content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def euclidean3d(v1, v2): """Faster implementation of euclidean distance for the 3D case.""" if not len(v1) == 3 and len(v2) == 3: print("Vectors are not in 3D space. Returning None.") return None return np.sqrt((v1[0] - v2[0]) ** 2 + (v1[1] - v2[1]) ** 2 + (v1[2] - v2[2]) ** 2)
89facc15567a7ed0138dee09ef1824ba40bb58a8
7,329
def blast_seqs(seqs, blast_constructor, blast_db=None, blast_mat_root=None, params={}, add_seq_names=True, out_filename=None, WorkingDir=None, SuppressStderr=None, SuppressStdout=None, input_handler=None, HALT_EXEC=False ): """Blast list of sequences. seqs: either file name or list of sequence objects or list of strings or single multiline string containing sequences. WARNING: DECISION RULES FOR INPUT HANDLING HAVE CHANGED. Decision rules for data are as follows. If it's s list, treat as lines, unless add_seq_names is true (in which case treat as list of seqs). If it's a string, test whether it has newlines. If it doesn't have newlines, assume it's a filename. If it does have newlines, it can't be a filename, so assume it's a multiline string containing sequences. If you want to skip the detection and force a specific type of input handler, use input_handler='your_favorite_handler'. add_seq_names: boolean. if True, sequence names are inserted in the list of sequences. if False, it assumes seqs is a list of lines of some proper format that the program can handle """ # set num keep if blast_db: params["-d"] = blast_db if out_filename: params["-o"] = out_filename ih = input_handler or guess_input_handler(seqs, add_seq_names) blast_app = blast_constructor( params=params, blast_mat_root=blast_mat_root, InputHandler=ih, WorkingDir=WorkingDir, SuppressStderr=SuppressStderr, SuppressStdout=SuppressStdout, HALT_EXEC=HALT_EXEC) return blast_app(seqs)
ce22f90fe3092a2c792478d7a4818d67fd13a753
7,330
def merge_dicts(dicts, handle_duplicate=None): """Merge a list of dictionaries. Invoke handle_duplicate(key, val1, val2) when two dicts maps the same key to different values val1 and val2, maybe logging the duplication. """ if not dicts: return {} if len(dicts) == 1: return dicts[0] if handle_duplicate is None: return {key: val for dict_ in dicts for key, val in dict_.items()} result = {} for dict_ in dicts: for key, val in dict_.items(): if key in result and val != result[key]: handle_duplicate(key, result[key], val) continue result[key] = val return result
44c06ab30bb76920ff08b5978a6aa271abd3e449
7,331
from datetime import datetime def _timestamp(line: str) -> Timestamp: """Returns the report timestamp from the first line""" start = line.find("GUIDANCE") + 11 text = line[start : start + 16].strip() timestamp = datetime.strptime(text, r"%m/%d/%Y %H%M") return Timestamp(text, timestamp.replace(tzinfo=timezone.utc))
7e3083c6dec766fe681e82555daa59ba7f5166b5
7,332
def start_qpsworkers(languages, worker_hosts): """Starts QPS workers as background jobs.""" if not worker_hosts: # run two workers locally (for each language) workers=[(None, 10000), (None, 10010)] elif len(worker_hosts) == 1: # run two workers on the remote host (for each language) workers=[(worker_hosts[0], 10000), (worker_hosts[0], 10010)] else: # run one worker per each remote host (for each language) workers=[(worker_host, 10000) for worker_host in worker_hosts] return [create_qpsworker_job(language, shortname= 'qps_worker_%s_%s' % (language, worker_idx), port=worker[1] + language.worker_port_offset(), remote_host=worker[0]) for language in languages for worker_idx, worker in enumerate(workers)]
3b53693a292027fd82d808b6d609fb3276f1bc2a
7,333
def validate_frame_range(shots, start_time, end_time, sequence_time=False): """ Verify if the given frame range is overlapping existing shots timeline range. If it is overlapping any shot tail, it redefine the start frame at the end of it. If it is overlapping any shot head, it will push back all shots (and animation) behind the range to ensure the space is free to insert new shot. :param list[str] shots: Maya shot node names. :param int start_time: :param int end_time: :param bool sequence_time: Operate on Camera Sequencer's timeline instead of Maya timeline. :rtype: tuple[int, int] :return: Free range. """ start_attribute = "sequenceStartFrame" if sequence_time else "startFrame" end_attribute = "sequenceEndFrame" if sequence_time else "endFrame" length = end_time - start_time # Offset start_time to ensure it is not overlapping any shot tail. for shot in shots: shot_start = cmds.getAttr(shot + "." + start_attribute) shot_end = cmds.getAttr(shot + "." + end_attribute) # Ensure the time is not in the middle of a shot. if shot_start <= start_time <= shot_end: start_time = shot_end + 1 break # Detect overlapping shots from heads. end_time = start_time + length overlapping_shots = filter_shots_from_range( shots=shots, start_frame=start_time, end_frame=end_time, sequence_time=sequence_time) if not overlapping_shots: return start_time, end_time # Push back overlapping shots. offset = max( end_time - cmds.getAttr(shot + "." + start_attribute) + 1 for shot in overlapping_shots) if sequence_time: # Operating on the camera sequencer timeline don't need to adapt # animation. shift_shots_in_sequencer(shots, offset, after=end_time - offset) return start_time, end_time shift_shots(shots, offset, after=end_time - offset) curves = cmds.ls(type=ANIMATION_CURVES_TYPES) if curves: hold_animation_curves(curves, end_time - offset, offset) return start_time, end_time
d287ad393c80b899cfba3bac92ea9717918aed4a
7,336
def sparse_add(sv1, sv2): """dict, dict -> dict Returns a new dictionary that is the sum of the other two. >>>sparse_add(sv1, sv2) {0: 5, 1: 6, 2: 9} """ newdict = {} keys = set(sv1.keys()) | set(sv2.keys()) for key in keys: x = sv1.get(key, 0) + sv2.get(key, 0) newdict[key] = x return (newdict)
ced3420a585084a246ad25f7686fb388f2c05542
7,337
def return_flagger(video_ID): """ In GET request - Returns the username of the user that flagged the video with the corresponding video ID from the FLAGS table. """ if request.method == 'GET': return str(db.get_flagger(video_ID))
c8ca346b60ffa322847b5444c39dcbc43c66701a
7,338
def get_all_hits(): """Retrieves all hits. """ hits = [ i for i in get_connection().get_all_hits()] pn = 1 total_pages = 1 while pn < total_pages: pn = pn + 1 print "Request hits page %i" % pn temp_hits = get_connection().get_all_hits(page_number=pn) hits.extend(temp_hits) return hits
23f4da652d9e89dd0401ac4d8ccf2aa4f2660a5e
7,339
import socket def create_socket( host: str = "", port: int = 14443, anidb_server: str = "", anidb_port: int = 0 ) -> socket.socket: """Create a socket to be use to communicate with the server. This function is called internally, so you only have to call it if you want to change the default parameters. :param host: local host to bind the socket to, defaults to "" (which I think is any. Read the docs.) :type host: str, optional :param port: local port to bind the socket to, defaults to 14443 :type port: int, optional :param anidb_server: aniDB server name, defaults to environment ANIDB_SERVER :type anidb_server: str, optional :param anidb_port: anidb port, default to environment ANIDB_PORT :type anidb_port: int, optional :return: The created socket. :rtype: socket.socket """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((host, port)) anidb_server = value_or_error("ANIDB_SERVER", anidb_server) anidb_port = value_or_error("ANIDB_PORT", anidb_port) s.connect((anidb_server, anidb_port)) logger.info( f"Created socket on UDP %s:%d => %s:%d", host, port, anidb_server, anidb_port ) global _conn _conn = s return s
6b8cc3aa19af4582dbdf96d781d8ae64399165cf
7,340
def aten_eq(mapper, graph, node): """ 构造判断数值是否相等的PaddleLayer。 TorchScript示例: %125 : bool = aten::eq(%124, %123) 参数含义: %125 (bool): 对比后结果。 %124 (-): 需对比的输入1。 %123 (-): 需对比的输入2。 """ scope_name = mapper.normalize_scope_name(node) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [output_name] layer_inputs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%124 mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name) layer_inputs["x"] = inputs_name[0] x_value = list(node.inputs())[0] x_type = x_value.type() # 处理输入1,即%123 mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name) layer_inputs["y"] = inputs_name[1] y_value = list(node.inputs())[1] y_type = y_value.type() # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name) return current_inputs, current_outputs
c08fc3120130e949cbba4e147888fabca38c89e3
7,341
from typing import Tuple def _create_simple_tf1_conv_model( use_variable_for_filter=False) -> Tuple[core.Tensor, core.Tensor]: """Creates a basic convolution model. This is intended to be used for TF1 (graph mode) tests. Args: use_variable_for_filter: Setting this to `True` makes the filter for the conv operation a `tf.Variable`. Returns: in_placeholder: Input tensor placeholder. output_tensor: The resulting tensor of the convolution operation. """ in_placeholder = array_ops.placeholder(dtypes.float32, shape=[1, 3, 4, 3]) filters = random_ops.random_uniform(shape=(2, 3, 3, 2), minval=-1., maxval=1.) if use_variable_for_filter: filters = variables.Variable(filters) output_tensor = nn_ops.conv2d( in_placeholder, filters, strides=[1, 1, 2, 1], dilations=[1, 1, 1, 1], padding='SAME', data_format='NHWC') return in_placeholder, output_tensor
21deebe2de004554a5bdc6559ecf6319947f8109
7,342
def plot_diversity_bootstrapped(diversity_df): """Plots the result of bootstrapped diversity""" div_lines = ( alt.Chart() .mark_line() .encode( x="year:O", y=alt.Y("mean(score)", scale=alt.Scale(zero=False)), color="parametre_set", ) ) div_bands = ( alt.Chart() .mark_errorband(extent="ci") .encode( x="year:O", y=alt.Y("score", scale=alt.Scale(zero=False)), color="parametre_set", ) ) out = alt.layer( div_lines, div_bands, data=diversity_df, height=150, width=400 ).facet(row="diversity_metric", column="test") return out
8b91d1d6d1f7384dcbea6c398a9bde8dfb4aae39
7,343
def escape(s): """ Returns the given string with ampersands, quotes and carets encoded. >>> escape('<b>oh hai</b>') '&lt;b&gt;oh hai&lt;/b&gt;' >>> escape("Quote's Test") 'Quote&#39;s Test' """ mapping = ( ('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'), ('"', '&quot;'), ("'", '&#39;'), ) for tup in mapping: s = s.replace(tup[0], tup[1]) return s
2b4971c4e87e613cad457dde6d62806d299cdbcd
7,344
def _get_db_columns_for_model(model): """ Return list of columns names for passed model. """ return [field.column for field in model._meta._fields()]
181999f28ca659bf296bcb4dda7ac29ddfe61071
