content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def detect_version(conn): """ Detect the version of the database. This is typically done by reading the contents of the ``configuration`` table, but before that was added we can guess a couple of versions based on what tables exist (or don't). Returns ``None`` if the database appears uninitialized, and raises :exc:`RuntimeError` is the version is so ancient we can't do anything with it. """ try: with conn.begin(): db_version = conn.scalar(text( "SELECT version FROM configuration")) except exc.ProgrammingError: with conn.begin(): packages_exists = bool(conn.scalar(text( "SELECT 1 FROM pg_catalog.pg_tables " "WHERE schemaname = 'public' AND tablename = 'packages'"))) with conn.begin(): statistics_exists = bool(conn.scalar(text( "SELECT 1 FROM pg_catalog.pg_views " "WHERE schemaname = 'public' AND viewname = 'statistics'"))) with conn.begin(): files_exists = bool(conn.scalar(text( "SELECT 1 FROM pg_catalog.pg_tables " "WHERE schemaname = 'public' AND tablename = 'files'"))) if not packages_exists: # Database is uninitialized return None elif not files_exists: # Database is too ancient to upgrade raise RuntimeError("Database version older than 0.4; cannot upgrade") elif not statistics_exists: return "0.4" else: return "0.5" else: return db_version
6429dbb1e1767cf6fd93c3fd240ce095f1b50ef7
6,979
def nIonDotBHmodel2(z): """Ionization model 2 from BH2007: constant above z=6. """ return ((z < 6) * nIonDotLowz(z) + (z >= 6) * nIonDotLowz(6))
438cdd69a229e445f8e313145e84ed11618ee2cb
6,980
def answer(input): """ >>> answer("1234") 1234 """ lines = input.split('\n') for line in lines: return int(line)
b9ce42d88a09976444563493a01741475dce67c5
6,981
def get_leading_states(contributions): """ Return state contributions, names as lists in descending order of contribution amount :param contributions: :return: """ contributions['state'] = contributions['clean_fips'].apply(get_state) states = contributions.groupby('state') state_sums = states.sum() ordered_sums = state_sums.sort('clean_contribution', ascending=False)['clean_contribution'] names = list(ordered_sums.index) values = list(ordered_sums) unwanted = ['NO_STATE_NAME', 'american samoa', 'northern mariana islands', 'guam', 'virgin islands', 'puerto rico'] state_contributions = [] state_names = [] for i in range(0, len(values)): amount = values[i] name = names[i] if name not in unwanted: state_contributions.append(amount) state_names.append(name) return state_contributions, state_names
7028f87ad7b106e267104dddebc2fe42546d3cfd
6,982
def contacts_per_person_normal_self_20(): """ Real Name: b'contacts per person normal self 20' Original Eqn: b'30' Units: b'contact/Day' Limits: (None, None) Type: constant b'' """ return 30
4a240066b2aefd8af2e19f174632e1bf854bf7d3
6,983
def __compute_partition_gradient(data, fit_intercept=True): """ Compute hetero regression gradient for: gradient = ∑d*x, where d is fore_gradient which differ from different algorithm Parameters ---------- data: DTable, include fore_gradient and features fit_intercept: bool, if model has interception or not. Default True Returns ---------- numpy.ndarray hetero regression model gradient """ feature = [] fore_gradient = [] for key, value in data: feature.append(value[0]) fore_gradient.append(value[1]) feature = np.array(feature) fore_gradient = np.array(fore_gradient) gradient = [] if feature.shape[0] <= 0: return 0 for j in range(feature.shape[1]): feature_col = feature[:, j] gradient_j = fate_operator.dot(feature_col, fore_gradient) gradient.append(gradient_j) if fit_intercept: bias_grad = np.sum(fore_gradient) gradient.append(bias_grad) return np.array(gradient)
e987fc53b1f1ee8cc7a0ddbe83de23b1623b532e
6,984
def calc_nsd(x, n=21): """ Estimate Noise Standard Deviation of Data. Parameters ---------- x : 1d-ndarray Input data. n : int Size of segment. Returns ------- result : float Value of noise standard deviation. """ x_diff = np.diff(x, n=2) x_frag = np.array_split(x_diff, len(x_diff) // n) cursor = np.argmin([np.std(i, ddof=1) for i in x_frag]) for i in range(n * (cursor + 1), len(x_diff)): i_frag = x_diff[i-n:i-1] i_frag_avg = np.mean(i_frag) i_frag_std = np.std(i_frag, ddof=1) if np.abs(x_diff[i] - i_frag_avg) > 3 * i_frag_std: x_diff[i] = i_frag_avg for i in range(0, n * cursor - 1)[::-1]: if n * cursor - 1 < 0: break i_frag = x_diff[i+1:i+n] i_frag_avg = np.mean(i_frag) i_frag_std = np.std(i_frag, ddof=1) if np.abs(x_diff[i] - i_frag_avg) > 3 * i_frag_std: x_diff[i] = i_frag_avg return np.std(x_diff, ddof=1) / 6 ** 0.5
23b0041fc1a9bde364828a0a94b12fc7292a391a
6,985
def deflection_from_kappa_grid_adaptive(kappa_high_res, grid_spacing, low_res_factor, high_res_kernel_size): """ deflection angles on the convergence grid with adaptive FFT the computation is performed as a convolution of the Green's function with the convergence map using FFT The grid is returned in the lower resolution grid :param kappa_high_res: convergence values for each pixel (2-d array) :param grid_spacing: pixel size of high resolution grid :param low_res_factor: lower resolution factor of larger scale kernel. :param high_res_kernel_size: int, size of high resolution kernel in units of degraded pixels :return: numerical deflection angles in x- and y- direction """ kappa_low_res = image_util.re_size(kappa_high_res, factor=low_res_factor) num_pix = len(kappa_high_res) * 2 if num_pix % 2 == 0: num_pix += 1 #if high_res_kernel_size % low_res_factor != 0: # assert ValueError('fine grid kernel size needs to be a multiplicative factor of low_res_factor! Settings used: ' # 'fine_grid_kernel_size=%s, low_res_factor=%s' % (high_res_kernel_size, low_res_factor)) kernel_x, kernel_y = deflection_kernel(num_pix, grid_spacing) grid_spacing_low_res = grid_spacing * low_res_factor kernel_low_res_x, kernel_high_res_x = kernel_util.split_kernel(kernel_x, high_res_kernel_size, low_res_factor, normalized=False) f_x_high_res = scp.fftconvolve(kappa_high_res, kernel_high_res_x, mode='same') / np.pi * grid_spacing ** 2 f_x_high_res = image_util.re_size(f_x_high_res, low_res_factor) f_x_low_res = scp.fftconvolve(kappa_low_res, kernel_low_res_x, mode='same') / np.pi * grid_spacing_low_res ** 2 f_x = f_x_high_res + f_x_low_res kernel_low_res_y, kernel_high_res_y = kernel_util.split_kernel(kernel_y, high_res_kernel_size, low_res_factor, normalized=False) f_y_high_res = scp.fftconvolve(kappa_high_res, kernel_high_res_y, mode='same') / np.pi * grid_spacing ** 2 f_y_high_res = image_util.re_size(f_y_high_res, low_res_factor) f_y_low_res = scp.fftconvolve(kappa_low_res, kernel_low_res_y, mode='same') / np.pi * grid_spacing_low_res ** 2 f_y = f_y_high_res + f_y_low_res return f_x, f_y
cc71b9bd35c5e09e45815cf578870c481a03b8ed
6,986
from params import pop_sizes def remove_sus_from_Reff(strain, data_date): """ This removes the inferred susceptibility depletion from the Reff estimates out of EpyReff. The inferred Reff = S(t) * Reff_1 where S(t) is the effect of susceptible depletion (i.e. a factor between 0 and 1) and Reff_1 is the Reff without the effect of a reducing susceptibility pool. """ data_date = pd.to_datetime(data_date) # read in Reff samples df_Reff = pd.read_csv( "results/EpyReff/Reff_" + strain + "_samples" + data_date.strftime("%Y-%m-%d") + "tau_4.csv", parse_dates=["INFECTION_DATES"], ) # read in assumed CA CA = pd.read_csv( "results/" + "CA_" + data_date.strftime("%Y-%m-%d") + ".csv" ) # read in cases by infection dates cases = pd.read_csv( "results/" + "cases_" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date_inferred"] ) # scale the local cases by the assumed CA cases["local_scaled"] = cases["local"] cases.loc[cases.date_inferred <= pd.to_datetime("2021-12-09"), "local_scaled"] *= 1 / 0.75 cases.loc[cases.date_inferred > pd.to_datetime("2021-12-09"), "local_scaled"] *= 1 / 0.50 # read in the inferred susceptibility depletion factor and convert to a simple array samples = pd.read_csv( "results/" + data_date.strftime("%Y-%m-%d") + "/posterior_sample_" + data_date.strftime("%Y-%m-%d") + ".csv" ) sus_dep_factor = samples["phi"][:2000] sus_dep_factor.to_csv( "results/" + data_date.strftime("%Y-%m-%d") + "sampled_susceptible_depletion_" + data_date.strftime("%Y-%m-%d") + ".csv" ) sus_dep_factor = sus_dep_factor.to_numpy() states = sorted(["NSW", "QLD", "SA", "VIC", "TAS", "WA", "ACT", "NT"]) # init a dataframe to hold the Reff samples without susceptible depletion df_Reff_adjusted = pd.DataFrame() df_cases_adjusted = pd.DataFrame() for state in states: # filter cases by the state and after March 2020 cases_state = cases.loc[cases.STATE == state] dates_complete = pd.DataFrame( pd.date_range( start=df_Reff.INFECTION_DATES.min(), end=max(df_Reff.INFECTION_DATES) ), columns=["date_inferred"], ) # merging on date_inferred forces missing dates to be added into cases_state cases_state = dates_complete.merge(right=cases_state, how='left', on='date_inferred') cases_state.fillna(0, inplace=True) cases_state.loc[cases_state.date_inferred <= "2021-06-25", "local_scaled"] = 0 cases_state["cum_local_scaled"] = cases_state["local_scaled"].cumsum() df_cases_adjusted = pd.concat((df_cases_adjusted, cases_state), axis=0) cases_state = cases_state.cum_local_scaled.to_numpy() cases_state = np.tile(cases_state, (2000, 1)).T # invert the susceptible depletion factor for the model scaling_factor = 1 / (1 - sus_dep_factor * cases_state / pop_sizes[state]) df_Reff_state = df_Reff.loc[df_Reff.STATE == state] df_Reff_state.iloc[:, :-2] = df_Reff_state.iloc[:, :-2] * scaling_factor df_Reff_adjusted = pd.concat((df_Reff_adjusted, df_Reff_state), axis=0) # save the unscaled Reff df_Reff_adjusted.to_csv( "results/EpyReff/Reff_" + strain + "_samples" + data_date.strftime("%Y-%m-%d") + ".csv", index=False, ) df_cases_adjusted.to_csv( "results/EpyReff/cases_adjusted_" + data_date.strftime("%Y-%m-%d") + ".csv", index=False, ) return None
9342896ff84507ecbe93b96a81b781ed6f8c336e
6,987
def word2bytes(word, big_endian=False): """ Converts a 32-bit word into a list of 4 byte values. """ return unpack_bytes(pack_word(word, big_endian))
9c208efc87bb830692771f3dacb1618a1d8d7da4
6,988
def statfcn(status, _id, _ret): """ Callback for libngspice to report simulation status like 'tran 5%' """ logger.warn(status.decode('ascii')) return 0
344210160227ae76470f53eecd43c913b9dec495
6,989
