THRESHOLD ** 2)
1a0680073cb739fef47952887e6dedf4487f2aa0
19,644
def normalize_field_names(fields): """ Map field names to a normalized form to check for collisions like 'coveredText' vs 'covered_text' """ return set(s.replace('_','').lower() for s in fields)
55bdac50fd1fcf23cfec454408fbcbbae96e507e
19,645
import os import itertools def which(program): # type: (str) -> str """Like UNIX which, returns the first location of a program given using your system PATH If full location to program is given, uses that first""" dirname, progname = os.path.split(program) # type: str, str syspath = tuple([dirname] + os.environ['PATH'].split(os.pathsep)) # type: Tuple[str] syspath = tuple(filter(None, syspath)) # type: tuple[str] progpath = map(os.path.join, syspath, itertools.repeat(progname, len(syspath))) # type: map[str] try: extensions = tuple([''] + os.environ.get('PATHEXT').split(os.pathsep)) # type: Tuple[str] progpath = map(lambda t: ''.join(t), itertools.product(progpath, extensions)) # type: map[str] except AttributeError: pass progpath = tuple(filter(lambda e: os.path.isfile(e) and os.access(e, os.X_OK), progpath)) # type: Tuple[str] if not progpath: raise ValueError("Cannot find program '%s' in your PATH" % program) return progpath[0]
61748b6b9aef948f4d570791d432de0c69d815d9
19,646
def powspec_disc_n(n, fs, mu, s, kp, km, vr, vt, tr): """Return the n'th Lorentzian and its width""" Td = ifana.LIF().Tdp(mu, s, vr, vt) + tr Ppp = (kp*exp(-(kp+km)*tr)+km)/(kp+km) kpbar = (kp*(Td-tr)-log(Ppp))/Td return 1./Td * 2*kpbar/(kpbar**2 + (2*pi*(fs - n*1./Td))**2), kpbar
60335e496b734c32116424d857a3c59de7f5b567
19,647
def list_keys(request): """ Tags: keys --- Lists all added keys. READ permission required on key. --- """ auth_context = auth_context_from_request(request) return filter_list_keys(auth_context)
564d03457265c0461e82b55abfb23cb4d45ad0ac
19,648
def rounder(money_dist: list, pot: int, to_coin: int = 2) -> list: """ Rounds the money distribution while preserving total sum stolen from https://stackoverflow.com/a/44740221 """ def custom_round(x): """ Rounds a number to be divisible by to_coin specified """ return int(to_coin * round(x / to_coin)) rs = [custom_round(x) for x in money_dist] k = pot - sum(rs) assert k == custom_round(k) fs = [x - custom_round(x) for x in money_dist] indices = [ i for order, (e, i) in enumerate( reversed(sorted((e, i) for i, e in enumerate(fs))) ) if order < k ] return [r + 1 if i in indices else r for i, r in enumerate(rs)]
f315027def4646252aa7d4ee7c05ca3085625583
19,649
def find_wcscorr_row(wcstab, selections): """ Return an array of indices from the table (NOT HDU) 'wcstab' that matches the selections specified by the user. The row selection criteria must be specified as a dictionary with column name as key and value(s) representing the valid desired row values. For example, {'wcs_id':'OPUS','extver':2}. """ mask = None for i in selections: bmask = (wcstab.field(i) == selections[i]) if mask is None: mask = bmask.copy() else: mask = np.logical_and(mask,bmask) del bmask return mask
dcd2b4025ec3756319911e6626dd403a6efda1c4
19,650
def process_image(image_file): """ 다섯 단계의 이미지 처리(Image precessing)를 힙니다. 현재 함수에서 순서를 변경하여 적용할 수 있습니다. 1) Gray-scale 적용 2) Morph Gradient 적용 3) Threshold 적용 4) Long Line Removal 적용 5) Close 적용 6) Contour 추출 :param image_file: 이미지 처리(Image precessing)를 적용할 이미지 파일 :return: 이미지 처리 후 글자로 추정되는 부분을 잘라낸 이미지 리스트 """ image_origin = open_original(image_file) # todo input 사이즈가 일정 수준 이하일 경우 cv2.pyrUp() 으로 사이즈를 확장할 수 있도록 자동화하기 # todo 아니면 설정파일에서 사이즈업 할지말지를 선택할 수 있도록 하기 (configs.yml) # image_origin = cv2.pyrUp(image_origin) # size up ( x4 ) 이미지 크기가 작을 경우 이미지 사이즈업 해야합니다. # Grey-Scale image_gray = get_gray(image_origin) # Morph Gradient image_gradient = get_gradient(image_gray) # Threshold image_threshold = get_threshold(image_gradient) # Long line remove image_line_removed = remove_long_line(image_threshold) # Morph Close image_close = get_closing(image_line_removed) contours = get_contours(image_close) return get_cropped_images(image_origin, contours)
3185487505cd26db64fb294cef5bb1a26c7b5482
19,651
import urllib def _gftRead(url, step): """ Reads in a gtf file from a specific db given the url. Some gft have a certain number of header lines that are skipped however. Input: url where gtf is fetched from Input: number of lines to skip while reading in the frame Output: gtf in a pandas frame """ urllib.request.urlretrieve(url, "/tmp/conversion.gtf.gz") gtf = pd.read_csv("/tmp/conversion.gtf.gz", compression = "gzip", engine = "python", delimiter = '\t', skiprows = step, header = None) return gtf
ef05d2747188def526612bdd27931e0420e275dd
19,652
def add() -> jsonify: """ Adds a new item in the server and returns the updated list to the front-end """ # Passed Items from Front-End name = request.form['name'] priority = request.form['priority'] price = request.form['price'].replace(",", "") # To prevent string to float conversion money = request.form['money'] # Adds item to the server and check the status of the addition is_right = mysqlcommands.add_item(name, priority, price, money) # Pass the status of the addition to this variable message = constants.ADD_ITEM_SUCCESS_MESSAGE if is_right else constants.ADD_ITEM_FAILURE_MESSAGE # Get the content from the JSON file my_obj = jsoncommands.get_json(constants.JSON_FILE_PATH) # Re-allocate the budget with the new added item utilities.money_allocation(mysqlcommands.get_all_items(), my_obj['Total'] * my_obj['Percentage'], mysqlcommands.priority_count()) return jsonify({ "color": is_right, "message": message, "allItems": mysqlcommands.get_all_items() })
e8a32aa47ee057c6f9653554955cddd0b003ef1a
19,653
import copy import os def _get_base(**kwargs): """ If the needed base does not exist, then create it, if it does exist create nothing and return the name of the base lxc container so it can be cloned. """ profile = get_container_profile(copy.deepcopy(kwargs.get("profile"))) kw_overrides = copy.deepcopy(kwargs) def select(key, default=None): kw_overrides_match = kw_overrides.pop(key, _marker) profile_match = profile.pop(key, default) # let kwarg overrides be the preferred choice if kw_overrides_match is _marker: return profile_match return kw_overrides_match template = select("template") image = select("image") vgname = select("vgname") path = kwargs.get("path", None) # remove the above three variables from kwargs, if they exist, to avoid # duplicates if create() is invoked below. for param in ("path", "image", "vgname", "template"): kwargs.pop(param, None) if image: proto = _urlparse(image).scheme img_tar = __salt__["cp.cache_file"](image) img_name = os.path.basename(img_tar) hash_ = salt.utils.hashutils.get_hash( img_tar, __salt__["config.get"]("hash_type") ) name = "__base_{0}_{1}_{2}".format(proto, img_name, hash_) if not exists(name, path=path): create( name, template=template, image=image, path=path, vgname=vgname, **kwargs ) if vgname: rootfs = os.path.join("/dev", vgname, name) edit_conf( info(name, path=path)["config"], out_format="commented", **{"lxc.rootfs": rootfs} ) return name elif template: name = "__base_{0}".format(template) if not exists(name, path=path): create( name, template=template, image=image, path=path, vgname=vgname, **kwargs ) if vgname: rootfs = os.path.join("/dev", vgname, name) edit_conf( info(name, path=path)["config"], out_format="commented", **{"lxc.rootfs": rootfs} ) return name return ""
