content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
from datetime import datetime
def get_time(sec_scale):
"""time since epoch in milisecond
"""
if sec_scale == 'sec':
scale = 0
elif sec_scale == 'msec':
scale = 3
else:
raise
secs = (datetime.utcnow() - datetime.utcfromtimestamp(0)).total_seconds()
return int(secs * pow(10, scale)) | c233133d61c6347a27186ef3baf0ae2bc79cf8f2 | 15,500 |
import urllib
import json
def get_json(url):
"""
Function that retrieves a json from a given url.
:return: the json that was received
"""
with urllib.request.urlopen(url) as response:
data = response.readall().decode('utf-8')
data = json.loads(data)
return data | 3164bb7d1adc40e3dcd07e82ec734807f3a17abc | 15,501 |
def _defaultChangeProvider(variables,wf):
""" by default we just forword the message to the change provider """
return variables | 5087dc06e0da1f3270b28e9ab1bd2241ed4b4de4 | 15,502 |
def evaluate_surface_derivatives(surface, params, order=1):
"""
"""
if surface.rational:
control_points = np.array(surface.weighted_control_points)
else:
control_points = np.array(surface.control_points)
degree_u, degree_v = surface.degree
knot_vector_u, knot_vector_v = surface.knot_vector
count_u, count_v = surface.count
params_u = [p[0] for p in params]
params_v = [p[1] for p in params]
spans_u = find_spans(knot_vector_u, count_u, params_u)
bases_u = basis_functions_derivatives(degree_u, knot_vector_u, spans_u, params_u, order)
spans_v = find_spans(knot_vector_v, count_v, params_v)
bases_v = basis_functions_derivatives(degree_v, knot_vector_v, spans_v, params_v, order)
dv = min(degree_v, order)
derivatives = []
for span_u, basis_u, span_v, basis_v in zip(spans_u, bases_u, spans_v, bases_v):
b = control_points[span_u - degree_u:span_u + 1, span_v - degree_v:span_v + 1]
temp = np.dot(b.T, np.array(basis_u).T).T
dd = min(order, dv)
SKL = np.dot(np.array(basis_v[:dd + 1]), temp[:degree_v + 1]).transpose(1, 0, 2)
derivatives.append(SKL)
if not surface.rational:
return np.array(derivatives)
else:
# TODO: numpify this!
D = []
for SKLw in derivatives:
dimension = 4
SKL = [[[0.0 for _ in range(dimension)] for _ in range(order + 1)] for _ in range(order + 1)]
for k in range(0, order + 1):
for l in range(0, order + 1): # noqa E741
v = list(SKLw[k, l])[:]
for j in range(1, l + 1):
v[:] = [tmp - (binomial_coefficient(l, j) * SKLw[0][j][-1] * drv) for tmp, drv in zip(v, SKL[k][l - j])]
for i in range(1, k + 1):
v[:] = [tmp - (binomial_coefficient(k, i) * SKLw[i][0][-1] * drv) for tmp, drv in zip(v, SKL[k - i][l])]
v2 = [0.0 for _ in range(dimension - 1)]
for j in range(1, l + 1):
v2[:] = [tmp + (binomial_coefficient(l, j) * SKLw[i][j][-1] * drv) for tmp, drv in zip(v2, SKL[k - i][l - j])]
v[:] = [tmp - (binomial_coefficient(k, i) * tmp2) for tmp, tmp2 in zip(v, v2)]
SKL[k][l][:] = [tmp / SKLw[0][0][-1] for tmp in v[0:(dimension - 1)]]
D.append(SKL)
return np.array(D) | 669a20bf23f96720f2a2eae917652723c0aa3fe5 | 15,503 |
def GPPrediction(y_train, X_train, T_train, eqid_train, sid_train = None, lid_train = None,
X_new = None, T_new = None, eqid_new = None, sid_new = None, lid_new = None,
dc_0 = 0.,
Tid_list = None, Hyp_list = None, phi_0 = None, tau_0 = None,
sigma_s = None, sigma_e = None):
"""
Make ground motion predictions at new locations conditioned on the training data
Parameters
----------
y_train : np.array(n_train_pt)
Array with ground-motion observations associated with training data
X_train : np.array(n_train_pt, n_dim)
Design matrix for training data.
T_train : np.array(n_train_pt, 2x n_coor)
Coordinates matrix for training data.
eqid_train : np.array(n_train_pt)
Earthquake IDs for training data.
sid_train : np.array(n_train_pt), optional
Station IDs for training data. The default is None.
lid_train : np.array(n_train_pt), optional
Source IDs for training data. The default is None.
X_new : np.array(n_new_pt, n_dim), optional
Desing matrix for predictions. The default is None.
T_new : np.array(n_new_pt, 2 x n_coor), optional
Coordinate matrix for predictions. The default is None.
eqid_new : np.array(n_new_pt), optional
Earthquake IDs for predictions. The default is None.
sid_new : np.array(n_new_pt), optional
Station IDs for predictions. The default is None.
lid_new : np.array(n_new_pt), optional
Source IDs for predictions. The default is None.
dc_0 : float, optional
Mean offset. The default is zero.
Tid_list : n_dim list
List to specify the coordinate pair or each dimension.
Hyp_list : TYPE, optional
List of hyper-parameters for each dimension of the covariance fuction.
phi_0 : double
Within-event standard deviation.
tau_0 : double
Between-event standard deviation.
sigma_s : double, optional
Standard deviation for zero correlation site-to-site term. The default is None.
sigma_e : double, optional
Standard deviation for zero correlation source-to-source term. The default is None.
Returns
-------
np.array(n_new_pt)
median estimate of new predictions.
np.array(n_new_pt, n_new_pt)
epistemic uncertainty of new predictions.
"""
#import pdb; pdb.set_trace()
#remove mean offset from conditioning data
y_train = y_train - dc_0
#number of grid nodes
n_pt_train = X_train.shape[0]
n_pt_new = X_new.shape[0]
#initialize covariance matrices
cov_data = np.zeros([n_pt_train,n_pt_train])
cov_star = np.zeros([n_pt_new,n_pt_train])
cov_star2 = np.zeros([n_pt_new,n_pt_new])
#create covariance matrices
for k, (hyp, tid) in enumerate(zip(Hyp_list,Tid_list)):
#covariance between train data
cov_data += CreateCovMaternDimX(X_train[:,k], X_train[:,k],
T_train[tid], T_train[tid],
hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2],
delta = 1e-6)
#covariance between train data and predictions
cov_star += CreateCovMaternDimX(X_new[:,k], X_train[:,k],
T_new[tid], T_train[tid],
hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2],
delta = 0)
#covariance between prediction data
cov_star2 += CreateCovMaternDimX(X_new[:,k], X_new[:,k],
T_new[tid], T_new[tid],
hyp_ell = hyp[0], hyp_omega = hyp[1], hyp_pi = hyp[2],
delta = 1e-6)
#add site to site systematic effects if sigma_s is specified
if not (sigma_s is None):
assert(not(sid_train is None)), 'Error site id for training data not specified'
cov_data += CreateCovS2S(sid_train, sid_train, sigma_s, delta = 1e-6)
#add source to source systematic effects if phi_L2L is specified
if not (sigma_e is None):
assert(not(lid_train is None)), 'Error location id for training data not specified'
cov_data += CreateCovL2L(lid_train, lid_train, sigma_e, delta = 1e-6)
#add between and within event covariance matrices
cov_data += CreateCovWe(eqid_train, eqid_train, phi_0)
cov_data += CreateCovBe(eqid_train, eqid_train, tau_0, delta = 1e-6)
#consider site to site systematic effects in predictions if sigma_s is specified
if not ( (sigma_s is None) or (sid_new is None)):
cov_star2 += CreateCovS2S(sid_new, sid_new, sigma_s, delta = 1e-6)
cov_star += CreateCovS2S(sid_new, sid_train, sigma_s)
#consider site to site systematic effects in predictions if sigma_s is specified
if not ( (sigma_e is None) or (lid_new is None)):
cov_star2 += CreateCovL2L(lid_new, lid_new, sigma_e, delta = 1e-6)
cov_star += CreateCovL2L(lid_new, lid_train, sigma_e)
#consider earthquake aleatory terms if eqid_new is specified
if not (eqid_new is None):
cov_star2 += CreateCovBe(eqid_new, eqid_new, tau_0, delta = 1e-6)
cov_star += CreateCovBe(eqid_new, eqid_train, tau_0)
#posterior mean and variance at new locations
y_new_mu = cov_star.dot(linalg.solve(cov_data, y_train))
#add mean offset to new predictions
y_new_mu = y_new_mu + dc_0
y_new_cov = cov_star2 - cov_star.dot(linalg.solve(cov_data, cov_star.transpose()))
#posterior standard dev. at new locations
y_new_sig = np.sqrt(np.diag(y_new_cov))
return y_new_mu.flatten(), y_new_sig.flatten(), y_new_cov | 28bdf5575f16d1ee3a719aaadc59eefda642171d | 15,504 |
def zdotu(x, y):
"""
This function computes the complex scalar product \M{x^T y} for the
vectors x and y, returning the result.
"""
return _gslwrap.gsl_blas_zdotu(x, y, 1j) | 135b5196568454dc0c721ab42cdd13d4bed63c5c | 15,505 |
def music21_to_chord_duration(p, key):
"""
Takes in a Music21 score, and outputs three lists
List for chords (by primeFormString string name)
List for chord function (by romanNumeralFromChord .romanNumeral)
List for durations
"""
p_chords = p.chordify()
p_chords_o = p_chords.flat.getElementsByClass('Chord')
chord_list = []
chord_function_list = []
duration_list = []
for ch in p_chords_o:
duration_list.append(ch.duration.quarterLength)
ch.closedPosition(forceOctave=4, inPlace=True)
rn = roman.romanNumeralFromChord(ch, key)
rp = rn.pitches
rp_names = ",".join([pi.name + pi.unicodeNameWithOctave[-1] for pi in rp])
chord_list.append(rp_names)
chord_function_list.append(rn.figure)
return chord_list, chord_function_list, duration_list | 142a0ef06c5c9542097cc7db0631a1f19e2f8f72 | 15,506 |
def city_country(city, country, population=''):
"""Generate a neatly formatted city/country name."""
full_name = city + ', ' + country
if population:
return full_name.title() + ' - population ' + str(population)
else:
return full_name.title() | 23be8d5b39380fd177240e479cf77ac7eb6c7459 | 15,507 |
def generate_headermap(line,startswith="Chr", sep="\t"):
"""
>>> line = "Chr\\tStart\\tEnd\\tRef\\tAlt\\tFunc.refGene\\tGene.refGene\\tGeneDetail.refGene\\tExonicFunc.refGene\\tAAChange.refGene\\tsnp138\\tsnp138NonFlagged\\tesp6500siv2_ea\\tcosmic70\\tclinvar_20150629\\tOtherinfo"
>>> generate_headermap(line)
{'Chr': 0, 'Start': 1, 'End': 2, 'Ref': 3, 'Alt': 4, 'Func.refGene': 5, 'Gene.refGene': 6, 'GeneDetail.refGene': 7, 'ExonicFunc.refGene': 8, 'AAChange.refGene': 9, 'snp138': 10, 'snp138NonFlagged': 11, 'esp6500siv2_ea': 12, 'cosmic70': 13, 'clinvar_20150629': 14, 'Otherinfo': 15}
"""
if not line.startswith(startswith):
raise Exception("Header line should start with \"{0}\"".format(startswith))
else:
if line.startswith("#"):
line = line[1:]
return dict([(v, i) for i,v in enumerate(line.rstrip().split(sep))]) | 16bbbc07fa13ff9bc8ec7af1aafc4ed65b20ec4c | 15,508 |
def max(q):
"""Return the maximum of an array or maximum along an axis.
Parameters
----------
q : array_like
Input data
Returns
-------
array_like
Maximum of an array or maximum along an axis
"""
if isphysicalquantity(q):
return q.__class__(np.max(q.value), q.unit)
else:
return np.max(q) | 0a3cfae6fb9d1d26913817fcc11765214baa8dff | 15,509 |
from typing import OrderedDict
def make_failure_log(conclusion_pred, premise_preds, conclusion, premises,
coq_output_lines=None):
"""
Produces a dictionary with the following structure:
{"unproved sub-goal" : "sub-goal_predicate",
"matching premises" : ["premise1", "premise2", ...],
"raw sub-goal" : "conclusion",
"raw premises" : ["raw premise1", "raw premise2", ...]}
Raw sub-goal and raw premises are the coq lines with the premise
internal name and its predicates. E.g.
H : premise (Acc x1)
Note that this function is not capable of returning all unproved
sub-goals in coq's stack. We only return the top unproved sub-goal.