def decode_eventdata(sensor_type, offset, eventdata, sdr): """Decode extra event data from an alert or log Provide a textual summary of eventdata per descriptions in Table 42-3 of the specification. This is for sensor specific offset events only. :param sensor_type: The sensor type number from the event :param offset: Sensor specific offset :param eventdata: The three bytes from the log or alert """ if sensor_type == 5 and offset == 4: # link loss, indicates which port return 'Port {0}'.format(eventdata[1]) elif sensor_type == 8 and offset == 6: # PSU cfg error errtype = eventdata[2] & 0b1111 return psucfg_errors.get(errtype, 'Unknown') elif sensor_type == 0xc and offset == 8: # Memory spare return 'Module {0}'.format(eventdata[2]) elif sensor_type == 0xf: if offset == 0: # firmware error return firmware_errors.get(eventdata[1], 'Unknown') elif offset in (1, 2): return firmware_progress.get(eventdata[1], 'Unknown') elif sensor_type == 0x10: if offset == 0: # Correctable error logging on a specific memory part return 'Module {0}'.format(eventdata[1]) elif offset == 1: return 'Reading type {0:02X}h, offset {1:02X}h'.format( eventdata[1], eventdata[2] & 0b1111) elif offset == 5: return '{0}%'.format(eventdata[2]) elif offset == 6: return 'Processor {0}'.format(eventdata[1]) elif sensor_type == 0x12: if offset == 3: action = (eventdata[1] & 0b1111000) >> 4 return auxlog_actions.get(action, 'Unknown') elif offset == 4: sysactions = [] if eventdata[1] & 0b1 << 5: sysactions.append('NMI') if eventdata[1] & 0b1 << 4: sysactions.append('OEM action') if eventdata[1] & 0b1 << 3: sysactions.append('Power Cycle') if eventdata[1] & 0b1 << 2: sysactions.append('Reset') if eventdata[1] & 0b1 << 1: sysactions.append('Power Down') if eventdata[1] & 0b1: sysactions.append('Alert') return ','.join(sysactions) elif offset == 5: # Clock change event, either before or after if eventdata[1] & 0b10000000: return 'After' else: return 'Before' elif sensor_type == 0x19 and offset == 0: return 'Requested {0] while {1}'.format(eventdata[1], eventdata[2]) elif sensor_type == 0x1d and offset == 7: return restart_causes.get(eventdata[1], 'Unknown') elif sensor_type == 0x21: return '{0} {1}'.format(slot_types.get(eventdata[1], 'Unknown'), eventdata[2]) elif sensor_type == 0x23: phase = eventdata[1] & 0b1111 return watchdog_boot_phases.get(phase, 'Unknown') elif sensor_type == 0x28: if offset == 4: return 'Sensor {0}'.format(eventdata[1]) elif offset == 5: islogical = (eventdata[1] & 0b10000000) if islogical: if eventdata[2] in sdr.fru: return sdr.fru[eventdata[2]].fru_name else: return 'FRU {0}'.format(eventdata[2]) elif sensor_type == 0x2a and offset == 3: return 'User {0}'.format(eventdata[1]) elif sensor_type == 0x2b: return version_changes.get(eventdata[1], 'Unknown') elif sensor_type == 0x2c: cause = (eventdata[1] & 0b11110000) >> 4 cause = fru_states.get(cause, 'Unknown') oldstate = eventdata[1] & 0b1111 if oldstate != offset: try: cause += '(change from {0})'.format( ipmiconst.sensor_type_offsets[0x2c][oldstate]['desc']) except KeyError: pass
7a90810657edd017b42f7f70a7a0c617435cb14f
6,990
def about_incumbent(branch_df): """ number of incumbent updates incumbent throughput: num_updates / num_nodes max_improvement, min_improvement, avg_improvement avg incumbent improvement / first incumbent value max, min, avg distance between past incumbent updates distance between last update and last node explored """ abs_improvement = pd.Series(abs(branch_df['best_integer'].diff(1))) bool_updates = pd.Series((abs_improvement != 0)) avg_improvement = abs_improvement.sum() / bool_updates.sum() if bool_updates.sum() != 0 else None nnz_idx = branch_df['best_integer'].to_numpy.nonzero() first_incumbent = branch_df['best_integer'].iloc[nnz_idx[0][0]] if len(nnz_idx[0]) != 0 else None num_updates = bool_updates.sum() # real number of updates (could be 0) second = float(num_updates) / branch_df['num_nodes'].iloc[-1] if branch_df['num_nodes'].iloc[-1] != 0 else None sixth = avg_improvement / first_incumbent if avg_improvement and first_incumbent else None # add dummy 1 (update) at the end of bool_updates bool_updates[bool_updates.shape[0]] = 1. non_zeros = bool_updates.values == 1 zeros = ~non_zeros zero_counts = np.cumsum(zeros)[non_zeros] zero_counts[1:] -= zero_counts[:-1].copy() # distance between two successive incumbent updates zeros_to_last = zero_counts[-1] zero_counts = zero_counts[:-1] # removes last count (to the end) to compute max, min, avg try: zeros_stat = [zero_counts.max(), zero_counts.min(), zero_counts.mean(), zeros_to_last] except ValueError: zeros_stat = [None]*4 incumbent_list = [ num_updates, second, abs_improvement.max(), abs_improvement.min(), abs_improvement.mean(), sixth ] incumbent_list.extend(zeros_stat) if len(incumbent_list) != 10: print("***len(incumbent_list): {}".format(len(incumbent_list))) return incumbent_list, len(incumbent_list)
309dd09a6fcad58064e98c79536ca73256fe3ac2
6,992
from typing import List def unique_chars(texts: List[str]) -> List[str]: """ Get a list of unique characters from list of text. Args: texts: List of sentences Returns: A sorted list of unique characters """ return sorted(set("".join(texts)))
02bc9ce28498bd129fdb68c2f797d138ca584490
6,993
def adaptive_max_pool1d(input, output_size): """Apply the 1d adaptive max pooling to input. Parameters ---------- input : dragon.vm.torch.Tensor The input tensor. output_size : Union[int, Sequence[int]] The target output size. Returns ------- dragon.vm.torch.Tensor The output tensor. See Also -------- `torch.nn.AdaptiveMaxPool1d(...)`_ """ args = utils._get_adaptive_pool_args( input.size()[-1:], utils._single(output_size)) return _pool('MAX', utils._single, input, **args)
06556ea06ebe282bf24739d56ff016924a730c8b
6,994
def get_return_nb(input_value, output_value): """Get return from input and output value.""" if input_value == 0: if output_value == 0: return 0. return np.inf * np.sign(output_value) return_value = (output_value - input_value) / input_value if input_value < 0: return_value *= -1 return return_value
fe9ef59feb7b4e9797a74258ecbf890171f6df59
6,995
def get_rocauc(val,num_iterations): """ Trains a logistic regression and calculates the roc auc for classifying products as >=4 stars """ recalls = np.zeros(num_iterations) precisions = np.zeros(num_iterations) f1s = np.zeros(num_iterations) roc_aucs = np.zeros(num_iterations) factory = lr_wrapper(val,feature_columns=['sim_score_db','sim_score_dm','rating_mean'],y_column='class') for z in range(num_iterations): # Slightly annoying thing here that each call to factory uses its own # train_test_split, so y_test used for recalls will be different than # y_test used in roc aucs y_test,y_preds = factory.fit_and_return_preds() recalls[z] = recall_score(y_test,y_preds) precisions[z] = precision_score(y_test,y_preds) f1s[z] = f1_score(y_test,y_preds) y_test,y_probas = factory.fit_and_return_probas() roc_aucs[z] = roc_auc_score(y_test, y_probas) # print(roc_aucs) return np.mean(recalls),np.mean(precisions),np.mean(f1s),np.mean(roc_aucs)
d2b2ceae240db6c3ce474d74aea1ebd4d1ed9830
6,996
import torch def poly_edges_min_length(P, T, distFcn=norm): """ Returns the per polygon min edge length Parameters ---------- P : Tensor a (N, D,) points set tensor T : LongTensor a (M, T,) topology tensor Returns ------- Tensor the (T, M,) min edge length tensor """ return torch.min(poly_edges_length(P, T, distFcn=distFcn), dim=1, keepdim=True)[0]
efa68aa752d0f3c1efc29a846f06e006bd8bceb9
6,999
def softmax(x): """A softmax implementation.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0)
3c8e38bf30304733e957cabab35f8fec1c5fba55
7,001
import logging def get_cazy_class_fam_genbank_records(args, session, config_dict): """GenBank acc query results from the local CAZyme database for CAZyme from specific classes/fams :param args: cmd-line argument parser :param session: open SQLite db session :param config_dict: dict, defines CAZy classes and families to get sequences for Return CAZy class and CAZy family GenBank accession query results """ logger = logging.getLogger(__name__) if args.update: # retrieve all GenBank accessions if args.primary: logger.warning( "Retrieving sequences for PRIMARY GenBank accessions that:\n" "belong to specific CAZy classes/families AND\n" "do not have a sequence in the db OR the sequence has been updated in NCBI" ) ( genbank_query_class, genbank_query_family, ) = query_sql_db.get_prim_gnbk_acc_from_clss_fams( session, config_dict, ) else: logger.warning( "Retrieving sequences for PRIMARY GenBank accessions that:\n" "belong to specific CAZy classes/families AND\n" "do not have a sequence in the db OR the sequence has been updated in NCBI" ) ( genbank_query_class, genbank_query_family, ) = query_sql_db.get_all_gnbk_acc_from_clss_fams( session, config_dict, ) else: # retrieve GenBank accesions of records that don't have a sequence if args.primary: logger.warning( "Retrieving sequences for PRIMARY GenBank accessions that:\n" "belong to specific CAZy classes/families AND do not have a sequence in the db" ) ( genbank_query_class, genbank_query_family, ) = query_sql_db.get_prim_gnbk_acc_from_clss_fams_no_seq( session, config_dict, ) else: logger.warning( "Retrieving sequences for PRIMARY GenBank accessions that:\n" "belong to specific CAZy classes/families AND do not have a sequence in the db" ) ( genbank_query_class, genbank_query_family, ) = query_sql_db.get_all_gnbk_acc_from_clss_fams_no_seq( session, config_dict, ) return genbank_query_class, genbank_query_family
3f2d8f65f811be1de6b839753242e51457f8e03e
7,002
