content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def get_motif_proteins(meme_db_file):
""" Hash motif_id's to protein names using the MEME DB file """
motif_protein = {}
for line in open(meme_db_file):
a = line.split()
if len(a) > 0 and a[0] == 'MOTIF':
if a[2][0] == '(':
motif_protein[a[1]] = a[2][1:a[2].find(')')]
else:
motif_protein[a[1]] = a[2]
return motif_protein | 88e42b84314593a965e7dd681ded612914e35629 | 3,650,449 |
def pixellate_bboxes(im, bboxes, cell_size=(5,6), expand_per=0.0):
"""Pixellates ROI using Nearest Neighbor inerpolation
:param im: (numpy.ndarray) image BGR
:param bbox: (BBox)
:param cell_size: (int, int) pixellated cell size
:returns (numpy.ndarray) BGR image
"""
if not bboxes:
return im
elif not type(bboxes) == list:
bboxes = list(bboxes)
for bbox in bboxes:
if expand_per > 0:
bbox = bbox.expand_per(expand_per)
x1,y1,x2,y2 = bbox.xyxy_int
im_roi = im[y1:y2, x1:x2]
h,w,c = im_roi.shape
# pixellate
im_roi = cv.resize(im_roi, cell_size, interpolation=cv.INTER_NEAREST)
im_roi = cv.resize(im_roi, (w,h), interpolation=cv.INTER_NEAREST)
im[y1:y2, x1:x2] = im_roi
return im | 8c028714467c350dfd799671b0b18739705393ba | 3,650,451 |
def StepToGeom_MakeHyperbola2d_Convert(*args):
"""
:param SC:
:type SC: Handle_StepGeom_Hyperbola &
:param CC:
:type CC: Handle_Geom2d_Hyperbola &
:rtype: bool
"""
return _StepToGeom.StepToGeom_MakeHyperbola2d_Convert(*args) | 6896b27c10526b3a7f1d5840a63209a6f30d163e | 3,650,453 |
def create_dict(local=None, field=None, **kwargs):
"""
以字典的形式从局部变量locals()中获取指定的变量
:param local: dict
:param field: str[] 指定需要从local中读取的变量名称
:param kwargs: 需要将变量指定额外名称时使用
:return: dict
"""
if field is None or local is None:
return {}
result = {k: v for k, v in local.items() if k in field}
result.update(**kwargs)
return result | 19aceef7f648cc72f29fceba811085cde9d6d587 | 3,650,454 |
def sum_list_for_datalist(list):
"""
DB에 저장할 때, 기준일로부터 과거 데이터가 존재하지 않을 경우에는
0을 return 한다.
:param list:
:return: float or int
"""
mysum = 0
for i in range(0, len(list)):
if list[i] == 0:
return 0
mysum = mysum + list[i]
return mysum | bae8966f64c642176d92d31c27df691e0f255d6a | 3,650,455 |
def elu(x, alpha=1.):
"""Exponential linear unit.
Arguments:
x {tensor} -- Input float tensor to perform activation.
alpha {float} -- A scalar, slope of negative section.
Returns:
tensor -- Output of exponential linear activation
"""
return x * (x > 0) + alpha * (tf.math.exp(x) - 1.) * (x < 0) | c40c7aa4a0553dc6b0b6c6dd9f583a701f022e70 | 3,650,456 |
def coalesce(*args):
"""
Compute the first non-null value(s) from the passed arguments in
left-to-right order. This is also known as "combine_first" in pandas.
Parameters
----------
*args : variable-length value list
Examples
--------
>>> import ibis
>>> expr1 = None
>>> expr2 = 4
>>> result = ibis.coalesce(expr1, expr2, 5)
Returns
-------
coalesced : type of first provided argument
"""
return ops.Coalesce(args).to_expr() | 0fb1af5db75c7ad65f470e348d76d0f289ba5ff2 | 3,650,457 |
import json
def get_analysis(poem, operations, rhyme_analysis=False, alternative_output=False):
"""
View for /analysis that perform an analysis of poem running the different
operations on it.
:param poem: A UTF-8 encoded byte string with the text of the poem
:param operations: List of strings with the operations to be performed:
- "scansion": Performs scansion analysis
- "enjambment": Performs enjambment detection
:param rhyme_analysis: Whether or not rhyme analysis is to be performed
:return: Response object with a dict with a key for each operation and its
analysis or a serialized version of it
"""
analysis = analyze(poem.decode('utf-8'), operations, rhyme_analysis, alternative_output)
mime = connexion.request.headers.get("Accept")
# serialization = serialize(analysis, mime)
return Response(json.dumps(analysis), mimetype=mime) | 1f40376a4ecbbe6453caa909406f595707cc44be | 3,650,458 |
def get_detail_root():
"""
Get the detail storage path in the git project
"""
return get_root() / '.detail' | aa2c30ed839d32e084a11c52f17af621ecfb9011 | 3,650,459 |
def solve(strs, m, n):
"""
2D 0-1 knapsack
"""
def count(s):
m, n = 0, 0
for c in s:
if c == "0":
m += 1
elif c == "1":
n += 1
return m, n
dp = []
for _ in range(m + 1):
dp.append([0] * (n + 1))
for s in strs:
mi, ni = count(s)
for j in range(m, mi - 1, -1): # reverse!
for k in range(n, ni - 1, -1): # reverse!
dp[j][k] = max(dp[j][k], dp[j - mi][k - ni] + 1)
return dp[m][n] | 3fb2b16fc9059227c0edce1199269988d18cb908 | 3,650,460 |
def bk_category_chosen_category():
"""Returns chosen category for creating bk_category object."""
return "Bread" | cbf1c933e5c2b69214e828afaab5babdba61dca8 | 3,650,461 |
import math
def apply_weights(
events,
total_num=1214165.85244438, # for chips_1200
nuel_frac=0.00003202064566, # for chips_1200
anuel_frac=0.00000208200747, # for chips_1200
numu_frac=0.00276174709613, # for chips_1200
anumu_frac=0.00006042213136, # for chips_1200
cosmic_frac=0.99714372811940, # for chips_1200
osc_file_name="./inputs/oscillations/matter_osc_cp_zero.root",
verbose=False,
):
"""Calculate and apply the 'weight' column to scale events to predicted numbers.
Args:
events (pd.DataFrame): events dataframe to append weights to
total_num (float): total number of expected events in a year
nuel_frac (float): fraction of events from nuel
anuel_frac (float): fraction of events from anuel
numu_frac (float): fraction of events from numu
anumu_frac (float): fraction of events from anumu
cosmic_frac (float): fractions of events from cosmics
osc_file_name (str): Oscillation data file name
verbose (bool): should we print the weight summary?
Returns:
pd.DataFrame: events dataframe with weights
"""
def apply_scale_weight(event, w_nuel, w_anuel, w_numu, w_anumu, w_cosmic):
"""Add the correct weight to each event.
Args:
event (dict): pandas event(row) dict
w_nuel: nuel weight
w_anuel: anuel weight
w_numu: numu weight
w_anumu: anumu weight
w_cosmic: cosmic weight
"""
if (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam nuel
return w_nuel
elif (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 1
): # Appeared nuel
return 1
elif (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 1
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam anuel
return w_anuel
elif (
event[data.MAP_NU_TYPE["name"]] == 1
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam numu
return w_numu
elif (
event[data.MAP_NU_TYPE["name"]] == 1
and event[data.MAP_SIGN_TYPE["name"]] == 1
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam anumu
return w_anumu
elif event[data.MAP_COSMIC_CAT["name"]] == 1 and event["t_sample_type"] == 2:
return w_cosmic
else:
return 0
def apply_osc_weight(event, numu_survival_prob, nuel_osc):
"""Add the correct weight to each event.