7,345
def get_UV(filename): """ Input: filename (including path) Output: (wave_leftedges, wav_rightedges, surface radiance) in units of (nm, nm, photons/cm2/sec/nm) """ wav_leftedges, wav_rightedges, wav, toa_intensity, surface_flux, SS,surface_intensity, surface_intensity_diffuse, surface_intensity_direct=np.genfromtxt(filename, skip_header=1, skip_footer=0, usecols=(0, 1, 2,3,4,5,6,7,8), unpack=True) surface_intensity_photons=surface_intensity*(wav/(hc)) return wav_leftedges, wav_rightedges, surface_intensity_photons
cd514ee29ba3ac17cdfcb95c53d4b5df4f4cad80
7,346
import json def load_chunks(chunk_file_location, chunk_ids): """Load patch paths from specified chunks in chunk file Parameters ---------- chunks : list of int The IDs of chunks to retrieve patch paths from Returns ------- list of str Patch paths from the chunks """ patch_paths = [] with open(chunk_file_location) as f: data = json.load(f) chunks = data['chunks'] for chunk in data['chunks']: if chunk['id'] in chunk_ids: patch_paths.extend([[x,chunk['id']] for x in chunk['imgs']]) if len(patch_paths) == 0: raise ValueError( f"chunks {tuple(chunk_ids)} not found in {chunk_file_location}") return patch_paths
c01ec6076141356ae6f3a1dc40add28638739359
7,347
def get_model_input(batch, input_id=None): """ Get model input from batch batch: batch of model input samples """ if isinstance(batch, dict) or isinstance(batch, list): assert input_id is not None return batch[input_id] else: return batch
1b12ee86257bfbd5ab23404251bed39c0021f461
7,349
def issym(b3): """test if a list has equal number of positive and negative values; zeros belong to both. """ npos = 0; nneg = 0 for item in b3: if (item >= 0): npos +=1 if (item <= 0): nneg +=1 if (npos==nneg): return True else: return False
e8cc57eec5bc9ef7f552ad32bd6518daa2882a3e
7,350
def predictOneVsAll(all_theta, X): """will return a vector of predictions for each example in the matrix X. Note that X contains the examples in rows. all_theta is a matrix where the i-th row is a trained logistic regression theta vector for the i-th class. You should set p to a vector of values from 1..K (e.g., p = [1 3 1 2] predicts classes 1, 3, 1, 2 for 4 examples) """ m = X.shape[0] # You need to return the following variables correctly p = np.zeros((m, 1)) # probs = np.zeros((all_theta.shape[0], X.shape[0])) # ====================== YOUR CODE HERE ====================== # Instructions: Complete the following code to make predictions using # your learned logistic regression parameters (one-vs-all). # You should set p to a vector of predictions (from 1 to # num_labels). # # Hint: This code can be done all vectorized using the max function. # In particular, the np.argmax function can return the index of the max # element, for more information see 'numpy.argmax' on the numpy website. # If your examples are in rows, then, you can use # np.argmax(probs, axis=1) to obtain the max for each row. # p = np.argmax(sigmoid(np.dot(all_theta, X.T)), axis=0) + 1 # for i in range(all_theta.shape[0]): # probs[i,:] = sigmoid(X @ all_theta[i,:]) # p = (np.argmax(probs, axis=0) + 1) # ========================================================================= return p
32bf9d386ef84debe75781a52335588da360b269
7,351
from typing import Tuple from typing import List def lecture_produit(ligne : str) -> Tuple[str, int, float]: """Précondition : la ligne de texte décrit une commande de produit. Renvoie la commande produit (nom, quantité, prix unitaire). """ lmots : List[str] = decoupage_mots(ligne) nom_produit : str = lmots[0] quantite : int = int(lmots[1]) prix_unitaire : float = float(lmots[2]) return (nom_produit, quantite, prix_unitaire)
355721522b9711f9bc206f4ab63af6121ef9b3d0
7,352
def affinity_matrix(test_specs): """Generate a random user/item affinity matrix. By increasing the likehood of 0 elements we simulate a typical recommending situation where the input matrix is highly sparse. Args: users (int): number of users (rows). items (int): number of items (columns). ratings (int): rating scale, e.g. 5 meaning rates are from 1 to 5. spars: probability of obtaining zero. This roughly corresponds to the sparseness. of the generated matrix. If spars = 0 then the affinity matrix is dense. Returns: np.array: sparse user/affinity matrix of integers. """ np.random.seed(test_specs["seed"]) # uniform probability for the 5 ratings s = [(1 - test_specs["spars"]) / test_specs["ratings"]] * test_specs["ratings"] s.append(test_specs["spars"]) P = s[::-1] # generates the user/item affinity matrix. Ratings are from 1 to 5, with 0s denoting unrated items X = np.random.choice( test_specs["ratings"] + 1, (test_specs["users"], test_specs["items"]), p=P ) Xtr, Xtst = numpy_stratified_split( X, ratio=test_specs["ratio"], seed=test_specs["seed"] ) return (Xtr, Xtst)
8e033d230cbc8c21d6058bcada14aca9fb1d7e68
7,353
def get_wm_desktop(window): """ Get the desktop index of the window. :param window: A window identifier. :return: The window's virtual desktop index. :rtype: util.PropertyCookieSingle (CARDINAL/32) """ return util.PropertyCookieSingle(util.get_property(window, '_NET_WM_DESKTOP'))
050fe4a97a69317ba875aa59b3bf4144b9e2f83c
7,354
def get_parents(tech_id, model_config): """ Returns the full inheritance tree from which ``tech`` descends, ending with its base technology group. To get the base technology group, use ``get_parents(...)[-1]``. Parameters ---------- tech : str model_config : AttrDict """ tech = model_config.techs[tech_id].essentials.parent parents = [tech] while True: tech = model_config.tech_groups[tech].essentials.parent if tech is None: break # We have reached the top of the chain parents.append(tech) return parents
7220a57b770232e335001a0dab74ca2d8197ddfa
7,355
import hashlib import urllib def profile_avatar(user, size=200): """Return a URL to the user's avatar.""" try: # This is mostly for tests. profile = user.profile except (Profile.DoesNotExist, AttributeError): avatar = settings.STATIC_URL + settings.DEFAULT_AVATAR profile = None else: if profile.is_fxa_migrated: avatar = profile.fxa_avatar elif profile.avatar: avatar = profile.avatar.url else: avatar = settings.STATIC_URL + settings.DEFAULT_AVATAR if avatar.startswith("//"): avatar = "https:%s" % avatar if user and hasattr(user, "email"): email_hash = hashlib.md5(force_bytes(user.email.lower())).hexdigest() else: email_hash = "00000000000000000000000000000000" url = "https://secure.gravatar.com/avatar/%s?s=%s" % (email_hash, size) # If the url doesn't start with http (local dev), don't pass it to # to gravatar because it can't use it. if avatar.startswith("https") and profile and profile.is_fxa_migrated: url = avatar elif avatar.startswith("http"): url = url + "&d=%s" % urllib.parse.quote(avatar) return url
a810af7f7abb4a5436a2deed8c4e1069aa5d504c
7,358
import tqdm def union(graphs, use_tqdm: bool = False): """Take the union over a collection of graphs into a new graph. Assumes iterator is longer than 2, but not infinite. :param iter[BELGraph] graphs: An iterator over BEL graphs. Can't be infinite. :param use_tqdm: Should a progress bar be displayed? :return: A merged graph :rtype: BELGraph Example usage: >>> import pybel >>> g = pybel.from_bel_script('...') >>> h = pybel.from_bel_script('...') >>> k = pybel.from_bel_script('...') >>> merged = union([g, h, k]) """ it = iter(graphs) if use_tqdm: it = tqdm(it, desc='taking union') try: target = next(it) except StopIteration as e: raise ValueError('no graphs given') from e try: graph = next(it) except StopIteration: return target else: target = target.copy() left_full_join(target, graph) for graph in it: left_full_join(target, graph) return target
8ea9bae0386c497a5fe31c8bd44099ee450b2b2a
7,360
def get_month_n_days_from_cumulative(monthly_cumulative_days): """ Transform consecutive number of days in monthly data to actual number of days. EnergyPlus monthly results report a total consecutive number of days for each day. Raw data reports table as 31, 59..., this function calculates and returns actual number of days for each month 31, 28... """ old_num = monthly_cumulative_days.pop(0) m_actual_days = [old_num] for num in monthly_cumulative_days: new_num = num - old_num m_actual_days.append(new_num) old_num += new_num return m_actual_days
5ede033023d357a60ba5eb7e9926325d24b986e8
7,361
def get_text(name): """Returns some text""" return "Hello " + name
bff30de2184c84f6ed1c4c1831ed9fd782f479c9
7,362
import re def apply_template(assets): """ Processes the template. Used for overwrite ``docutils.writers._html_base.Writer.apply_template`` method. ``apply_template(<assets>)`` ``assets`` (dictionary) Assets to add at the template, see ``ntdocutils.writer.Writer.assets``. returns function - Template processor. Example ======= .. code:: python apply_template({ "before_styles": '<link rel="stylesheet" href="styles.css" />', "scripts": '<script src="script.js"></script>' '<script src="other_script.js"></script>' }) """ def apply_template(self): template_file = open(self.document.settings.template, "rb") template = str(template_file.read(), "utf-8") template_file.close() # Escape ``%`` that don't are special fields pattern = r"%(?!\((" + "|".join(self.visitor_attributes) + r")\)s)" template = re.subn(pattern, "%%", template)[0] subs = self.interpolation_dict() return template.format(**assets) % subs return apply_template
51042e25f701935d668d91a923155813ce60b381
7,363
def harvest(post): """ Filter the post data for just the funding allocation formset data. """ data = {k: post[k] for k in post if k.startswith("fundingallocation")} return data
67f400caf87f2accab30cb3c519e7014792c84d7
7,364