def assign_bias_ID(data, bias_params=None, bias_name='bias_ID', key_name=None, bias_model=None): """ Assign a value to each data point that determines which biases are applied to it. parameters: data: pointCollection.data instance bias_parameters: a list of parameters, each unique combination of which defines a different bias bias_name: a name for the biases key_name: an optional parameter which will be used as the dataset name, otherwise a key will be built from the parameter values bias_model: a dict containing entries: E_bias: a dict of expected bias values for the each biasID, determined from the sigma_corr parameter of the data bias_ID_dict: a dict giving the parameter values for each bias_ID (or the key_name if provided) bias_param_dict: a dict giving the mapping from parameter values to bias_ID values """ if bias_model is None: bias_model={'E_bias':dict(), 'bias_param_dict':dict(), 'bias_ID_dict':dict()} bias_ID=np.zeros(data.size)+-9999 p0=len(bias_model['bias_ID_dict'].keys()) if bias_params is None: # assign all data the same bias bias_model['bias_ID_dict'][p0+1]=key_name bias_ID=p0+1 bias_model['E_bias'][p0+1]=np.nanmedian(data.sigma_corr) else: bias_ID=np.zeros(data.size) temp=np.column_stack([getattr(data, bp) for bp in bias_params]) u_p, i_p=unique_by_rows(temp, return_index=True) bias_model['bias_param_dict'].update({param:list() for param in bias_params}) bias_model['bias_param_dict'].update({'ID':list()}) for p_num, param_vals in enumerate(u_p): this_mask=np.ones(data.size, dtype=bool) param_vals_dict={} #Identify the data that match the parameter values for i_param, param in enumerate(bias_params): this_mask = this_mask & (getattr(data, param)==param_vals[i_param]) param_vals_dict[param]=param_vals[i_param] #this_name += '%s%3.2f' % (param, param_vals[i_param]) bias_model['bias_param_dict'][param].append(param_vals[i_param]) bias_model['bias_param_dict']['ID'].append(p0+p_num) this_ind=np.where(this_mask)[0] bias_ID[this_ind]=p0+p_num bias_model['bias_ID_dict'][p0+p_num]=param_vals_dict bias_model['E_bias'][p0+p_num]=np.nanmedian(data.sigma_corr[this_ind]) data.assign({bias_name:bias_ID}) return data, bias_model
8f2145b5efcd7b892b3f156e1e0c4ff59dac9d43
7,003
def check(s): """ :param s:str. the input of letters :return: bool. """ if len(s) == 7 and len(s.split(' ')) == 4: for unit in s.split(' '): if unit.isalpha(): return True
86e1270af299ba83b68d0dab9f8afc3fc5b7d7c5
7,004
def pyeval(*args): """ .. function:: pyeval(expression) Evaluates with Python the expression/s given and returns the result >>> sql("pyeval '1+1'") pyeval('1+1') ------------- 2 >>> sql("select var('test')") # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... OperatorError: Madis SQLError: Operator VAR: Variable 'test' does not exist >>> sql("select var('test', pyeval('1+1'))") var('test', pyeval('1+1')) -------------------------- 2 >>> sql("select var('test')") var('test') ----------- 2 >>> sql('''pyeval '1+1' '"-"' '3+1' ''') pyeval('1+1','"-"','3+1') ------------------------- 2-4 >>> sql("var 'testvar' of select 5") var('testvar',(select 5)) ------------------------- 5 >>> sql("pyeval 'testvar+5'") pyeval('testvar+5') ------------------- 10 >>> sql('''pyeval keywords('lala') ''') pyeval('keywords(''lala'')') ---------------------------- lala """ if len(args) == 0: return r = '' for i in args: r = r + str(eval(i, functions.variables.__dict__, functions.rowfuncs.__dict__)) return r
fa7febed8f25860eee497ce670dc9465526cbbc1
7,005
def with_hyperparameters(uri: Text): """Constructs an ImporterNode component that imports a `standard_artifacts.HyperParameters` artifact to use for future runs. Args: uri (Text): Hyperparameter artifact's uri Returns: ImporterNode """ return ImporterNode( instance_name='with_hyperparameters', source_uri=uri, artifact_type=standard_artifacts.HyperParameters)
e06cc33d043e6abd4a9ee30648f72dcea2ad1814
7,007
def update_user_controller(user_repository_spy): # pylint: disable=W0621 """montagem de update_user_controller utilizando spy""" usecase = UpdateUser(user_repository_spy, PasswordHash()) controller = UpdateUserController(usecase) return controller
474c2bf42c932d71181bebbf7096cd628ba6956a
7,008
def blockList2Matrix(l): """ Converts a list of matrices into a corresponding big block-diagonal one. """ dims = [m.shape[0] for m in l] s = sum(dims) res = zeros((s, s)) index = 0 for i in range(len(l)): d = dims[i] m = l[i] res[index:index + d, index:index + d] = m index += d return res
b13a67cd203930ca2d88ec3cd6dae367b313ae94
7,009
def log_new_fit(new_fit, log_gplus, mode='residual'): """Log the successful refits of a spectrum. Parameters ---------- new_fit : bool If 'True', the spectrum was successfully refit. log_gplus : list Log of all previous successful refits of the spectrum. mode : str ('positive_residual_peak', 'negative_residual_peak', 'broad', 'blended') Specifies the feature that was refit or used for a new successful refit. Returns ------- log_gplus : list Updated log of successful refits of the spectrum. """ if not new_fit: return log_gplus modes = {'positive_residual_peak': 1, 'negative_residual_peak': 2, 'broad': 3, 'blended': 4} log_gplus.append(modes[mode]) return log_gplus
16761ca135efbdb9ee40a42cb8e9e1d62a5dc05e
7,010
def prepare_hr_for_compromised_credentials(hits: list) -> str: """ Prepare human readable format for compromised credentials :param hits: List of compromised credentials :return: Human readable format of compromised credentials """ hr = [] for hit in hits: source = hit.get('_source', {}) created_date = source.get('breach', {}).get('created_at', {}).get('date-time') created_date = arg_to_datetime(created_date) if created_date: created_date = created_date.strftime(READABLE_DATE_FORMAT) # type: ignore first_observed_date = source.get('breach', {}).get('first_observed_at', {}).get('date-time') first_observed_date = arg_to_datetime(first_observed_date) if first_observed_date: first_observed_date = first_observed_date.strftime(READABLE_DATE_FORMAT) # type: ignore data = { 'FPID': source.get('fpid', ''), 'Email': source.get('email', ''), 'Breach Source': source.get('breach', {}).get('source'), 'Breach Source Type': source.get('breach', {}).get('source_type'), 'Password': source.get('password'), 'Created Date (UTC)': created_date, 'First Observed Date (UTC)': first_observed_date } hr.append(data) return tableToMarkdown("Compromised Credential(s)", hr, ['FPID', 'Email', 'Breach Source', 'Breach Source Type', 'Password', 'Created Date (UTC)', 'First Observed Date (UTC)'], removeNull=True)
846144700d3fe21628306de5aff72a77d2cc9864
7,011
def red_bg(text): """ Adds a red background to the given text. """ return colorize(text, "\033[48;5;167m")
edc2741f3246de2c90c9722c4dbd2d813708fe90
7,012
def model_utils(decoy: Decoy) -> ModelUtils: """Get mock ModelUtils.""" return decoy.mock(cls=ModelUtils)
eb5d3eaf8f280086521209f62025e42fca7aec93
7,013
def getLeftTopOfTile(tilex, tiley): """Remember from the comments in the getStartingBoard() function that we have two sets of coordinates in this program. The first set are the pixel coordinates, which on the x-axis ranges from 0 to WINDOWWIDTH - 1, and the y-axis ranges from 0 to WINDOWHEIGHT - 1. Lembrando que a partir dos comentários na função getStartingBoard() temos dois conjuntos de coordenadas neste programa. O primeiro conjunto são as coordenadas dos pixels, que no intervalo do eixo-x vai de 0 até WINDOWWIDTH - 1 e no intervalo do eixo-y vai de 0 até WINDOWHEIGHT - 1. The other coordinate system is used to refer to the tiles on the game board. The upper left tile is at 0, 0. The x-axis ranges from 0 to COLS - 1, and the y-axis ranges from 0 to ROWS - 1. O outro sistema de coordenadas é usado para se referir as peças do jogo no tabuleiro. A peça superior esquerda está em 0,0. O intervalo do eixo-x vai de 0 até COLS -1, e o intervalo do eixo-y vai de 0 até ROWS -1.""" left = XMARGIN + (tilex * TILESIZE) + (tilex - 1) top = YMARGIN + (tiley * TILESIZE) + (tiley - 1) return (left, top)
fad5a9df02b05e76ba62013a49d77941b71f6f5f
7,014
def count_str(text, sub, start=None, end=None): """ Computes the number of non-overlapping occurrences of substring ``sub`` in ``text[start:end]``. Optional arguments start and end are interpreted as in slice notation. :param text: The string to search :type text: ``str`` :param sub: The substring to count :type sub: ``str`` :param start: The start of the search range :type start: ``int`` :param end: The end of the search range :type end: ``int`` :return: The number of non-overlapping occurrences of substring ``sub`` in ``text[start:end]``. :rtype: ``int`` """ assert isinstance(text,str), '%s is not a string' % text return text.count(sub,start,end)
1578f868a4f1a193ec9907494e4af613ca2a6d4d
7,015
def tanh(x, out=None): """ Raises a ValueError if input cannot be rescaled to a dimensionless quantity. """ if not isinstance(x, Quantity): return np.tanh(x, out) return Quantity( np.tanh(x.rescale(dimensionless).magnitude, out), dimensionless, copy=False )
3d86565fb512bfe6f8034dd7436b65c1c322cde6
7,016
from typing import Optional from typing import Sequence from pathlib import Path def epacems( states: Optional[Sequence[str]] = None, years: Optional[Sequence[int]] = None, columns: Optional[Sequence[str]] = None, epacems_path: Optional[Path] = None, ) -> dd.DataFrame: """Load EPA CEMS data from PUDL with optional subsetting. Args: states: subset by state abbreviation. Defaults to None (which gets all states). years: subset by year. Defaults to None (which gets all years). columns: subset by column. Defaults to None (which gets all columns). epacems_path: path to parquet dir. By default it automatically loads the path from :mod:`pudl.workspace` Returns: The requested epacems data """ all_states = pudl.constants.WORKING_PARTITIONS['epacems']['states'] if states is None: states = all_states # all states else: nonexistent = [state for state in states if state not in all_states] if nonexistent: raise ValueError( f"These input states are not in our dataset: {nonexistent}") states = list(states) all_years = pudl.constants.WORKING_PARTITIONS['epacems']['years'] if years is None: years = all_years else: nonexistent = [year for year in years if year not in all_years] if nonexistent: raise ValueError(f"These input years are not in our dataset: {nonexistent}") years = list(years) # columns=None is handled by dd.read_parquet; gives all columns if columns is not None: # nonexistent columns are handled by dd.read_parquet; raises ValueError columns = list(columns) if epacems_path is None: pudl_settings = pudl.workspace.setup.get_defaults() epacems_path = Path(pudl_settings["parquet_dir"]) / "epacems" epacems = dd.read_parquet( epacems_path, use_nullable_dtypes=True, columns=columns, filters=year_state_filter( states=states, years=years, ), ) return epacems
79213c5adb0b56a3c96335c0c7e5cb1faa734752
7,017
