content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def is_modified(filename: str) -> bool: """ Given a filename return if it has been modified """ global new_hashes global old_hashes if filename in old_hashes.keys(): if old_hashes[filename] == new_hashes[filename]: return False return True
f5f191a9fc714d0431d8c464630ab6b0c95f13dd
1,500
def _is_url_without_path_query_or_fragment(url_parts): """ Determines if a URL has a blank path, query string and fragment. :param url_parts: A URL. :type url_parts: :class:`urlparse.ParseResult` """ return url_parts.path.strip('/') in ['', 'search'] and url_parts.query == '' \ and url_parts.fragment == ''
4bad1f230adfa77df019519db276a181d57682dd
1,501
import matplotlib import matplotlib.pyplot as plt import copy def delay_waterfall(uvp, blpairs, spw, pol, component='abs-real', average_blpairs=False, fold=False, delay=True, deltasq=False, log=True, lst_in_hrs=True, vmin=None, vmax=None, cmap='YlGnBu', axes=None, figsize=(14, 6), force_plot=False, times=None, title_type='blpair', colorbar=True, **kwargs): """ Plot a 1D delay spectrum waterfall (or spectra) for a group of baselines. Parameters ---------- uvp : UVPspec UVPSpec object, containing delay spectra for a set of baseline-pairs, times, polarizations, and spectral windows. blpairs : list of tuples or lists of tuples List of baseline-pair tuples, or groups of baseline-pair tuples. spw, pol : int or str Which spectral window and polarization to plot. component : str Component of complex spectra to plot, options=['abs', 'real', 'imag', 'abs-real', 'abs-imag']. abs-real is abs(real(data)), whereas 'real' is real(data) Default: 'abs-real'. average_blpairs : bool, optional If True, average over the baseline pairs within each group. fold : bool, optional Whether to fold the power spectrum in :math:`|k_\parallel|`. Default: False. delay : bool, optional Whether to plot the power spectrum in delay units (ns) or cosmological units (h/Mpc). Default: True. deltasq : bool, optional If True, plot dimensionless power spectra, Delta^2. This is ignored if delay=True. Default: False. log : bool, optional Whether to plot the log10 of the data. Default: True. lst_in_hrs : bool, optional If True, LST is plotted in hours, otherwise its plotted in radians. vmin, vmax : float, optional Clip the color scale of the delay spectrum to these min./max. values. If None, use the natural range of the data. Default: None. cmap : str, optional Matplotlib colormap to use. Default: 'YlGnBu'. axes : array of matplotlib.axes, optional Use this to pass in an existing Axes object or array of axes, which the power spectra will be added to. (Warning: Labels and legends will not be altered in this case, even if the existing plot has completely different axis labels etc.) If None, a new Axes object will be created. Default: None. figsize : tuple len-2 integer tuple specifying figure size if axes is None force_plot : bool If plotting a large number of blpairs (>20), this routine will quit unless force_plot == True. times : array_like, optional Float ndarray containing elements from time_avg_array to plot. title_type : str, optional Type of title to put above plot(s). Options = ['blpair', 'blvec'] blpair : "bls: {bl1} x {bl2}" blvec : "bl len {len} m & ang {ang} deg" colorbar : bool, optional Whether to make a colorbar. Default: True kwargs : keyword arguments Additional kwargs to pass to ax.matshow() Returns ------- fig : matplotlib.pyplot.Figure Matplotlib Figure instance if input ax is None. """ # assert component assert component in ['real', 'abs', 'imag', 'abs-real', 'abs-imag'], "Can't parse specified component {}".format(component) fix_negval = component in ['real', 'imag'] and log # Add ungrouped baseline-pairs into a group of their own (expected by the # averaging routines) blpairs_in = blpairs blpairs = [] # Must be a list, not an array for i, blpgrp in enumerate(blpairs_in): if not isinstance(blpgrp, list): blpairs.append([blpairs_in[i],]) else: blpairs.append(blpairs_in[i]) # iterate through and make sure they are blpair integers _blpairs = [] for blpgrp in blpairs: _blpgrp = [] for blp in blpgrp: if isinstance(blp, tuple): blp_int = uvp.antnums_to_blpair(blp) else: blp_int = blp _blpgrp.append(blp_int) _blpairs.append(_blpgrp) blpairs = _blpairs # Select times if requested if times is not None: uvp = uvp.select(times=times, inplace=False) # Average over blpairs or times if requested blpairs_in = copy.deepcopy(blpairs) # Save input blpair list if average_blpairs: uvp_plt = uvp.average_spectra(blpair_groups=blpairs, time_avg=False, inplace=False) else: uvp_plt = copy.deepcopy(uvp) # Fold the power spectra if requested if fold: uvp_plt.fold_spectra() # Convert to Delta^2 units if requested if deltasq and not delay: uvp_plt.convert_to_deltasq() # Get x-axis units (delays in ns, or k_parallel in Mpc^-1 or h Mpc^-1) if delay: dlys = uvp_plt.get_dlys(spw) * 1e9 # ns x = dlys else: k_para = uvp_plt.get_kparas(spw) x = k_para # Extract power spectra into array waterfall = odict() for blgrp in blpairs: # Loop over blpairs in group and plot power spectrum for each one for blp in blgrp: # make key key = (spw, blp, pol) # get power data power = uvp_plt.get_data(key, omit_flags=False) # set flagged power data to nan flags = np.isclose(uvp_plt.get_integrations(key), 0.0) power[flags, :] = np.nan # get component if component == 'abs': power = np.abs(power) elif component == 'real': power = np.real(power) elif component == 'abs-real': power = np.abs(np.real(power)) elif component == 'imag': power = np.imag(power) elif component == 'abs-imag': power = np.abs(np.real(power)) # if real or imag and log is True, set negative values to near zero # this is done so that one can use cmap.set_under() and cmap.set_bad() separately if fix_negval: power[power < 0] = np.abs(power).min() * 1e-6 + 1e-10 # assign to waterfall waterfall[key] = power # If blpairs were averaged, only the first blpair in the group # exists any more (so skip the rest) if average_blpairs: break # check for reasonable number of blpairs to plot... Nkeys = len(waterfall) if Nkeys > 20 and force_plot == False: raise ValueError("Nblps > 20 and force_plot == False, quitting...") # Take logarithm of data if requested if log: for k in waterfall: waterfall[k] = np.log10(np.abs(waterfall[k])) logunits = "\log_{10}" else: logunits = "" # Create new Axes if none specified new_plot = False if axes is None: new_plot = True # figure out how many subplots to make Nkeys = len(waterfall) Nside = int(np.ceil(np.sqrt(Nkeys))) fig, axes = plt.subplots(Nside, Nside, figsize=figsize) # Ensure axes is an ndarray if isinstance(axes, matplotlib.axes._subplots.Axes): axes = np.array([[axes]]) if isinstance(axes, list): axes = np.array(axes) # Ensure its 2D and get side lengths if axes.ndim == 1: axes = axes[:, None] assert axes.ndim == 2, "input axes must have ndim == 2" Nvert, Nhorz = axes.shape # Get LST range: setting y-ticks is tricky due to LST wrapping... y = uvp_plt.lst_avg_array[ uvp_plt.key_to_indices(list(waterfall.keys())[0])[1] ] y = np.unwrap(y) if y[0] > np.pi: # if start is closer to 2pi than 0, lower axis by an octave y -= 2 * np.pi if lst_in_hrs: lst_units = "Hr" y *= 24 / (2 * np.pi) else: lst_units = "rad" # get baseline vectors blvecs = dict(zip([uvp_plt.bl_to_antnums(bl) for bl in uvp_plt.bl_array], uvp_plt.get_ENU_bl_vecs())) # Sanitize power spectrum units psunits = uvp_plt.units if "h^-1" in psunits: psunits = psunits.replace("h^-1", "h^{-1}") if "h^-3" in psunits: psunits = psunits.replace("h^-3", "h^{-3}") if "Hz" in psunits: psunits = psunits.replace("Hz", r"{\rm Hz}") if "str" in psunits: psunits = psunits.replace("str", r"\,{\rm str}") if "Mpc" in psunits and "\\rm" not in psunits: psunits = psunits.replace("Mpc", r"{\rm Mpc}") if "pi" in psunits and "\\pi" not in psunits: psunits = psunits.replace("pi", r"\pi") if "beam normalization not specified" in psunits: psunits = psunits.replace("beam normalization not specified", r"{\rm unnormed}") # Iterate over waterfall keys keys = list(waterfall.keys()) k = 0 for i in range(Nvert): for j in range(Nhorz): # set ax ax = axes[i, j] # turn off subplot if no more plots to make if k >= Nkeys: ax.axis('off') continue # get blpair key for this subplot key = keys[k] blp = uvp_plt.blpair_to_antnums(key[1]) # plot waterfall cax = ax.matshow(waterfall[key], cmap=cmap, aspect='auto', vmin=vmin, vmax=vmax, extent=[x[0], x[-1], y[-1], y[0]], **kwargs) # ax config ax.xaxis.set_ticks_position('bottom') ax.tick_params(labelsize=12) if ax.get_title() == '': if title_type == 'blpair': ax.set_title("bls: {} x {}".format(*blp), y=1) elif title_type == 'blvec': blv = 0.5 * (blvecs[blp[0]] + blvecs[blp[1]]) lens, angs = utils.get_bl_lens_angs([blv], bl_error_tol=1.0) ax.set_title("bl len {len:0.2f} m & {ang:0.0f} deg".format(len=lens[0], ang=angs[0]), y=1) # set colorbar if colorbar: if fix_negval: cb_extend = 'min' else: cb_extend = 'neither' cbar = ax.get_figure().colorbar(cax, ax=ax, extend=cb_extend) cbar.ax.tick_params(labelsize=14) if fix_negval: cbar.ax.set_title("$< 0$",y=-0.05, fontsize=16) # configure left-column plots if j == 0: # set yticks ax.set_ylabel(r"LST [{}]".format(lst_units), fontsize=16) else: ax.set_yticklabels([]) # configure bottom-row plots if k + Nhorz >= Nkeys: if ax.get_xlabel() == "": if delay: ax.set_xlabel(r"$\tau$ $[{\rm ns}]$", fontsize=16) else: ax.set_xlabel("$k_{\parallel}\ h\ Mpc^{-1}$", fontsize=16) else: ax.set_xticklabels([]) k += 1 # make suptitle if axes[0][0].get_figure()._suptitle is None: if deltasq: units = "$%s\Delta^2$ $[%s]$" % (logunits, psunits) else: units = "$%sP(k_\parallel)$ $[%s]$" % (logunits, psunits) spwrange = np.around(np.array(uvp_plt.get_spw_ranges()[spw][:2]) / 1e6, 2) axes[0][0].get_figure().suptitle("{}\n{} polarization | {} -- {} MHz".format(units, pol, *spwrange), y=1.03, fontsize=14) # Return Axes if new_plot: return fig
2d67c74c53096a1b1451008d27b1e5cf9a2f7110
1,502
import math def wgs84_distance(lat1, lon1, lat2, lon2): """Distance (in meters) between two points in WGS84 coord system.""" dLat = math.radians(lat2 - lat1) dLon = math.radians(lon2 - lon1) a = (math.sin(dLat / 2) * math.sin(dLat / 2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dLon / 2) * math.sin(dLon / 2)) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = EARTH_RADIUS * c return d
b700c218c172843922762b741f37b25996fdc047
1,503
def optimize_acq_func(acq_func: AcquisitionFunction, bounds=None, options=None): """Optimizes the acquisition function""" # optimize candidates, _ = optimize_acqf( acq_function=acq_func, bounds=bounds, q=1, num_restarts=20, raw_samples=512, options=options, ) new_x = candidates.detach() return new_x
9aef150a89f646f8f65efe656a2987a7afe9f917
1,504