def model2(x, input_size, output_size): """! Fully connected model [InSize]x800x[OutSize] Implementation of a [InSize]x800x[OutSize] fully connected model. Parameters ---------- @param x : placeholder for input data @param input_size : size of input data @param output_size : size of output data Returns ------- @retval logits : output @retval logits_dup : a copy of output @retval w_list : trainable parameters @retval w_list_dup : a copy of trainable parameters """ #================================================================================================================== ## model definition mu = 0 sigma = 0.2 weights = { 'wfc': tf.Variable(tf.truncated_normal(shape=(input_size,800), mean = mu, stddev = sigma, seed = 1)), 'out': tf.Variable(tf.truncated_normal(shape=(800,output_size), mean = mu, stddev = sigma, seed = 1)) } biases = { 'bfc': tf.Variable(tf.zeros(800)), 'out': tf.Variable(tf.zeros(output_size)) } # Flatten input. c_flat = flatten(x) # Layer 1: Fully Connected. Input = input_size. Output = 800. # Activation. fc = fc_relu(c_flat, weights['wfc'], biases['bfc']) # Layer 2: Fully Connected. Input = 800. Output = output_size. logits = tf.add(tf.matmul(fc, weights['out']), biases['out']) w_list = [] for w,b in zip(weights, biases): w_list.append(weights[w]) w_list.append(biases[b]) #================================================================================================================== ## duplicate the model used in ProxSVRG weights_dup = { 'wfc': tf.Variable(tf.truncated_normal(shape=(input_size,800), mean = mu, stddev = sigma, seed = 1)), 'out': tf.Variable(tf.truncated_normal(shape=(800,output_size), mean = mu, stddev = sigma, seed = 1)) } biases_dup = { 'bfc': tf.Variable(tf.zeros(800)), 'out': tf.Variable(tf.zeros(output_size)) } # Flatten input. c_flat_dup = flatten(x) # Layer 1: Fully Connected. Input = input_size. Output = 800. # Activation. fc_dup = fc_relu(c_flat_dup, weights_dup['wfc'], biases_dup['bfc']) # Layer 2: Fully Connected. Input = 800. Output = output_size. logits_dup = tf.add(tf.matmul(fc_dup, weights_dup['out']), biases_dup['out']) w_list_dup = [] for w,b in zip(weights_dup, biases_dup): w_list_dup.append(weights_dup[w]) w_list_dup.append(biases_dup[b]) return logits, logits_dup, w_list, w_list_dup
74a7f9129865e1d2b6cbfe767c7f218d53ee50e1
7,366
def cut_bin_depths( dataset: xr.Dataset, depth_range: tp.Union[int, float, list] = None ) -> xr.Dataset: """ Return dataset with cut bin depths if the depth_range are not outside the depth span. Parameters ---------- dataset : depth_range : min or (min, max) to be included in the dataset. Bin depths outside this range will be cut. Returns ------- dataset with depths cut. """ if depth_range: if not isinstance(depth_range, (list, tuple)): if depth_range > dataset.depth.max(): l.log( "depth_range value is greater than the maximum bin depth. Depth slicing aborded." ) else: dataset = dataset.sel(depth=slice(depth_range, None)) l.log(f"Bin of depth inferior to {depth_range} m were cut.") elif len(depth_range) == 2: if dataset.depth[0] > dataset.depth[-1]: depth_range.reverse() if depth_range[0] > dataset.depth.max() or depth_range[1] < dataset.depth.min(): l.log( "depth_range values are outside the actual depth range. Depth slicing aborted." ) else: dataset = dataset.sel(depth=slice(*depth_range)) l.log( f"Bin of depth inferior to {depth_range[0]} m and superior to {depth_range[1]} m were cut." ) else: l.log( f"depth_range expects a maximum of 2 values but {len(depth_range)} were given. Depth slicing aborted." ) return dataset
ab4561711d118dc620100bec5e159dc4b7a29f92
7,367
def create_edgelist(file, df): """ creates an edgelist based on genre info """ # load edges from the (sub)genres themselves df1 = (pd .read_csv(file, dtype='str')) # get edges from the book descriptions df df2 = (df[['title', 'subclass']] .rename(columns={'title':'Edge_From', 'subclass':'Edge_To'}) .sort_values(by='Edge_To')) # combine the two dfs df3 = (df1 .append(df2, ignore_index=True)) # consistently assign categories df4 = (df3 .stack() .astype('category') .unstack()) # make the categorical values explicit for later convenience for name in df4.columns: df4['N' + name] = (df4[name] .cat .codes) return df4
9cfba48eca977e8b2e3217078bd6d112c465ea23
7,368
def CodeRange(code1, code2): """ CodeRange(code1, code2) is an RE which matches any character with a code |c| in the range |code1| <= |c| < |code2|. """ if code1 <= nl_code < code2: return Alt(RawCodeRange(code1, nl_code), RawNewline, RawCodeRange(nl_code + 1, code2)) else: return RawCodeRange(code1, code2)
c63213c63d96361451e441cf6923015238dae8f8
7,369
def sort_by_date(data): """ The sort_by_date function sorts the lists by their datetime object :param data: the list of lists containing parsed UA data :return: the sorted date list of lists """ # Supply the reverse option to sort by descending order return [x[0:6:4] for x in sorted(data, key=itemgetter(4), reverse=True)]
f8d18b80404edcf141a56f47938ea09531d30df7
7,370
def get_menu_option(): """ Function to display menu options and asking the user to choose one. """ print("1. View their next 5 fixtures...") print("2. View their last 5 fixtures...") print("3. View their entire current season...") print("4. View their position in the table...") print("5. View the club roster...") print("6. View season statistics...") print("7. View team information...") print("8. Sign up to your club's weekly newsletter...") print("9. Calculate odds on next game...") print() return input("CHOOSE AN OPTION BELOW BY ENTERING THE MENU NUMBER OR ENTER 'DONE' ONCE YOU ARE FINISHED: ")
69e71555d9896d0c462b2e7b542ec87aea9213eb
7,371
def pdf(mu_no): """ the probability distribution function which the number of fibers per MU should follow """ return pdf_unscaled(mu_no) / scaling_factor_pdf
2d6fd461d12da6b00bbf20de7a7be7d61112014c
7,372
import requests def get_weather_by_key(key): """ Returns weather information for a given database key Args: key (string) -- database key for weather information Returns: None or Dict """ url = "%s/weather/%s.json" % (settings.FIREBASE_URL, key) r = requests.get(url) if r.status_code != 200: return None return r.json()
8ab3bfa6b5924b726fef9a9c0b8bd9d47cf9dfc8
7,373
import warnings def source_receiver_midpoints(survey, **kwargs): """ Calculate source receiver midpoints. Input: :param SimPEG.electromagnetics.static.resistivity.Survey survey: DC survey object Output: :return numpy.ndarray midx: midpoints x location :return numpy.ndarray midz: midpoints z location """ if not isinstance(survey, dc.Survey): raise ValueError("Input must be of type {}".format(dc.Survey)) if len(kwargs) > 0: warnings.warn( "The keyword arguments of this function have been deprecated." " All of the necessary information is now in the DC survey class", DeprecationWarning, ) # Pre-allocate midxy = [] midz = [] for ii, source in enumerate(survey.source_list): tx_locs = source.location if isinstance(tx_locs, list): Cmid = (tx_locs[0][:-1] + tx_locs[1][:-1]) / 2 zsrc = (tx_locs[0][-1] + tx_locs[1][-1]) / 2 tx_sep = np.linalg.norm((tx_locs[0][:-1] - tx_locs[1][:-1])) else: Cmid = tx_locs[:-1] zsrc = tx_locs[-1] Pmids = [] for receiver in source.receiver_list: rx_locs = receiver.locations if isinstance(rx_locs, list): Pmid = (rx_locs[0][:, :-1] + rx_locs[1][:, :-1]) / 2 else: Pmid = rx_locs[:, :-1] Pmids.append(Pmid) Pmid = np.vstack(Pmids) midxy.append((Cmid + Pmid) / 2) diffs = np.linalg.norm((Cmid - Pmid), axis=1) if np.allclose(diffs, 0.0): # likely a wenner type survey. midz = zsrc - tx_sep / 2 * np.ones_like(diffs) else: midz.append(zsrc - diffs / 2) return np.vstack(midxy), np.hstack(midz)
adec937949a4293d35c7a57aad7125f2e1113794
7,374
import copy def fix_source_scale( transformer, output_std: float = 1, n_samples: int = 1000, use_copy: bool = True, ) -> float: """ Adjust the scale for a data source to fix the output variance of a transformer. The transformer's data source must have a `scale` parameter. Parameters ---------- transformer Transformer whose output variance is optimized. This should behave like `Arma`: it needs to have a `transform` method that can be called like `transformer.transform(U=source)`; and it needs an attribute called `default_source`. output_std Value to which to fix the transformer's output standard deviation. n_samples Number of samples to generate for each optimization iteration. use_copy If true, a deep copy of the data source is made for the optimization, so that the source's random generator is unaffected by this procedure. Returns the final value for the scale. """ output_var = output_std ** 2 source = transformer.default_source if use_copy: source_copy = copy.deepcopy(source) else: source_copy = source def objective(scale: float): source_copy.scale = np.abs(scale) samples = transformer.transform(n_samples, X=source_copy) return np.var(samples) / output_var - 1 soln = optimize.root_scalar( objective, x0=np.sqrt(output_var / 2), x1=np.sqrt(2 * output_var), maxiter=100, ) source.scale = np.abs(soln.root) return source.scale
bf2dc0690732ce7677a484afee75fa7701b3d0e8
7,375
def samplePinDuringCapture(f, pin, clock): """\ Configure Arduino to enable sampling of a particular light sensor or audio signal input pin. Only enabled pins are read when capture() is subsequently called. :param f: file handle for the serial connection to the Arduino Due :param pin: The pin to enable. :param clock: a :class:`dvbcss.clock` clock object Values for the pin parameter: * 0 enables reading of light sensor 0 (on Arduino analogue pin 0). * 1 enables reading of audio input 0 (on Arduino analogue pin 1). * 2 enables reading of light sensor 1 (on Arduino analogue pin 2). * 3 enables reading of audio input 1 (on Arduino analogue pin 3). :returns: (t1,t2,t3,t4) measuring the specified clock object and arduino clock, as per :func`writeCmdAndTimeRoundTrip` See :func:`writeAndTimeRoundTrip` for details of the meaning of the returned round-trip timing data """ CMD = CMDS_ENABLE_PIN[pin] return writeCmdAndTimeRoundTrip(f, clock, CMD)
246dc76eb07b9240439befdffdc3f31376647a64
7,376
def year_filter(year = None): """ Determine whether the input year is single value or not Parameters ---------- year : The input year Returns ------- boolean whether the inputed year is a single value - True """ if year[0] == year[1]: single_year = True else: single_year = False return single_year
35868a72196015c20517179dc89cd65b5601e969
7,377
def distance(p1, p2): """ Return the Euclidean distance between two QPointF objects. Euclidean distance function in 2D using Pythagoras Theorem and linear algebra objects. QPointF and QVector2D member functions. """ if not (isinstance(p1, QPointF) and isinstance(p2, QPointF)): raise ValueError('ValueError, computing distance p1 or p2 not of Type QPointF') return toVector(p2 - p1).length()
2e8b2d8fcbb05b24798c8507bef8a32b8b9468f3
7,378