from typing import Optional from typing import Tuple import logging def check_termination_criteria( theta: Optional[float], num_iterations: Optional[int] ) -> Tuple[float, int]: """ Check theta and number of iterations. :param theta: Theta. :param num_iterations: Number of iterations. :return: Normalized values. """ # treat theta <= 0 as None, as the caller wants to ignore it. if theta is not None and theta <= 0: theta = None # treat num_iterations <= 0 as None, as the caller wants to ignore it. if num_iterations is not None and num_iterations <= 0: num_iterations = None if theta is None and num_iterations is None: raise ValueError('Either theta or num_iterations (or both) must be provided.') logging.info(f'Starting evaluation (theta={theta}, num_iterations={num_iterations}).') return theta, num_iterations
536cd70b8e8b04d828f0a4af1db96809ab607ff3
7,018
def verify_password(password, hash): """Verify if a hash was generated by the password specified. :password: a string object (plaintext). :hash: a string object. :returns: True or False. """ method = get_hash_algorithm(flask.current_app.config['HASH_ALGORITHM']) return method.verify(password, hash)
484ad9f2debbd8856b9b7fbdd2a7588f9a279f62
7,020
import re def _conversion_sample2v_from_meta(meta_data): """ Interpret the meta data to extract an array of conversion factors for each channel so the output data is in Volts Conversion factor is: int2volt / channelGain For Lf/Ap interpret the gain string from metadata For Nidq, repmat the gains from the trace counts in `snsMnMaXaDw` :param meta_data: dictionary output from spikeglx.read_meta_data :return: numpy array with one gain value per channel """ def int2volts(md): """ :return: Conversion scalar to Volts. Needs to be combined with channel gains """ if md.get('typeThis', None) == 'imec': return md.get('imAiRangeMax') / 512 else: return md.get('niAiRangeMax') / 32768 int2volt = int2volts(meta_data) # interprets the gain value from the metadata header: if 'imroTbl' in meta_data.keys(): # binary from the probes: ap or lf sy_gain = np.ones(int(meta_data['snsApLfSy'][-1]), dtype=np.float32) # imroTbl has 384 entries regardless of no of channels saved, so need to index by n_ch n_chn = _get_nchannels_from_meta(meta_data) - 1 # the sync traces are not included in the gain values, so are included for broadcast ops gain = re.findall(r'([0-9]* [0-9]* [0-9]* [0-9]* [0-9]*)', meta_data['imroTbl'])[:n_chn] out = {'lf': np.hstack((np.array([1 / np.float32(g.split(' ')[-1]) for g in gain]) * int2volt, sy_gain)), 'ap': np.hstack((np.array([1 / np.float32(g.split(' ')[-2]) for g in gain]) * int2volt, sy_gain))} elif 'niMNGain' in meta_data.keys(): # binary from nidq gain = np.r_[ np.ones(int(meta_data['snsMnMaXaDw'][0],)) / meta_data['niMNGain'] * int2volt, np.ones(int(meta_data['snsMnMaXaDw'][1],)) / meta_data['niMAGain'] * int2volt, np.ones(int(meta_data['snsMnMaXaDw'][2], )) * int2volt, # no gain for analog sync np.ones(int(np.sum(meta_data['snsMnMaXaDw'][3]),))] # no unit for digital sync out = {'nidq': gain} return out
e8cd2ea376bdb44ee999459ffcc28c4c4db39458
7,021
def read_split_csv(input_files, delimiter='\t', names=['src', 'dst'], dtype=['int32', 'int32']): """ Read csv for large datasets which cannot be read directly by dask-cudf read_csv due to memory requirements. This function takes large input split into smaller files (number of input_files > number of gpus), reads two or more csv per gpu/worker and concatenates them into a single dataframe. Additional parameters (delimiter, names and dtype) can be specified for reading the csv file. """ client = default_client() n_files = len(input_files) n_gpus = get_n_gpus() n_files_per_gpu = int(n_files/n_gpus) worker_map = [] for i, w in enumerate(client.has_what().keys()): files_per_gpu = input_files[i*n_files_per_gpu: (i+1)*n_files_per_gpu] worker_map.append((files_per_gpu, w)) new_ddf = [client.submit(_read_csv, part, delimiter, names, dtype, workers=[worker]) for part, worker in worker_map] wait(new_ddf) return new_ddf
cd1f2ccd487cf808af1de6a504bc0f6a3a8e34a1
7,022
def _gnurl( clientID ): """ Helper function to form URL to Gracenote_ API service. :param str clientID: the Gracenote_ client ID. :returns: the lower level URL to the Gracenote_ API. :rtype: str """ clientIDprefix = clientID.split('-')[0] return 'https://c%s.web.cddbp.net/webapi/xml/1.0/' % clientIDprefix
6d1935c8b634459892e4ec03d129c791b1d8a06a
7,023
def flatatt(attrs): """ Convert a dictionary of attributes to a single string. The returned string will contain a leading space followed by key="value", XML-style pairs. It is assumed that the keys do not need to be XML-escaped. If the passed dictionary is empty, then return an empty string. jsled: stolen from django newforms/util.py... """ return u''.join([u' %s="%s"' % (k, escape(v)) for k, v in attrs.items()])
01d9ee3ec96b5a096758f60c2defe6c491d94817
7,024
def draw_bboxes(img,boxes,classes): """ Draw bounding boxes on top of an image Args: img : Array of image to be modified boxes: An (N,4) array of boxes to draw, where N is the number of boxes. classes: An (N,1) array of classes corresponding to each bounding box. Outputs: An array of the same shape as 'img' with bounding boxes and classes drawn """ source = Image.fromarray(img) draw = ImageDraw.Draw(source) w2,h2 = (img.shape[0],img.shape[1]) idx = 0 for i in range(len(boxes)): xmin,ymin,xmax,ymax = boxes[i] c = classes[i] draw.text((xmin+15,ymin+15), str(c)) for j in range(4): draw.rectangle(((xmin+j, ymin+j), (xmax+j, ymax+j)), outline="red") return source
6b60550206aaaa9e5033850c293e6c48a7b13e6d
7,025
def markdown(context, template_path): """ {% markdown 'terms-of-use.md' %} """ return mark_safe(get_markdown(context, template_path)[0])
ea6cb711c1a669ad7efdf277baab82ea2a65ba9c
7,026
def investorMasterGetSubaccAssetDetails(email, recvWindow=""): """# Query managed sub-account asset details(For Investor Master Account) #### `GET /sapi/v1/managed-subaccount/asset (HMAC SHA256)` ### Weight: 1 ### Parameters: Name |Type |Mandatory |Description --------|--------|--------|-------- email |STRING |YES | recvWindow |LONG |NO | timestamp |LONG |YES | """ endpoint = '/sapi/v1/managed-subaccount/asset' params = { "email": email } if recvWindow: params["recvWindow"] = recvWindow return getbinancedata_sig(endpoint, params)
7d4f4c5cbd069144319268dcb7235926e55f85d8
7,027
def ema_indicator(close, n=12, fillna=False): """EMA Exponential Moving Average via Pandas Args: close(pandas.Series): dataset 'Close' column. n_fast(int): n period short-term. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ ema_ = ema(close, n, fillna) return pd.Series(ema_, name='ema')
9ddb20ddc6e0cc4b1f08a4e3347f719dbe84b55b
7,028
def u_glob(U, elements, nodes, resolution_per_element=51): """ Compute (x, y) coordinates of a curve y = u(x), where u is a finite element function: u(x) = sum_i of U_i*phi_i(x). Method: Run through each element and compute cordinates over the element. """ x_patches = [] u_patches = [] for e in range(len(elements)): Omega_e = (nodes[elements[e][0]], nodes[elements[e][-1]]) local_nodes = elements[e] d = len(local_nodes) - 1 X = np.linspace(-1, 1, resolution_per_element) x = affine_mapping(X, Omega_e) x_patches.append(x) u_element = 0 for r in range(len(local_nodes)): i = local_nodes[r] # global node number u_element += U[i]*phi_r(r, X, d) u_patches.append(u_element) x = np.concatenate(x_patches) u = np.concatenate(u_patches) return x, u
2c9cabf97b9904d80043a0102c0ac8cd156388ae
7,030
def keyring_rgw_create(**kwargs): """ Create rgw bootstrap keyring for cluster. Args: **kwargs: Arbitrary keyword arguments. cluster_uuid : Set the cluster UUID. Defaults to value found in ceph config file. cluster_name : Set the cluster name. Defaults to "ceph". """ params = dict(kwargs) params["keyring_type"] = "rgw" return keyring_create(**params)
077a3536a6e1ce2e762b14d8fb046617136fe941
7,031
import pandas from datetime import datetime def read_tm224_data(filename: str, folder: str = None) -> pandas.DataFrame: """ Read data stored by Lakeshore TM224 temperature monitor software. Args: filename: string name of ".xls" file on disk folder: string location of file on disk Returns: df : pandas.DataFrame DataFrame with all .xls columns and converted matplotlib timestamps """ if not filename.endswith(".xls"): filename += ".xls" # Extract only the timestamp timestamp = pd.read_excel(folder + filename, skiprows=1, nrows=1, usecols=[1], header=None)[1][0] # Parse datetime object from timestamp timestamp_dt = parser.parse(timestamp, tzinfos={"CET": 0 * 3600}) # Create DataFrame df = pd.read_excel(folder + filename, skiprows=3) # Add matplotlib datetimes to DataFrame time_array = [] for milliseconds in df["Time"]: time_array.append(timestamp_dt + datetime.timedelta(milliseconds=milliseconds)) # noinspection PyUnresolvedReferences df["MPL_datetimes"] = matplotlib.dates.date2num(time_array) return df
430e5a64b5b572b721177c5adce7e222883e4512
7,032
import json import logging def load_keypoints2d_file(file_path, njoints=17): """load 2D keypoints from keypoint detection results. Only one person is extracted from the results. If there are multiple persons in the prediction results, we select the one with the highest detection score. Args: file_path: the json file path. njoints: number of joints in the keypoint defination. Returns: A `np.array` with the shape of [njoints, 3]. """ keypoint = array_nan((njoints, 3), dtype=np.float32) det_score = 0.0 try: with open(file_path, 'r') as f: data = json.load(f) except Exception as e: # pylint: disable=broad-except logging.warning(e) return keypoint, det_score det_scores = np.array(data['detection_scores']) keypoints = np.array(data['keypoints']).reshape((-1, njoints, 3)) # The detection results may contain zero person or multiple people. if det_scores.shape[0] == 0: # There is no person in this image. We set NaN to this frame. return keypoint, det_score else: # There are multiple people (>=1) in this image. We select the one with # the highest detection score. idx = np.argmax(det_scores) keypoint = keypoints[idx] det_score = det_scores[idx] return keypoint, det_score
3cf5c8f2c236b3883e983c74e1ac23c78d256b0d
7,034
def utf8_bytes(string): """ Convert 'string' to bytes using UTF-8. """ return bytes(string, 'UTF-8')
8e5423d2b53e8d5fbeb07017ccd328236ef8bea5
7,035
def _get_value(session_browser, field): """Get an input field's value.""" return session_browser.evaluate_script('$("#id_%s").val()' % field)
7ed2d130b83af7e6fdb6cce99efb44846820585a
7,037