import json def _recover_distributor(lb_id): """Get cached Distributor object or generate from ovs external_ids { 'dist-lb-id': lb_id, 'dist-vip': vip, 'dist-size': size, 'dist-status': status, 'dist-mac': mac, 'dist-hash-fields': field-list, 'dist-ofport': ofport, # of external iface 'slot-100': 'amphora_id,mac', 'slot-101': 'amphora_id,mac', 'slot-...': 'amphora_id,mac', } """ if _provision_state.state == DISTRIBUTOR_BOOTING: msg = _('Error while recovering loadbalancer %(lb)s.' ' Server status is %(status)s' ) % dict(lb=lb_id, status=_provision_state.state) LOG.error(msg) raise DistributorUsageError(msg) if lb_id in _distributors: return _distributors[lb_id] ret, out, err = _run_vsctl( VSCTL_FIND_EXTERNAL_ID.format(key='dist-lb-id', value=lb_id), extra_args=[VSCTL_JSON_FORMAT]) if ret != 0: msg = _('Error while recovering loadbalancer %(lb)s.' ' Find failed with exit_status=%(ret)d' '\nsterr=%(err)s' ) % dict(lb=lb_id, ret=ret, err=err) LOG.error(msg) _provision_state.go_error(msg) raise DistributorFatalError(msg) # ovs json is a nested [tpye, value] list # br_list = {'data': [[br_name, # ['map', # [['dist-lb-id', lb_id], # ['dist-vip', vip], # ['dist-size', size], # ['dist-status', status], # ['dist-mac', mac], # ['dist-hash-fields', field-list], # ['dist-ofport', ofport], # ['slot-100', amphora_id,mac], # ['slot-101', amphora_id,mac], # ['slot-...', amphora_id,mac]]]]] # 'headings': ['name', 'external_ids']} try: br_list = json.loads(out) br_name = br_list['data'][0][0] br_properties = dict(br_list['data'][0][1][1]) except (ValueError, KeyError, IndexError, TypeError): msg = _('Error while recovering loadbalancer %(lb)s.' ' Could not parse find results %(out)s.' ) % dict(lb=lb_id, out=out) LOG.error(msg) _provision_state.go_error(msg) raise DistributorFatalError(msg) found_id = br_properties.pop('dist-lb-id', None) if lb_id != found_id or len(br_list['data']) != 1: msg = _('Error while recovering loadbalancer %(lb)s. None or' ' duplicate bridge found. out=%(out)s' ) % dict(lb=lb_id, out=br_list) LOG.error(msg) return None # one error type for all property parsing issues, catch all # expected errors try: vip = netaddr.IPAddress(br_properties.pop('dist-vip')) size = int(br_properties.pop('dist-size')) status = br_properties.pop('dist-status') assert status in (ONLINE, DEGRADED, ERROR, NO_MONITOR) mac = netaddr.EUI(br_properties.pop('dist-mac'), dialect=netaddr.mac_unix) iface = _interface_by_mac(mac) hash_selection_fields = br_properties.pop( 'dist-hash-fields').split(',') ofport = int(br_properties.pop('dist-ofport')) except (AssertionError, KeyError, ValueError, UnicodeDecodeError, AddrFormatError, TypeError, IndexError, NotImplementedError, AddrConversionError, StopIteration): # we have a bridge name so we should try to delete it ret, out, err = _run_vsctl(VSCTL_DEL_BR.format(br_name)) killed = 'killed' if ret == 0 else 'kill failed: stderr=%s' % err msg = _('Error while recovering loadbalancer %(lb)s.' ' bad bridge properties %(props)s.' ' Killing bridge %(kill_msg)s' ) % dict(lb=lb_id, props=br_properties, kill_msg=killed) LOG.error(msg) raise DistributorInstanceError(msg) distributor = _Distributor(name=br_name, lb_id=lb_id, vip=vip, mac=mac, iface=iface, size=size) for slot in range(DST_GROUPS_OFFSET, DST_GROUPS_OFFSET + size): slot_key = SLOT_KEY_FORMAT.format(slot) if slot_key in br_properties: amphora_id, amphora_mac = br_properties[slot_key].split(',') # mac = netaddr.EUI(amphora_mac, dialect=netaddr.mac_unix) distributor.destinations[amphora_id] = slot, amphora_mac else: distributor.free_slots.add(slot) distributor.hash_selection_fields = hash_selection_fields distributor.fail = (ERROR == status) distributor.ofport = ofport _distributors[lb_id] = distributor return distributor
a97cb4843515cf83314044af72a91b344d475a2d
1,505
from typing import Literal import logging import warnings def rprecision_score( y_true, y_pred, ratio: float = 1.0, negative_class=-1, zero_division: Literal["warn", 0, 1] = "warn" ): """Calculate r-precision score for multiclass classification. The variables y_true and y_pred are the true and predicted labels respectively. The variable ratio defines the expected number of samples in the negative class relative to the foreground class. See the paper: T. Wang, "High Precision Open-World Website Fingerprinting," in 2020 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, 2020, pp. 231–246, doi: 10.1109/SP.2020.00015. for more information. """ # pylint: disable=too-many-locals logger = logging.getLogger(__name__) pos_labels = (y_true != negative_class) pos_predictions = (y_pred != negative_class) n_true_positive = np.sum(pos_labels & (y_true == y_pred)) logger.debug("n_true_positive: %d", n_true_positive) # Positive predictions which were not correct for positive classes n_wrong_positive = np.sum(pos_labels & pos_predictions & (y_true != y_pred)) n_false_positive = np.sum(~pos_labels & pos_predictions) logger.debug("n_wrong_positive: %d, n_false_positive: %d", n_wrong_positive, n_false_positive) n_positive = np.sum(pos_labels) n_negative = len(y_true) - n_positive logger.debug("n_positive: %d, n_negative: %d", n_positive, n_negative) true_positive_rate = n_true_positive / n_positive wrong_positive_rate = n_wrong_positive / n_positive false_positive_rate = n_false_positive / n_negative if n_true_positive == n_wrong_positive == n_false_positive == 0: if zero_division == "warn": warnings.warn("Attempted division by zero in rprecision. " "Returning 0 instead.", RuntimeWarning) zero_division = 0 return zero_division logger.debug("r_%d-precision = %.3g / (%.3g + %.3g + %d * %.3g)", ratio, true_positive_rate, true_positive_rate, wrong_positive_rate, ratio, false_positive_rate) return true_positive_rate / ( true_positive_rate + wrong_positive_rate + ratio * false_positive_rate)
c16b7cd3ee1226276e336a27649bf45bf105898a
1,506
def setup_dispatcher(dp): """ Adding handlers for events from Telegram """ # commands dp.add_handler(CommandHandler("start", commands.command_start)) dp.add_handler(CommandHandler("help", commands.command_help)) # admin & mod commands dp.add_handler(CommandHandler("admin", admin.admin_command)) dp.add_handler(CommandHandler("bot_stats", admin.bot_user_stats)) dp.add_handler(CommandHandler(f"{broadcast_command[1:]}", broadcast_command_with_message)) dp.add_handler(CommandHandler('add_mod', admin.add_moderator)) dp.add_handler(CommandHandler('remove_mod', admin.remove_moderator)) # conversations pass # callback queries dp.add_handler(CallbackQueryHandler(broadcast_decision_handler, pattern=f"^{CONFIRM_DECLINE_BROADCAST}")) return dp
1b37f48a8e3f9cfe451edb321b20dbde88853a84
1,507
import re import ast def get_version(): """Gets the current version""" _version_re = re.compile(r"__VERSION__\s+=\s+(.*)") with open("leaked/__init__.py", "rb") as init_file: version = str(ast.literal_eval(_version_re.search( init_file.read().decode("utf-8")).group(1))) return version
a6c5a94ca3cb728af38075ac98105be6d82dd3cf
1,508
import re def dir_keys(path): """A function to take a path, and return a list of all the numbers in the path. This is mainly used for sorting by the parameters they contain""" regex = '[-+]?[0-9]+(?:\.[0-9]+)?(?:[eE][-+]?[0-9]+)?' # matching any floating point m = re.findall(regex, path) if(m): val = m else: raise ValueError('Your path does not contain any numbers') val = list(map(float,val)) return val
c2c32772771c9bae23a1fcc949a509eaaf36d602
1,509
def generate_data(n=5, T=1000, random_state=None, initial_data=None): """ Parameter --------- n : int number of variables T : int number of samples random_state : int seed for np.random.seed initial_data : list of np.ndarray dictionary of initial datas """ T_spurious = 20 expon = 1.5 if initial_data is None: permutation = np.random.permutation(n) value = np.random.uniform(low=0.05, high=0.5, size=(n, n)) sign = np.random.choice([-1, 1], size=(n, n)) B0 = np.multiply(value, sign) B0 = np.multiply(B0, np.random.binomial(1, 0.4, size=(n, n))) B0 = np.tril(B0, k=-1) B0 = B0[permutation][:, permutation] value = np.random.uniform(low=0.05, high=0.5, size=(n, n)) sign = np.random.choice([-1, 1], size=(n, n)) B1 = np.multiply(value, sign) B1 = np.multiply(B1, np.random.binomial(1, 0.4, size=(n, n))) causal_order = np.empty(len(permutation)) causal_order[permutation] = np.arange(len(permutation)) causal_order = causal_order.astype(int) else: B0 = initial_data['B0'] B1 = initial_data['B1'] causal_order =initial_data['causal_order'] M1 = np.dot(np.linalg.inv(np.eye(n) - B0), B1); ee = np.empty((n, T + T_spurious)) for i in range(n): ee[i, :] = np.random.normal(size=(1, T + T_spurious)); ee[i, :] = np.multiply(np.sign(ee[i, :]), abs(ee[i, :]) ** expon); ee[i, :] = ee[i, :] - np.mean(ee[i, :]); ee[i, :] = ee[i, :] / np.std(ee[i, :]); std_e = np.random.uniform(size=(n,)) + 0.5 nn = np.dot(np.dot(np.linalg.inv(np.eye(n) - B0), np.diag(std_e)), ee); xx = np.zeros((n, T + T_spurious)) xx[:, 0] = np.random.normal(size=(n, )); for t in range(1, T + T_spurious): xx[:, t] = np.dot(M1, xx[:, t - 1]) + nn[:, t]; data = xx[:, T_spurious + 1 : T_spurious + T]; return data.T, B0, B1, causal_order
5e5c09de44f6db1ba28cd953d6549bb8d31aa3ec
1,510
from typing import List import re def _get_paragraphs(paragraphs: List[str]) -> List[str]: """ Returns the paragraphs of an article's body, annotated with HTML tags. Args: paragraphs (:obj:`List[str]`): List of strings denoting paragraphs. Returns: :obj:`List[str]`: List of paragraphs annotated with HTML tags. """ paragraphs = [_add_html_tag(paragraph, 'p') for paragraph in paragraphs if not re.findall('trends.embed.renderExploreWidget', paragraph)] return paragraphs
a4030efd2145fb15435912a1e08354cabba209e8
1,511
from scipy.stats import gaussian_kde def calculate_kde( ascending: bool = True, evaluate: bool = False, input_ts="-", columns=None, start_date=None, end_date=None, clean=False, skiprows=None, index_type="datetime", source_units=None, target_units=None, names=None, ): """Return the kernel density estimation (KDE) curve.""" tsd = tsutils.common_kwds( input_ts, skiprows=skiprows, names=names, index_type=index_type, start_date=start_date, end_date=end_date, pick=columns, source_units=source_units, target_units=target_units, clean=clean, ) if len(tsd.columns) > 1: raise ValueError( tsutils.error_wrapper( """ Right now "calculate_kde" only support one time-series at a time. You gave {}. """.format( tsd.columns ) ) ) tmptsd = tsd.dropna() ndf = tmptsd.sort_values(tmptsd.columns[0], ascending=ascending) gkde = gaussian_kde(ndf.iloc[:, 0]) if evaluate is True: y = gkde.evaluate(tmptsd.iloc[:, 0]) ndf = pd.DataFrame(y, index=tmptsd.index) else: y = gkde.evaluate(ndf.iloc[:, 0]) ndf = pd.DataFrame(y) return ndf
d654fe75030b8c99361096650c71835aad2d6b3a
1,512
def EPmulk(a, da, k): """ C = A * k """ return a * k, np.absolute(da * k)
4fb2b7ff28db1ff13fa2aa0c68f5d0c25e9ba3d9
1,513
import os import sys def configuration(parent_package='', top_path=None): """ A utility function from numpy.distutils.misc_util to compile Fortran and C codes. This function will be passed to numpy.distutil.core.setup(). """ config = Configuration(None, parent_package, top_path) # Define extern directory where external libraries source codes are. package_name = 'special_functions' extern_dir_name = '_extern' extern_dir = os.path.join('.', package_name, extern_dir_name) macros = [] if sys.platform == 'win32': macros.append(('_USE_MATH_DEFINES', None)) # amos (fortran library) config.add_library( 'amos', sources=[ os.path.join(extern_dir, 'amos', 'mach', '*.f'), os.path.join(extern_dir, 'amos', 'double_precision', '*.f'), os.path.join(extern_dir, 'amos', 'single_precision', '*.f') ], macros=macros) # cephes (c library) config.add_library( 'cephes', sources=[ os.path.join(extern_dir, 'cephes', 'bessel', '*.c'), os.path.join(extern_dir, 'cephes', 'cprob', '*.c'), os.path.join(extern_dir, 'cephes', 'eval', '*.c'), os.path.join(extern_dir, 'cephes', 'cmath', '*.c') ], include_dirs=[ os.path.join(extern_dir, 'cephes', 'eval') ], macros=macros) # If envirinment var "CYTHON_BUILD_IN_SOURCE" exists, cython creates *.c # files in the source code, otherwise in /build. cython_build_in_source = os.environ.get('CYTHON_BUILD_IN_SOURCE', None) if bool(cython_build_in_source): cython_build_dir = None # builds *.c in source alongside *.pyx files else: cython_build_dir = 'build' # Cythontize *.pyx files to generate *.c files. extensions = cythonize( os.path.join('.', package_name, '*.pyx'), build_dir=cython_build_dir, include_path=[os.path.join('.', package_name)], language_level="3", compiler_directives={ 'boundscheck': False, 'cdivision': True, 'wraparound': False, 'nonecheck': False, 'embedsignature': True, 'linetrace': True }) # Add extensions to config per each *.c file for extension in extensions: config.add_extension( extension.name, sources=extension.sources, include_dirs=extension.include_dirs, libraries=['amos', 'cephes'], language=extension.language, define_macros=macros) # Additional files, particularly, the API files to (c)import (*.pxd, *.py) config.add_data_files(os.path.join(package_name, '*.pxd')) # cython API config.add_data_files(os.path.join(package_name, '*.py')) # python API config.add_data_files((package_name, 'LICENSE.txt')) config.add_data_files((package_name, 'AUTHORS.txt')) config.add_data_files((package_name, 'README.rst')) config.add_data_files((package_name, 'CHANGELOG.rst')) return config