import math import numpy def make_primarybeammap(gps, delays, frequency, model, extension='png', plottype='beamsky', figsize=14, directory=None, resolution=1000, zenithnorm=True, b_add_sources=False): """ """ print("Output beam file resolution = %d , output directory = %s" % (resolution, directory)) # (az_grid, za_grid) = beam_tools.makeAZZA(resolution,'ZEA') #Get grids in radians (az_grid, za_grid, n_total, dOMEGA) = beam_tools.makeAZZA_dOMEGA(resolution, 'ZEA') # TEST SIN vs. ZEA az_grid = az_grid * 180 / math.pi za_grid = za_grid * 180 / math.pi # az_grid+=180.0 alt_grid = 90 - (za_grid) obstime = su.time2tai(gps) # first go from altitude to zenith angle theta = (90 - alt_grid) * math.pi / 180 phi = az_grid * math.pi / 180 beams = {} # this is the response for XX and YY if model == 'analytic' or model == '2014': # Handles theta and phi as floats, 1D, or 2D arrays (and probably higher dimensions) beams['XX'], beams['YY'] = primary_beam.MWA_Tile_analytic(theta, phi, freq=frequency, delays=delays, zenithnorm=zenithnorm, power=True) elif model == 'avg_EE' or model == 'advanced' or model == '2015' or model == 'AEE': beams['XX'], beams['YY'] = primary_beam.MWA_Tile_advanced(theta, phi, freq=frequency, delays=delays, power=True) elif model == 'full_EE' or model == '2016' or model == 'FEE' or model == 'Full_EE': # model_ver = '02' # h5filepath = 'MWA_embedded_element_pattern_V' + model_ver + '.h5' beams['XX'], beams['YY'] = primary_beam.MWA_Tile_full_EE(theta, phi, freq=frequency, delays=delays, zenithnorm=zenithnorm, power=True) # elif model == 'full_EE_AAVS05': # # h5filepath='/Users/230255E/Temp/_1508_Aug/embedded_element/h5/AAVS05_embedded_element_02_rev0.h5' # # h5filepath = 'AAVS05_embedded_element_02_rev0.h5' # beams['XX'], beams['YY'] = primary_beam.MWA_Tile_full_EE(theta, phi, # freq=frequency, delays=delays, # zenithnorm=zenithnorm, power=True) pols = ['XX', 'YY'] # Get Haslam and interpolate onto grid my_map = get_Haslam(frequency) mask = numpy.isnan(za_grid) za_grid[numpy.isnan(za_grid)] = 90.0 # Replace nans as they break the interpolation sky_grid = map_sky(my_map['skymap'], my_map['RA'], my_map['dec'], gps, az_grid, za_grid) sky_grid[mask] = numpy.nan # Remask beyond the horizon # test: # delays1 = numpy.array([[6, 6, 6, 6, # 4, 4, 4, 4, # 2, 2, 2, 2, # 0, 0, 0, 0], # [6, 6, 6, 6, # 4, 4, 4, 4, # 2, 2, 2, 2, # 0, 0, 0, 0]], # dtype=numpy.float32) # za_delays = {'0': delays1 * 0, '14': delays1, '28': delays1 * 2} # tile = mwa_tile.get_AA_Cached() # za_delay = '0' # (ax0, ay0) = tile.getArrayFactor(az_grid, za_grid, frequency, za_delays[za_delay]) # val = numpy.abs(ax0) # val_max = numpy.nanmax(val) # print "VALUE : %.8f %.8f %.8f" % (frequency, val_max[0], val[resolution / 2, resolution / 2]) beamsky_sum_XX = 0 beam_sum_XX = 0 Tant_XX = 0 beam_dOMEGA_sum_XX = 0 beamsky_sum_YY = 0 beam_sum_YY = 0 Tant_YY = 0 beam_dOMEGA_sum_YY = 0 for pol in pols: # Get gridded sky print('frequency=%.2f , polarisation=%s' % (frequency, pol)) beam = beams[pol] beamsky = beam * sky_grid beam_dOMEGA = beam * dOMEGA print('sum(beam)', numpy.nansum(beam)) print('sum(beamsky)', numpy.nansum(beamsky)) beamsky_sum = numpy.nansum(beamsky) beam_sum = numpy.nansum(beam) beam_dOMEGA_sum = numpy.nansum(beam_dOMEGA) Tant = numpy.nansum(beamsky) / numpy.nansum(beam) print('Tant=sum(beamsky)/sum(beam)=', Tant) if pol == 'XX': beamsky_sum_XX = beamsky_sum beam_sum_XX = beam_sum Tant_XX = Tant beam_dOMEGA_sum_XX = beam_dOMEGA_sum if pol == 'YY': beamsky_sum_YY = beamsky_sum beam_sum_YY = beam_sum Tant_YY = Tant beam_dOMEGA_sum_YY = beam_dOMEGA_sum filename = '%s_%.2fMHz_%s_%s' % (gps, frequency / 1.0e6, pol, model) fstring = "%.2f" % (frequency / 1.0e6) if plottype == 'all': plottypes = ['beam', 'sky', 'beamsky', 'beamsky_scaled'] else: plottypes = [plottype] for pt in plottypes: if pt == 'beamsky': textlabel = 'Beam x sky %s (LST %.2f hr), %s MHz, %s-pol, Tant=%.1f K' % (gps, get_LST(gps), fstring, pol, Tant) plot_beamsky(beamsky, frequency, textlabel, filename, extension, obstime=obstime, figsize=figsize, directory=directory) elif pt == 'beamsky_scaled': textlabel = 'Beam x sky (scaled) %s (LST %.2f hr), %s MHz, %s-pol, Tant=%.1f K (max T=%.1f K)' % (gps, get_LST(gps), fstring, pol, Tant, float(numpy.nanmax(beamsky))) plot_beamsky(beamsky, frequency, textlabel, filename + '_scaled', extension, obstime=obstime, figsize=figsize, vmax=numpy.nanmax(beamsky) * 0.4, directory=directory) elif pt == 'beam': textlabel = 'Beam for %s, %s MHz, %s-pol' % (gps, fstring, pol) plot_beamsky(beam, frequency, textlabel, filename + '_beam', extension, obstime=obstime, figsize=figsize, cbar_label='', directory=directory, b_add_sources=b_add_sources, az_grid=az_grid, za_grid=za_grid) elif pt == 'sky': textlabel = 'Sky for %s (LST %.2f hr), %s MHz, %s-pol' % (gps, get_LST(gps), fstring, pol) plot_beamsky(sky_grid, frequency, textlabel, filename + '_sky', extension, obstime=obstime, figsize=figsize, directory=directory, b_add_sources=b_add_sources, az_grid=az_grid, za_grid=za_grid) return (beamsky_sum_XX, beam_sum_XX, Tant_XX, beam_dOMEGA_sum_XX, beamsky_sum_YY, beam_sum_YY, Tant_YY, beam_dOMEGA_sum_YY)
371a29412b52b27c69193bed1e945eeed6a988d7
7,379
import json def view_page(request, content_id=None): """Displays the content in a more detailed way""" if request.method == "GET": if content_id: if content_id.isdigit(): try: # Get the contents details content_data = Content.objects.get(pk=int(content_id)) content_data.fire = int(content_data.contents_history.all().aggregate(Avg("vote"))["vote__avg"] * 10) if content_data.contents_history.all().aggregate(Avg("vote"))["vote__avg"] else 0 try: # Get all the available comments of this particular content comment_data = content_data.content_comments.all() if comment_data: # Convert Data to JSON list comment_list = json.loads(comment_data[0].comment) content_comments = [] for a in comment_list: try: user = User.objects.get(pk=a["user_id"]) content_comments.append({ "id": a["id"], "content_id": a["content_id"], "profile_picture": (user.profile.profile_picture.url).replace("&export=download", "") if user.profile.profile_picture.url else "/static/teeker/assets/default_img/avatar/avataaars.png", "username": user.username, "user_id": user.pk, "comment": a["comment"], "date": a["date"] }) except User.DoesNotExist: print("Broken Comment...") else: content_comments = [] except json.JSONDecodeError: content_data['contents_comment']['comment'] = [] # Check if the content isn't suspended if content_data.suspended and not request.user.is_staff: content_data = { "title": "CONTENT UNAVAILABLE" } # Check if the user is logged in if request.user.is_authenticated: # Check if the content is in the logged in user's recommended list try: if int(content_id) in json.loads(request.user.profile.recommended): content_data.recommended = True else: content_data.recommended = False except json.JSONDecodeError: content_data.recommended = False else: content_data.recommended = False except Content.DoesNotExist: content_data = { "title": "CONTENT UNAVAILABLE" } else: content_data = { "title": "CONTENT UNAVAILABLE" } else: content_data = { "title": "CONTENT UNAVAILABLE" } html_content = { "content_data": content_data, "content_comments": content_comments } return render(request, "teeker/site_templates/view.html", html_content)
11908d7d0f75377485022ab87a93e7f27b2b626d
7,380
def run_feat_model(fsf_file): """ runs FSL's feat_model which uses the fsf file to generate files necessary to run film_gls to fit design matrix to timeseries""" clean_fsf = fsf_file.strip('.fsf') cmd = 'feat_model %s'%(clean_fsf) out = CommandLine(cmd).run() if not out.runtime.returncode == 0: return None, out.runtime.stderr mat = fsf_file.replace('.fsf', '.mat') return mat, cmd
4b033ff1aceb60cdf0c39ebfbefc0841dc4df507
7,381
def exportDSV(input, delimiter = ',', textQualifier = '"', quoteall = 0, newline = '\n'): """ PROTOTYPE: exportDSV(input, delimiter = ',', textQualifier = '\"', quoteall = 0) DESCRIPTION: Exports to DSV (delimiter-separated values) format. ARGUMENTS: - input is list of lists of data (as returned by importDSV) - delimiter is character used to delimit columns - textQualifier is character used to delimit ambiguous data - quoteall is boolean specifying whether to quote all data or only data that requires it RETURNS: data as string """ if not delimiter or type(delimiter) != type(''): raise InvalidDelimiter if not textQualifier or type(delimiter) != type(''): raise InvalidTextQualifier # double-up all text qualifiers in data (i.e. can't becomes can''t) data = map(lambda i, q = textQualifier: map(lambda j, q = q: str(j).replace(q, q * 2), i), input) if quoteall: # quote every data value data = map(lambda i, q = textQualifier: map(lambda j, q = q: q + j + q, i), data) else: # quote only the values that contain qualifiers, delimiters or newlines data = map(lambda i, q = textQualifier, d = delimiter: map(lambda j, q = q, d = d: ((j.find(q) != -1 or j.find(d) != -1 or j.find('\n') != -1) and (q + j + q)) or j, i), data) # assemble each line with delimiters data = [delimiter.join(line) for line in data] # assemble all lines together, separated by newlines data = newline.join(data) return data
28075667459e872ec0713efb834a9c3aa1dc620e
7,382
def DatasetSplit(X, y): #Creating the test set and validation set. # separating the target """ To create the validation set, we need to make sure that the distribution of each class is similar in both training and validation sets. stratify = y (which is the class or tags of each frame) keeps the similar distribution of classes in both the training as well as the validation set.""" # creating the training and validation set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.2, stratify = y) # creating dummies of target variable for train and validation set y_train = pd.get_dummies(y_train) y_test = pd.get_dummies(y_test) return X_train, X_test, y_train, y_test
15c9d6acf51f6535bbd4396be83752b98c6a1fa0
7,383
def parse_children(root): """ :param root: root tags of .xml file """ attrib_list = set() for child in root: text = child.text if text: text = text.strip(' \n\t\r') attrib_list = attrib_list | get_words_with_point(text) attrib_list = attrib_list | parse_children(child) for attribute_name, attribute_value in child.attrib.items(): if '.' in attribute_value: attrib_list.add(attribute_value) """ returns list of attribute_value """ return attrib_list
5062b39775bdb1b788fa7b324de108367421f743
7,384
def load_data(ETF): """ Function to load the ETF data from a file, remove NaN values and set the Date column as index. ... Attributes ---------- ETF : filepath """ data = pd.read_csv(ETF, usecols=[0,4], parse_dates=[0], header=0) data.dropna(subset = ['Close', 'Date'], inplace=True) data_close = pd.DataFrame(data['Close']) data_close.index = pd.to_datetime(data['Date']) return data_close
84b4c20c7d74c7e028e62b0147662e9a54311148
7,385
def preprocess_LLIL_GOTO(bv, llil_instruction): """ Replaces integer addresses of llil instructions with hex addresses of assembly """ func = get_function_at(bv, llil_instruction.address) # We have to use the lifted IL since the LLIL ignores comparisons and tests lifted_instruction = list( [k for k in find_lifted_il(func, llil_instruction.address) if k.operation == LowLevelILOperation.LLIL_GOTO] )[0] lifted_il = func.lifted_il llil_instruction.dest = hex(lifted_il[lifted_instruction.dest].address).replace("L", "") return llil_instruction