import functools def standarize_ms(datas, val_index, max=(2^32 - 1)): """ Standarize milliseconds lapsed from Arduino reading. Note: Only takes height for one circulation of ms from Arduino. datas: List of data readings val_index: Index of ms value in reading data entry max: Max time of ms - since the Arduino will output a circular value from the time it starts. For correct value, see https://www.arduino.cc/en/Reference/Millis. """ def _standarize_value(initial_value, reading): reading[val_index] = int(reading[val_index]) - initial_value; if(reading[val_index] <= 0): reading[val_index] += max return reading initial_value = int(datas[0][val_index]) ___standarize_value = functools.partial(_standarize_value, initial_value=initial_value) res = map(lambda x: _standarize_value(initial_value, x), datas) res = list(res) res[0][val_index] = 0
84bf498ff3c88b3415433fa9d5be7b6865b3216b
7,042
def corr_bias(x_data, y_data, yerr, pdz1_x, pdz1_y, pdz2_x, pdz2_y): """ Given a correlation measurement and associated PDZs, generate a model and fit as a bias to the measurement. Return: 1) the model [unbiased] (x and y float arrays) 2) best fit bias (float) 3) the bias PDF (x and y float arrays) @params x_data - The central angles of the correlation measurements y_data - The values of the correlation measurements yerr - The errorbars of the correlation measurements pdz1_x - PDZ 1 redshift range to generate models from pdz1_y - PDZ 1 probability values to generate models from pdz2_x - PDZ 2 redshift range to generate models from pdz2_y - PDZ 2 probability values to generate models from pdz1_x and pdz2_x, pdz1_y and pdz2_y should be the same for an autocorrelation @returns xmod - the angular range associated with the generated model ymod - the value of the model at each angle best - The best fit bias value (i.e. square this and multiply it by the base model for the best fitting model) xbias - The range of bias values tested ybias - The probability associated with each bias value chisq - The not reduced chi square value associated with the best fit bias value """ xmod, ymod = model(pdz1_x, pdz1_y, pdz2_x, pdz2_y) xbias, ybias, chisq, best = bias_fit(x_data, y_data, yerr, xmod, ymod) return xmod, ymod, best, xbias, ybias, chisq
255e1c5a67551deb19b91d247f5a913541d8f1da
7,043
def confidence_ellipse( x=None, y=None, cov=None, ax=None, n_std=3.0, facecolor="none", **kwargs ): """ Create a plot of the covariance confidence ellipse of `x` and `y` Parameters ---------- x, y : array_like, shape (n, ) Input data. cov : array_like, shape (2, 2) covariance matrix. Mutually exclusive with input data. ax : matplotlib.axes.Axes The axes object to draw the ellipse into. n_std : float The number of standard deviations to determine the ellipse's radiuses. Returns ------- matplotlib.patches.Ellipse Other parameters ---------------- kwargs : `~matplotlib.patches.Patch` properties """ if x is None and y is None: if cov is None: raise ValueError("Either ") if x.size != y.size: raise ValueError("x and y must be the same size") cov = np.cov(x, y) pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1]) # Using a special case to obtain the eigenvalues of this # two-dimensionl dataset. ell_radius_x = np.sqrt(1 + pearson) ell_radius_y = np.sqrt(1 - pearson) ellipse = Ellipse( (0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor=facecolor, **kwargs ) # Calculating the stdandard deviation of x from # the squareroot of the variance and multiplying # with the given number of standard deviations. scale_x = np.sqrt(cov[0, 0]) * n_std mean_x = np.mean(x) # calculating the stdandard deviation of y ... scale_y = np.sqrt(cov[1, 1]) * n_std mean_y = np.mean(y) transf = ( transforms.Affine2D() .rotate_deg(45) .scale(scale_x, scale_y) .translate(mean_x, mean_y) ) ellipse.set_transform(transf + ax.transData) return ax.add_patch(ellipse)
3965012ccdd1f6b71af4f169b812c384446ed76d
7,044
from typing import List def adapted_fields(type) -> List[Attribute]: """Return the attrs format of `fields()` for attrs and dataclasses.""" if is_dataclass(type): return [ Attribute( attr.name, attr.default if attr.default is not MISSING else ( Factory(attr.default_factory) if attr.default_factory is not MISSING else NOTHING ), None, True, None, True, attr.init, True, type=attr.type, ) for attr in dataclass_fields(type) ] else: return attrs_fields(type)
cc6a799e06715cbd4e3219ea42aaeff2e4924613
7,046
from typing import get_args def get_parms(): """ Use get_args to get the args, and return a dictionary of the args ready for use in pump software. @see get_args() :return: dict: parms """ parms = {} args = get_args() for name, val in vars(args).items(): if val is not None: parms[name] = val return parms
6ebdbee656fd216e5d8c66025029aa2d58641831
7,047
def make_led_sample(n_samples=200, irrelevant=0, random_state=None): """Generate random samples from the 7-segment problem. Parameters ---------- n_samples : int, optional (default=200) The number of samples to generate. irrelevant : int, optional (default=0) The number of irrelevant binary features to add. Returns ------- X, y """ random_state = check_random_state(random_state) data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) data = data[random_state.randint(0, 10, n_samples)] X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] if irrelevant > 0: X = np.hstack((X, random_state.rand(n_samples, irrelevant) > 0.5)) return X, y
7dab2595c0118ca2f08a99ded22047be164f1648
7,049
def handle_source_authorization_exception(e): """ Error handler: the data source requires authorisation This will be triggered when opening a private HDX dataset before the user has supplied their authorisation token. @param e: the exception being handled """ if e.message: flask.flash(e.message) # we're using flask.g.recipe_id to handle the case where a saved recipe # points to a formerly-public dataset that has suddenly become private # normally, it will be None (because there's no saved recipe yet) recipe = recipes.Recipe(recipe_id=flask.g.recipe_id) # add an extra parameter for the /data/save form to indicate that we # want the user to provide an authorisation token extras = { 'need_token': 'on' } # note whether the resource looked like it came from HDX if e.is_ckan: extras['is_ckan'] = 'on' # redirect to the /data/save page to ask the user for a token return flask.redirect(util.data_url_for('data_save', recipe=recipe, extras=extras), 302)
e2c736b301e229d61874bb3cfad13b86dc93e1d1
7,050
def findcosmu(re0, rp0, sublat, latc, lon): # considers latc to be plaentocentric latitudes, but sublat to be planetographic """Takes the equitorial and polar radius of Jupiter (re0, rp0 respectively), the sub-latitude of Jupiter, latitude and longitude (both in radians) to determine the "cos(mu)" of the photons. This effectively helps to idenify where the limb of Jupiter occurs in the Chandra observations""" rfactor = (re0/rp0)**2 # ratio of the equitorial radius and polar radius... lat = np.arctan(np.tan(latc)*rfactor) # and coordinate transformation from planetocentric latitude -> planetographic latitude ans = (rfactor * (np.cos(lon)*np.cos(sublat)*np.cos(lat)) + (np.sin(sublat)*np.sin(lat))) / np.sqrt(rfactor*np.cos(sublat)**2 \ + np.sin(lat)**2) / np.sqrt(rfactor * np.cos(lat)**2 + np.sin(lat)**2) # to return the value(s) of cos(mu) return ans
677adffb6f00e9e1119a71a660ee81d2893d4ef1
7,051
def RMS_energy(frames): """Computes the RMS energy of frames""" f = frames.flatten() return N.sqrt(N.mean(f * f))
10d366e771f629c6efda2faf1f752363dca63b0a
7,052
import urllib def is_blacklisted_url(url): """ Return whether the URL blacklisted or not. Using BLACKLIST_URLS methods against the URLs. :param url: url string :return: True if URL is blacklisted, else False """ url = urllib.parse.urlparse(url).netloc for method in WHITELIST_URL: for whitelist_url in WHITELIST_URL[method]: if method(url, whitelist_url): return False for method in BLACKLIST_URLS: for blacklist_url in BLACKLIST_URLS[method]: if method(url, blacklist_url): return True return False
8a987c0bbce01d18da67b047aed0e680ce5fc661
7,053
def heading(yaw): """A helper function to getnerate quaternions from yaws.""" q = euler2quat(0.0, 0.0, yaw) quat = Quaternion() quat.w = q[0] quat.x = q[1] quat.y = q[2] quat.z = q[3] return quat
fcd05575257ef6cdc084cb2fde309aa48b5a2fb5
7,054
def check_login_required(view_func): """ A decorator that checks whether login is required on this installation and, if so, checks if the user is logged in. If login is required and the user is not logged in, they're redirected to the login link. """ def _check(*args, **kwargs): siteconfig = SiteConfiguration.objects.get_current() if siteconfig.get("auth_require_sitewide_login"): return login_required(view_func)(*args, **kwargs) else: return view_func(*args, **kwargs) return _check
9f0b44f630a24649d87af0bd604a41b7b5b885de
7,055
def Str(*args): """(s1, s2, ...) -> match s1 or s2 or ...""" if len(args) == 1: return Str1(args[0]) return Expression.Alt(tuple(map(Str, args)))
41aece71a6a774db58028add5d60d8c9fed42dd3
7,056
def image_noise_gaussian(image): """ Adds Gaussian noise to the provided image """ float_img = image.astype(np.float) gauss = np.random.normal(0.0, 4.0, (IMG_SIZE, IMG_SIZE, IMG_CHANNELS)) gauss = gauss.reshape(IMG_SIZE, IMG_SIZE, IMG_CHANNELS).astype(np.float) result = float_img + gauss result = np.clip(result, 0, 255) result = result.astype(np.uint8) return result
0e5f5a83f7017d48e083a35bcb22cdf50ebb1006
7,057
from re import T def argsort(x: T.FloatTensor, axis: int = None) -> T.LongTensor: """ Get the indices of a sorted tensor. If axis=None this flattens x. Args: x: A tensor: axis: The axis of interest. Returns: tensor (of ints): indices of sorted tensor """ if axis is None: return flatten(x).sort()[1] else: return x.sort(dim=axis)[1]
57e2e4d8c5a870c4ea382a02e19d0451dbe90704
7,058
def dirPickledSize(obj,exclude=[]): """For each attribute of obj (excluding those specified and those that start with '__'), compute the size using getPickledSize(obj) and return as a pandas Series of KBs""" return pd.Series({o:getPickledSize(getattr(obj, o))/1024. for o in dir(obj) if not np.any([o[:2]=='__', o in exclude, getattr(obj, o) is None])})
d27b404f8c637aa7dd230126d3dbe9112240112c
7,059
from typing import Any def audit_log() -> Any: """ List all events related to the connected member. """ if "member_id" not in session: abort(404) return render_template( "audit_log.html", full_audit_log=fetch_audit_log(session["member_id"]), )