9b6604d6124947da8322fd7f7de76bd44fff2e7d
1,514
def decrypt_location(location): """Decrypts the `location` field in Xiami responses to URL.""" if not location: return None rows, url = int(location[:1]), location[1:] urllen = len(url) cols_base = urllen // rows # basic column count rows_ex = urllen % rows # count of rows that have 1 more column matrix = [] for r in range(rows): length = cols_base + 1 if r < rows_ex else cols_base matrix.append(url[:length]) url = url[length:] url = '' for i in range(urllen): url += matrix[i % rows][i // rows] return parse.unquote(url).replace('^', '0')
2fc3062df2786550e2b4839fae4aee5668963cc1
1,515
def sqd_yinfast(samples): """ compute approximate sum of squared difference Using complex convolution (fast, cost o(n*log(n)) )""" # yin_t(tau) = (r_t(0) + r_(t+tau)(0)) - 2r_t(tau) B = len(samples) W = B//2 yin = np.zeros(W) sqdiff = np.zeros(W) kernel = np.zeros(B) # compute r_(t+tau)(0) squares = samples**2 for tau in range(W): sqdiff[tau] = squares[tau:tau+W].sum() # add r_t(0) sqdiff += sqdiff[0] # compute r_t(tau) using kernel convolution in complex domain samples_fft = np.fft.fft(samples) kernel[1:W+1] = samples[W-1::-1] # first half, reversed kernel_fft = np.fft.fft(kernel) r_t_tau = np.fft.ifft(samples_fft * kernel_fft).real[W:] # compute yin_t(tau) yin = sqdiff - 2 * r_t_tau return yin
c97e130960336074f6b0c30590ab8a044b8d63e5
1,516
def get_colours_extend(graph_size, start_set, end_set, source, target, reachable=None): """ Get colours for nodes including source and target nodes. Blue nodes are those in the source set. Orange nodes are those in the start set, not in the source set. Green nodes are those reachable from the source that are in target. Red nodes are those in target that are not reachable from the source. All other nodes are grey. """ # Setup the colours c = [] if reachable is None: reachable = end_set for acc_val in range(graph_size): if acc_val in start_set: if acc_val in source: c.append("dodgerblue") else: c.append("darkorange") elif acc_val in target: if acc_val in reachable: c.append("g") else: c.append("r") else: c.append("gray") return c
d366ed6c4c387d0b4de4440d34d358d5a142661a
1,517
def suspend_circuit(): """ Suspends the circuits for some seconds, allowing the user to exit the house without playing the song. """ circuit.suspend() return render_template("suspend.html", seconds=EXIT_HOUSE_TIMER, name=get_guest_name())
2336207150163ecd302dda6c56758a5405152aec
1,518
def get_scalar_data_from_path(udatapath, name='pressure', x0=0, x1=None, y0=0, y1=None, z0=0, z1=None, t0=0, t1=None, inc=1, frame=None, return_xy=False, verbose=True, slicez=None, crop=None, mode='r', reverse_x=False, reverse_y=False, reverse_z=False): """ Returns a scalar data from a path of udata ... There could be a case that a scalar data such as temperature and pressure is also stored in udata.h5 ... This function serves as a reader of such a quantity If return_xy is True, it returns udata, xx(2d grid), yy(2d grid) Parameters ---------- udatapath: str, a path to udata name: str, name of the dataset in the udata h5 x0: int x1: int y0: int y1: int t0: int t1: int inc: int time increment of data to load from udatapath, default: 1 frame: array-like or int, default: None If an integer is given, it returns a velocity field at that instant of time If an array or a list is given, it returns a velocity field at the given time specified by the array/list. By default, it loads data by a specified increment "inc". If "frame" is given, it is prioritized over the incremental loading. return_xy: bool, defualt: False verbose: bool If True, return the time it took to load udata to memory Returns ------- pdata, (optional- xx, yy, zz(if 3D) """ f = h5py.File(udatapath, 'r') keys = list(f.keys()) f.close() ### if not name in keys: raise ValueError('%s does not exist in the given path' % name) else: if verbose: tau0 = time_mod.time() print('... reading %s from the path' % name) if crop is not None and [x0, x1, y0, y1, z0, z1] == [0, None, 0, None, 0, None]: x0, x1, y0, y1, z0, z1 = crop, -crop, crop, -crop, crop, -crop if mode == 'w' or mode == 'wb': raise ValueError('... w was passed to h5Py.File(...) which would delete the file if it exists. \n' 'Probably, this is not what you want. Pass r for read-only') with h5py.File(udatapath, 'r') as f: if 'z' in f.keys(): dim = 3 else: dim = 2 if dim == 2: if frame is None: pdata = f[name][y0:y1, x0:x1, t0:t1:inc] else: frame = np.asarray(frame) pdata = f[name][y0:y1, x0:x1, frame] if return_xy: xx, yy = f['x'][y0:y1, x0:x1], f['y'][y0:y1, x0:x1] elif dim == 3: if frame is None and slicez is None: pdata = f[name][y0:y1, x0:x1, z0:z1, t0:t1:inc] elif frame is None and slicez is not None: pdata = f[name][y0:y1, x0:x1, slicez, t0:t1:inc] elif frame is not None and slicez is not None: frame = np.asarray(frame) pdata = f[name][y0:y1, x0:x1, slicez, frame] else: frame = np.asarray(frame) pdata = f[name][y0:y1, x0:x1, z0:z1, frame] if return_xy: if slicez is None: xx, yy, zz = f['x'][y0:y1, x0:x1, z0:z1], f['y'][y0:y1, x0:x1, z0:z1], f['z'][y0:y1, x0:x1, z0:z1] else: xx, yy, zz = f['x'][y0:y1, x0:x1, slicez], f['y'][y0:y1, x0:x1, slicez], f['z'][0, 0, slicez] tau1 = time_mod.time() if verbose: print('... time took to load udata in sec: ', tau1 - tau0) if return_xy: if dim == 2: if reverse_x: pdata[...] = pdata[:, ::-1, :] xx[...] = xx[:, ::-1] yy[...] = yy[:, ::-1] if reverse_y: pdata[...] = pdata[:, ::-1, :, :] xx[...] = xx[::-1, :] yy[...] = yy[::-1, :] return pdata, xx, yy elif dim == 3: if reverse_x: pdata[...] = pdata[:, ::-1, :, :] xx[...] = xx[:, ::-1, :] yy[...] = yy[:, ::-1, :] zz[...] = zz[:, ::-1, :] if reverse_y: pdata[...] = pdata[::-1, :, :, :] xx[...] = xx[::-1, :, :] yy[...] = yy[::-1, :, :] zz[...] = zz[::-1, :, :] if reverse_z: pdata[...] = pdata[:, :, ::-1, :] xx[...] = xx[:, :, ::-1] yy[...] = yy[:, :, ::-1] zz[...] = zz[:, :, ::-1] return pdata, xx, yy, zz else: return pdata
ef99d0e3dcd8a15b5c7759dac39fb3b7fbe09632
1,519
from statistics import mean def create_transformed_df(old_df, elem_list, features_list): """elem_list should be in type list""" new_dict = {} for index, elems in zip(old_df.index, old_df[elem_list]): for elem in elems: if elem in new_dict.keys(): for j, feature in enumerate(features_list): new_dict[elem][j].append(float(old_df.loc[index, feature])) else: new_dict[elem] = [[] for i in range(len(features_list))] for j, feature in enumerate(features_list): new_dict[elem][j].append(float(old_df.loc[index, feature])) headers = [elem_list] for i in features_list: headers.append(f'avg_movie_{i}') headers.append('number_of_movies') ##? how to name? new_df = pd.DataFrame(columns=headers) for key in new_dict: row = [] row.append(key) for i, col in enumerate(headers[1:-1]): mean_val = mean(new_dict[key][i]) row.append(mean_val) num = len(new_dict[key][0]) row.append(num) length = len(new_df) new_df.loc[length] = row return new_df
c5d825f446839d9b6d921bf064bb07c102b82905
1,520
def sem_id_semester_get(semester, obs_id): """ retrieves all the sem_id associated with an observer for the semester. :param semester: semester id :type semester: str :param obs_id: observer id :type obs_id: int :rtype: List[str] """ semester_list = [] sem_ids = utils.get_proposal_ids(obs_id) for semid in sem_ids: if semester in semid: semester_list.append(semid) return semester_list
d15b36ccbe1e7a6d2f2cb5016419e259df922881
1,521
def getLabels (dataMatrix, classOfInterest): """ Gets labels on a per class basis that will inputted to the randomForest function Parameters ---------- dataMatrix : anndata object The data file of interest classOfInterest : str The class you will split the data by in the set of dataMatrix.obs Returns ------- labelsDict : dict Dictionary with labels for each class """ dataMatrix = filterNormalize (dataMatrix, classOfInterest) labelsDict = {} for label in np.unique(dataMatrix.obs[classOfInterest]): lists = [] for obs in dataMatrix.obs[classOfInterest]: if obs == label: lists.append('A') else: lists.append('B') labelsDict[label] = lists #this is usually in line w if and else return labelsDict
bf7bcfc4afcd16deedbfcf27c9e1eb1a5dfa603a
1,522
def load_file(file_location): """ Opens a given file and returns its contents. :param str file_location: The absolute path to the file :rtype: str :return: The contents of the file """ with open(file_location, 'r') as file_contents: contents = file_contents.read() return contents
61b78432cffa4c22adc9af31bbad63bf8777737b
1,523
def create_bam(data, args): """ aligner and conversion to BAM file """ workdir = safe_makedir("align") sample = data['name'] # workdir = op.join("align", sample) data['final_bam'] = _align(data['trimmed'], sample, op.abspath(workdir), args.index, args.is_directional, args.bowtie2, args.reference, data['config']) data['order_bam'] = data['final_bam'] return data
81e77af7317f29277d42a37e46f0e5aa719cab3c
1,524
def calculateStorageLocationsDistance(D_loc: pd.DataFrame, input_loccodex: float, input_loccodey: float, output_loccodex: float, output_loccodey: float) -> pd.DataFrame: """ calculate the sum of the rectangular distances from Input point -> physical location -> Output point Args: D_loc (pd.DataFrame): Input location DataFrame. input_loccodex (float): Input X coordinate. input_loccodey (float): Input Y coordinate. output_loccodex (float): Output X coordinate. output_loccodey (float): Output Y coordinate. Returns: D_loc (TYPE): DESCRIPTION. """ D_loc = D_loc.dropna(subset=['LOCCODEX', 'LOCCODEY']) D_loc['INPUT_DISTANCE'] = np.abs(input_loccodex - D_loc['LOCCODEX']) + np.abs(input_loccodey - D_loc['LOCCODEY']) D_loc['OUTPUT_DISTANCE'] = np.abs(output_loccodex - D_loc['LOCCODEX']) + np.abs(output_loccodey - D_loc['LOCCODEY']) return D_loc
3432036119007cb1f33f69106cae8c2cf28d697b
1,525
def join(words, sep = ' '): """join(list [,sep]) -> string Return a string composed of the words in list, with intervening occurrences of sep. The default separator is a single space. (joinfields and join are synonymous) """ return sep.join(words)
2b6a293bc5faba31428f66f214e1991dd9878027
1,526