0b1c966669fe6027f89b62461ee5fd3b43398e53
19,654
def calculate(formula, **params): """ Calculate formula and return a dictionary of coin and amounts """ formula = Formula.get(formula) if formula is None: raise InvalidFormula(formula) if not formula.expression: return {} return calculate_expression(formula.expression, formula, **params)
e8a237d2677581296bb1491badecf83264c0d44a
19,655
import torch def pack_batch_tensor(inputs): """default pad_ids = 0 """ input_max_length = max([d.size(0) for d in inputs]) # prepare batch tensor input_ids = torch.LongTensor(len(inputs), input_max_length).zero_() input_mask = torch.LongTensor(len(inputs), input_max_length).zero_() for i, d in enumerate(inputs): input_ids[i, :d.size(0)].copy_(d) input_mask[i, :d.size(0)].fill_(1) return { "input_ids":input_ids, "input_mask":input_mask, }
33e59acbc8facaf41064e2dd7031bdd314211878
19,656
def build_network(network_class=None, dataset_dirs_args=None, dataset_dirs_class=None, dataset_dirs=None, dataset_spec_args=None, dataset_spec_class=None, dataset_spec=None, network_spec_args=None, network_spec_class=None, network_spec=None, json_spec_path=None, spec_cont=None, class_priority=False): """ build network """ # build network specification network_spec = ivy.default( network_spec, build_network_specification( dataset_dirs_args=dataset_dirs_args, dataset_dirs_class=dataset_dirs_class, dataset_dirs=dataset_dirs, dataset_spec_args=dataset_spec_args, dataset_spec_class=dataset_spec_class, dataset_spec=dataset_spec, network_spec_args=network_spec_args, network_spec_class=network_spec_class, json_spec_path=json_spec_path, spec_cont=spec_cont)) # override network_class if specified in network_spec network_class = ivy.default(ivy.default( _import_arg_specified_class_if_present(network_spec, 'network_class'), network_class, rev=class_priority), None) # verify network_class exists if not ivy.exists(network_class): raise Exception('network_class must either be specified in this build_network() method,' 'or network_class attribute must be specified in the network_spec instance') # network return network_class(network_spec)
4fae693408b385629c6ae645c69778276c16b915
19,657
import os import nipype import nipype.pipeline as pe import nipype.interfaces.utility as utility import PUMI.func_preproc.info.info_get as info_get import PUMI.utils.utils_convert as utils_convert import nipype.interfaces.afni as afni import PUMI.utils.globals as globals import io def slt_workflow(slicetiming_txt="alt+z",SinkTag="func_preproc",wf_name="slicetiming_correction"): """ Modified version of porcupine generated slicetiming code: `source: -` Creates a slice time corrected functional image. Workflow inputs: :param func: The reoriented functional file. :param SinkDir: :param SinkTag: The output directory in which the returned images (see workflow outputs) could be found in a subdirectory directory specific for this workflow. Workflow outputs: :return: slt_workflow - workflow Balint Kincses [email protected] 2018 """ # This is a Nipype generator. Warning, here be dragons. # !/usr/bin/env python SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag) if not os.path.exists(SinkDir): os.makedirs(SinkDir) # Basic interface class generates identity mappings inputspec = pe.Node(utility.IdentityInterface(fields=['func', 'slicetiming_txt']), name='inputspec') inputspec.inputs.func = func inputspec.inputs.slicetiming_txt = slicetiming_txt # Custom interface wrapping function TR #NodeHash_6000004b9860 = pe.MapNode(interface=info_get.TR, name='NodeName_6000004b9860', iterfield=['in_file']) TRvalue = pe.Node(interface=info_get.TR, name='TRvalue') # Custom interface wrapping function Str2Float func_str2float = pe.Node(interface=utils_convert.Str2Float, name='func_str2float') # Custom interface wrapping function Float2Str func_str2float_2 = pe.Node(interface=utils_convert.Float2Str, name='func_str2float_2') # Wraps command **3dTshift** sltcor = pe.Node(interface=afni.TShift(), name='sltcor') sltcor.inputs.rltplus = True sltcor.inputs.outputtype = "NIFTI_GZ" #sltcor.inputs.terminal_output = 'allatonce' # Basic interface class generates identity mappings outputspec = pe.Node(utility.IdentityInterface(fields=['slicetimed', 'TR']), name='outputspec') #todo: qc timeseries # Custom interface wrapping function JoinVal2Dict #func_joinval2dict = pe.Node(interface=utils_convert.JoinVal2Dict, # name='func_joinval2dict') # Generic datasink module to store structured outputs ds = pe.Node(interface=io.DataSink(), name='ds') ds.inputs.base_directory = SinkDir #ds.inputs.regexp_substitutions = [("func_slicetimed/_NodeName_.{13}", "")] # Create a workflow to connect all those nodes analysisflow = nipype.Workflow(wf_name) analysisflow.connect(inputspec, 'slicetiming_txt', sltcor, 'tpattern') analysisflow.connect(func_str2float, 'float', outputspec, 'TR') analysisflow.connect(inputspec, 'func', sltcor, 'in_file') analysisflow.connect(inputspec, 'func', TRvalue, 'in_file') analysisflow.connect(func_str2float_2, 'str', sltcor, 'tr') analysisflow.connect(TRvalue, 'TR', func_str2float_2, 'float') #analysisflow.connect(ds, 'out_file', func_joinval2dict, 'keys') #analysisflow.connect(func_str2float, 'float', func_joinval2dict, 'vals') analysisflow.connect(TRvalue, 'TR', func_str2float, 'str') analysisflow.connect(sltcor, 'out_file', ds, 'slicetimed') analysisflow.connect(sltcor, 'out_file', outputspec, 'slicetimed') return analysisflow
9b813b8e32c17dae58e5dc552404c0cf1ee5a8a6
19,658
def lookup_service_root(service_root): """Dereference an alias to a service root. A recognized server alias such as "staging" gets turned into the appropriate URI. A URI gets returned as is. Any other string raises a ValueError. """ if service_root == EDGE_SERVICE_ROOT: # This will trigger a deprecation warning and use production instead. service_root = 'edge' return _dereference_alias(service_root, service_roots)
8cc5384ba26639438e4c7e18264fb39ee2445fcf
19,659
