content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def embed_tiles_in_json_sprite(tile_list, as_bytes=True, out_file=None): """Make a big rectangle containing the images for a brainsprite. Parameters: ----------- tile_list : list List of 2d square numpy arrays to stick in a mosaic Returns: -------- mosaic : np.ndarray Mosaic of tile images """ # Tiles are squares tile_size = tile_list[0].shape[0] num_tiles = len(tile_list) num_tile_rows = nearest_square(num_tiles) num_tile_cols = int(np.ceil(num_tiles/num_tile_rows)) mosaic = np.zeros((num_tile_rows * tile_size, num_tile_cols * tile_size)) i_indices, j_indices = np.unravel_index(np.arange(num_tiles), (num_tile_rows, num_tile_cols)) i_tile_offsets = tile_size * i_indices j_tile_offsets = tile_size * j_indices for tile, i_offset, j_offset in zip(tile_list, i_tile_offsets, j_tile_offsets): mosaic[i_offset:(i_offset + tile_size), j_offset:(j_offset + tile_size)] = tile if as_bytes: img = mplfig(mosaic, out_file, as_bytes=as_bytes) return dict(img=img, N=num_tile_rows, M=num_tile_cols, pix=tile_size, num_slices=num_tiles) return dict(mosaic=mosaic, N=num_tile_rows, M=num_tile_cols, pix=tile_size, num_slices=num_tiles)
2eca9eb999d69537fac60dfefd0d482576994868
7,915
import re def removeUnicode(text): """ Removes unicode strings like "\u002c" and "x96" """ text = re.sub(r'(\\u[0-9A-Fa-f]+)',r'', text) text = re.sub(r'[^\x00-\x7f]',r'',text) return text
f5c8090329ede82ce51601efa463537bba68b63a
7,916
import scipy def mfcc(tf, n_mfcc, fs, fmin=0.0, fmax=None): """ Extract MFCC vectors Args: tf : single-channel time-frequency domain signal, indexed by 'tf' n_mfcc : number of coefficients fs : sample rate fmin : (default 0) minimal frequency in Hz fmax : (default fs/2) maximal frequency in Hz Returns: mfcc : MFCC """ if fmax is None: fmax = fs / 2.0 n_frame, n_fbin = tf.shape # get filter weights freq = np.fft.fftfreq(n_fbin) fbw = mel_freq_fbank_weight(n_mfcc, freq, fs, fmin=fmin, fmax=fmax) # get log power sigpow = np.real(tf * tf.conj()) logfpow = np.log(np.einsum('bf,tf->tb', fbw, sigpow) + 1e-20) # DCT mfcc = scipy.fft.dct(logfpow) return mfcc
58769db11aa0633dd846b9d427e6d35a0fff435e
7,917
import logging def transform(fname, metadata=False): """ This function reads a Mission Analysis Orbit file and performs a matrix transformation on it. Currently only from the Mercury Equatorial frame to the Earth Equatorial frame. :param fname: The path to the orbit file. :type fname: str. :param metadata: Flag to return the metadata dictionary :type state: bool. :returns: numpy.array -- the return code. """ furnsh("/Users/jmcaulif/Code/naif/generic/lsk/naif0010.tls") logging.basicConfig(level=logging.INFO) mdata = {} data = {} with open(fname, 'r') as fh: for line in fh: t, x, y, z, vx, vy, vz = [float(x) for x in line.split()] T = np.array([[0.98159386604468, 0.19098031873327, 0.0], [-0.16775718426422, 0.86223242348167, 0.47792549108063], [0.09127436261733, -0.46912873047114, 0.87840037851502]]) Tinv = linalg.inv(T) r = np.array([[x, y, z]]) v = np.array([[vx, vy, vz]]) r_new = Tinv.dot(r.T).T v_new = Tinv.dot(v.T).T x, y, z = r_new[0] vx, vy, vz = v_new[0] t = et2utc(t * 86400, 'isoc', 2) print("{} {:9.2f} {:9.2f} {:9.2f} {:9.6f} {:9.6f} {:9.6f}". format(t, x, y, z, vx, vy, vz)) fh.close() if metadata: return data, mdata else: return data
ce389f74ba35d3c92a94031563b187a7285ccb5b
7,918
import requests import json def query_repository(repo_name, index_uuid, token, display_results=False): """ Display the ids ('subjects') of all items indexed in a repository. :param repo_name: Textual name of repository to query, corresponds to 'name' field in conf file. :param index_name: Name of index, mapped by us to a UUID. :param display_results: Print ids to standard output :return: List of result ids """ LOGGER.info("Querying index %s for repository %s" % (index_uuid, repo_name)) querylimit = 20 headers = {'Authorization' : ('Bearer ' + token), 'Content-Type' : 'application/json'} queryobj = {"@datatype": "GSearchRequest", "@version": "2016-11-09", "advanced": True, "offset": 0, "limit": querylimit, "q": "*", "filters": [ {"@datatype": "GFilter", "@version": "2016-11-09", "type": "match_any", "field_name": "https://frdr\\.ca/schema/1\\.0#origin\\.id", "values": [""]}]} result_ids = [] queryobj["filters"][0]["values"][0] = repo_name offset = 0 while True: r = requests.post('https://' + _api_host + '/v1/index/' + index_uuid + '/search', headers=headers, json=queryobj) search_results = json.loads(r.text) results_count = search_results['count'] LOGGER.info("Got %i results" % (results_count)) if results_count == 0: break for result in search_results['gmeta']: result_ids.append(result['subject']) offset = offset + querylimit queryobj["offset"] = offset if display_results: print('\n'.join(result_ids)) return result_ids
8a6b4f90374b90504a375c5d44a6dce6f32fb936
7,919
def power(x1, x2, out=None, where=True, dtype=None): """ First array elements raised to powers from second array, element-wise. Raises each base in `x1` to the positionally-corresponding power in `x2`. Note: Numpy arguments `casting`, `order`, `dtype`, `subok`, `signature`, and `extobj` are not supported. When `where` is provided, `out` must have a tensor value. `out` is not supported for storing the result, however it can be used in combination with `where` to set the value at indices for which `where` is set to False. On GPU, the supported dtypes are np.float16, and np.float32. Args: x1 (Tensor): the bases. x2 (Tensor): the exponents. out (Tensor or None, optional): defaults to None. where (Tensor or None, optional): For any non-default value of type other than :class:`Tensor` or :class:`None`, the output retains its original value. This condition is broadcasted over the input. At locations where the condition is `True`, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default ``out=None``, locations within it where the condition is `False` will remain uninitialized. dtype (:class:`mindspore.dtype`, optional): defaults to None. Overrides the dtype of the output Tensor. Returns: Tensor or scalar, the bases in `x1` raised to the exponents in `x2`. This is a scalar if both `x1` and `x2` are scalars. Raises: TypeError: if the input is not a tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> x1 = np.full((3, 2), [1, 2]).astype('float32') >>> x2 = np.full((3, 2), [3, 4]).astype('float32') >>> output = np.power(x1, x2) >>> print(output) [[ 1, 16], [ 1, 16], [ 1, 16]] """ return _apply_tensor_op(F.tensor_pow, x1, x2, out=out, where=where, dtype=dtype)
ecc265e96c36c47177aa96797d355a55f35114d6
7,920
def _str2bool(s): """文字列からboolへの変換""" return s.lower() in ["true", "t", "yes", "1"]
877340b7926541a5b8f56cb7f1acd5a54e08a987
7,921
import random def _generate_nonce(length=42): """ Generate an alpha numeric string that is unique for each request. Twitter used a 42 character alpha-numeric (case-sensitive) string in the API documentation. However, they note "any approach which produces a relatively random alphanumeric string should be OK here." I opted not to use a cryptographically secure source of entropy. `SystemRandom` is convenient, but it uses file IO to connect to `/dev/urandom`. Adding `async` machinery here seems like expensive complexity. """ return "".join(random.choice(ALPHANUMERIC) for _ in range(length))
034c4fee363d47e9af98c0135159f53179d27fdd
7,922
def int_(value): """Validate that the config option is an integer. Automatically also converts strings to ints. """ check_not_templatable(value) if isinstance(value, int): return value if isinstance(value, float): if int(value) == value: return int(value) raise Invalid( f"This option only accepts integers with no fractional part. Please remove the fractional part from {value}" ) value = string_strict(value).lower() base = 10 if value.startswith("0x"): base = 16 try: return int(value, base) except ValueError: # pylint: disable=raise-missing-from raise Invalid(f"Expected integer, but cannot parse {value} as an integer")
f5d5f729a1bbec418f3b270b4e28be2cf9cc7cd6
7,924
def explode(screen): """Convert a string representing a screen display into a list of lists.""" return [list(row) for row in screen.split('\n')]
a43a9d8c830c4a784bb9c3505c62aaf2077bb732
7,925
def basic_info(user, keys): """Prints a table of basic user information""" table = formatting.KeyValueTable(['Title', 'Basic Information']) table.align['Title'] = 'r' table.align['Basic Information'] = 'l' table.add_row(['Id', user.get('id', '-')]) table.add_row(['Username', user.get('username', '-')]) if keys: for key in user.get('apiAuthenticationKeys'): table.add_row(['APIKEY', key.get('authenticationKey')]) table.add_row(['Name', "%s %s" % (user.get('firstName', '-'), user.get('lastName', '-'))]) table.add_row(['Email', user.get('email')]) table.add_row(['OpenID', user.get('openIdConnectUserName')]) address = "%s %s %s %s %s %s" % ( user.get('address1'), user.get('address2'), user.get('city'), user.get('state'), user.get('country'), user.get('postalCode')) table.add_row(['Address', address]) table.add_row(['Company', user.get('companyName')]) table.add_row(['Created', user.get('createDate')]) table.add_row(['Phone Number', user.get('officePhone')]) if user.get('parentId', False): table.add_row(['Parent User', utils.lookup(user, 'parent', 'username')]) table.add_row(['Status', utils.lookup(user, 'userStatus', 'name')]) table.add_row(['PPTP VPN', user.get('pptpVpnAllowedFlag', 'No')]) table.add_row(['SSL VPN', user.get('sslVpnAllowedFlag', 'No')]) for login in user.get('unsuccessfulLogins', {}): login_string = "%s From: %s" % (login.get('createDate'), login.get('ipAddress')) table.add_row(['Last Failed Login', login_string]) break for login in user.get('successfulLogins', {}): login_string = "%s From: %s" % (login.get('createDate'), login.get('ipAddress')) table.add_row(['Last Login', login_string]) break return table
805b8e12f531b1c6b31aeca847568cbc1b2e929c
7,927
def iobes_iob(tags): """ IOBES -> IOB """ new_tags = [] for i, tag in enumerate(tags): if tag == 'rel': new_tags.append(tag) elif tag.split('-')[0] == 'B': new_tags.append(tag) elif tag.split('-')[0] == 'I': new_tags.append(tag) elif tag.split('-')[0] == 'S': new_tags.append(tag.replace('S-', 'B-')) elif tag.split('-')[0] == 'E': new_tags.append(tag.replace('E-', 'I-')) elif tag.split('-')[0] == 'O': new_tags.append(tag) else: raise Exception('Invalid format!') return new_tags
1a2f715edfc37b387944f84c4f149f21a0e86e74
7,928