656b6088816779395a84d32fe77e28866618b9ff
7,386
import json async def get_limited_f_result(request, task_id): """ This endpoint accepts the task_id and returns the result if ready. """ task_result = AsyncResult(task_id) result = { "task_id": task_id, "task_status": task_result.status, "task_result": task_result.result } return json(result)
e459d1963e2de829802927e3265b41bbe4da6bfe
7,387
def process_addr(): """Process the bridge IP address/hostname.""" server_addr = request.form.get('server_addr') session['server_addr'] = server_addr try: leap_response = get_ca_cert(server_addr) session['leap_version'] = leap_response['Body'] \ ['PingResponse']['LEAPVersion'] except ConnectionRefusedError: flash("A connection to %s could not be established. Please check " "the IP address and try again." % server_addr, 'danger') return redirect(url_for('wizard'))
109d3e0652caa5e06fe00702f43640304c30323d
7,388
import requests import json from datetime import datetime import time def get_bkk_list(request): """板块课(通识选修课)""" myconfig = Config.objects.all().first() year = (myconfig.nChoose)[0:4] term = (myconfig.nChoose)[4:] if term == "1": term = "3" elif term == "2": term = "12" if myconfig.apichange: data = { 'xh':request.POST.get("xh"), 'pswd':request.POST.get("pswd"), 'bkk':request.POST.get("bkk") } res = requests.post(url=myconfig.otherapi+"/choose/bkk",data=data) return HttpResponse(json.dumps(json.loads(res.text), ensure_ascii=False), content_type="application/json,charset=utf-8") if myconfig.maintenance: return HttpResponse(json.dumps({'err':'教务系统出错维护中,请静待教务系统恢复正常!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if request.method == 'POST': if request.POST: xh = request.POST.get("xh") pswd = request.POST.get("pswd") bkk = request.POST.get("bkk") else: return HttpResponse(json.dumps({'err':'请提交正确的post数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8") if not Students.objects.filter(studentId=int(xh)): content = ('【%s】[%s]未登录访问板块课' % (datetime.datetime.now().strftime('%H:%M:%S'), xh)) writeLog(content) return HttpResponse(json.dumps({'err':'还未登录,请重新登录!'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: stu = Students.objects.get(studentId=int(xh)) try: bkk = "1" if bkk=="2" else "2" startTime = time.time() print('【%s】查看了板块课' % stu.name) JSESSIONID = str(stu.JSESSIONID) route = str(stu.route) cookies_dict = { 'JSESSIONID': JSESSIONID, 'route': route } cookies = requests.utils.cookiejar_from_dict(cookies_dict) person = Xuanke(base_url=base_url, cookies=cookies, year=year, term=term) bkk_list = person.get_bkk_list(bkk) endTime = time.time() spendTime = endTime - startTime if spendTime > 30: ServerChan = config["ServerChan"] text = "板块课超时" if ServerChan == "none": return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") else: requests.get(ServerChan + 'text=' + text) return HttpResponse(json.dumps({'err':'板块课超时'}, ensure_ascii=False), content_type="application/json,charset=utf-8") content = ('【%s】[%s]访问了板块课,耗时%.2fs' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name, spendTime)) writeLog(content) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") except Exception as e: print(e) content = ('【%s】[%s]访问板块课出错' % (datetime.datetime.now().strftime('%H:%M:%S'), stu.name)) writeLog(content) if myconfig.isKaptcha: return get_kaptcha(xh) else: sta = update_cookies(request) person = Xuanke(base_url=base_url, cookies=sta, year=year, term=term) bkk_list = person.get_bkk_list(bkk) return HttpResponse(json.dumps(bkk_list, ensure_ascii=False), content_type="application/json,charset=utf-8") else: return HttpResponse(json.dumps({'err':'请使用post并提交正确数据'}, ensure_ascii=False), content_type="application/json,charset=utf-8")
03010646ce1e83f644f9bf44b8dcb4e5b8355e52
7,389
import calendar def mkmonth(year, month, dates, groups): """Make an array of data for the year and month given. """ cal = calendar.monthcalendar(int(year), month) for row in cal: for index in range(len(row)): day = row[index] if day == 0: row[index] = None else: date = '%04.d-%02.d-%02.d' % (year, month, day) items = dates.get(date, ()) grp = 0 len_items = len(items) if len_items > 0: while grp < len(groups): grp += 1 if len_items <= groups[grp - 1]: break row[index] = [day, grp, items, date] while len(cal) < 6: cal.append([None] * 7) return dict(name=calendar.month_name[month], weeks=cal, startdate='%04.d-%02.d' % (year, month))
71298d60e852e6045b4ab5c45c2f371ae7049808
7,390
def is_extension(step_str): """Return true if step_str is an extension or Any. Args: step_str: the string to evaluate Returns: True if step_str is an extension Raises: ValueError: if step_str is not a valid step. """ if not is_valid_step(step_str): raise ValueError('Not a valid step in a path: "' + step_str + '"') return step_str[0] == "("
a3b30e238b3b8c42b645d18ae370dea501d1f389
7,391
def diff_list(first, second): """ Get difference of lists. """ second = set(second) return [item for item in first if item not in second]
19975990b5a05433266b3258cd541cca54ab83ac
7,392
from typing import Optional def validate_dissolution_statement_type(filing_json, legal_type) -> Optional[list]: """Validate dissolution statement type of the filing.""" msg = [] dissolution_stmt_type_path = '/filing/dissolution/dissolutionStatementType' dissolution_stmt_type = get_str(filing_json, dissolution_stmt_type_path) if legal_type == Business.LegalTypes.COOP.value: if not dissolution_stmt_type: msg.append({'error': _('Dissolution statement type must be provided.'), 'path': dissolution_stmt_type_path}) return msg if not DissolutionStatementTypes.has_value(dissolution_stmt_type): msg.append({'error': _('Invalid Dissolution statement type.'), 'path': dissolution_stmt_type_path}) return msg return None
868c9f0d6b229c303462a4dee7df16f27cd58898
7,393
from typing import List def weave(left: List[int], right: List[int]) -> List[List[int]]: """ Gives all possible combinations of left and right keeping the original order on left and right """ if not left or not right: return [left] if left else [right] left_result: List[List[int]] = weave_helper(left, right) right_result: List[List[int]] = weave_helper(right, left) return left_result + right_result
9a9717e43337802e6cef87a37b7d8d01493ebc8a
7,395
import torch def compute_rel_attn_value(p_attn, rel_mat, emb, ignore_zero=True): """ Compute a part of *attention weight application* and *query-value product* in generalized RPE. (See eq. (10) - (11) in the MuseBERT paper.) Specifically, - We use distributive law on eq. (11). The function computes the second term: $ sum_j (alpha_{ij} * sum_a Emb_a^K(r_{ij}^a)) $ Here, - b for batch size, h for n_head, vs for vocabulary size. - dtype is torch.float unless specified. :param p_attn: (b, d, L_q, L_k) :param rel_mat: (b, Lq, Lk) :param emb: (h, vs, d) :param ignore_zero: bool. Whether to exclude the first vocab. :return: (b, h, Lq, d) """ vs = emb.size(-2) # bool_relmat: (b, Lq, vs - 1, Lk), dtype: torch.float bool_relmat = compute_bool_rel_mat(rel_mat, vs, ignore_zero=ignore_zero) # p_attn: -> (b, d, Lq, 1, 1, Lk) # bool_relmat: -> (b, 1, L_q, vs - 1, L_k, 1) # acmlt_p_attn: (b, d, Lq, vs - 1, 1, 1) -> (b, d, Lq, vs - 1) acmlt_p_attn = \ torch.matmul(p_attn.unsqueeze(-2).unsqueeze(-2), bool_relmat.unsqueeze(1).unsqueeze(-1) ).squeeze(-1).squeeze(-1) # acc_p_attn: -> (b, h, Lq, 1, vs - 1) # emb: -> (1, h, 1, vs, d) # rel_scores: (b, h, Lq, 1, d) -> (b, h, Lq, d) start_ind = 1 if ignore_zero else 0 rel_values = \ torch.matmul(acmlt_p_attn.unsqueeze(-2), emb[:, start_ind:].unsqueeze(0).unsqueeze(-3) ).squeeze(-2) return rel_values
a39ca9d5933bc334648994fc5211355a496f8126
7,396
def mock_real_galaxy(): """Mock real galaxy.""" dm = np.loadtxt(TEST_DATA_REAL_PATH / "dark.dat") s = np.loadtxt(TEST_DATA_REAL_PATH / "star.dat") g = np.loadtxt(TEST_DATA_REAL_PATH / "gas_.dat") gal = core.Galaxy( m_s=s[:, 0] * 1e10 * u.M_sun, x_s=s[:, 1] * u.kpc, y_s=s[:, 2] * u.kpc, z_s=s[:, 3] * u.kpc, vx_s=s[:, 4] * (u.km / u.s), vy_s=s[:, 5] * (u.km / u.s), vz_s=s[:, 6] * (u.km / u.s), m_dm=dm[:, 0] * 1e10 * u.M_sun, x_dm=dm[:, 1] * u.kpc, y_dm=dm[:, 2] * u.kpc, z_dm=dm[:, 3] * u.kpc, vx_dm=dm[:, 4] * (u.km / u.s), vy_dm=dm[:, 5] * (u.km / u.s), vz_dm=dm[:, 6] * (u.km / u.s), m_g=g[:, 0] * 1e10 * u.M_sun, x_g=g[:, 1] * u.kpc, y_g=g[:, 2] * u.kpc, z_g=g[:, 3] * u.kpc, vx_g=g[:, 4] * (u.km / u.s), vy_g=g[:, 5] * (u.km / u.s), vz_g=g[:, 6] * (u.km / u.s), ) return gal
7dda66bccb5fcecbe55bd0f3ecb64171748947a6
7,398
def lend(request): """ Lend view. It receives the data from the lend form, process and validates it, and reloads the page if everything is OK Args: - request (HttpRequest): the request Returns: """ logged_user = get_logged_user(request) if logged_user is not None and logged_user.user_role == UserRole.LENDER: d = dict(request.POST) d['lender_input'] = logged_user.id errors = Loan.objects.basic_validator(d) if len(errors) > 0: for key, value in errors.items(): messages.error(request, value) else: borrower = request.POST.get('borrower_input', 0) amount = request.POST.get('amount_input', 0) new_loan = Loan.objects.create( borrower=User.objects.get(id=borrower), lender=logged_user, amount=int(amount) ) messages.info(request, 'Loan executed successfully') return redirect('lender', id=logged_user.id) else: request.session.clear() return redirect('/')
59fdf04eafc1772b8ef880a1340af57739a71d25
7,399
def deprecated() -> None: """Run the command and print a deprecated notice.""" LOG.warning("c2cwsgiutils_coverage_report.py is deprecated; use c2cwsgiutils-coverage-report instead") return main()
ea3309fc308dd969872f7a4630c137e76a3659b0
7,400