a5c95ac9c7e55212f8e308a9bf141468dc3a7626
7,060
def load_comparisonXL(method, evaluate="train", dropna=True): """Load comparison table.""" if evaluate == "test": e = "['Test']" elif evaluate == "in bag": e = "['In Bag']" elif evaluate == "out of bag": e = "['Out of Bag']" else: e = "['Train']" # Import methods table = [] for i in method: table.append(pd.read_excel(i + ".xlsx")) # Concatenate table df = pd.DataFrame() for i in range(len(table)): df = pd.concat([df, table[i].loc[table[i]['evaluate'] == e].T.squeeze()], axis=1, sort=False) df = df.T.drop(columns="evaluate") # Remove [ ] from string for i in range(len(df)): for j in range(len(df.T)): if type(df.iloc[i, j]) is str: df.iloc[i, j] = df.iloc[i, j][2: -2] # Reset index and add methods column method_name = [] for i in range(len(method)): name_i = method[i].rsplit('/', 1)[1] method_name.append(name_i) df = df.reset_index() df = pd.concat([pd.Series(method_name, name="method"), df], axis=1, sort=False) df = df.drop("index", 1) #df = df.set_index("method") # drop columns with just nans if dropna is True: df = df.dropna(axis=1, how='all') return df
56ff4d8c74ec88fc8b2f245706b7cf039334a76f
7,061
def verify_user_password(user: User, password: str) -> bool: """Verify User's password with the one that was given on login page.""" return pwd_context.verify(password, user.password)
43b25118e5ef3b89622acd7aa3276a1b18352674
7,062
def __valid_ddb_response_q(response): """private function to validate a given DynamoDB query response.""" if 'ResponseMetadata' in response: if 'HTTPStatusCode' in response['ResponseMetadata']: if response['ResponseMetadata']['HTTPStatusCode'] == 200: return True return False
f4e71c4f5d058ba20013b3a405ffeff637e03ae8
7,063
def GetPipelineResultsPathInGCS(artifacts_path): """Gets a full Cloud Storage path to a pipeline results YAML file. Args: artifacts_path: string, the full Cloud Storage path to the folder containing pipeline artifacts, e.g. 'gs://my-bucket/artifacts'. Returns: A string representing the full Cloud Storage path to the pipeline results YAML file. """ return '{0}/results/results.yaml'.format(artifacts_path)
83b7c15f00679ff201c9a8b155102f36bb8e685c
7,064
def Pnm_p(n, m, x): """Eq:II.77 """ return lpmn(m, n, x)[1][-1, -1]
027cb169263853ede6d29a6760da981d30ef950b
7,065
def _remove_empty_subspace(subspaces, n_clusters, m, P, centers, labels, scatter_matrices): """ Check if after rotation and rearranging the dimensionalities a empty subspaces occurs. Empty subspaces will be removed for the next iteration. Therefore all necessary lists will be updated. :param subspaces: number of subspaces :param n_clusters: :param m: list containing number of dimensionalities for each subspace :param P: list containing projections for each subspace :param centers: list containing the cluster centers for each subspace :param labels: list containing cluster assignments for each subspace :param scatter_matrices: list containing scatter matrices for each subspace :return: subspaces, n_clusters, m, P, centers, labels, scatter_matrices """ if 0 in m: np_m = np.array(m) empty_spaces = np.where(np_m == 0)[0] print( "[NrKmeans] ATTENTION:\nSubspaces were lost! Number of lost subspaces:\n" + str( len(empty_spaces)) + " out of " + str( len(m))) subspaces -= len(empty_spaces) n_clusters = [x for i, x in enumerate( n_clusters) if i not in empty_spaces] m = [x for i, x in enumerate(m) if i not in empty_spaces] P = [x for i, x in enumerate(P) if i not in empty_spaces] centers = [x for i, x in enumerate(centers) if i not in empty_spaces] labels = [x for i, x in enumerate(labels) if i not in empty_spaces] scatter_matrices = [x for i, x in enumerate( scatter_matrices) if i not in empty_spaces] return subspaces, n_clusters, m, P, centers, labels, scatter_matrices
473a509860b9708ee217f4f7b0a2718d1a3a7d7e
7,066
def _get_citekeys_action(elem, doc): """ Panflute action to extract citationId from all Citations in the AST. """ if not isinstance(elem, pf.Citation): return None manuscript_citekeys = global_variables["manuscript_citekeys"] manuscript_citekeys.append(elem.id) return None
74dec7a972f38c34040dc430b0c130b2a76784c2
7,067
def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for each_grad, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(each_grad, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0,values=grads) grad = tf.reduce_mean(grad, 0) # The variables are redundant because they are shared # across towers. So we will just return the first tower's pointer to # the Variable. weights = grad_and_vars[0][1] grad_and_var = (grad, weights) average_grads.append(grad_and_var) return average_grads
da85dee074f5bb15a13ea3d2c2fe105469c1ee90
7,068
def compute_neighbours_probability_matrix(n_matrix, src, d_matrix, sigma_neigh): """Compute neighbours' probability matrix. Parameters ----------- n_matrix : :py:class:`~numpy.ndarray` of :py:class:`~int`, shape (n_verts, n_neigh_max) The sets of neighbours. src : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts, 3) The coordinates of the points in the brain discretization. d_matrix : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts x n_verts) The Euclidean distance between the points in the brain discretization. sigma_neigh : :py:class:`~float` The standard deviation of the Gaussian distribution that defines the neighbours' probability. Returns -------- np_matrix : :py:class:`~numpy.ndarray` of :py:class:`~float`, shape (n_verts, n_neigh_max) The neighbours' probability. """ np_matrix = np.zeros(n_matrix.shape, dtype=float) for i in range(src.shape[0]): n_neig = len(np.where(n_matrix[i] > -1)[0]) np_matrix[i, 0:n_neig] = \ np.exp(-d_matrix[i, n_matrix[i, 0:n_neig]] ** 2 / (2 * sigma_neigh ** 2)) np_matrix[i] = np_matrix[i] / np.sum(np_matrix[i]) return np_matrix
2651ad650697266d7e0db5fdc55e176334fc3cb8
7,069
def ar_cosmap(inmap): """ Get the cosine map and off-limb pixel map using WCS. Generate a map of the solar disk that is 1 at disk center and goes radially outward as the cos(angle to LOS), which is = 2 at 60 degrees from LOS. Other outputs: - rrdeg: gives degrees from disk center - offlimb: map of 1=on-disk and 0=off-disk """ ## Take off an extra half percent from the disk to get rid of limb effects fudge=0.999 # ## Get helioprojective_coordinates # Below is deprecated so commented out and updated # xx, yy = wcs.convert_pixel_to_data(inmap.data.shape, # [inmap.meta["CDELT1"], inmap.meta["CDELT2"]], # [inmap.meta["CRPIX1"], inmap.meta["CRPIX2"]], # [inmap.meta["CRVAL1"], inmap.meta["CRVAL2"]]) x, y = (np.meshgrid(*[np.arange(v.value) for v in inmap.dimensions]) * u.pixel) hpc = inmap.pixel_to_world(x, y)#NEED TO CHECK RE WHAT ORIGIN TO USE, origin=1) xx = hpc.Tx.value yy = hpc.Ty.value rr = ((xx**2.) + (yy**2.))**(0.5) # coscor = np.copy(rr) rrdeg = np.arcsin(coscor / inmap.meta["RSUN_OBS"]) coscor = 1. / np.cos(rrdeg) wgt = np.where(rr > (inmap.meta["RSUN_OBS"]*fudge)) coscor[wgt] = 1. # offlimb = np.copy(rr) wgtrr = np.where(rr >= (inmap.meta["RSUN_OBS"]*fudge)) offlimb[wgtrr] = 0. wltrr = np.where(rr < (inmap.meta["RSUN_OBS"]*fudge)) offlimb[wltrr] = 1. # return coscor, rrdeg, offlimb
4365b0ef1134f117e5bc3396239cc1ba174f5009
7,070
def as_array(request: SubRequest) -> bool: """ Boolean fixture to support ExtensionDtype _from_sequence method testing. """ b = request.param assert isinstance(b, bool) return b
7a8b627769b8955ad4162a30be5ddc9b0ee76723
7,071
def gram_matrix(x): """Create the gram matrix of x.""" b, c, h, w = x.shape phi = x.view(b, c, h * w) return phi.bmm(phi.transpose(1, 2)) / (c * h * w)
11de97b67f3f8ecb7d7d009de16c1a5d153ab8ff
7,072
def open_file(path, mode): """ Attempts to open file at path. Tried up to max_attempts times because of intermittent permission errors on Windows """ max_attempts = 100 f = None for _ in range(max_attempts): try: f = open(path, mode) except PermissionError: continue break return f
9217a1b66b2bb30895fe445fa4a50b5da5466391
7,074
import requests import json def get_sts_token(current_refresh_token): """ Retrieves an authentication token. :param current_refresh_token: Refresh token retrieved from a previous authentication, used to retrieve a subsequent access token. If not provided (i.e. on the initial authentication), the password is used. """ url = 'https://{}:{}/{}'.format(opts.authHostname, opts.authPort, auth_path) if not current_refresh_token: # First time through, send password data = {'username': opts.user, 'password': opts.password, 'grant_type': 'password', 'takeExclusiveSignOnControl': True, 'scope': scope} print("Sending authentication request with password to ", url, "...") else: # Use the given refresh token data = {'username': opts.user, 'refresh_token': current_refresh_token, 'grant_type': 'refresh_token', 'takeExclusiveSignOnControl': True} print("Sending authentication request with refresh token to ", url, "...") try: r = requests.post(url, headers={'Accept': 'application/json'}, data=data, auth=(opts.clientid, client_secret), verify=True) except requests.exceptions.RequestException as e: print('RDP-GW authentication exception failure:', e) return None, None, None if r.status_code != 200: print('RDP-GW authentication result failure:', r.status_code, r.reason) print('Text:', r.text) if r.status_code in [401,400] and current_refresh_token: # Refresh token may have expired. Try again using machinedID + password. return get_sts_token(None) return None, None, None auth_json = r.json() print("RDP-GW Authentication succeeded. RECEIVED:") print(json.dumps(auth_json, sort_keys=True, indent=2, separators=(',', ':'))) return auth_json['access_token'], auth_json['refresh_token'], auth_json['expires_in']
b41c6658a4eb218771d6e908411ba3b54e4e13f3
7,075
async def device_climate_fan(device_climate_mock): """Test thermostat with fan device.""" return await device_climate_mock(CLIMATE_FAN)
1143adceacb610d18e1a26df4e24f715eb68917f
7,076