Args:
event (dict): pandas event(row) dict
numu_survival_prob (np.array): numu survival probability array
nuel_osc (np.array): numu appearance scaled probability array
"""
if (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam nuel
return event["w"]
if (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 1
): # Appeared nuel
nu_energy = math.floor(event["t_nu_energy"] / 100)
if nu_energy > 99:
nu_energy = 99
if nuel_osc[nu_energy] == 0.0:
return event["w"]
else:
return nuel_osc[nu_energy] * event["w"]
elif (
event[data.MAP_NU_TYPE["name"]] == 0
and event[data.MAP_SIGN_TYPE["name"]] == 1
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # beam anuel
return event["w"]
elif (
event[data.MAP_NU_TYPE["name"]] == 1
and event[data.MAP_SIGN_TYPE["name"]] == 0
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam numu
nu_energy = math.floor(event["t_nu_energy"] / 100)
if nu_energy > 99:
nu_energy = 99
return numu_survival_prob[nu_energy] * event["w"]
elif (
event[data.MAP_NU_TYPE["name"]] == 1
and event[data.MAP_SIGN_TYPE["name"]] == 1
and event[data.MAP_COSMIC_CAT["name"]] == 0
and event["t_sample_type"] == 0
): # Beam anumu
nu_energy = math.floor(event["t_nu_energy"] / 100)
if nu_energy > 99:
nu_energy = 99
return numu_survival_prob[nu_energy] * event["w"]
elif event[data.MAP_COSMIC_CAT["name"]] == 1 and event["t_sample_type"] == 2:
return event["w"]
else:
return 0
np.seterr(divide="ignore", invalid="ignore")
tot_nuel = events[
(events[data.MAP_NU_TYPE["name"]] == 0)
& (events[data.MAP_SIGN_TYPE["name"]] == 0)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 0)
].shape[0]
tot_anuel = events[
(events[data.MAP_NU_TYPE["name"]] == 0)
& (events[data.MAP_SIGN_TYPE["name"]] == 1)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 0)
].shape[0]
tot_numu = events[
(events[data.MAP_NU_TYPE["name"]] == 1)
& (events[data.MAP_SIGN_TYPE["name"]] == 0)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 0)
].shape[0]
tot_anumu = events[
(events[data.MAP_NU_TYPE["name"]] == 1)
& (events[data.MAP_SIGN_TYPE["name"]] == 1)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 0)
].shape[0]
tot_cosmic = events[events[data.MAP_COSMIC_CAT["name"]] == 1].shape[0]
if tot_nuel == 0:
w_nuel = 0.0
else:
w_nuel = (1.0 / tot_nuel) * (nuel_frac * total_num)
if tot_anuel == 0:
w_anuel = 0.0
else:
w_anuel = (1.0 / tot_anuel) * (anuel_frac * total_num)
if tot_numu == 0:
w_numu = 0.0
else:
w_numu = (1.0 / tot_numu) * (numu_frac * total_num)
if tot_anumu == 0:
w_anumu = 0.0
else:
w_anumu = (1.0 / tot_anumu) * (anumu_frac * total_num)
if tot_cosmic == 0:
w_cosmic = 0.0
else:
w_cosmic = (1.0 / tot_cosmic) * (cosmic_frac * total_num)
if verbose:
print(
"Weights: ({},{:.5f}), ({},{:.5f}), ({},{:.5f}), ({},{:.5f}), ({},{:.5f})".format(
tot_nuel,
w_nuel,
tot_anuel,
w_anuel,
tot_numu,
w_numu,
tot_anumu,
w_anumu,
tot_cosmic,
w_cosmic,
)
)
events["w"] = events.apply(
apply_scale_weight,
axis=1,
args=(w_nuel, w_anuel, w_numu, w_anumu, w_cosmic),
)
# Now we need to apply the oscillation probability weights
osc_file = uproot.open(osc_file_name)
# We need to scale the nuel events so they simulate the appearance spectra
numu_ev = events[ # Get the unoscillated numu beam events
(events[data.MAP_NU_TYPE["name"]] == 1)
& (events[data.MAP_SIGN_TYPE["name"]] == 0)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 0)
]
nuel_ev = events[ # Get the nuel events generated with the numu flux
(events[data.MAP_NU_TYPE["name"]] == 0)
& (events[data.MAP_SIGN_TYPE["name"]] == 0)
& (events[data.MAP_COSMIC_CAT["name"]] == 0)
& (events["t_sample_type"] == 1)
]
numu_e_h = np.histogram(
numu_ev["t_nu_energy"] / 100,
bins=100,
range=(0, 100),
weights=numu_ev["w"],
)
nuel_e_h = np.histogram(
nuel_ev["t_nu_energy"] / 100,
bins=100,
range=(0, 100),
weights=nuel_ev["w"],
)
nuel_osc = (numu_e_h[0] * osc_file["hist_mue"].values) / nuel_e_h[0]
# Apply a weight to every event
events["w"] = events.apply(
apply_osc_weight,
axis=1,
args=(
osc_file["hist_mumu"].values,
nuel_osc,
),
)
return events | 81f35a51b3d28577204087511f9c405ff56afaaa | 3,650,462 |
def _pipe_line_with_colons(colwidths, colaligns):
"""Return a horizontal line with optional colons to indicate column's
alignment (as in `pipe` output format)."""
segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)]
return "|" + "|".join(segments) + "|" | 76dd17c761e7adb06fe57c5210645a4fe3872374 | 3,650,463 |
from datetime import datetime
def convert_to_dates(start, end):
"""
CTD - Convert two strings to datetimes in format 'xx:xx'
param start: String - First string to convert
param end: String - Second string to convert
return: datetime - Two datetimes
"""
start = datetime.strptime(start, "%H:%M")
end = datetime.strptime(end, "%H:%M")
if end < start:
end += timedelta(days=1)
return start, end | 53ffb9924d31385aac2eafc66fe7a6159e5a310d | 3,650,464 |
def flipud(m):
"""
Flips the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.
Args:
m (Tensor): Input array.
Returns:
Tensor.
Raises:
TypeError: If the input is not a tensor.
Supported Platforms:
``GPU`` ``CPU``
Example:
>>> import mindspore.numpy as np
>>> A = np.arange(8.0).reshape((2,2,2))
>>> output = np.flipud(A)
>>> print(output)
[[[4. 5.]
[6. 7.]]
[[0. 1.]
[2. 3.]]]
"""
return flip(m, 0) | 06770689d23ca365fb57a6b9d1e74654b30ddaf2 | 3,650,465 |
def get_book_url(tool_name, category):
"""Get the link to the help documentation of the tool.
Args:
tool_name (str): The name of the tool.
category (str): The category of the tool.
Returns:
str: The URL to help documentation.
"""
prefix = "https://jblindsay.github.io/wbt_book/available_tools"
url = "{}/{}.html#{}".format(prefix, category, tool_name)
return url | daf6c8e0832295914a03b002b548a82e2949612a | 3,650,466 |
import hashlib
def game_hash(s):
"""Generate hash-based identifier for a game account based on the
text of the game.
"""
def int_to_base(n):
alphabet = "BCDFGHJKLMNPQRSTVWXYZ"
base = len(alphabet)
if n < base:
return alphabet[n]
return int_to_base(n // base) + alphabet[n % base]
return int_to_base(
int(hashlib.sha1(s.encode('utf-8')).hexdigest(), 16)
)[-7:] | c218a2607390916117921fe0f68fc23fedd51fc3 | 3,650,467 |
import math
def thumbnail_url(bbox, layers, qgis_project, style=None, internal=True):
"""Internal function to generate the URL for the thumbnail.
:param bbox: The bounding box to use in the format [left,bottom,right,top].
:type bbox: list
:param layers: Name of the layer to use.
:type layers: basestring
:param qgis_project: The path to the QGIS project.
:type qgis_project: basestring
:param style: Layer style to choose
:type style: str
:param internal: Flag to switch between public url and internal url.
Public url will be served by Django Geonode (proxified).
:type internal: bool
:return: The WMS URL to fetch the thumbnail.
:rtype: basestring
"""
x_min, y_min, x_max, y_max = bbox
# We calculate the margins according to 10 percent.
percent = 10
delta_x = (x_max - x_min) / 100 * percent
delta_x = math.fabs(delta_x)
delta_y = (y_max - y_min) / 100 * percent
delta_y = math.fabs(delta_y)
# We apply the margins to the extent.
margin = [
y_min - delta_y,
x_min - delta_x,
y_max + delta_y,
x_max + delta_x
]
# Call the WMS.
bbox = ','.join([str(val) for val in margin])
query_string = {
'SERVICE': 'WMS',
'VERSION': '1.1.1',
'REQUEST': 'GetMap',
'BBOX': bbox,
'SRS': 'EPSG:4326',
'WIDTH': '250',
'HEIGHT': '250',
'MAP': qgis_project,
'LAYERS': layers,
'STYLE': style,
'FORMAT': 'image/png',
'TRANSPARENT': 'true',
'DPI': '96',
'MAP_RESOLUTION': '96',
'FORMAT_OPTIONS': 'dpi:96'
}
qgis_server_url = qgis_server_endpoint(internal)
url = Request('GET', qgis_server_url, params=query_string).prepare().url
return url | aa405eae72eacd7fd7b842bf569cc1ba3bc19315 | 3,650,468 |
def evaluate_prediction_power(df, num_days=1):
""""
Applies a shift to the model for the number of days given, default to 1, and feed the data to
a linear regression model. Evaluate the results using score and print it.
"""
scores = {}
print "Num days: {}".format(range(num_days))
for i in range(num_days):
X,y = get_xy(df, num_days=i)
regressor = learn(X,y)
scores[i] = regressor.score(X,y)
return scores | d4e91c8eb656fea8fce16cc16eb1588415c80849 | 3,650,469 |
def get_select_file_dialog_dir():
""""
Return the directory that should be displayed by default
in file dialogs.
"""
directory = CONF.get('main', 'select_file_dialog_dir', get_home_dir())
directory = directory if osp.exists(directory) else get_home_dir()
return directory | 9ae485caf5c5162e0b0e4082cee3e99925861717 | 3,650,470 |
def join_collections(sql_query: sql.SQLQuery) -> QueryExpression:
"""Join together multiple collections to return their documents in the response.
Params:
-------
sql_query: SQLQuery object with information about the query params.
Returns:
--------
An FQL query expression for joined and filtered documents.
"""
tables = sql_query.tables
order_by = sql_query.order_by
from_table = tables[0]
to_table = tables[-1]
table_with_columns = next(table for table in tables if table.has_columns)
if (
order_by is not None
and order_by.columns[0].table_name != table_with_columns.name
):
raise exceptions.NotSupportedError(
"Fauna uses indexes for both joining and ordering of results, "
"and we currently can only sort the principal table "
"(i.e. the one whose columns are being selected or modified) in the query. "
"You can sort on a column from the principal table, query one table at a time, "
"or remove the ordering constraint."