import codecs def pickle(obj): """ Creates a serialization of the provided object Serialization is done by :mod:`pickle` module. If :mod:`cPickle` package is available, that package will be used instead, yielding a gain in speed. Parameters ---------- obj: :obj:`obj` Object to be serialized. Returns ------- pickle: :obj:`pickle.pickle` Serialized version of the provided object. """ return codecs.encode(pkl.dumps(obj), "base64").decode()
3a36e7d3c1f0fd31a417df21701eb150e3c611a8
1,527
def calc_E_E_AP_d_t(n_p): """1 時間当たりの家電の消費電力量 Args: n_p(float): 仮想居住人数 仮想居住人数 Returns: ndarray: 1 時間当たりの家電の消費電力量 """ schedule = load_schedule() schedule_app = get_schedule_app(schedule) if 1 <= n_p and n_p <= 2: E_E_AP_1_d_t = get_E_E_AP_p_d_t(1, schedule_app) E_E_AP_2_d_t = get_E_E_AP_p_d_t(2, schedule_app) return E_E_AP_1_d_t * (2 - n_p) / (2 - 1) + E_E_AP_2_d_t * (n_p - 1) / (2 - 1) elif 2 <= n_p and n_p <= 3: E_E_AP_2_d_t = get_E_E_AP_p_d_t(2, schedule_app) E_E_AP_3_d_t = get_E_E_AP_p_d_t(3, schedule_app) return E_E_AP_2_d_t * (3 - n_p) / (3 - 2) + E_E_AP_3_d_t * (n_p - 2) / (3 - 2) elif 3 <= n_p and n_p <= 4: E_E_AP_3_d_t = get_E_E_AP_p_d_t(3, schedule_app) E_E_AP_4_d_t = get_E_E_AP_p_d_t(4, schedule_app) return E_E_AP_3_d_t * (4 - n_p) / (4 - 3) + E_E_AP_4_d_t * (n_p - 3) / (4 - 3) else: raise ValueError(n_p)
645052eaedf7cc93d4b171f710d0a29e119fe7cf
1,528
from typing import List import torch def Squeeze_forward(op: Operation, values: List[torch.Tensor], ctx: TorchBackendContext = None, **kwargs) -> torch.Tensor: """ Remove single-dimensional entries from the shape of a tensor. Takes an input axes with a list of axes to squeeze. If axes is not provided, all the single dimensions will be removed from the shape. If an axis is selected with shape entry not equal to one, an error is raised. Inputs (1 - 2) data (differentiable) : T Tensors with at least max(dims) dimensions. axes (optional, non-differentiable) : tensor(int64) List of integers indicating the dimensions to squeeze. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Outputs squeezed (differentiable) : T Reshaped tensor with same data as input. Args: op (Operation): [description] input_values (List[torch.Tensor]): [description] Returns: torch.Tensor: [description] """ ASSERT_ALL_TENSORS_AT_SAME_DEVICE(op=op, values=values) ASSERT_NUM_OF_INPUT(op=op, values=values, min_num_of_input=1, max_num_of_input=2) [squeezing_tensor], axes = values, GET_ATTRIBUTE_FROM_OPERATION(op=op, attribute='axes', compulsive=True) if isinstance(axes, list): for squeezing_dim in sorted(axes, reverse=True): squeezing_tensor = torch.squeeze(squeezing_tensor, squeezing_dim) elif isinstance(axes, int): squeezing_tensor = torch.squeeze(squeezing_tensor, axes) else: raise TypeError(f'Parameter axes of operation {op.name} misunderstood, ' f'expect int value of list of int, while {type(axes)} was given.') return squeezing_tensor
f20c5565aafde993e011efc4e037d6a253a79d30
1,529
def format_test_output(test_name, test_res, H0_unit_root=True): """ Helper function to format output. Return a dictionary with specific keys. Will be used to construct the summary data frame for all unit root tests. TODO: Add functionality of choosing based on the max lag order specified by user. :param test_name: name of the test :param test_res: object that contains corresponding test information. Can be None if test failed. :param H0_unit_root: does the null hypothesis of the test assume a unit root process? Some tests do (ADF), some don't (KPSS). :return: dictionary of summary table for all tests and final decision on stationary vs non-stationary. If test failed (test_res is None), return empty dictionary. """ # Check if the test failed by trying to extract the test statistic if test_name in ('ADF', 'KPSS'): try: test_res['statistic'] except BaseException: test_res = None else: try: test_res.stat except BaseException: test_res = None if test_res is None: return {} # extract necessary information if test_name in ('ADF', 'KPSS'): statistic = test_res['statistic'] crit_val = test_res['critical']['5%'] p_val = test_res['pval'] lags = test_res['resstore'].usedlag if test_name == 'ADF' else test_res['lags'] else: statistic = test_res.stat crit_val = test_res.critical_values['5%'] p_val = test_res.pvalue lags = test_res.lags if H0_unit_root: H0 = 'The process is non-stationary' stationary = "yes" if p_val < 0.05 else "not" else: H0 = 'The process is stationary' stationary = "yes" if p_val > 0.05 else "not" out = { 'test_name': test_name, 'statistic': statistic, 'crit_val': crit_val, 'p_val': p_val, 'lags': int(lags), 'stationary': stationary, 'Null Hypothesis': H0 } return out
9d4211475016497659873ef6b2ab87fda34b2af2
1,530
import functools def build_dataset(instruction_dicts, dataset_from_file_fn, shuffle_files=False, parallel_reads=64): """Constructs a `tf.data.Dataset` from TFRecord files. Args: instruction_dicts: `list` of {'filepath':, 'mask':, 'offset_mask':} containing the information about which files and which examples to use. The boolean mask will be repeated and zipped with the examples from filepath. dataset_from_file_fn: function returning a `tf.data.Dataset` given a filename. shuffle_files: `bool`, Whether to shuffle the input filenames. parallel_reads: `int`, how many files to read in parallel. Returns: `tf.data.Dataset` """ # First case: All examples are taken (No value skipped) if _no_examples_skipped(instruction_dicts): # Only use the filenames as instruction instruction_ds = tf.data.Dataset.from_tensor_slices([ d["filepath"] for d in instruction_dicts ]) build_ds_from_instruction = dataset_from_file_fn # Second case: Use the instructions to read the examples else: instruction_ds = _build_instruction_ds(instruction_dicts) build_ds_from_instruction = functools.partial( _build_ds_from_instruction, ds_from_file_fn=dataset_from_file_fn, ) # If shuffle is True, we shuffle the instructions/shards if shuffle_files: instruction_ds = instruction_ds.shuffle(len(instruction_dicts)) # Use interleave to parallel read files and decode records ds = instruction_ds.interleave( build_ds_from_instruction, cycle_length=parallel_reads, num_parallel_calls=tf.data.experimental.AUTOTUNE) return ds
6918db594b74d75d5fbbebf70b0f2811366c20b5
1,531
def _SetRunOptionInRequest(run_option, run_schedule, request, messages): """Returns request with the run option set.""" if run_option == 'manual': arg_utils.SetFieldInMessage( request, 'googleCloudDatacatalogV1alpha3Crawler.config.adHocRun', messages.GoogleCloudDatacatalogV1alpha3AdhocRun()) elif run_option == 'scheduled': scheduled_run_option = arg_utils.ChoiceToEnum( run_schedule, (messages.GoogleCloudDatacatalogV1alpha3ScheduledRun .ScheduledRunOptionValueValuesEnum)) arg_utils.SetFieldInMessage( request, 'googleCloudDatacatalogV1alpha3Crawler.config.scheduledRun.scheduledRunOption', scheduled_run_option) return request
9f93aaa6b9ec3ba9350c10b914439b16ec7c19a9
1,532
from unittest.mock import patch def test_rank_closest(): """test if phoneme-inventory is ranked correctly according to feature vectore distance to a given phoneme""" # set up custom class, create instance of it class EtymMonkeyrank_closest: def __init__(self): self.phoneme_inventory, self.dm_called_with = None, [] self.dm_return = iter([1, 0, 2]) def distance_measure(self, *args): arglist = [*args] self.dm_called_with.append(arglist) return next(self.dm_return) mocketym = EtymMonkeyrank_closest() # assert exception and exception message with raises(InventoryMissingError) as inventorymissingerror_mock: Etym.rank_closest( self=mocketym, ph="d", howmany=float("inf"), inv=None) assert str(inventorymissingerror_mock.value ) == "define phoneme inventory or forms.csv" # set up2: mock pick_minmax with patch("loanpy.helpers.pick_minmax") as pick_minmax_mock: pick_minmax_mock.return_value = ["b", "a", "c"] # assert assert Etym.rank_closest( self=mocketym, ph="d", inv=[ "a", "b", "c"]) == "b, a, c" # assert calls assert mocketym.dm_called_with == [['d', 'a'], ['d', 'b'], ['d', 'c']] pick_minmax_mock.assert_called_with( [('a', 1), ('b', 0), ('c', 2)], float("inf")) # set up3: overwrite mock class instance, mock pick_minmax anew mocketym = EtymMonkeyrank_closest() with patch("loanpy.helpers.pick_minmax") as pick_minmax_mock: pick_minmax_mock.return_value = ["b", "a"] # assert pick_minmax picks mins correctly again assert Etym.rank_closest( self=mocketym, ph="d", inv=[ "a", "b", "c"], howmany=2) == "b, a" # assert calls assert mocketym.dm_called_with == [['d', 'a'], ['d', 'b'], ['d', 'c']] pick_minmax_mock.assert_called_with([('a', 1), ('b', 0), ('c', 2)], 2) # set up4: check if phoneme inventory can be accessed through self mocketym = EtymMonkeyrank_closest() mocketym.phoneme_inventory = ["a", "b", "c"] with patch("loanpy.helpers.pick_minmax") as pick_minmax_mock: pick_minmax_mock.return_value = "b" # assert pick_minmax picks mins correctly again assert Etym.rank_closest( self=mocketym, ph="d", inv=None, howmany=1) == "b" # assert calls assert mocketym.dm_called_with == [['d', 'a'], ['d', 'b'], ['d', 'c']] pick_minmax_mock.assert_called_with([('a', 1), ('b', 0), ('c', 2)], 1) # tear down del mocketym, EtymMonkeyrank_closest
6ad838f0961fb311ce68402b87f68960a1ce816f
1,533
from datetime import datetime def create_virtual_machine(module, azure): """ Create new virtual machine module : AnsibleModule object azure: authenticated azure ServiceManagementService object Returns: True if a new virtual machine was created, false otherwise """ name = module.params.get('name') hostname = module.params.get('hostname') or name + ".cloudapp.net" endpoints = module.params.get('endpoints').split(',') ssh_cert_path = module.params.get('ssh_cert_path') user = module.params.get('user') password = module.params.get('password') location = module.params.get('location') role_size = module.params.get('role_size') storage_account = module.params.get('storage_account') image = module.params.get('image') virtual_network_name = module.params.get('virtual_network_name') wait = module.params.get('wait') wait_timeout = int(module.params.get('wait_timeout')) # Check if a deployment with the same name already exists cloud_service_name_available = azure.check_hosted_service_name_availability(name) if not cloud_service_name_available.result: changed = False else: changed = True # Create cloud service if necessary try: result = azure.create_hosted_service(service_name=name, label=name, location=location) _wait_for_completion(azure, result, wait_timeout, "create_hosted_service") except WindowsAzureError as e: module.fail_json(msg="failed to create the new service name, it already exists: %s" % str(e)) # Create linux configuration disable_ssh_password_authentication = not password linux_config = LinuxConfigurationSet(hostname, user, password, disable_ssh_password_authentication) # Add ssh certificates if specified if ssh_cert_path: fingerprint, pkcs12_base64 = get_ssh_certificate_tokens(module, ssh_cert_path) # Add certificate to cloud service result = azure.add_service_certificate(name, pkcs12_base64, 'pfx', '') _wait_for_completion(azure, result, wait_timeout, "add_service_certificate") # Create ssh config ssh_config = SSH() ssh_config.public_keys = PublicKeys() authorized_keys_path = u'/home/%s/.ssh/authorized_keys' % user ssh_config.public_keys.public_keys.append(PublicKey(path=authorized_keys_path, fingerprint=fingerprint)) # Append ssh config to linux machine config linux_config.ssh = ssh_config # Create network configuration network_config = ConfigurationSetInputEndpoints() network_config.configuration_set_type = 'NetworkConfiguration' network_config.subnet_names = [] network_config.public_ips = None for port in endpoints: network_config.input_endpoints.append(ConfigurationSetInputEndpoint(name='TCP-%s' % port, protocol='TCP', port=port, local_port=port)) # First determine where to store disk today = datetime.date.today().strftime('%Y-%m-%d') disk_prefix = u'%s-%s' % (name, name) media_link = u'http://%s.blob.core.windows.net/vhds/%s-%s.vhd' % (storage_account, disk_prefix, today) # Create system hard disk os_hd = OSVirtualHardDisk(image, media_link) # Spin up virtual machine try: result = azure.create_virtual_machine_deployment(service_name=name, deployment_name=name, deployment_slot='production', label=name, role_name=name, system_config=linux_config, network_config=network_config, os_virtual_hard_disk=os_hd, role_size=role_size, role_type='PersistentVMRole', virtual_network_name=virtual_network_name) _wait_for_completion(azure, result, wait_timeout, "create_virtual_machine_deployment") except WindowsAzureError as e: module.fail_json(msg="failed to create the new virtual machine, error was: %s" % str(e)) try: deployment = azure.get_deployment_by_name(service_name=name, deployment_name=name) return (changed, urlparse(deployment.url).hostname, deployment) except WindowsAzureError as e: module.fail_json(msg="failed to lookup the deployment information for %s, error was: %s" % (name, str(e)))