"""
failure_log = OrderedDict()
conclusion_base = denormalize_token(conclusion_pred)
# failure_log["unproved sub-goal"] = conclusion_base
premises_base = [denormalize_token(p) for p in premise_preds]
# failure_log["matching premises"] = premises_base
# failure_log["raw sub-goal"] = conclusion
# failure_log["raw premises"] = premises
premise_preds = []
for p in premises:
try:
pred = p.split()[2]
except:
continue
if pred.startswith('_'):
premise_preds.append(denormalize_token(pred))
failure_log["all_premises"] = premise_preds
failure_log["other_sub-goals"] = get_subgoals_from_coq_output(
coq_output_lines, premises)
failure_log["other_sub-goals"].insert(0, {
'subgoal': conclusion_base,
'index': 1,
'raw_subgoal': conclusion,
'matching_premises' : premises_base,
'matching_raw_premises' : premises_base})
failure_log["type_error"] = has_type_error(coq_output_lines)
failure_log["open_formula"] = has_open_formula(coq_output_lines)
return failure_log | 17f7cb8b6867849e034d72f05e9e48622bd35b7d | 15,510 |
import requests
def request(url=None, json=None, parser=lambda x: x, encoding=None, **kwargs):
"""
:param url:
:param json:
:param parser: None 的时候返回r,否则返回 parser(r.json())
:param kwargs:
:return:
"""
method = 'post' if json is not None else 'get' # 特殊情况除外
logger.info(f"Request Method: {method}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE '
}
r = requests.request(method, url, json=json, headers=headers)
r.encoding = encoding if encoding else r.apparent_encoding
if parser is None:
return r
return parser(r.json()) | c222cc2a5c1e2acb457600d223c9ca6ab588aa5e | 15,511 |
import math
def log_density_igaussian(z, z_var):
"""Calculate log density of zero-mean isotropic gaussian distribution given z and z_var."""
assert z.ndimension() == 2
assert z_var > 0
z_dim = z.size(1)
return -(z_dim/2)*math.log(2*math.pi*z_var) + z.pow(2).sum(1).div(-2*z_var) | a412b9e25aecfc2baed2d783a2d7cd281fadc9fb | 15,512 |
def denom(r,E,J,model):
"""solve the denominator"""
ur = model.potcurve(r)#model.potcurve[ (abs(r-model.rcurve)).argmin()]
return 2.0*(E-ur)*r*r - J*J; | 19dc7c5cd283b66f834ba9a0d84fb396ca2c2c89 | 15,513 |
def approximate_gaussians(confidence_array, mean_array, variance_array):
""" Approximate gaussians with given parameters with one gaussian.
Approximation is performed via minimization of Kullback-Leibler
divergence KL(sum_{j} w_j N_{mu_j, sigma_j} || N_{mu, sigma}).
Parameters
----------
confidence_array : ndarray(num_gaussians)
confidence values for gaussians.
mean_array : ndarray(num_gaussians, 3)
(z,y,x) mean values for input gaussians.
variance_array : ndarray(num_gaussians)
(z,y,x) variances for input gaussians.
Returns
-------
tuple(ndarray(3), ndarray(3))
mean and sigma for covering gaussian.
"""
delimiter = np.sum(confidence_array)
mu = np.sum(mean_array.T * confidence_array, axis=1) / delimiter
sigma = np.sqrt(np.sum((variance_array + (mean_array - mu) ** 2).T
* confidence_array, axis=1) / delimiter)
return mu, sigma | 7c722f0153e46631b3c4731d8a307e0b219be02b | 15,514 |
from typing import Callable
import types
def return_loss(apply_fn: Callable[[jnp.ndarray, jnp.ndarray], jnp.ndarray],
steps: types.Transition):
"""Loss wrapper for ReturnMapper.
Args:
apply_fn: applies a transition model (o_t, a_t) -> (o_t+1, r), expects the
leading axis to index the batch and the second axis to index the
transition triplet (t-1, t, t+1).
steps: RLDS dictionary of transition triplets as prepared by
`rlds_loader.episode_to_timestep_batch`.
Returns:
A scalar loss value as jnp.ndarray.
"""
observation_t = jax.tree_map(lambda obs: obs[:, dataset.CURRENT, ...],
steps.observation)
action_t = steps.action[:, dataset.CURRENT, ...]
n_step_return_t = steps.extras[dataset.N_STEP_RETURN][:, dataset.CURRENT, ...]
predicted_n_step_return_t = apply_fn(observation_t, action_t)
return mse(predicted_n_step_return_t, n_step_return_t) | 970cb6623436982ef1359b1328edcb828012f1f7 | 15,515 |
def part_two(data):
"""Part two"""
array = ['a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']
commands = data.split(',')
for _ in range(1000000000 % 30):
dance(array, commands)
return ''.join(map(str, array)) | 75e847cd5a598aa67ca54133c15a0c2c3fc67433 | 15,516 |
import os
import json
import requests
def ts_declare():
"""Makes an f5-telemetry-streaming declaration from the supplied metadata"""
if is_rest_worker('/mgmt/shared/telemetry/declare') and os.path.isfile(
TS_DECLARATION_FILE):
tsdf = open(TS_DECLARATION_FILE, 'r')
declaration = tsdf.read()
tsdf.close()
json.loads(declaration)
d_url = 'http://localhost:8100/mgmt/shared/telemetry/declare'
LOG.debug('POST f5-telemetry-streaming declaration')
response = requests.post(d_url, auth=('admin', ''), data=declaration)
# initial request
if response.status_code < 400:
return True
LOG.error('f5-telemetry-streaming declaration failed %s - %s',
response.status_code, response.text)
return False
LOG.error(
'f5-telemetry-streaming worker not installed or declaration missing')
return False | ea52512201450ed35ba7a902edf15bbe12b748de | 15,517 |
def readCSVPremadeGroups(filename, studentProperties=None):
"""studentProperties is a list of student properties in the order they appear in the CSV.
For example, if a CSV row (each group is a row) is as follows: "Rowan Wilson, [email protected], 1579348, Bob Tilano, [email protected], 57387294"
Then the format is: fullname, email, huid, fullname, email, huid, ...
Thus, studentProperties = ['fullname', 'email', 'huid']
"""
csv = _readCSV(filename)
# Create studentProperties if needed
if studentProperties == None:
studentProperties = []
firstHeader = None
for header in csv['headers']:
header = _keepOnlyLetters(header).lower()
if firstHeader == header:
# Found beginning of repeating sequence
break
if firstHeader == None:
firstHeader = header
studentProperties.append(header)
# Pull groups from CSV data
groups = []
for row in csv['data']:
students = []
currStudent = None
for i in range(len(row)):
if len(row[i].strip()) == 0:
break
propIndex = i % len(studentProperties)
if propIndex == 0:
# Just starting a new student
currStudent = {}
else:
currStudent[studentProperties[propIndex]] = row[i]
if propIndex == len(studentProperties) - 1:
# Just finished adding properties to a student
students.append(currStudent)
if len(students) > 0:
groups.append(students)
return groups | f12de287b4a9f19e2e29302338f7233e34d54f0c | 15,518 |
def random_contrast(video, lower, upper, seed=None):
"""Adjust the contrast of an image or images by a random factor.
Equivalent to `adjust_contrast()` but uses a `contrast_factor` randomly
picked in the interval `[lower, upper)`.
For producing deterministic results given a `seed` value, use
`tf.image.stateless_random_contrast`. Unlike using the `seed` param
with `tf.image.random_*` ops, `tf.image.stateless_random_*` ops guarantee the
same results given the same seed independent of how many times the function is
called, and independent of global seed settings (e.g. tf.random.set_seed).
Args:
image: An image tensor with 3 or more dimensions.
lower: float. Lower bound for the random contrast factor.
upper: float. Upper bound for the random contrast factor.
seed: A Python integer. Used to create a random seed. See
`tf.compat.v1.set_random_seed` for behavior.
Usage Example:
>>> x = [[[1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]],
... [[7.0, 8.0, 9.0],
... [10.0, 11.0, 12.0]]]
>>> tf.image.random_contrast(x, 0.2, 0.5)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=...>
Returns:
The contrast-adjusted image(s).
Raises:
ValueError: if `upper <= lower` or if `lower < 0`.
"""
if upper <= lower:
raise ValueError("upper must be > lower.")
if lower < 0:
raise ValueError("lower must be non-negative.")
contrast_factor = tf.random.random_uniform([], lower, upper, seed=seed)
return adjust_contrast(video, contrast_factor) | 6ea6a72100ad468d7692c0bb8c2837cba5eaa3e0 | 15,519 |
from typing import Dict
def load(df: DataFrame, config: Dict, logger) -> bool:
"""Write data in final destination
:param df: DataFrame to save.
:type df: DataFrame
:param config: job configuration
:type config: Dict
:param logger: Py4j Logger
:type logger: Py4j.Logger
:return: True
:rtype: bool
"""
df.write.save(path=config['output_path'], mode='overwrite')
return True | 70f962cc24f23264f23dce458c233466dc06d276 | 15,520 |
def phase_correct_zero(spec, phi):
"""
Correct the phases of a spectrum by phi radians
Parameters
----------
spec : float array of complex dtype
The spectrum to be corrected.
phi : float
Returns
-------
spec : float array
The phase corrected spectrum
Notes
-----
[Keeler2005] Keeler, J (2005). Understanding NMR Spectroscopy, 2nd
edition. Wiley. Page 88.
"""
c_factor = np.exp(-1j * phi)
# If it's an array, we need to reshape it and broadcast across the
# frequency bands in the spectrum. Otherwise, we assume it's a scalar and
# apply it to all the dimensions of the spec array:
if hasattr(phi, 'shape'):
c_factor = c_factor.reshape(c_factor.shape + (1,))
return spec * c_factor | 1647e8f99e10ba5f715e4c268907cbf995e99335 | 15,521 |
def upsample(s, n, phase=0):
"""Increase sampling rate by integer factor n with included offset phase.
"""
return np.roll(np.kron(s, np.r_[1, np.zeros(n-1)]), phase) | 997f48be57816efb11b77c258e945d3161b748be | 15,522 |
def parse_idx_inp(idx_str):
""" parse idx string
"""
idx_str = idx_str.strip()
if idx_str.isdigit():
idxs = [int(idx_str)]
if '-' in idx_str:
[idx_begin, idx_end] = idx_str.split('-')
idxs = list(range(int(idx_begin), int(idx_end)+1))
return idxs | 2dc1282169f7534455f2a0297af6c3079192cb66 | 15,523 |
import requests
def toggl_request_get(url: str, params: dict = False) -> requests.Response:
"""Send a GET request to specified url using toggl headers and configured auth"""
headers = {"Content-Type": "application/json"}
auth = (CONFIG["toggl"]["api_token"], "api_token")
response = requests.get(url, headers=headers, auth=auth, params=params)
return response | bd4714bb0d92dcfb1e2ef27bb3fa3c67179b8b40 | 15,524 |
def sample_point_cloud(source, target, sample_indices=[2]):
""" Resamples a source point cloud at the coordinates of a target points
Uses the nearest point in the target point cloud to the source point
Parameters
----------
source: array
Input point cloud
target: array
Target point cloud for sample locations
sample_indices: list
List of indices to sample from source. Defaults to 2 (z or height
dimension)
Returns
-------
An array of sampled points
"""
sample_indices = np.array(sample_indices)
tree = cKDTree(source[:, 0:2])
dist, idx = tree.query(target, n_jobs=-1)
output = np.hstack(
[
target,
source[idx[:, None], sample_indices].reshape(
(len(idx), len(sample_indices))
),
]
)
return output | b490e598e68ef175a5cf80c052f2f82fc70ac4ba | 15,525 |
def make_satellite_gsp_pv_map(batch: Batch, example_index: int, satellite_channel_index: int):
"""Make a animation of the satellite, gsp and the pv data"""
trace_times = []
times = batch.satellite.time[example_index]
pv = batch.pv
for time in times:
trace_times.append(
make_satellite_gsp_pv_map_one_time_value(
batch=batch,
example_index=example_index,
satellite_channel_index=satellite_channel_index,
time_value=time,
)
)
frames = []
for i, traces in enumerate(trace_times):
frames.append(go.Frame(data=traces, name=f"frame{i+1}"))
# make slider
labels = [pd.to_datetime(time.data) for time in times]
sliders = make_slider(labels=labels)
x = pv.x_coords[example_index][pv.x_coords[example_index] != 0].mean()
y = pv.y_coords[example_index][pv.y_coords[example_index] != 0].mean()
lat, lon = osgb_to_lat_lon(x=x, y=y)
fig = go.Figure(
data=trace_times[0],
layout=go.Layout(
title="Start Title",
),
frames=frames,
)
fig.update_layout(updatemenus=[make_buttons()])
fig.update_layout(
mapbox_style="carto-positron", mapbox_zoom=8, mapbox_center={"lat": lat, "lon": lon}
)
fig.update_layout(sliders=sliders)
return fig | fd0e0a7543da212f368849c3686277a7c8c42a95 | 15,526 |
def raw_to_engineering_product(product, idbm):
"""Apply parameter raw to engineering conversion for the entire product.
Parameters
----------
product : `BaseProduct`
The TM product as level 0
Returns
-------
`int`
How many columns where calibrated.
