content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import logging import re def split_if_then(source_file: str) -> dict: """Split a script file into component pieces""" logging.debug("Splitting '{}' into IF/THEN blocks".format(source_file)) with open(source_file) as f: source_text = f.read() logging.debug("Read {} bytes".format(len(source_text))) r = re.compile(_if_then_regex, flags=re.MULTILINE) r_or = re.compile(r"OR\((\d+)\)") r_resp = re.compile(r"RESPONSE #(\d+)") # Replace all double quotes outside comments with single quotes. source_text = replace_double_quotes_with_single_outside_comment( source_text) count = 0 triggers = [] actions = [] for m in r.finditer(source_text): count = count + 1 or_count = 0 # Break if conditions into separate lines. for line in m.group("IF").split('\n'): line = line.strip() or_check = r_or.match(line) if 0 == len(line): pass # elif 0 == or_count and "ActionListEmpty()" == line: # output["ActionListEmpty"] = True elif or_check: or_count = int(or_check.group(1)) triggers.append([]) elif or_count > 0: triggers[-1].append(line) or_count = or_count - 1 else: triggers.append(line) # Break then conditions into separate lines. action_list = [] response_value = None for line in m.group("THEN").split('\n'): line = line.strip() response_check = r_resp.match(line) if 0 == len(line): pass elif response_check: if response_value: actions.append({response_value: action_list}) response_value = response_check.group(1) action_list = [] else: action_list.append(line) if response_value: actions.append({response_value: action_list}) if count > 1: raise RuntimeError("IF/THEN Parse found multiple matches in '{}'" .format(source_file)) # triggers = promote_trigger(triggers, "^HaveSpell") # triggers = promote_trigger(triggers, "^ActionListEmpty") result = {"IF": triggers, "THEN": actions} name = get_name(actions) if name: result["name"] = name return result
585f5ecfec144116840fa0a0be228cc279482fda
10,300
import re def id_label_to_project(id_label): """ Given a project's id_label, return the project. """ match = re.match(r"direct-sharing-(?P<id>\d+)", id_label) if match: project = DataRequestProject.objects.get(id=int(match.group("id"))) return project
bd5f322b986776b95a3b3b9203e67c2caaa81c8a
10,301
def payoff_blotto_sign(x, y): """ Returns: (0, 0, 1) -- x wins, y loss; (0, 1, 0) -- draw; (1, 0, 0)-- x loss, y wins. """ wins, losses = 0, 0 for x_i, y_i in zip(x, y): if x_i > y_i: wins += 1 elif x_i < y_i: losses += 1 if wins > losses: return (0, 0, 1) elif wins < losses: return (1, 0, 0) return (0, 1, 0)
5a34ce81fdff8f90ee715d9c82fc55abf7eb2904
10,302
def import_trips(url_path, dl_dir, db_path, taxi_type, nrows=None, usecols=None, overwrite=False, verbose=0): """Downloads, cleans, and imports nyc tlc taxi record files for the specified taxi type into a sqlite database. Parameters ---------- url_path : str or None Path to text file containing nyc tlc taxi record file urls to download from. Set to None to skip download. dl_dir : str Path of directory to download files to or load files from. db_path : str Path to sqlite database. taxi_type : str Taxi type to create regex for ('fhv', 'green', 'yellow', or 'all'). nrows : int or None Number of rows to read. Set to None to read all rows. usecols : list List of column names to include. Specify columns names as strings. Column names can be entered based on names found in original tables for the year specified or names found in the trips table. Set to None to read all columns. overwrite : bool Defines whether or not to overwrite existing database tables. verbose : int Defines verbosity for output statements. Returns ------- import_num : int Number of files imported into database. Notes ----- """ # download taxi record files if url_path: dl_num = dl_urls(url_path, dl_dir, taxi_type, verbose=verbose) else: dl_num = 0 # get taxi record files files = get_regex_files(dl_dir, taxi_regex_patterns(taxi_type), verbose=verbose) # create trips table (if needed) create_sql = """ CREATE TABLE IF NOT EXISTS trips ( trip_id INTEGER PRIMARY KEY, taxi_type INTEGER, vendor_id INTEGER, pickup_datetime TEXT, dropoff_datetime TEXT, passenger_count INTEGER, trip_distance REAL, pickup_longitude REAL, pickup_latitude REAL, pickup_location_id INTEGER, dropoff_longitude REAL, dropoff_latitude REAL, dropoff_location_id INTEGER, trip_duration REAL, trip_pace REAL, trip_straightline REAL, trip_windingfactor REAL ); """ indexes = ['CREATE INDEX IF NOT EXISTS trips_pickup_datetime ON trips ' '(pickup_datetime);'] create_table(db_path, 'trips', create_sql, indexes=indexes, overwrite=overwrite, verbose=verbose) # load, clean, and import taxi files into table import_num = 0 for file in files: if verbose >= 1: output('Started importing ' + file + '.') if taxi_type == 'fhv': df = pd.DataFrame({'taxi_type': []}) elif taxi_type == 'green': df = pd.DataFrame({'taxi_type': []}) elif taxi_type == 'yellow': df, year, month = load_yellow(dl_dir + file, nrows=nrows, usecols=usecols, verbose=verbose) df = clean_yellow(df, year, month, verbose=verbose) import_num += 1 else: output('Unknown taxi_type.', fn_str='import_trips') df = pd.DataFrame({'taxi_type': []}) df_to_table(db_path, df, table='trips', overwrite=False, verbose=verbose) if verbose >= 1: output('Imported ' + file + '.') output('Finished importing ' + str(import_num) + ' files.') return dl_num, import_num
8e017873a1b17f493ee5b2df4457690a2fbc7b63
10,303
def householder(h_v: Vector) -> Matrix: """Get Householder transformation Matrix""" return Matrix.identity(h_v.size()).subtract(2 * h_v * h_v.transpose() / (h_v * h_v))
686e8088eff5bf1b14e1438f0668a865a59a13d4
10,304
def _suppression_loop_body(boxes, iou_threshold, output_size, idx): """Process boxes in the range [idx*_NMS_TILE_SIZE, (idx+1)*_NMS_TILE_SIZE). Args: boxes: a tensor with a shape of [batch_size, anchors, 4]. iou_threshold: a float representing the threshold for deciding whether boxes overlap too much with respect to IOU. output_size: an int32 tensor of size [batch_size]. Representing the number of selected boxes for each batch. idx: an integer scalar representing induction variable. Returns: boxes: updated boxes. iou_threshold: pass down iou_threshold to the next iteration. output_size: the updated output_size. idx: the updated induction variable. """ num_tiles = tf.shape(boxes)[1] // _NMS_TILE_SIZE batch_size = tf.shape(boxes)[0] # Iterates over tiles that can possibly suppress the current tile. box_slice = tf.slice(boxes, [0, idx * _NMS_TILE_SIZE, 0], [batch_size, _NMS_TILE_SIZE, 4]) _, box_slice, _, _ = tf.while_loop( lambda _boxes, _box_slice, _threshold, inner_idx: inner_idx < idx, _cross_suppression, [boxes, box_slice, iou_threshold, tf.constant(0)]) # Iterates over the current tile to compute self-suppression. iou = box_utils.bbox_overlap(box_slice, box_slice) mask = tf.expand_dims( tf.reshape(tf.range(_NMS_TILE_SIZE), [1, -1]) > tf.reshape( tf.range(_NMS_TILE_SIZE), [-1, 1]), 0) iou *= tf.cast(tf.logical_and(mask, iou >= iou_threshold), iou.dtype) suppressed_iou, _, _, _ = tf.while_loop( lambda _iou, loop_condition, _iou_sum, _: loop_condition, _self_suppression, [iou, tf.constant(True), tf.reduce_sum(iou, [1, 2]), iou_threshold]) suppressed_box = tf.reduce_sum(suppressed_iou, 1) > 0 box_slice *= tf.expand_dims(1.0 - tf.cast(suppressed_box, box_slice.dtype), 2) # Uses box_slice to update the input boxes. mask = tf.reshape( tf.cast(tf.equal(tf.range(num_tiles), idx), boxes.dtype), [1, -1, 1, 1]) boxes = tf.tile(tf.expand_dims( box_slice, [1]), [1, num_tiles, 1, 1]) * mask + tf.reshape( boxes, [batch_size, num_tiles, _NMS_TILE_SIZE, 4]) * (1 - mask) boxes = tf.reshape(boxes, [batch_size, -1, 4]) # Updates output_size. output_size += tf.reduce_sum( tf.cast(tf.reduce_any(box_slice > 0, [2]), tf.int32), [1]) return boxes, iou_threshold, output_size, idx + 1
4adcb176d8d7269bded2b684d830a90a371d0df5
10,305
from typing import Iterable import hashlib import json def calculate_invalidation_digest(requirements: Iterable[str]) -> str: """Returns an invalidation digest for the given requirements.""" m = hashlib.sha256() inputs = { # `FrozenOrderedSet` deduplicates while keeping ordering, which speeds up the sorting if # the input was already sorted. "requirements": sorted(FrozenOrderedSet(requirements)), } m.update(json.dumps(inputs).encode("utf-8")) return m.hexdigest()
1fb2f014ad0b0ea98031d022ed02942e1b6ac1d0
10,306
def to_base_str(n, base): """Converts a number n into base `base`.""" convert_string = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" if n < base: return convert_string[n] else: return to_base_str(n // base, base) + convert_string[n % base]
bc137d41c9543ef1a201f4bb14234fa277067a77
10,307
def number_of_photons(i,n=6): """Check if number of photons in a sample is higher than n (default value is 6)""" bitstring = tuple(i) if sum(bitstring) > n: return True else: return False
6c7cfea354aa4948d2c94469708f250e6d5b659d
10,308
from typing import List from typing import Optional from typing import Dict def _build_conflicts_from_states( trackers: List[TrackerWithCachedStates], domain: Domain, max_history: Optional[int], conflicting_state_action_mapping: Dict[int, Optional[List[Text]]], tokenizer: Optional[Tokenizer] = None, ) -> List["StoryConflict"]: """Builds a list of `StoryConflict` objects for each given conflict. Args: trackers: Trackers that contain the states. domain: The domain object. max_history: Number of turns to take into account for the state descriptions. conflicting_state_action_mapping: A dictionary mapping state-hashes to a list of actions that follow from each state. tokenizer: A tokenizer to tokenize the user messages. Returns: A list of `StoryConflict` objects that describe inconsistencies in the story structure. These objects also contain the history that leads up to the conflict. """ # Iterate once more over all states and note the (unhashed) state, # for which a conflict occurs conflicts = {} for element in _sliced_states_iterator(trackers, domain, max_history, tokenizer): hashed_state = element.sliced_states_hash if hashed_state in conflicting_state_action_mapping: if hashed_state not in conflicts: conflicts[hashed_state] = StoryConflict(element.sliced_states) conflicts[hashed_state].add_conflicting_action( action=str(element.event), story_name=element.tracker.sender_id ) # Return list of conflicts that arise from unpredictable actions # (actions that start the conversation) return [ conflict for (hashed_state, conflict) in conflicts.items() if conflict.conflict_has_prior_events ]
651a200dfd94518b4eb9da76d915794a761c9777
10,309
def inception_d(input_layer, nfilt): # Corresponds to a modified version of figure 10 in the paper """ Parameters ---------- input_layer : nfilt : Returns ------- """ l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1) l1 = bn_conv(l1, num_filters=nfilt[0][1], filter_size=3, stride=2) l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1) l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 7), pad=(0, 3)) l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(7, 1), pad=(3, 0)) l2 = bn_conv(l2, num_filters=nfilt[1][3], filter_size=3, stride=2) l3 = Pool2DLayer(input_layer, pool_size=3, stride=2) return ConcatLayer([l1, l2, l3])
cb1a192ef210239c0eafe944126eb965dbcf6357
10,310
def generate_response(response, output): """ :param response: :return dictionary """ status, command = None, None if isinstance(response, dict): status = response.get('ok', None) response.get('command', None) elif isinstance(response, object): status = getattr(response, 'ok', None) command = getattr(response, 'command', None) return { 'status': 'successful' if status else 'failed', 'command': command, 'output': output }
ea8764dd3e8f0205a0ec1dd278164140a414dadc
10,311
def check_add_predecessor(data_predecessor_str_set, xml_data_list, xml_chain_list, output_xml): """ Check if each string in data_predecessor_str_set is corresponding to an actual Data object, create new [Data, predecessor] objects lists for object's type : Data. Send lists to add_predecessor() to write them within xml and then returns update_list from it. Parameters: data_predecessor_str_set ([str]) : Lists of string from jarvis cell xml_data_list ([Data]) : Data list from xml parsing xml_chain_list ([View]) : View list from xml parsing output_xml (GenerateXML object) : XML's file object Returns: update ([0/1]) : 1 if update, else 0 """ data_predecessor_list = [] allocated_item_list = [] # Filter input string data_predecessor_str_list = shared_orchestrator.cut_string_list(data_predecessor_str_set) # Create data names list already in xml xml_data_name_list = get_objects_names(xml_data_list) is_elem_found = False for elem in data_predecessor_str_list: is_elem_found = True if elem[0] not in xml_data_name_list: is_elem_found = False if elem[1] not in xml_data_name_list: print(f"{elem[0]} and {elem[1]} do not exist") else: print(f"{elem[0]} does not exist") if elem[0] in xml_data_name_list: if elem[1] not in xml_data_name_list: is_elem_found = False print(f"{elem[1]} does not exist") if is_elem_found: for d, p in data_predecessor_str_list: predecessor = None selected_data = None existing_predecessor_id_list = [] for data in xml_data_list: if d == data.name: selected_data = data for existing_predecessor in data.predecessor_list: existing_predecessor_id_list.append(existing_predecessor.id) for da in xml_data_list: if p == da.name and da.id not in existing_predecessor_id_list: predecessor = da if predecessor is not None and selected_data is not None: data_predecessor_list.append([selected_data, predecessor]) allocation_chain_1 = shared_orchestrator.check_add_allocated_item(d, xml_data_list, xml_chain_list) if allocation_chain_1: allocated_item_list.append(allocation_chain_1) allocation_chain_2 = shared_orchestrator.check_add_allocated_item(p, xml_data_list, xml_chain_list) if allocation_chain_2: allocated_item_list.append(allocation_chain_2) update = add_predecessor(data_predecessor_list, xml_data_list, output_xml) shared_orchestrator.add_allocation({5: allocated_item_list}, output_xml) return update