88006dec9f8e00307f4862e2cdab203867f15558
1,534
def calcCumulOverlap(modes1, modes2, array=False): """Returns cumulative overlap of modes in *modes2* with those in *modes1*. Returns a number of *modes1* contains a single :class:`.Mode` or a :class:`.Vector` instance. If *modes1* contains multiple modes, returns an array. Elements of the array correspond to cumulative overlaps for modes in *modes1* with those in *modes2*. If *array* is **True**, returns an array of cumulative overlaps. Returned array has the shape ``(len(modes1), len(modes2))``. Each row corresponds to cumulative overlaps calculated for modes in *modes1* with those in *modes2*. Each value in a row corresponds to cumulative overlap calculated using upto that many number of modes from *modes2*.""" overlap = calcOverlap(modes1, modes2) if array: return np.sqrt(np.power(overlap, 2).sum(axis=overlap.ndim-1)) else: return np.sqrt(np.power(overlap, 2).cumsum(axis=overlap.ndim-1))
6ce8c85b778ca06e1f26f9d66151656b30a4837a
1,535
import multiprocessing import tqdm def apply_ntimes(func, n, args, verbose=True, timeout=None): """ Applies `n` times the function `func` on `args` (useful if, eg, `func` is partly random). Parameters ---------- func : function func must be pickable, see https://docs.python.org/2/library/pickle.html#what-can-be-pickled-and-unpickled . n : int args : any timeout : int or float If given, the computation is cancelled if it hasn't returned a result before `timeout` seconds. Returns ------- type Result of the computation of func(iter). """ pool = multiprocessing.Pool() multiple_results = [pool.apply_async(func, args) for _ in range(n)] pool.close() return [res.get(timeout) for res in tqdm(multiple_results, desc='# castor.parallel.apply_ntimes', disable = True)]
91aca94c49b7cf74ceaf5f093f21853bbd310df1
1,536
def travel_time_without_Rebalancing(tnet, i, j, exo=0): """ evalute the travel time function for edge i->j Parameters ---------- tnet: transportation network object i: starting node of edge j: ending node of edge Returns ------- float """ return sum( [tnet.fcoeffs[n] * ((tnet.G_supergraph[i][j]['flowNoRebalancing'] +exo )/ tnet.G_supergraph[i][j]['capacity']) ** n for n in range(len(tnet.fcoeffs))])
00ae58356d1a808d34a559267134cb52fc8b0dc5
1,537
def twistless(*args): """ Wraps the entry point function, this function should setup and run a twisted reactor. A twisted task will be created to constantly schedule other stackless tasklets as often as the timesched argument. """ def _twistless(func): """ Wrap the given function """ @wraps(func) def wrapped(*args, **kwargs): """ Calls the wrapped function in a stackless tasklet and sets up a looping twisted task to pump the schedueler. """ @wraps(func) def execute(): """ Execute the entry point and create a looping call. """ reactor_tasklet = sl.getcurrent() task.LoopingCall(sl.schedule).start(timesched) func(*args, **kwargs) sl.tasklet(execute)() sl.run() return wrapped # Add the timeshed arg if it is not given. if len(args) == 1 and callable(args[0]): timesched = DEFAULT_TIMESCHED return _twistless(args[0]) else: timesched = args[0] if len(args) >= 1 else DEFAULT_TIMESCHED return _twistless
75f51549bde9e07316e9dcb31c95bdf81a3cd793
1,538
import numpy import math def enhance_with_function(images, labels, ratio, enhance_func): """ :param images: :param labels: :param ratio: the ratio of max input class. for example, highest sample count is 1000, ratio is 3, the result will be around 1000 * 3 * how_many_classes :param enhance_func the func used for enhance f(image, label, how_many_to_generate) :return: new genrated features and labels """ inputs_per_class = numpy.bincount(labels) max_inputs = numpy.max(inputs_per_class) # One Class for i in range(len(inputs_per_class)): input_ratio = math.ceil((max_inputs * ratio - inputs_per_class[i]) / inputs_per_class[i]) print("generating class:{} with ratio:{}, max input:{}, current:{}".format( i, input_ratio, max_inputs, inputs_per_class[i])) if input_ratio <= 1: continue new_features = [] new_labels = [] mask = numpy.where(labels == i) for feature in images[mask]: generated_images = enhance_func(feature, input_ratio) for generated_image in generated_images: new_features.append(generated_image) new_labels.append(i) images = numpy.append(images, new_features, axis=0) labels = numpy.append(labels, new_labels, axis=0) return images, labels
d16b7d3726902653bce94c11dba808da1ee88d09
1,539
async def port_create( request: Request, server_id: int, port: PortCreate, db=Depends(get_db), user=Depends(get_current_active_admin), ): """ Create a new port on server """ db_port = create_port(db, server_id, port) trigger_tc(db_port) return db_port
28e747b9af9ed04de911b1fc30653539e9e108cb
1,540
import os def main(): """First function to be called""" # Clear the screen using module function. clear_screen_module.clear_screen() print("This script prints absolute paths of all files in current directory.\n") current_dir = os.getcwd() print(f"Current directory: {current_dir}\n") print("Files in current dir are as below with their absolute paths,\n") # Call function to list absolute paths of files. list_abs_path_of_files(current_dir) print("\nAll files are listed above.\n") return None
fabbccba629876133f638ed83fe60922cc5284fa
1,541
def rectangle_area(base, height): """Returns the area of a rectangle""" base = float(base) height = float(height) if (base < 0.0 or height < 0.0): raise ValueError('Negative numbers are not allowed') return base * height
6dc1ea897cdeba1eb84813cefdab659abf5197ea
1,542
def pipe(*args, **kwargs): """A processor that replaces the text of a field of an item. Args: item (dict): The entry to process kwargs (dict): The keyword arguments passed to the wrapper Kwargs: conf (dict): The pipe configuration. Must contain the key 'rule'. rule (dict): can be either a dict or list of dicts. Must contain the keys 'find' and 'replace'. May contain the key 'param'. find (str): The string to find. replace (str): The string replacement. param (str): The type of replacement. Must be one of: 'first', 'last', or 'every' (default: 'every'). assign (str): Attribute to assign parsed content (default: strreplace) field (str): Item attribute to operate on (default: 'content') Yields: dict: an item with replaced content Examples: >>> conf = {'rule': {'find': 'hello', 'replace': 'bye'}} >>> item = {'content': 'hello world'} >>> next(pipe(item, conf=conf))['strreplace'] == 'bye world' True >>> rules = [ ... {'find': 'Gr', 'replace': 'M'}, ... {'find': 'e', 'replace': 'a', 'param': 'last'}] >>> conf = {'rule': rules} >>> kwargs = {'conf': conf, 'field': 'title', 'assign': 'result'} >>> item = {'title': 'Greetings'} >>> next(pipe(item, **kwargs))['result'] == 'Meatings' True """ return parser(*args, **kwargs)
29be8fad7df2eb674633abd160b818ed4d6697b2
1,543
def adjoint(g): """Return the adjoint of a rigid body transformation g.""" adg = np.zeros((6, 6)) R_part, p = g[:3, :3], g[:3, 3] pR = skew(p) @ R_part adg[:3, :3] = R_part adg[-3:, -3:] = R_part adg[:3, -3:] = pR return adg
6ef82620aa6db984956c7a858ebf0e8715e1e9df
1,544
def dmp_rr_yun0_sqf_list(f, u, K): """Compute square-free decomposition of ``f`` in zero-characteristic ring ``K``. References ========== * :cite:`LeeM2013factor`, page 8 """ if dmp_ground_p(f, None, u): return [] result, count = [], 1 qs = [dmp_diff_in(f, 1, i, u, K) for i in range(u + 1)] g = f for q in qs: g = dmp_gcd(g, q, u, K) while not dmp_one_p(f, u, K): for i in range(u + 1): qs[i] = dmp_quo(qs[i], g, u, K) f = dmp_quo(f, g, u, K) for i in range(u + 1): qs[i] = dmp_sub(qs[i], dmp_diff_in(f, 1, i, u, K), u, K) g = f for q in qs: g = dmp_gcd(g, q, u, K) if not dmp_one_p(g, u, K): result.append((g, count)) count += 1 return result
cf917fb0f0cfd505328c07a09fe07cafd8872d7e
1,545
import argparse import shlex def parse_group(rule): """ Parse the group line """ parser = argparse.ArgumentParser() rules = shlex.split(rule) rules.pop(0) parser.add_argument("--name", dest="name", action="store") parser.add_argument("--gid", dest="gid", action="store") args = clean_args(vars(parser.parse_args(rules))) parser = None return args
5d7031fe91e312b82b76c5a8acf458de5c6448ac
1,546
import os def register_module(): """Registers this module for use.""" def on_module_disable(): tags.Registry.remove_tag_binding(TextFileUploadTag.binding_name) tags.EditorBlacklists.unregister( TextFileUploadTag.binding_name, tags.EditorBlacklists.COURSE_SCOPE) tags.EditorBlacklists.unregister( TextFileUploadTag.binding_name, tags.EditorBlacklists.DESCRIPTIVE_SCOPE) def on_module_enable(): tags.Registry.add_tag_binding( TextFileUploadTag.binding_name, TextFileUploadTag) tags.EditorBlacklists.register( TextFileUploadTag.binding_name, tags.EditorBlacklists.COURSE_SCOPE) tags.EditorBlacklists.register( TextFileUploadTag.binding_name, tags.EditorBlacklists.DESCRIPTIVE_SCOPE) global_routes = [ (os.path.join(_RESOURCES_PATH, '.*'), tags.ResourcesHandler), ] namespaced_routes = [ (_POST_ACTION_SUFFIX, TextFileUploadHandler), ] global custom_module custom_module = custom_modules.Module( 'Student Text File Submission Upload', 'Adds a custom tag for students to upload text files <= 1MB in size.', global_routes, namespaced_routes, notify_module_disabled=on_module_disable, notify_module_enabled=on_module_enable, ) return custom_module
ae58ca8e095147a73285d33b820256e754997ef1
1,547
def angle2trig(theta): """Convert angle to a reportlab ready tuple. Arguments: - theta - Angle in degrees, counter clockwise from horizontal Returns a representation of the passed angle in a format suitable for ReportLab rotations (i.e. cos(theta), sin(theta), -sin(theta), cos(theta) tuple) """ c = cos(theta * pi / 180) s = sin(theta * pi / 180) return (c, s, -s, c)
b4ad079b5b9fb889b26eec37c1d14ae97a34be50
1,548
def get_state_z0_pure_state_vector() -> np.ndarray: """Returns the pure state vector for :math:`|0\\rangle`. Returns ------- np.ndarray the pure state vector. """ vec = np.array([1, 0], dtype=np.complex128) return vec
53a7485572ea8fed8fcb8155923692050092c881
1,549
def HSV_to_CMYKratio(hsv): """Converts HSV color space to CMYK (ratio representation)""" rgb = HSV_to_RGB(hsv) return RGB_to_CMYKratio(rgb)