import warnings def get_initial_configuration(): """ Return (pos, type) pos: (1, 1) - (9, 9) type will be 2-letter strings like CSA format. (e.g. "FU", "HI", etc.) """ warnings.warn( """get_initial_configuration() returns ambiguous cell state. Use get_initial_configuration_with_dir() instead.""", DeprecationWarning) initial_state_top = { (1, 1): "KY", (2, 1): "KE", (3, 1): "GI", (4, 1): "KI", (5, 1): "OU", (6, 1): "KI", (7, 1): "GI", (8, 1): "KE", (9, 1): "KY", (2, 2): "KA", (8, 2): "HI", (1, 3): "FU", (2, 3): "FU", (3, 3): "FU", (4, 3): "FU", (5, 3): "FU", (6, 3): "FU", (7, 3): "FU", (8, 3): "FU", (9, 3): "FU", } initial_state = {} for (pos, ty) in initial_state_top.items(): x, y = pos initial_state[pos] = ty initial_state[(10 - x, 10 - y)] = ty return initial_state
c96f7f70e258d09090abeffc9815082265245cf2
19,660
def request_pull_to_diff_or_patch( repo, requestid, username=None, namespace=None, diff=False ): """Returns the commits from the specified pull-request as patches. :arg repo: the `pagure.lib.model.Project` object of the current pagure project browsed :type repo: `pagure.lib.model.Project` :arg requestid: the identifier of the pull-request to convert to patch or diff :type requestid: int :kwarg username: the username of the user who forked then project when the project viewed is a fork :type username: str or None :kwarg namespace: the namespace of the project if it has one :type namespace: str or None :kwarg diff: a boolean whether the data returned is a patch or a diff :type diff: boolean :return: the patch or diff representation of the specified pull-request :rtype: str """ repo = flask.g.repo if not repo.settings.get("pull_requests", True): flask.abort(404, description="No pull-requests found for this project") request = pagure.lib.query.search_pull_requests( flask.g.session, project_id=repo.id, requestid=requestid ) if not request: flask.abort(404, description="Pull-request not found") if request.remote: repopath = pagure.utils.get_remote_repo_path( request.remote_git, request.branch_from ) parentpath = pagure.utils.get_repo_path(request.project) else: repo_from = request.project_from parentpath = pagure.utils.get_repo_path(request.project) repopath = parentpath if repo_from: repopath = pagure.utils.get_repo_path(repo_from) repo_obj = pygit2.Repository(repopath) orig_repo = pygit2.Repository(parentpath) branch = repo_obj.lookup_branch(request.branch_from) commitid = None if branch: commitid = branch.peel().hex diff_commits = [] if request.status != "Open": commitid = request.commit_stop try: for commit in repo_obj.walk(commitid, pygit2.GIT_SORT_NONE): diff_commits.append(commit) if commit.oid.hex == request.commit_start: break except KeyError: # This happens when repo.walk() cannot find commitid pass else: try: diff_commits = pagure.lib.git.diff_pull_request( flask.g.session, request, repo_obj, orig_repo, with_diff=False ) except pagure.exceptions.PagureException as err: flask.flash("%s" % err, "error") return flask.redirect( flask.url_for( "ui_ns.view_repo", username=username, repo=repo.name, namespace=namespace, ) ) except SQLAlchemyError as err: # pragma: no cover flask.g.session.rollback() _log.exception(err) flask.flash( "Could not update this pull-request in the database", "error" ) diff_commits.reverse() patch = pagure.lib.git.commit_to_patch( repo_obj, diff_commits, diff_view=diff ) return flask.Response(patch, content_type="text/plain;charset=UTF-8")
a7b543294cb66561700b7db7800277d74ed1267c
19,661
def GL(alpha, f_name, domain_start = 0.0, domain_end = 1.0, num_points = 100): """ Computes the GL fractional derivative of a function for an entire array of function values. Parameters ========== alpha : float The order of the differintegral to be computed. f_name : function handle, lambda function, list, or 1d-array of function values This is the function that is to be differintegrated. domain_start : float The left-endpoint of the function domain. Default value is 0. domain_end : float The right-endpoint of the function domain; the point at which the differintegral is being evaluated. Default value is 1. num_points : integer The number of points in the domain. Default value is 100. Examples: >>> DF_poly = GL(-0.5, lambda x: x**2 - 1) >>> DF_sqrt = GL(0.5, lambda x: np.sqrt(x), 0., 1., 100) """ # Flip the domain limits if they are in the wrong order. if domain_start > domain_end: domain_start, domain_end = domain_end, domain_start # Check inputs. checkValues(alpha, domain_start, domain_end, num_points) f_values, step_size = functionCheck(f_name, domain_start, domain_end, num_points) # Get the convolution filter. b_coeffs = GLcoeffs(alpha, num_points-1) # Real Fourier transforms for convolution filter and array of function values. B = np.fft.rfft(b_coeffs) F = np.fft.rfft(f_values) result = np.fft.irfft(F*B)*step_size**-alpha return result
226d5d8b49be9a243ac4508a7691c8997503cb4d
19,662
def check_lint(root_dir, ignore, verbose, dry_run, files_at_a_time, max_line_len, continue_on_error): """Check for lint. Unless `continue_on_error` is selected, returns `False` on the first iteration where lint is found, or where the lint checker otherwise returned failure. :return: Whether the check found everything OK. """ success = True # Suffixes for types of file that pocketlint can check for us. pocketlint_suffixes = C_LIKE_SUFFIXES + PERL_SUFFIXES + [ '.ini', # Don't check for now. Styles differ too much. # '.css', '.js', '.md', '.cgi', '.php', '.py', '.sh', ] lintable_files = find_files( root_dir, ignore=ignore, suffixes=pocketlint_suffixes) command_line = ['pocketlint', '-m', '%d' % max_line_len, '--'] for chunk in chunk_file_list(lintable_files, files_at_a_time): try: run_command( command_line + chunk, verbose=verbose, dry_run=dry_run) except CalledProcessError: success = False if not success and not continue_on_error: return False return success
c43b7a05bf47b9108281bb7c0cef4ff1d6e107d3
19,663
def remove_comments(s): """ Examples -------- >>> code = ''' ... # comment 1 ... # comment 2 ... echo foo ... ''' >>> remove_comments(code) 'echo foo' """ return "\n".join(l for l in s.strip().split("\n") if not l.strip().startswith("#"))
1d3e1468c06263d01dd204c5ac89235a17f50972
19,664
def generate_wsl(ws): """ Generates watershed line that correspond to areas of touching objects. """ se = square(3) ero = ws.copy() ero[ero == 0] = ero.max() + 1 ero = erosion(ero, se) ero[ws == 0] = 0 grad = dilation(ws, se) - ero grad[ws == 0] = 0 grad[grad > 0] = 255 grad = grad.astype(np.uint8) return grad
6d61b2b366ca6a4b94f8a6513f1a0a5fb1bfd8c9
19,665