)
if not any(sql_query.filter_groups):
raise exceptions.NotSupportedError(
"Joining tables without cross-table filters via the WHERE clause is not supported. "
"Selecting columns from multiple tables is not supported either, "
"so there's no performance gain from joining tables without cross-table conditions "
"for filtering query results."
)
assert from_table.left_join_table is None
intersection_queries = []
for filter_group in sql_query.filter_groups:
intersection_query = q.intersection(
*[
_build_intersecting_query(filter_group, None, table, direction)
for table, direction in [(from_table, "right"), (to_table, "left")]
]
)
intersection_queries.append(intersection_query)
return q.union(*intersection_queries) | 62ad0cbad609e8218b4ac9d78f893fbcfc90618e | 3,650,473 |
def querylist(query, encoding='utf-8', errors='replace'):
"""Split the query component into individual `name=value` pairs and
return a list of `(name, value)` tuples.
"""
if query:
qsl = [query]
else:
return []
if isinstance(query, bytes):
QUERYSEP = (b';', b'&')
EQ = b'='
else:
QUERYSEP = ';&'
EQ = '='
for sep in QUERYSEP:
qsl = [s for qs in qsl for s in qs.split(sep) if s]
items = []
for qs in qsl:
parts = qs.partition(EQ)
name = uridecode_safe_plus(parts[0], encoding, errors)
if parts[1]:
value = uridecode_safe_plus(parts[2], encoding, errors)
else:
value = None
items.append((name, value))
return items | 25f726aa76c3b34a9aebc5e111b28162d0b91e3f | 3,650,474 |
def rotate_space_123(angles):
"""Returns the direction cosine matrix relating a reference frame B
rotated relative to reference frame A through the x, y, then z axes of
reference frame A (spaced fixed rotations).
Parameters
----------
angles : numpy.array or list or tuple, shape(3,)
Three angles (in units of radians) that specify the orientation of
a new reference frame with respect to a fixed reference frame.
The first angle is a pure rotation about the x-axis, the second about
the y-axis, and the third about the z-axis. All rotations are with
respect to the initial fixed frame, and they occur in the order x,
then y, then z.
Returns
-------
R : numpy.matrix, shape(3,3)
Three dimensional rotation matrix about three different orthogonal axes.
Notes
-----
R = |c2 * c3 s1 * s2 * c3 - s3 * c1 c1 * s2 * c3 + s3 * s1|
|c2 * s3 s1 * s2 * s3 + c3 * c1 c1 * s2 * s3 - c3 * s1|
|-s2 s1 * c2 c1 * c2 |
where
s1, s2, s3 = sine of the first, second and third angles, respectively
c1, c2, c3 = cosine of the first, second and third angles, respectively
So the unit vector b1 in the B frame can be expressed in the A frame (unit
vectors a1, a2, a3) with:
b1 = c2 * c3 * a1 + c2 * s3 * a2 - s2 * a3
Thus a vector vb which is expressed in frame B can be expressed in A by
pre-multiplying by R:
va = R * vb
"""
cx = np.cos(angles[0])
sx = np.sin(angles[0])
cy = np.cos(angles[1])
sy = np.sin(angles[1])
cz = np.cos(angles[2])
sz = np.sin(angles[2])
Rz = np.mat([[ cz,-sz, 0],
[ sz, cz, 0],
[ 0, 0, 1]])
Ry = np.mat([[ cy, 0, sy],
[ 0, 1, 0],
[-sy, 0, cy]])
Rx = np.mat([[ 1, 0, 0],
[ 0, cx, -sx],
[ 0, sx, cx]])
return Rz * Ry * Rx | f62ac16e63591c4852681479ab9d39227bad3dfc | 3,650,475 |
def get_tac_resource(url):
"""
Get the requested resource or update resource using Tacoma account
:returns: http response with content in xml
"""
response = None
response = TrumbaTac.getURL(url, {"Accept": "application/xml"})
_log_xml_resp("Tacoma", url, response)
return response | 4d3fce0c7c65a880bf565c79285bcda081d4ef5a | 3,650,477 |
def cosweightlat(darray, lat1, lat2):
"""Calculate the weighted average for an [:,lat] array over the region
lat1 to lat2
"""
# flip latitudes if they are decreasing
if (darray.lat[0] > darray.lat[darray.lat.size -1]):
print("flipping latitudes")
darray = darray.sortby('lat')
region = darray.sel(lat=slice(lat1, lat2))
weights=np.cos(np.deg2rad(region.lat))
regionw = region.weighted(weights)
regionm = regionw.mean("lat")
return regionm | 87a8722d4d0b7004007fbce966a5ce99a6e51983 | 3,650,478 |
def _GetSoftMaxResponse(goal_embedding, scene_spatial):
"""Max response of an embeddings across a spatial feature map.
The goal_embedding is multiplied across the spatial dimensions of the
scene_spatial to generate a heatmap. Then the spatial softmax-pooled value of
this heatmap is returned. If the goal_embedding and scene_spatial are aligned
to the same space, then _GetSoftMaxResponse returns larger values if the
object is present in the scene, and smaller values if the object is not.
Args:
goal_embedding: A batch x D tensor embedding of the goal image.
scene_spatial: A batch x H x W x D spatial feature map tensor.
Returns:
max_heat: A tensor of length batch.
max_soft: The max value of the softmax (ranges between 0 and 1.0)
"""
batch, dim = goal_embedding.shape
reshaped_query = tf.reshape(goal_embedding, (int(batch), 1, 1, int(dim)))
scene_heatmap = tf.reduce_sum(tf.multiply(scene_spatial,
reshaped_query), axis=3,
keep_dims=True)
scene_heatmap_flat = tf.reshape(scene_heatmap, (batch, -1))
max_heat = tf.reduce_max(scene_heatmap_flat, axis=1)
scene_softmax = tf.nn.softmax(scene_heatmap_flat, axis=1)
max_soft = tf.reduce_max(scene_softmax, axis=1)
return max_heat, max_soft | 547e61b403d99f2c0a4b5a0f78c03f7051a10d5c | 3,650,479 |
def summarize_star(star):
"""return one line summary of star"""
if star.find('name').text[-2] == ' ':
name = star.find('name').text[-1]
else:
name = ' '
mass = format_star_mass_str(star)
radius = format_star_radius_str(star)
temp = format_body_temp_str(star)
metallicity = format_star_metal_str(star)
return u'{} {} {:>8} {:>8} {:>8} {:>8} {:>8} {}'.format(name, format_spectral_name(star),
mass, radius, '', '', temp, metallicity) | f9860d742a646637e4b725e39151ed8f5e8adf0f | 3,650,480 |
def to_unicode(text, encoding='utf8', errors='strict'):
"""Convert a string (bytestring in `encoding` or unicode), to unicode."""
if isinstance(text, unicode):
return text
return unicode(text, encoding, errors=errors) | 1acb85930349832259e9309fed3669fbd1114cad | 3,650,481 |
def parse_pipfile():
"""Reads package requirements from Pipfile."""
cfg = ConfigParser()
cfg.read("Pipfile")
dev_packages = [p.strip('"') for p in cfg["dev-packages"]]
relevant_packages = [
p.strip('"') for p in cfg["packages"] if "nested-dataclasses" not in p
]
return relevant_packages, dev_packages | 72f559193b77989afc3aa200b6806ef051280673 | 3,650,482 |
from typing import Mapping
def print_dist(d, height=12, pch="o", show_number=False,
title=None):
""" Printing a figure of given distribution
Parameters
----------
d: dict, list
a dictionary or a list, contains pairs of: "key" -> "count_value"
height: int
number of maximum lines for the graph
pch : str
shape of the bars in the plot, e.g 'o'
Return
------
str
"""
LABEL_COLOR = ['cyan', 'yellow', 'blue', 'magenta', 'green']
MAXIMUM_YLABEL = 4
try:
if isinstance(d, Mapping):
d = d.items()
orig_d = [(str(name), int(count))
for name, count in d]
d = [(str(name)[::-1].replace('-', '|').replace('_', '|'), count)
for name, count in d]
labels = [[c for c in name] for name, count in d]
max_labels = max(len(name) for name, count in d)
max_count = max(count for name, count in d)
min_count = min(count for name, count in d)
except Exception as e:
raise ValueError('`d` must be distribution dictionary contains pair of: '
'label_name -> disitribution_count, error: "%s"' % str(e))
# ====== create figure ====== #
# draw height, 1 line for minimum bar, 1 line for padding the label,
# then the labels
nb_lines = int(height) + 1 + 1 + max_labels
unit = (max_count - min_count) / height
fig = ""
# ====== add unit and total ====== #
fig += ctext("Unit: ", 'red') + \
'10^%d' % max(len(str(max_count)) - MAXIMUM_YLABEL, 0) + ' '
fig += ctext("Total: ", 'red') + \
str(sum(count for name, count in d)) + '\n'
# ====== add the figure ====== #
for line in range(nb_lines):
value = max_count - unit * line
# draw the y_label
if line % 2 == 0 and line <= int(height): # value
fig += ctext(
('%' + str(MAXIMUM_YLABEL) + 's') % str(int(value))[:MAXIMUM_YLABEL],
color='red')
else: # blank
fig += ' ' * MAXIMUM_YLABEL
fig += '|' if line <= int(height) else ' '
# draw default line
if line == int(height):
fig += ''.join([ctext(pch + ' ',
color=LABEL_COLOR[i % len(LABEL_COLOR)])
for i in range(len(d))])
# draw seperator for the label
elif line == int(height) + 1:
fig += '-' * (len(d) * 2)
# draw the labels
elif line > int(height) + 1:
for i, lab in enumerate(labels):
fig += ctext(' ' if len(lab) == 0 else lab.pop(),
LABEL_COLOR[i % len(LABEL_COLOR)]) + ' '
# draw the histogram
else:
for i, (name, count) in enumerate(d):
fig += ctext(pch if count - value >= 0 else ' ',
LABEL_COLOR[i % len(LABEL_COLOR)]) + ' '
# new line
fig += '\n'
# ====== add actual number of necessary ====== #
maximum_fig_length = MAXIMUM_YLABEL + 1 + len(orig_d) * 2
if show_number:
line_length = 0
name_fmt = '%' + str(max_labels) + 's'
for name, count in orig_d:
n = len(name) + len(str(count)) + 4
text = ctext(name_fmt % name, 'red') + ': %d ' % count
if line_length + n >= maximum_fig_length:
fig += '\n'
line_length = n
else:
line_length += n
fig += text
# ====== add title ====== #
if title is not None:
title = ctext('"%s"' % str(title), 'red')
padding = ' '
n = (maximum_fig_length - len(title) // 2) // 2 - len(padding) * 3
fig = '=' * n + padding + title + padding + '=' * n + '\n' + fig
return fig[:-1] | d6636edbca5b16de8984c36bf9533ae963e21e0e | 3,650,483 |
def count_primes(num):
"""
Write a function that returns the number
of prime numbers that exist up to and including a given number
:param num: int
:return: int
"""
count = 0
lower = int(input())
upper = int(input())
for num in range(lower, upper + 1):
if num > 1:
for i in range(2, num):
if (num % i) == 0:
break
else:
count += 1
return count | 7a544265f3a7eca9118b0647bc8926c655cdb8ec | 3,650,485 |
def run_experiment(config):
"""
Run the experiment.