def draw_handler(canvas): """ Event handler that is responsible for all drawing. It receives "canvas" object and draws the "Pong" table, the "moving" ball and the scores of each "Player". It is also responsible for testing whether the ball touches/collides with the "gutters" or the "paddles". """ # These are (global) numbers; vertical "position" of # each "paddle". global paddle1_pos, paddle2_pos # These are (global) numbers; "score" of each "Player". global score1, score2 # These are vectors stored as (global) "[x,y]" lists; # ball "position" and "velocity". global ball_pos, ball_vel # This is (global) number; keeps track of the time in # "seconds". global seconds # Draw middle line and "gutters" of "Pong" table. canvas.draw_line([WIDTH / 2, 0], [WIDTH / 2, HEIGHT], LINE_WIDTH, COLOR) canvas.draw_line([PAD_WIDTH, 0], [PAD_WIDTH, HEIGHT], LINE_WIDTH, COLOR) canvas.draw_line([WIDTH - PAD_WIDTH, 0], [WIDTH - PAD_WIDTH, HEIGHT], LINE_WIDTH, COLOR) # "Postpone" the beginning of new game if "Timer" is # already running by "reseting" ball "position" at the # middle of the table. if timer.is_running(): ball_pos = [WIDTH / 2, HEIGHT / 2] # Print message about the remaining time until the # beginning of the new game by referencing the # global "seconds" counter. canvas.draw_text("new game will start in " + str(NEW_GAME_DELAY - seconds) + " seconds" + ("." * (NEW_GAME_DELAY - seconds)), [WIDTH // 12, 3 * HEIGHT // 4], 3 * FONT_SIZE // 10, COLOR, FONT_FACE) else: # "Timer" has expired; update ball "position" for # the new game. ball_pos[0] += ball_vel[0] ball_pos[1] += ball_vel[1] # Test whether the ball touches/collides with the left # "gutter" (offset from the left edge of the "canvas" # by the width of the "paddle"). if ball_pos[0] <= (BALL_RADIUS + PAD_WIDTH): # Check whether the ball is actually striking left # "paddle" when it touches left "gutter". If so, # reflect the ball back into play; ball's "velocity" # increased by the "acceleration" configured. if ((paddle1_pos - HALF_PAD_HEIGHT) <= ball_pos[1] <= (paddle1_pos + HALF_PAD_HEIGHT)): ball_vel[0] = -ball_vel[0] * BALL_VELOCITY_ACCELERATION else: # Ball touched "gutter". Respawn the ball in # the center of the table headed towards the # opposite "gutter" and of course update score # of "Player" 2 (right) by the "points" # configured. score2 += POINTS # Start a game of "Pong". Start also a "Timer" # to "postpone" the beginning of the new game. if not timer.is_running(): timer.start() spawn_ball(RIGHT) # Test whether the ball touches/collides with the right # "gutter" (offset from the right edge of the "canvas" # by the width of the "paddle"). elif ball_pos[0] >= ((WIDTH - 1) - BALL_RADIUS - PAD_WIDTH): # Check whether the ball is actually striking right # "paddle" when it touches right "gutter". If so, # reflect the ball back into play; ball's "velocity" # increased by the "acceleration" configured. if ((paddle2_pos - HALF_PAD_HEIGHT) <= ball_pos[1] <= (paddle2_pos + HALF_PAD_HEIGHT)): ball_vel[0] = -ball_vel[0] * BALL_VELOCITY_ACCELERATION else: # Ball touched "gutter". Respawn the ball in # the center of the table headed towards the # opposite "gutter" and of course update score # of "Player" 1 (left) by the "points" # configured. score1 += POINTS # Start a game of "Pong". Start also a "Timer" # to "postpone" the beginning of the new game. if not timer.is_running(): timer.start() spawn_ball(LEFT) # Collide and reflect off of top side of the "canvas". elif ball_pos[1] <= BALL_RADIUS: ball_vel[1] = -ball_vel[1] # Collide and reflect off of bottom side of the "canvas". elif ball_pos[1] >= ((HEIGHT - 1) - BALL_RADIUS): ball_vel[1] = -ball_vel[1] # Draw a ball moving across the "Pong" table. canvas.draw_circle(ball_pos, BALL_RADIUS, 2 * LINE_WIDTH, COLOR, COLOR) # Update paddle's vertical "position", by # referencing the two global variables that contain the # vertical "velocities" of the "paddle". Keep "paddle" # on the screen by calling the proper "helper" function. if keep_paddle_on_screen(paddle1_pos, paddle1_vel): paddle1_pos += paddle1_vel if keep_paddle_on_screen(paddle2_pos, paddle2_vel): paddle2_pos += paddle2_vel # Draw left and right "paddles" in their respective # "gutters". canvas.draw_polygon([[0, paddle1_pos - HALF_PAD_HEIGHT], [PAD_WIDTH, paddle1_pos - HALF_PAD_HEIGHT], [PAD_WIDTH, paddle1_pos + HALF_PAD_HEIGHT], [0, paddle1_pos + HALF_PAD_HEIGHT]], LINE_WIDTH, COLOR, COLOR) canvas.draw_polygon([[WIDTH - PAD_WIDTH, paddle2_pos - HALF_PAD_HEIGHT], [WIDTH , paddle2_pos - HALF_PAD_HEIGHT], [WIDTH, paddle2_pos + HALF_PAD_HEIGHT], [WIDTH - PAD_WIDTH, paddle2_pos + HALF_PAD_HEIGHT]], LINE_WIDTH, COLOR, COLOR) # Draw scores; # but first get the width of the "score" text in pixels # for each "Player"; useful in (later) computing the # position to draw the "score" text - centered justified # on the "canvas field" of each player. score_textwidth_in_px = frame.get_canvas_textwidth(str(score1), FONT_SIZE, FONT_FACE) score_point_x = (WIDTH // 4) - (score_textwidth_in_px // 2) score_point_y = (HEIGHT // 4) canvas.draw_text(str(score1), [score_point_x, score_point_y], FONT_SIZE, COLOR, FONT_FACE) score_textwidth_in_px = frame.get_canvas_textwidth(str(score2), FONT_SIZE, FONT_FACE) score_point_x = (3 * WIDTH // 4) - (score_textwidth_in_px // 2) score_point_y = (HEIGHT // 4) canvas.draw_text(str(score2), [score_point_x, score_point_y], FONT_SIZE, COLOR, FONT_FACE) return None
ad9d5be8bbc1eb1b1612c6bfd35cc774bcacbd7a
7,929
def tf_idf(df, vocab): """[summary] https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76 Args: docs ([type]): [description] """ docs = [] for text in df['text'].tolist(): docs += [text] vectorizer = TfidfVectorizer(tokenizer=token_list, lowercase=False, vocabulary=vocab) vectors = vectorizer.fit_transform(docs) feature_names = vectorizer.get_feature_names() dense = vectors.todense() denselist = dense.tolist() tfidf_matrix = pd.DataFrame(denselist, columns=feature_names) return tfidf_matrix
ef75e51f1d4b69dcf6a5ab908f56eff8a25852f7
7,930
def get_activation_func(activation): """Turns a string activation function name into a function. """ if isinstance(activation, string_types): # Get the activation function. activation = activation.lower() if activation == "tanh": activation_func = tanh elif activation == "abstanh": activation_func = abs_tanh elif activation in ["sig", "sigmoid"]: activation_func = sigmoid elif activation in ["rec", "relu"]: activation_func = rectify elif activation in ["prelu_shelf"]: activation_func = parametric_flat_relu elif activation == "relu_max": activation_func = rectify_max # For performance comparisons with abs version of rectify elif activation in ["rec_para", "prelu"]: activation_func = parametric_rectifier elif activation == "maxout": activation_func = maxout elif activation == "linear": activation_func = linear else: raise ValueError("Unrecognized activation: {}".format(activation)) else: activation_func = activation return activation_func
6cb6fccdacf44c3fc3fac242d69a2494459c1318
7,932
def create_schema(hostname='localhost', username=None, password=None, dbname=None, port=None, schema_name=None): """Create test schema.""" cn = create_cn(hostname, password, username, dbname, port) with cn.cursor() as cr: cr.execute('DROP SCHEMA IF EXISTS %s CASCADE' % dbname) cr.execute('CREATE SCHEMA %s' % dbname) cn.close() cn = create_cn(hostname, password, username, dbname, port) return cn
ef1b8b77ca1cd88804f0afec9efc24caad3a601d
7,934
def set_color_in_session(intent, session): """ Sets the color in the session and prepares the speech to reply to the user. """ card_title = intent['name'] session_attributes = {} should_end_session = False if 'Color' in intent['slots']: favorite_color = intent['slots']['Color']['value'] session_attributes = create_favorite_color_attributes(favorite_color) speech_output = "I now know the bus stop you are in is " + \ favorite_color + \ ". You can ask me where your bus stop is by asking, " \ "what bus stop am I on?" reprompt_text = "You can ask me where your bus stop is by asking, " \ "what bus stop am I on?" else: speech_output = "I'm not sure what bus stop you are in. " \ "Please try again." reprompt_text = "I'm not sure what bus stop you are in " \ "You can ask me where your bus stop is by asking, " \ "what bus stop am I on?" return build_response(session_attributes, build_speechlet_response( card_title, speech_output, reprompt_text, should_end_session))
4783aa36b18fb723441d99a8ffcdfe4b587d2a45
7,935
def fpath_to_pgn(fpath): """Slices the pgn string from file path. """ return fpath.split('/')[-1].split('.jpeg')[0]
1cc6cad60c5356b6c731947a59998117bf15035a
7,936
def convert_to_constant(num): """ Convert one float argument to Constant, returning the converted object. :param float num: Float number to be converted to Constant :return: Float number converted to a Constant object :rtype: object """ return Constant(name=str(num), units = null_dimension, value = float(num) )
111ae55c1446228b23638465c75bd9fa6d3d7043
7,937
def data_zip(data): """ 输入数据,返回一个拼接了子项的列表,如([1,2,3], [4,5,6]) -> [[1,4], [2,5], [3,6]] {"a":[1,2],"b":[3,4]} -> [{"a":1,"b":3}, {"a":2,"b":4}] :param data: 数组 data 元组 (x, y,...) 字典 {"a":data1, "b":data2,...} :return: 列表或数组 """ if isinstance(data, tuple): return [list(d) for d in zip(*data)] if isinstance(data, dict): data_list = [] keys = data.keys() for i in range(len(data[list(keys)[0]])): # 迭代字典值中的数据 data_dict = {} for key in keys: data_dict[key] = data[key][i] data_list.append(data_dict) return data_list return data
31dcaa3905a7d062cfe994543df31f293fdc962a
7,938
def _days_in_leap_and_common_years(i_date, f_date): """Return the a tuple with number of days in common and leap years (respectively) between initial and final dates. """ iy = i_date.year fy = f_date.year days_in_leap = 0 days_in_common = 0 if iy == fy: # same year delta = f_date - i_date if _isleap(iy): days_in_leap += delta.days else: days_in_common += delta.days elif fy - iy >= 1: # different year delta1 = i_date.replace(year = iy+1, month=1, day=1) - i_date # days in initial year delta2 = f_date - f_date.replace(month=1, day=1) # days in final year if _isleap(iy): days_in_leap += delta1.days else: days_in_common += delta1.days if _isleap(fy): days_in_leap += delta2.days else: days_in_common += delta2.days leaps_in_between = [y for y in range(iy+1, fy) if _isleap(y)] commons_in_between = [y for y in range(iy+1, fy) if not(_isleap(y))] days_in_leap += len(leaps_in_between) * 366 days_in_common += len(commons_in_between) * 365 #else: #raise InputError(expr = "Error in days_in_years(), f_date.year must be greater than i_date.year") return (days_in_leap, days_in_common)
f96b6c26fd8e87a543ffa6b6e7ed66144248d752
7,939
def make_space_kernel(data, background_kernel, trigger_kernel, time, time_cutoff=None, space_cutoff=None): """Produce a kernel object which evaluates the background kernel, and the trigger kernel based on the space locations in the data, always using the fixed time as passed in. :param data: An array of shape `(3,N)` giving the space-time locations events. Used when computing the triggered / aftershock events. :param background_kernel: The kernel object giving the background risk intensity. We assume this has a method `space_kernel` which gives just the two dimensional spacial kernel. :param trigger_kernel: The kernel object giving the trigger / aftershock risk intensity. :param time: The fixed time coordinate to evaluate at. :param time_cutoff: Optional; if set, then we assume the trigger_kernel is zero for times greater than this value (to speed up evaluation). :param space_cutoff: Optional; if set, then we assume the trigger_kernel is zero for space distances greater than this value (to speed up evaluation). :return: A kernel object which can be called on arrays of (2 dimensional space) points. """ mask = data[0] < time if time_cutoff is not None: mask = mask & (data[0] > time - time_cutoff) data_copy = _np.array(data[:, mask]) return SpaceKernel(time, background_kernel, trigger_kernel, data_copy, space_cutoff)
5c84dfb89340e52e57fb0b28464b18b0487601ea
7,940
import torch def get_dim_act_curv(args): """ Helper function to get dimension and activation at every layer. :param args: :return: """ if not args.act: act = lambda x: x else: act = getattr(F, args.act) acts = [act] * (args.num_layers - 1) dims = [args.feat_dim] # Check layer_num and hdden_dim match if args.num_layers > 1: hidden_dim = [int(h) for h in args.hidden_dim.split(',')] if args.num_layers != len(hidden_dim) + 1: raise RuntimeError('Check dimension hidden:{}, num_layers:{}'.format(args.hidden_dim, args.num_layers) ) dims = dims + hidden_dim dims += [args.dim] acts += [act] n_curvatures = args.num_layers if args.c_trainable == 1: # NOTE : changed from # if args.c is None: # create list of trainable curvature parameters curvatures = [nn.Parameter(torch.Tensor([args.c]).to(args.device)) for _ in range(n_curvatures)] else: # fixed curvature curvatures = [torch.tensor([args.c]) for _ in range(n_curvatures)] if not args.cuda == -1: curvatures = [curv.to(args.device) for curv in curvatures] return dims, acts, curvatures
072a54a3a2060598cbbe0fc89efe0be4b7cdc63f
7,941
def write_charset_executable(mysql_charset_script_name, here): """Write to disk as an executable the file that will be used to issue the MySQL statements that change the character set to UTF-8 -- return the absolute path. """ mysql_charset_script = os.path.join(here, mysql_charset_script_name) if not os.path.exists(mysql_charset_script): with open(mysql_charset_script, 'w') as f: pass os.chmod(mysql_charset_script, 0744) return mysql_charset_script