def build_syscall_Linux(syscall, arg_list, arch_bits, constraint=None, assertion = None, clmax=SYSCALL_LMAX, optimizeLen=False): """ arch_bits = 32 or 64 :) """ # Check args if( syscall.nb_args() != len(arg_list)): error("Error. Expected {} arguments, got {}".format(len(syscall.arg_types), len(arg_list))) return None # Check args length for i in range(0,len(arg_list)): if( not verifyArgType(arg_list[i], syscall.arg_types[i])): error("Argument error for '{}': expected '{}', got '{}'".format(arg_list[i], syscall.arg_types[i], type(arg_list[i]))) return None # Check constraint and assertion if( constraint is None ): constraint = Constraint() if( assertion is None ): assertion = getBaseAssertion() # Check if we have the function ! verbose("Trying to call {}() function directly".format(syscall.def_name)) func_call = build_call(syscall.function(), arg_list, constraint, assertion, clmax=clmax, optimizeLen=optimizeLen) if( not isinstance(func_call, str) ): verbose("Success") return func_call else: if( not constraint.chainable.ret ): verbose("Coudn't call {}(), try direct syscall".format(syscall.def_name)) else: verbose("Couldn't call {}() and return to ROPChain".format(syscall.def_name)) return None # Otherwise do syscall directly # Set the registers args = [(Arch.n2r(x[0]), x[1]) for x in zip(syscall.arg_regs, arg_list) + syscall.syscall_arg_regs] chain = popMultiple(args, constraint, assertion, clmax-1, optimizeLen=optimizeLen) if( not chain ): verbose("Failed to set registers for the mprotect syscall") return None # Int 0x80 if( arch_bits == 32 ): syscall_gadgets = search(QueryType.INT80, None, None, constraint, assertion) # syscall elif( arch_bits == 64): syscall_gadgets = search(QueryType.SYSCALL, None, None, constraint, assertion) if( not syscall_gadgets ): verbose("Failed to find an 'int 0x80' OR 'syscall' gadget") return None else: chain.addChain(syscall_gadgets[0]) verbose("Success") return chain
1fc9e5eadb688e58f2e6ac3de4d678e3040a1086
7,401
def gamma(x): """Diffusion error (normalized)""" CFL = x[0] kh = x[1] return ( 1. / (-2) * ( 4. * CFL ** 2 / 3 - 7. * CFL / 3 + (-23. * CFL ** 2 / 12 + 35 * CFL / 12) * np.cos(kh) + (2. * CFL ** 2 / 3 - 2 * CFL / 3) * np.cos(2 * kh) + (-CFL ** 2 / 12 + CFL / 12) * np.cos(3 * kh) ) )
c8689e1388338cc4d6b1b135f09db90f0e866346
7,402
import re def copylabel(original_name): """create names/labels with the sequence (Copy), (Copy 2), (Copy 3), etc.""" copylabel = pgettext_lazy("this is a copy", "Copy") copy_re = f"\\({copylabel}( [0-9]*)?\\)" match = re.search(copy_re, original_name) if match is None: label = f"{original_name} ({copylabel})" elif match.groups()[0] is None: label = re.sub(copy_re, f"({copylabel} 2)", original_name) else: n = int(match.groups()[0].strip()) + 1 label = re.sub(copy_re, f"({copylabel} {n})", original_name) return label
1f838c33faf347b4219ca23083b664bda01cb9ef
7,403
def load_opts_from_mrjob_confs(runner_alias, conf_paths=None): """Load a list of dictionaries representing the options in a given list of mrjob config files for a specific runner. Returns ``[(path, values), ...]``. If a path is not found, use ``(None, {})`` as its value. If *conf_paths* is ``None``, look for a config file in the default locations (see :py:func:`find_mrjob_conf`). :type runner_alias: str :param runner_alias: String identifier of the runner type, e.g. ``emr``, ``local``, etc. :type conf_paths: list or ``None`` :param conf_path: locations of the files to load This will only load each config file once, even if it's referenced from multiple paths due to symlinks. """ if conf_paths is None: results = load_opts_from_mrjob_conf(runner_alias) else: # don't include conf files that were loaded earlier in conf_paths already_loaded = [] # load configs in reversed order so that order of conf paths takes # precedence over inheritance results = [] for path in reversed(conf_paths): results = load_opts_from_mrjob_conf( runner_alias, path, already_loaded=already_loaded) + results if runner_alias and not any(conf for path, conf in results): log.warning('No configs specified for %s runner' % runner_alias) return results
6ef2acc7dce0de5e467456d376a52c8078336c55
7,404
def clut8_rgb888(i): """Reference CLUT for wasp-os. Technically speaking this is not a CLUT because the we lookup the colours algorithmically to avoid the cost of a genuine CLUT. The palette is designed to be fairly easy to generate algorithmically. The palette includes all 216 web-safe colours together 4 grays and 36 additional colours that target "gaps" at the brighter end of the web safe set. There are 11 greys (plus black and white) although two are fairly close together. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 24-bit colour in RGB888 format """ if i < 216: rgb888 = ( i % 6) * 0x33 rg = i // 6 rgb888 += (rg % 6) * 0x3300 rgb888 += (rg // 6) * 0x330000 elif i < 252: i -= 216 rgb888 = 0x7f + (( i % 3) * 0x33) rg = i // 3 rgb888 += 0x4c00 + ((rg % 4) * 0x3300) rgb888 += 0x7f0000 + ((rg // 4) * 0x330000) else: i -= 252 rgb888 = 0x2c2c2c + (0x101010 * i) return rgb888
ca95c95306f7f4762add01f2ffc113f348e29d3b
7,405
def get_file_from_rcsb(pdb_id,data_type='pdb'): """ (file_name) -> file_path fetch pdb or structure factor file for pdb_id from the RCSB website Args: file_name: a pdb file name data_type (str): 'pdb' -> pdb 'xray' -> structure factor Returns: a file path for the pdb file_name """ try: file_name = fetch.get_pdb(pdb_id,data_type,mirror='rcsb',log=null_out()) except Sorry: file_name = '' return file_name
19a557a0bf4f69ba132d6d4520a124aef931f816
7,406
def parse_events(fobj): """Parse a trace-events file into {event_num: (name, arg1, ...)}.""" def get_argnames(args): """Extract argument names from a parameter list.""" return tuple(arg.split()[-1].lstrip('*') for arg in args.split(',')) events = {dropped_event_id: ('dropped', 'count')} event_num = 0 for line in fobj: m = event_re.match(line.strip()) if m is None: continue disable, name, args = m.groups() events[event_num] = (name,) + get_argnames(args) event_num += 1 return events
af35deff9c5b76d4d46700a738186822032d4190
7,407
def enu2ECEF(phi, lam, x, y, z, t=0.0): """ Convert ENU local coordinates (East, North, Up) to Earth centered - Earth fixed (ECEF) Cartesian, correcting for Earth rotation if needed. ENU coordinates can be transformed to ECEF by two rotations: 1. A clockwise rotation over east-axis by an angle (90 - phi) to align the up-axis with the z-axis. 2. A clockwise rotation over the z-axis by and angle (90 + lam) to align the east-axis with the x-axis. Source: http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates Arguments: phi: [float] east-axis rotation angle lam: [float] z-axis rotation angle x: [float] ENU x coordinate y: [float] ENU y coordinate z: [float] ENU z coordinate Keyword arguments: t: [float] time in seconds, 0 by default Return: (x_ecef, y_ecef, z_ecef): [tuple of floats] ECEF coordinates """ # Calculate ECEF coordinate from given local coordinates x_ecef = -np.sin(lam)*x - np.sin(phi)*np.cos(lam)*y + np.cos(phi)*np.cos(lam)*z y_ecef = np.cos(lam)*x - np.sin(phi)*np.sin(lam)*y + np.cos(phi)*np.sin(lam)*z z_ecef = np.cos(phi) *y + np.sin(phi) *z # Calculate time correction (in radians) tau = 2*np.pi/(23.0*3600.0 + 56.0*60.0 + 4.09054) # Earth rotation in rad/s yaw = -tau*t x_temp = x_ecef y_temp = y_ecef # Apply time correction x_ecef = np.cos(yaw)*x_temp + np.sin(yaw)*y_temp y_ecef = -np.sin(yaw)*x_temp + np.cos(yaw)*y_temp return x_ecef, y_ecef, z_ecef
494078d7c3bf9933fcc5a1b8ac62e105233722b8
7,408
def get_login(discord_id): """Get login info for a specific user.""" discord_id_str = str(discord_id) logins = get_all_logins() if discord_id_str in logins: return logins[discord_id_str] return None
16b7690dd4f95df1647c7060200f3938b80993c0
7,410
import json from typing import OrderedDict def to_json_dict(json_data): """Given a dictionary or JSON string; return a dictionary. :param json_data: json_data(dict, str): Input JSON object. :return: A Python dictionary/OrderedDict with the contents of the JSON object. :raises TypeError: If the input object is not a dictionary or string. """ if isinstance(json_data, dict): return json_data elif isinstance(json_data, str): return json.loads(json_data, object_hook=OrderedDict) else: raise TypeError(f"'json_data' must be a dict or valid JSON string; received: {json_data!r}")
e1264d88a4424630f7348cbe7794ca072c057bdf
7,411
def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'neck', 'right_shoulder', 'right_elbow', 'right_wrist', 'left_shoulder', 'left_elbow', 'left_wrist', 'right_hip', 'right_knee', 'right_ankle', 'left_hip', 'left_knee', 'left_ankle', 'right_eye', 'left_eye', 'right_ear', 'left_ear'] return keypoints
1bedcee8c5f38bdefcd00251dd95530966a41353
7,412
def has_mtu_mismatch(iface: CoreInterface) -> bool: """ Helper to detect MTU mismatch and add the appropriate OSPF mtu-ignore command. This is needed when e.g. a node is linked via a GreTap device. """ if iface.mtu != DEFAULT_MTU: return True if not iface.net: return False for iface in iface.net.get_ifaces(): if iface.mtu != iface.mtu: return True return False
a9415ed9fbcb276a53df8dac159f48aaac831744
7,413
def phrase_boxes_alignment(flatten_boxes, ori_phrases_boxes): """ align the bounding boxes with corresponding phrases. """ phrases_boxes = list() ori_pb_boxes_count = list() for ph_boxes in ori_phrases_boxes: ori_pb_boxes_count.append(len(ph_boxes)) strat_point = 0 for pb_boxes_num in ori_pb_boxes_count: sub_boxes = list() for i in range(strat_point, strat_point + pb_boxes_num): sub_boxes.append(flatten_boxes[i]) strat_point += pb_boxes_num phrases_boxes.append(sub_boxes) pb_boxes_count = list() for ph_boxes in phrases_boxes: pb_boxes_count.append(len(ph_boxes)) assert pb_boxes_count == ori_pb_boxes_count return phrases_boxes
e961a90f61917f217ac6908263f5b6c74bc42b26
7,414
def dismiss_notification(request): """ Dismisses a notification ### Response * Status code 200 (When the notification is successsfully dismissed) { "success": <boolean: true> } * `success` - Whether the dismissal request succeeded or not * Status code 400 (When the notification ID cannot be found) { "success": <boolean: false>, "message": <string: "notification_not_found"> } * `message` - Error message, when success is false """ response = {'success': False} data = request.data try: notif = Notification.objects.get(id=data['notificationId']) notif.dismissed_by.add(request.user) response['success'] = True resp_status = status.HTTP_200_OK except Notification.DoesNotExist: resp_status = status.HTTP_400_BAD_REQUEST response['message'] = 'notification_not_found' return Response(response, status=resp_status)
97cbd560fd16da8ba0d081616e3e2504a2dbf8a0
7,416
def log_at_level(logger, message_level, verbose_level, msg): """ writes to log if message_level > verbose level Returns anything written in case we might want to drop down and output at a lower log level """ if message_level <= verbose_level: logger.info(msg) return True return False
4b88ee137f7c2cb638b8a058b2dceb534329c0d9
7,417
def datafile(tmp_path_factory): """Make a temp HDF5 Ocat details file within 60 arcmin of 3c273 for obsids before 2021-Nov that persists for the testing session.""" datafile = str(tmp_path_factory.mktemp('ocat') / 'target_table.h5') update_ocat_local(datafile, target_name='3c273', resolve_name=True, radius=60, startDate=DATE_RANGE) return datafile