def make_training_config(args): """ Create training config by parsing args from command line and YAML config file, filling the rest with default values. Args args : Arguments parsed from command line. Returns config : Dictionary containing training configuration. """ # Parse the configuration file. config = {} if args.config: config = parse_yaml(args.config) config = set_defaults(config, default_training_config) # Additional config; start from this so it can be overwritten by the other command line options. if args.o: config = parse_additional_options(config, args.o) if args.backbone: config['backbone']['name'] = args.backbone if args.generator: config['generator']['name'] = args.generator # Backbone config. if args.freeze_backbone: config['backbone']['details']['freeze'] = args.freeze_backbone if args.backbone_weights: config['backbone']['details']['weights'] = args.backbone_weights # Generator config. if args.random_transform: config['generator']['details']['transform_generator'] = 'random' if args.random_visual_effect: config['generator']['details']['visual_effect_generator'] = 'random' if args.batch_size: config['generator']['details']['batch_size'] = args.batch_size if args.group_method: config['generator']['details']['group_method'] = args.group_method if args.shuffle_groups: config['generator']['details']['shuffle_groups'] = args.shuffle_groups if args.image_min_side: config['generator']['details']['image_min_side'] = args.image_min_side if args.image_max_side: config['generator']['details']['image_max_side'] = args.image_max_side # Train config. if args.gpu: config['train']['gpu'] = args.gpu if args.epochs: config['train']['epochs'] = args.epochs if args.steps: config['train']['steps_per_epoch'] = args.steps if args.lr: config['train']['lr'] = args.lr if args.multiprocessing: config['train']['use_multiprocessing'] = args.multiprocessing if args.workers: config['train']['workers'] = args.workers if args.max_queue_size: config['train']['max_queue_size'] = args.max_queue_size if args.weights: config['train']['weights'] = args.weights return config
1902e0999336249a7feda1f0aa415f7d148a16ee
7,077
from typing import Tuple def _crown_relu_relaxer(inp: Bound) -> Tuple[LinFun, LinFun]: """Obtain the parameters of a linear ReLU relaxation as in CROWN. This relaxes the ReLU with the adaptive choice of lower bounds as described for CROWN-ada in https://arxiv.org/abs/1811.00866. Args: inp: Input to the ReLU. Returns: lb_linfun, ub_linfun: Linear functions bounding the ReLU """ inp_lower, inp_upper = inp.lower, inp.upper relu_on = (inp_lower >= 0.) relu_amb = jnp.logical_and(inp_lower < 0., inp_upper >= 0.) ub_slope = relu_on.astype(jnp.float32) ub_slope += jnp.where(relu_amb, inp_upper / jnp.maximum(inp_upper - inp_lower, 1e-12), jnp.zeros_like(inp_lower)) ub_offset = jnp.where(relu_amb, - ub_slope * inp_lower, jnp.zeros_like(inp_lower)) lb_slope = (ub_slope >= 0.5).astype(jnp.float32) lb_offset = jnp.zeros_like(inp_lower) return (eltwise_linfun_from_coeff(lb_slope, lb_offset), eltwise_linfun_from_coeff(ub_slope, ub_offset))
7e43e973adb65089a2eb35665c219911fc409446
7,078
import torch import time def run_single_measurement(model_name, produce_model, run_model, teardown, inp, criterion, extra_params, use_dtr, use_profiling): """ This function initializes a model and performs a single measurement of the model on the given input. While it might seem most reasonable to initialize the model outside of the loop, DTR's logs have shown that certain constants in the model persist between loop iterations; performing these actions in a separate *function scope* turned out to be the only way to prevent having those constants hang around. Returns a dict of measurements """ torch.cuda.reset_max_memory_allocated() # resetting means the count should be reset to # only what's in scope, meaning only the input input_mem = torch.cuda.max_memory_allocated() model = produce_model(extra_params=extra_params) params = [] for m in model: if hasattr(m, 'parameters'): params.extend(m.parameters()) model_mem = torch.cuda.max_memory_allocated() optimizer = torch.optim.SGD(model[0].parameters(), 1e-3, momentum=0.9, weight_decay=1e-4) start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) # start timing torch.cuda.synchronize() start_time = time.time() if use_dtr: torch.reset_profile() start.record() # with torch.autograd.profiler.profile(use_cuda=True) as prof: run_model(criterion, *model, *inp, optimizer=optimizer) end.record() start_sync = time.time() torch.cuda.synchronize() end_sync = time.time() end_time = time.time() # end timing if use_dtr: # operators-only time, tracked by DTR cuda_time = torch.compute_time() base_compute_time = -1 remat_compute_time = -1 search_time = -1 cost_time = -1 if use_profiling: base_compute_time = torch.base_compute_time() remat_compute_time = torch.remat_compute_time() search_time = torch.search_time() cost_time = torch.cost_time() torch.reset_profile() total_mem = torch.cuda.max_memory_allocated() teardown(*model) torch.cuda.reset_max_memory_allocated() del model if use_dtr: torch.toggle_log(False) del params batch_size = len(inp[0]) ips = batch_size / (end_time - start_time) result = { 'time': end_time - start_time, 'sync_time': end_sync - start_sync, 'gpu_time': start.elapsed_time(end), 'input_mem': input_mem, 'model_mem': model_mem, 'total_mem': total_mem, 'base_compute_time': base_compute_time, 'remat_compute_time': remat_compute_time, 'search_time': search_time, 'cost_time': cost_time, 'batch_size': batch_size, 'ips': ips } if use_dtr: result['cuda_time'] = cuda_time else: result['cuda_time'] = -1.0 return result
a3765a88ccb10b3f0322f11f8205ecfdb7f98f38
7,079
def make_noise(fid, snr, decibels=True): """Given a synthetic FID, generate an array of normally distributed complex noise with zero mean and a variance that abides by the desired SNR. Parameters ---------- fid : numpy.ndarray Noiseless FID. snr : float The signal-to-noise ratio. decibels : bool, default: True If `True`, the snr is taken to be in units of decibels. If `False`, it is taken to be simply the ratio of the singal power and noise power. Returns _______ noise : numpy.ndarray """ components = [ (fid, 'fid', 'ndarray'), (snr, 'snr', 'float'), (decibels, 'decibels', 'bool'), ] ArgumentChecker(components) size = fid.size shape = fid.shape # Compute the variance of the noise if decibels: var = np.real((np.sum(np.abs(fid) ** 2)) / (size * (20 ** (snr / 10)))) else: var = np.real((np.sum(np.abs(fid) ** 2)) / (2 * size * snr)) # Make a number of noise instances and check which two are closest # to the desired variance. # These two are then taken as the real and imaginary noise components instances = [] var_discrepancies = [] for _ in range(100): instance = nrandom.normal(loc=0, scale=np.sqrt(var), size=shape) instances.append(instance) var_discrepancies.append(np.abs(np.var(instances) - var)) # Determine which instance's variance is the closest to the desired # variance first, second, *_ = np.argpartition(var_discrepancies, 1) # The noise is constructed from the two closest arrays in a variance-sense # to the desired SNR return instances[first] + 1j * instances[second]
823c9fee2c1a696a38b6a27406f51a27185460c1
7,080
def viterbi(prob_matrix): """ find the most likely sequence of labels using the viterbi algorithm on prob_matrix """ TINY = 1e-6 # to avoid NaNs in logs # if prob_matrix is 1D, make it 2D if len(np.shape(prob_matrix)) == 1: prob_matrix = [prob_matrix] length = len(prob_matrix) probs = np.zeros_like(prob_matrix) backpt = np.ones_like(prob_matrix, dtype=np.int32) * -1 for i in [0,1,2,3,4]: probs[0][i] = np.log(prob_matrix[0][i]+TINY) # {B, M, E, S} <=== 0:begin, 1:middle, 2:end, 3:single for t in range(1, length): # E, S -> B | B, M -> M | B, M -> E | E, S -> S previous_of = [[0,0], [3,4], [1,2], [1,2], [3,4]] for i in range(5): prevs = previous_of[i] max_id = prevs[np.argmax([probs[t-1][prevs[0]], probs[t-1][prevs[1]]])] backpt[t][i] = max_id probs[t][i] = np.log(prob_matrix[t][i]+TINY) + probs[t-1][max_id] seq = np.ones(length, 'int32') * -1 #print(probs[length-1]) seq[length-1] = np.argmax(probs[length-1]) #print(seq[length-1]) max_prob = probs[length-1][seq[length-1]] for t in range(1, length): seq[length-1-t] = backpt[length-t][seq[length-t]] return seq
50b28dcf7cedc75adb4a41cb9ccf2152af5f4b8f
7,081
def slsn_constraint(parameters): """ Place constraints on the magnetar rotational energy being larger than the total output energy, and the that nebula phase does not begin till at least a 100 days. :param parameters: dictionary of parameters :return: converted_parameters dictionary where the violated samples are thrown out """ converted_parameters = parameters.copy() mej = parameters['mej'] * solar_mass vej = parameters['vej'] * km_cgs kappa = parameters['kappa'] mass_ns = parameters['mass_ns'] p0 = parameters['p0'] kinetic_energy = 0.5 * mej * vej**2 rotational_energy = 2.6e52 * (mass_ns/1.4)**(3./2.) * p0**(-2) tnebula = np.sqrt(3 * kappa * mej / (4 * np.pi * vej ** 2)) / 86400 neutrino_energy = 1e51 total_energy = kinetic_energy + neutrino_energy # ensure rotational energy is greater than total output energy converted_parameters['erot_constraint'] = rotational_energy - total_energy # ensure t_nebula is greater than 100 days converted_parameters['t_nebula_min'] = tnebula - 100 return converted_parameters
9fd4cc37c783aa1afdc816edbc88c45132fb4026
7,082
def grover_circuit(n,o,iter): """Grover Search Algorithm :param n: Number of qubits (not including ancilla) :param o: Oracle int to find :return qc: Qiskit circuit """ def apply_hadamard(qc, qubits,a=None) -> None: """Apply a H-gate to 'qubits' in qc""" for q in qubits: qc.h(q) if a is not None: qc.h(a) def initialize_bits(qc,qubits,a) -> None: "Start qubits at 0 and ancilla bit at 1" for q in qubits: qc.reset(q) qc.reset(a[0]) qc.x(a[0]) def apply_mean_circuit(qc, qubits) -> None: """Apply a H-gate to 'qubits' in qc""" control_qubits = [] for q in qubits: qc.h(q) qc.x(q) control_qubits.append(q) cZ = control_qubits[-1] control_qubits.pop() qc.h(cZ) qc.mcx(control_qubits,cZ) qc.h(cZ) for q in qubits: qc.x(q) qc.h(q) def create_oracle(qc,qubit,ancilla,oracle,n) -> None: """Creates a quantum oracle.""" test_list = [] for q in qubit: test_list.append(q) _oracle_logic(qc, qubit, oracle,n) qc.mcx(test_list,ancilla[0]) _oracle_logic(qc, qubit, oracle,n) def _oracle_logic(qc, qubit, oracle,n) -> None: if 0 <= oracle <= 2**len(qubit)-1: bin_list = [int(i) for i in list('{0:0b}'.format(oracle))] if len(bin_list) < n: for _ in range(0,n-len(bin_list)): bin_list.insert(0,0) for i in range(0,len(bin_list)): if bin_list[i] == 0: qc.x(q[i]) else: raise ValueError('Oracle must be between 0 and 2^n-1') # print(f"Creating circuit with {n} qubits") q = QuantumRegister(n, 'q') a = QuantumRegister(1, 'a') c = ClassicalRegister(n, 'c') qc = QuantumCircuit(q,a,c) i2b = "{0:b}".format(o) # print(f"Oracle set to: {o} ({i2b})") # print(" ") initialize_bits(qc,q,a) qc.barrier(q,a) apply_hadamard(qc,q,a) # print(f"Generating {iter} Grover module(s)") # print("=====================================") for _ in range(1,iter+1): qc.barrier(q,a) create_oracle(qc,q,a,o,n) qc.barrier(q,a) apply_mean_circuit(qc, q) qc.barrier(q,a) for i in range(0,len(q)): qc.measure(q[i],c[len(q)-1-i]) return qc