b92ea0e48ccebd267856ababcb714e736fea812c
7,943
import time def readTemperature(file): """ Returns the temperature of the one wire sensor. Pass in the file containing the one wire data (ds18b20+) """ lines = read_temp_raw(file) while lines[0].strip()[-3:] != "YES": time.sleep(0.2) lines = read_temp_raw(file) equals_pos = lines[1].find("t=") if equals_pos != -1: temp_string = lines[1][equals_pos + 2:] # convert temperature to C temp_c = float(temp_string) / 1000.0 return temp_c return -273.15
3398f287ae98df4b72ff212cdcad1764a9bbe31b
7,944
def energyAct( grid, deltaE, xA, yA, zA, xB, yB, zB, temp, eList, i, dimensions): """Perform swap or not, based on deltaE value""" kB = 8.617332e-5 # boltzmann constant, w/ ~eV units kTemp = kB * temp if deltaE <= 0: # Swap lowers energy, therefore is favourable, # so perform swap in grid grid = performSwap(grid, xA, yA, zA, xB, yB, zB, dimensions) eList[i + 1] = eList[i] + deltaE else: # i.e. deltaE > 0: if temp == 0: thermalEnergy = 0 else: thermalEnergy = exp((-1 * deltaE) / (kTemp)) R = randint(0, 1000) / 1000 if thermalEnergy > R: grid = performSwap(grid, xA, yA, zA, xB, yB, zB, dimensions) eList[i + 1] = eList[i] + deltaE else: eList[i + 1] = eList[i] return grid, eList
2380991200c2b3c196b1fea4c4108e82f20a979b
7,946
def lambda_handler(event, context): """ Lambda function that transforms input data and stores inital DB entry Parameters ---------- event: dict, required context: object, required Lambda Context runtime methods and attributes Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html Returns ------ Lambda Output Format: dict """ log.log_request_and_context(event, context) labeling_jobs = event["labelingJobs"] batch_id = event["batchId"] error_message = "" """ Example database entry input for batch { "BatchCurrentStep": "INPUT", "BatchId": "notebook-test-08f874a7", "BatchMetadataType": "INPUT", "BatchStatus": "INTERNAL_ERROR", "LabelingJobs": [ { "inputConfig": { "inputManifestS3Uri": "s3://smgt-qa-batch-input-468814823616-us-east-1/two-frame-manifest.manifest" }, "jobLevel": 1, "jobModality": "PointCloudObjectDetectionAudit", "jobName": "notebook-test-08f874a7-first-level", "jobType": "BATCH", "labelCategoryConfigS3Uri": "s3://smgt-qa-batch-input-468814823616-us-east-1/first-level-label-category-file.json", "maxConcurrentTaskCount": 1, "taskAvailabilityLifetimeInSeconds": 864000, "taskTimeLimitInSeconds": 604800, "workteamArn": "arn:aws:sagemaker:us-east-1:468814823616:workteam/private-crowd/first-level" }, { "inputConfig": { "chainFromJobName": "notebook-test-08f874a7-first-level" }, "jobLevel": 2, "jobModality": "PointCloudObjectDetectionAudit", "jobName": "notebook-test-08f874a7-second-level", "jobType": "BATCH", "maxConcurrentTaskCount": 1, "taskAvailabilityLifetimeInSeconds": 864000, "taskTimeLimitInSeconds": 604800, "workteamArn": "arn:aws:sagemaker:us-east-1:468814823616:workteam/private-crowd/first-level" } ] } """ db.insert_transformed_input_batch_metadata( batch_id=batch_id, batch_current_step=BatchCurrentStep.INPUT, batch_status=BatchStatus.IN_PROGRESS, batch_metadata_type=BatchMetadataType.INPUT, error_message=error_message, labeling_jobs=labeling_jobs, ) return { "batch_id": batch_id, }
83bba41d28a7b37da6579dfc2641380839f9d785
7,947
def getModCase(s, mod): """Checks the state of the shift and caps lock keys, and switches the case of the s string if needed.""" if bool(mod & KMOD_RSHIFT or mod & KMOD_LSHIFT) ^ bool(mod & KMOD_CAPS): return s.swapcase() else: return s
4faa2963e96786c5495443382585188b3a6ff119
7,948
from pathlib import Path def try_provider(package, provider, domain): """Try using a provider.""" downloaded_file = None data = None apk_name = f'{package}.apk' temp_file = Path(gettempdir()) / apk_name link = find_apk_link(provider, domain) if link: downloaded_file = download_file(link, temp_file) if downloaded_file: data = add_apk(downloaded_file, apk_name) if data: return data return None
e43a6b18a5783722c148a537f21e501a1f4e5928
7,950
def _get_list(sline): """Takes a list of strings and converts them to floats.""" try: sline2 = convert_to_float(sline) except ValueError: print("sline = %s" % sline) raise SyntaxError('cannot parse %s' % sline) return sline2
2b315b12508638fe603378fdd3127bd814f4313d
7,951
def add_number(partitions, number): """ Adds to the partition provided `number` in all its combinations """ # Add to each list in partitions add 1 prods = partitions.values() nKeys = [(1,) + x for x in partitions.keys()] # apply sum_ones on each partition, and add results to partitions # Done use reduce, the continues list creation is just too slow #partitions = reduce(lambda acc, x: acc + sum_ones(x), partitions, []) newParts = [] newProds = [] for part, prod in zip(nKeys, prods): npart, nprod = sum_ones(part, prod) newParts.extend(npart) newProds.extend(nprod) # Remove duplicates return dict(zip(newParts, newProds))
cade1ddbd4002b76fc2652c59fe4f0a9bcdcc9b9
7,952
import colorsys def _color_to_rgb(color, input): """Add some more flexibility to color choices.""" if input == "hls": color = colorsys.hls_to_rgb(*color) elif input == "husl": color = husl.husl_to_rgb(*color) color = tuple(np.clip(color, 0, 1)) elif input == "xkcd": color = xkcd_rgb[color] return color
7b3a502eba4a48dbd9b1e44d278aee58eb1ea22c
7,953
def in_days(range_in_days): """ Generate time range strings between start and end date where each range is range_in_days days long :param range_in_days: number of days :return: list of strings with time ranges in the required format """ delta = observation_period_end - observation_period_start # timedelta period_starts = [] for d in range(0, delta.days + 1, range_in_days): # print(observation_period_start + timedelta(days=d)) period_starts.append(observation_period_start + timedelta(days=d)) start_end = [] for i, start in enumerate(period_starts[:-1]): start_end.append((start, period_starts[i+1] - timedelta(days=1))) time_periods = [start.strftime("%Y%m%d") + ":" + end.strftime("%Y%m%d") for start, end in start_end] return time_periods
f9e77eac3fd151923cb14d05d291a0e362bd11b5
7,954
from pathlib import Path from typing import List import re def tags_in_file(path: Path) -> List[str]: """Return all tags in a file.""" matches = re.findall(r'@([a-zA-Z1-9\-]+)', path.read_text()) return matches
1071c22ac79f51697b2ed18896aa1d17568ecb2c
7,955
import torch def pad_to_longest_in_one_batch(batch): """According to the longest item to pad dataset in one batch. Notes: usage of pad_sequence: seq_list = [(L_1, dims), (L_2, dims), ...] item.size() must be (L, dims) return (longest_len, len(seq_list), dims) Args: batch: [ (noisy_mag_1, noise_mag_1, clean_mag_1, n_frames_1), (noisy_mag_2, noise_mag_2, clean_mag_2, n_frames_2), ... ] """ noisy_mag_list = [] mask_mag_list = [] clean_mag_list = [] n_frames_list = [] for noisy_mag, mask, clean_mag, n_frames in batch: noisy_mag_list.append(torch.t(torch.tensor(noisy_mag))) # the shape of tensor is (T, F). mask_mag_list.append(torch.t(torch.tensor(mask))) clean_mag_list.append(torch.t(torch.tensor(clean_mag))) n_frames_list.append(n_frames) noisy_mag_one_batch = pad_sequence(noisy_mag_list) # the shape is (longest T, len(seq_list), F) mask_one_batch = pad_sequence(mask_mag_list) clean_mag_one_batch = pad_sequence(clean_mag_list) noisy_mag_one_batch = noisy_mag_one_batch.permute(1, 0, 2) # the shape is (len(seq_list), longest T, F) mask_one_batch = mask_one_batch.permute(1, 0, 2) clean_mag_one_batch = clean_mag_one_batch.permute(1, 0, 2) # (batch_size, longest T, F) return noisy_mag_one_batch, mask_one_batch, clean_mag_one_batch, n_frames_list
3892b6002ae0f0cb0b6ce4c29128120a8f63237a
7,956
def create_instance(c_instance): """ Creates and returns the Twister script """ return Twister(c_instance)
acceb844eae8a3c9a8c734e55c4c618f990f1ae0
7,957
from typing import Type from typing import Callable def command_handler(command_type: Type[CommandAPI], *, name: str = None) -> Callable[[CommandHandlerFn], Type[CommandHandler]]: """ Decorator that can be used to construct a CommandHandler from a simple function. .. code-block:: python @command_handler(Ping) def handle_ping(connection, msg): connection.get_base_protocol().send_pong() """ if name is None: name = f'handle_{command_type.__name__}' def decorator(fn: CommandHandlerFn) -> Type[CommandHandler]: return type( name, (CommandHandler,), { 'cmd_type': command_type, 'handle': staticmethod(fn), }, ) return decorator
1c6634691e366b61043b2c745d43cc2371090200
7,958
def check_ip_in_lists(ip, db_connection, penalties): """ Does an optimized ip lookup with the db_connection. Applies only the maximum penalty. Args: ip (str): ip string db_connection (DBconnector obj) penalties (dict): Contains tor_penalty, vpn_penalty, blacklist_penalty keys with integer values Returns: :int: penalty_added """ penalties = {'tor': int(penalties['tor_penalty']), 'vpn': int(penalties['vpn_penalty']), 'blacklist': int(penalties['ip_blacklist_penalty'])} penalties = sorted(penalties.items(), key=lambda x: x[1]) # sort by penalty value to check in that order and perform early stopping penalty_added = 0 for penalty_type, penalty_value in penalties: if penalty_value == 0: continue if penalty_type == 'tor': if db_connection.set_exists('tor_ips', ip): penalty_added = penalty_value elif penalty_type == 'blacklist': if db_connection.set_exists('blacklist_ips', ip): penalty_added = penalty_value elif db_connection.set_exists('blacklist_ips', '.'.join(ip.split('.')[:3])): penalty_added = penalty_value elif db_connection.set_exists('blacklist_ips', '.'.join(ip.split('.')[:2])): penalty_added = penalty_value elif penalty_type == 'vpn': if db_connection.set_exists('vpn_ips', ip): penalty_added = penalty_value elif db_connection.set_exists('vpn_ips', '.'.join(ip.split('.')[:3])): penalty_added = penalty_value elif db_connection.set_exists('vpn_ips', '.'.join(ip.split('.')[:2])): penalty_added = penalty_value if penalty_added > 0: break return penalty_added
2d6e3615d4b0d9b0fb05e7a0d03708856ffcbfef
7,959
import numpy def scan(fn, sequences=None, outputs_info=None, non_sequences=None, n_steps=None, truncate_gradient=-1, go_backwards=False, mode=None, name=None, options=None, profile=False): """ This function constructs and applies a Scan op to the provided arguments. :param fn: ``fn`` is a function that describes the operations involved in one step of ``scan``. ``fn`` should construct variables describing the output of one iteration step. It should expect as input theano variables representing all the slices of the input sequences and previous values of the outputs, as well as all other arguments given to scan as ``non_sequences``. The order in which scan passes these variables to ``fn`` is the following : * all time slices of the first sequence * all time slices of the second sequence * ... * all time slices of the last sequence * all past slices of the first output * all past slices of the second otuput * ... * all past slices of the last output * all other arguments (the list given as `non_sequences` to scan) The order of the sequences is the same as the one in the list `sequences` given to scan. The order of the outputs is the same as the order of ``outputs_info``. For any sequence or output the order of the time slices is the same as the one in which they have been given as taps. For example if one writes the following : .. code-block:: python scan(fn, sequences = [ dict(input= Sequence1, taps = [-3,2,-1]) , Sequence2 , dict(input = Sequence3, taps = 3) ] , outputs_info = [ dict(initial = Output1, taps = [-3,-5]) , dict(initial = Output2, taps = None) , Output3 ] , non_sequences = [ Argument1, Argument 2]) ``fn`` should expect the following arguments in this given order: #. ``Sequence1[t-3]`` #. ``Sequence1[t+2]`` #. ``Sequence1[t-1]`` #. ``Sequence2[t]`` #. ``Sequence3[t+3]`` #. ``Output1[t-3]`` #. ``Output1[t-5]`` #. ``Output3[t-1]`` #. ``Argument1`` #. ``Argument2`` The list of ``non_sequences`` can also contain shared variables used in the function, though ``scan`` is able to figure those out