d6bef7af0e32202825705ac36c3b4f09b3aa62ce
10,312
def try_wrapper(func, *args, ret_=None, msg_="", verbose_=True, **kwargs): """Wrap ``func(*args, **kwargs)`` with ``try-`` and ``except`` blocks. Args: func (functions) : functions. args (tuple) : ``*args`` for ``func``. kwargs (kwargs) : ``*kwargs`` for ``func``. ret_ (any) : default ret val. msg_ (str) : message to print. verbose_ (bool) : Whether to print message or not. (default= ``True``) Examples: >>> from gummy.utils import try_wrapper >>> ret = try_wrapper(lambda x,y: x/y, 1, 2, msg_="divide") * Succeeded to divide >>> ret 0.5 >>> ret = try_wrapper(lambda x,y: x/y, 1, 0, msg_="divide") * Failed to divide (ZeroDivisionError: division by zero) >>> ret is None True >>> ret = try_wrapper(lambda x,y: x/y, 1, 0, ret_=1, msg_="divide") * Failed to divide (ZeroDivisionError: division by zero) >>> ret is None False >>> ret 1 """ try: ret_ = func(*args, **kwargs) prefix = toGREEN("Succeeded to ") suffix = "" except Exception as e: e.__class__.__name__ prefix = toRED("Failed to ") suffix = f" ({toRED(e.__class__.__name__)}: {toACCENT(e)})" if verbose_: print("* " + prefix + msg_ + suffix) return ret_
6098c966deffd5ac5ae4bba84219088b2052d878
10,313
def hnet_bsd(args, x, train_phase): """High frequency convolutions are unstable, so get rid of them""" # Sure layers weight & bias order = 1 nf = int(args.n_filters) nf2 = int((args.filter_gain)*nf) nf3 = int((args.filter_gain**2)*nf) nf4 = int((args.filter_gain**3)*nf) bs = args.batch_size fs = args.filter_size nch = args.n_channels nr = args.n_rings tp = train_phase std = args.std_mult x = tf.reshape(x, shape=[bs,args.height,args.width,1,1,3]) fm = {} # Convolutional Layers with tf.name_scope('stage1') as scope: cv1 = hl.conv2d(x, nf, fs, stddev=std, padding='SAME', n_rings=nr, name='1_1') cv1 = hl.non_linearity(cv1, name='1_1') cv2 = hl.conv2d(cv1, nf, fs, stddev=std, padding='SAME', n_rings=nr, name='1_2') cv2 = hl.batch_norm(cv2, tp, name='bn1') mags = to_4d(hl.stack_magnitudes(cv2)) fm[1] = linear(mags, 1, 1, name='sw1') with tf.name_scope('stage2') as scope: cv3 = hl.mean_pooling(cv2, ksize=(1,2,2,1), strides=(1,2,2,1)) cv3 = hl.conv2d(cv3, nf2, fs, stddev=std, padding='SAME', n_rings=nr, name='2_1') cv3 = hl.non_linearity(cv3, name='2_1') cv4 = hl.conv2d(cv3, nf2, fs, stddev=std, padding='SAME', n_rings=nr, name='2_2') cv4 = hl.batch_norm(cv4, train_phase, name='bn2') mags = to_4d(hl.stack_magnitudes(cv4)) fm[2] = linear(mags, 1, 1, name='sw2') with tf.name_scope('stage3') as scope: cv5 = hl.mean_pooling(cv4, ksize=(1,2,2,1), strides=(1,2,2,1)) cv5 = hl.conv2d(cv5, nf3, fs, stddev=std, padding='SAME', n_rings=nr, name='3_1') cv5 = hl.non_linearity(cv5, name='3_1') cv6 = hl.conv2d(cv5, nf3, fs, stddev=std, padding='SAME', n_rings=nr, name='3_2') cv6 = hl.batch_norm(cv6, train_phase, name='bn3') mags = to_4d(hl.stack_magnitudes(cv6)) fm[3] = linear(mags, 1, 1, name='sw3') with tf.name_scope('stage4') as scope: cv7 = hl.mean_pooling(cv6, ksize=(1,2,2,1), strides=(1,2,2,1)) cv7 = hl.conv2d(cv7, nf4, fs, stddev=std, padding='SAME', n_rings=nr, name='4_1') cv7 = hl.non_linearity(cv7, name='4_1') cv8 = hl.conv2d(cv7, nf4, fs, stddev=std, padding='SAME', n_rings=nr, name='4_2') cv8 = hl.batch_norm(cv8, train_phase, name='bn4') mags = to_4d(hl.stack_magnitudes(cv8)) fm[4] = linear(mags, 1, 1, name='sw4') with tf.name_scope('stage5') as scope: cv9 = hl.mean_pooling(cv8, ksize=(1,2,2,1), strides=(1,2,2,1)) cv9 = hl.conv2d(cv9, nf4, fs, stddev=std, padding='SAME', n_rings=nr, name='5_1') cv9 = hl.non_linearity(cv9, name='5_1') cv10 = hl.conv2d(cv9, nf4, fs, stddev=std, padding='SAME', n_rings=nr, name='5_2') cv10 = hl.batch_norm(cv10, train_phase, name='bn5') mags = to_4d(hl.stack_magnitudes(cv10)) fm[5] = linear(mags, 1, 1, name='sw5') fms = {} side_preds = [] xsh = tf.shape(x) with tf.name_scope('fusion') as scope: for key in fm.keys(): fms[key] = tf.image.resize_images(fm[key], tf.stack([xsh[1], xsh[2]])) side_preds.append(fms[key]) side_preds = tf.concat(axis=3, values=side_preds) fms['fuse'] = linear(side_preds, 1, 1, bias_init=0.01, name='side_preds') return fms
0c44775d5d342b73975cd7ffd00971d4f98fb4aa
10,314
import numpy def hdrValFilesToTrainingData(input_filebase: str, target_varname: str): """Extracts useful info from input_filebase.hdr and input_filebase.val Args: input_filebase -- points to two files target_varname -- this will be the y, and the rest will be the X Returns: Xy: 2d array [#vars][#samples] -- transpose of the data from .val file X: 2d array [#full_input_vars][#samples] -- Xy, except y y: 1d array [#samples] -- the vector in Xy corr. to target_varname all_varnames: List[str] -- essentially what .hdr file holds input_varnames: List[str] -- all_varnames, minus target_varname """ # retrieve varnames all_varnames = asciiRowToStrings(input_filebase + ".hdr") # split apart input and output labels x_rows, y_rows, input_varnames = [], [], [] for (row, varname) in enumerate(all_varnames): if varname == target_varname: y_rows.append(row) else: x_rows.append(row) input_varnames.append(varname) assert len(y_rows) == 1, "expected to find one and only one '%s', not: %s" % ( target_varname, all_varnames, ) # split apart input and output data Xy_tr = asciiTo2dArray(input_filebase + ".val") Xy = numpy.transpose(Xy_tr) X = numpy.take(Xy, x_rows, 0) y = numpy.take(Xy, y_rows, 0)[0] assert X.shape[0] + 1 == Xy.shape[0] == len(input_varnames) + 1 == len(all_varnames) assert X.shape[1] == Xy.shape[1] == len(y) return Xy, X, y, all_varnames, input_varnames
de1427340dfed2dc36cdd05f43841399f54ac6a0
10,315
def create_column(number_rows: int, column_type: ColumnType) -> pd.Series: """Creates a column with either duplicated values or not, and either of string or int type. :param number_rows: the number of rows in the data-frame. :param column_type: the type of the column. :returns: the data-frame. """ if column_type == ColumnType.UNIQUE_STRING: return pd.Series(range(number_rows)).astype(str) elif column_type == ColumnType.UNIQUE_INT: return pd.Series(range(number_rows)) elif column_type == ColumnType.WITH_DUPLICATES_STRING: return pd.Series(["a"] * number_rows) elif column_type == ColumnType.WITH_DUPLICATES_INT: return pd.Series([2] * number_rows) else: raise ValueError(f"Unknown column-type: {column_type}")
0280f914960b222d589ae13b648339f1ff7ae562
10,316
import os def abspath(url): """ Get a full path to a file or file URL See os.abspath """ if url.startswith('file://'): url = url[len('file://'):] return os.path.abspath(url)
5c739b7894b4b6d3aabbce9813ce27c72eea6f5d
10,317
import ctypes def PumpEvents(timeout=-1, hevt=None, cb=None): """This following code waits for 'timeout' seconds in the way required for COM, internally doing the correct things depending on the COM appartment of the current thread. It is possible to terminate the message loop by pressing CTRL+C, which will raise a KeyboardInterrupt. """ # XXX Should there be a way to pass additional event handles which # can terminate this function? # XXX XXX XXX # # It may be that I misunderstood the CoWaitForMultipleHandles # function. Is a message loop required in a STA? Seems so... # # MSDN says: # # If the caller resides in a single-thread apartment, # CoWaitForMultipleHandles enters the COM modal loop, and the # thread's message loop will continue to dispatch messages using # the thread's message filter. If no message filter is registered # for the thread, the default COM message processing is used. # # If the calling thread resides in a multithread apartment (MTA), # CoWaitForMultipleHandles calls the Win32 function # MsgWaitForMultipleObjects. # Timeout expected as float in seconds - *1000 to miliseconds # timeout = -1 -> INFINITE 0xFFFFFFFF; # It can also be a callable which should return an amount in seconds if hevt is None: hevt = ctypes.windll.kernel32.CreateEventA(None, True, False, None) handles = _handles_type(hevt) RPC_S_CALLPENDING = -2147417835 # @ctypes.WINFUNCTYPE(ctypes.c_int, ctypes.c_uint) def HandlerRoutine(dwCtrlType): if dwCtrlType == 0: # CTRL+C ctypes.windll.kernel32.SetEvent(hevt) return 1 return 0 HandlerRoutine = ( ctypes.WINFUNCTYPE(ctypes.c_int, ctypes.c_uint)(HandlerRoutine) ) ctypes.windll.kernel32.SetConsoleCtrlHandler(HandlerRoutine, 1) while True: try: tmout = timeout() # check if it's a callable except TypeError: tmout = timeout # it seems to be a number if tmout > 0: tmout *= 1000 tmout = int(tmout) try: res = ctypes.oledll.ole32.CoWaitForMultipleHandles( 0, # COWAIT_FLAGS int(tmout), # dwtimeout len(handles), # number of handles in handles handles, # handles array # pointer to indicate which handle was signaled ctypes.byref(ctypes.c_ulong()) ) except WindowsError as details: if details.args[0] == RPC_S_CALLPENDING: # timeout expired if cb is not None: cb() continue else: ctypes.windll.kernel32.CloseHandle(hevt) ctypes.windll.kernel32.SetConsoleCtrlHandler(HandlerRoutine, 0) raise # something else happened else: ctypes.windll.kernel32.CloseHandle(hevt) ctypes.windll.kernel32.SetConsoleCtrlHandler(HandlerRoutine, 0) raise KeyboardInterrupt # finally: # if False: # ctypes.windll.kernel32.CloseHandle(hevt) # ctypes.windll.kernel32.SetConsoleCtrlHandler(HandlerRoutine, 0) # break
4b24bfc7e68b0953c98b507e6ba5176e4b060011
10,318
def check_mix_up(method): """Wrapper method to check the parameters of mix up.""" @wraps(method) def new_method(self, *args, **kwargs): [batch_size, alpha, is_single], _ = parse_user_args(method, *args, **kwargs) check_value(batch_size, (1, FLOAT_MAX_INTEGER)) check_positive(alpha, "alpha") type_check(is_single, (bool,), "is_single") return method(self, *args, **kwargs) return new_method
528c30d73df3a26d8badc6df17508c6c2e6f69ae
10,319
def generate_motif_distances(cluster_regions, region_sizes, motifs, motif_location, species): """ Generates all motif distances for a lsit of motifs returns list[motif_distances] motif_location - str location that motifs are stored species - str species (for finding stored motifs) motifs - list of motifs to analize cluster_regions - dict from parse clusters """ motif_distance_list = [] #given a specific motif in a motif file generate distances from that motif...? for motif in motifs: mf = "motif_" + motif + ".BED" mfgz = "motif_" + motif + ".BED.gz" motif_tool = None if os.path.exists(os.path.join(motif_location, species, mf)): motif_tool = pybedtools.BedTool(os.path.join(motifBASE, species, mf)) elif os.path.exists(os.path.join(motif_location, species, mfgz)): motif_tool = pybedtools.BedTool(os.path.join(motif_location, species, mfgz)) else: print "MOTIF BED FILE for motif: %s is not available, please build it" % (mf) if motif_tool is not None: motif_distance_list.append(calculate_motif_distance(cluster_regions, region_sizes, motif_tool)) return motif_distance_list
4694db72aaf550cac210387e50187fe910e21bf3
10,320
def sig_to_vrs(sig): """ Split a signature into r, s, v components """ r = sig[:32] s = sig[32:64] v = int(encode_hex(sig[64:66]), 16) # Ethereum magic number if v in (0, 1): v += 27 return [r, s, v]
48884e4718de7bdda0527470d4e608e8f6b563b8
10,321
def index_to_string_table_from_tensor(mapping, default_value="UNK", name=None): """Returns a lookup table that maps a `Tensor` of indices into strings. This operation constructs a lookup table to map int64 indices into string values. The mapping is initialized from a string `mapping` 1-D `Tensor` where each element is a value and the corresponding index within the tensor is the key. Any input which does not have a corresponding index in 'mapping' (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling `tf.tables_initializer.run()` or `table.init.run()` once. Elements in `mapping` cannot have duplicates, otherwise when executing the table initializer op, it will throw a `FailedPreconditionError`. Sample Usages: ```python mapping_string = t.constant(["emerson", "lake", "palmer") indices = tf.constant([1, 5], tf.int64) table = tf.contrib.lookup.index_to_string_table_from_tensor( mapping_string, default_value="UNKNOWN") values = table.lookup(indices) ... tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` Args: mapping: A 1-D string `Tensor` that specifies the strings to map from indices. default_value: The value to use for out-of-vocabulary indices. name: A name for this op (optional). Returns: The lookup table to map a string values associated to a given index `int64` `Tensors`. Raises: ValueError: when `mapping` is not set. """ if mapping is None: raise ValueError("mapping must be specified.") return lookup_ops.index_to_string_table_from_tensor( vocabulary_list=mapping, default_value=default_value, name=name)
22ba72e1fe6ab28c5eb16a32152de4094d8d2e73
10,322
def test_profile_reader_no_aws_config(monkeypatch, tmp_path, capsys): """Test profile reader without aws config file.""" fake_get_path_called = 0 def fake_get_path(): nonlocal fake_get_path_called fake_get_path_called += 1 return tmp_path monkeypatch.setattr(awsswitch, "get_path", fake_get_path) awsswitch.app() assert fake_get_path_called == 1 captured = capsys.readouterr() output = captured.out.split("\n") assert output[0] == "AWS profile switcher" err = captured.err.split("\n") assert err[0] == "AWS config path does not exist."