Args:
config: The configuration dictionary.
Returns:
The experiment result.
"""
return None | b12a8a5cbdb03d60ca618826f20c9a731a39fd2a | 3,650,486 |
def read_notification(notification_id):
"""Marks a notification as read."""
notification = Notification.query.get_or_404(notification_id)
if notification.recipient_email != current_user.email:
abort(401)
notification.is_read = True
db.session.add(notification)
db.session.commit()
return NO_PAYLOAD | b2d4066be7b202d680415831fa6d3aa60e2896dc | 3,650,487 |
def grayscale_blur(image):
"""
Convert image to gray and blur it.
"""
image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
image_gray = cv.blur(image_gray, (3, 3))
return image_gray | 4e8bf0479c653a3ed073481ad71e2530527ec4a3 | 3,650,488 |
import hmac
def calculate_stream_hmac(stream, hmac_key):
"""Calculate a stream's HMAC code with the given key."""
stream.seek(0)
hash_hmac = hmac.new(bytearray(hmac_key, "utf-8"), digestmod=HASH_FUNCTION)
while True:
buf = stream.read(4096)
if not buf:
break
hash_hmac.update(buf)
return hash_hmac.hexdigest() | 35da77cc708b4dc8a256fbfcc012da8c68868c8c | 3,650,489 |
import re
def convert_tac(ThreeAddressCode):
"""Reads three adress code generated from parser and converts to TAC for codegen;
generates the three_addr_code along with leaders;
populates generate symbol table as per three_addr_code"""
for i in range(ThreeAddressCode.length()):
three_addr_instr = ThreeAddressCode.code[i]
three_addr_instr = [str(i+1)] + three_addr_instr
three_addr_code.add_line(three_addr_instr)
if len(three_addr_instr) != 5:
print("Incorrect size for the following instruction: ")
print(three_addr_instr)
return -1
if three_addr_instr[0] == '':
print("Line number not given in the following instruction: ")
print(three_addr_instr)
return -1
if re.search(r'\D', three_addr_instr[0]) != None:
print("Invalid line number given in the following instruction: ")
print(three_addr_instr)
return -1
leader_generating_if_instr = []
leader_generating_if_instr += ['ifgotoeq']
leader_generating_if_instr += ['ifgotoneq']
leader_generating_if_instr += ['ifgotolt']
leader_generating_if_instr += ['ifgotolteq']
leader_generating_if_instr += ['ifgotogt']
leader_generating_if_instr += ['ifgotogteq']
if three_addr_instr[1] in leader_generating_if_instr:
three_addr_code.add_leader(three_addr_code.length())
leader_generating_other_instr = ['label']
if three_addr_instr[1] in leader_generating_if_instr:
three_addr_code.add_leader(three_addr_code.length()-1)
leader_generating_other_instr = []
leader_generating_other_instr += ['goto']
leader_generating_other_instr += ['break']
leader_generating_other_instr += ['continue']
if three_addr_instr[1] in leader_generating_other_instr:
three_addr_code.add_leader(three_addr_code.length())
three_addr_code.leaders = sorted(three_addr_code.leaders, key=int)
return three_addr_code | 4a9408cfbd6b6f79a618b7eb89aa55e6aab25689 | 3,650,491 |
def is_english_score(bigrams, word):
"""Calculate the score of a word."""
prob = 1
for w1, w2 in zip("!" + word, word + "!"):
bigram = f"{w1}{w2}"
if bigram in bigrams:
prob *= bigrams[bigram] # / float(bigrams['total'] + 1)
else:
print("%s not found" % bigram)
prob *= 1 # / float(bigrams['total'] + 1)
return prob | 834e28a32806d0599f5df97d978bc6b9c1a51da7 | 3,650,492 |
def cat(fname, fallback=_DEFAULT, binary=True):
"""Return file content.
fallback: the value returned in case the file does not exist or
cannot be read
binary: whether to open the file in binary or text mode.
"""
try:
with open_binary(fname) if binary else open_text(fname) as f:
return f.read().strip()
except IOError:
if fallback != _DEFAULT:
return fallback
raise | b3f645d79607f1ed986fe76aa20689d0860ef9ca | 3,650,493 |
import codecs
def createStringObject(string):
"""
Given a string (either a ``str`` or ``unicode``), create a
:class:`ByteStringObject<ByteStringObject>` or a
:class:`TextStringObject<TextStringObject>` to represent the string.
"""
if isinstance(string, string_type):
return TextStringObject(string)
elif isinstance(string, bytes_type):
try:
if string.startswith(codecs.BOM_UTF16_BE):
retval = TextStringObject(string.decode("utf-16"))
retval.autodetect_utf16 = True
return retval
else:
# This is probably a big performance hit here, but we need to
# convert string objects into the text/unicode-aware version if
# possible... and the only way to check if that's possible is
# to try. Some strings are strings, some are just byte arrays.
retval = TextStringObject(decodePdfDocEncoding(string))
retval.autodetect_pdfdocencoding = True
return retval
except UnicodeDecodeError:
return ByteStringObject(string)
else:
raise TypeError("createStringObject() should have str or unicode arg") | 07c0ca42faa2b68dc347e1edad7f70a07930d891 | 3,650,495 |
import win32com.client
def _get_windows_network_adapters():
"""Get the list of windows network adapters."""
wbem_locator = win32com.client.Dispatch('WbemScripting.SWbemLocator')
wbem_service = wbem_locator.ConnectServer('.', 'root\cimv2')
wbem_network_adapters = wbem_service.InstancesOf('Win32_NetworkAdapter')
network_adapters = []
for adapter in wbem_network_adapters:
if (adapter.NetConnectionStatus == 2 or
adapter.NetConnectionStatus == 7):
adapter_name = adapter.NetConnectionID
mac_address = adapter.MacAddress.lower()
config = adapter.associators_(
'Win32_NetworkAdapterSetting',
'Win32_NetworkAdapterConfiguration')[0]
ip_address = ''
subnet_mask = ''
if config.IPEnabled:
ip_address = config.IPAddress[0]
subnet_mask = config.IPSubnet[0]
#config.DefaultIPGateway[0]
network_adapters.append({'name': adapter_name,
'mac-address': mac_address,
'ip-address': ip_address,
'subnet-mask': subnet_mask})
return network_adapters | 796c25089411633d11b28fdd9c23d900db7005f0 | 3,650,496 |
def project(dim, states):
"""Qiskit wrapper of projection operator.
"""
ket, bra = states
if ket in range(dim) and bra in range(dim):
return st.basis(dim, ket) * st.basis(dim, bra).dag()
else:
raise Exception('States are specified on the outside of Hilbert space %s' % states) | 351a190ec183264af58de15944efb3af255c5b03 | 3,650,497 |
def check_service_status(ssh_conn_obj, service_name, status="running", device='server'):
"""
Author: Chaitanya Vella ([email protected])
Function to check the service status
:param ssh_conn_obj:
:param service_name:
:param status:
:return:
"""
st.log("##### Checking {} status for {} service ######".format(status, service_name))
command = "status {}".format(service_name)
result = conn_obj.execute_command(ssh_conn_obj, command) if device == 'server' else st.config(ssh_conn_obj, command)
result = utils_obj.remove_last_line_from_string(result)
if "command not found" not in result:
match = "start/running" if status == "running" else "stop/waiting"
if result.find("{}".format(match)) > 1:
return True
else:
command = "service --status-all | grep {}".format(service_name)
result = conn_obj.execute_command(ssh_conn_obj, command)
result = utils_obj.remove_last_line_from_string(result)
operator = "+" if status == "running" else "-"
return True if operator in result and service_name in result else False
return False | d8f2a9be7a784ad874d218601fdc043babdafe6e | 3,650,498 |
def _persist_block(block_node, block_map):
"""produce persistent binary data for a single block
Children block are assumed to be already persisted and present in
block_map.