on its own so they can be skipped. For the clarity of the code we recommend though to provide them to scan. To some extend ``scan`` can also figure out other ``non sequences`` (not shared) even if not passed to scan (but used by `fn`). A simple example of this would be : .. code-block:: python import theano.tensor as TT W = TT.matrix() W_2 = W**2 def f(x): return TT.dot(x,W_2) The function is expected to return two things. One is a list of outputs ordered in the same order as ``outputs_info``, with the difference that there should be only one output variable per output initial state (even if no tap value is used). Secondly `fn` should return an update dictionary (that tells how to update any shared variable after each iteration step). The dictionary can optionally be given as a list of tuples. There is no constraint on the order of these two list, ``fn`` can return either ``(outputs_list, update_dictionary)`` or ``(update_dictionary, outputs_list)`` or just one of the two (in case the other is empty). To use ``scan`` as a while loop, the user needs to change the function ``fn`` such that also a stopping condition is returned. To do so, he/she needs to wrap the condition in an ``until`` class. The condition should be returned as a third element, for example: .. code-block:: python ... return [y1_t, y2_t], {x:x+1}, theano.scan_module.until(x < 50) Note that a number of steps (considered in here as the maximum number of steps ) is still required even though a condition is passed (and it is used to allocate memory if needed). = {}): :param sequences: ``sequences`` is the list of Theano variables or dictionaries describing the sequences ``scan`` has to iterate over. If a sequence is given as wrapped in a dictionary, then a set of optional information can be provided about the sequence. The dictionary should have the following keys: * ``input`` (*mandatory*) -- Theano variable representing the sequence. * ``taps`` -- Temporal taps of the sequence required by ``fn``. They are provided as a list of integers, where a value ``k`` impiles that at iteration step ``t`` scan will pass to ``fn`` the slice ``t+k``. Default value is ``[0]`` Any Theano variable in the list ``sequences`` is automatically wrapped into a dictionary where ``taps`` is set to ``[0]`` :param outputs_info: ``outputs_info`` is the list of Theano variables or dictionaries describing the initial state of the outputs computed recurrently. When this initial states are given as dictionary optional information can be provided about the output corresponding to these initial states. The dictionary should have the following keys: * ``initial`` -- Theano variable that represents the initial state of a given output. In case the output is not computed recursively (think of a map) and does not require a initial state this field can be skiped. Given that only the previous time step of the output is used by ``fn`` the initial state should have the same shape as the output. If multiple time taps are used, the initial state should have one extra dimension that should cover all the possible taps. For example if we use ``-5``, ``-2`` and ``-1`` as past taps, at step 0, ``fn`` will require (by an abuse of notation) ``output[-5]``, ``output[-2]`` and ``output[-1]``. This will be given by the initial state, which in this case should have the shape (5,)+output.shape. If this variable containing the initial state is called ``init_y`` then ``init_y[0]`` *corresponds to* ``output[-5]``. ``init_y[1]`` *correponds to* ``output[-4]``, ``init_y[2]`` corresponds to ``output[-3]``, ``init_y[3]`` coresponds to ``output[-2]``, ``init_y[4]`` corresponds to ``output[-1]``. While this order might seem strange, it comes natural from splitting an array at a given point. Assume that we have a array ``x``, and we choose ``k`` to be time step ``0``. Then our initial state would be ``x[:k]``, while the output will be ``x[k:]``. Looking at this split, elements in ``x[:k]`` are ordered exactly like those in ``init_y``. * ``taps`` -- Temporal taps of the output that will be pass to ``fn``. They are provided as a list of *negative* integers, where a value ``k`` implies that at iteration step ``t`` scan will pass to ``fn`` the slice ``t+k``. ``scan`` will follow this logic if partial information is given: * If an output is not wrapped in a dictionary, ``scan`` will wrap it in one assuming that you use only the last step of the output (i.e. it makes your tap value list equal to [-1]). * If you wrap an output in a dictionary and you do not provide any taps but you provide an initial state it will assume that you are using only a tap value of -1. * If you wrap an output in a dictionary but you do not provide any initial state, it assumes that you are not using any form of taps. * If you provide a ``None`` instead of a variable or a empty dictionary ``scan`` assumes that you will not use any taps for this output (like for example in case of a map) If ``outputs_info`` is an empty list or None, ``scan`` assumes that no tap is used for any of the outputs. If information is provided just for a subset of the outputs an exception is raised (because there is no convention on how scan should map the provided information to the outputs of ``fn``) :param non_sequences: ``non_sequences`` is the list of arguments that are passed to ``fn`` at each steps. One can opt to exclude variable used in ``fn`` from this list as long as they are part of the computational graph, though for clarity we encourage not to do so. :param n_steps: ``n_steps`` is the number of steps to iterate given as an int or Theano scalar. If any of the input sequences do not have enough elements, scan will raise an error. If the *value is 0* the outputs will have *0 rows*. If the value is negative, ``scan`` will run backwards in time. If the ``go_backwards`` flag is already set and also ``n_steps`` is negative, ``scan`` will run forward in time. If n stpes is not provided, ``scan`` will figure out the amount of steps it should run given its input sequences. :param truncate_gradient: ``truncate_gradient`` is the number of steps to use in truncated BPTT. If you compute gradients through a scan op, they are computed using backpropagation through time. By providing a different value then -1, you choose to use truncated BPTT instead of classical BPTT, where you go for only ``truncate_gradient`` number of steps back in time. :param go_backwards: ``go_backwards`` is a flag indicating if ``scan`` should go backwards through the sequences. If you think of each sequence as indexed by time, making this flag True would mean that ``scan`` goes back in time, namely that for any sequence it starts from the end and goes towards 0. :param name: When profiling ``scan``, it is crucial to provide a name for any instance of ``scan``. The profiler will produce an overall profile of your code as well as profiles for the computation of one step of each instance of ``scan``. The ``name`` of the instance appears in those profiles and can greatly help to disambiguate information. :param mode: It is recommended to leave this argument to None, especially when profiling ``scan`` (otherwise the results are not going to be accurate). If you prefer the computations of one step of ``scan`` to be done differently then the entire function, you can use this parameter to describe how the computations in this loop are done (see ``theano.function`` for details about possible values and their meaning). :param profile: Flag or string. If true, or different from the empty string, a profile object will be created and attached to the inner graph of scan. In case ``profile`` is True, the profile object will have the name of the scan instance, otherwise it will have the passed string. Profile object collect (and print) information only when running the inner graph with the new cvm linker ( with default modes, other linkers this argument is useless) :rtype: tuple :return: tuple of the form (outputs, updates); ``outputs`` is either a Theano variable or a list of Theano variables representing the outputs of ``scan`` (in the same order as in ``outputs_info``). ``updates`` is a subclass of dictionary specifying the update rules for all shared variables used in scan This dictionary should be passed to ``theano.function`` when you compile your function. The change compared to a normal dictionary is that we validate that keys are SharedVariable and addition of those dictionary are validated to be consistent. """ # Note : see the internal documentation of the scan op for naming # conventions and all other details if options is None: options = {} rvals = scan_utils.canonical_arguments(sequences, outputs_info, non_sequences, go_backwards, n_steps) inputs, states_and_outputs_info, parameters, T = rvals # If we provided a known number of steps ( before compilation) # and if that number is 1 or -1, then we can skip the Scan Op, # and just apply the inner function once # To do that we check here to see the nature of n_steps T_value = None if isinstance(n_steps, (float, int)): T_value = int(n_steps) else: try: T_value = opt.get_scalar_constant_value(n_steps) except (TypeError, AttributeError): T_value = None if T_value in (1, -1): return one_step_scan(fn, inputs, states_and_outputs_info, parameters, truncate_gradient) # 1. Variable representing the current time step t = scalar_shared(numpy.int64(0), name='t') # 2. Allocate memory for the states of scan. mintaps = [] lengths = [] for pos, arg_info in enumerate(states_and_outputs_info): if arg_info.get('taps', None) == [-1]: mintaps.append(1) lengths.append(scalar_shared(numpy.int64(0), name='l%d' % pos)) arg_info['initial'] = scan_utils.expand(tensor.unbroadcast( tensor.shape_padleft(arg_info['initial']), 0), T) elif arg_info.get('taps', None): if numpy.any(numpy.array(arg_info.get('taps', [])) > 0): # Make sure we do not have requests for future values of a # sequence we can not provide such values raise ValueError('Can not use future taps of outputs', arg_info) mintap = abs(numpy.min(arg_info['taps'])) lengths.append(scalar_shared(numpy.int64(0), name='l%d' % pos)) mintaps.append(mintap) arg_info['initial'] = scan_utils.expand( arg_info['initial'][:mintap], T) else: mintaps.append(0) lengths.append(scalar_shared(numpy.int64(0), name='l%d' % pos)) # 3. Generate arguments for the function passed to scan. This will # function will return the outputs that need to be computed at every # timesteps inputs_slices = [input[t] for input in inputs] states_slices = [] for n, state in enumerate(states_and_outputs_info): # Check if it is actually a state and not an output if mintaps[n] != 0: for k in state['taps']: states_slices.append( state['initial'][(t + mintaps[n] + k) % lengths[n]]) # 4. Construct outputs that are to be computed by the inner # function of scan args = inputs_slices + states_slices + parameters cond, states_and_outputs, updates = \ scan_utils.get_updates_and_outputs(fn(*args)) # User is allowed to provide no information if it only behaves like a # map if (len(states_and_outputs) != len(states_and_outputs_info) and len(states_and_outputs_info) == 0): mintaps = [0] * len(states_and_outputs) # 5. Construct the scan op # 5.1 Construct list of shared variables with updates (those that # can be treated as states (i.e. of TensorType) and those that can not # (like Random States) if cond is not None: _cond = [cond] else: _cond = [] rvals = rebuild_collect_shared( states_and_outputs + _cond, updates=updates, rebuild_strict=True, copy_inputs_over=True, no_default_updates=False) # extracting the arguments input_variables, cloned_outputs, other_rval = rvals clone_d, update_d, update_expr, shared_inputs = other_rval additional_input_states = [] additional_output_states = [] additional_lengths = [] additional_mintaps = [] original_numeric_shared_variables = [] non_numeric_input_states = [] non_numeric_output_states = [] original_non_numeric_shared_variables = [] pos = len(lengths) for sv in shared_inputs: if sv in update_d: if isinstance(sv, (TensorVariable, TensorSharedVariable)): # We