549e2f08cfac1f3f579906a80f3853cba8d2501e
10,323
def get_exclusion_type(exclusion): """ Utility function to get an exclusion's type object by finding the exclusion type that has the given exclusion's code. :param exclusion: The exclusion to find the type for. :return: The exclusion type if found, None otherwise. """ for exclusion_type in EXCLUSION_TYPES: if exclusion_type.code == exclusion.code: return exclusion_type return None
778efc4cbd6481ae25f76985f30aa593e1e786fa
10,324
def generatePlans(update): """ For an update object provided this function references the updateModuleList which lets all exc modules determine if they need to add functions to change the state of the system when new chutes are added to the OS. Returns: True in error, as in we should stop with this update plan """ out.header('Generating %r\n' % (update)) # Iterate through the list provided for this update type for mod in update.updateModuleList: if(mod.generatePlans(update)): return True
d764b2b18cebb81c450ef54aaa1a8b6893ec16c8
10,325
from typing import Dict def get_str_by_path(payload: Dict, path: str) -> str: """Return the string value from the dict for the path using dpath library.""" if payload is None: return None try: raw = dpath_util.get(payload, path) return str(raw) if raw is not None else raw except (IndexError, KeyError, TypeError): return None
bf8077838c2dd2278cd9209b6c560271faaa78cb
10,326
import requests import json def get_token_from_code(request): """ Get authorization code the provider sent back to you Find out what URL to hit to get tokens that allow you to ask for things on behalf of a user. Prepare and send a request to get tokens. Parse the tokens using the OAuth 2 client """ code = request.args.get("code") redirect_uri = request.args.get("redirect_uri") provider_cfg = requests.get(DISCOVERY_URL).json() token_endpoint = provider_cfg["token_endpoint"] token_url, headers, body = client.prepare_token_request( token_endpoint, authorization_response=request.url, redirect_url=redirect_uri, code=code, include_client_id=False, ) token_response = requests.post( token_url, headers=headers, data=body, auth=(CLIENT_ID, SECRET), ) token_response = token_response.json() client.parse_request_body_response(json.dumps(token_response)) return token_response
00edc369150ddb18023799768c4843333079944e
10,327
def DeWeStartCAN(nBoardNo, nChannelNo): """Dewe start CAN""" if f_dewe_start_can is not None: return f_dewe_start_can(c_int(nBoardNo), c_int(nChannelNo)) else: return -1
f810bb73152899fbfbb89caccec469a647c90223
10,328
def mw_wo_sw(mol, ndigits=2): """Molecular weight without salt and water :param ndigits: number of digits """ cp = clone(mol) # Avoid modification of original object remover.remove_water(cp) remover.remove_salt(cp) return round(sum(a.mw() for _, a in cp.atoms_iter()), ndigits)
32b83d5e74eec3fdc4d18012dc29ed5e3d85edf3
10,329
def get_contact_list_info(contact_list): """ Get contact list info out of contact list In rgsummary, this looks like: <ContactLists> <ContactList> <ContactType>Administrative Contact</ContactType> <Contacts> <Contact> <Name>Matyas Selmeci</Name> ... </Contact> </Contacts> </ContactList> ... </ContactLists> and the arg `contact_list` is the contents of a single <ContactList> If vosummary, this looks like: <ContactTypes> <ContactType> <Type>Miscellaneous Contact</Type> <Contacts> <Contact> <Name>...</Name> ... </Contact> ... </Contacts> </ContactType> ... </ContactTypes> and the arg `contact_list` is the contents of <ContactTypes> Returns: a list of dicts that each look like: { 'ContactType': 'Administrative Contact', 'Name': 'Matyas Selmeci', 'Email': '...', ... } """ contact_list_info = [] for contact in contact_list: if contact.tag == 'ContactType' or contact.tag == 'Type': contact_list_type = contact.text.lower() if contact.tag == 'Contacts': for con in contact: contact_info = { 'ContactType' : contact_list_type } for contact_contents in con: contact_info[contact_contents.tag] = contact_contents.text contact_list_info.append(contact_info) return contact_list_info
18d82190ad971b2a2cabb60706fc1486a91a32a5
10,330
import requests def enableLegacyLDAP(host, args, session): """ Called by the ldap function. Configures LDAP on Lagecy systems. @param host: string, the hostname or IP address of the bmc @param args: contains additional arguments used by the ldap subcommand @param session: the active session to use @param args.json: boolean, if this flag is set to true, the output will be provided in json format for programmatic consumption """ url='https://'+host+'/xyz/openbmc_project/user/ldap/action/CreateConfig' scope = { 'sub' : 'xyz.openbmc_project.User.Ldap.Create.SearchScope.sub', 'one' : 'xyz.openbmc_project.User.Ldap.Create.SearchScope.one', 'base': 'xyz.openbmc_project.User.Ldap.Create.SearchScope.base' } serverType = { 'ActiveDirectory' : 'xyz.openbmc_project.User.Ldap.Create.Type.ActiveDirectory', 'OpenLDAP' : 'xyz.openbmc_project.User.Ldap.Create.Type.OpenLdap' } data = {"data": [args.uri, args.bindDN, args.baseDN, args.bindPassword, scope[args.scope], serverType[args.serverType]]} try: res = session.post(url, headers=jsonHeader, json=data, verify=False, timeout=baseTimeout) except(requests.exceptions.Timeout): return(connectionErrHandler(args.json, "Timeout", None)) except(requests.exceptions.ConnectionError) as err: return connectionErrHandler(args.json, "ConnectionError", err) return res.text
7ae9763930c6a0de29f8eac032b3e58d5cd64791
10,331
from typing import List from typing import Dict from typing import OrderedDict def retrieve_panelist_appearance_counts(panelist_id: int, database_connection: mysql.connector.connect ) -> List[Dict]: """Retrieve yearly apperance count for the requested panelist ID""" cursor = database_connection.cursor() query = ("SELECT YEAR(s.showdate) AS year, COUNT(p.panelist) AS count " "FROM ww_showpnlmap pm " "JOIN ww_shows s ON s.showid = pm.showid " "JOIN ww_panelists p ON p.panelistid = pm.panelistid " "WHERE pm.panelistid = %s AND s.bestof = 0 " "AND s.repeatshowid IS NULL " "GROUP BY p.panelist, YEAR(s.showdate) " "ORDER BY p.panelist ASC, YEAR(s.showdate) ASC") cursor.execute(query, (panelist_id, )) result = cursor.fetchall() cursor.close() if not result: return None appearances = OrderedDict() total_appearances = 0 for row in result: appearances[row[0]] = row[1] total_appearances += row[1] appearances["total"] = total_appearances return appearances
27a5ccb192cf55714fed8316d647f53bce0ffbb2
10,332
from datetime import datetime def chart( symbols=("AAPL", "GLD", "GOOG", "$SPX", "XOM", "msft"), start=datetime.datetime(2008, 1, 1), end=datetime.datetime(2009, 12, 31), # data stops at 2013/1/1 normalize=True, ): """Display a graph of the price history for the list of ticker symbols provided Arguments: symbols (list of str): Ticker symbols like "GOOG", "AAPL", etc start (datetime): The date at the start of the period being analyzed. end (datetime): The date at the end of the period being analyzed. normalize (bool): Whether to normalize prices to 1 at the start of the time series. """ start = util.normalize_date(start or datetime.date(2008, 1, 1)) end = util.normalize_date(end or datetime.date(2009, 12, 31)) symbols = [s.upper() for s in symbols] timeofday = datetime.timedelta(hours=16) timestamps = du.getNYSEdays(start, end, timeofday) ls_keys = ['open', 'high', 'low', 'close', 'volume', 'actual_close'] ldf_data = da.get_data(timestamps, symbols, ls_keys) d_data = dict(zip(ls_keys, ldf_data)) na_price = d_data['close'].values if normalize: na_price /= na_price[0, :] plt.clf() plt.plot(timestamps, na_price) plt.legend(symbols) plt.ylabel('Adjusted Close') plt.xlabel('Date') plt.savefig('chart.pdf', format='pdf') plt.grid(True) plt.show() return na_price
2b4272daa353e21c7f1927e1d8ad68b6c184d97b
10,333
def create_table(peak_id, chrom, pstart, pend, p_center, min_dist_hit, attrib_keys, min_pos, genom_loc, ovl_pf, ovl_fp, i): """Saves info of the hit in a tabular form to be written in the output table. """ if attrib_keys != ["None"]: # extract min_dist_content [dist, [feat, fstart, fend, strand, attrib_val]] = min_dist_hit # attrib_val.strip("\r").strip("\t").strip("\n") dist = max(dist) if isinstance(dist, list) else dist dist = '%d' % round(dist, 1) best_res = "\t".join(np.hstack([peak_id, chrom, pstart, p_center, pend, feat, fstart, fend, strand, min_pos, dist, genom_loc, str(ovl_pf), str(ovl_fp), attrib_val, str(i)])) return best_res + "\n" elif attrib_keys == ["None"]: [dist, [feat, fstart, fend, strand]] = min_dist_hit dist = max(dist) if isinstance(dist, list) else dist dist = '%d' % round(dist, 1) best_res = "\t".join([peak_id, chrom, pstart, p_center, pend, feat, fstart, fend, strand, min_pos, dist, genom_loc, str(ovl_pf), str(ovl_fp), str(i)]) return best_res + "\n"
476f0e272fe604c5254b68e93fa059f2ae942b2d
10,334
def _get_tests(tier): """Return a generator of test functions.""" return TEST_TIERS[tier]
364b263f2dc64b375092de6f2de9e771dbc020c2
10,335
def get_first_of_iterable(iterable): """ Return the first element of the given sequence. Most useful on generator types. :param iterable iterable: input iterable :returns: tuple(iterable, first_element). If a generator is passed, a new generator will be returned preserving the original values. :raises: IndexError Example _______ >>> a = [1,2,3] >>> b = (str(i) for i in range(3)) >>> a, first_element = get_first_of_iterable(a) >>> a, first_element ([1, 2, 3], 1) When the generator ``b`` is given, a new generator is returned by ``is_empty_iterable`` to preserve original values of ``b``: >>> b, first_element = get_first_of_iterable(b) >>> next(b), first_element ('0', '0') """ if hasattr(iterable, '__getitem__'): return iterable, iterable[0] iterable = iter(iterable) try: first = next(iterable) except StopIteration: raise IndexError('`iterable` is empty') return chain([first], iterable), first
a16ae6795eb656a98ad6c620ae4f177d9cfc2387
10,336
import sqlite3 def getTiers(connection=None): """ """ # Open the master database if it is not supplied. flag = False if connection is None: connection = sqlite3.connect(MASTER) flag = True # Create a cursor from the connection. cursor = connection.cursor() # Execute the statement to remove the tier title combo from the database. cursor.execute("""SELECT DISTINCT tier FROM hierarchy""") # Fetch the returned data. tiers = [tier[0] for tier in cursor.fetchall()] # Close the cursor. cursor.close() # Commit the change to the database and close the connection. if flag: connection.close() return tiers
1689f9aec4f84f5427e04352e1ce546e548eb505
10,337
from typing import Any from typing import get_type_hints from typing import get_origin from typing import Union from typing import get_args def get_repr_type(type_: Any) -> Any: """Parse a type and return an representative type. Example: All of the following expressions will be ``True``:: get_repr_type(A) == A get_repr_type(Annotated[A, ...]) == A get_repr_type(Union[A, B, ...]) == A get_repr_type(Optional[A]) == A """ class Temporary: __annotations__ = dict(type=type_) unannotated = get_type_hints(Temporary)["type"] if get_origin(unannotated) is Union: return get_args(unannotated)[0] return unannotated
fe74d79c1fcc74ff86d0c41db3f8f9da37dbf69a
10,338
from datetime import datetime import calendar def get_month_range_from_dict(source): """ :param source: dictionary with keys 'start' and 'end :return: a tuple of datatime objects in the form (start, end) """ now = timezone.now() start = source.get('start') end = source.get('end', datetime.datetime(now.year, now.month, calendar.monthrange(now.year, now.month)[1])) if not start: start = datetime.datetime(end.year-1, end.month+1, 1) if end.month != 12 else datetime.datetime(end.year, 1, 1) return start, end
af68ad0ebcd63444c627fe5b408e1b59dc54e985