c6268c86dc425d7f5b386fd9dbb56e5299d9573b
1,550
def delete_single_culture(user_id, culture_id): """Delete a culture.""" try: culture = Culture.query.filter_by(user_id=user_id).filter_by(culture_id=culture_id).first() if not culture: response_object = { 'status': 'fail', 'message': f'{culture_id} does not exist.' } return jsonify(response_object), 404 else: db.session.delete(culture) db.session.commit() response_object = { 'status': 'success', 'message': f'{culture_id} was deleted.' } return jsonify(response_object), 200 except exc.IntegrityError as e: db.session.rollback() response_object = { 'status': 'fail', 'message': 'Invalid payload.' } return jsonify(response_object), 400
e96ab6e653b2d191e1c0977ee9dace114c6056ce
1,551
def create_atomic_chunk(im, chunk_coord, aff_dtype=np.float32, verbose=True): """ Creates single atomic chunk :param im: IngestionManager :param chunk_coord: np.ndarray array of three ints :param aff_dtype: np.dtype np.float64 or np.float32 :param verbose: bool :return: """ chunk_coord = np.array(list(chunk_coord), dtype=np.int) edge_dict = collect_edge_data(im, chunk_coord, aff_dtype=aff_dtype) mapping = collect_agglomeration_data(im, chunk_coord) active_edge_dict, isolated_ids = define_active_edges(edge_dict, mapping) edge_ids = {} edge_affs = {} edge_areas = {} for k in edge_dict.keys(): if k == "cross": edge_ids[k] = np.concatenate([edge_dict[k]["sv1"][:, None], edge_dict[k]["sv2"][:, None]], axis=1) continue sv1_conn = edge_dict[k]["sv1"][active_edge_dict[k]] sv2_conn = edge_dict[k]["sv2"][active_edge_dict[k]] aff_conn = edge_dict[k]["aff"][active_edge_dict[k]] area_conn = edge_dict[k]["area"][active_edge_dict[k]] edge_ids[f"{k}_connected"] = np.concatenate([sv1_conn[:, None], sv2_conn[:, None]], axis=1) edge_affs[f"{k}_connected"] = aff_conn.astype(np.float32) edge_areas[f"{k}_connected"] = area_conn sv1_disconn = edge_dict[k]["sv1"][~active_edge_dict[k]] sv2_disconn = edge_dict[k]["sv2"][~active_edge_dict[k]] aff_disconn = edge_dict[k]["aff"][~active_edge_dict[k]] area_disconn = edge_dict[k]["area"][~active_edge_dict[k]] edge_ids[f"{k}_disconnected"] = np.concatenate([sv1_disconn[:, None], sv2_disconn[:, None]], axis=1) edge_affs[f"{k}_disconnected"] = aff_disconn.astype(np.float32) edge_areas[f"{k}_disconnected"] = area_disconn im.cg.add_atomic_edges_in_chunks(edge_ids, edge_affs, edge_areas, isolated_node_ids=isolated_ids) return edge_ids, edge_affs, edge_areas
6096e22b35a800782f394a45b6307aec23c71d57
1,552
def add_adult(request): """ Add a new adult record :param request: :return: """ args = dict() app = AppUtil.get_by_user(user=request.user) if request.method == 'POST': form = AddAdultForm(request.POST) if form.is_valid(): adult = form.save(commit=False) adult.application = app[0] adult.save() return redirect('adult_salary', adult_id=adult.id) else: form = AddAdultForm() args['form'] = form args['nav'] = AppUtil.get_nav(nav=nav, url='adults', app=app[0]) args['progress'] = AppUtil.get_app_progress(app=app[0]) return render(request, "eat/user/application/adult/add_edit.html", args)
8998601a05acd875fb65008fb85bbcdac7ad418d
1,553
import logging import sys import inspect def replace(target_obj): """A decorator to replace the specified obj. `target_obj` can be a class or a function. Example: ```python class A: def f(self): print('class A') @replace(A) class B: def f(self): print('class B') ``` Args: target_obj (class/func/method): a class, method, or function to be replaced. Returns: A decorator function to replace the input object. """ def decorator(new_obj): if target_obj in OPTIMIZED_CLASSES: logging.warning("{} has been optimized again.".format(target_obj)) setattr(new_obj, "__replaced_class__", target_obj) OPTIMIZED_CLASSES[target_obj] = new_obj for k, v in list(sys.modules.items()): if target_obj.__name__ in v.__dict__ and v.__dict__[target_obj.__name__] is target_obj: delattr(sys.modules[k], target_obj.__name__) setattr(sys.modules[k], target_obj.__name__, new_obj) logging.debug("In module {}, {} is replaced by {}".format(k, target_obj, new_obj)) # replace target_obj if it is used as the base classes. for key in list(v.__dict__.keys()): if ( inspect.isclass(v.__dict__[key]) and v.__dict__[key] != new_obj and target_obj in v.__dict__[key].__bases__ ): idx = v.__dict__[key].__bases__.index(target_obj) bases = list(v.__dict__[key].__bases__) bases[idx] = new_obj v.__dict__[key].__bases__ = tuple(bases) logging.debug( "In module {}, the base class of {} is replaced by {}".format(k, v.__dict__[key], new_obj) ) return new_obj return decorator
0f8bf8d5b18c97ff0a33a5b1c8fb50952742c0a0
1,554
import re def get_layers(model, filter_regexp): """ Filters out the layers according to a regexp. Note that we omit biases. Args: - model: a nn.Module - filter_regexp: a regexp to filter the layers to keep according to their name in model.named_parameters(). For instance, the regexp: down_layers\\.[123456]\\.(conv[12]|identity\\.conv)) is keeping blocks down_layers from 1 to 6, and inside each block is keeping conv1, conv2 and identity.conv. Remarks: - We add (module\\.)? at the beginning of the regexp to account for the possible use of nn.parallel.DataParallel """ # get all parameter names all_layers = map(itemgetter(0), model.named_parameters()) # remove biases all_layers = filter(lambda x: "bias" not in x, all_layers) # remove .weight in all other names (or .weight_orig is spectral norm) all_layers = map(lambda x: x.replace(".weight_orig", ""), all_layers) all_layers = map(lambda x: x.replace(".weight", ""), all_layers) # return filtered layers filter_regexp = "(module\\.)?" + "(" + filter_regexp + ")" r = re.compile(filter_regexp) return list(filter(r.match, all_layers))
d34da2bd7bfcf9827846f4aafc74d8c94ceb0d31
1,555
from typing import Union def decrypt(data: bytes, password: Union[str, bytes]) -> bytes: """ decrypt data :param data: encrypted data :param password: password :return: plain data """ __data = gzip_decompress(data[4:]) if data.startswith(b'moca') else data iv, cipher = __data[:AES.block_size], __data[AES.block_size:] return __create_aes(password, iv).decrypt(cipher)
c6228e10c1498e734a42039071aa6d88356eef84
1,556
def stream_from_url(*args, **kwargs): """ Save the resource as a file on disk iteratively by first asking for the 'content-length' header entry and downloading in chunks. By default we will retry if an HTTP error arises. By default we will uncompress a downloaded file if it is zipped. """ # Just redirect to download_from_url # kwargs.update({'steam': True}) return download_from_url(*args, **kwargs)
2ee598ac7cb19a1f884ad7faad4cec38a5f93c32
1,557
def modulo_3(lhs, ctx): """Element ǒ (num) -> a % 3 (str) -> a split into chunks of size 2 """ return { (NUMBER_TYPE): lambda: lhs % 3, (str): lambda: [lhs[i : i + 2] for i in range(0, len(lhs), 2)], }.get(vy_type(lhs), lambda: vectorise(modulo_3, lhs, ctx=ctx))()
daa2775727af48d76076e54095a2503243368dc1
1,558
import os def _load_score_submission(submission_path, metric, step, data_label=None): """Load the score for a single submission.""" if data_label is None: training_output_path = os.path.join( submission_path, 'training_output') else: training_output_path = os.path.join( submission_path, 'training_output', data_label) if not os.path.isdir(training_output_path): return None folds_path = [ os.path.join(training_output_path, fold_name) for fold_name in os.listdir(training_output_path) if (os.path.isdir(os.path.join(training_output_path, fold_name)) and 'fold_' in fold_name) ] data = {} for fold_id, path in enumerate(folds_path): score_path = os.path.join(path, 'scores.csv') if not os.path.exists(score_path): return scores = pd.read_csv(score_path, index_col=0) scores.columns.name = 'score' data[fold_id] = scores df = pd.concat(data, names=['fold']) metric = metric if metric else slice(None) step = step if step else slice(None) return df.loc[(slice(None), step), metric]
e71f2f943cf5c68d20f0049bb9050e8826d6b45b
1,559
def geolocalizarCiudades(lista_ciudades: list): """Para una lista con nombres de ciudades devuelve una fila de DataFrame. Parámetros ---------- lista_ciudades : list Lista de nombres de ciudades. Devuelve ------- df_Fila: pandas.DataFrame Fila de un DataFrame que incluye el nombre de la ciudad, el par de coordenadas, la dirección completa de la ciudad y una instancia de la clase Ciudad. """ rows = [] for i in lista_ciudades: coord, direccion = geolocalizar(i) rows.append([i, coord, direccion, Ciudad(*coord, i)]) df_Fila = pd.DataFrame( rows, columns=[ "Ciudad", "Coordenadas", "Direccion", "ObjetoCiudad"]) return df_Fila
14d26dba3a2fcef1334e7d13e60b01ff3d3f9ef5
1,560
def HandleConvPaddingModes(x, padding, kernel_shape, strides): """Returns an updated tensor and padding type for REFLECT and SYMMETRIC. Args: x: A 4D tensor with shape [batch_size, height, width, depth]. padding: Padding mode (SAME, VALID, REFLECT, or SYMMETRIC). kernel_shape: Shape of convolution kernel that will be applied. strides: Convolution stride that will be used. Returns: x and padding after adjustments for REFLECT and SYMMETRIC. """ # For 1x1 convolution, all padding modes are the same. if np.all(kernel_shape[:2] == 1): return x, 'VALID' if padding == 'REFLECT' or padding == 'SYMMETRIC': # We manually compute the number of paddings as if 'SAME'. # From Tensorflow kernel, the formulas are as follows. # output_shape = ceil(input_shape / strides) # paddings = (output_shape - 1) * strides + filter_size - input_shape # Let x, y, s be a shorthand notations for input_shape, output_shape, and # strides, respectively. Let (x - 1) = sn + r where 0 <= r < s. Note that # y - 1 = ceil(x / s) - 1 = floor((x - 1) / s) = n # provided that x > 0. Therefore # paddings = n * s + filter_size - (sn + r + 1) # = filter_size - r - 1. input_shape = x.get_shape() # shape at graph construction time img_shape = tf.shape(x)[1:3] # image shape (no batch) at run time remainder = tf.mod(img_shape - 1, strides[1:3]) pad_sizes = kernel_shape[:2] - remainder - 1 pad_rows = pad_sizes[0] pad_cols = pad_sizes[1] pad = tf.stack([[0, 0], tf.stack([pad_rows // 2, (pad_rows + 1) // 2]), tf.stack([pad_cols // 2, (pad_cols + 1) // 2]), [0, 0]]) # Manually pad the input and switch the padding mode to 'VALID'. x = tf.pad(x, pad, mode=padding) x.set_shape([input_shape[0], x.get_shape()[1], x.get_shape()[2], input_shape[3]]) padding = 'VALID' return x, padding
def8d35429e568096dbb5410723c1cf550890707
1,561
import uuid def uuid1_(): """用于生成GUID""" return str(uuid.uuid1())
8b1bf00c2c76429499a4300cc7f75fd075a0bf1c
1,562
def default_if_none(default): """Implements the rule: default if v is None else v""" return default_if_true(lambda v: v is None, default)
13cf841c09e14074c38a7ae2b5fac649518e783d
1,563
from re import DEBUG import os def fftshift(input, bitmask, b=None): """ Apply fftshift along dimensions selected by the {bitmask}. :param bitmask long: :param input array: :param b bool: apply ifftshift """ usage_string = "fftshift [-b] bitmask input output" cmd_str = f'{BART_PATH} ' cmd_str += 'fftshift ' flag_str = '' opt_args = f'' multituples = [] if b is not None: flag_str += f'-b ' cmd_str += flag_str + opt_args + ' ' cmd_str += f"{' '.join([' '.join([str(x) for x in arg]) for arg in zip(*multituples)]).strip()} {bitmask} {NAME}input {NAME}output " cfl.writecfl(NAME + 'input', input) if DEBUG: print(cmd_str) os.system(cmd_str) outputs = cfl.readcfl(NAME + 'output') return outputs