"""
data = tuple(_to_value(v, block_map) for v in block_node)
return S_BLOCK.pack(*data) | 2fb97099135fe931d1d387ed616b152ed7c28b34 | 3,650,499 |
import logging
def get_sagemaker_feature_group(feature_group_name: str):
"""Used to check if there is an existing feature group with a given feature_group_name."""
try:
return sagemaker_client().describe_feature_group(FeatureGroupName=feature_group_name)
except botocore.exceptions.ClientError as error:
logging.error(
f"SageMaker could not find a feature group with the name {feature_group_name}. Error {error}"
)
return None | 1e94e894b1686a6833df51f1006f3f845a9e63b4 | 3,650,501 |
def check_system(command, message, exit=0, user=None, stdin=None, shell=False, timeout=None, timeout_signal='TERM'):
"""Runs the command and checks its exit status code.
Handles all of the common steps associated with running a system command:
runs the command, checks its exit status code against the expected result,
and raises an exception if there is an obvious problem.
Returns a tuple of the standard output, standard error, and the failure
message generated by diagnose(). See the system() function for more details
about the command-line options.
"""
status, stdout, stderr = system(command, user, stdin, shell=shell,
timeout=timeout, timeout_signal=timeout_signal,
quiet=False)
fail = diagnose(message, command, status, stdout, stderr)
if timeout and status == -1:
raise osgunittest.TimeoutException(fail)
else:
assert status == exit, fail
return stdout, stderr, fail | 31d83941d5198d0786a6a67a4b1bcd320c26218a | 3,650,502 |
import json
def getJson(file, filters={}):
"""Given a specific JSON file (string) and a set of filters (dictionary
key-values pairs), will return a JSON-formatted tree of the matching data
entries from that file (starting as a null-key list of objects).
"""
with open(file, 'r') as f:
j = json.loads(f.read())
all = j['']
dicts = basic.filter(all, filters)
if len(dicts) > 0:
return formatJson(dicts)
else:
raise Exception('No matching data entries found') | 7b6832eae476eef48584690d993c2dee301bb565 | 3,650,504 |
def underline_node_formatter(nodetext, optionstext, caller=None):
"""
Draws a node with underlines '_____' around it.
"""
nodetext_width_max = max(m_len(line) for line in nodetext.split("\n"))
options_width_max = max(m_len(line) for line in optionstext.split("\n"))
total_width = max(options_width_max, nodetext_width_max)
separator1 = "_" * total_width + "\n\n" if nodetext_width_max else ""
separator2 = "\n" + "_" * total_width + "\n\n" if total_width else ""
return separator1 + "|n" + nodetext + "|n" + separator2 + "|n" + optionstext | 598e3aaf875b2539b93ec03d8665cc8011872015 | 3,650,505 |
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer3_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer7_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
fcn8 = tf.layers.conv2d(vgg_layer7_out, filters=num_classes, kernel_size=1, padding="SAME", name='fcn8')
fcn9 = tf.layers.conv2d_transpose(fcn8, filters=vgg_layer4_out.get_shape().as_list()[-1], kernel_size=4, strides=(2,2), padding="SAME", name='fcn9')
fcn9_skip = tf.add(fcn9, vgg_layer4_out, name='fcn9_plus_layer4')
fcn10 = tf.layers.conv2d_transpose(fcn9_skip, filters=vgg_layer3_out.get_shape().as_list()[-1], kernel_size=4, strides=(2,2), padding="SAME", name='fcn10')
fcn10_skip = tf.add(fcn10, vgg_layer3_out, name='fcn10_plus_layer3')
fcn11 = tf.layers.conv2d_transpose(fcn10_skip, filters=num_classes, kernel_size=16, strides=(8,8), padding="SAME", name='fcn11')
return fcn11 | cf907d29555fbb7e9a11a1b2f6981637a977bf48 | 3,650,507 |
def determine_issues(project):
"""
Get the list of issues of a project.
:rtype: list
"""
issues = project["Issue"]
if not isinstance(issues, list):
return [issues]
return issues | 7b8b670e4ad5a7ae49f3541c87026dd603406c9f | 3,650,508 |
def get_media_after_date(mountpoint: str, date:str):
"""
Date format in EXIF yyyy:mm:dd, look for EXIF:CreateDate
"""
metadata = get_media_list(mountpoint)
filtered_meta = list()
for m in metadata:
if 'File:FileModifyDate' in m:
if is_after(m['File:FileModifyDate'].split(' ')[0],date):
filtered_meta.append(m)
return filtered_meta | 950c937540bd44cd1f577f1ee763262dad51d353 | 3,650,510 |
import random
def run_normal_game():
"""Run a complex game, like the real thing."""
stage = create_stage()
contestant_first_pick = random.randrange(3)
montys_pick_algorithm(stage, contestant_first_pick)
contestant_second_pick = contestants_second_pick_algorithm(stage, contestant_first_pick)
wins = contestant_wins(stage, contestant_second_pick)
#print (stage, contestant_first_pick, contestant_second_pick, wins)
return wins | 04f3e8805b3b7d7d9e9f631eee635c4b9af75fdf | 3,650,511 |
def reformat_wolfram_entries(titles, entries):
"""Reformat Wolfram entries."""
output_list = []
for title, entry in zip(titles, entries):
try:
if ' |' in entry:
entry = '\n\t{0}'.format(entry.replace(' |', ':')
.replace('\n', '\n\t'))
if title == 'Result':
new_entry = entry.encode('utf-8') if PY2 else entry
else:
raw_entry = (title + ': ' + entry)
new_entry = raw_entry.encode('utf-8') if PY2 else raw_entry
output_list.append(new_entry)
except (AttributeError, UnicodeEncodeError):
pass
return output_list | ba236671187ba4ab80fb013b3ee40c6ae58cc1c8 | 3,650,512 |
import six
def GetAndValidateRowId(row_dict):
"""Returns the integer ID for a new Row.
This method is also responsible for validating the input fields related
to making the new row ID.
Args:
row_dict: A dictionary obtained from the input JSON.
Returns:
An integer row ID.
Raises:
BadRequestError: The input wasn't formatted properly.
"""
if 'revision' not in row_dict:
raise BadRequestError('Required field "revision" missing.')
try:
return int(row_dict['revision'])
except (ValueError, TypeError) as e:
six.raise_from(
BadRequestError('Bad value for "revision", should be numerical.'), e) | be9f096ddb8bba036d1fa06cdd3565296a949762 | 3,650,514 |
def generate_test_cases(ukernel, channel_tile, pixel_tile, isa):
"""Generates all tests cases for a BILINEAR micro-kernel.
Args:
ukernel: C name of the micro-kernel function.
channel_tile: Number of channels processed per one iteration of the inner
loop of the micro-kernel.
pixel_tile: Number of pixels processed per one iteration of the outer loop
of the micro-kernel.
isa: instruction set required to run the micro-kernel. Generated unit test
will skip execution if the host processor doesn't support this ISA.
Returns:
Code for the test case.
"""
_, test_name = ukernel.split("_", 1)
_, datatype, ukernel_type, _ = ukernel.split("_", 3)
test_args = [ukernel]
return xngen.preprocess(IBILINEAR_TEST_TEMPLATE, {
"TEST_NAME": test_name.upper().replace("UKERNEL_", ""),
"TEST_FUNC": ukernel,
"UKERNEL_TYPE": ukernel_type.upper(),
"DATATYPE": datatype,
"CHANNEL_TILE": channel_tile,
"PIXEL_TILE": pixel_tile,
"ISA_CHECK": xnncommon.generate_isa_check_macro(isa),
"next_prime": next_prime,
}) | 4fe3243c3f8d2ab3ce7861b46aa96ee79ef1014a | 3,650,515 |
def get_file_range(ase, offsets, timeout=None):
# type: (blobxfer.models.azure.StorageEntity,
# blobxfer.models.download.Offsets, int) -> bytes
"""Retrieve file range
:param blobxfer.models.azure.StorageEntity ase: Azure StorageEntity
:param blobxfer.models.download.Offsets offsets: download offsets
:param int timeout: timeout
:rtype: bytes
:return: content for file range
"""
dir, fpath, _ = parse_file_path(ase.name)
return ase.client._get_file(
share_name=ase.container,
directory_name=dir,
file_name=fpath,
start_range=offsets.range_start,
end_range=offsets.range_end,
validate_content=False, # HTTPS takes care of integrity during xfer
timeout=timeout,
snapshot=ase.snapshot,
).content | be4f2f06c64ee457152fe582128b36db1a1baae4 | 3,650,516 |
def parse_cli_args():
"""Return parsed command-line arguments."""
parser = ArgumentParser(description='parse and summarize a GLSL file')
parser.add_argument('path')
shader_type_names = [member.name for member in ShaderType]
parser.add_argument('shader_type', nargs='?',
choices=shader_type_names,
default=ShaderType.Fragment.name)
return parser.parse_args() | a044e20ea91e05c09cccc118641dac68ce748142 | 3,650,517 |
def genus_species_name(genus, species):
"""Return name, genus with species if present.