10,339
def softmax_ad_set_dim_func(head, data, axis): """Look up the softmax_ad_set_dim_map, and return hash_value, hash_key.""" key = [] key.append(tuple(data.shape)) key.append(data.dtype) key.append(axis) hash_key = str(tuple(key)) if hash_key in softmax_ad_set_dim_map.keys(): return ct_util.set_dims(softmax_ad_set_dim_map[hash_key]), hash_key return "", hash_key
c2077a70c47bb45dcbc79325e7620d4c63324560
10,340
import csv def parse_latency_stats(fp): """ Parse latency statistics. :param fp: the file path that stores the statistics :returns an average latency in milliseconds to connect a pair of initiator and responder clients """ latency = [] with open(fp) as csvfile: csvreader = csv.DictReader(csvfile, delimiter=' ', fieldnames=['title', 'time']) for row in csvreader: latency.append(float(row['time']) * 1000) return sum(latency) / len(latency)
c50c730b5c5bea704bd682d003baa0addfd7ee89
10,341
import time import os def get_tweets(input, out_dir, ext): """ This function takes the list of individuals with the periods list and runs twint for each period. It stores the result in a csv file called c.Output and returns the dictionary of uncollected names and periods. """ counter = 0 uncollected = {} total_uncollected = 0 l = len(list(input.keys())) c = twint.Config() c.Store_csv = True for name in input: c.Search = name for p in input[name]: start = p[0].strftime("%Y-%m-%d") end = p[1].strftime("%Y-%m-%d") c.Output = f"{out_dir}{name}_{start}_{end}{ext}" c.Since = str(p[0]) c.Until = str(p[1]) try: twint.run.Search(c) counter += 1 if counter < (l - 1): time.sleep(7) except Exception as e: print(e) if name not in uncollected: uncollected[name] = [p] total_uncollected += 1 else: uncollected[name].append(p) total_uncollected += 1 try: os.remove(c.Output) except OSError as e: print(f"Error: {c.Output} --> {e.strerror}") continue return uncollected, total_uncollected
3f8e7793eb95610d8bf549a40b63727782eed178
10,342
def micro_jaccard(y_true, y_pred): """ Calculate the micro Jaccard-score, i.e. TP / (TP + FP + FN). :param y_true: `numpy.array` of shape `(n_samples,)` or `(n_samples, n_classes)`. True labels or class assignments. :param y_pred: `numpy.array` of shape `(n_samples,)` or `(n_samples, n_classes)`. Predicted labels or class assignments. :return: The micro Jaccard-score. """ return jaccard_score(y_true, y_pred, average='micro')
b2be25baa6b161dabd676bcb4e58b2682485725f
10,343
def round_to_nreads(number_set, n_reads, digit_after_decimal=0): """ This function take a list of number and return a list of percentage, which represents the portion of each number in sum of all numbers Moreover, those percentages are adding up to 100%!!! Notice: the algorithm we are using here is 'Largest Remainder' The down-side is that the results won't be accurate, but they are never accurate anyway:) """ unround_numbers = [ x / float(sum(number_set)) * n_reads * 10 ** digit_after_decimal for x in number_set ] decimal_part_with_index = sorted( [(index, unround_numbers[index] % 1) for index in range(len(unround_numbers))], key=lambda y: y[1], reverse=True, ) remainder = n_reads * 10 ** digit_after_decimal - sum( [int(x) for x in unround_numbers] ) index = 0 while remainder > 0: unround_numbers[decimal_part_with_index[index][0]] += 1 remainder -= 1 index = (index + 1) % len(number_set) return [int(x) / float(10 ** digit_after_decimal) for x in unround_numbers]
c7a50b5caffb072b3fb6de9478b4acf83f701780
10,344
def _get_raster_extent(src): """ extract projected extent from a raster dataset (min_x, max_x, min_y, max_y) Parameters ---------- src : gdal raster Returns ------- (min_x, max_x, min_y, max_y) """ ulx, xres, xskew, uly, yskew, yres = src.GetGeoTransform() lrx = ulx + (src.RasterXSize * xres) lry = uly + (src.RasterYSize * yres) return ulx, lrx, lry, uly
49ed0b3c583cbfa5b9ecbc96d94aec42aeba3a32
10,345
def joined_table_table_join_args(joined_table: SQLParser.JoinedTableContext) -> dict: """ Resolve a joinedTable ParseTree node into relevant keyword arguments for TableJoin. These will be pushed down and applied to the child TableRef. """ assert isinstance(joined_table, SQLParser.JoinedTableContext) on_clauses = None if joined_table.expr() is not None: on_clauses = sql_ast_clauses_from_expr(joined_table.expr()) using_columns = None if joined_table.identifierListWithParentheses() is not None: using_columns = sql_ast_identifiers_from_list( joined_table.identifierListWithParentheses().identifierList() ) return { "on_clauses": on_clauses, "using_columns": using_columns, **join_type_table_join_args(joined_table), }
7419e63d28a4a34a49fe50e917faa478b246cb09
10,346
def find_by_name(name): """ Find and return a format by name. :param name: A string describing the name of the format. """ for format in FORMATS: if name == format.name: return format raise UnknownFormat('No format found with name "%s"' % name)
3626316b961d913217036ddc58eaa71dbdaea1a7
10,347
import sys import re def test_endpoints(host, port, use_ssl, endpoints): """ Test each endpoint with its associated method and compile lists of endpoints that can and cannot be accessed without prior authentication """ conn = get_conn(host, port, use_ssl) if not conn: sys.exit("Failed to connect to host {}, port {}".format(host, port)) headers = {"Content-type": "application/json"} results = [] for entry in endpoints: method, endpoint = entry try_endpoint = endpoint if ":" in endpoint: try_endpoint = re.sub(r":[a-zA-Z]+", "1", endpoint) try_endpoints = [] if "(s)?" in try_endpoint: try_endpoints.append(try_endpoint.replace("(s)?","s")) try_endpoints.append(try_endpoint.replace("(s)?","")) else: try_endpoints = [try_endpoint] for try_endpoint in try_endpoints: status, reason, body = test_endpoint(conn, headers, method, try_endpoint) results.append({ "status":status, "reason":reason, "body":body, "method":method, "endpoint":endpoint, "actual_endpoint":try_endpoint }) conn.close() return results
fcc33766039e522046a492cd0dcbc8df50970481
10,348
def create_neighborhood_polygons(gdf): """ an attempt to muild neighborhoods polygons from asset points""" gdf = gdf.reset_index() neis = gdf['Neighborhood'].unique() gdf['neighborhood_shape'] = gdf.geometry # Must be a geodataframe: for nei in neis: gdf1 = gdf[gdf['Neighborhood'] == nei] inds = gdf1.index polygon = gdf1.geometry.unary_union.convex_hull # gdf.loc[inds, 'neighborhood_shape'] = [polygon for x in range(len(inds))] gdf.loc[inds, 'neighborhood_shape'] = polygon return gdf
7ca77acfd73a4b13f9088e3839121076d1a70730
10,349
def custom_gradient(f=None): """Decorator to define a function with a custom gradient. This decorator allows fine grained control over the gradients of a sequence for operations. This may be useful for multiple reasons, including providing a more efficient or numerically stable gradient for a sequence of operations. For example, consider the following function that commonly occurs in the computation of cross entropy and log likelihoods: ```python def log1pexp(x): return tf.math.log(1 + tf.exp(x)) ``` Due to numerical instability, the gradient of this function evaluated at x=100 is NaN. For example: ```python x = tf.constant(100.) y = log1pexp(x) dy = tf.gradients(y, x) # Will be NaN when evaluated. ``` The gradient expression can be analytically simplified to provide numerical stability: ```python @tf.custom_gradient def log1pexp(x): e = tf.exp(x) def grad(dy): return dy * (1 - 1 / (1 + e)) return tf.math.log(1 + e), grad ``` With this definition, the gradient at x=100 will be correctly evaluated as 1.0. Nesting custom gradients can lead to unintuitive results. The default behavior does not correspond to n-th order derivatives. For example ```python @tf.custom_gradient def op(x): y = op1(x) @tf.custom_gradient def grad_fn(dy): gdy = op2(x, y, dy) def grad_grad_fn(ddy): # Not the 2nd order gradient of op w.r.t. x. return op3(x, y, dy, ddy) return gdy, grad_grad_fn return y, grad_fn ``` The function `grad_grad_fn` will be calculating the first order gradient of `grad_fn` with respect to `dy`, which is used to generate forward-mode gradient graphs from backward-mode gradient graphs, but is not the same as the second order gradient of `op` with respect to `x`. Instead, wrap nested `@tf.custom_gradients` in another function: ```python @tf.custom_gradient def op_with_fused_backprop(x): y, x_grad = fused_op(x) def first_order_gradient(dy): @tf.custom_gradient def first_order_custom(unused_x): def second_order_and_transpose(ddy): return second_order_for_x(...), gradient_wrt_dy(...) return x_grad, second_order_and_transpose return dy * first_order_custom(x) return y, first_order_gradient ``` Additional arguments to the inner `@tf.custom_gradient`-decorated function control the expected return values of the innermost function. See also `tf.RegisterGradient` which registers a gradient function for a primitive TensorFlow operation. `tf.custom_gradient` on the other hand allows for fine grained control over the gradient computation of a sequence of operations. Note that if the decorated function uses `Variable`s, the enclosing variable scope must be using `ResourceVariable`s. Args: f: function `f(*x)` that returns a tuple `(y, grad_fn)` where: - `x` is a sequence of (nested structures of) `Tensor` inputs to the function. - `y` is a (nested structure of) `Tensor` outputs of applying TensorFlow operations in `f` to `x`. - `grad_fn` is a function with the signature `g(*grad_ys)` which returns a list of `Tensor`s the same size as (flattened) `x` - the derivatives of `Tensor`s in `y` with respect to the `Tensor`s in `x`. `grad_ys` is a sequence of `Tensor`s the same size as (flattened) `y` holding the initial value gradients for each `Tensor` in `y`. In a pure mathematical sense, a vector-argument vector-valued function `f`'s derivatives should be its Jacobian matrix `J`. Here we are expressing the Jacobian `J` as a function `grad_fn` which defines how `J` will transform a vector `grad_ys` when left-multiplied with it (`grad_ys * J`, the vector-Jacobian product, or VJP). This functional representation of a matrix is convenient to use for chain-rule calculation (in e.g. the back-propagation algorithm). If `f` uses `Variable`s (that are not part of the inputs), i.e. through `get_variable`, then `grad_fn` should have signature `g(*grad_ys, variables=None)`, where `variables` is a list of the `Variable`s, and return a 2-tuple `(grad_xs, grad_vars)`, where `grad_xs` is the same as above, and `grad_vars` is a `list<Tensor>` with the derivatives of `Tensor`s in `y` with respect to the variables (that is, grad_vars has one Tensor per variable in variables). Returns: A function `h(x)` which returns the same value as `f(x)[0]` and whose gradient (as calculated by `tf.gradients`) is determined by `f(x)[1]`. """ if f is None: return lambda f: custom_gradient(f=f) @Bind.decorator def decorated(wrapped, args, kwargs): """Decorated function with custom gradient.""" # raise ValueError("PW: trap") if context.executing_eagerly(): return _eager_mode_decorator(wrapped, args, kwargs) else: return _graph_mode_decorator(wrapped, args, kwargs) return tf_decorator.make_decorator(f, decorated(f)) # pylint: disable=no-value-for-parameter
6c6432ab9a10c219d811651db2cbbf2321e43b95
10,350