def train_lstm_model(x, y, epochs=200, patience=10, lstm_dim=48, batch_size=128, lr=1e-3): """ Train an LSTM to predict purchase (1) or abandon (0) :param x: session sequences :param y: target labels :param epochs: num training epochs :param patience: early stopping patience :param lstm_dim: lstm units :param batch_size: batch size :param lr: learning rate :return: """ # Verfiy if GPU/CPU is being used print("Print out system device...") print(device_lib.list_local_devices()) print("Starting training now...") X_train, X_test, y_train, y_test = train_test_split(x,y) # pad sequences for training in batches max_len = max(len(_) for _ in x) X_train = pad_sequences(X_train, padding="post",value=7, maxlen=max_len) X_test = pad_sequences(X_test, padding="post", value=7, maxlen=max_len) # convert to one-hot X_train = tf.one_hot(X_train, depth=7) X_test = tf.one_hot(X_test, depth=7) y_train = np.array(y_train) y_test = np.array(y_test) # Define Model model = keras.Sequential() model.add(keras.layers.InputLayer(input_shape=(None,7))) # Masking layer ignores padded time-steps model.add(keras.layers.Masking()) model.add(keras.layers.LSTM(lstm_dim)) model.add(keras.layers.Dense(1,activation='sigmoid')) model.summary() # Some Hyper Params opt = keras.optimizers.Adam(learning_rate=lr) loss = keras.losses.BinaryCrossentropy() es = keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, verbose=1, restore_best_weights=True) # Include wandb callback for tracking callbacks = [es, WandbCallback()] model.compile(optimizer=opt, loss=loss, metrics=['accuracy']) # Train Model model.fit(X_train, y_train, validation_data=(X_test,y_test), batch_size=batch_size, epochs=epochs, callbacks=callbacks) # return trained model # NB: to store model as Metaflow Artifact it needs to be pickle-able! return model.to_json(), model.get_weights(), model
159ad99e419d659e655bcdd9556a6ae3202071ae
19,666
def nash_sutcliffe_efficiency(predicted, observed): """ implements Nash-Sutcliffe Model Efficiencobserved Coefficient where predicted is modeled and observed is observed""" if np.isnan(np.min(predicted)) or np.isnan(np.min(observed)): return np.asarray([np.nan]) return 1 - np.sum((predicted - observed)**2) / np.sum((observed - observed.mean())**2)
b9820cf95472499d6e6c24e47ffb4bbd5574e439
19,667
def tf_Affine_transformer(points, theta): """ Arguments: points: `Matrix` [2, np] of grid points to transform theta: `Matrix` [bs, 2, 3] with a batch of transformations """ with tf.name_scope('Affine_transformer'): num_batch = tf.shape(theta)[0] grid = tf.tile(tf.expand_dims(points, 0), [num_batch, 1, 1]) # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) T_g = tf.matmul(theta, grid) return T_g
a024609ac386b7d12173fb3965233ae4c21233d2
19,668
def read_COCO_gt(filename, n_imgs=None, ret_img_sizes=False, ret_classes=False, bbox_gt=False): """ Function for reading COCO ground-truth files and converting them to GroundTruthInstances format. :param filename: filename of the annotation.json file with all COCO ground-truth annotations :param n_imgs: number of images ground-truth is being extracted from. If None extract all (default None) :param ret_img_sizes: Boolean flag dictating if the image sizes should be returned :param ret_classes: Boolean flag dictating if the class mapping dictionary should be returned :param bbox_gt: Boolean flag dictating if the GroundTruthInstance should ignore the segmentation mask and only use bounding box information. :return: ground-truth instances as GTLoader and optionally image sizes or class mapping dictionary if requested """ # read the json file coco_obj = COCO(filename) gt_instances = GTLoader(coco_obj, n_imgs, bbox_gt=bbox_gt) # Return image sizes if requested if ret_img_sizes: return gt_instances, [ [coco_obj.imgs[img_id]['height'], coco_obj.imgs[img_id]['width']] for img_id in sorted(coco_obj.imgs.keys()) ] # Return class mapping dictionary if requested if ret_classes: return gt_instances, { coco_obj.cats[cat_id]['name']: idx for idx, cat_id in enumerate(sorted(coco_obj.cats.keys())) } return gt_instances
dfcfa69ee620ac3546b1f646c9c23f126a9822c3
19,669
def get_metrics_from_file(metric_file): """Gets all metric functions within a file :param str metric_file: The name of the file to look in :return: Tuples containing (function name, function object) :rtype: list """ try: metrics = import_module(metric_file) metrics = get_sorted_metric_function_tuples(metrics) except ImportError: raise NoMetricFileFound if not metrics: raise NoMetricFunctionsFound return metrics
12e59feb03b6d8571fb7a5ef8f02e81e53605b0b
19,670
def mnist_model(inputs, mode): """Takes the MNIST inputs and mode and outputs a tensor of logits.""" # Input Layer # Reshape X to 4-D tensor: [batch_size, width, height, channels] # MNIST images are 28x28 pixels, and have one color channel inputs = tf.reshape(inputs, [-1, 28, 28, 1]) data_format = 'channels_last' if tf.test.is_built_with_cuda(): # When running on GPU, transpose the data from channels_last (NHWC) to # channels_first (NCHW) to improve performance. # See https://www.tensorflow.org/performance/performance_guide#data_formats data_format = 'channels_first' inputs = tf.transpose(inputs, [0, 3, 1, 2]) # Convolutional Layer #1 # Computes 32 features using a 5x5 filter with ReLU activation. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 28, 28, 1] # Output Tensor Shape: [batch_size, 28, 28, 32] conv1 = tf.layers.conv2d( inputs=inputs, filters=32, kernel_size=[5, 5], padding='same', activation=tf.nn.relu, data_format=data_format) # Pooling Layer #1 # First max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 28, 28, 32] # Output Tensor Shape: [batch_size, 14, 14, 32] pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, data_format=data_format) # Convolutional Layer #2 # Computes 64 features using a 5x5 filter. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 14, 14, 32] # Output Tensor Shape: [batch_size, 14, 14, 64] conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding='same', activation=tf.nn.relu, data_format=data_format) # Pooling Layer #2 # Second max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 14, 14, 64] # Output Tensor Shape: [batch_size, 7, 7, 64] pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2, data_format=data_format) # Flatten tensor into a batch of vectors # Input Tensor Shape: [batch_size, 7, 7, 64] # Output Tensor Shape: [batch_size, 7 * 7 * 64] pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) # Dense Layer # Densely connected layer with 1024 neurons # Input Tensor Shape: [batch_size, 7 * 7 * 64] # Output Tensor Shape: [batch_size, 1024] dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) # Add dropout operation; 0.6 probability that element will be kept dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=(mode == tf.estimator.ModeKeys.TRAIN)) # Logits layer # Input Tensor Shape: [batch_size, 1024] # Output Tensor Shape: [batch_size, 10] logits = tf.layers.dense(inputs=dropout, units=10) return logits