can treat it as a sit sot nw_state = scan_utils.expand( tensor.unbroadcast(tensor.shape_padleft(sv), 0), T) additional_lengths.append(scalar_shared(numpy.int64(0), name='l%d' % pos)) pos = pos + 1 additional_mintaps.append(1) additional_input_states.append(nw_state) additional_output_states.append( scan_utils.clone(tensor.set_subtensor( nw_state[(t + 1) % additional_lengths[-1]], update_d[sv]))) original_numeric_shared_variables.append(sv) else: non_numeric_input_states.append(sv) non_numeric_output_states.append(update_d[sv]) original_non_numeric_shared_variables.append(sv) # Replace shared variables in the update _additional_output_states = [] replace = {} for sv, buf in zip(original_numeric_shared_variables, additional_input_states): replace[sv] = buf[t] for out in additional_output_states: _additional_output_states.append( scan_utils.clone(out, replace=replace)) additional_output_states = _additional_output_states # 5.2 Collect inputs/outputs of the inner function inputs = [] outputs = [] for n, mintap in enumerate(mintaps): if mintap != 0: input_state = states_and_outputs_info[n]['initial'] inputs.append(input_state) outputs.append( tensor.set_subtensor( input_state[(t + mintap) % lengths[n]], states_and_outputs[n])) else: mem_buffer = scan_utils.allocate_memory( T, states_and_outputs_info[n], states_and_outputs[n]) inputs.append(output) outputs.append( tensor.set_subtensor(output[t % lengths[n]], states_and_outputs[n])) inputs.extend(additional_input_states) outputs.extend(additional_output_states) lengths.extend(additional_lengths) mintaps.extend(additional_mintaps) inputs.extend(non_numeric_input_states) outputs.extend(non_numeric_output_states) all_other_inputs = gof.graph.inputs(outputs) parameters = [x for x in all_other_inputs if (x not in inputs and x not in lengths and x is not t and isinstance(x, gof.Variable) and not isinstance(x, gof.Constant))] inputs.extend(parameters) # 5.3 Construct the the options dictionary options['name'] = name options['profile'] = profile options['mode'] = mode options['inplace'] = False options['gpu'] = False options['truncate_gradient'] = truncate_gradient options['hash_inner_graph'] = 0 # 5.4 Construct the ScanOp instance local_op = scan_op.ScanOp(inputs=inputs, outputs=outputs, lengths=lengths, switches=[], mintaps=mintaps, index=t, options=options, as_repeatUntil=cond) # Note that we get here all the outputs followed by the update rules to # the shared variables we had in our scan # we know that we have (in this given order): # * len(states_and_outputs) real outputs # * len(additional_input_states) updates for numeric shared variable # * len(non_numeric_input_states) updates for non numeric shared # variables scan_inputs = [T] + inputs scan_outputs_update_rules = scan_utils.to_list(local_op(*scan_inputs)) # 5.5 Collect outputs and add permutation object scan_outputs = [] for pos in xrange(len(states_and_outputs)): out = scan_utils.ScanPermutation(mintaps[pos])( scan_outputs_update_rules[pos], t) scan_outputs.append(out[mintaps[pos]:]) # 5.6 Construct updates dictionary update_rules = scan_outputs_update_rules[len(states_and_outputs):] updates = {} for v, u in izip(original_numeric_shared_variables, update_rules[:len(additional_input_states)]): updates[v] = u[-1] for v, u in izip(original_non_numeric_shared_variables, update_rules[len(additional_input_states):]): updates[v] = u # Step 5.7 We are done and can return everything back to the user return scan_outputs, updates
7ac0b7d106bc2e1642827a2e9f79552eb418a918
7,960
def stock_analyst(stock_list): """This function accepts a list of data P and outputs the best day to buy(B) and sell(S) stock. Args: stock_list: expects a list of stocks as a parameter Returns: a string promting to buy stock if one has not bought stock i.e the value of stock is less than 1 If the value of stock is > 0 it returns the best days to stock at value and sell stock at maximum value """ B = stock_list.index(min(stock_list)) buy_value = min(stock_list) sell_value = -1 if buy_value > 1: for sell_indx in range(B, len(stock_list)): if sell_value < stock_list[sell_indx]: sell_value = stock_list[sell_indx] S = sell_indx else: return 'Buy stock first' return [B, S]
bbb3cd664ba0ea366e8ad6fa369ae3259cf52a02
7,961
def is_sync_available(admin_id): """Method to check the synchronization's availability about networks connection. Args: admin_id (str): Admin privileges flag. """ return r_synchronizer.is_sync_available()
712becdc6c9903d41e3d29602bb7dc07987c6867
7,962
import collections def on_second_thought(divider): """sort the characters according to number of times they appears in given text, returns the remaining word as a string """ unsorted_list = list(unsorted_string) # characters occurence determines the order occurence = collections.Counter(unsorted_list) # sort by characters frequency in descending order occurences_list = sorted(unsorted_list, key=occurence.get, reverse=True) # already sorted, duplicates would provide no value reduced_list = list(collections.OrderedDict.fromkeys(occurences_list)) divider_position = reduced_list.index(divider) # everything behind (and including) the divider is irrelevant return ''.join(reduced_list[:divider_position])
1295a67cf1ebce0f79e49566306eba6add1f2e35
7,963
def aiohttp_unused_port(loop, aiohttp_unused_port, socket_enabled): """Return aiohttp_unused_port and allow opening sockets.""" return aiohttp_unused_port
9c5d0c1125a7758be2e07a8f8aca6676429a841a
7,964
def font_variant(name, tokens): """Expand the ``font-variant`` shorthand property. https://www.w3.org/TR/css-fonts-3/#font-variant-prop """ return expand_font_variant(tokens)
8bac3f0610c7951686504fd843c845d124f34ed6
7,966
def with_part_names(*part_names): """Add part names for garage.parts.assemble. Call this when you want to assemble these parts but do not want them to be passed to main. """ return lambda main: ensure_app(main).with_part_names(*part_names)
c62d495c2259139b1a9079697bcf784d12e6f9c2
7,967
def library_view(request): """View for image library.""" if request.user.is_authenticated: the_user = request.user albums = Album.objects.filter(user=the_user) context = {'the_user': the_user, 'albums': albums} return render(request, 'imager_profile/library.html', context)
948d239decfacabf5b3bba05e10739c7856db609
7,968
def combine_html_json_pbp(json_df, html_df, game_id, date): """ Join both data sources. First try merging on event id (which is the DataFrame index) if both DataFrames have the same number of rows. If they don't have the same number of rows, merge on: Period', Event, Seconds_Elapsed, p1_ID. :param json_df: json pbp DataFrame :param html_df: html pbp DataFrame :param game_id: id of game :param date: date of game :return: finished pbp """ # Don't need those columns to merge in json_df = json_df.drop(['p1_name', 'p2_name', 'p2_ID', 'p3_name', 'p3_ID'], axis=1) try: html_df.Period = html_df.Period.astype(int) # If they aren't equal it's usually due to the HTML containing a challenge event if html_df.shape[0] == json_df.shape[0]: json_df = json_df[['period', 'event', 'seconds_elapsed', 'xC', 'yC']] game_df = pd.merge(html_df, json_df, left_index=True, right_index=True, how='left') else: # We always merge if they aren't equal but we check if it's due to a challenge so we can print out a better # warning message for the user. # NOTE: May be slightly incorrect. It's possible for there to be a challenge and another issue for one game. if'CHL' in list(html_df.Event): shared.print_warning("The number of columns in the Html and Json pbp are different because the" " Json pbp, for some reason, does not include challenges. Will instead merge on " "Period, Event, Time, and p1_id.") else: shared.print_warning("The number of columns in the Html and json pbp are different because " "someone fucked up. Will instead merge on Period, Event, Time, and p1_id.") # Actual Merging game_df = pd.merge(html_df, json_df, left_on=['Period', 'Event', 'Seconds_Elapsed', 'p1_ID'], right_on=['period', 'event', 'seconds_elapsed', 'p1_ID'], how='left') # This is always done - because merge doesn't work well with shootouts game_df = game_df.drop_duplicates(subset=['Period', 'Event', 'Description', 'Seconds_Elapsed']) except Exception as e: shared.print_warning('Problem combining Html Json pbp for game {}'.format(game_id, e)) return game_df['Game_Id'] = game_id[-5:] game_df['Date'] = date return pd.DataFrame(game_df, columns=pbp_columns)
4f2aa3948fea4f64ac996f4052101daa556d1038
7,969
import json def read_json_file(path): """ Given a line-by-line JSON file, this function converts it to a Python dict and returns all such lines as a list. :param path: the path to the JSON file :returns items: a list of dictionaries read from a JSON file """ items = list() with open(path, 'r') as raw_data: for line in raw_data: line = json.loads(line) items.append(line) return items
15f898faca0dff0ca4b6c73ff31e037d822cf273
7,970
def get_boss_wage2(employee): """ Monadic version. """ return bind3(bind3(unit3(employee), Employee.get_boss), Employee.get_wage)
60524cc219a1c4438d310382aff519ee8ef5a66b
7,971
def keypoint_angle(kp1, kp2): """求两个keypoint的夹角 """ k = [ (kp1.angle - 180) if kp1.angle >= 180 else kp1.angle, (kp2.angle - 180) if kp2.angle >= 180 else kp2.angle ] if k[0] == k[1]: return 0 else: return abs(k[0] - k[1])
3feee667bcf767656da6334727b8d502be41d909
7,972
def get_args_static_distribute_cells(): """ Distribute ranges of cells across workers. :return: list of lists """ pop_names_list = [] gid_lists = [] for pop_name in context.pop_names: count = 0 gids = context.spike_trains[pop_name].keys() while count < len(gids): pop_names_list.append(pop_name) gid_lists.append(gids[count:count+context.gid_block_size]) count += context.gid_block_size return [pop_names_list, gid_lists]
42862d47533a8662b26c9875e5f62ceebb91ccec
7,973
import torch def le(input, other, *args, **kwargs): """ In ``treetensor``, you can get less-than-or-equal situation of the two tree tensors with :func:`le`. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.le( ... torch.tensor([[1, 2], [3, 4]]), ... torch.tensor([[1, 1], [4, 4]]), ... ) tensor([[ True, False], [ True, True]]) >>> ttorch.le( ... ttorch.tensor({ ... 'a': [[1, 2], [3, 4]], ... 'b': [1.0, 1.5, 2.0], ... }), ... ttorch.tensor({ ... 'a': [[1, 1], [4, 4]], ... 'b': [1.3, 1.2, 2.0], ... }), ... ) <Tensor 0x7ff363bc6198> ├── a --> tensor([[ True, False], │ [ True, True]]) └── b --> tensor([ True, False, True]) """ return torch.le(input, other, *args, **kwargs)
fa96a544f7f449daf008c6cf9b68f3760de67487
7,974
import numpy def linear_to_srgb(data): """Convert linear color data to sRGB. Acessed from https://entropymine.com/imageworsener/srgbformula Parameters ---------- data: :class:`numpy.ndarray`, required Array of any shape containing linear data to be converted to sRGB. Returns ------- converted: :class:`numpy.ndarray` Array with the same shape as `data` containing values in sRGB space. """ return numpy.where(data <= 0.0031308, data * 12.92, 1.055 * numpy.power(data, 1 / 2.4) - 0.055)
01eae0f9a34204498aad86e3a0a38337c7ced919
7,975
def circuit_to_dagdependency(circuit): """Build a ``DAGDependency`` object from a ``QuantumCircuit``. Args: circuit (QuantumCircuit): the input circuits. Return: DAGDependency: the DAG representing the input circuit as a dag dependency. """ dagdependency = DAGDependency() dagdependency.name = circuit.name for register in circuit.qregs: dagdependency.add_qreg(register) for register in circuit.cregs: dagdependency.add_creg(register) for operation, qargs, cargs in circuit.data: dagdependency.add_op_node(operation, qargs, cargs) dagdependency._add_successors() return dagdependency
7356da47f3af1088226af765f83cd43413de0a1f
7,976
def tweets_factory(fixtures_factory): """Factory for tweets from YAML file""" def _tweets_factory(yaml_file): all_fixtures = fixtures_factory(yaml_file) return [t for t in all_fixtures if isinstance(t, TweetBase)] return _tweets_factory
19d6e7ffe57ec071d324d535458c2263496c109d
7,977