def Field(name, ctype, field_loader=FieldLoaderMethod.OPTIONAL, comment=None, gen_setters_and_getters=True): """Make a field to put in a node class. Args: name: field name ctype: c++ type for this field Should be a ScalarType like an int, string or enum type, or the name of a node class type (e.g. ASTExpression). Cannot be a pointer type, and should not include modifiers like const. field_loader: FieldLoaderMethod enum specifies which FieldLoader method to use for this field. comment: Comment text for this field. Text will be stripped and de-indented. gen_setters_and_getters: When False, suppress generation of default template-based get and set methods. Non-standard alternatives may be supplied via extra_defs. Returns: The newly created field. Raises: RuntimeError: If an error is detected in one or more arguments. """ if field_loader == FieldLoaderMethod.REST_AS_REPEATED: is_vector = True else: is_vector = False member_name = name + '_' if isinstance(ctype, ScalarType): member_type = ctype.ctype cpp_default = ctype.cpp_default is_node_ptr = False enum_name = None element_storage_type = None else: element_storage_type = 'const %s*' % ctype if is_vector: member_type = 'absl::Span<%s const>' % element_storage_type cpp_default = '' is_node_ptr = False enum_name = None else: member_type = 'const %s*' % ctype cpp_default = 'nullptr' is_node_ptr = True enum_name = NameToEnumName(ctype) return { 'ctype': ctype, 'cpp_default': cpp_default, 'member_name': member_name, # member variable name 'name': name, # name without trailing underscore 'comment': CleanComment(comment, prefix=' // '), 'member_type': member_type, 'is_node_ptr': is_node_ptr, 'field_loader': field_loader.name, 'enum_name': enum_name, 'is_vector': is_vector, 'element_storage_type': element_storage_type, 'gen_setters_and_getters': gen_setters_and_getters, }
9f3f84be56213640ca9d7368d35bdca8eb9958b2
10,351
from typing import Tuple from typing import List def sql(dataframe: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame, List[str], str]: """Infer best fit data types using dataframe values. May be an object converted to a better type, or numeric values downcasted to a smallter data type. Parameters ---------- dataframe (pandas.DataFrame) : contains unconverted and non-downcasted columns Returns ------- dataframe (pandas.DataFrame) : contains columns converted to best fit pandas data type schema (pandas.DataFrame) : derived SQL schema not_nullable (list[str]) : columns that should not be null pk (str) : name of column that best fits as the primary key """ # numeric like: bit, tinyint, smallint, int, bigint, float dataframe = convert_numeric(dataframe) # datetime like: time, date, datetime2 dataframe = convert_date(dataframe) # string like: varchar, nvarchar dataframe = convert_string(dataframe) # determine SQL properties schema = sql_schema(dataframe) not_nullable, pk = sql_unique(dataframe, schema) return dataframe, schema, not_nullable, pk
d64a2d44cb3a89896aa3b7c19ec1a11bb8fcc2ff
10,352
def calculateDeviation(img, lineLeft,lineRight, ): """This function calculates the deviation of the vehicle from the center of the image """ frameCenter = np.mean([lineLeft.bestx,lineRight.bestx] , dtype=np.int32) imgCenter = img.shape[1]//2 dev = frameCenter - imgCenter xm_per_pix = 3.7/450 # meters per pixel in x dimension result = dev*xm_per_pix # Moving average deviation (Not needed as applied to bestx) #x = np.append(lineLeft.center_deviation, [dev]) #result = moving_average(x, movingAvg)[-1] #lineLeft.center_deviation = np.append(lineLeft.center_deviation, result) if dev > 0.01: text = "Vehicle is {:.2f} m -->".format(abs(result)) elif dev < -0.01: text = "Vehicle is {:.2f} m <--".format(abs(result)) else: text = "Vehicle is spot on center!" return result , text
79d16240a2d606cb25360532ac77e4fbe834e23d
10,353
import requests def post_new_tracker_story(message, project_id, user): """Posts message contents as a story to the bound project.""" if ";" in message: name, description = message.split(";", maxsplit=1) else: name, description = (message, "") story_name = "{name} (from {user})".format( name=name.strip(), user=user) response = requests.post( story_post_url.format(project_id=project_id), headers=pivotal_headers, json={"name": story_name, "description": description.strip()}) story_url = response.json()["url"] return name, story_url
b26391ad07159df3087cf22c136e5959a7fb6f4b
10,354
def nz2epsmu(N, Z):#{{{ """ Accepts index of refraction and impedance, returns effective permittivity and permeability""" return N/Z, N*Z
3173df57ab5ad573baab87cd4fd6f353fcf69e2c
10,355
import scipy def logdet_symm(m, check_symm=False): """ Return log(det(m)) asserting positive definiteness of m. Parameters ---------- m : array-like 2d array that is positive-definite (and symmetric) Returns ------- logdet : float The log-determinant of m. """ if check_symm: if not np.all(m == m.T): # would be nice to short-circuit check raise ValueError("m is not symmetric.") c, _ = scipy.linalg.cho_factor(m, lower=True) return 2 * np.sum(np.log(c.diagonal()))
4e4358cb9094d671ba393d653adf685a916c4fa3
10,356
def merge(left, right): """ Merge helper Complexity: O(n) """ arr = [] left_cursor, right_cursor = 0, 0 while left_cursor < len(left) and right_cursor < len(right): # Sort each one and place into the result if left[left_cursor] <= right[right_cursor]: arr.append(left[left_cursor]) left_cursor += 1 else: arr.append(right[right_cursor]) right_cursor += 1 # Add the left overs if there's any left to the result for i in range(left_cursor, len(left)): arr.append(left[i]) for i in range(right_cursor, len(right)): arr.append(right[i]) # Return result return arr
c6730a0fe5bfcaf713c6c3fa8f2e777db50e4445
10,357
def validate_form_data(FORM_Class): """ Validates the passed form/json data to a request and passes the form to the called function. If form data is not valid, return a 406 response. """ def decorator(f): @wraps(f) def decorated_function(*args, **kwargs): form = FORM_Class(csrf_enabled=False) if not form.validate(): return json_error(code=406, data=form.errors) kwargs['form'] = form return f(*args, **kwargs) return decorated_function return decorator
d0287479d3c5da32c5fbd48a8f2047b64bce5e2b
10,358
def set_axis_tick_format( ax, xtickformat=None, ytickformat=None, xrotation=0, yrotation=0 ): """Sets the formats for the ticks of a single axis :param ax: axis object :param xtickformat: optional string for the format of the x ticks :param ytickformat: optional string for the format of the y ticks :param xrotation: rotation angle of the x ticks. Defaults to 0 :param yrotation: rotation angle of the y ticks. Defaults to 0 :returns: ax """ if xtickformat is not None: ax.xaxis.set_major_formatter(FormatStrFormatter(xtickformat)) if ytickformat is not None: ax.yaxis.set_major_formatter(FormatStrFormatter(ytickformat)) plt.setp(ax.get_xticklabels(), ha="right", rotation=xrotation) plt.setp(ax.get_yticklabels(), ha="right", rotation=yrotation) return ax
06b7f6cc5ba78fa093cf517a5df414fa1bb6f504
10,359
def two_body(y, t): """ Solves the two body problem :param y: state vector y = [rx,ry,rz,vx,vy,vz] :param t: time :return: dy """ rx, ry, rz = y[0], y[1], y[2] vx, vy, vz = y[3], y[4], y[5] r = np.array([rx, ry, rz]) v = np.array([vx, vy, vz]) r_mag = np.linalg.norm(r) c = -mu / (r_mag ** 3) dy = np.zeros(6) dy[0] = y[3] dy[1] = y[4] dy[2] = y[5] dy[3] = c*y[0] dy[4] = c*y[1] dy[5] = c*y[2] return dy
5a04f279caa3a540f76d3af488344414f4b3547e
10,360
import argparse import os def args_parse_params(params): """ create simple arg parser with default values (input, output) :param dict dict_params: :return obj: object argparse<...> """ parser = argparse.ArgumentParser() parser.add_argument( '-i', '--path_in', type=str, required=True, default=params['path_in'], help='path to the folder with input image dataset' ) parser.add_argument( '-o', '--path_out', type=str, required=True, default=params['path_out'], help='path to the output with experiment results' ) parser.add_argument( '-t', '--threshold', type=float, required=False, default=0.001, help='threshold for image information' ) parser.add_argument( '-m', '--thr_method', type=str, required=False, default='', choices=METHODS, help='used methods' ) parser.add_argument( '--nb_workers', type=int, required=False, default=NB_WORKERS, help='number of parallel processes' ) args = vars(parser.parse_args()) for k in (k for k in args if k.startswith('path_')): p = update_path(os.path.dirname(args[k])) assert os.path.exists(p), 'missing (%s): %s' % (k, p) args[k] = os.path.join(p, os.path.basename(args[k])) return args
42f9a3504c5f3005e5e7117fec80730abddb1e6c
10,361
def DD_carrier_sync(z,M,BnTs,zeta=0.707,type=0): """ z_prime,a_hat,e_phi = DD_carrier_sync(z,M,BnTs,zeta=0.707,type=0) Decision directed carrier phase tracking z = complex baseband PSK signal at one sample per symbol M = The PSK modulation order, i.e., 2, 8, or 8. BnTs = time bandwidth product of loop bandwidth and the symbol period, thus the loop bandwidth as a fraction of the symbol rate. zeta = loop damping factor type = Phase error detector type: 0 <> ML, 1 <> heuristic z_prime = phase rotation output (like soft symbol values) a_hat = the hard decision symbol values landing at the constellation values e_phi = the phase error e(k) into the loop filter Ns = Nominal number of samples per symbol (Ts/T) in the carrier phase tracking loop, almost always 1 Kp = The phase detector gain in the carrier phase tracking loop; This value depends upon the algorithm type. For the ML scheme described at the end of notes Chapter 9, A = 1, K 1/sqrt(2), so Kp = sqrt(2). Mark Wickert July 2014 Motivated by code found in M. Rice, Digital Communications A Discrete-Time Approach, Prentice Hall, New Jersey, 2009. (ISBN 978-0-13-030497-1). """ Ns = 1 Kp = np.sqrt(2.) # for type 0 z_prime = np.zeros_like(z) a_hat = np.zeros_like(z) e_phi = np.zeros(len(z)) theta_h = np.zeros(len(z)) theta_hat = 0 # Tracking loop constants K0 = 1; K1 = 4*zeta/(zeta + 1/(4*zeta))*BnTs/Ns/Kp/K0; K2 = 4/(zeta + 1/(4*zeta))**2*(BnTs/Ns)**2/Kp/K0; # Initial condition vi = 0 for nn in range(len(z)): # Multiply by the phase estimate exp(-j*theta_hat[n]) z_prime[nn] = z[nn]*np.exp(-1j*theta_hat) if M == 2: a_hat[nn] = np.sign(z_prime[nn].real) + 1j*0 elif M == 4: a_hat[nn] = np.sign(z_prime[nn].real) + 1j*np.sign(z_prime[nn].imag) elif M == 8: a_hat[nn] = np.angle(z_prime[nn])/(2*np.pi/8.) # round to the nearest integer and fold to nonnegative # integers; detection into M-levels with thresholds at mid points. a_hat[nn] = np.mod(round(a_hat[nn]),8) a_hat[nn] = np.exp(1j*2*np.pi*a_hat[nn]/8) else: raise ValueError('M must be 2, 4, or 8') if type == 0: # Maximum likelihood (ML) e_phi[nn] = z_prime[nn].imag * a_hat[nn].real - \ z_prime[nn].real * a_hat[nn].imag elif type == 1: # Heuristic e_phi[nn] = np.angle(z_prime[nn]) - np.angle(a_hat[nn]) else: raise ValueError('Type must be 0 or 1') vp = K1*e_phi[nn] # proportional component of loop filter vi = vi + K2*e_phi[nn] # integrator component of loop filter v = vp + vi # loop filter output theta_hat = np.mod(theta_hat + v,2*np.pi) theta_h[nn] = theta_hat # phase track output array #theta_hat = 0 # for open-loop testing # Normalize outputs to have QPSK points at (+/-)1 + j(+/-)1 #if M == 4: # z_prime = z_prime*np.sqrt(2) return z_prime, a_hat, e_phi, theta_h
77bcd1dd49a7bb9dfd40b8b45c9a9eb129ed674d
10,362
from typing import Dict from typing import Any def rubrik_gps_vm_snapshot_create(client: PolarisClient, args: Dict[str, Any]) -> CommandResults: """ Trigger an on-demand vm snapshot. :type client: ``PolarisClient`` :param client: Rubrik Polaris client to use :type args: ``dict`` :param args: arguments obtained from demisto.args() :return: CommandResult object """ object_id = validate_required_arg("object_id", args.get("object_id", "")) sla_domain_id = args.get("sla_domain_id", "") raw_response = client.create_vm_snapshot(object_id, sla_domain_id) outputs = raw_response.get("data", {}).get("vsphereOnDemandSnapshot", {}) outputs = remove_empty_elements(outputs) if not outputs or not outputs.get("id"): return CommandResults(readable_output=MESSAGES['NO_RESPONSE']) hr_content = { "On-Demand Snapshot Request ID": outputs.get("id"), "Status": outputs.get("status") } hr = tableToMarkdown("GPS VM Snapshot", hr_content, headers=["On-Demand Snapshot Request ID", "Status"], removeNull=True) return CommandResults(outputs_prefix=OUTPUT_PREFIX["GPS_SNAPSHOT_CREATE"], outputs_key_field="id", outputs=outputs, raw_response=raw_response, readable_output=hr)