7807adce4030d070c79eea5f3a1991ff4c4e1cd6
19,671
import base64 import io def show_local_mp4_video(file_name, width=640, height=480): """Renders a mp4 video on a Jupyter notebook Args: file_name (str): Path to file. width (int): Video width. height (int): Video height. Returns: obj: Video render as HTML object. """ video_encoded = base64.b64encode(io.open(file_name, 'rb').read()) return HTML(data='''<video width="{0}" height="{1}" alt="test" controls> <source src="data:video/mp4;base64,{2}" type="video/mp4" /> </video>'''.format(width, height, video_encoded.decode('ascii')))
4f2b4660b005edcf865eca1c6632ffa6c0899fe8
19,672
from datetime import datetime def change_status(sid, rev, status, **kwargs): """ [INCOMPLETE] - DISABLE OTHER REVISION OF THE SAME SIGNTURE WHEN DEPLOYING ONE Change the status of a signature Variables: sid => ID of the signature rev => Revision number of the signature status => New state Arguments: None Data Block: None Result example: { "success" : true } #If saving the rule was a success or not """ DEPLOYED_STATUSES = ['DEPLOYED', 'NOISY', 'DISABLED'] DRAFT_STATUSES = ['STAGING', 'TESTING'] STALE_STATUSES = ['INVALID'] user = kwargs['user'] if status == 'INVALID': return make_api_response("", "INVALID signature status is reserved for service use only.", 403) if not user['is_admin'] and status in DEPLOYED_STATUSES: return make_api_response("", "Only admins are allowed to change the signature status to a deployed status.", 403) key = "%sr.%s" % (sid, rev) data = STORAGE.get_signature(key) if data: if not Classification.is_accessible(user['classification'], data['meta'].get('classification', Classification.UNRESTRICTED)): return make_api_response("", "You are not allowed change status on this signature", 403) if data['meta']['al_status'] in STALE_STATUSES and status not in DRAFT_STATUSES: return make_api_response("", "Only action available while signature in {} status is to change " "signature to a DRAFT status" .format(data['meta']['al_status']), 403) if data['meta']['al_status'] in DEPLOYED_STATUSES and status in DRAFT_STATUSES: return make_api_response("", "You cannot change the status of signature %s r.%s from %s to %s." % (sid, rev, data['meta']['al_status'], status), 403) query = "meta.al_status:{status} AND _yz_rk:{sid}* AND NOT _yz_rk:{key}" today = datetime.date.today().isoformat() uname = user['uname'] if status not in ['DISABLED', 'INVALID', 'TESTING']: for other in STORAGE.get_signatures( STORAGE.list_filtered_signature_keys( query.format(key=key, sid=sid, status=status) ) ): other['meta']['al_state_change_date'] = today other['meta']['al_state_change_user'] = uname other['meta']['al_status'] = 'DISABLED' other_sid = other['meta']['id'] other_rev = other['meta']['rule_version'] other_key = "%sr.%s" % (other_sid, other_rev) STORAGE.save_signature(other_key, other) data['meta']['al_state_change_date'] = today data['meta']['al_state_change_user'] = uname data['meta']['al_status'] = status STORAGE.save_signature(key, data) return make_api_response({"success": True}) else: return make_api_response("", "Signature not found. (%s r.%s)" % (sid, rev), 404)
dce934db6c7fe34e184ff98a63f2bc5e32efaffe
19,673
from re import X def trilinear_interpolation(a: np.ndarray, factor: float) -> np.ndarray: """Resize an three dimensional array using trilinear interpolation. :param a: The array to resize. The array is expected to have at least three dimensions. :param factor: The amount to resize the array. Given how the interpolation works, you probably don't get great results with factor less than or equal to .5. Consider multiple passes of interpolation with larger factors in those cases. :return: A :class:ndarray object. :rtype: numpy.ndarray Usage:: >>> import numpy as np >>> >>> a = np.array([ ... [ ... [0, 1], ... [1, 0], ... ], ... [ ... [1, 0], ... [0, 1], ... ], ... ]) >>> trilinear_interpolation(a, 2) array([[[0. , 0.5, 1. , 1. ], [0.5, 0.5, 0.5, 0.5], [1. , 0.5, 0. , 0. ], [1. , 0.5, 0. , 0. ]], <BLANKLINE> [[0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5]], <BLANKLINE> [[1. , 0.5, 0. , 0. ], [0.5, 0.5, 0.5, 0.5], [0. , 0.5, 1. , 1. ], [0. , 0.5, 1. , 1. ]], <BLANKLINE> [[1. , 0.5, 0. , 0. ], [0.5, 0.5, 0.5, 0.5], [0. , 0.5, 1. , 1. ], [0. , 0.5, 1. , 1. ]]]) """ # Return the array unchanged if the array won't be magnified. if factor == 1: return a # Perform a defensive copy of the original array to avoid # unexpected side effects. a = a.copy() # Since we are magnifying the given array, the new array's shape # will increase by the magnification factor. mag_size = tuple(int(s * factor) for s in a.shape) # Map out the relationship between the old space and the # new space. indices = np.indices(mag_size) if factor > 1: whole = (indices // factor).astype(int) parts = (indices / factor - whole).astype(float) else: new_ends = [s - 1 for s in mag_size] old_ends = [s - 1 for s in a.shape] true_factors = [n / o for n, o in zip(new_ends, old_ends)] for i in range(len(true_factors)): if true_factors[i] == 0: true_factors[i] = .5 whole = indices.copy() parts = indices.copy() for i in Z, Y, X: whole[i] = (indices[i] // true_factors[i]).astype(int) parts[i] = (indices[i] / true_factors[i] - whole[i]).astype(float) del indices # Trilinear interpolation determines the value of a new pixel by # comparing the values of the eight old pixels that surround it. # The hashes are the keys to the dictionary that contains those # old pixel values. The key indicates the position of the pixel # on each axis, with one meaning the position is ahead of the # new pixel, and zero meaning the position is behind it. hashes = [f'{n:>03b}'[::-1] for n in range(2 ** 3)] hash_table = {} # The original array needs to be made one dimensional for the # numpy.take operation that will occur as we build the tables. raveled = np.ravel(a) # Build the table that contains the old pixel values to # interpolate. for hash in hashes: hash_whole = whole.copy() # Use the hash key to adjust the which old pixel we are # looking at. for axis in Z, Y, X: if hash[axis] == '1': hash_whole[axis] += 1 # Handle the pixels that were pushed off the far # edge of the original array by giving them the # value of the last pixel along that axis in the # original array. m = np.zeros(hash_whole[axis].shape, dtype=bool) m[hash_whole[axis] >= a.shape[axis]] = True hash_whole[axis][m] = a.shape[axis] - 1 # Since numpy.take() only works in one dimension, we need to # map the three dimensional indices of the original array to # the one