"""
col_n = 0
idb_ranges = QTable(rows=[(version, range.start.as_float(), range.end.as_float())
for version, range in product.idb_versions.items()],
names=["version", "obt_start", "obt_end"])
idb_ranges.sort("obt_start")
idb_ranges['obt_start'][0] = SCETime.min_time().as_float()
for i in range(0, len(idb_ranges)-1):
idb_ranges['obt_end'][i] = idb_ranges['obt_start'][i+1]
idb_ranges['obt_end'][-1] = SCETime.max_time().as_float()
for col in product.data.colnames:
if (not (hasattr(product.data[col], "meta")
and "PCF_CURTX" in product.data[col].meta
and product.data[col].meta["PCF_CURTX"] is not None
and product.data[col].meta["NIXS"] is not None
and hasattr(product, "idb")
)):
continue
col_n += 1
c = 0
# clone the current column into a new column as the content might be replaced chunk wise
product.data[CCN] = product.data[col]
for idbversion, starttime, endtime in idb_ranges.iterrows():
idb = idbm.get_idb(idbversion)
idb_time_period = np.where((starttime <= product.data['time']) &
(product.data['time'] < endtime))[0]
if len(idb_time_period) < 1:
continue
c += len(idb_time_period)
calib_param = idb.get_params_for_calibration(
product.service_type,
product.service_subtype,
(product.ssid if hasattr(product, "ssid") else None),
product.data[col].meta["NIXS"],
product.data[col].meta["PCF_CURTX"])[0]
raw = Parameter(product.data[col].meta["NIXS"],
product.data[idb_time_period][col], None)
eng = apply_raw_to_engineering(raw, (calib_param, idb))
# cast the type of the column if needed
if product.data[CCN].dtype != eng.engineering.dtype:
product.data[CCN] = product.data[CCN].astype(eng.engineering.dtype)
# set the unit if needed
if hasattr(eng.engineering, "unit") and \
product.data[CCN].unit != eng.engineering.unit:
meta = product.data[col].meta
product.data[CCN].unit = eng.engineering.unit
# restore the meta info
setattr(product.data[CCN], "meta", meta)
# override the data into the new column
product.data[CCN][idb_time_period] = eng.engineering
# replace the old column with the converted
product.data[col] = product.data[CCN]
product.data[col].meta = product.data[CCN].meta
# delete the generic column for conversion
del product.data[CCN]
# delete the calibration key from meta as it is now processed
del product.data[col].meta["PCF_CURTX"]
if c != len(product.data):
logger.warning("Not all time bins got converted to engineering" +
"values due to bad idb periods." +
f"\n Converted bins: {c}\ntotal bins {len(product.data)}")
return col_n | aaf5a92c53bfc41a5230593b96c0de7b8ad1ba4a | 15,527 |
def paginate(objects, page_num, per_page, max_paging_links):
"""
Return a paginated page for the given objects, giving it a custom
``visible_page_range`` attribute calculated from ``max_paging_links``.
"""
paginator = Paginator(objects, per_page)
try:
page_num = int(page_num)
except ValueError:
page_num = 1
try:
objects = paginator.page(page_num)
except (EmptyPage, InvalidPage):
objects = paginator.page(paginator.num_pages)
page_range = objects.paginator.page_range
if len(page_range) > max_paging_links:
start = min(objects.paginator.num_pages - max_paging_links,
max(0, objects.number - (max_paging_links / 2) - 1))
page_range = page_range[start:start + max_paging_links]
objects.visible_page_range = page_range
return objects | cd8a7ef046a48c580ad12cfa44f1862312bb1aba | 15,528 |
def _get_crop_frame(image, max_wiggle, tx, ty):
"""
Based on on the max_wiggle, determines a cropping frame.
"""
pic_width, pic_height = image.size
wiggle_room_x = max_wiggle * .5 * pic_width
wiggle_room_y = max_wiggle * .5 * pic_height
cropped_width = pic_width - wiggle_room_x
cropped_height = pic_height - wiggle_room_y
left = int(tx * wiggle_room_x)
top = int(ty * wiggle_room_y)
right = left + cropped_width
bottom = top + cropped_height
return left, top, right, bottom | 18442a97544d6c4bc4116dc43811c9fcd0d203c6 | 15,529 |
from re import U
def __vigenere(s, key='virink', de=0):
"""维吉利亚密码"""
s = str(s).replace(" ", "").upper()
key = str(key).replace(" ", "").upper()
res = ''
i = 0
while i < len(s):
j = i % len(key)
k = U.index(key[j])
m = U.index(s[i])
if de:
if m < k:
m += 26
res += U[m - k]
else:
res += U[(m + k) % 26]
i += 1
return res | 4deadfc9fdd1cb002c2f31a1de7763b0c49dd757 | 15,530 |
def mask_unit_group(unit_group: tf.Tensor, unit_group_length: tf.Tensor, mask_value=0) -> tf.Tensor:
""" Masks unit groups according to their length.
Args:
unit_group: A tensor of rank 3 with a sequence of unit feature vectors.
unit_group_length: The length of the unit group (assumes all unit feature vectors upfront).
mask_value: The mask value.
Returns:
A tensor of rank 3 where indices beyond unit_group_length are zero-masked.
"""
if unit_group_length is not None:
# get rid of last dimensions with size 1
if unit_group.shape.rank - unit_group_length.shape.rank < 2:
unit_group_length = tf.squeeze(unit_group_length, axis=-1) # B
# mask with mask_value
unit_group_mask = tf.sequence_mask(
tf.cast(unit_group_length, tf.int32), maxlen=unit_group.shape[1], dtype=unit_group.dtype) # B x T
unit_group_mask = tf.expand_dims(unit_group_mask, axis=-1)
unit_group *= unit_group_mask
if mask_value != 0:
mask_value = tf.convert_to_tensor(mask_value)
unit_group = tf.cast(unit_group, mask_value.dtype)
unit_group_mask = tf.cast(unit_group_mask, mask_value.dtype)
unit_group += (1 - unit_group_mask) * mask_value
return unit_group | 758028075f793bad1165d0ca8992c78cb4a1318e | 15,531 |
def fill_session_team(team_id, session_id, dbsession=DBSESSION):
"""
Use the FPL API to get list of players in an FPL squad with id=team_id,
then fill the session team with these players.
"""
# first reset the team
reset_session_team(session_id, dbsession)
# now query the API
players = fetcher.get_fpl_team_data(get_last_finished_gameweek(), team_id)
player_ids = [p["element"] for p in players]
for pid in player_ids:
add_session_player(pid, session_id, dbsession)
team_history = fetcher.get_fpl_team_history_data()["current"]
index = (
get_last_finished_gameweek() - 1
) # as gameweek starts counting from 1 but list index starts at 0
budget = team_history[index]["value"]
set_session_budget(budget, session_id)
return player_ids | 28118a527c009d90401b368d628725ee29e838ef | 15,532 |
def create_map(users_info):
"""
This function builds an HTML map with locations of user's friends on
Twitter.
"""
my_map = folium.Map(
location=[49.818396058511645, 24.02258071000576], zoom_start=10)
folium.TileLayer('cartodbdark_matter').add_to(my_map)
folium.TileLayer('stamentoner').add_to(my_map)
folium.TileLayer('openstreetmap').add_to(my_map)
fg_friends = folium.FeatureGroup(name='Twitter Friends')
for user in users_info:
nickname = user[0]
user_coord = user[1]
fg_friends.add_child(folium.Marker(location=user_coord,
popup=nickname,
icon=folium.Icon(color='darkred',
icon='heart')))
my_map.add_child(fg_friends)
my_map.add_child(folium.LayerControl())
return my_map.get_root().render() | cfe9649101906aa295ffc9984bbed15a99c7ed46 | 15,533 |
def l2sq(x):
"""Sum the matrix elements squared
"""
return (x**2).sum() | c02ea548128dde02e4c3e70f9280f1ded539cee9 | 15,534 |
def normalize(arr, axis=None):
"""
Normalize a vector between 0 and 1.
Parameters
----------
arr : numpy.ndarray
Input array
axis : integer
Axis along which normalization is computed
Returns
-------
arr : numpy.ndarray
Normalized version of the input array
"""
if not isinstance(arr, np.ndarray):
arr = np.asarray(arr)
arr = arr - np.min(arr, axis)
M = np.max(arr, axis)
if np.sum(np.abs(M)) > 0:
arr = arr / M
return arr | 2c9689ee829e66bfd02db3c1c92c749ca068bd73 | 15,535 |
def successive_substitution(m, T, P, max_iter, M, Pc, Tc, omega, delta, Aij,
Bij, delta_groups, calc_delta, K, steps=0):
"""
Find K-factors by successive substitution
Iterate to find a converged set of K-factors defining the gas/liquid
partitioning of a mixture using successive substitution. We follow the
algorithms in McCain (1990) and Michelsen and Mollerup (2007).
Parameters
----------
m : ndarray, size (nc)
masses of each component present in the whole mixture (gas plus
liquid, kg)
T : float
temperature (K)
P : float
pressure (Pa)
max_iter : int
maximum number of iterations to perform. Set max_iter to np.inf if
you want the algorithm to guarantee to iterate to convergenece, but
beware that you may create an infinite loop.
M : ndarray, size (nc)
Molecular weights (kg/mol)
Pc : ndarray, size (nc)
Critical pressures (Pa)
Tc : ndarray, size (nc)
Critical temperatures (K)
omega : ndarray, size (nc)
Acentric factors (--)
delta : ndarray, size (nc, nc)
Binary interaction coefficients for the Peng-Robinson equation of
state.
Aij : ndarray, (15, 15)
Coefficients in matrix A_ij for the group contribution method for
delta_ij following Privat and Jaubert (2012)
Bij : ndarray, (15, 15)
Coefficients in matrix A_ij for the group contribution method for
delta_ij following Privat and Jaubert (2012)
delta_groups : ndarray, (nc, 15)
Specification of the fractional groups for each component of the
mixture for the group contribution method of Privat and Jaubert (2012)
for delta_ij
calc_delta : int
Flag specifying whether or not to compute delta_ij (1: True, -1:
False) using the group contribution method
K : ndarray, size (nc)
Initial guess for the partition coefficients. If K = None, this
function will use initial estimates from Wilson (see Michelsen and
Mollerup, 2007, page 259, equation 26)
steps : int (default = 0)
Number of previous iteration steps
Returns
-------
K : ndarray, size (nc)
Final value of the K-factors
beta : float
Fraction of gas or liquid (--)
xi : ndarray, size(2, nc)
Mole fraction of each component in the mixture. Row 1 gives the
values for the gas phase and Row 2 gives the values for the liquid
phase (--)
exit_flag : int
Flag indicating how the solution finished: 1: converged in the
allowable number of iterations, 0: did not converge and did not find
any indication that it might be single phase, and -1: did not
converge, but it looks like it might be single phase.
steps : int
Total number of interation steps so far
Notes
-----
The max_iter parameter controls how many steps of successive iteration
are performed. If set to None, the iteration will continue until the
tolerance criteria are reached.
"""
# Update the value of K using successive substitution
def update_K(K):
"""
Evaluate the update function for finding K-factor
Evaluates the new guess for K-factor following McCain (1990) p. 426,
equation (15-23) as explained on p. 430 in connection with equation
(15-31). This is the update equation for the successive substitution
method.
Parameters
----------
T, P, m_0, M, Pc, Tc, omega, delta = constant and inherited
from above
K : ndarray
The current guess for the K-factor (--)
Returns
-------
K_new : ndarray
New guess for K-factor
"""
# Get the mixture composition for the current K-factor
xi, beta = gas_liq_eq(m, M, K)
# Get tha gas and liquid fugacities for the current composition
f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega, delta,
Aij, Bij, delta_groups, calc_delta)[0,:]
f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega, delta,
Aij, Bij, delta_groups, calc_delta)[1,:]
# Update K using K = (phi_liq / phi_gas)
K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P))
# If the mass of any component in the mixture is zero, make sure the
# K-factor is also zero.
K_new[np.isnan(K_new)] = 0.
# Follow what is said by Michelsen & Mollerup, at page 259, just
# above equation 27:
if steps==0.:
moles = m / M
zi = moles / np.sum(moles)
if np.sum(zi*K_new) - 1. <= 0.: # Condition 4 page 252
xi[0,:] = K_new * zi / np.sum(K_new*zi)
xi[1,:] = zi
# Recompute fugacities of gas and liquid:
# Get tha gas and liquid fugacities for the current
# composition
f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega,
delta, Aij, Bij, delta_groups, calc_delta)[0,:]
f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega,
delta, Aij, Bij, delta_groups, calc_delta)[1,:]
# Update K using K = (phi_liq / phi_gas)
K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P))
K_new[np.isnan(K_new)] = 0.
elif (1.-np.sum(zi/K_new))>=0.: # % Condition 5 page 252
xi[0,:] = zi
xi[1,:] = (zi/K_new)/np.sum(zi/K_new)
# Recompute fugacities of gas and liquid:
# Get tha gas and liquid fugacities for the current
# composition
f_gas = dbm_f.fugacity(T, P, xi[0,:]*M, M, Pc, Tc, omega,
delta, Aij, Bij, delta_groups, calc_delta)[0,:]
f_liq = dbm_f.fugacity(T, P, xi[1,:]*M, M, Pc, Tc, omega,
delta, Aij, Bij, delta_groups, calc_delta)[1,:]
# Update K using K = (phi_liq / phi_gas)
K_new = (f_liq / (xi[1,:] * P)) / (f_gas / (xi[0,:] * P))
K_new[np.isnan(K_new)] = 0.
# Return an updated value for the K factors
return (K_new, beta)
# Set up the iteration parameters
tol = 1.49012e-8 # Suggested by McCain (1990)
err = 1.