b065c29e58043b2785f48cf788fb1414262b0eee
10,363
import os def getFullCorpus(emotion, speakerID = None): """ Return the 6 speakers files in a massive vstack :param emotion: :param speakerID: :return: """ if emotion not in emotions or (speakerID is not None and speakerID not in speakers): raise Exception("No Such speaker: {} or emotion: {}".format(speakerID, emotion)) #error check if speakerID is None: #return whole corpus speakerID = "Derpington" # should not be in file MFCCFiles = os.listdir(ExtractedMFCCs) try: MFCCFiles.remove('.DS_Store') except ValueError: pass # It didn't need to be removed MFCCVals = [] for file in MFCCFiles: if emotion in file and speakerID not in file: # print "Currently reading", file with open(os.path.join(ExtractedMFCCs, file)) as f: speakerEmotion = cPickle.load(f) speakerEmotion = np.vstack(speakerEmotion) MFCCVals.append(speakerEmotion) return np.vstack(MFCCVals)
b9894e28e75263fe0a84bc947437f093fc9827d8
10,364
def CT_freezing_first_derivatives(SA, p, saturation_fraction): """ Calculates the first derivatives of the Conservative Temperature at which seawater freezes, with respect to Absolute Salinity SA and pressure P (in Pa). Parameters ---------- SA : array-like Absolute Salinity, g/kg p : array-like Sea pressure (absolute pressure minus 10.1325 dbar), dbar saturation_fraction : array-like Saturation fraction of dissolved air in seawater. (0..1) Returns ------- CTfreezing_SA : array-like, K kg/g the derivative of the Conservative Temperature at freezing (ITS-90) with respect to Absolute Salinity at fixed pressure [ K/(g/kg) ] i.e. CTfreezing_P : array-like, K/Pa the derivative of the Conservative Temperature at freezing (ITS-90) with respect to pressure (in Pa) at fixed Absolute Salinity """ return _gsw_ufuncs.ct_freezing_first_derivatives(SA, p, saturation_fraction)
af3aa120e2e2620f16d984b29d42d583ed9fd347
10,365
import logging def run(gParameters): """ Runs the model using the specified set of parameters Args: gParameters: a python dictionary containing the parameters (e.g. epoch) to run the model with. """ # if 'dense' in gParameters: dval = gParameters['dense'] if type(dval) != list: res = list(dval) # try: # is_str = isinstance(dval, basestring) # except NameError: # is_str = isinstance(dval, str) # if is_str: # res = str2lst(dval) gParameters['dense'] = res print(gParameters['dense']) if 'conv' in gParameters: flat = gParameters['conv'] gParameters['conv'] = [flat[i:i + 3] for i in range(0, len(flat), 3)] print('Conv input', gParameters['conv']) # print('Params:', gParameters) # Construct extension to save model ext = benchmark.extension_from_parameters(gParameters, '.keras') logfile = gParameters['logfile'] if gParameters['logfile'] else gParameters['output_dir'] + ext + '.log' fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter("[%(asctime)s %(process)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) fh.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if gParameters['verbose'] else logging.INFO) benchmark.logger.setLevel(logging.DEBUG) benchmark.logger.addHandler(fh) benchmark.logger.addHandler(sh) benchmark.logger.info('Params: {}'.format(gParameters)) # Get default parameters for initialization and optimizer functions kerasDefaults = candle.keras_default_config() seed = gParameters['rng_seed'] # Build dataset loader object loader = benchmark.DataLoader(seed=seed, dtype=gParameters['data_type'], val_split=gParameters['val_split'], test_cell_split=gParameters['test_cell_split'], cell_features=gParameters['cell_features'], drug_features=gParameters['drug_features'], feature_subsample=gParameters['feature_subsample'], scaling=gParameters['scaling'], scramble=gParameters['scramble'], min_logconc=gParameters['min_logconc'], max_logconc=gParameters['max_logconc'], subsample=gParameters['subsample'], category_cutoffs=gParameters['category_cutoffs']) # Initialize weights and learning rule initializer_weights = candle.build_initializer(gParameters['initialization'], kerasDefaults, seed) initializer_bias = candle.build_initializer('constant', kerasDefaults, 0.) # Define model architecture gen_shape = None out_dim = 1 model = Sequential() if 'dense' in gParameters: # Build dense layers for layer in gParameters['dense']: if layer: model.add(Dense(layer, input_dim=loader.input_dim, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)) if gParameters['batch_normalization']: model.add(BatchNormalization()) model.add(Activation(gParameters['activation'])) if gParameters['dropout']: model.add(Dropout(gParameters['dropout'])) else: # Build convolutional layers gen_shape = 'add_1d' layer_list = list(range(0, len(gParameters['conv']))) lc_flag = False if 'locally_connected' in gParameters: lc_flag = True for _, i in enumerate(layer_list): if i == 0: add_conv_layer(model, gParameters['conv'][i], input_dim=loader.input_dim, locally_connected=lc_flag) else: add_conv_layer(model, gParameters['conv'][i], locally_connected=lc_flag) if gParameters['batch_normalization']: model.add(BatchNormalization()) model.add(Activation(gParameters['activation'])) if gParameters['pool']: model.add(MaxPooling1D(pool_size=gParameters['pool'])) model.add(Flatten()) model.add(Dense(out_dim)) # Define optimizer optimizer = candle.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) # Compile and display model model.compile(loss=gParameters['loss'], optimizer=optimizer) model.summary() benchmark.logger.debug('Model: {}'.format(model.to_json())) train_gen = benchmark.DataGenerator(loader, batch_size=gParameters['batch_size'], shape=gen_shape, name='train_gen', cell_noise_sigma=gParameters['cell_noise_sigma']).flow() val_gen = benchmark.DataGenerator(loader, partition='val', batch_size=gParameters['batch_size'], shape=gen_shape, name='val_gen').flow() val_gen2 = benchmark.DataGenerator(loader, partition='val', batch_size=gParameters['batch_size'], shape=gen_shape, name='val_gen2').flow() test_gen = benchmark.DataGenerator(loader, partition='test', batch_size=gParameters['batch_size'], shape=gen_shape, name='test_gen').flow() train_steps = int(loader.n_train / gParameters['batch_size']) val_steps = int(loader.n_val / gParameters['batch_size']) test_steps = int(loader.n_test / gParameters['batch_size']) if 'train_steps' in gParameters: train_steps = gParameters['train_steps'] if 'val_steps' in gParameters: val_steps = gParameters['val_steps'] if 'test_steps' in gParameters: test_steps = gParameters['test_steps'] checkpointer = ModelCheckpoint(filepath=gParameters['output_dir'] + '.model' + ext + '.h5', save_best_only=True) progbar = MyProgbarLogger(train_steps * gParameters['batch_size']) loss_history = MyLossHistory(progbar=progbar, val_gen=val_gen2, test_gen=test_gen, val_steps=val_steps, test_steps=test_steps, metric=gParameters['loss'], category_cutoffs=gParameters['category_cutoffs'], ext=ext, pre=gParameters['output_dir']) # Seed random generator for training np.random.seed(seed) candleRemoteMonitor = candle.CandleRemoteMonitor(params=gParameters) # history = model.fit(train_gen, steps_per_epoch=train_steps, # this should be the deprecation fix history = model.fit(train_gen, steps_per_epoch=train_steps, epochs=gParameters['epochs'], validation_data=val_gen, validation_steps=val_steps, verbose=0, callbacks=[checkpointer, loss_history, progbar, candleRemoteMonitor], ) # callbacks=[checkpointer, loss_history, candleRemoteMonitor], # this just caused the job to hang on Biowulf benchmark.logger.removeHandler(fh) benchmark.logger.removeHandler(sh) return history
53a904dc5aeb7942623d2db6957505d43612f174
10,366
def get_territory_center(territory: inkex.Group) -> inkex.Vector2d: """ Get the name of the territory from its child title element. If no title, returns Warzone.UNNAMED_TERRITORY_NAME :param territory: :return: territory name """ center_rectangle: inkex.Rectangle = territory.find(f"./{Svg.GROUP}/{Svg.RECTANGLE}", NSS) return inkex.Vector2d( center_rectangle.left + center_rectangle.rx / 2, center_rectangle.top + center_rectangle.ry / 2 )
90f9e8ae7eebc5f3acf3d6e4100dec36ef5839d9
10,367
def batch_norm_relu(inputs, is_training, data_format): """Performs a batch normalization followed by a ReLU.""" # We set fused=True for a significant performance boost. See # https://www.tensorflow.org/performance/performance_guide#common_fused_ops inputs = tf.layers.batch_normalization( inputs=inputs, axis=1 if data_format == 'channels_first' else -1, momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True, scale=True, training=is_training, fused=True) # unary = {"1":lambda x:x ,"2":lambda x: -x, "3":lambda x:tf.abs, "4":lambda x : tf.pow(x,2),"5":lambda x : tf.pow(x,3), # "6":lambda x:tf.sqrt,"7":lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x, # "8":lambda x : x + tf.Variable(tf.truncated_normal([1], stddev=0.08)),"9":lambda x: tf.log(tf.abs(x)+10e-8), # "10":lambda x:tf.exp,"11":lambda x:tf.sin,"12":lambda x:tf.sinh,"13":lambda x:tf.cosh,"14":lambda x:tf.tanh,"15":lambda x:tf.asinh,"16":lambda x:tf.atan,"17":lambda x: tf.sin(x)/x, # "18":lambda x : tf.maximum(x,0),"19":lambda x : tf.minimum(x,0),"20":tf.sigmoid,"21":lambda x:tf.log(1+tf.exp(x)), # "22":lambda x:tf.exp(-tf.pow(x,2)),"23":lambda x:tf.erf,"24":lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))} # binary = {"1":lambda x,y: tf.add(x,y),"2":lambda x,y:tf.multiply(x,y),"3":lambda x,y:tf.add(x,-y),"4":lambda x,y:x/(y+10e-8), # "5":lambda x,y:tf.maximum(x,y),"6":lambda x,y: tf.sigmoid(x)*y,"7":lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.pow(x-y,2)), # "8":lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.abs(x-y)), # "9":lambda x,y: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x + (1-tf.Variable(tf.truncated_normal([1], stddev=0.08)))*y} unary = {"1":lambda x:x ,"2":lambda x: -x, "3": lambda x: tf.maximum(x,0), "4":lambda x : tf.pow(x,2),"5":lambda x : tf.tanh(tf.cast(x,tf.float32))} binary = {"1":lambda x,y: tf.add(x,y),"2":lambda x,y:tf.multiply(x,y),"3":lambda x,y:tf.add(x,-y),"4":lambda x,y:tf.maximum(x,y),"5":lambda x,y: tf.sigmoid(x)*y} input_fun = {"1":lambda x:tf.cast(x,tf.float32) , "2":lambda x:tf.zeros(tf.shape(x)), "3": lambda x:2*tf.ones(tf.shape(x)),"4": lambda x : tf.ones(tf.shape(x)), "5": lambda x: -tf.ones(tf.shape(x))} with open("tmp","r") as f: activation = f.readline() activation = activation.split(" ") #inputs = binary[activation[8]](unary[activation[5]](binary[activation[4]](unary[activation[2]](input_fun[activation[0]](inputs)),unary[activation[3]](input_fun[activation[1]](inputs)))),unary[activation[7]](input_fun[activation[6]](inputs))) inputs = binary[activation[5]](unary[activation[3]](binary[activation[2]](unary[activation[0]](inputs),unary[activation[1]]((inputs)))),unary[activation[4]]((inputs))) #inputs = binary[activation[4]]((unary[activation[2]](input_fun[activation[0]](inputs))),(unary[activation[3]](input_fun[activation[1]](inputs)))) #b[4](u1[2](x1[0]),u2[3](x2[1])) #core unit #inputs = binary[activation[2]]((unary[activation[0]](inputs)),(unary[activation[1]](inputs))) #b[2](u1[0](x),u2[1](x)) #core unit #inputs = tf.nn.relu(inputs) functions = open("./functions.txt", "a") functions.write(str(inputs) + "\n") return inputs
3d9d08000cd4dc5b90b64c6fdce7fca0039c5a03
10,368
def create_success_status(found_issue): """Create a success status for when an issue number was found in the title.""" issue_number = found_issue.group("issue") url = f"https://bugs.python.org/issue{issue_number}" return util.create_status(STATUS_CONTEXT, util.StatusState.SUCCESS, description=f"Issue number {issue_number} found", target_url=url)