dimensional indices used by the raveled version of # that array. raveled_indices = hash_whole[Z] * a.shape[Y] * a.shape[X] raveled_indices += hash_whole[Y] * a.shape[X] raveled_indices += hash_whole[X] # Get the value of the pixel in the original array. hash_table[hash] = np.take(raveled, raveled_indices.astype(int)) # Once the hash table has been built, clean up the working arrays # in case we are running short on memory. else: del hash_whole, raveled_indices, whole # Everything before this was to set up the interpolation. Now that # it's set up, we perform the interpolation. Since we are doing # this across three dimensions, it's a three stage process. Stage # one is along the X axis. x1 = lerp(hash_table['000'], hash_table['001'], parts[X]) x2 = lerp(hash_table['010'], hash_table['011'], parts[X]) x3 = lerp(hash_table['100'], hash_table['101'], parts[X]) x4 = lerp(hash_table['110'], hash_table['111'], parts[X]) # Stage two is along the Y axis. y1 = lerp(x1, x2, parts[Y]) y2 = lerp(x3, x4, parts[Y]) del x1, x2, x3, x4 # And stage three is along the Z axis. Since this is the last step # we can just return the result. return lerp(y1, y2, parts[Z])
a3ed2c13f13bdc37cbe47cd7ed6862a67cdebd66
19,674
def load_data(path): """将材料的label与text进行分离,得到两个list""" label_list = [] text_list = [] with open(path, 'r') as f: for line in f.readlines(): data = line.strip().split('\t') data[1] = data[1].strip().split() label = [0 for i in range(8)] total = 0 for i in range(0, 8): label[i] = float(data[1][1 + i].split(':')[1]) total += label[i] for i in range(len(label)): label[i] /= total label_list.append(label) text_list.append(data[2].strip().split()) return label_list, text_list
2274e0e327844c4dedae229b3c03a344653f7342
19,675
def invoke(request): """Where the magic happens...""" with monitor(labels=_labels, name="transform_request"): transformed_request = _transform_request(request) with monitor(labels=_labels, name="invoke"): response = _model.predict(transformed_request) with monitor(labels=_labels, name="transform_response"): transformed_response = _transform_response(response) return transformed_response
4547de901cfd2cc153ea67632c2a002a17a15d8b
19,676
import imp import imp import imp def serializers(): #FIXME: could be much smarter """return a tuple of string names of serializers""" try: imp.find_module('cPickle') serializers = (None, 'pickle', 'json', 'cPickle', 'dill') except ImportError: serializers = (None, 'pickle', 'json', 'dill') try: imp.find_module('cloudpickle') serializers += ('cloudpickle',) except ImportError: pass try: imp.find_module('jsonpickle') serializers += ('jsonpickle',) except ImportError: pass return serializers
98e47f0c3dd7a6c70ba1ec88a5d1d0ffca8be79e
19,677
def munge_pocket_response(resp): """Munge Pocket Article response.""" articles = resp['list'] result = pd.DataFrame([articles[id] for id in articles]) # only munge if actual articles present if len(result) != 0: result['url'] = (result['resolved_url'].combine_first(result['given_url'])) for time_col in ['time_added', 'time_updated', 'time_read']: result[time_col] = pd.to_datetime(result[time_col], unit='s') return ( result.drop_duplicates(subset=['resolved_id'])[[ 'item_id', 'resolved_id', 'given_title', 'url', 'resolved_title', 'time_added', 'time_read', 'time_updated', 'status', 'word_count' ]] )
32695526a784cc95aeb428ca2481dcf9053e72ed
19,678
import os def __abs_path(path): """ Creates an absolute path, based on the relative path from the configuration file :param path: A relative path :return: The absolute path, based on the configuration file """ if not os.path.isabs(path): parent = os.path.abspath(os.path.join(config_path, os.pardir)) return os.path.abspath(os.path.join(os.path.relpath(parent), path)) + os.path.sep else: return path
4b790fda478f583c6b78c05e10e01dc68eda7e25
19,679
import time def fake_data_PSBL_phot(outdir='', outroot='psbl', raL=259.5, decL=-29.0, t0=57000.0, u0_amp=0.8, tE=500.0, piE_E=0.02, piE_N=0.02, q=0.5, sep=5.0, phi=75.0, b_sff1=0.5, mag_src1=16.0, parallax=True, target='Unknown', animate=False): """ Optional Inputs --------------- outdir : str The output directory where figures and data are saved. outroot : str The output file name root for a saved figure. raL : float (deg) The right ascension in degrees. Needed if parallax=True. decL : float (deg) The declination in degrees. Needed if parallax=False. t0: float Time of photometric peak, as seen from Earth [MJD] u0_amp: float Angular distance between the lens and source on the plane of the sky at closest approach in units of thetaE. It can be positive (u0_hat cross thetaE_hat pointing away from us) or negative (u0_hat cross thetaE_hat pointing towards us). tE: float Einstein crossing time. [MJD] piE_E: float The microlensing parallax in the East direction in units of thetaE piE_N: float The microlensing parallax in the North direction in units of thetaE q: float Mass ratio (low-mass / high-mass) sep: float Angular separation of the two lenses in units of thetaE where thetaE is defined with the total binary mass. phi: float Angle made between the binary axis and the relative proper motion vector, measured in degrees. b_sff: array or list The ratio of the source flux to the total (source + neighbors + lens) b_sff = f_S / (f_S + f_L + f_N). This must be passed in as a list or array, with one entry for each photometric filter. mag_src: array or list Photometric magnitude of the source. This must be passed in as a list or array, with one entry for each photometric filter. """ start = time.time() if parallax: psbl = model.PSBL_Phot_Par_Param1(t0, u0_amp, tE, piE_E, piE_N, q, sep, phi, [b_sff1], [mag_src1], raL=raL, decL=decL, root_tol=1e-8) else: psbl = model.PSBL_Phot_noPar_Param1(t0, u0_amp, tE, piE_E, piE_N, q, sep, phi, [b_sff1], [mag_src1], root_tol=1e-8) # Simulate # photometric observations every 1 day and # for the bulge observing window. Observations missed # for 125 days out of 365 days for photometry. t_pho = np.array([], dtype=float) for year_start in np.arange(54000, 60000, 365.25): phot_win = 240.0 phot_start = (365.25 - phot_win) / 2.0 t_pho_new = np.arange(year_start + phot_start, year_start + phot_start + phot_win, 1) t_pho = np.concatenate([t_pho, t_pho_new]) t_mod = np.arange(t_pho.min(), t_pho.max(), 1) i_pho, A_pho = psbl.get_all_arrays(t_pho) i_mod, A_mod = psbl.get_all_arrays(t_mod) imag_pho = psbl.get_photometry(t_pho, amp_arr=A_pho) imag_mod = psbl.get_photometry(t_mod, amp_arr=A_mod) # Make the photometric observations. # Assume 0.05 mag photoemtric errors at I=19. # This means Signal = 400 e- at I=19. flux0 = 400.0 imag0 = 19.0 flux_pho = flux0 * 10 ** ((imag_pho - imag0) / -2.5) flux_pho_err = flux_pho ** 0.5 flux_pho += np.random.randn(len(t_pho)) * flux_pho_err imag_pho = -2.5 * np.log10(flux_pho / flux0) + imag0 imag_pho_err = 1.087 / flux_pho_err stop = time.time() fmt = 'It took {0:.2f} seconds to evaluate the model at {1:d} time steps' print(fmt.format(stop - start, len(t_mod) + len(t_pho))) ########## # Plot photometry ########## plt.figure(1) plt.clf() plt.errorbar(t_pho, imag_pho, yerr=imag_pho_err, fmt='k.', label='Sim Obs', alpha=0.2) plt.plot(t_mod, imag_mod, color='red', label='Model') plt.gca().invert_yaxis() plt.xlabel('Time (MJD)') plt.ylabel('I (mag)') plt.legend() data = {} data['t_phot1'] = t_pho data['mag1'] = imag_pho data['mag_err1'] = imag_pho_err data['phot_files'] = ['fake_data_parallax_phot1'] data['ast_files'] = ['fake_data_parallax_ast1'] data['target'] = target data['phot_data'] = 'sim' data['ast_data'] = 'sim' data['raL'] = raL data['decL'] = decL params = {} params['t0'] = t0 params['u0_amp'] = u0_amp params['tE'] = tE params['piE_E'] = piE_E params['piE_N'] = piE_N params['q'] = q params['sep'] = sep params['phi'] = phi params['b_sff'] = b_sff1 params['mag_src'] = mag_src1 out_name = outdir + outroot + '_movie.gif' if animate: ani = plot_models.animate_PSBL(psbl, outfile=out_name) else: ani = None return data, params, psbl, ani
bde4d98d0936be3b0cd655879bbfdbde2e1a5826
19,680
import pathlib def is_dicom(path: pathlib.Path) -> bool: """Check if the input is a DICOM file. Args: path (pathlib.Path): Path to the file to check. Returns: bool: True if the file is a DICOM file. """ path = pathlib.Path(path) is_dcm = path.suffix.lower() == ".dcm" is_dcm_dir = path.is_dir() and any( p.suffix.lower() == ".dcm" for p in path.iterdir() ) return is_dcm or is_dcm_dir
1e20ace9c645a41817bf23a667bd4e1ac815f63f
19,681
from typing import Optional def _hessian(model: 'BinaryLogReg', data: Dataset, data_weights: Optional[jnp.ndarray]) -> jnp.ndarray: """Ravelled Hessian matrix of the objective function with respect to the model parameters""" params_flat, unravel = ravel_pytree(model.params) random_params = model.random_params h = jax.hessian(lambda p: _objective(unravel(p), random_params, data, model.lamb, model.pos_label, data_weights)) return h(params_flat)
5824fe0d2def5d03e8ac3f773641d19d6aebfa3e
19,682
import re def promax2meta(doc, target): """ Return meta information (Line or Area) of csv Promax geometry file. Arguments: doc -- csv Promax geometry file target -- meta information to get (Line or Area) """ ptarget = r'' + re.escape(target) + r'\s*[=:]\s*\"?([\w-]+)\"?' for line in open(doc): result = (re.search(ptarget, line, re.I)) if result: return result.group(1)
7dce362112aa7fb6fa24999c4f870107b24c3d40
19,683
def axLabel(value, unit): """ Return axis label for given strings. :param value: Value for axis label :type value: int :param unit: Unit for axis label :type unit: str :return: Axis label as \"<value> (<unit>)\" :rtype: str """ return str(value) + " (" + str(unit) + ")"
cc553cf4334222a06ae4a2bcec5ec5acb9668a8f
19,684
import hashlib import time def save_notebook(filename, timeout=10): """ Force-saves a Jupyter notebook by displaying JavaScript. Args: filename (``str``): path to notebook file being saved timeout (``int`` or ``float``): number of seconds to wait for save before timing-out Returns ``bool``: whether the notebook was saved successfully """ timeout = timeout * 10**9 if get_ipython() is not None: with open(filename, "rb") as f: md5 = hashlib.md5(f.read()).hexdigest() start = time.time_ns() display(Javascript("Jupyter.notebook.save_checkpoint();")) curr = md5 while curr == md5 and time.time_ns() - start <= timeout: time.sleep(1) with open(filename, "rb") as f: curr = hashlib.md5(f.read()).hexdigest() return curr != md5 return True
4d02f1eb48459c412a119fcab7d8df7515c1b465
19,685
def test_gen(): """Create the test system.""" project_name = "test_grid_sinfactory" return PFactoryGrid(project_name=project_name).gens["SM1"]
cd8009b55bfced7fbafc2914b80e0dd2cd2851fc
19,686
def validate_api_key(): """Validates an API key submitted via POST.""" api_key_form = ApiKeyForm() api_key_form.organization.choices = session['orgs_list'] if api_key_form.validate_on_submit(): session['org_id'] = api_key_form.organization.data return jsonify(True) return jsonify(api_key_form.errors), 422
1cf72017600222992cb9d622c6b718b8dc84bae8
19,687
def plot_clickForPlane(): """ Create a Plane at location of one mouse click in the view or onto a clicked object or at a pre-selected point location: Create a Plane perpendicular to the view at location of one mouse click. - Click first on the Button then click once on the View. - Click first on the Button then click once on one object of the View to attach the plane at the object. But you can also select an already existing point first and click the button to attach the plane. """ msg = verbose createFolders('WorkPlanes') m_actDoc = get_ActiveDocument(info=msg) if m_actDoc.Name is None: return None m_selEx = Gui.Selection.getSelectionEx(m_actDoc.Name) if len(m_selEx) >= 1: SelectedObjects = get_SelectedObjects(info=1) Number_of_Points = SelectedObjects[0] if (Number_of_Points == 1): Point_List = SelectedObjects[3] name = "Plane" part = "Part::Feature" # return view direction as a vector Plane_Normal = Gui.ActiveDocument.ActiveView.getViewDirection() # Set the base of the plane at location of mouse click Plane_Point = Point_List[-1].Point # Create a Plane Plane_User_Name, plane = plot_plane(m_lengthPlane, m_widthPlane, Plane_Point, Plane_Normal, part, name) else: printError_msg("Either select first one Point and Click the button or \n" + "Click the button and one free mouse click in the view or" + "Click the button and one mouse click on an object of the view !") else: global m_callback #view = Gui.ActiveDocument.ActiveView view = get_ActiveView() # m_callback = view.addEventCallbackPivy(SoMouseButtonEvent.getClassTypeId(),getClickedPlane) m_callback = view.addEventCallback("SoMouseButtonEvent", getClickedPlane2)
62acc0e41ce165047f6dabf99d0df8fd2b1db000
19,688
def is_logged_in(f): """ is logged in decorator """ @wraps(f) def wrap(*args, **kwargs): """ wrap from template """ if 'logged_in' in session: return f(*args, **kwargs) else: flash('Unauthorized, Please login', 'danger') return redirect(url_for('login')) return wrap
732bf60bf0901fc341f81c3e6db3516052ecfd12
19,689
def dataframe_from_mult_files(filenames): """@param filenames (List[Str]): list of filenames""" dfs = [] for filename in filenames: dfs.append(dataframe_from_file(filename)) return pd.concat(dfs, axis=0)
76f37d5cef6a8b44946ef25536a135db339beca6
19,690