16448a80385ab29ebbaef8e593f96ff0167c1fdb
7,418
def _collect_scalars(values): """Given a list containing scalars (float or int) collect scalars into a single prefactor. Input list is modified.""" prefactor = 1.0 for i in range(len(values)-1, -1, -1): if isinstance(values[i], (int, float)): prefactor *= values.pop(i) return prefactor
bea7e54eec16a9b29552439cd12ce29b9e82d40b
7,419
from pathlib import Path def create_output_directory(validated_cfg: ValidatedConfig) -> Path: """ Creates a top level download directory if it does not already exist, and returns the Path to the download directory. """ download_path = validated_cfg.output_directory / f"{validated_cfg.version}" download_path.mkdir(parents=True, exist_ok=True) return download_path
720f45885e177b55ddbdf492655b17275c4097f8
7,420
def presentation_logistique(regression,sig=False): """ Mise en forme des résultats de régression logistique Paramètres ---------- regression: modèle de régression de statsmodel sig: optionnel, booléen Retours ------- DataFrame : tableau de la régression logistique """ # Passage des coefficients aux Odds Ratio df = np.exp(regression.conf_int()) df['odd ratio'] = round(np.exp(regression.params), 2) df["p-value"] = round(regression.pvalues, 3) df["IC"] = df.apply(lambda x : "%.2f [%.2f-%.2f]" \ % (x["odd ratio"],x[0],x[1]),axis=1) # Ajout de la significativité if sig: df["p-value"] = df["p-value"].apply(significativite) df = df.drop([0,1], axis=1) return df
bef9e08f463c9bc0fbb1d737a412472ab792051e
7,421
def handle_colname_collisions(df: pd.DataFrame, mapper: dict, protected_cols: list) -> (pd.DataFrame, dict, dict): """ Description ----------- Identify mapper columns that match protected column names. When found, update the mapper and dataframe, and keep a dict of these changes to return to the caller e.g. SpaceTag. Parameters ---------- df: pd.DataFrame submitted data mapper: dict a dictionary for the schema mapping (JSON) for the dataframe. protected_cols: list protected column names i.e. timestamp, country, admin1, feature, etc. Output ------ pd.DataFame: The modified dataframe. dict: The modified mapper. dict: key: new column name e.g. "day1month1year1" or "country_non_primary" value: list of old column names e.g. ['day1','month1','year1'] or ['country'] """ # Get names of geo fields that collide and are not primary_geo = True non_primary_geo_cols = [d["name"] for d in mapper["geo"] if d["name"] in protected_cols and ("primary_geo" not in d or d["primary_geo"] == False)] # Get names of date fields that collide and are not primary_date = True non_primary_time_cols = [d['name'] for d in mapper['date'] if d["name"] in protected_cols and ('primary_date' not in d or d['primary_date'] == False)] # Only need to change a feature column name if it qualifies another field, # and therefore will be appended as a column to the output. feature_cols = [d["name"] for d in mapper['feature'] if d["name"] in protected_cols and "qualifies" in d and d["qualifies"]] # Verbose build of the collision_list, could have combined above. collision_list = non_primary_geo_cols + non_primary_time_cols + feature_cols # Bail if no column name collisions. if not collision_list: return df, mapper, {} # Append any collision columns with the following suffix. suffix = "_non_primary" # Build output dictionary and update df. renamed_col_dict = {} for col in collision_list: df.rename(columns={col: col + suffix}, inplace=True) renamed_col_dict[col + suffix] = [col] # Update mapper for k, vlist in mapper.items(): for dct in vlist: if dct["name"] in collision_list: dct["name"] = dct["name"] + suffix elif "qualifies" in dct and dct["qualifies"]: # change any instances of this column name qualified by another field dct["qualifies"] = [w.replace(w, w + suffix) if w in collision_list else w for w in dct["qualifies"] ] elif "associated_columns" in dct and dct["associated_columns"]: # change any instances of this column name in an associated_columns dict dct["associated_columns"] = {k: v.replace(v, v + suffix) if v in collision_list else v for k, v in dct["associated_columns"].items() } return df, mapper, renamed_col_dict
56819ff256cc3c1bcd2062fab0cac29bce7a0c15
7,422
import codecs import json def process_file(filename): """Read a file from disk and parse it into a structured dict.""" try: with codecs.open(filename, encoding='utf-8', mode='r') as f: file_contents = f.read() except IOError as e: log.info('Unable to index file: %s, error :%s', filename, e) return data = json.loads(file_contents) sections = [] title = '' body_content = '' if 'current_page_name' in data: path = data['current_page_name'] else: log.info('Unable to index file due to no name %s', filename) return None if 'body' in data and data['body']: body = PyQuery(data['body']) body_content = body.text().replace(u'¶', '') sections.extend(generate_sections_from_pyquery(body)) else: log.info('Unable to index content for: %s', filename) if 'title' in data: title = data['title'] if title.startswith('<'): title = PyQuery(data['title']).text() else: log.info('Unable to index title for: %s', filename) return {'headers': process_headers(data, filename), 'content': body_content, 'path': path, 'title': title, 'sections': sections}
864c04449cbd998394c07790858ccbdc2d4eea6d
7,423
def revive(grid: Grid, coord: Point) -> Grid: """Generates a set of all cells which can be revived near coord""" revives = set() for offset in NEIGHBOR_OFFSETS: possible_revive = addpos(coord, offset) if possible_revive in grid: continue active_count = live_around(grid, possible_revive) if active_count == 3: revives.add(possible_revive) return revives
94e928ce9dff7015f2785e5a0186f06c4f754cda
7,424
def process_table_creation_surplus(region, exchanges_list): """Add docstring.""" ar = dict() ar["@type"] = "Process" ar["allocationFactors"] = "" ar["defaultAllocationMethod"] = "" ar["exchanges"] = exchanges_list ar["location"] = location(region) ar["parameters"] = "" ar["processDocumentation"] = process_doc_creation() ar["processType"] = "UNIT_PROCESS" ar["name"] = surplus_pool_name + " - " + region ar[ "category" ] = "22: Utilities/2211: Electric Power Generation, Transmission and Distribution" ar["description"] = "Electricity surplus in the " + str(region) + " region." ar["description"]=(ar["description"] + " This process was created with ElectricityLCI " + "(https://github.com/USEPA/ElectricityLCI) version " + elci_version + " using the " + model_specs.model_name + " configuration." ) ar["version"] = make_valid_version_num(elci_version) return ar
0669fce0363d807ee018b59125a13c95417294a7
7,425
import copy def makepath_coupled(model_hybrid,T,h,ode_method,sample_rate): """ Compute paths of coupled exact-hybrid model using CHV ode_method. """ voxel = 0 # make copy of model with exact dynamics model_exact = copy.deepcopy(model_hybrid) for e in model_exact.events: e.hybridType = SLOW # setup integrator path = np.zeros((Nt,2*model_hybrid.dimension)) path[0][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[0][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) clock = np.zeros(Nt) k = 0 tj = ode(chvrhs_coupled).set_integrator(ode_method,atol = h,rtol = h) tj.set_f_params(model_hybrid,model_exact,sample_rate) y0 = np.zeros(2*model_hybrid.dimension+1) while (k+1<Nt) and (clock[k]<T): k = k+1 s1 = tryexponential(1) # solve y0[0:model_hybrid.dimension] = model_hybrid.getstate(0) y0[model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) y0[2*model_hybrid.dimension] = 0. tj.set_initial_value(y0,0) tj.integrate(s1) ys1 = tj.y for i in range(model_hybrid.dimension): model_hybrid.systemState[i].value[0] = ys1[i] for i in range(model_hybrid.dimension): model_exact.systemState[i].value[0] = ys1[i+model_hybrid.dimension] t_next = tj.y[2*model_hybrid.dimension] for e in model_hybrid.events: e.updaterate() for e in model_exact.events: e.updaterate() # update slow species r = np.random.rand() agg_rate = 0. for i in range(len(model_hybrid.events)): if model_hybrid.events[i].hybridType == SLOW: hybrid_rate = model_hybrid.events[i].rate exact_rate = model_exact.events[i].rate agg_rate = agg_rate + res(hybrid_rate,exact_rate ) agg_rate = agg_rate + res(exact_rate,hybrid_rate ) agg_rate = agg_rate + min(hybrid_rate,exact_rate ) else: agg_rate = agg_rate + model_exact.events[i].rate #agg_rate = agg_rate + model_hybrid.events[i].rate #else: # print("PROBLEM") # find reaction if r>sample_rate/(agg_rate+sample_rate): firing_event_hybrid,firing_event_exact = findreaction_coupled(model_hybrid.events,model_exact.events,agg_rate,r) if isinstance(firing_event_hybrid,Reaction): firing_event_hybrid.react() if isinstance(firing_event_exact,Reaction): firing_event_exact.react() clock[k] = clock[k-1] + t_next path[k][0:model_hybrid.dimension] = model_hybrid.getstate(0) path[k][model_hybrid.dimension:2*model_hybrid.dimension] = model_exact.getstate(0) return path[0:k+1],clock[0:k+1]
95e26ec633b5c10797a040583cbc6ad6d6ad9127
7,427
import torch def process_image_keypoints(img, keypoints, input_res=224): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) img = img[:,:,::-1].copy() # PyTorch does not support negative stride at the moment center, scale, bbox = bbox_from_keypoints(keypoints, imageHeight = img.shape[0]) if center is None: return None, None, None, None, None img, boxScale_o2n, bboxTopLeft = crop_bboxInfo(img, center, scale, (input_res, input_res)) # viewer2D.ImShow(img, name='cropped', waitTime=1) #224,224,3 if img is None: return None, None, None, None, None # unCropped = uncrop(img, center, scale, (input_res, input_res)) # if True: # viewer2D.ImShow(img) img = img.astype(np.float32) / 255. img = torch.from_numpy(img).permute(2,0,1) norm_img = normalize_img(img.clone())[None] # return img, norm_img, img_original, boxScale_o2n, bboxTopLeft, bbox bboxInfo ={"center": center, "scale": scale, "bboxXYWH":bbox} return img, norm_img, boxScale_o2n, bboxTopLeft, bboxInfo
e30e9c9b5de106c968d538a56062fefab7c1b3ee
7,428