def monte_carlo(ds,duration,n,pval,timevar): """ pval: two-tailed pval """ x=0 mc = np.empty([ds.shape[1],ds.shape[2],n]) while x<n: dummy = np.random.randint(0, len(ds[timevar])-duration, size=1) # have to adjust size so total number of points is always the same mc[:,:,x] = ds[int(dummy):int(dummy+duration),::].mean(timevar) x=x+1 # derive percentile perc_upper = np.nanpercentile(mc,100-pval,axis=2) perc_lower = np.nanpercentile(mc,pval,axis=2) return perc_lower,perc_upper
040aaf1a6a6813095079262446a2226fec8948ee
7,978
def num_crl(wf_n): """Function computes the autocorrelation function from given vectors\ and the Discrete Fourier transform Args: wf_n(numpy array, complex): Wave function over time Returns: numpy array, complex: The wave function complex over time. numpy array, complex: The autocorrelation function over time. numpy array, complex: The Discrete Fourier Transformation function\ over frequency """ # setting up the time vector and deleting it from array time_vc = np.zeros([len(wf_n[0])]) time_vc = wf_n[0] wf_n = np.delete(wf_n, [0], axis=0) # the lenth of the vector t_wf = len(wf_n[0]) p_wf = len(wf_n[:, 0]) # turning array into complex comp_vc = np.zeros([p_wf, t_wf], dtype=np.complex_) for n in range(p_wf): comp_vc[:, n] = wf_n[n * 2] + wf_n[1 + n * 2] * 1j return comp_vc, time_vc
fc84cd7184fb04f2725b50439d9b5cfe223e2020
7,979
def resample_time_series(series, period="MS"): """ Resample and interpolate a time series dataframe so we have one row per time period (useful for FFT) Parameters ---------- df: DataFrame Dataframe with date as index col_name: string, Identifying the column we will pull out period: string Period for resampling Returns ------- Series: pandas Series with datetime index, and one column, one row per day """ # give the series a date index if the DataFrame is not index by date already # if df.index.name != 'date': # series.index = df.date # just in case the index isn't already datetime type series.index = pd.to_datetime(series.index) # resample to get one row per time period rseries = series.resample(period).mean() new_series = rseries.interpolate() return new_series
2e3d2b1cbe4a8a0cc13c33c19fe217364819e31d
7,980
def check_user(user, pw, DB): """ Check if user exists and if password is valid. Return the user's data as a dict or a string with an error message. """ userdata = DB.get(user) if not userdata: log.error("Unknown user: %s", user) return "Unknown user: %s" % user elif userdata.get(C.Password) != pw: log.error("Invalid password!") return "Invalid password!" return userdata
21e8c56c0f747bd105cec31e1cb5aea348b4af44
7,983
def get_single_response_value(dom_response_list: list, agg_function): """ Get value of a single scenario's response. :param dom_response_list: Single response provided as a list of one term. :param agg_function: Function to aggregate multiple responses. :return: Value of such observation. """ response_list = extract_list_from_dom(dom_object=dom_response_list[0], tag_name='Observation', attribute_name='Value') if len(response_list) == 0: response_value = np.NaN else: try: response_value = agg_function([float(item) for item in response_list]) except TypeError: response_value = np.NaN return response_value
7a7ef4f24a720a4611c48123061886b6bdb9f2f5
7,984
def sharpe_ratio(returns, periods=252): """ Create the Sharpe ratio for the strategy, based on a benchmark of zero (i.e. no risk-free rate information). Args: returns (list, Series) - A pandas Series representing period percentage returns. periods (int.) Daily (252), Hourly (252*6.5), Minutely(252*6.5*60) etc. Returns: float. The result """ return np.sqrt(periods) * (np.mean(returns)) / np.std(returns)
b06ef19c5512370ff98217f7fb565c25846b697e
7,985
def is_validated(user): """Is this user record validated?""" # An account is "validated" if it has the `validated` field set to True, or # no `validated` field at all (for accounts created before the "account # validation option" was enabled). return user.get("validated", True)
c1ddfc52a62e71a68798dc07e7576a4ae42aa17f
7,986
def current_chart_provider_monthly(): """ API for monthly provider chart """ mytime = dubwebdb.CTimes("%Y-%m", request.args.get('time_start'), request.args.get('time_end')) myids = dubwebdb.Ids(prv_id=sanitize_list(request.args.get('prvid')), team_id=sanitize_list(request.args.get('teamid')), project_id=request.args.get('prjid'), div_id=None) csv_only = request.args.get('dl_csv') if csv_only: myrows = dubwebdb.get_data_budget_provider(mytime, myids) return convert_to_download_csv(myrows) else: return dubwebdb.get_data_provider(mytime, myids, add_budget=True)
36f67b0323be8fc136175fa4f9fb4819b40ebb94
7,987
def create_round_meander(radius, theta=0, offset=Point()): """ Returns a single period of a meandering path based on radius and angle theta """ deg_to_rad = 2 * pi / 360 r = radius t = theta * deg_to_rad # The calculation to obtain the 'k' coefficient can be found here: # http://itc.ktu.lt/itc354/Riskus354.pdf # "APPROXIMATION OF A CUBIC BEZIER CURVE BY CIRCULAR ARCS AND VICE VERSA" # by Aleksas Riskus k = 0.5522847498 # the control points need to be shortened relative to the angle by this factor j = 2*t/pi path = "m %s,%s " % (-2*r*cos(t)-offset.x, -offset.y) path += "c %s,%s %s,%s %s,%s " % (-k*r*j*sin(t),-k*r*j*cos(t), -(r-r*cos(t)),-r*sin(t)+r*k*j, -(r-r*cos(t)),-r*sin(t)) path += "c %s,%s %s,%s %s,%s " % (0,-k*r, r-k*r,-r, r,-r) path += "c %s,%s %s,%s %s,%s " % (k*r,0, r,r-k*r, r,r) path += "c %s,%s %s,%s %s,%s " % (0,k*r*j, -(r-r*cos(t)-k*r*j*sin(t)),r*sin(t)-r*k*j*cos(t), -r+r*cos(t),r*sin(t)) path += "c %s,%s %s,%s %s,%s " % (-k*r*j*sin(t),k*r*j*cos(t), -(r-r*cos(t)),r*sin(t)-r*k*j, -(r-r*cos(t)),r*sin(t)) path += "c %s,%s %s,%s %s,%s " % (0,k*r, r-k*r,r, r,r) path += "c %s,%s %s,%s %s,%s " % (k*r,0, r,-r+k*r, r,-r) path += "c %s,%s %s,%s %s,%s " % (0,-k*r*j, -(r-r*cos(t)-k*r*j*sin(t)),-r*sin(t)+r*k*j*cos(t), -r+r*cos(t),-r*sin(t)) return path
c4379ef8f16486e9cdbd3353c5458a6c9523bb2d
7,988
import pickle def load_config(path): """Loads the config dict from a file at path; returns dict.""" with open(path, "rb") as f: config = pickle.load(f) return config
eb12aed2ebdeebacf3041f3e4880c714f99c052c
7,990
from datetime import datetime def _check_year(clinicaldf: pd.DataFrame, year_col: int, filename: str, allowed_string_values: list = []) -> str: """Check year columns Args: clinicaldf: Clinical dataframe year_col: YEAR column filename: Name of file allowed_string_values: list of other allowed string values Returns: Error message """ error = '' if process_functions.checkColExist(clinicaldf, year_col): # Deal with pre-redacted values and other allowed strings # first because can't int(text) because there are # instances that have <YYYY year_series = clinicaldf[year_col][ ~clinicaldf[year_col].isin(allowed_string_values) ] year_now = datetime.datetime.utcnow().year try: years = year_series.apply( lambda x: datetime.datetime.strptime( str(int(x)), '%Y').year > year_now ) # Make sure that none of the years are greater than the current # year. It can be the same, but can't future years. assert not years.any() except Exception: error = (f"{filename}: Please double check your {year_col} " "column, it must be an integer in YYYY format " f"<= {year_now}") # Tack on allowed string values if allowed_string_values: error += " or '{}'.\n".format( "', '".join(allowed_string_values) ) else: error += ".\n" else: error = f"{filename}: Must have {year_col} column.\n" return error
c1630b4196733baa6ef12db2990243b1052d01d5
7,991
def lower_strings(string_list): """ Helper function to return lowercase version of a list of strings. """ return [str(x).lower() for x in string_list]
58dcaccbc0f4ce8f22d80922a3ac5da26d7f42b1
7,992
def AAprime(): """ >> AAprime() aaprime and aprimea """ aprimeA = dot(transpose(ATable), ATable) # Aaprime = dot(ATable1, ATable) return aprimeA
f47d4df43ebcb8348e4a6fd4234b38bd18e92199
7,993
import _pickle import _io def _load_dataset(data_filename_or_set, comm, verbosity): """Loads a DataSet from the data_filename_or_set argument of functions in this module.""" printer = _baseobjs.VerbosityPrinter.create_printer(verbosity, comm) if isinstance(data_filename_or_set, str): if comm is None or comm.Get_rank() == 0: if _os.path.splitext(data_filename_or_set)[1] == ".pkl": with open(data_filename_or_set, 'rb') as pklfile: ds = _pickle.load(pklfile) else: ds = _io.read_dataset(data_filename_or_set, True, "aggregate", printer) if comm is not None: comm.bcast(ds, root=0) else: ds = comm.bcast(None, root=0) else: ds = data_filename_or_set # assume a Dataset object return ds
9c3a26a36202b4e8f35c795b7817d3fde8900a0b
7,995
import re def parse_contact_name(row, name_cols, strict=False, type='person'): """Parses a person's name with probablepeople library Concatenates all the contact name columns into a single string and then attempts to parse it into standardized name components and return a subset of the name parts that are useful for comparing contacts. This process eliminates notes and other non-name text from dirty data. Args: row (pd.Series): A record name_cols (list): A list of column names in the record, in order, that when concatenated comprise a person's name strict (boolean, optional): Whether or not to raise a RepeatedLabelError when parsing, if False, the last value of the repeated labels will be used for the parse type (str): Which probableparser to use: 'generic', 'person' or 'company' Returns: A subset (tuple of str, or np.nan) of the standardized name components, namely: (title, first, last, full_name) """ row = row.fillna('') concat = [] for col in name_cols: concat.append(row.get(col, '')) concat = ' '.join(concat) cleaned = re.sub(r'(not\s*available|not\s*provided|n/a)', '', concat, flags=re.IGNORECASE) try: parsed = probablepeople.tag(cleaned, type) except probablepeople.RepeatedLabelError as e: if strict: raise e problem_key, problem_vals, parsed = find_repeated_label(cleaned) parsed = (parsed, '') title = parsed[0].get('PrefixOther', np.nan) first = parsed[0].get('GivenName', np.nan) last = parsed[0].get('Surname', np.nan) try: full_name = first + ' ' + last except TypeError as e: full_name = np.nan return title, first, last, full_name
315b971344df60d2cbb4f0c4e1d820b37b07ddaf
7,996
def get_peer_addr(ifname): """Return the peer address of given peer interface. None if address not exist or not a peer-to-peer interface. """ for addr in IP.get_addr(label=ifname): attrs = dict(addr.get('attrs', [])) if 'IFA_ADDRESS' in attrs: return attrs['IFA_ADDRESS']
e92906c0c705eb42ec3bedae2959dabcad72f0d2
7,999
def eiffel_artifact_created_event(): """Eiffel artifact created event.""" return { "meta": { "id": "7c2b6c13-8dea-4c99-a337-0490269c374d", "time": 1575981274307, "type": "EiffelArtifactCreatedEvent", "version": "3.0.0", }, "links": [], "data": {"identity": "pkg:artifact/created/[email protected]"}, }
0ef2e5adadb58b92c94bac42c9880728573b159e
8,000
def _hash(input_data, initVal=0): """ hash() -- hash a variable-length key into a 32-bit value k : the key (the unaligned variable-length array of bytes) len : the length of the key, counting by bytes level : can be any 4-byte value Returns a 32-bit value. Every bit of the key affects every bit of the return value. Every 1-bit and 2-bit delta achieves avalanche. About 36+6len instructions. The best hash table sizes are powers of 2. There is no need to do mod a prime (mod is so slow!). If you need less than 32 bits, use a bitmask. For example, if you need only 10 bits, do h = (h & hashmask(10)); In which case, the hash table should have hashsize(10) elements. If you are hashing n strings (ub1 **)k, do it like this: for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); By Bob Jenkins, 1996. [email protected]. You may use this code any way you wish, private, educational, or commercial. It's free. See http://burtleburtle.net/bob/hash/evahash.html Use for hash table lookup, or anything where one collision in 2^32 is acceptable. Do NOT use for cryptographic purposes. """ data = bytes(input_data, encoding='ascii') len_pos = len(data) length = len(data) if length == 0: return 0 a = 0x9e3779b9 b = 0x9e3779b9 c = initVal p = 0 while len_pos >= 12: a += ((data[p + 0]) + ((data[p + 1]) << 8) + ((data[p + 2]) << 16) + ((data[p + 3]) << 24)) b += ((data[p + 4]) + ((data[p + 5]) << 8) + ((data[p + 6]) << 16) + ((data[p + 7]) << 24)) c += ((data[p + 8]) + ((data[p + 9]) << 8) + ((data[p + 10]) << 16) + ((data[p + 11]) << 24)) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] p += 12 len_pos -= 12 c += length if len_pos >= 11: c += (data[p + 10]) << 24 if len_pos >= 10: c += (data[p + 9]) << 16 if len_pos >= 9: c += (data[p + 8]) << 8 # the first byte of c is reserved for the length if len_pos >= 8: b += (data[p + 7]) << 24 if len_pos >= 7: b += (data[p + 6]) << 16 if len_pos >= 6: b += (data[p + 5]) << 8 if len_pos >= 5: b += (data[p + 4]) if len_pos >= 4: a += (data[p + 3]) << 24 if len_pos >= 3: a += (data[p + 2]) << 16 if len_pos >= 2: a += (data[p + 1]) << 8 if len_pos >= 1: a += (data[p + 0]) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] return rshift_zero_padded(c, 0)