def batch_euclidean_dist(x, y, min_val): """ euclidean_dist function over batch x and y are batches of matrices x' and y': x' = (x'_1, | x'_2 | ... | x'_m).T y' = (y'_1, | y'_2 | ... | y'_n).T Where x_i and y_j are vectors. We calculate the distances between each pair x_i and y_j. res'[i, j] = dict(x'_i, y'_j) res (batch of res') will have the shape [batch_size, m, n] For calculation we use the formula x^2 - 2xy + y^2. Clipped to prevent zero distances for numerical stability. """ _, m, _ = x.shape _, n, _ = y.shape # shape [N, m, n] xx = ops.pows(x, 2).sum(-1, keepdims=True).repeat(n, axis=-1) yy = ops.pows(y, 2).sum(-1, keepdims=True).repeat(m, axis=-1).transpose(0, 2, 1) dist = xx + yy dist = 1 * dist - 2 * ops.batch_dot(x, y.transpose(0, 2, 1)) # Avoiding zeros for numerical stability dist = ops.maximum( dist, min_val, ) dist = ops.sqrt(dist) return dist
1eec65330ba8970fd84c7d9c7c57e91cd79e0e6f
19,691
def outgroup_reformat(newick, outgroup): """ Move the location of the outgroup in a newick string to be at the end of the string Inputs: newick --- a newick string to be reformatted outgroup --- the outgroup Output: newick --- the reformatted string """ # Replace the outgroup and comma with an empty string newick = newick.replace(outgroup + ",", "") newick = newick[:-2] + "," + outgroup + ");" return newick
a45be59deb95d7bb61ea82a111d4390e49d4b7a8
19,692
def get_source_token(request): """ Perform token validation for the presqt-source-token header. Parameters ---------- request : HTTP request object Returns ------- Returns the token if the validation is successful. Raises a custom AuthorizationException error if the validation fails. """ # Validate that the proper token exists in the request. try: return request.META['HTTP_PRESQT_SOURCE_TOKEN'] except KeyError: raise PresQTValidationError( "PresQT Error: 'presqt-source-token' missing in the request headers.", status.HTTP_400_BAD_REQUEST)
db53bba32f8471a17d44fae2d3f44749d5a83c86
19,693
def read_train_valid(filename): """ 读取训练或者验证文件 :param filename: 训练集/验证集的文件名字 :return: 返回训练集的文本和标签 其中文本是一个list, 标签是一个list(每个元素为int) 返回示例:['我很开心', '你不是真正的快乐', '一切都是假的], [1, 0, 0] """ fp = pd.read_table(filename, sep='\t', error_bad_lines=False) return fp['review'].tolist(), list(map(int, fp['sentiment'].tolist()))
f6990db50453e4dd88f8ecd13e1eb345ab15fc87
19,694
def weighted_regularization_matrix_from( regularization_weights: np.ndarray, pixel_neighbors: np.ndarray, pixel_neighbors_sizes: np.ndarray, ) -> np.ndarray: """ From the pixel-neighbors, setup the regularization matrix using the weighted regularization scheme. Parameters ---------- regularization_weights The regularization_ weight of each pixel, which governs how much smoothing is applied to that individual pixel. pixel_neighbors An array of length (total_pixels) which provides the index of all neighbors of every pixel in the Voronoi grid (entries of -1 correspond to no neighbor). pixel_neighbors_sizes An array of length (total_pixels) which gives the number of neighbors of every pixel in the Voronoi grid. Returns ------- np.ndarray The regularization matrix computed using an adaptive regularization scheme where the effective regularization coefficient of every source pixel is different. """ pixels = len(regularization_weights) regularization_matrix = np.zeros(shape=(pixels, pixels)) regularization_weight = regularization_weights ** 2.0 for i in range(pixels): regularization_matrix[i, i] += 1e-8 for j in range(pixel_neighbors_sizes[i]): neighbor_index = pixel_neighbors[i, j] regularization_matrix[i, i] += regularization_weight[neighbor_index] regularization_matrix[ neighbor_index, neighbor_index ] += regularization_weight[neighbor_index] regularization_matrix[i, neighbor_index] -= regularization_weight[ neighbor_index ] regularization_matrix[neighbor_index, i] -= regularization_weight[ neighbor_index ] return regularization_matrix
ecc6301e327adc608530c933ae769bd92ffcaf84
19,695
def child_at_time( self, search_time, shallow_search=False, ): """Return the child that overlaps with time search_time. search_time is in the space of self. If shallow_search is false, will recurse into compositions. """ range_map = self.range_of_all_children() # find the first item whose end_time_exclusive is after the first_inside_range = _bisect_left( seq=self, tgt=search_time, key_func=lambda child: range_map[child].end_time_exclusive(), ) # find the last item whose start_time is before the last_in_range = _bisect_right( seq=self, tgt=search_time, key_func=lambda child: range_map[child].start_time, lower_search_bound=first_inside_range, ) # limit the search to children who are in the search_range possible_matches = self[first_inside_range:last_in_range] result = None for thing in possible_matches: if range_map[thing].overlaps(search_time): result = thing break # if the search cannot or should not continue if ( result is None or shallow_search or not hasattr(result, "child_at_time") ): return result # before you recurse, you have to transform the time into the # space of the child child_search_time = self.transformed_time(search_time, result) return result.child_at_time(child_search_time, shallow_search)
5961a6d20a962b7b698822610bf4cecdf9c33257
19,696
def weight_variable_truncated_normal(input_dim, output_dim, name=""): """Create a weight variable with truncated normal distribution, values that are more than 2 stddev away from the mean are redrawn.""" initial = tf.truncated_normal([input_dim, output_dim], stddev=0.5) return tf.Variable(initial, name=name)
4c645fc5a914ff99f5b1063f5ecc0b4878481517
19,697
def get_dummy_vm_create_spec(client_factory, name, data_store_name): """Builds the dummy VM create spec.""" config_spec = client_factory.create('ns0:VirtualMachineConfigSpec') config_spec.name = name config_spec.guestId = "otherGuest" vm_file_info = client_factory.create('ns0:VirtualMachineFileInfo') vm_file_info.vmPathName = "[" + data_store_name + "]" config_spec.files = vm_file_info tools_info = client_factory.create('ns0:ToolsConfigInfo') tools_info.afterPowerOn = True tools_info.afterResume = True tools_info.beforeGuestStandby = True tools_info.beforeGuestShutdown = True tools_info.beforeGuestReboot = True config_spec.tools = tools_info config_spec.numCPUs = 1 config_spec.memoryMB = 4 controller_key = -101 controller_spec = create_controller_spec(client_factory, controller_key) disk_spec = create_virtual_disk_spec(client_factory, 1024, controller_key) device_config_spec = [controller_spec, disk_spec] config_spec.deviceChange = device_config_spec return config_spec
6564197d319b87f0a9dd05ae3053de6ebc11cf5c
19,698
def test_comparison_ops_eq_t(): """Check the equal-to operator for a truthy result.""" return """ fn main() { {dest} = 1 == 1; } """
1d6562c26b1103deaf3a8eed4bc8d341a4a7d3e0
19,699