from typing import Dict from typing import Iterable from typing import Union def _load_outputs(dict_: Dict) -> Iterable[Union[HtmlOutput, EbookConvertOutput]]: """Translates a dictionary into a list of output objects. The dictionary is assumed to have the following structure:: { 'outputs': [{ 'path': 'some', 'new': 'text' }, { 'path: '...', 'replace_with': '...' }] } If the key 'outputs' is not present in the dictionary or if there are no output sub-dictionaries, an empty list is returned instead. The type of the output is inferred from the file name provided as a value of the 'path' key of the output sub-dictionary. A file name ending in the file type '.html' will produce an HtmlOutput. '.epub', '.mobi' or any other file type excluding '.html' will produce an EbookConvertOutput. Note that a local stylesheet *replaces* the global stylesheet, but local ebookconvert_params are *added* to the global ebookconvert_params if present. Args: dict_: The dictionary. Returns: The list of output objects or an empty list either if not output sub-dictionaries are present in the encapsulating dictionary or if the 'outputs' key itself is missing. """ outputs = [] global_stylesheet = None global_ec_params = [] if 'stylesheet' in dict_: global_stylesheet = dict_['stylesheet'] if 'ebookconvert_params' in dict_: global_ec_params = _load_ebookconvert_params(dict_) for output in dict_['outputs']: path = output['path'] file_type = path.split('.')[-1] if 'stylesheet' not in output and global_stylesheet: output['stylesheet'] = global_stylesheet if file_type == 'html': outputs.append(HtmlOutput(**output)) else: if 'ebookconvert_params' in output: local_ec_params = _load_ebookconvert_params(output) output['ebookconvert_params'] = global_ec_params + local_ec_params else: output['ebookconvert_params'] = global_ec_params outputs.append(EbookConvertOutput(**output)) return outputs
229eeb33ca34266a397dca56b13f004a8647e8e5
7,430
def _async_friendly_contextmanager(func): """ Equivalent to @contextmanager, except the resulting (non-async) context manager works correctly as a decorator on async functions. """ @wraps(func) def helper(*args, **kwargs): return _AsyncFriendlyGeneratorContextManager(func, args, kwargs) return helper
453fb89ca52101e178e0bd2c5895804ca2cc54e6
7,431
import itertools def all_inputs(n): """ returns an iterator for all {-1,1}-vectors of length `n`. """ return itertools.product((-1, +1), repeat=n)
526dff9332cf606f56dcb0c31b5c16a0124478ed
7,432
def generate_winner_list(winners): """ Takes a list of winners, and combines them into a string. """ return ", ".join(winner.name for winner in winners)
2586292d4a96f63bf40c0d043111f5087c46f7a9
7,434
def stampify_url(): """The stampified version of the URL passed in args.""" url = request.args.get('url') max_pages = request.args.get('max_pages') enable_animations = bool(request.args.get('animations') == 'on') if not max_pages: max_pages = DEFAULT_MAX_PAGES _stampifier = Stampifier(url, int(max_pages), enable_animations) try: return _stampifier.stampify().stamp_html except StampifierError as err: return render_template('error_screen.html', message=err.message)
136d95adedeeddcdc4166a9bce20414e909fa21f
7,435
def init_time(p, **kwargs): """Initialize time data.""" time_data = { 'times': [p['parse']], 'slots': p['slots'], } time_data.update(**kwargs) return time_data
2aff3819d561f0dc9e0c9b49702b8f3fbb6e9252
7,438
def bsplslib_D0(*args): """ :param U: :type U: float :param V: :type V: float :param UIndex: :type UIndex: int :param VIndex: :type VIndex: int :param Poles: :type Poles: TColgp_Array2OfPnt :param Weights: :type Weights: TColStd_Array2OfReal & :param UKnots: :type UKnots: TColStd_Array1OfReal & :param VKnots: :type VKnots: TColStd_Array1OfReal & :param UMults: :type UMults: TColStd_Array1OfInteger & :param VMults: :type VMults: TColStd_Array1OfInteger & :param UDegree: :type UDegree: int :param VDegree: :type VDegree: int :param URat: :type URat: bool :param VRat: :type VRat: bool :param UPer: :type UPer: bool :param VPer: :type VPer: bool :param P: :type P: gp_Pnt :rtype: void """ return _BSplSLib.bsplslib_D0(*args)
4c7a95448c116ef04fac36168c05a22597bc0684
7,440
def b_cross(self) -> tuple: """ Solve cross one piece at a time. Returns ------- tuple of (list of str, dict of {'CROSS': int}) Moves to solve cross, statistics (move count in ETM). Notes ----- The cube is rotated so that the white centre is facing down. The four white cross pieces are moved to the yellow side (on top), starting with the edge which is the fewest moves away from solved. The edges are then moved down to the white centre in the fewest number of moves. """ cube = self.cube solve = [] edges = (1,0), (-1,1), (1,-1), (0,1) cross = { 'L': (4,1,-1), "L'": (2,1,0), 'F': (1,1,-1), "F'": (3,1,0), 'R': (2,1,-1), "R'": (4,1,0), 'B': (3,1,-1), "B'": (1,1,0), 'L2': (5,1,0), 'F2': (5,0,1), 'R2': (5,1,-1), 'B2': (5,-1,1), "L U' F": (1,0,1), "L' U' F": (1,-1,1), "F U' R": (2,0,1), "F' U' R": (2,-1,1), "R' U F'": (3,0,1), "R U F'": (3,-1,1), "B' U R'": (4,0,1), "B U R'": (4,-1,1) } for s, side in enumerate(cube): if side[1][1] == 'U': break if s != 5: move = ('z2', "z'", "x'", 'z', 'x')[s] self.move(move) solve.append(move) while not(all(cube[0][y][x] == 'U' for y, x in edges) or all(cube[5][y][x] == 'U' for y, x in edges) and all(side[-1][1] == side[1][1] for side in cube[1:5])): for edge in cross: if cube[cross[edge][0]][cross[edge][1]][cross[edge][-1]] == 'U': break slot = 'LFRB'.index(edge[0]) if cube[0][edges[slot][0]][edges[slot][1]] != 'U': moves = edge.split() elif cube[0][edges[slot-3][0]][edges[slot-3][1]] != 'U': moves = ['U'] + edge.split() elif cube[0][edges[slot-1][0]][edges[slot-1][1]] != 'U': moves = ["U'"] + edge.split() else: moves = ['U2'] + edge.split() self.move(moves) solve.extend(moves) while any(cube[5][y][x] != 'U' for y, x in edges): if cube[1][0][1] == cube[1][1][1] and cube[0][1][0] == 'U': self.move('L2') solve.append('L2') if cube[2][0][1] == cube[2][1][1] and cube[0][-1][1] == 'U': self.move('F2') solve.append('F2') if cube[3][0][1] == cube[3][1][1] and cube[0][1][-1] == 'U': self.move('R2') solve.append('R2') if cube[4][0][1] == cube[4][1][1] and cube[0][0][1] == 'U': self.move('B2') solve.append('B2') if any(cube[s][0][1] == cube[(s + 2) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U') solve.append('U') elif any(cube[s][0][1] == cube[s % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move("U'") solve.append("U'") elif any(cube[s][0][1] == cube[(s + 1) % 4 + 1][1][1] and cube[0][edges[s-1][0]][edges[s-1][1]] == 'U' for s in range(1, 5)): self.move('U2') solve.append('U2') return solve, {'CROSS': len(solve)}
f0a82ea6b6634b78e4252ac264a537af87be0fc1
7,441
def retain_groundtruth(tensor_dict, valid_indices): """Retains groundtruth by valid indices. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_confidences fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types fields.InputDataFields.groundtruth_difficult valid_indices: a tensor with valid indices for the box-level groundtruth. Returns: a dictionary of tensors containing only the groundtruth for valid_indices. Raises: ValueError: If the shape of valid_indices is invalid. ValueError: field fields.InputDataFields.groundtruth_boxes is not present in tensor_dict. """ input_shape = valid_indices.get_shape().as_list() if not (len(input_shape) == 1 or (len(input_shape) == 2 and input_shape[1] == 1)): raise ValueError('The shape of valid_indices is invalid.') valid_indices = tf.reshape(valid_indices, [-1]) valid_dict = {} if fields.InputDataFields.groundtruth_boxes in tensor_dict: # Prevents reshape failure when num_boxes is 0. num_boxes = tf.maximum(tf.shape( tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1) for key in tensor_dict: if key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_confidences, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_keypoint_visibilities, fields.InputDataFields.groundtruth_instance_masks]: valid_dict[key] = tf.gather(tensor_dict[key], valid_indices) # Input decoder returns empty tensor when these fields are not provided. # Needs to reshape into [num_boxes, -1] for tf.gather() to work. elif key in [fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_label_types]: valid_dict[key] = tf.reshape( tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]), valid_indices), [-1]) # Fields that are not associated with boxes. else: valid_dict[key] = tensor_dict[key] else: raise ValueError('%s not present in input tensor dict.' % ( fields.InputDataFields.groundtruth_boxes)) return valid_dict
a6681d8e6b3c8c44fa4fee9143ab57538eac2661
7,443
import json def cluster_list_node(realm, id): """ this function add a cluster node """ cluster = Cluster(ES) account = Account(ES) account_email = json.loads(request.cookies.get('account'))["email"] if account.is_active_realm_member(account_email, realm): return Response(json.dumps(cluster.list_nodes(realm, id))) else: return Response({"failure": "account identifier and realm is not an active match"})
eebccc3c7c3c710fc2c26ee0dfba5481e2e2043a
7,444
def complete_json(input_data, ref_keys='minimal', input_root=None, output_fname=None, output_root=None): """ Parameters ---------- input_data : str or os.PathLike or list-of-dict Filepath to JSON with data or list of dictionaries with information about annotations ref_keys : {'minimal', 'info'}, optional Which reference keys to check in `input_data`. Default: 'minimal' input_root : str, optional If `input_data` is a filename the key in the file containing data about annotations. If not specified will be based on provided `ref_keys`. Default: None output_fname : str or os.PathLike, optional Filepath where complete JSON should be saved. If not specified the data are not saved to disk. Default: None output_root : str, optional If `output_fname` is not None, the key in the saved JSON where completed information should be stored. If not specified will be based on `input_root`. Default: None Returns ------- output : list-of-dict Information about annotations from `input_data` """ valid_keys = ['minimal', 'info'] if ref_keys not in valid_keys: raise ValueError(f'Invalid ref_keys: {ref_keys}. Must be one of ' f'{valid_keys}') # this is to add missing fields to existing data # could accept data dict list or filename as input # set minimal vs info if ref_keys == 'minimal': ref_keys = MINIMAL_KEYS if input_root is None: input_root = 'annotations' elif ref_keys == 'info': ref_keys = INFO_KEYS if input_root is None: input_root = 'info' # check input if not isinstance(input_data, list): input_data = parse_json(input_data, root=input_root) # make output output = [] for item in input_data: output.append({ key: (item[key] if key in item else None) for key in ref_keys }) # write output if output_fname is not None: if output_root is None: output_root = input_root write_json(output, output_fname, root=output_root) return output
1a732c87670c890b406e935494ca2c51a0f0dc83
7,446
def BuildSystem(input_dir, info_dict, block_list=None): """Build the (sparse) system image and return the name of a temp file containing it.""" return CreateImage(input_dir, info_dict, "system", block_list=block_list)
4537da68b322e7d7714faa2c365ece1c67b255f2
7,447