fac61eda28a249e333dabd46c7d404603141c07c
7,083
def reference_cluster(envs, in_path): """ Return set of all env in_paths referencing or referenced by given in_path. >>> cluster = sorted(reference_cluster([ ... {'in_path': 'base', 'refs': []}, ... {'in_path': 'test', 'refs': ['base']}, ... {'in_path': 'local', 'refs': ['test']}, ... ], 'test')) >>> cluster == ['base', 'local', 'test'] True """ edges = [ set([env['in_path'], fix_reference_path(env['in_path'], ref)]) for env in envs for ref in env['refs'] ] prev, cluster = set(), set([in_path]) while prev != cluster: # While cluster grows prev = set(cluster) to_visit = [] for edge in edges: if cluster & edge: # Add adjacent nodes: cluster |= edge else: # Leave only edges that are out # of cluster for the next round: to_visit.append(edge) edges = to_visit return cluster
6398705dfb63c30de62b2eb900d88612e5144774
7,084
def scheme_apply(procedure, args, env): """Apply Scheme PROCEDURE to argument values ARGS in environment ENV.""" if isinstance(procedure, PrimitiveProcedure): return apply_primitive(procedure, args, env) elif isinstance(procedure, UserDefinedProcedure): new_env = make_call_frame(procedure, args, env) return eval_all(procedure.body, new_env) else: raise SchemeError("cannot call: {0}".format(str(procedure)))
14879f29a5e8c3c5b7d4d41be35730eb66dbdc66
7,085
def _validate_num_clusters(num_clusters, initial_centers, num_rows): """ Validate the combination of the `num_clusters` and `initial_centers` parameters in the Kmeans model create function. If the combination is valid, determine and return the correct number of clusters. Parameters ---------- num_clusters : int Specified number of clusters. initial_centers : SFrame Specified initial cluster center locations, in SFrame form. If the number of rows in this SFrame does not match `num_clusters`, there is a problem. num_rows : int Number of rows in the input dataset. Returns ------- _num_clusters : int The correct number of clusters to use going forward """ ## Basic validation if num_clusters is not None and not isinstance(num_clusters, int): raise _ToolkitError("Parameter 'num_clusters' must be an integer.") ## Determine the correct number of clusters. if initial_centers is None: if num_clusters is None: raise ValueError("Number of clusters cannot be determined from " + "'num_clusters' or 'initial_centers'. You must " + "specify one of these arguments.") else: _num_clusters = num_clusters else: num_centers = initial_centers.num_rows() if num_clusters is None: _num_clusters = num_centers else: if num_clusters != num_centers: raise ValueError("The value of 'num_clusters' does not match " + "the number of provided initial centers. " + "Please provide only one of these arguments " + "or ensure the values match.") else: _num_clusters = num_clusters if _num_clusters > num_rows: raise ValueError("The desired number of clusters exceeds the number " + "of data points. Please set 'num_clusters' to be " + "smaller than the number of data points.") return _num_clusters
67d0be234a97c33eb742c70e8d6bb30be4608ab2
7,086
import mimetypes def urlinline(filename, mime=None): """ Load the file at "filename" and convert it into a data URI with the given MIME type, or a guessed MIME type if no type is provided. Base-64 encodes the data. """ infile = open(filename, 'rb') text = infile.read() infile.close() enc = b64.standard_b64encode(text) if mime is None: mime, _ = mimetypes.guess_type(filename) mime = mime or DEFAULT_MIME_TYPE ret = "data:%s;base64,%s" % (mime, enc) return ret
4b8035944a7a25d5b3ce3bc8a8fbd0a4dd424447
7,087
def star_rating(new_rating=None, prev_rating=None): """ Generates the query to update the product's star ratings. Inc method is from https://docs.mongodb.com/manual/reference/operator/update/inc/ """ add_file = { 1: {"one_star": 1}, 2: {"two_stars": 1}, 3: {"three_stars": 1}, 4: {"four_stars": 1}, 5: {"five_stars": 1} } delete_file = { 1: {"one_star": -1}, 2: {"two_stars": -1}, 3: {"three_stars": -1}, 4: {"four_stars": -1}, 5: {"five_stars": -1} } if new_rating and prev_rating: return {"$inc": {add_file[new_rating], delete_file[prev_rating]}} elif new_rating: return {"$inc": add_file[new_rating]} else: return {"$inc": delete_file[prev_rating]}
e50f8271dbbb8c2722729cce6a8f036c851c4e95
7,089
def check_encoder(value: EncoderArg) -> EncoderFactory: """Checks value and returns EncoderFactory object. Returns: d3rlpy.encoders.EncoderFactory: encoder factory object. """ if isinstance(value, EncoderFactory): return value if isinstance(value, str): return create_encoder_factory(value) raise ValueError("This argument must be str or EncoderFactory object.")
5e23b483df8fbe190f1ac6ccf743bc783728adf8
7,090
import pathlib def allowed_task_name(name: str) -> bool: """Determine whether a task, which is a 'non-core-OSCAL activity/directory is allowed. args: name: the task name which is assumed may take the form of a relative path for task/subtasks. Returns: Whether the task name is allowed or not allowed (interferes with assumed project directories such as catalogs). """ # Task must not use an OSCAL directory # Task must not self-interfere with a project pathed_name = pathlib.Path(name) root_path = pathed_name.parts[0] if root_path in const.MODEL_TYPE_TO_MODEL_DIR.values(): logger.error('Task name is the same as an OSCAL schema name.') return False elif root_path[0] == '.': logger.error('Task name must not start with "."') return False elif pathed_name.suffix != '': # Does it look like a file logger.error('tasks name must not look like a file path (e.g. contain a suffix') return False return True
231d7a98f5d6b7059f5517283ec3bed35264050e
7,091
def get_ignored_classes(uppercase, lowercase, digit): """ get tuple of ignored classes based on selected classes :param uppercase: whether to keep uppercase classes :param lowercase: whether to keep lowercase classes :param digit: whether to keep digit classes :return: tuple of ignored classes """ # result placeholder ignored = [] # add digit classes to the ignore list if not digit: ignored.append(dataset.get_classes('digit')) # add uppercase classes to the ignore list if not uppercase: ignored.append(dataset.get_classes('uppercase')) # add lowercase classes to the ignore list if not lowercase: ignored.append(dataset.get_classes('lowercase')) # return tuple return tuple(ignored)
2a2380f4f984feb42ce1de912739fd395a8422bd
7,092
import torch def unscaled_prediction_rmse(model, input_tensor, label_tensor, scalar, loading_length=0, return_loading_error=False, device=None): """ Prediction RMSE. :param model: model :param input_tensor: input tensor :param label_tensor: label tensor :param scalar: scalar for transforming output data :param loading_length: time length used for loading the NARX :param return_loading_error: return the loading RMSE with the multi-step ahead RMSE :param device: specified device to use (Default: None - select what is available) :return: prediction rmse """ # Create Network on GPU/CPU if device is None: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) # Training Data on GPU/CPU input_tensor, label_tensor = input_tensor.to(device), label_tensor.to(device) # Sort data for loading and k-step ahead predictions. inputs, labels, itdl, otdl = init_tdl(model, input_tensor, label_tensor, device) loading_labels, k_step_labels = labels[:, :loading_length, :], labels[:, loading_length:, :] # Perform a k-step ahead prediction k_step_outputs, loading_outputs = __multi_step_ahead_prediction(model, input_tensor, label_tensor, loading_length, device) if return_loading_error: # Combine loading and multi-step predictions/labels outputs = torch.cat([loading_outputs, k_step_outputs], dim=1) labels = torch.cat([loading_labels, k_step_labels], dim=1) else: # Use the multi-step predictions/labels outputs = k_step_outputs labels = k_step_labels labels = labels.cpu().data.numpy() labels = labels.reshape((labels.shape[0], labels.shape[1])) labels = (labels - scalar.min_[1]) / scalar.scale_[1] outputs = outputs.cpu().data.numpy() outputs = outputs.reshape((outputs.shape[0], outputs.shape[1])) outputs = (outputs - scalar.min_[1]) / scalar.scale_[1] error = labels - outputs error = np.sqrt((np.power(error, 2)).mean(axis=0)) return error
ea7b0e2c2fd022cc7bcb466057feacf5a1fbaa00
7,093
import copy def __copyList__(fromList, initialValues = None): """ Returns a copy of the provided list. Initial values must either be a single value, or a list of exactly the same size as the provided list. """ if __isListType__(fromList) is False: raise ValueError('The provided value to copy was not a list!') fromList = copy.deepcopy(fromList) if initialValues is not None: initialValues = copy.deepcopy(initialValues) if initialValues is None or __isNonStringIterableType__(initialValues) is False: copySingleValue = True elif __isNonStringIterableType__(initialValues) and len(initialValues) == 1 or __isListType__(initialValues) is False: # Treat an initialValue object with 1 element the same as a non-iterable, so we could set every value to a list, or to a non-list value copySingleValue = True else: if len(initialValues) != len(fromList): raise ValueError('The initial values list must be the same size as the list to copy!') else: copySingleValue = False returnList = fromList[:] for itemIndex in range(len(returnList)): if copySingleValue is True: returnList[itemIndex] = initialValues else: returnList[itemIndex] = initialValues[itemIndex] return returnList
9f126a10795132b5d2ddaeef552c6e5abd8680ba
7,094
import re def build_or_pattern(patterns, escape=False): """Build a or pattern string from a list of possible patterns """ or_pattern = [] for pattern in patterns: if not or_pattern: or_pattern.append('(?:') else: or_pattern.append('|') or_pattern.append('(?:%s)' % re.escape(pattern) if escape else pattern) or_pattern.append(')') return ''.join(or_pattern)
225cc20504a85342694e14ea76b9bf3ed8b6d11b
7,095