# Iterate to find the final value of K factor using successive
# substitution
stop = False
while err > tol and steps < max_iter and not stop:
# Save the current value of K factor
K_old = K
# Update the estimate of K factor using the present fugacities
K, beta = update_K(K)
steps += 1
if steps > 3 and (beta == 0. or beta == 1.):
stop = True
# Compute the current error based on the squared relative error
# suggested by McCain (1990) and update the iteration counter
err = np.nansum((K - K_old)**2 / (K * K_old))
# Determine the exit condition
if stop:
# Successive subsitution thinks this is single-phase
flag = -1
elif steps < max_iter:
# This solution is converged
flag = 1
else:
# No decision has been reached
flag = 0
# Update the equilibrium and return the last value of K-factor
xi, beta = gas_liq_eq(m, M, K)
return (K, beta, xi, flag, steps) | 1ad40642f940be0d1e967bf97a62e3b754312ae9 | 15,536 |
import re
def Match(context, pattern, arg=None):
"""Do a regular expression match against the argument"""
if not arg:
arg = context.node
arg = Conversions.StringValue(arg)
bool = re.match(pattern, arg) and boolean.true or boolean.false
return bool | 62007fcd4617b0dfebb1bc8857f89fa2e6075f41 | 15,537 |
def rr_rectangle(rbins, a, b):
""" RR_rect(r; a, b) """
return Frr_rectangle(rbins[1:], a, b) - Frr_rectangle(rbins[:-1], a, b) | 98e30791e114ce3e2f6529db92c0103d1477cd76 | 15,538 |
def update_type(title, title_new=None, description=None, col_titles_new={}):
"""Method creates data type
Args:
title (str): current type title
title_new (str): new type title
description (str): type description
col_titles_new (dict): new column values (key - col id, value - col value)
Returns:
bool
"""
try:
db = DBO(_get_dsn())._dbo_driver
cnt = db.execute(
'SELECT count(*) FROM data_type WHERE title = \'{0}\''.format(title)).fetchone()[0]
if (cnt == 0):
raise Error('Type {0} does not exist'.format(title))
query = 'UPDATE data_type SET '
if (title_new != None):
query += 'title = \'{0}\', '.format(title_new)
if (description != None):
query += 'description = \'{0}\', '.format(description)
for key, value in col_titles_new.items():
query += 'col{0}_title = \'{1}\', '.format(key, value)
query = query[:-2]
query += ' WHERE title = \'{0}\''.format(title)
db.execute(query)
db.commit()
return True
except Error as ex:
print(ex)
db.rollback()
return False | 92e663d3bfd798de0367a44c4909a330ac9e4254 | 15,539 |
def api(repos_path):
"""Glottolog instance from shared directory for read-only tests."""
return pyglottolog.Glottolog(str(repos_path)) | a941a907050300bc89f6db8b4bd33cf9725cf832 | 15,540 |
from presqt.targets.osf.utilities.utils.async_functions import run_urls_async
import requests
def get_all_paginated_data(url, token):
"""
Get all data for the requesting user.
Parameters
----------
url : str
URL to the current data to get
token: str
User's OSF token
Returns
-------
Data dictionary of the data points gathered up until now.
"""
headers = {'Authorization': 'Bearer {}'.format(token)}
# Get initial data
response = requests.get(url, headers=headers)
if response.status_code == 200:
response_json = response.json()
elif response.status_code == 410:
raise PresQTResponseException("The requested resource is no longer available.", status.HTTP_410_GONE)
elif response.status_code == 404:
raise OSFNotFoundError("Resource not found.", status.HTTP_404_NOT_FOUND)
elif response.status_code == 403:
raise OSFForbiddenError(
"User does not have access to this resource with the token provided.", status.HTTP_403_FORBIDDEN)
data = response_json['data']
meta = response_json['links']['meta']
# Calculate pagination pages
if '?filter' in url or '?page' in url:
# We already have all the data we need for this request
return data
else:
page_total = get_page_total(meta['total'], meta['per_page'])
url_list = ['{}?page={}'.format(url, number) for number in range(2, page_total + 1)]
# Call all pagination pages asynchronously
children_data = run_urls_async(url_list, headers)
[data.extend(child['data']) for child in children_data]
return data | cca997d479c63415b519de9cbd8ac2681abc42ed | 15,541 |
def alaw_decode(x_a, quantization_channels, input_int=True, A=87.6):
"""alaw_decode(x_a, quantization_channels, input_int=True)
input
-----
x_a: np.array, mu-law waveform
quantization_channels: int, Number of channels
input_int: Bool
True: convert x_mu (int) from int to float, before mu-law decode
False: directly decode x_mu (float)
A: float, parameter for a-law, default 87.6
output
------
x: np.array, waveform
"""
num = quantization_channels - 1.0
if input_int:
x = x_a / num * 2 - 1.0
else:
x = x_a
sign = np.sign(x)
x_a_abs = np.abs(x)
x = x_a_abs * (1 + np.log(A))
flag = x >= 1
x[flag] = np.exp(x[flag] - 1)
x = sign * x / A
return x | a2e10eb590d5b7731227b96233c6b615c11d4af6 | 15,542 |
import os
def incoming(ui, repo, source="default", **opts):
"""show new changesets found in source
Show new changesets found in the specified path/URL or the default
pull location. These are the changesets that would have been pulled
if a pull at the time you issued this command.
For remote repository, using --bundle avoids downloading the
changesets twice if the incoming is followed by a pull.
See pull for valid source format details.
"""
limit = cmdutil.loglimit(opts)
source, branches = hg.parseurl(ui.expandpath(source), opts.get('branch'))
other = hg.repository(cmdutil.remoteui(repo, opts), source)
ui.status(_('comparing with %s\n') % url.hidepassword(source))
revs, checkout = hg.addbranchrevs(repo, other, branches, opts.get('rev'))
if revs:
revs = [other.lookup(rev) for rev in revs]
common, incoming, rheads = repo.findcommonincoming(other, heads=revs,
force=opts["force"])
if not incoming:
try:
os.unlink(opts["bundle"])
except:
pass
ui.status(_("no changes found\n"))
return 1
cleanup = None
try:
fname = opts["bundle"]
if fname or not other.local():
# create a bundle (uncompressed if other repo is not local)
if revs is None and other.capable('changegroupsubset'):
revs = rheads
if revs is None:
cg = other.changegroup(incoming, "incoming")
else:
cg = other.changegroupsubset(incoming, revs, 'incoming')
bundletype = other.local() and "HG10BZ" or "HG10UN"
fname = cleanup = changegroup.writebundle(cg, fname, bundletype)
# keep written bundle?
if opts["bundle"]:
cleanup = None
if not other.local():
# use the created uncompressed bundlerepo
other = bundlerepo.bundlerepository(ui, repo.root, fname)
o = other.changelog.nodesbetween(incoming, revs)[0]
if opts.get('newest_first'):
o.reverse()
displayer = cmdutil.show_changeset(ui, other, opts)
count = 0
for n in o:
if limit is not None and count >= limit:
break
parents = [p for p in other.changelog.parents(n) if p != nullid]
if opts.get('no_merges') and len(parents) == 2:
continue
count += 1
displayer.show(other[n])
displayer.close()
finally:
if hasattr(other, 'close'):
other.close()
if cleanup:
os.unlink(cleanup) | 2bc3d3d8b97d54b4f33dd70ae4ad54fb0c3e1792 | 15,543 |
def _ec_2d(X):
"""Function for computing the empirical Euler characteristic of a given
thresholded data array.
Input arguments:
================
Y : ndarray of floats
The thresholded image. Ones correspond to activated regions.
Output arguments:
=================
ec : float
The empirical Euler characteristic.
"""
# TODO: check for holes in the activated regions.
_, ec = label(X, neighbors=None, background=0, return_num=True,
connectivity=2)
return ec | ac71056a73131a8fa7ee7bc372d72c1678f028bc | 15,544 |
import dateutil
def swap_year_for_time(df, inplace):
"""Internal implementation to swap 'year' domain to 'time' (as datetime)"""
if not df.time_col == "year":
raise ValueError("Time domain must be 'year' to use this method")
ret = df.copy() if not inplace else df
index = ret._data.index
order = [v if v != "year" else "time" for v in index.names]
if "subannual" in df.extra_cols:
order = order.remove("subannual")
time_values = zip(*[index.get_level_values(c) for c in ["year", "subannual"]])
time = list(map(dateutil.parser.parse, [f"{y}-{s}" for y, s in time_values]))
index = index.droplevel(["year", "subannual"])
ret.extra_cols.remove("subannual")
else:
time = index.get_level_values("year")
index = index.droplevel(["year"])
# add new index column, assign data and other attributes
index = append_index_col(index, time, "time", order=order)
ret._data.index = index
ret.time_col = "time"
ret._set_attributes()
delattr(ret, "year")
if not inplace:
return ret | 790e8d24e6c4d87413dfc5d6205cbb04f7acefd6 | 15,545 |
from typing import Optional
from typing import List
def get_orders(
db: Session,
skip: int = 0,
limit: int = 50,
moderator: str = None,
owner: str = None,
desc: bool = True,
) -> Optional[List[entities.Order]]:
"""
Get the registed orders using filters.
Args:
- db: the database session.
- skip: the number of filtered entities to skip.
- limit: the number of entities to limit the query.
- moderadtor: the moderator name that create the order.
- owner: the owner name that receive the order.
- desc: order by request_at datetime.
Returns:
- the list of orders or `None` if there are no orders to return
using the filter specified.
"""
order_by = (
entities.Order.requested_at.desc()
if desc
else entities.Order.requested_at.asc()
)
query = db.query(entities.Order).order_by(order_by)
if moderator:
query = query.filter_by(mod_display_name=moderator)
if owner:
query = query.filter_by(owner_display_name=owner)
return query.offset(skip).limit(limit).all() | a5c86ccaad8573bc641f531751370c264baa60f8 | 15,546 |
def create_data_loader(img_dir, info_csv_path, batch_size):
"""Returns a data loader for the model."""
img_transform = transforms.Compose([transforms.Resize((120, 120), interpolation=Image.BICUBIC),
transforms.ToTensor()])
img_dataset = FashionDataset(img_dir, img_transform, info_csv_path)
data_loader = DataLoader(img_dataset, batch_size=batch_size, shuffle=True, num_workers=12, pin_memory=True)
return data_loader | 1a7df2b691c66ef5957113d5113353f34bf8c855 | 15,547 |
def comp_number_phase_eq(self):
"""Compute the equivalent number of phase
Parameters
----------
self : LamSquirrelCage
A LamSquirrelCage object
Returns
-------
qb: float
Zs/p
"""
return self.slot.Zs / float(self.winding.p) | f4679cf92dffff138a5a96787244a984a11896f9 | 15,548 |
import sympy
def exprOps(expr):
"""This operation estimation is not handling some simple optimizations that
should be done (i.e. y-x is treated as -1*x+y) and it is overestimating multiplications
in situations such as divisions. This is as a result of the simple method
of implementing this function given the rudimentary form of the expression
tree. It should only be overestimating the number of operations though,
so it is a viable way to see how much optimization is improving the
computational load of the generated Kalman filters"""
ops = OperationCounts()
if isinstance(expr, sympy.Symbol) or isinstance(expr, sympy.Number):
#print('--> {}'.format(expr))
ops.reads += 1
else:
func = expr.func
num = len(expr.args) - 1
#print('--> ({}, {})'.format(func, expr.args))
process = True
if func == sympy.Add:
ops.addsubs += num
elif func == sympy.Mul:
ops.mults += num
elif func == sympy.Pow:
if expr.args[1] == -1:
ops.divs += 1
process = False
elif expr.args[1] > 0:
ops.mults += int(expr.args[1].evalf()-1)
process = False
else:
print('Error: Unknown how to map expression {} to operation counts'.format(expr))
else:
print('Unknown function {}'.format(func))
if process:
for arg in expr.args:
o = exprOps(arg)
ops += o
return ops | b6255707ef7475c893d9325358e7666b95c0e7c8 | 15,549 |
def ellipsis_reformat(source: str) -> str:
"""
Move ellipses (``...``) for type stubs onto the end of the stub definition.
Before:
.. code-block:: python
def foo(value: str) -> int:
...
After:
.. code-block:: python
def foo(value: str) -> int: ...
:param source: The source to reformat.
:return: The reformatted source.
"""
if "..." not in source:
return source
return EllipsisRewriter(source).rewrite() | 162d9d863f7316bee87a04857366a7f78f68d75b | 15,550 |
def build_wtk_filepath(region, year, resolution=None):
"""
A utility for building WIND Toolkit filepaths.
Args:
region (str): region in which the lat/lon point is located (see
`get_regions`)
year (int): year to be accessed (see `get_regions`)
resolution (:obj:`str`, optional): data resolution (see `get_regions`)
Returns:
str: The filepath for the requested resource.
"""
wtk = _load_wtk()
base_url = '/nrel/wtk/'
assert region in wtk, 'region not found: %s' % region
year_range = wtk[region]['year_range']
year_range = range(year_range[0], year_range[1]+1)
assert isinstance(year, int), '"year" must be an integer'
msg = 'year %s not available for region: %s' % (year, region)
assert year in year_range, msg
if resolution:
msg = 'resolution "%s" not available for region: %s' % (
resolution, region)
assert resolution in wtk[region]['resolutions'], msg
base = wtk[region].get('base')
if resolution == '5min':
url_region = '%s-%s/' % (region, resolution)
else:
url_region = region + '/'
if base:
file = '%s_%s.h5' % (base, year)
else:
file = 'wtk_%s_%s.h5' % (region, year)
return base_url + url_region + file | 93da894523a6517faaf4fa4976ba986a3719494c | 15,551 |
import logging
def init_doc(args: dict) -> dict:
""" Initialize documentation variable
:param args: A dictionary containing relevant documentation fields
:return:
"""
doc = {}
try:
doc[ENDPOINT_PORT_KEY] = args[ENDPOINT_PORT_KEY]
except KeyError:
logging.warning("No port for documentation specified, default one will be used: "+str(DEFAULT_REST_PORT))
doc[ENDPOINT_PORT_KEY] = DEFAULT_REST_PORT
try:
doc[ENDPOINT_URL_KEY] = args[ENDPOINT_URL_KEY]
except KeyError:
logging.warning("No URL for documentation specified, default one will be used: " + DEFAULT_URL)
doc[ENDPOINT_URL_KEY] = DEFAULT_URL
try:
doc[MODULE_NAME_KEY] = args[MODULE_NAME_KEY]
except KeyError:
logging.warning("No module name for documentation specified, default one will be used: " + DEFAULT_MODULE_NAME)
doc[MODULE_NAME_KEY] = DEFAULT_MODULE_NAME
return doc | afa20f89595eac45e924ecdb32f9ef169fc72726 | 15,552 |
def decode_entities(string):
""" Decodes HTML entities in the given string ("<" => "<").