Copes with species being None (or empty string).
"""
# This is a simple function, centralising it for consistency
assert genus and genus == genus.strip(), repr(genus)
if species:
assert species == species.strip(), repr(species)
return f"{genus} {species}"
else:
return genus | 1fed57c5c87dfd9362262a69429830c7103b7fca | 3,650,518 |
def _native_set_to_python_list(typ, payload, c):
"""
Create a Python list from a native set's items.
"""
nitems = payload.used
listobj = c.pyapi.list_new(nitems)
ok = cgutils.is_not_null(c.builder, listobj)
with c.builder.if_then(ok, likely=True):
index = cgutils.alloca_once_value(c.builder,
ir.Constant(nitems.type, 0))
with payload._iterate() as loop:
i = c.builder.load(index)
item = loop.entry.key
itemobj = c.box(typ.dtype, item)
c.pyapi.list_setitem(listobj, i, itemobj)
i = c.builder.add(i, ir.Constant(i.type, 1))
c.builder.store(i, index)
return ok, listobj | 808a10d85cc19c0b1c31b3e01afc9bbb402e1e90 | 3,650,519 |
def var_to_str(var):
"""Returns a string representation of the variable of a Jax expression."""
if isinstance(var, jax.core.Literal):
return str(var)
elif isinstance(var, jax.core.UnitVar):
return "*"
elif not isinstance(var, jax.core.Var):
raise ValueError(f"Idk what to do with this {type(var)}?")
c = int(var.count)
if c == -1:
return "_"
str_rep = ""
while c > 25:
str_rep += chr(c % 26 + ord("a"))
c = c // 26
str_rep += chr(c + ord("a"))
return str_rep[::-1] | 820645057359f8704cbd28d2545b9bb3c6e2f4d3 | 3,650,521 |
def lal_binary_neutron_star(
frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1,
phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, lambda_1, lambda_2,
**kwargs):
""" A Binary Neutron Star waveform model using lalsimulation
Parameters
----------
frequency_array: array_like
The frequencies at which we want to calculate the strain
mass_1: float
The mass of the heavier object in solar masses
mass_2: float
The mass of the lighter object in solar masses
luminosity_distance: float
The luminosity distance in megaparsec
a_1: float
Dimensionless primary spin magnitude
tilt_1: float
Primary tilt angle
phi_12: float
Azimuthal angle between the two component spins
a_2: float
Dimensionless secondary spin magnitude
tilt_2: float
Secondary tilt angle
phi_jl: float
Azimuthal angle between the total binary angular momentum and the
orbital angular momentum
theta_jn: float
Orbital inclination
phase: float
The phase at coalescence
lambda_1: float
Dimensionless tidal deformability of mass_1
lambda_2: float
Dimensionless tidal deformability of mass_2
kwargs: dict
Optional keyword arguments
Supported arguments:
waveform_approximant
reference_frequency
minimum_frequency
maximum_frequency
catch_waveform_errors
pn_spin_order
pn_tidal_order
pn_phase_order
pn_amplitude_order
mode_array:
Activate a specific mode array and evaluate the model using those
modes only. e.g. waveform_arguments =
dict(waveform_approximant='IMRPhenomHM', modearray=[[2,2],[2,-2])
returns the 22 and 2-2 modes only of IMRPhenomHM. You can only
specify modes that are included in that particular model. e.g.
waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
modearray=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
55 modes are not included in this model. Be aware that some models
only take positive modes and return the positive and the negative
mode together, while others need to call both. e.g.
waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
modearray=[[2,2],[4,-4]]) returns the 22 a\nd 2-2 of IMRPhenomHM.
However, waveform_arguments =
dict(waveform_approximant='IMRPhenomXHM', modearray=[[2,2],[4,-4]])
returns the 22 and 4-4 of IMRPhenomXHM.
Returns
-------
dict: A dictionary with the plus and cross polarisation strain modes
"""
waveform_kwargs = dict(
waveform_approximant='IMRPhenomPv2_NRTidal', reference_frequency=50.0,
minimum_frequency=20.0, maximum_frequency=frequency_array[-1],
catch_waveform_errors=False, pn_spin_order=-1, pn_tidal_order=-1,
pn_phase_order=-1, pn_amplitude_order=0)
waveform_kwargs.update(kwargs)
return _base_lal_cbc_fd_waveform(
frequency_array=frequency_array, mass_1=mass_1, mass_2=mass_2,
luminosity_distance=luminosity_distance, theta_jn=theta_jn, phase=phase,
a_1=a_1, a_2=a_2, tilt_1=tilt_1, tilt_2=tilt_2, phi_12=phi_12,
phi_jl=phi_jl, lambda_1=lambda_1, lambda_2=lambda_2, **waveform_kwargs) | 4641e65e9f422bb9be9a90f2f849ab58f1cdea51 | 3,650,522 |
def handledisc(tree):
"""Binarize discontinuous substitution sites.
>>> print(handledisc(Tree('(S (X 0 2 4))')))
(S (X 0 (X|<> 2 (X|<> 4))))
>>> print(handledisc(Tree('(S (X 0 2))')))
(S (X 0 (X|<> 2)))
"""
for a in tree.postorder(lambda n: len(n) > 1 and isinstance(n[0], int)):
binarize(a, rightmostunary=True, threshold=1)
return tree | 1e164d0174a4b31462369a10e56f9d69d936d18b | 3,650,523 |
def check_bounds(shape: Shape, point: Coord) -> bool:
"""Return ``True`` if ``point`` is valid index in ``shape``.
Args:
shape: Shape of two-dimensional array.
point: Two-dimensional coordinate.
Return:
True if ``point`` is within ``shape`` else ``False``.
"""
return (0 <= point[0] < shape[0]) and (0 <= point[1] < shape[1]) | 88ab89fddf3f85fc38f3404ed90f384f50337905 | 3,650,524 |
def logout(home=None):
"""
Logs out current session and redirects to home
:param str home: URL to redirect to after logout success
"""
flask_login.logout_user()
return redirect(request.args.get('redirect',
home or url_for('public.home'))) | bded682e6807532aa6382ea0855ee4d335da550f | 3,650,525 |
def N(u,i,p,knots):
"""
u: point for which a spline should be evaluated
i: spline knot
p: spline order
knots: all knots
Evaluates the spline basis of order p defined by knots
at knot i and point u.
"""
if p == 0:
if knots[int(i)] < u and u <=knots[int(i+1)]:
return 1.0
else:
return 0.0
else:
try:
k = ((float((u-knots[int(i)])) / float((knots[int(i+p)] - knots[int(i)]) ))
* N(u,i,p-1,knots))
except ZeroDivisionError:
k = 0.0
try:
q = ((float((knots[int(i+p+1)] - u)) / float((knots[int(i+p+1)] - knots[int(i+1)])))
* N(u,i+1,p-1,knots))
except ZeroDivisionError:
q = 0.0
return float(k + q) | 0cd0756d558ee99b0ed32350860bc27f023fa88b | 3,650,526 |
def check_merge(s, idn) -> bool:
"""
Check whether a set of nodes is valid to merge
"""
found = False
in_size = None
out_size = None
stride = None
act = None
nds = [idn[i] for i in state2iset(s)]
if len(nds) == 1:
return True
for nd in nds:
if not isinstance(nd, Conv): # current only merge conv
return False
if not found:
in_size = nd.input_shape[1], nd.input_shape[2]
out_size = nd.output_shape[1], nd.output_shape[2]
stride = nd.stride[0], nd.stride[1]
act = nd.act
found = True
else:
# all input resolution, output resolution and stride must be the same
if in_size[0] != nd.input_shape[1] or in_size[1] != nd.input_shape[2]:
return False
if out_size[0] != nd.output_shape[1] or out_size[1] != nd.output_shape[2]:
return False
if stride[0] != nd.stride[0] or stride[1] != nd.stride[1]:
return False
if nd.groups != 1 or act != nd.act:
return False
if len(nd.inputs) > 1 or len(nd.inputs[0]) > 1 or not (nd.inputs[0][0] == nds[0].inputs[0][0]):
return False
return True | d0edfee6150d7814c926fb59d413b61a989c9808 | 3,650,528 |
def typeMap(name, package=None):
""" typeMap(name: str) -> Module
Convert from C/C++ types into VisTrails Module type
"""
if package is None:
package = identifier
if isinstance(name, tuple):
return [typeMap(x, package) for x in name]
if name in typeMapDict:
return typeMapDict[name]
else:
registry = get_module_registry()
if not registry.has_descriptor_with_name(package, name):
return None
else:
return registry.get_descriptor_by_name(package,
name).module | 6f8ed31cfe1eb88201d0131d43c0fb0da2295405 | 3,650,529 |
def _rm_from_diclist(diclist, key_to_check, value_to_check):
"""Function that removes an entry form a list of dictionaries if a key of
an entry matches a given value. If no value of the key_to_check matches the
value_to_check for all of the entries in the diclist, the same diclist will
be returned that was passed to the function.
Parameters:
diclist - A list of dictionaries.
key_to_check - A key of a dictionary whose value should be checked
to determine if a dictionary should be removed from
the diclist.
value_to_check - The value that should be compared to the value of the
key_to_check to determine if a dictionary should be
removed from the diclist.