0aab1eeb7f3b5a27b06a7f47dac5d105dbeef5fd
10,369
def score_to_rating_string(score): """ Convert score to rating """ if score < 1: rating = "Terrible" elif score < 2: rating = "Bad" elif score < 3: rating = "OK" elif score < 4: rating = "Good" else: rating = "Excellent" return rating
0c6a5aba0cb220a470f2d40c73b873d11b1a0f98
10,370
def deconv1d_df(t, observed_counts, one_sided_prf, background_count_rate, column_name='deconv', same_time=True, deconv_func=emcee_deconvolve, **kwargs): """ deconvolve and then return results in a pandas.DataFrame """ #print("working on chunk with length {}".format(len(observed_counts))) with util.timewith("deconvolve chunk with {} elements".format(len(observed_counts))) as timer: results = deconv_func(t, observed_counts, one_sided_prf, background_count_rate, **kwargs) sampler, A, t_ret = results[:3] mean_est = A.mean(axis=0) percentiles = np.percentile(A, [10, 16, 50, 84, 90], axis=0) d = {column_name + '_mean': mean_est, column_name + '_p10': percentiles[0], column_name + '_p16': percentiles[1], column_name + '_p50': percentiles[2], column_name + '_p84': percentiles[3], column_name + '_p90': percentiles[4]} df = pd.DataFrame(data=d, index=t_ret) if same_time: df = df.ix[t] return df
bc773398762ac7e82876d935b6ca0b0351960865
10,371
def create_parser() -> ArgumentParser: """Create a parser instance able to parse args of script. return: Returns the parser instance """ parser = ArgumentParser() version = get_distribution('hexlet-code').version parser.add_argument('first_file', help='path to JSON or YAML file') parser.add_argument('second_file', help='path to JSON or YAML file') parser.add_argument( '-f', '--format', choices=FORMATS.keys(), default=DEFAULT_FORMAT, help='set format of output', ) parser.add_argument( '-v', '--version', action='version', version='{prog} {version}'.format(prog=parser.prog, version=version), help='print version info', ) return parser
93f06dd056ab9121be1ad1312b67024312a4108f
10,372
import os def parse_alignment_file(file_path): """Parse the buildAlignment.tsv output file from CreateHdpTrainingData :param file_path: path to alignment file :return: panda DataFrame with column names "kmer", "strand", "level_mean", "prob" """ assert os.path.exists(file_path), "File path does not exist: {}".format(file_path) data = pd.read_csv(file_path, delimiter="\t", usecols=(4, 12, 13, 15), names=["strand", "prob", "level_mean", "kmer"], dtype={"kmer": np.str, "strand": np.str, "level_mean": np.float64, "prob": np.float64}, header=None)[["kmer", "strand", "level_mean", "prob"]] return data
77ad066b5a85ff608eecc4e8ac8ab83c07cafd8a
10,373
def remap_key(ctx, origin_key, destination_key, *, mode=None, level=None): """Remap *origin_key* to *destination_key*. Returns an instance of :class:`RemappedKey`. For valid keys refer to `List of Keys <https://www.autohotkey.com/docs/KeyList.htm>`_. The optional keyword-only *mode* and *level* arguments are passed to the :func:`send` function that will send the *destination_key* when the user presses the *origin_key*. For more information refer to `Remapping Keys <https://www.autohotkey.com/docs/misc/Remap.htm>`_. """ mouse = destination_key.lower() in {"lbutton", "rbutton", "mbutton", "xbutton1", "xbutton2"} if mouse: def origin_hotkey(): if not is_key_pressed(destination_key): send("{Blind}{%s DownR}" % destination_key, mode=mode, level=level, mouse_delay=-1) def origin_up_hotkey(): send("{Blind}{%s Up}" % destination_key, mode=mode, level=level, mouse_delay=-1) else: ctrl_to_alt = ( origin_key.lower() in {"ctrl", "lctrl", "rctrl"} and destination_key.lower() in {"alt", "lalt", "ralt"} ) if ctrl_to_alt: def origin_hotkey(): send( "{Blind}{%s Up}{%s DownR}" % (origin_key, destination_key), mode=mode, level=level, key_delay=-1, ) else: def origin_hotkey(): send("{Blind}{%s DownR}" % destination_key, mode=mode, level=level, key_delay=-1) def origin_up_hotkey(): send("{Blind}{%s Up}" % destination_key, mode=mode, level=level, key_delay=-1) origin_hotkey = ctx.hotkey(f"*{origin_key}", origin_hotkey) origin_up_hotkey = ctx.hotkey(f"*{origin_key} Up", origin_up_hotkey) return RemappedKey(origin_hotkey, origin_up_hotkey)
f4a8f7cddea2f82a13d06b5f3f3c4031e862e32b
10,374
def get_anime_list(wf): """Get an Animelist instance. :param Workflow3 wf: the Workflow3 object :returns: Animelist object :rtype: Animelist """ try: animelist = Animelist( wf.settings['UID'], wf.get_password('bangumi-auth-token') ) except Exception as e: raise LogoutException("Please login first") else: return animelist
a16a063afd2ac6a3fba4877665185a30971e8387
10,375
def use_linear_strategy(): """ Uses a linear function to generate target velocities. """ max_velocity = kmph2mps(rospy.get_param("~velocity", 40)) stop_line_buffer = 2.0 def linear_strategy(distances_to_waypoints, current_velocity): # Target velocity function should be a line # going from (0, current_velocity) # to (last_waypoint - buffer, 0) # (after x-intercept, y = 0) d = max(distances_to_waypoints[-1] - stop_line_buffer, 0) # stopping distance v = current_velocity # amount by which to slow down within given distance # Protect against divide by 0 case if d < 0.01: return [0 for x in distances_to_waypoints] f = lambda x: min( max( # [0, d]: downward line: # y = (-v / d)x + v = (1 - (x/d)) * v (1. - (x / d)) * v, # (-inf, 0) && (d, +inf): flat # y = 0 0 ), # Never faster than maximum max_velocity ) return map(f, distances_to_waypoints) return linear_strategy
7f0be5e0e11c7d29bb68ce7007e911f0fd14d6e2
10,376
def recomputation_checkpoint(module: nn.Module): """Annotates the output of a module to be checkpointed instead of recomputed""" def recompute_outputs(module, inputs, outputs): return tuple(poptorch.recomputationCheckpoint(y) for y in outputs) return module.register_forward_hook(recompute_outputs)
a39f106f05e84b36ab21a948044adb14fb44b6cd
10,377
import requests import json def get_random_quote() -> str: """Retrieve a random quote from the Forismatic API. Returns: str: The retrieved quote """ quote = "" while quote == "": response = requests.get( "http://api.forismatic.com/api/1.0/?method=getQuote&lang=en&format=json" ) if response.status_code != 200: print(f"Error while getting image: {response}") continue try: response_json = json.loads(response.text.replace("\\'", "'")) except json.decoder.JSONDecodeError as error: print(f"Error while decoding JSON: {response.text}\n{error}") continue quote_text: str = response_json["quoteText"] if contains_no_blacklisted_regexes(quote_text): quote = quote_text return quote
bd189878c76a4da1544a6d3762c2a67f69ad1846
10,378
def has_datapoint(fake_services, metric_name=None, dimensions=None, value=None, metric_type=None, count=1): """ Returns True if there is a datapoint seen in the fake_services backend that has the given attributes. If a property is not specified it will not be considered. Dimensions, if provided, will be tested as a subset of total set of dimensions on the datapoint and not the complete set. """ found = 0 # Try and cull the number of datapoints that have to be searched since we # have to check each datapoint. if dimensions is not None: datapoints = [] for k, v in dimensions.items(): datapoints += fake_services.datapoints_by_dim[f"{k}:{v}"] elif metric_name is not None: datapoints = fake_services.datapoints_by_metric[metric_name] else: datapoints = fake_services.datapoints for dp in fake_services.datapoints: if metric_name and dp.metric != metric_name: continue if dimensions and not has_all_dims(dp, dimensions): continue if metric_type and dp.metricType != metric_type: continue if value is not None: if dp.value.HasField("intValue"): if dp.value.intValue != value: continue elif dp.value.HasField("doubleValue"): if dp.value.doubleValue != value: continue else: # Non-numeric values aren't supported, so they always fail to # match continue found += 1 if found >= count: return True return False
59797809cb73644236cdc8d35cf9698491fff83a
10,379
def optimizeMemoryUsage(foregroundTasks, backgroundTasks, K): """ :type foregroundTasks: List[int] :type backgroundTasks: List[int] :type K: int :rtype: List[List[int]] """ res = [] curr_max = 0 if len(foregroundTasks) == 0: for j in range(len(backgroundTasks)): add_result(backgroundTasks[j], K, curr_max, res, j, 1) if len(backgroundTasks) == 0: for i in range(len(foregroundTasks)): add_result(foregroundTasks[i], K, curr_max, res, i, 0) for i in range(len(foregroundTasks)): for j in range(len(backgroundTasks)): curr_usage = foregroundTasks[i] + backgroundTasks[j] if curr_usage > K: add_result(foregroundTasks[i], K, curr_max, res, i, 0) add_result(backgroundTasks[j], K, curr_max, res, j, 1) if curr_usage > curr_max and curr_usage <= K: res = [[i, j]] curr_max = curr_usage elif curr_usage == curr_max: res.append([i, j]) return res if len(res) > 0 else [[-1, -1]]
be7de70bf39ea1872ad1d5bbb9c5209ae3978c8c
10,380
import itertools def cv_indices(num_folds,num_samples): """ Given number of samples and num_folds automatically create a subjectwise cross validator Assumption: per subject we have 340 samples of data >>> cv_set = cv_indices(2,680) >>> cv_set >>> (([0:340],[340:680]),([340:680,0:340])) Algo: 1.Compute all the permutations. 2.itreate through all the permutations and first calculate the train indices by taking first five then six,seven so on of each combination of arrangement.The rest will be the values of test indices 3. Finally zip it to form the indices. :param num_folds: folds for cv :param num_samples: number of samples of input of data (should be a multiple of 340) :return: return a zipped list of tuples of ranges of training and testing data """ n_epoch = 340 n_subjects = num_samples/n_epoch rem=num_samples%n_epoch assert (rem == 0),"samples passed in not a multiple of 340" assert (num_folds<=n_subjects),"number of subjects is less then number of folds" n_set = np.round(n_subjects/num_folds) n_set = int(n_set) n_subjects=int(n_subjects) flag=[] for i in range(num_folds): if i<num_folds-1: flag=flag+[list(range(i*n_set,(i+1)*n_set))] else: flag=flag+[list(range(i*n_set,n_subjects))] train_indices=[] test_indices=[] #permutations=perm1(range(num_folds)) permutations=list(itertools.combinations(list(range(num_folds)),num_folds-1)) permutations=list(map(list,permutations)) sets = len(permutations) permutations_test=list(itertools.combinations(list(range(num_folds)),1)) permutations_test=list(map(list,permutations_test)) permutations_test.reverse() for i in range(num_folds-1): for j in range(sets): for k in range(len(flag[permutations[j][i]])): if i<1: train_indices=train_indices+[list(range(flag[permutations[j][i]][k]*n_epoch,(flag[permutations[j][i]][k]+1)*n_epoch))] test_indices=test_indices+[list(range(flag[permutations_test[j][i]][k]*n_epoch,(flag[permutations_test[j][i]][k]+1)*n_epoch))] else: train_indices=train_indices+[list(range(flag[permutations[j][i]][k]*n_epoch,(flag[permutations[j][i]][k]+1)*n_epoch))] custom_cv=list(zip(train_indices,test_indices)) return custom_cv
ce0d983458a089919f5581ebc0a650f73cf4c423
10,381
import pkg_resources import json import jsonschema def load_schema(schema_name: str) -> dict: """Load a JSON schema. This function searches within apollon's own schema repository. If a schema is found it is additionally validated agains Draft 7. Args: schema_name: Name of schema. Must be file name without extension. Returns: Schema instance. Raises: IOError """ schema_path = 'schema/' + schema_name + SCHEMA_EXT if pkg_resources.resource_exists('apollon', schema_path): schema = pkg_resources.resource_string('apollon', schema_path) schema = json.loads(schema) jsonschema.Draft7Validator.check_schema(schema) return schema raise IOError(f'Schema ``{schema_path.name}`` not found.')