"""
# http://snippets.dzone.com/posts/show/4569
def replace_entity(match):
hash, hex, name = match.group(1), match.group(2), match.group(3)
if hash == "#" or name.isdigit():
if hex == "":
return unichr(int(name)) # "&" => "&"
if hex.lower() == "x":
return unichr(int("0x" + name, 16)) # "&" = > "&"
else:
cp = name2codepoint.get(name) # "&" => "&"
return unichr(cp) if cp else match.group() # "&foo;" => "&foo;"
if isinstance(string, basestring):
return RE_UNICODE.subn(replace_entity, string)[0]
return string | 480a7ed8a37b05bc65d10e513e021b00fcb718c4 | 15,553 |
def convert2board(chrom, rows, cols):
"""
Converts the chromosome represented in a list into a 2D numpy array.
:param rows: number of rows associated with the board.
:param cols: number of columns associated with the board.
:param chrom: chromosome to be converted.
:return: 2D numpy array.
"""
# Initialise the variables to be used
idx = int(0) # Chromosome index
board = np.zeros((rows, cols), 'uint8')
board.fill(CELL_UNASSIGNED)
# Now loop through the board adding the shapes and checking validity.
# Start at top left corner, processing each row in turn.
for row in range(rows):
for col in range(cols):
# Retrieve the next shape
shape = chrom[idx]
# Skip the cell if it is already occupied.
if board[row][col] != CELL_UNASSIGNED:
continue
# Have we run out of shapes...
if shape == CELL_UNASSIGNED:
idx = idx + 1
if idx >= len(chrom):
return board
continue
# Attempt to place the shape on the board.
if shape == CELL_SPACE:
# Place the hole if valid.
if not ((col > 0 and board[row][col - 1] == CELL_SPACE) or
(row > 0 and board[row - 1][col] == CELL_SPACE)):
board[row][col] = CELL_SPACE
elif shape == CELL_HDOMINO:
# Are we ok to have a horizontal domino?
if col < cols - 1 and board[row][col + 1] == CELL_UNASSIGNED:
board[row][col] = CELL_HDOMINO
board[row][col + 1] = CELL_HDOMINO
else:
# shape == CELL_VDOMINO:
# Are we ok to have a vertical domino?
if row < rows - 1:
board[row][col] = CELL_VDOMINO
board[row + 1][col] = CELL_VDOMINO
# Move on to the next shape
idx = idx + 1
if idx >= len(chrom):
return board
return board | 9897965550793f54e55ce2c66c95a7584a987a4e | 15,554 |
def filter_halo_pnum(data, Ncut=1000):
""" Returns indicies of halos with more than Ncut particles"""
npart = np.array(data['np'][0])
ind =np.where(npart > Ncut)[0]
print("# of halos:",len(ind))
return ind | 3c89eb263399ef022c1b5492190aff282e4410e8 | 15,555 |
def _preprocess_sgm(line, is_sgm):
"""Preprocessing to strip tags in SGM files."""
if not is_sgm:
return line
# In SGM files, remove <srcset ...>, <p>, <doc ...> lines.
if line.startswith("<srcset") or line.startswith("</srcset"):
return ""
if line.startswith("<refset") or line.startswith("</refset"):
return ""
if line.startswith("<doc") or line.startswith("</doc"):
return ""
if line.startswith("<p>") or line.startswith("</p>"):
return ""
# Strip <seg> tags.
line = line.strip()
if line.startswith("<seg") and line.endswith("</seg>"):
i = line.index(">")
return line[i + 1:-6] | 0a482c5ccf2c001dfd9b52458044a1feaf62e5b9 | 15,556 |
def discover(using, index="*"):
"""
:param using: Elasticsearch client
:param index: Comma-separated list or wildcard expression of index names used to limit the request.
"""
indices = Indices()
for index_name, index_detail in using.indices.get(index=index).items():
indices[index_name] = Index(
client=using,
name=index_name,
mappings=index_detail["mappings"],
settings=index_detail["settings"],
aliases=index_detail["aliases"],
)
return indices | 32a53f15b0db3ba2b2c092e8dbd4ffdf57f133c8 | 15,557 |
from datetime import datetime
def quote_sql_value(cursor: Cursor, value: SQLType) -> str:
"""
Use the SQL `quote()` function to return the quoted version of `value`.
:returns: the quoted value
"""
if isinstance(value, (int, float, datetime)):
return str(value)
if value is None:
return "NULL"
if isinstance(value, (str, bytes)):
cursor.execute("SELECT quote(?);", (value,))
result = cursor.fetchall()[0][0]
assert isinstance(result, str)
return result
raise ValueError(f"Do not know how to quote value of type {type(value)}") | 17887be2440563a1321708f797310eb8f1731687 | 15,558 |
def create_admin_nova_client(context):
"""
Creates client that uses trove admin credentials
:return: a client for nova for the trove admin
"""
client = create_nova_client(context, password=CONF.nova_proxy_admin_pass)
return client | 3fdd56ae419b5228b209a9e00fb8828c17a0d847 | 15,559 |
def page_cache(timeout=1800):
"""
page cache
param:
timeout:the deadline of cache default is 1800
"""
def _func(func):
def wrap(request, *a, **kw):
key = request.get_full_path()
#pass chinese
try:
key = mkey.encode("utf-8")
except Exception, e:
key = str(key)
data = None
try:
data = mclient.get(key)
if not data:
data = func(request, *a, **kw)
if data:
mclient.set(key, data, timeout)
return HttpResponse(data, content_type=request.META.get("CONTENT_TYPE", "text/plain"))
except Exception, e:
if data:
HttpResponse(data, content_type=request.META.get("CONTENT_TYPE", "text/plain"))
else:
return HttpResponse("<objects><error>%s</error></objects>" % e,
content_type=request.META.get("CONTENT_TYPE", "text/plain"))
return wrap
return _funcs | ca5be8d6ad1c1d0e627e2e22dbe44532d20af5cd | 15,560 |
def get_available_games():
"""Get a list of games that are available to join."""
games = Game.objects.filter(started=False) #pylint: disable=no-member
if len(games) == 0:
options = [('', '- None -')]
else:
options = [('', '- Select -')]
for game in games:
options.append((game.name, game.name))
return options | 245d85ce623ffe3ed9eb718aafaf7889c67dada6 | 15,561 |
def _add_rays_single_cam(
camera_data: TensorDict,
*,
scene_from_frame: tf_geometry.Isometry,
) -> TensorDict:
"""Returns the camera, eventually with the rays added."""
if _has_precomputed_rays(camera_data):
return camera_data
else:
# Logic below for generating camera rays only applies to perspective
# cameras. It will produce incorrect camera rays for other types of
# cameras (e.g. those with distortions).
camera_type = camera_data['intrinsics']['type']
tf.debugging.assert_equal(camera_type, 'PERSPECTIVE')
# Pinhole camera model below does not know how to handle lens distortion.
# Ensure that no distortion exists here.
radial_distortion = camera_data['intrinsics']['distortion']['radial']
tf.debugging.assert_near(radial_distortion,
tf.zeros_like(radial_distortion))
tangential_distortion = (
camera_data['intrinsics']['distortion']['tangential'])
tf.debugging.assert_near(tangential_distortion,
tf.zeros_like(tangential_distortion))
h, w, _ = camera_data['color_image'].shape
# Compute camera pose w.r.t scene (camera to scene transform).
camera_from_frame = tf_geometry.Isometry(**camera_data['extrinsics'])
scene_from_camera = scene_from_frame * camera_from_frame.inverse()
# Get rays w.r.t scene passing through every pixel center of the camera.
camera_intrinsics = camera_data['intrinsics']
ray_origins, ray_directions = tf_geometry.rays_from_image_grid(
camera=tf_geometry.PinholeCamera(
K=camera_intrinsics['K'],
# Use static shape if available
image_width=w or camera_intrinsics['image_width'],
image_height=h or camera_intrinsics['image_height']),
world_from_camera=scene_from_camera,
)
camera_data['ray_origins'] = ray_origins
camera_data['ray_directions'] = ray_directions
return camera_data | dc9836d3ebee9ccc3ab940dc3bfe0981f9362741 | 15,562 |
def process_ps_stdout(stdout):
""" Process the stdout of the ps command """
return [i.split()[0] for i in filter(lambda x: x, stdout.decode("utf-8").split("\n")[1:])] | c086cc88c51484abe4308b3ac450faaba978656e | 15,563 |
import shlex
def chpasswd(path, oldpassword, newpassword):
"""Change password of a private key.
"""
if len(newpassword) != 0 and not len(newpassword) > 4: return False
cmd = shlex.split('ssh-keygen -p')
child = pexpect.spawn(cmd[0], cmd[1:])
i = child.expect(['Enter file in which the key is', pexpect.EOF])
if i == 1:
if child.isalive(): child.wait()
return False
child.sendline(path)
i = child.expect(['Enter old passphrase', 'Enter new passphrase', pexpect.EOF])
if i == 0:
child.sendline(oldpassword)
i = child.expect(['Enter new passphrase', 'Bad passphrase', pexpect.EOF])
if i != 0:
if child.isalive(): child.wait()
return False
elif i == 2:
if child.isalive(): child.wait()
return False
child.sendline(newpassword)
i = child.expect(['Enter same passphrase again', pexpect.EOF])
if i == 1:
if child.isalive(): child.wait()
return False
child.sendline(newpassword)
child.expect(pexpect.EOF)
if child.isalive():
return child.wait() == 0
return True | ee84bdccee24ea591db6d9c82bfce8374d1a420d | 15,564 |
def get_display_limits(VarInst, data=None):
"""Get limits to resize the display of Variables.
Function takes as argument a `VariableInstance` from a `Section` or
`Planform` and an optional :obj:`data` argument, which specifies how to
determine the limits to return.
Parameters
----------
VarInst : :obj:`~deltametrics.section.BaseSectionVariable` subclass
The `Variable` instance to visualize. May be any subclass of
:obj:`~deltametrics.section.BaseSectionVariable` or
:obj:`~deltametrics.plan.BasePlanformVariable`.
data : :obj:`str`, optional
The type of data to compute limits for. Typically this will be the
same value used with either :obj:`get_display_arrays` or
:obj:`get_display_lines`. Supported options are `'spacetime'`,
`'preserved'`, and `'stratigraphy'`.
Returns
-------
xmin, xmax, ymin, ymax : :obj:`float`
Values to use as limits on a plot. Use with, for example,
``ax.set_xlim((xmin, xmax))``.
"""
# # # SectionVariables # # #
if issubclass(type(VarInst), section.BaseSectionVariable):
# # DataSection # #
if isinstance(VarInst, section.DataSectionVariable):
data = data or VarInst._default_data
if data in VarInst._spacetime_names:
return np.min(VarInst._S), np.max(VarInst._S), \
np.min(VarInst._Z), np.max(VarInst._Z)
elif data in VarInst._preserved_names:
VarInst._check_knows_stratigraphy() # need to check explicitly
return np.min(VarInst._S), np.max(VarInst._S), \
np.min(VarInst._Z), np.max(VarInst._Z)
elif data in VarInst._stratigraphy_names:
VarInst._check_knows_stratigraphy() # need to check explicitly
_strata = np.copy(VarInst.strat_attr['strata'])
return np.min(VarInst._S), np.max(VarInst._S), \
np.min(_strata), np.max(_strata) * 1.5
else:
raise ValueError('Bad data argument: %s' % str(data))
# # StratigraphySection # #
elif isinstance(VarInst, section.StratigraphySectionVariable):
data = data or VarInst._default_data
if data in VarInst._spacetime_names:
VarInst._check_knows_spacetime() # always False
elif data in VarInst._preserved_names:
VarInst._check_knows_spacetime() # always False
elif data in VarInst._stratigraphy_names:
return np.min(VarInst._S), np.max(VarInst._S), \
np.min(VarInst._Z), np.max(VarInst._Z) * 1.5
else:
raise ValueError('Bad data argument: %s' % str(data))
else:
raise TypeError
# # # PlanformVariables # # #
elif False: # issubclass(type(VarInst), plan.BasePlanformVariable):
raise NotImplementedError
else:
raise TypeError('Invaid "VarInst" type: %s' % type(VarInst)) | d4864fccd8c282033d99fdc817e077d3f6d5b434 | 15,565 |
def plot_layer_consistency_example(eigval_col, eigvec_col, layernames, layeridx=[0,1,-1], titstr="GAN", figdir="", savelabel="", use_cuda=False):
"""
Note for scatter plot the aspect ratio is set fixed to one.