4ce195a1331754a8d54b3281bc478cc3dd540a86
1,564
import asyncio async def async_unload_entry(hass: HomeAssistantType, entry: ConfigEntry) -> bool: """Unload Unifi Protect config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in METEOBRIDGE_PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok
8ef56a9029adb33853b90a9a9ba8e35e67a2d79a
1,565
def _new_correlation_matrix_inverse(new_data, old_corr_mat_inv): """ If old_corr_mat_inv is an approximation for the correlation matrix inverse of a dataset (p1, ..., pn), then the function returns an approximatrion for the correlation matrix inverse of dataset (p1, ..., pn, new_data) TODO : add forgetting parameter lbda """ P = old_corr_mat_inv x = new_data # TODO : numerical instabilities if xTP is not computed first # (order of multiplications) xTP = x.T @ P P = P - (P @ x @ xTP)/(1. + np.dot(xTP, x)) return P
e26d19392ca4d64835d354f2c5008cc7953117ca
1,566
def auc(y, z, round=True): """Compute area under the ROC curve.""" if round: y = y.round() if len(y) == 0 or len(np.unique(y)) < 2: return np.nan return skm.roc_auc_score(y, z)
895e8f37829903ee7e79012a54ecc318401ae4c6
1,567
import os def get_tmp_filepath(_file): """生成一个针对_file的临时文件名""" _path = os.path.dirname(_file) _tmp_filename = os.path.basename(_file) if not _tmp_filename.startswith('.'): _tmp_filename = '.' + _tmp_filename _tmp_filename += '_tmp' _tmp_filepath = os.path.join(_path, _tmp_filename) if os.path.exists(_tmp_filepath): return get_tmp_filepath(_tmp_filepath + '_1') return _tmp_filepath
f566825dec9c3a6330ba5e1578f74c2a171e4296
1,568
def upperLeftOrigin( largeSize, smallSize ): """ The upper left coordinate (tuple) of a small rectangle in a larger rectangle (centered) """ origin = tuple( map( lambda x: int( ( (x[0]-x[1])/2 ) ), zip( largeSize, smallSize )) ) return origin
bda31fc5eb021f40a62b00949ced940ef171005f
1,569
from sys import path def get_supported_events(): """Returns the list of available _local_ templates. If a template exists in the local app, it will take precedence over the default trello_webhooks template. The base assumption for this function is that _if_ a local template exists, then this is an event we are interested in. """ app_template_path = path.join( path.realpath(path.dirname(__file__)), 'templates/trello_webhooks' ) return [t.split('.')[0] for t in listdir(app_template_path)]
794f80589d6697d6930181f55d5271b009f67677
1,570
from re import S import typing import importlib def from_ext(ext: str) -> S: """Get a SignedObject by file extension.""" object_types: typing.List[S] = [RpkiGhostbusters, RpkiManifest, RouteOriginAttestation] entry_point_name = "rpkimancer.sigobj" entry_points = importlib.metadata.entry_points() for entry_point in entry_points.get(entry_point_name, []): log.info(f"trying to load signed object {entry_point.value}") cls = entry_point.load() if issubclass(cls, SignedObject): object_types.append(typing.cast(S, cls)) else: log.warning(f"signed objects must inherit from {SignedObject}") lookup_map = {cls.econtent_type.file_ext: cls for cls in object_types} try: return lookup_map[ext] except KeyError: return lookup_map[ext.lstrip(".")]
5edeb91022b2d97239038e99d565a6879532eeb0
1,571
def plot_audio(audio,time,ResultPath,title): """Plot and save an audio file amplitude over time""" plt.figure() plt.plot(time,audio, linewidth=0.01) plt.ylabel("Amplitude") plt.xlabel("Time (s)") plt.title(title) pathname=ResultPath + title plt.savefig(pathname) plt.show() return()
faf8e6c38e65d6a1caebfdfd0335a92ed570d2b3
1,572
def dataSet(): """ 测试数据集 """ x = [np.array([[1], [2], [3]]), np.array([[2], [3], [4]])] d = np.array([[1], [2]]) return x, d
91b0dfb28ec81a4ca392aafd0c06f81319d5db38
1,573
def config(): """ Get the OpenAPI Document configuration :returns: OpenAPI configuration YAML dict """ with open(get_test_file_path('pygeoapi-test-openapi-config.yml')) as config_file: # noqa return yaml_load(config_file)
23519be12e1f6d9d79210de325a726df16946507
1,574
def convert_broadcast_lesser(node, **kwargs): """Map MXNet's broadcast_lesser operator attributes to onnx's Less operator and return the created node. """ return create_basic_op_node('Less', node, kwargs)
2ef5223ad38b24791d530c0c609859160b9a4c70
1,575
import os import random def randomize_examples(verbalize, path='prompts/',example_filenames="example_" , n_examples=3, onlyverbal=False): """ Randomizes the examples for the initial prompt. Parameters ---------- verbalize : bool If true, examples contain reasoning for the answer, e.g. "because I do not believe in conspiracies." path : TYPE, optional Filepath. The default is 'prompts/'. example_filenames : TYPE, optional How the files containing the examples are named. The default is "example_". n_examples : TYPE, optional How many examples are sampled. The default is 3. onlyverbal : bool, optional If True, examples where there are no numerical answers are used. The default is False. Returns ------- examples_string : TYPE DESCRIPTION. """ # Read all the examples in a directory examples_list = [] for file in os.listdir(path): if file.startswith(example_filenames): examples_list.append(open(path + file, "r").read()) # Remove verbalization if verbalize == False: if onlyverbal == False: for i, value in enumerate(examples_list): temp = examples_list[i] examples_list[i] = temp[0:temp.find("Participant:") + 14] + '.' if onlyverbal == True: for i, value in enumerate(examples_list): temp = examples_list[i] findend = temp.find("Participant:") end_i = temp.find(",", findend) examples_list[i] = temp[0:end_i] + '.' # Randomize the order examples_list = random.sample(examples_list, k=n_examples) # Add to a string that will be added to the prompt for i in range(n_examples): if i == 0: examples_string = examples_list[i] else: examples_string = examples_string + "\n\n" + examples_list[i] return examples_string
cfc1a0cefb79073721bb3b7bf77b8eaf8bb2cc1f
1,576
def histogram2d(x, y, bins_x, bins_y): """Histogram 2d between two continuous row vectors. Parameters ---------- x : array_like Vector array of shape (N,) and of type np.float32 y : array_like Vector array of shape (N,) and of type np.float32 bins_x, bins_y : int64 Number of bins respectively for the x and y variables Returns ------- hist : array_like Array of shape (bins, bins) and of type int64 """ # x-range x_max, x_min = x.max(), x.min() delta_x = 1 / ((x_max - x_min) / bins_x) # y-range y_max, y_min = y.max(), y.min() delta_y = 1 / ((y_max - y_min) / bins_y) # compute histogram 2d xy_bin = np.zeros((np.int64(bins_x), np.int64(bins_y)), dtype=np.int64) for t in range(len(x)): i = (x[t] - x_min) * delta_x j = (y[t] - y_min) * delta_y if 0 <= i < bins_x and 0 <= j < bins_y: xy_bin[int(i), int(j)] += 1 return xy_bin
1d7f88eb0ab25092a826a8f1157895e02608aaba
1,577
from typing import Any from typing import Tuple def xy2latlong(x: float, y: float, ds: Any) -> Tuple[float, float]: """Return lat long coordinate by x, y >>> import gdal >>> path = "../../../tests/data/raster_for_test.tif" >>> ds = gdal.Open(path) >>> xy2latlong(3715171, 2909857, ds) (1.7036231518576481, 48.994284431891565) """ old_cs = osr.SpatialReference() old_cs.ImportFromWkt(ds.GetProjectionRef()) # create the new coordinate system wgs84_wkt = """ GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.01745329251994328, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]]""" new_cs = osr.SpatialReference() new_cs.ImportFromWkt(wgs84_wkt) # create a transform object to convert between coordinate systems transform = osr.CoordinateTransformation(old_cs, new_cs) # get the coordinates in lat long latlong = transform.TransformPoint(x, y) return latlong[0], latlong[1]
01f3a1e2d5c8e842db6668488b0a3d9d9b432295
1,578
def relative_date(r='12m', end_date='today', date_format='%Y-%m-%d', as_string=False, unixtimestamp=False): """ Relative Date function Calculates a datetime from a given end date and a relative reference. INPUT: r - relative date reference as '-12d' accepts d, w, m or y end_date - 'today' (default), date string, datetime object date_format - input format of string & output if requested as_string - True | False (default) decides if output is converted to string from datetime unixtimestamp - converts datetime to an INTEGER unixtimestamp """ # Create Datetime object end_date based on supplied end_date # If not string or 'today' assume already in datetime format if end_date == 'today': end_date = dt.datetime.today() elif isinstance(end_date, str): end_date = dt.datetime.strptime(end_date, date_format) # Breakdown Relative Reference into type (i.e. d, w, m, y) & number r = r[1::] if r[0] == '-' else r dtype, dnum = str(r[-1]).lower(), float(r[0:-1]) # Manipulate based on relative Days, Weeks, Months or Years if dtype == 'd': start_date = end_date - dt.timedelta(days=dnum) elif dtype == 'w': start_date = end_date - dt.timedelta(weeks=dnum) elif dtype == 'm': start_date = end_date - dt.timedelta(weeks=dnum*4) elif dtype == 'y': start_date = end_date - dt.timedelta(weeks=dnum*52.143) # Output as Strings if desirable if as_string is True: start_date = dt.datetime.strftime(start_date, date_format) end_date = dt.datetime.strftime(end_date, date_format) elif unixtimestamp is True: start_date = int(dt.datetime.timestamp(start_date)) end_date = int(dt.datetime.timestamp(end_date)) return start_date, end_date
720f24ce1fafa2b77979c924a9c20b1d6cc86c03
1,579
from re import T def get_iexist_vdw_bond(ipt): """ check if a given mol pair contain any vdw bond, which exists in the query mol. Note that input mol pairs must have cc=0. """ obj, mi, mj = ipt iok = F if np.any( [ set(b) <= set(mi.iasq+mj.iasq) for b in obj.ncbs ] ): iok = T return iok
81af4c03ea988412cb11be3f962e40239cfbadcf
1,580
def getSVG(shape, opts=None, view_vector=(-0, 0, 20.0)): """ Export a shape to SVG """ d = {"width": 800, "height": 800, "marginLeft": 20, "marginTop": 20} if opts: d.update(opts) # need to guess the scale and the coordinate center uom = guessUnitOfMeasure(shape) width = float(d["width"]) height = float(d["height"]) marginLeft = float(d["marginLeft"]) marginTop = float(d["marginTop"]) # TODO: provide option to give 3 views viewVector = FreeCAD.Base.Vector(view_vector) (visibleG0, visibleG1, hiddenG0, hiddenG1) = Drawing.project(shape, viewVector) (hiddenPaths, visiblePaths) = getPaths( Drawing.projectToSVG(shape, viewVector, "") ) # this param is totally undocumented! # get bounding box -- these are all in 2-d space bb = visibleG0.BoundBox bb.add(visibleG1.BoundBox) bb.add(hiddenG0.BoundBox) bb.add(hiddenG1.BoundBox) # width pixels for x, height pixesl for y # massive hack convert pixels to mm unitScale = ( 3.779527559 ) # min( width / bb.XLength * 0.75 , height / bb.YLength * 0.75 ) # compute amount to translate-- move the top left into view (xTranslate, yTranslate) = ( (0 - bb.XMin) + marginLeft / unitScale, (0 - bb.YMax) - marginTop / unitScale, ) # compute paths ( again -- had to strip out freecad crap ) hiddenContent = "" for p in hiddenPaths: hiddenContent += PATHTEMPLATE % p visibleContent = "" for p in visiblePaths: visibleContent += PATHTEMPLATE % p svg = SVG_TEMPLATE % ( { "unitScale": str(unitScale), "strokeWidth": "0.1", "hiddenContent": visibleContent, "xTranslate": str(xTranslate), "yTranslate": str(yTranslate), "width": str(width), "height": str(height), "textboxY": str(height - 30), "uom": str(uom), } ) # svg = SVG_TEMPLATE % ( # {"content": projectedContent} # ) return svg
e9774e6a61712c6fcd421dcc69ade404a1ea7c50
1,581