Returns the diclist passed to the function with an entry removed if its
value of the key_to_check matched the value_to_check.
"""
for i in xrange(len(diclist)):
if diclist[i][key_to_check] == value_to_check:
diclist.pop(i)
break
return diclist | 89806ec5029923709bd44d794d75a84f440c5aa7 | 3,650,530 |
import scipy
def odr_linear(x, y, intercept=None, beta0=None):
"""
Performs orthogonal linear regression on x, y data.
Parameters
----------
x: array_like
x-data, 1D array. Must be the same lengths as `y`.
y: array_like
y-data, 1D array. Must be the same lengths as `x`.
intercept: float, default None
If not None, fixes the intercept.
beta0: array_like, shape (2,)
Guess at the slope and intercept, respectively.
Returns
-------
output: ndarray, shape (2,)
Array containing slope and intercept of ODR line.
"""
def linear_fun(p, x):
return p[0] * x + p[1]
def linear_fun_fixed(p, x):
return p[0] * x + intercept
# Set the model to be used for the ODR fitting
if intercept is None:
model = scipy.odr.Model(linear_fun)
if beta0 is None:
beta0 = (0.0, 1.0)
else:
model = scipy.odr.Model(linear_fun_fixed)
if beta0 is None:
beta0 = (1.0,)
# Make a Data instance
data = scipy.odr.Data(x, y)
# Instantiate ODR
odr = scipy.odr.ODR(data, model, beta0=beta0)
# Perform ODR fit
try:
result = odr.run()
except scipy.odr.odr_error:
raise scipy.odr.odr_error('ORD failed.')
return result.beta | 51fc464cb60e5b05645907d5ed3ec40d1b9cdb54 | 3,650,531 |
def get_centroid_world_coordinates(geo_trans, raster_x_size, raster_y_size, x_pixel_size, y_pixel_size):
"""Return the raster centroid in world coordinates
:param geo_trans: geo transformation
:type geo_trans: tuple with six values
:param raster_x_size: number of columns
:type raster_x_size: int
:param raster_y_size: number of rows
:param x_pixel_size: pixel size in x direction
:type: x_pixel_size: float
:param y_pixel_size: pixel size in y direction
:type y_pixel_size: float
:return:
"""
x0, y0 = pixel_to_world(geo_trans, 0, 0)
x1, y1 = pixel_to_world(geo_trans, raster_x_size-1, raster_y_size-1)
x1 += x_pixel_size
y1 -= y_pixel_size
return (x0 + x1) * 0.5, (y0 + y1) * 0.5 | e0dd1d57cb020a85d9784f2c9bf22b4b8035ffae | 3,650,532 |
import json
def save_change_item(request):
"""
保存改变项
算法:在rquest_list中查找对应的uuid,找到后将数据更新其中
:param request:
:return:
"""
if request.method != 'POST':
return HttpResponse("数据异常.")
str_data = request.POST.get('jsons')
logger.info("change_item: " + str_data)
jsons = json.loads(str_data)
id = jsons['id']
name = jsons['name']
url = jsons['url']
raw_mode_data = jsons['rawModeData']
method = jsons['method']
logger.info("打印send: {}".format(url))
request_list = JsonConf.json_data['requests']
for item in request_list:
if id == item["id"]:
item["method"] = method
item["rawModeData"] = raw_mode_data
item["name"] = name
item["url"] = url
break
JsonConf.store(settings.INIT_DATA)
return HttpResponse("保存成功.") | 434bd1e77690cd60dd163a39fd1cb90dd0cb4952 | 3,650,533 |
import pytdx.hq
import pytdx.util.best_ip
def get_lastest_stocklist():
"""
使用pytdx从网络获取最新券商列表
:return:DF格式,股票清单
"""
print(f"优选通达信行情服务器 也可直接更改为优选好的 {{'ip': '123.125.108.24', 'port': 7709}}")
# ipinfo = pytdx.util.best_ip.select_best_ip()
api = pytdx.hq.TdxHq_API()
# with api.connect(ipinfo['ip'], ipinfo['port']):
with api.connect('123.125.108.24', 7709):
data = pd.concat([pd.concat(
[api.to_df(api.get_security_list(j, i * 1000)).assign(sse='sz' if j == 0 else 'sh') for i in
range(int(api.get_security_count(j) / 1000) + 1)], axis=0) for j in range(2)], axis=0)
data = data.reindex(columns=['sse', 'code', 'name', 'pre_close', 'volunit', 'decimal_point'])
data.sort_values(by=['sse', 'code'], ascending=True, inplace=True)
data.reset_index(drop=True, inplace=True)
# 这个方法不行 字符串不能运算大于小于,转成int更麻烦
# df = data.loc[((data['sse'] == 'sh') & ((data['code'] >= '600000') | (data['code'] < '700000'))) | \
# ((data['sse'] == 'sz') & ((data['code'] >= '000001') | (data['code'] < '100000'))) | \
# ((data['sse'] == 'sz') & ((data['code'] >= '300000') | (data['code'] < '309999')))]
sh_start_num = data[(data['sse'] == 'sh') & (data['code'] == '600000')].index.tolist()[0]
sh_end_num = data[(data['sse'] == 'sh') & (data['code'] == '706070')].index.tolist()[0]
sz00_start_num = data[(data['sse'] == 'sz') & (data['code'] == '000001')].index.tolist()[0]
sz00_end_num = data[(data['sse'] == 'sz') & (data['code'] == '100303')].index.tolist()[0]
sz30_start_num = data[(data['sse'] == 'sz') & (data['code'] == '300001')].index.tolist()[0]
sz30_end_num = data[(data['sse'] == 'sz') & (data['code'] == '395001')].index.tolist()[0]
df_sh = data.iloc[sh_start_num:sh_end_num]
df_sz00 = data.iloc[sz00_start_num:sz00_end_num]
df_sz30 = data.iloc[sz30_start_num:sz30_end_num]
df = pd.concat([df_sh, df_sz00, df_sz30])
df.reset_index(drop=True, inplace=True)
return df | 2953cbd800ad2e2b6bc6122ec225f34d165773ea | 3,650,534 |
def getStopWords(stopWordFileName):
"""Reads stop-words text file which is assumed to have one word per line.
Returns stopWordDict.
"""
stopWordDict = {}
stopWordFile = open(stopWordFileName, 'r')
for line in stopWordFile:
word = line.strip().lower()
stopWordDict[word] = None
return stopWordDict | 8bb85683f257c35de9d04e4993b42cd758a802e6 | 3,650,538 |
def metade(valor):
"""
-> Realiza o calculo de metade salárial
:param valor: Valor do dinheiro
:param view: Visualizar ou não retorno formatado
:return: Retorna a metade do valor
"""
if not view:
return moeda(valor / 2)
else:
return valor / 2
return valor / 2 | fb1bbb605b8a0f1b8623ca70940377bd3c6a440a | 3,650,539 |
def monopole(uvecs: [float, np.ndarray], order: int=3) -> [float, np.ndarray]:
"""
Solution for I(r) = 1.
Also handles nonzero-w case.
Parameters
----------
uvecs: float or ndarray of float
The cartesian baselines in units of wavelengths. If a float, assumed to be the magnitude of
the baseline. If an array of one dimension, each entry is assumed to be a magnitude.
If a 2D array, may have shape (Nbls, 2) or (Nbls, 3). In the first case, w is
assumed to be zero.
order: int
Expansion order to use for non-flat array case (w != 0).
Returns
-------
ndarray of complex
Visibilities, shape (Nbls,)
"""
if np.isscalar(uvecs) or uvecs.ndim == 1 or uvecs.shape[1] == 2 or np.allclose(uvecs[:, 2], 0):
# w is zero.
uamps = vec_to_amp(uvecs)
return 2 * np.pi * np.sinc(2 * uamps)
uvecs = uvecs[..., None]
ks = np.arange(order)[None, :]
fac0 = (2 * np.pi * 1j * uvecs[:, 2, :])**ks / (gamma(ks + 2))
fac1 = hyp0f1((3 + ks) / 2, -np.pi**2 * (uvecs[:, 0, :]**2 + uvecs[:, 1, :]**2))
return 2 * np.pi * np.sum(fac0 * fac1, axis=-1) | 6828b4014fc7970a4d85b6d04b6d3e16249d3dae | 3,650,540 |
def get_question(
numbers: OneOrManyOf(NUMBERS_AVAILABLE),
cases: OneOrManyOf(CASES_AVAILABLE),
num: hug.types.in_range(1, MAX_NUM + 1) = 10):
"""When queried for one or multiple numbers and cases, this endpoint returns a random question."""
questions = []
bag = NounCaseQuestionBag(
noun_bag,
adjective_bag,
numbers,
cases)
while len(questions) < num:
question = bag.get_question()
questions.append(
{
'question_elements': question.get_question_elements(),
'answer_elements': question.get_correct_answer_elements()
})
return questions | b32d76f6ee7519935292743f6d7d8b8ad7357d3a | 3,650,541 |
from textwrap import dedent
def _print_attrs(attr, html=False):
"""
Given a Attr class will print out each registered attribute.
Parameters
----------
attr : `sunpy.net.attr.Attr`
The attr class/type to print for.
html : bool
Will return a html table instead.
Returns
-------
`str`
String with the registered attributes.