c4f1b0ee22ca940d360090b965125e71c272ad4c
8,001
import logging def read_config_option(key, expected_type=None, default_value=None): """Read the specified value from the configuration file. Args: key: the name of the key to read from the config file. expected_type: read the config option as the specified type (if specified) default_value: if the key doesn't exist, just return the default value. If the default value is not specified, the function will throw whatever error was raised by the configuration parser """ logging.info("Reading config option {} with expected type {}".format(key, expected_type)) try: if not expected_type: value = conf_parser.get("Settings", key) if key is "password": logging.info("Got configuration for key {}: ****".format(key)) else: logging.info("Got configuration for key {}: {}".format(key, value)) return conf_parser.get("Settings", key) elif expected_type is bool: return conf_parser.getboolean("Settings", key) except (ValueError, NoOptionError) as e: if default_value: return default_value else: raise
effc94b89dd8b1e0765c71bd4c0c03760715db1d
8,002
from typing import Any import logging def removeKeys(array: dict = None, remove: Any = None) -> dict: """ Removes keys from array by given remove value. :param array: dict[Any: Any] :param remove: Any :return: - sorted_dict - dict[Any: Any] """ if remove is None: remove = [] try: sorted_dict = {} for item_key in array: if array[item_key] != remove: sorted_dict[item_key] = array[item_key] return sorted_dict except Exception as e: logging.exception(e)
1b98821000642c79fbb71a9c0dc7163c4a95fa26
8,004
from trimesh.path.creation import box_outline from trimesh.path.util import concatenate def affine2boxmesh(affines): """ :param affines: (n_parts, 6), range (0, 1) :return: """ n_parts = len(affines) colors = [[0, 0, 255, 255], # blue [0, 255, 0, 255], # green [255, 0, 0, 255], # red [255, 255, 0, 255], # yellow [0, 255, 255, 255], # cyan [255, 0, 255, 255], # Magenta [160, 32, 240, 255], # purple [255, 255, 240, 255]] # ivory shape_box = [] for idx in range(n_parts): part_trans = affines[idx, :3] part_size = affines[idx, 3:] trans_mat = np.eye(4) # translate to center of axis aligned bounds trans_mat[:3, 3] = part_trans part_box = box_outline(transform=trans_mat, extents=part_size ) shape_box.append(part_box) shape_box = concatenate(shape_box) return shape_box
3d6568e6e533bdb31cdceb244666f376d73dad1e
8,005
def _select_index_code(code): """ 1 - sh 0 - sz """ code = str(code) if code[0] == '3': return 0 return 1
697d8e5ca1744c897b7eebbb7b9b0a3b45faec3d
8,006
def get_install_agent_cmd(): """Get OS specific command to install Telegraf agent.""" agent_pkg_deb = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.deb.sh" agent_pkg_rpm = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.rpm.sh" dist = system.check_os() cmd = None if not dist: print("Error: Unsupported OS version. Please contact" " [email protected].") return cmd if dist.strip().startswith(("Oracle Linux Server", "Fedora", "Amazon Linux", "CentOS", "Red Hat Enterprise Linux")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += " && yum -y -q install telegraf" elif dist.strip().startswith("Ubuntu"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -y -qq -o Dpkg::Options::="--force-confold"' \ ' install telegraf' elif dist.strip().lower().startswith("debian"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -o Dpkg::Options::="--force-confnew"' \ ' -y install telegraf' elif dist.strip().startswith(("openSUSE", "SUSE Linux Enterprise Server", "SLES")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += ' && zypper install telegraf' else: message.print_warn("Error: Unsupported OS version: %s." % (dist)) return cmd
14373024b3b6046badcedf686a38423f126f02a2
8,007
from typing import Tuple from typing import DefaultDict import collections def unpack(manifests: LocalManifestLists) -> Tuple[ServerManifests, bool]: """Convert `manifests` to `ServerManifests` for internal processing. Returns `False` unless all resources in `manifests` are unique. For instance, returns False if two files define the same namespace or the same deployment. The primary use case is to convert the manifests we read from local files into the format Square uses internally for the server manifests as well. Inputs: manifests: LocalManifestLists Returns: ServerManifests: flattened version of `manifests`. """ # Compile a dict that shows which meta manifest was defined in which file. # We will shortly use this information to determine if all resources were # defined exactly once across all files. all_meta: DefaultDict[MetaManifest, list] = collections.defaultdict(list) for fname in manifests: for meta, _ in manifests[fname]: all_meta[meta].append(fname) # Find out if all meta manifests were unique. If not, log the culprits and # return with an error. unique = True for meta, fnames in all_meta.items(): if len(fnames) > 1: unique = False tmp = [str(_) for _ in fnames] logit.error( f"Duplicate ({len(tmp)}x) manifest {meta}. " f"Defined in {str.join(', ', tmp)}" ) if not unique: return ({}, True) # Compile the input manifests into a new dict with the meta manifest as key. out = {k: v for fname in manifests for k, v in manifests[fname]} return (out, False)
b7f3c3f1388b9d3791a18f2da97dd40cf131ecaa
8,008
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the switch from config.""" if DATA_KEY not in hass.data: hass.data[DATA_KEY] = {} host = config[CONF_HOST] token = config[CONF_TOKEN] name = config[CONF_NAME] model = config.get(CONF_MODEL) _LOGGER.info("Initializing with host %s (token %s...)", host, token[:5]) devices = [] unique_id = None if model is None: try: miio_device = Device(host, token) device_info = await hass.async_add_executor_job(miio_device.info) model = device_info.model unique_id = f"{model}-{device_info.mac_address}" _LOGGER.info( "%s %s %s detected", model, device_info.firmware_version, device_info.hardware_version, ) except DeviceException: raise PlatformNotReady if model in ["090615.switch.switch01"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device elif model in ["090615.switch.switch02"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 elif model in ["090615.switch.switch03"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 plug3 = PtxSwitch(host, token, model=model) device3 = XiaomiPTXSwitch(name, plug3, model, unique_id, 3) devices.append(device3) hass.data[DATA_KEY][host] = device3 else: _LOGGER.error( "Unsupported device found! Please create an issue at " "https://github.com/volshebniks/python-miio-ptx/issues " "and provide the following data: %s", model, ) return False async_add_entities(devices, update_before_add=True)
0ef4f94c2b69bb2674ffcace56a85927c2c6d1d1
8,009
def process_generate_metric_alarms_event(event): """Handles a new event request Placeholder copied from alert_controller implementation """ LOG.info(str(event)) return create_response(200, body="Response to HealthCheck")
45f3ac5fa73048ec1f76bb5188a4e1de0eaca62d
8,010
def get_query_segment_info(collection_name, timeout=None, using="default"): """ Notifies Proxy to return segments information from query nodes. :param collection_name: A string representing the collection to get segments info. :param timeout: An optional duration of time in seconds to allow for the RPC. When timeout is set to None, client waits until server response or error occur. :type timeout: float :return: QuerySegmentInfo: QuerySegmentInfo is the growing segments's information in query cluster. :rtype: QuerySegmentInfo :example: >>> from pymilvus import Collection, FieldSchema, CollectionSchema, DataType, connections, utility >>> connections.connect(alias="default") >>> _DIM = 128 >>> field_int64 = FieldSchema("int64", DataType.INT64, description="int64", is_primary=True) >>> field_float_vector = FieldSchema("float_vector", DataType.FLOAT_VECTOR, description="float_vector", is_primary=False, dim=_DIM) >>> schema = CollectionSchema(fields=[field_int64, field_float_vector], description="get collection entities num") >>> collection = Collection(name="test_get_segment_info", schema=schema) >>> import pandas as pd >>> int64_series = pd.Series(data=list(range(10, 20)), index=list(range(10)))i >>> float_vector_series = [[random.random() for _ in range _DIM] for _ in range (10)] >>> data = pd.DataFrame({"int64" : int64_series, "float_vector": float_vector_series}) >>> collection.insert(data) >>> collection.load() # load collection to memory >>> res = utility.get_query_segment_info("test_get_segment_info") """ return _get_connection(using).get_query_segment_info(collection_name, timeout=timeout)
521119f98a43d1abc303028f9bfa150dbfba098b
8,011
def IoU(pred, gt, n_classes, all_iou=False): """Computes the IoU by class and returns mean-IoU""" # print("IoU") iou = [] for i in range(n_classes): if np.sum(gt == i) == 0: iou.append(np.NaN) continue TP = np.sum(np.logical_and(pred == i, gt == i)) FP = np.sum(np.logical_and(pred == i, gt != i)) FN = np.sum(np.logical_and(pred != i, gt == i)) iou.append(TP / (TP + FP + FN)) # nanmean: if a class is not present in the image, it's a NaN result = [np.nanmean(iou), iou] if all_iou else np.nanmean(iou) return result
9635472121b13c9ce04e38fdfaee8bf29774a17a
8,012
def from_torchvision(vision_transform, p=1): """Takes in an arbitary torchvision tranform and wrap it such that it can be applied to a list of images of shape HxWxC Returns a callable class that takes in list of images and target as input NOTE: Due to implementation difficuities, in order to apply the same randomized transform to EACH image, it is best to pass in a deterministic transform like the functional transforms in torchvision and then pass in a p value for the wrapper to roll a number and apply the transform with that probability Additionally, it's also possible to wrap a torchvision functional transform as long as it's a function that takes in an image as it's only argument i.e can write something like: lambda x: some_functional_transform(x,...) """ return TorchvisionWrapper(vision_transform, p=p)
b2af1a672d24171d9b80cd4eeb6d53fc80d09f53
8,013
def get_ports(context, project_id=None): """Returns all ports of VMs in EOS-compatible format. :param project_id: globally unique neutron tenant identifier """ session = context.session model = db_models.AristaProvisionedVms if project_id: all_ports = (session.query(model). filter(model.project_id == project_id, model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) else: all_ports = (session.query(model). filter(model.project_id.isnot(None), model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) ports = {} for port in all_ports: if port.port_id not in ports: ports[port.port_id] = port.eos_port_representation() ports[port.port_id]['hosts'].append(port.host_id) return ports
17d8dadde3dde78286f746435454b454d5589bd2
8,015