def load_data(messages_filepath, categories_filepath): """Loads messages and categories data and creates a merged dataframe Args: messages_filepath (str): Path to the messages file categories_filepath (str): Path to the categories file Returns: (pd.DataFrame): A messages and categories dataframe """ messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) return messages.merge(categories, on='id')
1f7308c2f51b587b3b27c35f680225c0c78c85b0
1,582
def is_square_inside(row, col, rows, cols): """Check if row and col is square inside grid having rows and cols.""" return row not in (0, rows - 1) and col not in (0, cols - 1)
f0cdcbc6d9bee6a41fd0cc84b16ffaf0638a522c
1,583
def reshapeLabel(label): """ Reshape 1-D [0,1,...] to 2-D [[1,-1],[-1,1],...]. """ n = label.size(0) y = FloatTensor(n, 2) y[:, 0] = 2 * (0.5 - label) y[:, 1] = - y[:, 0] return y.long()
77716413deb3263b23a6ca8e684274fa67855375
1,584
import torch def _coo_scipy2torch(adj, coalesce=True, use_cuda=False): """ convert a scipy sparse COO matrix to torch """ values = adj.data indices = np.vstack((adj.row, adj.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) ans = torch.sparse.FloatTensor(i, v, torch.Size(adj.shape)) if use_cuda: ans = ans.cuda() if coalesce: ans = ans.coalesce() return ans
27d9db560dc60ec31ec7f152952db201c4e6aafb
1,585
def behavior_by_delta_temp(db_dict: dict, bins: np.ndarray): """ Computes frequency of behavior by delta-temperature achieved during the preceding bout :param db_dict: Debug dictionary created during simulation run :param bins: The bin-edges for dividing the bout delta temperature space :return: A dictionary with behaviors as keys and probability in each bin as values """ selector = np.logical_and(db_dict["sel_behav"] != '', db_dict["sel_behav"] != 'N') behavior_types = np.unique(db_dict["sel_behav"][selector]) all_behavs = db_dict["sel_behav"][selector] all_btemps = db_dict["curr_temp"][selector] all_deltas = np.zeros(all_btemps.size) for i in range(1, all_btemps.size): all_deltas[i] = all_btemps[i] - all_btemps[i-1] ad_counts = np.histogram(all_deltas, bins)[0].astype(np.float) result = {k: np.zeros(bins.size - 1) for k in behavior_types} for behav in behavior_types: b_dtemps = all_deltas[all_behavs == behav] result[behav] = np.histogram(b_dtemps, bins)[0].astype(np.float) / ad_counts return result
5e33a2e4b032d2f1ab0ffcf97e9bbe32e07991b0
1,586
def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=1000, **kwargs): """Creates an EfficientNet model. Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ # ORIGINAL # arch_def = [ # ['ds_r1_k3_s1_e1_c16_se0.25'], # ['ir_r2_k3_s2_e6_c24_se0.25'], # ['ir_r2_k5_s2_e6_c40_se0.25'], # ['ir_r3_k3_s2_e6_c80_se0.25'], # ['ir_r3_k5_s1_e6_c112_se0.25'], # ['ir_r4_k5_s2_e6_c192_se0.25'], # ['ir_r1_k3_s1_e6_c320_se0.25'], # ] # DEBUG arch_def = [ ['ds_r1_k3_s1_e1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r2_k5_s2_e6_c40'], ['ir_r3_k3_s2_e6_c80'], ['ir_r3_k5_s1_e6_c112'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) # NOTE: other models in the family didn't scale the feature count num_features = _round_channels(1280, channel_multiplier, 8, None) model = GenEfficientNet( _decode_arch_def(arch_def, depth_multiplier), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, num_features=num_features, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=swish, **kwargs ) return model
68a15978e44e81349c4162611be252daae7cb857
1,587
def do_add_application_type(request): """定义 dict_class=models.CharField(u"字典类别",max_length=255) dict_type=models.CharField(u"字典类型",max_length=255) dict_name=models.CharField(u"字典名称",max_length=255) dict_value=models.CharField(u"字典值",max_length=255) dict_status=models.IntegerField(u"字典状态") dict_mark=models.CharField(u"字典备注",max_length=1000,null=True,blank=True) """ dict_class=request.POST.get("dict_class") dict_type=request.POST.get("dict_type") dict_name=request.POST.get("dict_name") dict_code=request.POST.get("dict_code") dict_status=0 dict_mark=request.POST.get("dict_mark") try: dicts = Dicts.objects.filter(dict_class=dict_class,dict_type=dict_type,dict_name=dict_name,dict_code=dict_code) if dicts.exists(): return render_json({'code':True, 'msg':u"已存在相同记录信息"}) Dicts.objects.create(dict_class=dict_class,dict_type=dict_type ,dict_name=dict_name,dict_code=dict_code ,dict_status=dict_status,dict_mark=dict_mark) logger.info('insert object to Dicts is success') return render_json({'code':True, 'msg':u"数据保存成功"}) except Exception, e: logger.error('insert object to Dicts is error:{}'.format(repr(e))) return render_json({'code':False, 'msg':u"数据保存失败"})
713a387215132ddb435592cd834537346cfcf024
1,588
def exponential_decay_function(distance: np.ndarray) -> np.ndarray: """Calculate exponential discount factor for action interaction weight matrix. Parameters ----------- distance: array-like, shape (len_list, ) Distance between two slots. """ if not isinstance(distance, np.ndarray) or distance.ndim != 1: raise ValueError("distance must be 1-dimensional ndarray") return np.exp(-distance)
ac434d098274e5119418a2c18641dadcd1ca8dca
1,589
def line_length(line, ellipsoid='WGS-84',shipping=True): """Length of a line in meters, given in geographic coordinates Adapted from https://gis.stackexchange.com/questions/4022/looking-for-a-pythonic-way-to-calculate-the-length-of-a-wkt-linestring#answer-115285 Arguments: line {Shapely LineString} -- a shapely LineString object with WGS-84 coordinates ellipsoid {String} -- string name of an ellipsoid that `geopy` understands (see http://geopy.readthedocs.io/en/latest/#module-geopy.distance) Returns: Length of line in meters """ if shipping == True: if line.geometryType() == 'MultiLineString': return sum(line_length(segment) for segment in line) return sum( vincenty(tuple(reversed(a)), tuple(reversed(b)), ellipsoid=ellipsoid).kilometers for a, b in pairwise(line.coords) ) else: if line.geometryType() == 'MultiLineString': return sum(line_length(segment) for segment in line) return sum( vincenty(a, b, ellipsoid=ellipsoid).kilometers for a, b in pairwise(line.coords) )
bb80b01729f589c0645606581f4a1fc53836e037
1,590
def corr2_coeff(x, y): """A magic function for computing correlation between matrices and arrays. This code is 640x+ faster on large dataset compared to np.corrcoef(). ------------------------------------------------------------------ author: Divakar (https://stackoverflow.com/users/3293881/divakar) url: https://stackoverflow.com/questions/42677677 ------------------------------------------------------------------ """ # input arrays subtract row-wise mean x_sub_mx = x - x.mean(1)[:, None] y_sub_my = y - y.mean(1)[:, None] # sum of squares across rows ssx = (x_sub_mx ** 2).sum(1) ssy = (y_sub_my ** 2).sum(1) return np.dot(x_sub_mx, y_sub_my.T) / np.sqrt(np.dot(ssx[:, None], ssy[None]))
5834294b9a67efdeecfde4546a805d1d136b8796
1,591
from typing import Optional def get_database_url(track: str) -> Optional[URL]: """ Get the database URL based on the environment How the database URL is selected: 1. If a predefined URL for the track is set, use that 2. If no predefined URL is set, generate one based on the preferred database type """ database_default_port_mapping = {MYSQL: 3306, POSTGRES: 5432} uppercase_track = track.upper() track_database_url = env.str(f"K8S_{uppercase_track}_DATABASE_URL", "") if track_database_url: return make_url(track_database_url) database_type = get_database_type() if not database_type: return None deploy_name = get_deploy_name(track) database_port = database_default_port_mapping[database_type] database_host = f"{deploy_name}-db-{database_type}" database_url = ( f"" f"{database_type}://{settings.DATABASE_USER}:{settings.DATABASE_PASSWORD}" f"@{database_host}:{database_port}" f"/{settings.DATABASE_DB}" ) return make_url(database_url)
6a3ccd8bacff1f78bbd21728ca45dd7ae74be7d8
1,592
import unittest def build_suite(): """A function.""" #suite = unittest.TestSuite() #suite.addTest(WidgetTestCase('test_default_size')) #suite.addTest(WidgetTestCase('test_resize')) suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase) return suite
2984f7a149d224dfc5d0a17b6c8eaed139234c6b
1,593
def get_quantile(data, percentage, **kwargs): """ Assuming the dataset is loaded as type `np.array`, and has shape (num_samples, num_features). :param data: Provided dataset, assume each row is a data sample and \ each column is one feature. :type data: `np.ndarray` :param percentage: Quantile or sequence of quantiles to compute, \ which must be between 0 and 1 inclusive. :type percentage: `float` or `np.array` of `float` :param kwargs: Dictionary of differential privacy arguments \ for computing the specified quantile of each feature across all samples, \ e.g., epsilon, etc. :type kwargs: `dict` :return: A vector of shape (1, num_features) stores the standard deviation of each feature across all samples. :rtype: `np.array` of `float` """ try: quantile_vec = np.quantile(data, q=percentage, axis=0) except Exception as ex: raise FLException('Error occurred when calculating ' 'the quantile. ' + str(ex)) return quantile_vec
ddb02aff1e441696a9a2813d772580c5fdef0ddb
1,594
def clean_repository_clone_url( repository_clone_url ): """Return a URL that can be used to clone a tool shed repository, eliminating the protocol and user if either exists.""" if repository_clone_url.find( '@' ) > 0: # We have an url that includes an authenticated user, something like: # http://[email protected]:9009/repos/some_username/column items = repository_clone_url.split( '@' ) tmp_url = items[ 1 ] elif repository_clone_url.find( '//' ) > 0: # We have an url that includes only a protocol, something like: # http://bx.psu.edu:9009/repos/some_username/column items = repository_clone_url.split( '//' ) tmp_url = items[ 1 ] else: tmp_url = repository_clone_url return tmp_url
c1d274e907d73aceaa5f1e2c52336edf1638cd8a
1,595
import torch def calculate_uncertainty_ins_seg(logits, classes): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. classes (list): A list of length R that contains either predicted of ground truth class for eash predicted mask. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ if logits.shape[1] == 1: gt_class_logits = logits.clone() else: gt_class_logits = logits[ torch.arange(logits.shape[0], device=logits.device), classes ].unsqueeze(1) return -(torch.abs(gt_class_logits))
794d614d63ca5df06f00ce706f6ca39ae85cfdff
1,596
import torch def euclidean_distance(x, y): """ Compute Euclidean distance between two Variable matrices. --- param: x: PyTorch Variable with shape (m, d) y: PyTorch Variable with shape (n, d) return: distance: PyTorch Variable with shape (m, n) """ m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() distance = xx + yy distance.addmm_(1, -2, x, y.t()) distance = distance.clamp(min=1e-12).sqrt() return distance
03c32aff1d0c31b7d713851e1885d2aa492dad57
1,597
def gsettings_set(schema, path, key, value): """Set value of gsettings schema""" if path is None: gsettings = Gio.Settings.new(schema) else: gsettings = Gio.Settings.new_with_path(schema, path) if isinstance(value, list): return gsettings.set_strv(key, value) if isinstance(value, int): return gsettings.set_int(key, value) if isinstance(value, str): return gsettings.set_string(key, value)
29cddb07c10099bc70c1e823d3ffd1b125cf889a
1,598
def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01 parameters['b' + str(l)] = np.zeros(shape=(layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters
374a684dfe54aa0d65ea8f25b61f72a4fc21144e
1,599