:param eigval_col:
:param eigvec_col:
:param nsamp:
:param titstr:
:param figdir:
:return:
"""
nsamp = len(layeridx)
# Hnums = len(eigval_col)
# eiglist = sorted(np.random.choice(Hnums, nsamp, replace=False)) # range(5)
print("Plot hessian of layers : ", [layernames[idx] for idx in layeridx])
fig = plt.figure(figsize=[10, 10], constrained_layout=False)
spec = fig.add_gridspec(ncols=nsamp, nrows=nsamp, left=0.075, right=0.975, top=0.9, bottom=0.05)
for axi, Li in enumerate(layeridx):
eigval_i, eigvect_i = eigval_col[Li], eigvec_col[Li]
for axj, Lj in enumerate(layeridx):
eigval_j, eigvect_j = eigval_col[Lj], eigvec_col[Lj]
inpr = eigvect_i.T @ eigvect_j
vHv_ij = np.diag((inpr @ np.diag(eigval_j)) @ inpr.T)
ax = fig.add_subplot(spec[axi, axj])
if axi == axj:
ax.hist(np.log10(eigval_j), 20)
else:
ax.scatter(np.log10(eigval_j), np.log10(vHv_ij), s=15, alpha=0.6)
ax.set_aspect(1, adjustable='datalim')
if axi == nsamp-1:
ax.set_xlabel("eigvals @ %s" % layernames[Lj])
if axj == 0:
ax.set_ylabel("vHv eigvec @ %s" % layernames[Li])
ST = plt.suptitle("Consistency of %s Hessian Across Layers\n"
"Cross scatter of EigenValues and vHv values for Hessian at %d Layers"%(titstr, nsamp),
fontsize=18)
# plt.subplots_adjust(left=0.175, right=0.95 )
RND = np.random.randint(1000)
plt.savefig(join(figdir, "Hess_layer_consistency_example_%s_rnd%03d.jpg" % (savelabel, RND)),
bbox_extra_artists=[ST]) #
plt.savefig(join(figdir, "Hess_layer_consistency_example_%s_rnd%03d.pdf" % (savelabel, RND)),
bbox_extra_artists=[ST]) #
return fig | 38191663fcf1c9f05aa39127179a3cbf5f29b219 | 15,566 |
def min_vertex_cover(left_v, right_v):
"""
Use the Hopcroft-Karp algorithm to find a maximum
matching or maximum independent set of a bipartite graph.
Next, find a minimum vertex cover by finding the
complement of a maximum independent set.
The function takes as input two dictionaries, one for the
left vertices and one for the right vertices. Each key in
the left dictionary is a left vertex with a value equal to
a list of the right vertices that are connected to the key
by an edge. The right dictionary is structured similarly.
The output is a dictionary with keys equal to the vertices
in a minimum vertex cover and values equal to lists of the
vertices connected to the key by an edge.
For example, using the following simple bipartite graph:
1000 2000
1001 2000
where vertices 1000 and 1001 each have one edge and 2000 has
two edges, the input would be:
left = {1000: [2000], 1001: [2000]}
right = {2000: [1000, 1001]}
and the ouput or minimum vertex cover would be:
{2000: [1000, 1001]}
with vertex 2000 being the minimum vertex cover.
"""
data_hk = bipartiteMatch(left_v)
left_mis = data_hk[1]
right_mis = data_hk[2]
mvc = left_v.copy()
mvc.update(right_v) # junta os dicionarios num so
for v in left_mis:
try:
del (mvc[v])
except KeyError:
pass
for v in right_mis:
try:
del (mvc[v])
except KeyError:
pass
return mvc | a94aaf6dd07b98e7f5a77b01ab6548bc401e8b03 | 15,567 |
def neighbor_dist(x1, y1, x2, y2):
"""Return distance of nearest neighbor to x1, y1 in x2, y2"""
m1, m2, d12 = match_xy(x2, y2, x1, y1, neighbors=1)
return d12 | 91b67e571d2812a9bc2e05b25a74fbca292daec7 | 15,568 |
import requests
def add_artist_subscription(auth, userid, artist_mbid):
"""
Add an artist to the list of subscribed artists.
:param tuple auth: authentication data (username, password)
:param str userid: user ID (must match auth data)
:param str artist_mbid: musicbrainz ID of the artist to add
:return: True on success
:raises: HTTPError
"""
url = '%s/artists/%s/%s' % (API_BASE_URL, userid, artist_mbid)
response = requests.put(url, auth=auth)
response.raise_for_status()
return True | 770be84ec9edb272c8c3d8cb1959f419f8867e1d | 15,569 |
from pathlib import Path
import pickle
def get_built_vocab(dataset: str) -> Vocab:
"""load vocab file for `dataset` to get Vocab based on selected client and data in current directory
Args:
dataset (str): string of dataset name to get vocab
Returns:
if there is no built vocab file for `dataset`, return None, else return Vocab
"""
vocab_file_path = Path(__file__).parent.resolve() / f'{dataset}_vocab.pickle'
if not vocab_file_path.exists():
print('There is no built vocab file for {} dataset, please run `main` or `build_vocab.sh` to build it firstly.'
.format(dataset))
return None
vocab_file = open(vocab_file_path, 'rb') # get vocab based on sample data
vocab = pickle.load(vocab_file)
return vocab | b03daba815ccddb7ff3aee2e2eac39de22ff6cff | 15,570 |
from typing import Optional
from typing import Iterable
def binidx(num: int, width: Optional[int] = None) -> Iterable[int]:
""" Returns the indices of bits with the value `1`.
Parameters
----------
num : int
The number representing the binary state.
width : int, optional
Minimum number of digits used. The default is the global value `BITS`.
Returns
-------
binidx : list
"""
fill = width or 0
return list(sorted(i for i, char in enumerate(f"{num:0{fill}b}"[::-1]) if char == "1")) | 70d1895cf0141950d8e2f5efe6bfbf7bd8dbc30b | 15,571 |
import sys
import socket
def hashed_class_mix_score256(cycle_hash: bytes, identifier: bytes, ip: str, ip_bytes: bytearray) -> int:
"""
Nyzo Score computation from hash of IP start + end of last IP byte to effectively reorder the various c-class and their gaps.
Then complete the score with first half latest IP byte.
That last IP half byte is shuffled from a permutation map, built from cycle hash, so that start of block and end of block ip do not get more odds.
Should be similar to first picking a single random class (c-class+end of ip) from the different classes, then picking a single block prefix from these class
"""
score = sys.maxsize
if ip == '':
return score
ip_bytes = bytearray(socket.inet_aton(ip))
# seed = cycle_hash + ip_bytes[:3] + (ip_bytes[3] & 15).to_bytes(1, byteorder='big') # one c-class + last 4 bits = one seed
ip_bytes[3] = ip_bytes[3] & 15 # Mask first 4 bits of last byte.
seed = cycle_hash + ip_bytes
hashed_c = sha256(seed).digest()
score = 0
for i in range(32):
# Do we need all 32 bytes? more information than the ip entropy we fed (3.5 bytes). Way faster with only 16? => 30% gain
score += abs(cycle_hash[i] - hashed_c[i])
# score = sum(abs(r - h) for r,h in zip(cycle_hash, hashed_c)) # Slightly slower
score *= 16
# Up until there, score is the same for all ips of the same class
score += abs(SHUFFLE_MAP[ip_bytes[3]//16] - cycle_hash[0]//16)
# shuffle map so lower and highest ips parts do not get more odds
return score | 172663529b625c73ab91147864ce17cd2a4d4108 | 15,572 |
import math
def distance_vinchey(f, a, start, end):
"""
Uses Vincenty formula for distance between two Latitude/Longitude points
(latitude,longitude) tuples, in numeric degrees. f,a are ellipsoidal parameters
Returns the distance (m) between two geographic points on the ellipsoid and the
forward and reverse azimuths between these points. Returns ( s, alpha12, alpha21 ) as a tuple
"""
# Convert into notation from the original paper
# http://www.anzlic.org.au/icsm/gdatum/chapter4.html
#
# Vincenty's Inverse formulae
# Given: latitude and longitude of two points (phi1, lembda1 and phi2, lembda2)
phi1 = math.radians(start[0]); lembda1 = math.radians(start[1]);
phi2 = math.radians(end[0]); lembda2 = math.radians(end[1]);
if (abs( phi2 - phi1 ) < 1e-8) and ( abs( lembda2 - lembda1) < 1e-8 ):
return 0.0, 0.0, 0.0
two_pi = 2.0*math.pi
b = a * (1.0 - f)
TanU1 = (1-f) * math.tan( phi1 )
TanU2 = (1-f) * math.tan( phi2 )
U1 = math.atan(TanU1)
U2 = math.atan(TanU2)
lembda = lembda2 - lembda1
last_lembda = -4000000.0 # an impossibe value
omega = lembda
# Iterate the following equations, until there is no significant change in lembda
while ( last_lembda < -3000000.0 or lembda != 0 and abs( (last_lembda - lembda)/lembda) > 1.0e-9 ) :
sqr_sin_sigma = pow( math.cos(U2) * math.sin(lembda), 2) + \
pow( (math.cos(U1) * math.sin(U2) - \
math.sin(U1) * math.cos(U2) * math.cos(lembda) ), 2 )
Sin_sigma = math.sqrt( sqr_sin_sigma )
Cos_sigma = math.sin(U1) * math.sin(U2) + math.cos(U1) * math.cos(U2) * math.cos(lembda)
sigma = math.atan2( Sin_sigma, Cos_sigma )
Sin_alpha = math.cos(U1) * math.cos(U2) * math.sin(lembda) / math.sin(sigma)
alpha = math.asin( Sin_alpha )
Cos2sigma_m = math.cos(sigma) - (2 * math.sin(U1) * math.sin(U2) / pow(math.cos(alpha), 2) )
C = (f/16) * pow(math.cos(alpha), 2) * (4 + f * (4 - 3 * pow(math.cos(alpha), 2)))
last_lembda = lembda
lembda = omega + (1-C) * f * math.sin(alpha) * (sigma + C * math.sin(sigma) * \
(Cos2sigma_m + C * math.cos(sigma) * (-1 + 2 * pow(Cos2sigma_m, 2) )))
u2 = pow(math.cos(alpha),2) * (a*a-b*b) / (b*b)
A = 1 + (u2/16384) * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
B = (u2/1024) * (256 + u2 * (-128+ u2 * (74 - 47 * u2)))
delta_sigma = B * Sin_sigma * (Cos2sigma_m + (B/4) * \
(Cos_sigma * (-1 + 2 * pow(Cos2sigma_m, 2) ) - \
(B/6) * Cos2sigma_m * (-3 + 4 * sqr_sin_sigma) * \
(-3 + 4 * pow(Cos2sigma_m,2 ) )))
s = b * A * (sigma - delta_sigma)
alpha12 = math.atan2( (math.cos(U2) * math.sin(lembda)), \
(math.cos(U1) * math.sin(U2) - math.sin(U1) * math.cos(U2) * math.cos(lembda)))
alpha21 = math.atan2( (math.cos(U1) * math.sin(lembda)), \
(-math.sin(U1) * math.cos(U2) + math.cos(U1) * math.sin(U2) * math.cos(lembda)))
if ( alpha12 < 0.0 ) :
alpha12 = alpha12 + two_pi
if ( alpha12 > two_pi ) :
alpha12 = alpha12 - two_pi
alpha21 = alpha21 + two_pi / 2.0
if ( alpha21 < 0.0 ) :
alpha21 = alpha21 + two_pi
if ( alpha21 > two_pi ) :
alpha21 = alpha21 - two_pi
return s, alpha12, alpha21 | df5ae92a12af6ab656af65a12145436089202cf2 | 15,573 |
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
# x1、y1、x2、y2、以及score赋值
dets = np.array(dets)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
#每一个检测框的面积
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
#按照score置信度降序排序
order = scores.argsort()[::-1]
keep = []
#保留的结果框集合
while order.size > 0:
i = order[0]
keep.append(i) #保留该类剩余box中得分最高的一个
#得到相交区域,左上及右下
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
#计算相交的面积,不重叠时面积为0
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
#计算IoU:重叠面积 /(面积1+面积2-重叠面积)
ovr = inter / (areas[i] + areas[order[1:]] - inter)
#保留IoU小于阈值的box
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
#因为ovr数组的长度比order数组少一个,所以这里要将所有下标后移一位
return keep | d85822e8076bf1695c6f9e7b7271b21572ebf7d6 | 15,574 |
def _romanize(word: str) -> str:
"""
:param str word: Thai word to be romanized, should have already been tokenized.
:return: Spells out how the Thai word should be pronounced.
"""
if not isinstance(word, str) or not word:
return ""
word = _replace_vowels(_normalize(word))
res = _RE_CONSONANT.findall(word)
# 2-character word, all consonants
if len(word) == 2 and len(res) == 2:
word = list(word)
word.insert(1, "o")
word = "".join(word)
word = _replace_consonants(word, res)
return word | 5e464faa1011893eb63f1f9afedd42768a8527c8 | 15,575 |
def lookup_beatmap(beatmaps: list, **lookup):
""" Finds and returns the first beatmap with the lookup specified.
Beatmaps is a list of beatmap dicts and could be used with beatmap_lookup().
Lookup is any key stored in a beatmap from beatmap_lookup().
"""
if not beatmaps:
return None
for beatmap in beatmaps:
match = True
for key, value in lookup.items():
if key.lower() not in beatmap:
raise KeyError(f"The list of beatmaps does not have key: {key}")
if not beatmap[key].lower() == value.lower():
match = False
if match:
return beatmap
return None | fa5f126502b5398934882139f01af8f4f80e1ea5 | 15,576 |
def scott(
x: BinaryFeatureVector, y: BinaryFeatureVector, mask: BinaryFeatureVector = None
) -> float:
"""Scott similarity
Scott, W. A. (1955).