import hashlib import hmac def _HMAC(K, C, Mode=hashlib.sha1): """ Generate an HMAC value. The default mode is to generate an HMAC-SHA-1 value w/ the SHA-1 algorithm. :param K: shared secret between client and server. Each HOTP generator has a different and unique secret K. :type K: bytes :param C: 8-byte counter value, the moving factor. This counter MUST be synchronized between the HOTP generator (client) and the HOTP validator (server). :type C: bytes :param Mode: The algorithm to use when generating the HMAC value :type Mode: hashlib.sha1, hashlib.sha256, hashlib.sha512, or hashlib.md5 :return: HMAC result. If HMAC-SHA-1, result is 160-bits (20-bytes) long. :rtype: bytes """ return hmac.new(K, C, Mode).digest()
db9bf26c52427acc259f3cb1590c7c13b0d0dd9e
8,016
def get_reference(planet_name): """ Return reference for a given planet's orbit fit Args: planet_name (str): name of planet. no space Returns: reference (str): Reference of orbit fit """ planet_name = planet_name.lower() if planet_name not in post_dict: raise ValueError("Invalid planet name '{0}'".format(planet_name)) filename, reference = post_dict[planet_name] return reference
b700509300bdb2f6595e2a7c44a0d84e04d795f8
8,017
def DefaultPortIfAvailable(): """Returns default port if available. Raises: EmulatorArgumentsError: if port is not available. Returns: int, default port """ if portpicker.is_port_free(_DEFAULT_PORT): return _DEFAULT_PORT else: raise EmulatorArgumentsError( 'Default emulator port [{}] is already in use'.format(_DEFAULT_PORT))
40c065946d8f9ee6c50f7df40f2be6644a472414
8,018
def mock_hub(hass): """Mock hub.""" mock_integration(hass, MockModule(DOMAIN)) hub = mock.MagicMock() hub.name = "hub" hass.data[DOMAIN] = {DEFAULT_HUB: hub} return hub
b4495ca6fbb7638aedf86406f94c00566e376b1b
8,019
def deferred_setting(name, default): """ Returns a function that calls settings with (name, default) """ return lambda: setting(name, default)
286acec75f7a5a1e0217dc4cee7b7b5d1ba8e742
8,020
def extends_dict(target, source): """ Will copy every key and value of source in target if key is not present in target """ for key, value in source.items(): if key not in target: target[key] = value elif type(target[key]) is dict: extends_dict(target[key], value) elif type(target[key]) is list: target[key] += value return target
5a68dde5e3bb7dbb81ad61c3698614f56dd5efd7
8,021
def get_maps_interface_class(zep_inp): """ Takes the input of zephyrus and return the maps of interfaces to classes and viceversa """ interface_to_classes = {} class_to_interfaces = {} for i in zep_inp["components"].keys(): class_name = i.split(settings.SEPARATOR)[-1] interfaces = zep_inp["components"][i]["provides"][0]["ports"] class_to_interfaces[class_name] = interfaces for k in interfaces: if k in interface_to_classes: interface_to_classes[k].append(class_name) else: interface_to_classes[k] = [class_name] return (interface_to_classes,class_to_interfaces)
9a14de30677abe0fa8cf0bb3907cd1f32a8f33de
8,022
def plextv_resources_base_fixture(): """Load base payload for plex.tv resources and return it.""" return load_fixture("plex/plextv_resources_base.xml")
f252099bd6457af208c4d96b8024d3ce28d84cd9
8,023
from netrc import netrc from requests.auth import HTTPDigestAuth def _auth(machine='desi.lbl.gov'): """Get authentication credentials. """ n = netrc() try: u,foo,p = n.authenticators(machine) except: raise ValueError('Unable to get user/pass from $HOME/.netrc for {}'.format(machine)) return HTTPDigestAuth(u,p)
4ef27e589416f54dd76522b3312a2aa24441e200
8,024
import re def relative_date_add(date_rule: str, strict: bool = False) -> float: """Change the string in date rule format to the number of days. E.g 1d to 1, 1y to 365, 1m to 30, -1w to -7""" days = '' if re.search(DateRuleReg, date_rule) is not None: res = re.search(DateRuleReg, date_rule) date_str = res.group(1) if date_str[0] == '-': num = float(date_str[1:-1]) days = '-' else: num = float(date_str[:-1]) rule = date_str[-1:] if rule in DictDayRule: scale = DictDayRule[rule] days = days + str(num * scale) d = float(days) return d else: raise MqValueError('There are no valid day rule for the point provided.') if strict: raise MqValueError(f'invalid date rule {date_rule}') return 0
9180ed2ec99302679f7d0e2ee9ca57c4e2e6c48c
8,025
def to_frames_using_nptricks(src: np.ndarray, window_size: int, stride: int) -> np.ndarray: """ np.ndarray をフレーム分けするプリミティブな実装で,分割に`np.lib.stride_tricks.as_strided`関数を使用しており,indexingを使用する`to_frames_using_index`より高速である. Parameters ---------- src: np.ndarray splited source. window_size: int sliding window size. stride: int, stride is int more than 0. Returns ------- frames: np.ndarray a shape of frames is `(num_frames, window_size, *src.shape[1:])`, where num_frames is `(src.shape[0] - window_size) // stride + 1`. """ assert stride > 0, 'ストライドは正の整数である必要がある. stride={}'.format(stride) num_frames = (src.shape[0] - window_size) // stride + 1 ret_shape = (num_frames, window_size, *src.shape[1:]) strides = (stride * src.strides[0], *src.strides) return np.lib.stride_tricks.as_strided(src, shape=ret_shape, strides=strides)
b10b077cf0fbf2b0e491e7f1cba9033cfadf10c5
8,026
def global_fit( model_constructor, pdf_transform=False, default_rtol=1e-10, default_atol=1e-10, default_max_iter=int(1e7), learning_rate=1e-6, ): """ Wraps a series of functions that perform maximum likelihood fitting in the `two_phase_solver` method found in the `fax` python module. This allows for the calculation of gradients of the best-fit parameters with respect to upstream parameters that control the underlying model, i.e. the event yields (which are then parameterized by weights or similar). Args: model_constructor: Function that takes in the parameters of the observable, and returns a model object (and background-only parameters) Returns: global_fitter: Callable function that performs global fits. Differentiable :) """ adam_init, adam_update, adam_get_params = optimizers.adam(learning_rate) def make_model(model_pars): m, bonlypars = model_constructor(model_pars) bounds = m.config.suggested_bounds() constrained_mu = ( to_inf(constrained_mu, bounds[0]) if pdf_transform else constrained_mu ) exp_bonly_data = m.expected_data(bonlypars, include_auxdata=True) def expected_logpdf(pars): # maps pars to bounded space if pdf_transform = True return ( m.logpdf(to_bounded_vec(pars, bounds), exp_bonly_data) if pdf_transform else m.logpdf(pars, exp_bonly_data) ) def global_fit_objective(pars): # NLL return -expected_logpdf(pars)[0] return global_fit_objective def global_bestfit_minimized(hyper_param): nll = make_model(hyper_param) def bestfit_via_grad_descent(i, param): # gradient descent g = jax.grad(nll)(param) # param = param - g * learning_rate param = adam_get_params(adam_update(i, g, adam_init(param))) return param return bestfit_via_grad_descent global_solve = twophase.two_phase_solver( param_func=global_bestfit_minimized, default_rtol=default_rtol, default_atol=default_atol, default_max_iter=default_max_iter, ) def global_fitter(init, hyper_pars): solve = global_solve(init, hyper_pars) return solve.value return global_fitter
46917c0a4e6469759184a4aaa8199c57573360b0
8,027
from typing import Optional from typing import List def reorder_task( token: 'auth.JWT', task_id: 'typevars.ObjectID', before_id: 'Optional[typevars.ObjectID]' = None, after_id: 'Optional[typevars.ObjectID]' = None ) -> 'List[models.Task]': """Change the position of the task in the list.""" if before_id is None and after_id is None: raise util_errors.APIError( 'One of before_id or after_id must be provided', 400) if task_id == before_id or task_id == after_id: raise util_errors.APIError( 'Task cannot be before or after itself', 400) before = None after = None (task, before, after) = auth.load_owned_objects( models.Task, token, 'get tasks', task_id, before_id, after_id) if before is None: before = after.before if after is None: after = before.after if ( (before is not None and before.after is not after) or (after is not None and after.before is not before)): raise util_errors.APIError( 'Before and after tasks are not adjacent', 400) mutated = [before, after, task, task.before, task.after] if before is not None and task.parent is not before.parent: mutated.extend([task.parent, before.parent]) check_reparent(task, before.parent) elif after is not None and task.parent is not after.parent: mutated.extend([task.parent, after.parent]) check_reparent(task, after.parent) if task.before is not None: task.before.after = task.after elif task.after is not None: task.after.before = None task.before = before task.after = after db.DB.session.commit() return [m for m in set(mutated) if m is not None]
b9e30b6d5929614d8385bd478e0e0a1f2663723f
8,029
def get_ldpc_code_params(ldpc_design_filename): """ Extract parameters from LDPC code design file. Parameters ---------- ldpc_design_filename : string Filename of the LDPC code design file. Returns ------- ldpc_code_params : dictionary Parameters of the LDPC code. """ ldpc_design_file = open(ldpc_design_filename) ldpc_code_params = {} [n_vnodes, n_cnodes] = [int(x) for x in ldpc_design_file.readline().split(' ')] [max_vnode_deg, max_cnode_deg] = [int(x) for x in ldpc_design_file.readline().split(' ')] vnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_adj_list = -np.ones([n_cnodes, max_cnode_deg], int) vnode_adj_list = -np.ones([n_vnodes, max_vnode_deg], int) for vnode_idx in range(n_vnodes): vnode_adj_list[vnode_idx, 0:vnode_deg_list[vnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) for cnode_idx in range(n_cnodes): cnode_adj_list[cnode_idx, 0:cnode_deg_list[cnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) cnode_vnode_map = -np.ones([n_cnodes, max_cnode_deg], int) vnode_cnode_map = -np.ones([n_vnodes, max_vnode_deg], int) cnode_list = np.arange(n_cnodes) vnode_list = np.arange(n_vnodes) for cnode in range(n_cnodes): for i, vnode in enumerate(cnode_adj_list[cnode, 0:cnode_deg_list[cnode]]): cnode_vnode_map[cnode, i] = cnode_list[np.where(vnode_adj_list[vnode, :] == cnode)] for vnode in range(n_vnodes): for i, cnode in enumerate(vnode_adj_list[vnode, 0:vnode_deg_list[vnode]]): vnode_cnode_map[vnode, i] = vnode_list[np.where(cnode_adj_list[cnode, :] == vnode)] cnode_adj_list_1d = cnode_adj_list.flatten().astype(np.int32) vnode_adj_list_1d = vnode_adj_list.flatten().astype(np.int32) cnode_vnode_map_1d = cnode_vnode_map.flatten().astype(np.int32) vnode_cnode_map_1d = vnode_cnode_map.flatten().astype(np.int32) pmat = np.zeros([n_cnodes, n_vnodes], int) for cnode_idx in range(n_cnodes): pmat[cnode_idx, cnode_adj_list[cnode_idx, :]] = 1 ldpc_code_params['n_vnodes'] = n_vnodes ldpc_code_params['n_cnodes'] = n_cnodes ldpc_code_params['max_cnode_deg'] = max_cnode_deg ldpc_code_params['max_vnode_deg'] = max_vnode_deg ldpc_code_params['cnode_adj_list'] = cnode_adj_list_1d ldpc_code_params['cnode_vnode_map'] = cnode_vnode_map_1d ldpc_code_params['vnode_adj_list'] = vnode_adj_list_1d ldpc_code_params['vnode_cnode_map'] = vnode_cnode_map_1d ldpc_code_params['cnode_deg_list'] = cnode_deg_list ldpc_code_params['vnode_deg_list'] = vnode_deg_list ldpc_design_file.close() return ldpc_code_params
a2702a3fb5faf67d56fa08ae7ab627e3142fb006
8,030
def find_collection(*, collection, name): """ Looks through the pages of a collection for a resource with the specified name. Returns it, or if not found, returns None """ if isinstance(collection, ProjectCollection): try: # try to use search if it is available # call list() to collapse the iterator, otherwise the NotFound # won't show up until collection_list is used collection_list = list(collection.search(search_params={ "name": { "value": name, "search_method": "EXACT" } })) except NotFound: # Search must not be available yet collection_list = collection.list() else: collection_list = collection.list() matching_resources = [resource for resource in collection_list if resource.name == name] if len(matching_resources) > 1: raise ValueError("Found multiple collections with name '{}'".format(name)) if len(matching_resources) == 1: result = matching_resources.pop() print('Found existing: {}'.format(result)) return result else: return None
a6532f2f63b682822f96e51d7ab86e7bc240d922
8,031