b8ebed15394fef7ec1bb9ab735e4f8cb2201df0b
10,382
def question_12(data): """ Question 12 linear transform the data, plot it, and show the newly created cov matrix. :param data: data :return: data after linear transformation """ s_mat = np.array([[0.1, 0, 0], [0, 0.5, 0], [0, 0, 2]]) new_data = np.matmul(s_mat, data) plot_3d(new_data, "Q12: Linear Transformed the prev data") print("------ Covariance Matrix (QUESTION 12) ------") print_cov_mat(new_data) return new_data
e0904f6a36d2833b48e064ff62d3071d07ab448b
10,383
def update_storage(user_choice): """It updates the Coffee Machine resources after a beverage is ordered.""" resources["water"] = resources["water"] - MENU[user_choice]["ingredients"]["water"] resources["milk"] -= MENU[user_choice]["ingredients"]["milk"] resources["coffee"] -= MENU[user_choice]["ingredients"]["coffee"] return resources
48c642fad80a124fd802a2ae1e1fc440ffa20203
10,384
def second_test_function(dataset_and_processing_pks): """ Pass a result of JSON processing to a function that saves result on a model. :param dataset_and_processing_pks: tuple of two (Dataset PK, Processing PK) :return: tuple of two (Dataset PK; JSON (Python's list of dicts)) """ # unpack tuple; needed for Celery chain compatibility dataset_pk, processing_pk = dataset_and_processing_pks # re-fetch Dataset and Processing dataset = Dataset.objects.get(pk=dataset_pk) processing = Processing.objects.get(pk=processing_pk) result = [] # calculate result; handle exceptions try: result = [{'result': pair['a'] + pair['b']} for pair in dataset.data] except Exception as err: # exception string = exception type + exception args exception_message = "{type}: {message}". \ format(type=type(err).__name__, message=err) # save exception to db dataset.exception = exception_message processing.exceptions = True dataset.save() processing.save() return dataset_pk, result
b21960b1349c825b00997281dfbef4ef924846d0
10,385
def matplotlib_axes_from_gridspec_array(arr, figsize=None): """Returned axes layed out as indicated in the array Example: -------- >>> # Returns 3 axes layed out as indicated by the array >>> fig, axes = matplotlib_axes_from_gridspec_array([ >>> [1, 1, 3], >>> [2, 2, 3], >>> [2, 2, 3], >>> ]) """ fig = plt.figure(figsize=figsize) gridspecs = matplotlib_gridspecs_from_array(arr) axes = [] for gridspec in gridspecs: axes.append(fig.add_subplot(gridspec)) return fig, axes
e1048ea32a6c3c8ea87a82c5c32f7e009c1b5c19
10,386
def _fetch_gene_annotation(gene, gtf): """ Fetch gene annotation (feature boundaries) and the corresponding sequences. Parameters: ----------- gene gene name that should be found in the "gene_name" column of the GTF DataFrame. type: str gtf GTF annotation DataFrame loaded by the gtfparse library. pandas.DataFrame Returns: -------- gene_df subset of the input gtf DataFrame corresponding to rows that match the input gene type: pandas.DataFrame gene_id name of the gene. ideally mathces the passed "gene" argument. type: str """ gene_df = gtf.loc[gtf["gene_name"].str.contains(gene)] gene_id = _check_gene_name(gene, gene_df["gene_name"]) return gene_df, gene_id
d08307fd3e079e6de3bca702a0d9f41005a6d5f7
10,387
from django.core.servers.basehttp import AdminMediaHandler def deploy_static(): """ Deploy static (application) versioned media """ if not env.STATIC_URL or 'http://' in env.STATIC_URL: return remote_dir = '/'.join([deployment_root(),'env',env.project_fullname,'static']) m_prefix = len(env.MEDIA_URL) #if app media is not handled by django-staticfiles we can install admin media by default if 'django.contrib.admin' in env.INSTALLED_APPS and not 'django.contrib.staticfiles' in env.INSTALLED_APPS: if env.MEDIA_URL and env.MEDIA_URL == env.ADMIN_MEDIA_PREFIX[:m_prefix]: print "ERROR: Your ADMIN_MEDIA_PREFIX (Application media) must not be on the same path as your MEDIA_URL (User media)" sys.exit(1) admin = AdminMediaHandler('DummyApp') local_dir = admin.base_dir remote_dir = ''.join([remote_dir,env.ADMIN_MEDIA_PREFIX]) else: if env.MEDIA_URL and env.MEDIA_URL == env.STATIC_URL[:m_prefix]: print "ERROR: Your STATIC_URL (Application media) must not be on the same path as your MEDIA_URL (User media)" sys.exit(1) elif env.STATIC_ROOT: local_dir = env.STATIC_ROOT static_url = env.STATIC_URL[1:] if static_url: remote_dir = '/'.join([remote_dir,static_url]) else: return if env.verbosity: print env.host,"DEPLOYING static",remote_dir return deploy_files(local_dir,remote_dir)
7c1c8d7ce725e285e08f5fa401f6e431a35fc77c
10,388
import array def randomPolicy(Ts): """ Each action is equally likely. """ numA = len(Ts) dim = len(Ts[0]) return ones((dim, numA)) / float(numA), mean(array(Ts), axis=0)
6c99ecfe141cb909bceb737e9d8525c9c773ea74
10,389
def calc_TiTiO2(P, T): """ Titanium-Titanium Oxide (Ti-TiO2) ================================ Define TiTiO2 buffer value at 1 bar Parameters ---------- P: float Pressure in GPa T: float or numpy array Temperature in degrees K Returns ------- float or numpy array log_fO2 References ---------- Barin (1993) Thermo database """ if isinstance(T, float) or isinstance(T, int): log_fO2 = log10(exp((-945822 + 219.6816*T - 5.25733*T*log(T)) / (8.314*T))) if isinstance(T, np.ndarray): log_fO2_list = [] for temp in T: log_fO2_list.append(log10(exp((-945822 + 219.6816*temp - 5.25733*temp*log(temp)) / (8.314*temp)))) log_fO2 = np.array(log_fO2_list) return log_fO2
c4f920db3ff6020eba896039228e7adbcdcd4234
10,390
def nlevenshtein_scoredistance(first_data, memento_data): """Calculates the Normalized Levenshtein Distance given the content in `first_data` and `memento_data`. """ score = compute_scores_on_distance_measure( first_data, memento_data, distance.nlevenshtein) return score
e85776c5ae95533c500a47d550ea848e6feceed7
10,391
def parameter_from_numpy(model, name, array): """ Create parameter with its value initialized according to a numpy tensor Parameters ---------- name : str parameter name array : np.ndarray initiation value Returns ------- mxnet.gluon.parameter a parameter object """ p = model.params.get(name, shape=array.shape, init=mx.init.Constant(array)) return p
babf1a32e55d92bbe1ad2588167bd813836637e7
10,392
def execute_workflow_command(): """Command that executes a workflow.""" return ( Command().command(_execute_workflow).require_migration().require_clean().with_database(write=True).with_commit() )
f20b5be4d37f14179f0097986f2f75b1de699b79
10,393
import tqdm def fast_parse(python_class, parse_function, data_to_parse, number_of_workers=4, **kwargs): """ Util function to split any data set to the number of workers, Then return results using any give parsing function Note that when using dicts the Index of the Key will be passed to the function Object too, so that needs to be handled :param python_class: Instantiated class object which contains the parse function :param parse_function: Function to parse data, can either be list or dict :param data_to_parse: Data to be parsed :param number_of_workers: Number of workers to split the parsing to :param kwargs: Optional, extra params which parse function may need :return: """ try: function_object = getattr(python_class, parse_function) except AttributeError as e: logger.error(f"{python_class} doesn't have {parse_function}") return else: results = [] data_len = len(data_to_parse) with tqdm(total=data_len) as pbar: with futures.ThreadPoolExecutor(max_workers=number_of_workers) as executor: if type(data_to_parse) == list: future_to_result = {executor.submit(function_object, data, **kwargs): data for data in data_to_parse} elif type(data_to_parse) == dict: for index, data in data_to_parse.items(): future_to_result = {executor.submit(function_object, data, **kwargs)} else: logger.error("Unsupported data type") return for future in futures.as_completed(future_to_result): try: data = future.result() except Exception as exc: logger.error(f"{future_to_result[future]} generated an exception: {exc}") else: results.append(data) pbar.update(1) return results
ffbd377a53362cb532c84860f3b26ff2ed1234c6
10,394
import copy def create_plate(dim=DIMENSION, initial_position=-1): """ Returns a newly created plate which is a matrix of dictionnaries (a matrix of cells) and places the first crystal cell in it at the inital_pos The keys in a dictionnary represent the properties of the cell :Keys of the dictionnary: - "is_in_crystal" : (bool) True if the cell belongs to the crystal, False otherwise - "b": (float) the proportion of quasi-liquid water - "c" : (float) the proportion of ice - "d" : (float) the proportion of steam :param dim: (tuple) [DEFAULT: DIMENSION] couple of positives integers (row, column), the dimension of the plate :param initial_position: (tuple) [DEFAULT: The middle of the plate] the coordinates of the first crystal :return: (list of list of dictionnaries) the plate Exemples: >>> DEFAULT_CELL["d"] = 1 # Used in order to not have any problems with doctest >>> plate = create_plate(dim=(3,3)) >>> for line in plate: ... print("[", end="") ... for d in line: ... print("{", end="") ... for k in sorted(d.keys()): ... print(k, ":", d[k], ", ", end="") ... print("}, ", end="") ... print("]") [{b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, {b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, {b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, ] [{b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, {b : 0 , c : 1 , d : 0 , i : 0 , is_in_crystal : True , }, {b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, ] [{b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, {b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, {b : 0 , c : 0 , d : 1 , is_in_crystal : False , }, ] >>> DEFAULT_CELL["d"] = RHO # Reverts to original state """ plate = [[copy(DEFAULT_CELL) for j in range(dim[1])] for i in range(dim[0])] if initial_position == -1: initial_position = (dim[0]//2, dim[1]//2) plate[initial_position[0]][initial_position[1]] = {"is_in_crystal":True, "b":0, "c":1, "d":0, "i":0} return plate
1f1b806035dc6dc24796840f7cb31c61cf7ec5a7
10,395
import unicodedata def CanonicalizeName(raw_name: Text): """Strips away all non-alphanumeric characters and converts to lowercase.""" unicode_norm = unicodedata.normalize('NFKC', raw_name).lower() # We only match Ll (lowercase letters) since alphanumeric filtering is done # after converting to lowercase. Nl and Nd are numeric-like letters and # numeric digits. return ''.join( x for x in unicode_norm if unicodedata.category(x) in ('Ll', 'Nl', 'Nd'))
bd8d2d47dae4220e51dab8d44a0c6b603986ecff
10,396
from datetime import datetime import json def data_v1( request ): """ Handles all /v1/ urls. """ ( service_response, rq_now, rq_url ) = ( {}, datetime.datetime.now(), common.make_request_url(request) ) # initialization dump_param_handler = views_helper.DumpParamHandler( rq_now, rq_url ) if request.GET.get( 'data', '' ) == 'dump': return_values = dump_param_handler.grab_all_v1() service_response = {'data': 'dump'} elif 'callnumber' in request.GET: call_param_handler = views_helper.CallParamHandler( request.GET['callnumber'].split(','), rq_now, rq_url ) return_values = call_param_handler.grab_callnumbers() service_response['query'] = { 'request_type': 'call number', 'request_numbers': call_param_handler.callnumbers } service_response['result'] = { 'items': return_values, 'service_documentation': settings_app.README_URL } output = json.dumps( service_response, sort_keys=True, indent=2 ) return HttpResponse( output, content_type='application/json')
18e98f015cb92f0d0e2ac6bbe9627d4c6ab33fb0
10,397
import subprocess import sys def ssh(server, cmd, checked=True): """ Runs command on a remote machine over ssh.""" if checked: return subprocess.check_call('ssh %s "%s"' % (server, cmd), shell=True, stdout=sys.stdout) else: return subprocess.call('ssh %s "%s"' % (server, cmd), shell=True, stdout=sys.stdout)
b8d1d492b7528dc7e601cf994b2c7a32b31af0d3
10,398
def permutations(n, r=None): """Returns the number of ways of arranging r elements of a set of size n in a given order - the number of permuatations. :param int n: The size of the set containing the elements. :param int r: The number of elements to arange. If not given, it will be\ assumed to be equal to n. :raises TypeError: if non-integers are given. :raises ValueError: if r is greater than n. :rtype: ``int``""" if not isinstance(n, int): raise TypeError("n {} must be integer".format(n)) if r is None: return factorial(n) if not isinstance(r, int): raise TypeError("r {} must be integer".format(r)) if r > n: raise ValueError("r {} is larger than n {}".format(r, n)) return factorial(n) / factorial(n - r)
7eab1c02ab0864f2abd9d224145938ab580ebd74
10,399