Reliability of content analysis: The case of nominal scale coding.
Public opinion quarterly, 321-325.
Args:
x (BinaryFeatureVector): binary feature vector
y (BinaryFeatureVector): binary feature vector
Returns:
float: similarity of given vectors
"""
a, b, c, d = operational_taxonomic_units(x, y, mask)
return (4 * a * d - (b + c) ** 2) / ((2 * a + b + c) * (2 + d + b + c)) | 6b950cb2b716d2e93638b169682cdd99230cbb89 | 15,577 |
import xmlrunner
def get_test_runner():
"""
Returns a test runner instance for unittest.main. This object captures
the test output and saves it as an xml file.
"""
try:
path = get_test_dir()
runner = xmlrunner.XMLTestRunner(output=path)
return runner
except Exception, e:
print("get_test_runner error: %s" % e)
return None | 6b2db3207c278a7f07ed6fd7922042beea1bfee7 | 15,578 |
def _construct_capsule(geom, pos, rot):
"""Converts a cylinder geometry to a collider."""
radius = float(geom.get('radius'))
length = float(geom.get('length'))
length = length + 2 * radius
return config_pb2.Collider(
capsule=config_pb2.Collider.Capsule(radius=radius, length=length),
rotation=_vec(euler.quat2euler(rot, 'rxyz'), scale=180 / np.pi),
position=_vec(pos)) | a4bddb7c64468515d3a36ebaac22402eeb4f16b0 | 15,579 |
def file_root_dir(tmpdir_factory):
"""Prepares the testing dirs for file tests"""
root_dir = tmpdir_factory.mktemp('complex_file_dir')
for file_path in ['file1.yml',
'arg/name/file2',
'defaults/arg/name/file.yml',
'defaults/arg/name/file2',
'vars/arg/name/file1.yml',
'vars/arg/name/file3.yml',
'vars/arg/name/nested/file4.yml']:
root_dir.join(file_path).ensure()
return root_dir | 834e0d850e7a7dd59d792e98ed25b909d5a20567 | 15,580 |
from typing import Iterable
def path_nucleotide_length(g: BifrostDiGraph, path: Iterable[Kmer]) -> int:
"""Compute the length of a path in nucleotides."""
if not path:
return 0
node_iter = iter(path)
start = next(node_iter)
k = g.graph['k']
length = g.nodes[start]['length'] + k - 1
prev = start
for n in node_iter:
if (prev, n) not in g.edges:
raise ValueError(f"Invalid path specified, ({prev}, {n}) is not an edge.")
length += g.nodes[n]['length']
prev = n
return length | 612cff39bcf859a995d90c22e2dacb54e9c0b4c9 | 15,581 |
def extract_static_links(page_content):
"""Deliver the static asset links from a page source."""
soup = bs(page_content, "html.parser")
static_js = [
link.get("src")
for link in soup.findAll("script")
if link.get("src") and "static" in link.get("src")
]
static_images = [
image.get("src")
for image in soup.findAll("img")
if image.get("src") and "static" in image.get("src")
]
static_css = [
link.get("href")
for link in soup.findAll("link")
if link.get("href") and "static" in link.get("href")
]
return static_js + static_images + static_css | 8ea99171d55db182fe4265042c84deca36176d84 | 15,582 |
def zero_inflated_nb(n, p, phi=0, size=None):
"""Models a zero-inflated negative binomial
Something about hte negative binomail model here...
This basically just wraps the numpy negative binomial generator,
where the probability of a zero is additionally inflated by
some probability, psi...
Parameters
----------
n : int
Parameter, > 0.
p : float
Parameter, 0 <= p <= 1.
phi : float, optional
The probability of obtaining an excess zero in the model,
where 0 <= phi <= 1. When `phi = 0`, the distribution collapses
to a negative binomial model.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
int or ndarray of ints
Drawn samples
Also See
--------
np.random.negative_binomial
References
----------
..[1] Kutz, Z.D. et al. (2015) "Sparse and Compositionally Robust Inference
of Microbial Ecological Networks." PLoS Compuational Biology. 11: e10004226
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004226
"""
zeros = (np.random.binomial(1, phi, size) == 1)
nb_ = np.random.negative_binomial(n, p, size=size)
nb_[zeros] = 0
return nb_ | c20f28b33e070e035979093e6ebb9ed10611c5dd | 15,583 |
async def get_bot_queue(
request: Request,
state: enums.BotState = enums.BotState.pending,
verifier: int = None,
worker_session = Depends(worker_session)
):
"""Admin API to get the bot queue"""
db = worker_session.postgres
if verifier:
bots = await db.fetch("SELECT bot_id, prefix, description FROM bots WHERE state = $1 AND verifier = $2 ORDER BY created_at ASC", state, verifier)
bots = await db.fetch("SELECT bot_id, prefix, description FROM bots WHERE state = $1 ORDER BY created_at ASC", state)
return {"bots": [{"user": await get_bot(bot["bot_id"]), "prefix": bot["prefix"], "invite": await invite_bot(bot["bot_id"], api = True), "description": bot["description"]} for bot in bots]} | bfbd51933b140bfd60cc7ec2a401d02048ffdeae | 15,584 |
def ask_for_rating():
"""Ask the user for a rating"""
heading = '{} {}'.format(common.get_local_string(30019),
common.get_local_string(30022))
try:
return int(xbmcgui.Dialog().numeric(heading=heading, type=0,
defaultt=''))
except ValueError:
return None | a7a854e02b11ac1313d69f508851d162a7748006 | 15,585 |
def isthai(text,check_all=False):
"""
สำหรับเช็คว่าเป็นตัวอักษรภาษาไทยหรือไม่
isthai(text,check_all=False)
text คือ ข้อความหรือ list ตัวอักษร
check_all สำหรับส่งคืนค่า True หรือ False เช็คทุกตัวอักษร
การส่งคืนค่า
{'thai':% อักษรภาษาไทย,'check_all':tuple โดยจะเป็น (ตัวอักษร,True หรือ False)}
"""
listext=list(text)
i=0
num_isthai=0
if check_all==True:
listthai=[]
while i<len(listext):
cVal = ord(listext[i])
if(cVal >= 3584 and cVal <= 3711):
num_isthai+=1
if check_all==True:
listthai.append(True)
else:
if check_all==True:
listthai.append(False)
i+=1
thai=(num_isthai/len(listext))*100
if check_all==True:
dictthai=tuple(zip(listext,listthai))
data= {'thai':thai,'check_all':dictthai}
else:
data= {'thai':thai}
return data | 6a6bff64ba3b3939414e9f3aa83d169cd026e1c3 | 15,586 |
from typing import List
from typing import Optional
def _convert_object_array(
content: List[Scalar], dtype: Optional[DtypeObj] = None
) -> List[Scalar]:
"""
Internal function ot convert object array.
Parameters
----------
content: list of processed data records
dtype: np.dtype, default is None
Returns
-------
arrays: casted content if not object dtype, otherwise return as is in list.
"""
# provide soft conversion of object dtypes
def convert(arr):
if dtype != np.dtype("O"):
arr = lib.maybe_convert_objects(arr)
arr = maybe_cast_to_datetime(arr, dtype)
return arr
arrays = [convert(arr) for arr in content]
return arrays | 7b093057b05afa93ced881289d22b1eda91018f0 | 15,587 |
def update_room_time(conn, room_name: str, req_time: int) -> int:
"""部屋のロックを取りタイムスタンプを更新する
トランザクション開始後この関数を呼ぶ前にクエリを投げると、
そのトランザクション中の通常のSELECTクエリが返す結果がロック取得前の
状態になることに注意 (keyword: MVCC, repeatable read).
"""
cur = conn.cursor()
# See page 13 and 17 in https://www.slideshare.net/ichirin2501/insert-51938787
cur.execute("INSERT INTO room_time(room_name, time) VALUES (%s, 0) ON DUPLICATE KEY UPDATE time = time",
(room_name,))
cur.execute("SELECT time FROM room_time WHERE room_name = %s FOR UPDATE", (room_name,))
room_time = cur.fetchone()[0]
current_time = get_current_time(conn)
if room_time > current_time:
raise RuntimeError(f"room_time is future: room_time={room_time}, req_time={req_time}")
if req_time and req_time < current_time:
raise RuntimeError(f"req_time is past: req_time={req_time}, current_time={current_time}")
cur.execute("UPDATE room_time SET time = %s WHERE room_name = %s", (current_time, room_name))
return current_time | 78066e9666ee28217f790fb8c26d2ade8c2ace7c | 15,588 |
def get_layer_coverage(cat, store, store_obj):
"""Get correct layer coverage from a store."""
coverages = cat.mosaic_coverages(store_obj)
# Find the correct coverage
coverage = None
for cov in coverages["coverages"]["coverage"]:
if store == cov['name']:
coverage = cov
break
if coverage is None:
logger.warning("Layer '%s' not found", store)
return coverage | 498c4a8db1a82dafd8569314e4faf13517e75aba | 15,589 |
import logging
import time
def retarget(songs, duration, music_labels=None, out_labels=None,
out_penalty=None, volume=None, volume_breakpoints=None,
springs=None, constraints=None,
min_beats=None, max_beats=None,
fade_in_len=3.0, fade_out_len=5.0,
**kwargs):
"""Retarget a song to a duration given input and output labels on
the music.
Suppose you like one section of a song, say, the guitar solo, and
you want to create a three minute long version of the solo.
Suppose the guitar solo occurs from the 150 second mark to the 200
second mark in the original song.
You can set the label the guitar solo with 'solo' and the rest of
the song with 'other' by crafting the ``music_labels`` input
function. And you can set the ``out_labels`` function to give you
nothing but solo::
def labels(t):
if 150 < t < 200:
return 'solo'
return 'other'
def target(t): return 'solo'
song = Song("sweet-rock-song.wav")
composition, info = retarget(song, 180,
music_labels=labels, out_labels=target)
composition.export(filename="super-long-solo")
You can achieve much more complicated retargetings by adjusting
the ``music_labels``, `out_labels` and ``out_penalty`` functions,
but this should give you a basic sense of how to use the
``retarget`` function.
:param song: Song to retarget
:type song: :py:class:`radiotool.composer.Song`
:param duration: Duration of retargeted song (in seconds)
:type duration: float
:param music_labels: A function that takes a time (in seconds) and
returns the label (str) of the input music at that time
:type music_labels: function
:param out_labels: A function that takes a time (in seconds) and
returns the desired label (str) of the output music at that
time
:type out_labels: function
:param out_penalty: A function that takes a time (in seconds) and
returns the penalty for not matching the correct output label
at that time (default is 1.0)
:type out_penalty: function
:returns: Composition of retargeted song, and dictionary of
information about the retargeting
:rtype: (:py:class:`radiotool.composer.Composition`, dict)
"""
# get song analysis
if isinstance(songs, Track):
songs = [songs]
multi_songs = len(songs) > 1
analyses = [s.analysis for s in songs]
# generate labels for every beat in the input and output
beat_lengths = [a[BEAT_DUR_KEY] for a in analyses]
beats = [a["beats"] for a in analyses]
beat_length = np.mean(beat_lengths)
logging.info("Beat lengths of songs: {} (mean: {})".
format(beat_lengths, beat_length))
if out_labels is not None:
target = [out_labels(i) for i in np.arange(0, duration, beat_length)]
else:
target = ["" for i in np.arange(0, duration, beat_length)]
if music_labels is not None:
if not multi_songs:
music_labels = [music_labels]
music_labels = [item for sublist in music_labels
for item in sublist]
if len(music_labels) != len(songs):
raise ArgumentException("Did not specify {} sets of music labels".
format(len(songs)))
start = [[music_labels[i](j) for j in b] for i, b in enumerate(beats)]
else:
start = [["" for i in b] for b in beats]
if out_penalty is not None:
pen = np.array([out_penalty(i) for i in np.arange(
0, duration, beat_length)])
else:
pen = np.array([1 for i in np.arange(0, duration, beat_length)])
# we're using a valence/arousal constraint, so we need these
in_vas = kwargs.pop('music_va', None)
if in_vas is not None:
if not multi_songs:
in_vas = [in_vas]
in_vas = [item for sublist in in_vas for item in sublist]
if len(in_vas) != len(songs):
raise ArgumentException("Did not specify {} sets of v/a labels".
format(len(songs)))
for i, in_va in enumerate(in_vas):
if callable(in_va):
in_va = np.array([in_va(j) for j in beats[i]])
in_vas[i] = in_va
target_va = kwargs.pop('out_va', None)
if callable(target_va):
target_va = np.array(
[target_va(i) for i in np.arange(0, duration, beat_length)])
# set constraints
if constraints is None:
min_pause_len = 20.
max_pause_len = 35.
min_pause_beats = int(np.ceil(min_pause_len / beat_length))
max_pause_beats = int(np.floor(max_pause_len / beat_length))
constraints = [(
rt_constraints.PauseConstraint(
min_pause_beats, max_pause_beats,
to_penalty=1.4, between_penalty=.05, unit="beats"),
rt_constraints.PauseEntryVAChangeConstraint(target_va, .005),
rt_constraints.PauseExitVAChangeConstraint(target_va, .005),
rt_constraints.TimbrePitchConstraint(
context=0, timbre_weight=1.5, chroma_weight=1.5),
rt_constraints.EnergyConstraint(penalty=0.5),
rt_constraints.MinimumLoopConstraint(8),
rt_constraints.ValenceArousalConstraint(
in_va, target_va, pen * .125),
rt_constraints.NoveltyVAConstraint(in_va, target_va, pen),
) for in_va in in_vas]
else:
max_pause_beats = 0
if len(constraints) > 0:
if isinstance(constraints[0], rt_constraints.Constraint):
constraints = [constraints]
pipelines = [rt_constraints.ConstraintPipeline(constraints=c_set)
for c_set in constraints]
trans_costs = []
penalties = []
all_beat_names = []
for i, song in enumerate(songs):
(trans_cost, penalty, bn) = pipelines[i].apply(song, len(target))
trans_costs.append(trans_cost)
penalties.append(penalty)
all_beat_names.append(bn)
logging.info("Combining tables")
total_music_beats = int(np.sum([len(b) for b in beats]))
total_beats = total_music_beats + max_pause_beats
# combine transition cost tables
trans_cost = np.ones((total_beats, total_beats)) * np.inf
sizes = [len(b) for b in beats]
idx = 0
for i, size in enumerate(sizes):
trans_cost[idx:idx + size, idx:idx + size] =\
trans_costs[i][:size, :size]
idx += size
trans_cost[:total_music_beats, total_music_beats:] =\
np.vstack([tc[:len(beats[i]), len(beats[i]):]
for i, tc in enumerate(trans_costs)])
trans_cost[total_music_beats:, :total_music_beats] =\
np.hstack([tc[len(beats[i]):, :len(beats[i])]
for i, tc in enumerate(trans_costs)])
trans_cost[total_music_beats:, total_music_beats:] =\
trans_costs[0][len(beats[0]):, len(beats[0]):]
# combine penalty tables
penalty = np.empty((total_beats, penalties[0].shape[1]))
penalty[:total_music_beats, :] =\
np.vstack([p[:len(beats[i]), :] for i, p in enumerate(penalties)])
penalty[total_music_beats:, :] = penalties[0][len(beats[0]):, :]
logging.info("Building cost table")
# compute the dynamic programming table (prev python method)
# cost, prev_node = _build_table(analysis, duration, start, target, pen)
# first_pause = 0
# if max_pause_beats > 0:
first_pause = total_music_beats
if min_beats is None:
min_beats = 0
elif min_beats is 'default':
min_beats = int(20. / beat_length)
if max_beats is None:
max_beats = -1
elif max_beats is 'default':
max_beats = int(90. / beat_length)
max_beats = min(max_beats, penalty.shape[1])
tc2 = np.nan_to_num(trans_cost)
pen2 = np.nan_to_num(penalty)
beat_names = []
for i, bn in enumerate(all_beat_names):
for b in bn:
if not str(b).startswith('p'):
beat_names.append((i, float(b)))
beat_names.extend([('p', i) for i in xrange(max_pause_beats)])
result_labels = []
logging.info("Running optimization (full backtrace, memory efficient)")
logging.info("\twith min_beats(%d) and max_beats(%d) and first_pause(%d)" %
(min_beats, max_beats, first_pause))
song_starts = [0]
for song in songs:
song_starts.append(song_starts[-1] + len(song.analysis["beats"]))
song_ends = np.array(song_starts[1:], dtype=np.int32)
song_starts = np.array(song_starts[:-1], dtype=np.int32)
t1 = time.clock()
path_i, path_cost = build_table_full_backtrace(
tc2, pen2, song_starts, song_ends,
first_pause=first_pause, max_beats=max_beats, min_beats=min_beats)
t2 = time.clock()
logging.info("Built table (full backtrace) in {} seconds"
.format(t2 - t1))
path = []
if max_beats == -1:
max_beats = min_beats + 1
first_pause_full = max_beats * first_pause
n_beats = first_pause
for i in path_i:
if i >= first_pause_full:
path.append(('p', i - first_pause_full))
result_labels.append(None)
# path.append('p' + str(i - first_pause_full))
else:
path.append(beat_names[i % n_beats])
song_i = path[-1][0]
beat_name = path[-1][1]
result_labels.append(
start[song_i][np.where(np.array(beats[song_i]) ==
beat_name)[0][0]])
# path.append(float(beat_names[i % n_beats]))
# else:
# print("Running optimization (fast, full table)")
# # this won't work right now- needs to be updated
# # with the multi-song approach
# # fortran method
# t1 = time.clock()
# cost, prev_node = build_table(tc2, pen2)
# t2 = time.clock()
# print("Built table (fortran) in {} seconds".format(t2 - t1))
# res = cost[:, -1]
# best_idx = N.argmin(res)
# if N.isfinite(res[best_idx]):
# path, path_cost, path_i = _reconstruct_path(
# prev_node, cost, beat_names, best_idx, N.shape(cost)[1] - 1)
# # path_i = [beat_names.index(x) for x in path]
# else:
# # throw an exception here?
# return None
# path = []
# result_labels = []
# if max_pause_beats == 0:
# n_beats = total_music_beats
# first_pause = n_beats
# else:
# n_beats = first_pause
# for i in path_i:
# if i >= first_pause:
# path.append(('p', i - first_pause))
# result_labels.append(None)
# else:
# path.append(beat_names[i % n_beats])
# song_i = path[-1][0]
# beat_name = path[-1][1]
# result_labels.append(
# start[song_i][N.where(N.array(beats[song_i]) ==
# beat_name)[0][0]])
# return a radiotool Composition
logging.info("Generating audio")
(comp, cf_locations, result_full_labels,
cost_labels, contracted, result_volume) =\
_generate_audio(
songs, beats, path, path_cost, start,
volume=volume,
volume_breakpoints=volume_breakpoints,
springs=springs,
fade_in_len=fade_in_len, fade_out_len=fade_out_len)
info = {
"beat_length": beat_length,
"contracted": contracted,
"cost": np.sum(path_cost) / len(path),
"path": path,
"path_i": path_i,
"target_labels": target,
"result_labels": result_labels,
"result_full_labels": result_full_labels,
"result_volume": result_volume,
"transitions": [Label("crossfade", loc) for loc in cf_locations],
"path_cost": cost_labels
}
return comp, info | 8ed317392e74545916d1ef33e282bce5c6846009 | 15,590 |
def st_get_ipfs_cache_path(user_did):
"""
Get the root dir of the IPFS cache files.
:param user_did: The user DID
:return: Path: the path of the cache root.
"""
return _st_get_vault_path(user_did) / 'ipfs_cache' | 4217b178025c395619d9def035d11cc96f2b139a | 15,591 |
def create_img_caption_int_data(filepath):
""" function to load captions from text file and convert them to integer
format
:return: dictionary with image ids and associated captions in int format
"""
print("\nLoading caption data : started")
# load caption data
img_caption_dict = load_img_caption_data(filepath)
# merge caption text data
text_data = " ".join([" ".join(txt) for txt in img_caption_dict.values()])
# create word to int mappings
(word_to_int_map, int_to_word_map) = create_word_mappings(text_data)
# convert caption data to int
img_caption_int_dict = {}
for key, value in img_caption_dict.items():
img_caption_int_dict[key] = [convert_text_to_int(txt, word_to_int_map)
for txt in value]
print("\nLoading caption data : completed")
return img_caption_int_dict | 6d1a449c1b5be7759c65740440865c72546514ef | 15,592 |
def eigenvector_2d_symmetric(a, b, d, eig, eps=1e-8):
"""Returns normalized eigenvector corresponding to the provided eigenvalue.
Note that this a special case of a 2x2 symmetric matrix where every element of the matrix is passed as an image.
This allows the evaluation of eigenvalues to be vectorized over the entire image. This is much more efficient
than calling the numpy function for computing the eigenvectors for each pixel of the image.
This function solves:
| a-lambda b |
| b d-lambda | [x, y] = 0
Which means that:
bx = (lambda - d) y
or
y = (lambda - a)/b x
This solution is invalid for b == 0. Here we expect orthogonal vectors [1 0] and [0 1].
ax + by = l x
bx + dy = l y
so x = 1 iff b = 0 and l = a
and y = 1 iff b = 0 and l = d
"""
ex = np.zeros(a.shape)
ey = np.zeros(a.shape)
ex[np.abs(a - eig) < eps] = 1
ey[np.abs(d - eig) < eps] = 1
mask = np.abs(b) > eps
tx = b[mask]
ty = eig[mask] - a[mask]
length = np.sqrt(tx * tx + ty * ty)
tx = tx / length
ty = ty / length
ex[mask] = tx
ey[mask] = ty
return ex, ey | 88a97af77e3f3097b6742db340f8e9559fb8164a | 15,593 |
from typing import Optional
def get_protection_path_name(protection: Optional[RouteProtection]) -> str:
"""Get the protection's path name."""
if protection is None:
return DEFAULT_PROTECTION_NAME
return protection | f3abaf21c9ba3cfe6c0ae793afaf018fce20dec9 | 15,594 |
def _get_object_description(target):
"""Return a string describing the *target*"""
if isinstance(target, list):
data = "<list, length {}>".format(len(target))
elif isinstance(target, dict):
data = "<dict, length {}>".format(len(target))
else:
data = target
return data | 57ad3803a702a1199639b8fe950ef14b8278bec1 | 15,595 |
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
""" A map of modules from TF to PyTorch.
I use a map to keep the PyTorch model as
identical to the original PyTorch model as possible.
"""
tf_to_pt_map = {}
if hasattr(model, "transformer"):
if hasattr(model, "lm_loss"):
# We will load also the output bias
tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias
if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights:
# We will load also the sequence summary
tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight
tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias
if (
hasattr(model, "logits_proj")
and config.finetuning_task is not None
and "model/regression_{}/logit/kernel".format(config.finetuning_task) in tf_weights
):
tf_to_pt_map["model/regression_{}/logit/kernel".format(config.finetuning_task)] = model.logits_proj.weight
tf_to_pt_map["model/regression_{}/logit/bias".format(config.finetuning_task)] = model.logits_proj.bias
# Now load the rest of the transformer
model = model.transformer
# Embeddings and output
tf_to_pt_map.update(
{
"model/transformer/word_embedding/lookup_table": model.word_embedding.weight,
"model/transformer/mask_emb/mask_emb": model.mask_emb,
}
)
# Transformer blocks
for i, b in enumerate(model.layer):
layer_str = "model/transformer/layer_%d/" % i
tf_to_pt_map.update(
{
layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
layer_str + "rel_attn/o/kernel": b.rel_attn.o,
layer_str + "rel_attn/q/kernel": b.rel_attn.q,
layer_str + "rel_attn/k/kernel": b.rel_attn.k,
layer_str + "rel_attn/r/kernel": b.rel_attn.r,
layer_str + "rel_attn/v/kernel": b.rel_attn.v,
layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
}
)
# Relative positioning biases
if config.untie_r:
r_r_list = []
r_w_list = []
r_s_list = []
seg_embed_list = []
for b in model.layer:
r_r_list.append(b.rel_attn.r_r_bias)
r_w_list.append(b.rel_attn.r_w_bias)
r_s_list.append(b.rel_attn.r_s_bias)
seg_embed_list.append(b.rel_attn.seg_embed)
else:
r_r_list = [model.r_r_bias]
r_w_list = [model.r_w_bias]
r_s_list = [model.r_s_bias]
seg_embed_list = [model.seg_embed]
tf_to_pt_map.update(
{
"model/transformer/r_r_bias": r_r_list,
"model/transformer/r_w_bias": r_w_list,
"model/transformer/r_s_bias": r_s_list,
"model/transformer/seg_embed": seg_embed_list,
}
)
return tf_to_pt_map | b822a5f5effcf1d925dec0e6c6b166ecb89b6627 | 15,596 |
def dynamicviewset(viewset):
"""
The activate route only makes sense if
user activation is required, remove the
route if activation is turned off
"""
if not settings['REQUIRE_ACTIVATION'] and hasattr(viewset, 'activate'):
delattr(viewset, 'activate')
return viewset | f31a191c7c4d51163f588fa4e728f92fb7d43816 | 15,597 |
import random
def generate_arabic_place_name(min_length=0):
"""Return a randomly generated, potentially multi-word fake Arabic place name"""
make_name = lambda n_words: ' '.join(random.sample(place_names, n_words))
n_words = 3
name = make_name(n_words)
while len(name) < min_length:
n_words += 1
name = make_name(n_words)
return name | 7efc760b8dcf5f8807e2d203542fa637908cbad2 | 15,598 |
def find_cutoffs(x,y,crdist,deltas):
"""function for identifying locations of cutoffs along a centerline
and the indices of the segments that will become part of the oxbows
from MeanderPy
x,y - coordinates of centerline
crdist - critical cutoff distance
deltas - distance between neighboring points along the centerline"""
diag_blank_width = int((crdist+20*deltas)/deltas)
# distance matrix for centerline points:
dist = distance.cdist(np.array([x,y]).T,np.array([x,y]).T)
dist[dist>crdist] = np.NaN # set all values that are larger than the cutoff threshold to NaN
# set matrix to NaN along the diagonal zone:
for k in range(-diag_blank_width,diag_blank_width+1):
rows, cols = kth_diag_indices(dist,k)
dist[rows,cols] = np.NaN
i1, i2 = np.where(~np.isnan(dist))
ind1 = i1[np.where(i1<i2)[0]] # get rid of unnecessary indices
ind2 = i2[np.where(i1<i2)[0]] # get rid of unnecessary indices
return ind1, ind2 # return indices of cutoff points and cutoff coordinates | 82de02759c70ab746d2adcfafd04313cbb0a8c4e | 15,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.