"""
attrs = attr._attr_registry[attr]
# Only sort the attrs if any have been registered
sorted_attrs = _ATTR_TUPLE(*zip(*sorted(zip(*attrs)))) if attrs.name else make_tuple()
*other_row_data, descs = sorted_attrs
descs = [(dsc[:77] + '...') if len(dsc) > 80 else dsc for dsc in descs]
table = Table(names=["Attribute Name", "Client", "Full Name", "Description"],
dtype=["U80", "U80", "U80", "U80"],
data=[*other_row_data, descs])
class_name = f"{(attr.__module__ + '.') or ''}{attr.__name__}"
lines = [class_name]
# If the attr lacks a __doc__ this will error and prevent this from returning anything.
try:
lines.append(dedent(attr.__doc__.partition("\n\n")[0]) + "\n")
except AttributeError:
pass
format_line = "<p>{}</p>" if html else "{}"
width = -1 if html else get_width()
lines = [*[format_line.format(line) for line in lines],
*table.pformat_all(show_dtype=False, max_width=width, align="<", html=html)]
return '\n'.join(lines) | 5044764b8799eed66d3e11fe9423922d79fd9981 | 3,650,542 |
import struct
def create_wave_header(samplerate=44100, channels=2, bitspersample=16, duration=3600):
"""Generate a wave header from given params."""
# pylint: disable=no-member
file = BytesIO()
numsamples = samplerate * duration
# Generate format chunk
format_chunk_spec = b"<4sLHHLLHH"
format_chunk = struct.pack(
format_chunk_spec,
b"fmt ", # Chunk id
16, # Size of this chunk (excluding chunk id and this field)
1, # Audio format, 1 for PCM
channels, # Number of channels
int(samplerate), # Samplerate, 44100, 48000, etc.
int(samplerate * channels * (bitspersample / 8)), # Byterate
int(channels * (bitspersample / 8)), # Blockalign
bitspersample, # 16 bits for two byte samples, etc.
)
# Generate data chunk
data_chunk_spec = b"<4sL"
datasize = int(numsamples * channels * (bitspersample / 8))
data_chunk = struct.pack(
data_chunk_spec,
b"data", # Chunk id
int(datasize), # Chunk size (excluding chunk id and this field)
)
sum_items = [
# "WAVE" string following size field
4,
# "fmt " + chunk size field + chunk size
struct.calcsize(format_chunk_spec),
# Size of data chunk spec + data size
struct.calcsize(data_chunk_spec) + datasize,
]
# Generate main header
all_chunks_size = int(sum(sum_items))
main_header_spec = b"<4sL4s"
main_header = struct.pack(main_header_spec, b"RIFF", all_chunks_size, b"WAVE")
# Write all the contents in
file.write(main_header)
file.write(format_chunk)
file.write(data_chunk)
# return file.getvalue(), all_chunks_size + 8
return file.getvalue() | b0b53b33733e5456e321cd7c276ad95754140f8a | 3,650,543 |
import unicodedata
import re
def xslugify(value):
"""
Converts to ASCII. Converts spaces to hyphens. Removes characters that
aren't alphanumerics, underscores, slash, or hyphens. Converts to
lowercase. Also strips leading and trailing whitespace.
(I.e., does the same as slugify, but also converts slashes to dashes.)
"""
value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
value = re.sub(r'[^\w\s/-]', '', value).strip().lower()
return mark_safe(re.sub(r'[-\s/]+', '-', value)) | 7a8a3f00011a46465ccafdcaf1ac797577511b2b | 3,650,544 |
def firstcond(list1, list2):
"""this is a fixture for testing conditions when
the list is a four node list """
ll = LinkedList()
ll.insert(1, 5)
ll.insert(3, 9)
ll.insert(2, 4)
return ll | 6e50038285e84e986304de5d2b28bef0db32b63d | 3,650,545 |
def random_portfolio(n, k, mu=0., sd=0.01, corr=None, dt=1., nan_pct=0.):
""" Generate asset prices assuming multivariate geometric Brownian motion.
:param n: Number of time steps.
:param k: Number of assets.
:param mu: Drift parameter. Can be scalar or vector. Default is 0.
:param sd: Volatility of single assets. Default is 0.01.
:param corr: Correlation matrix of assets. Default is identity.
:param dt: Time step.
:param nan_pct: Add given percentage of NaN values. Useful for testing
"""
# default values
corr = corr if corr is not None else np.eye(k)
sd = sd * np.ones(k)
mu = mu * np.ones(k)
# drift
nu = mu - sd**2 / 2.
# do a Cholesky factorization on the correlation matrix
R = np.linalg.cholesky(corr).T
# generate uncorrelated random sequence
x = np.matrix(np.random.normal(size=(n - 1,k)))
# correlate the sequences
ep = x * R
# multivariate brownian
W = nu * dt + ep * np.diag(sd) * np.sqrt(dt)
# generate potential path
S = np.vstack([np.ones((1, k)), np.cumprod(np.exp(W), 0)])
# add nan values
if nan_pct > 0:
r = S * 0 + np.random.random(S.shape)
S[r < nan_pct] = np.nan
return pd.DataFrame(S) | 86801609a44619565188cd58b1d519c2e326086b | 3,650,548 |
def superpose_images(obj, metadata, skip_overlaps=False,
num_frames_for_bkgd=100, every=1,
color_objs=False, disp_R=False, b=1.7, d=2,
false_color=False, cmap='jet', remove_positive_noise=True):
"""
Superposes images of an object onto one frame.
Parameters
----------
vid_path : string
Path to video in which object was tracked. Source folder is `src/`
obj : TrackedObject
Object that has been tracked. Must have 'image', 'local centroid',
'frame_dim', 'bbox', and 'centroid' parameters.
skip_overlaps : bool, optional
If True, will skip superposing images that overlap with each other
to produce a cleaner, though incomplete, image. Default False.
every : int, optional
Superposes every `every` image (so if every = 1, superposes every image;
if every = 2, superposes every *other* image; if every = n, superposes every
nth image). Default = 1
color_objs : bool, optional
If True, will use image processing to highlight objects in each frame
before superposing. Default False
disp_R : bool, optional
If True, will display the radius measured by image-processing in um
above each object.
b : float, optional
Factor by which to scale brightness of superposed images to match background.
Not sure why they don't automatically appear with the same brightness.
Default is 1.7.
d : int, optional
Number of pixels to around the bounding box of the object to transfer to
the superposed image. Helps ensure the outer edge of the image is bkgd. Default is 2.
Returns
-------
im : (M x N) numpy array of uint8
Image of object over time; each snapshot is superposed
(likely black-and-white)
"""
### initializes image as background ###
# loads parameters
highlight_kwargs = metadata['highlight_kwargs']
mask_data = highlight_kwargs['mask_data']
row_lo, _, row_hi, _ = mask.get_bbox(mask_data)
# computes background
bkgd = improc.compute_bkgd_med_thread(metadata['vid_path'],
vid_is_grayscale=True, #assumes video is already grayscale
num_frames=num_frames_for_bkgd,
crop_y=row_lo,
crop_height=row_hi-row_lo)
# copies background to superpose object images on
im = np.copy(bkgd)
# converts image to 3-channel if highlighting objects (needs color)
if color_objs:
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
# initializes previous bounding box
bbox_prev = (0,0,0,0)
# loads video capture object
cap = cv2.VideoCapture(metadata['vid_path'])
# gets list of frames with object
frame_list = obj.get_props('frame')
### Superposes image from each frame ###
ct = 0
for i, f in enumerate(frame_list):
# only superposes every "every"th image
if (ct % every) != 0:
ct += 1
continue
# loads bounding box and image within it
bbox = obj.get_prop('bbox', f)
# skips images that overlap if requested
if skip_overlaps:
if basic.is_overlapping(bbox_prev, bbox):
continue
else:
bbox_prev = bbox
# highlights objects if requested
if color_objs:
# extracts radius of object
R = obj.get_prop('radius [um]', f)
# not sure why, but brightness must be 1.5 to match rest of image
# selects offset that pushes label out of image
offset = bbox[3]-bbox[1]+5
# reads frame and converts to color
frame = basic.read_frame(cap, f)
# highlights the object in the image
im_obj = highlight.highlight_image(frame,
f, cfg.highlight_method,
metadata, {R : obj}, [R],
brightness=b, offset=offset)
# shows number ID of object in image
centroid = obj.get_prop('centroid', f)
# converts centroid from (row, col) to (x, y) for open-cv
x = int(centroid[1])
y = int(centroid[0])
# superposes object image on overall image (3-channel images)
row_min, col_min, row_max, col_max = bbox
d = 2
im[row_min-d:row_max+d, col_min-d:col_max+d, :] = im_obj[row_min-d:row_max+d,
col_min-d:col_max+d, :]
if disp_R:
# prints label on image (radius [um])
im = cv2.putText(img=im, text='{0:.1f}'.format(R), org=(x-10, y-7),
fontFace=0, fontScale=0.5, color=cfg.white,
thickness=2)
else:
# loads image
im_raw = basic.read_frame(cap, f)
im_obj = cv2.cvtColor(basic.adjust_brightness(im_raw, b), cv2.COLOR_BGR2GRAY)[row_lo:row_hi, :]
# superposes object image on overall image
row_min, col_min, row_max, col_max = bbox
im[row_min:row_max, col_min:col_max] = im_obj[row_min:row_max,
col_min:col_max]
# increments counter
ct += 1
# false-colors objects by taking signed difference with background
if false_color:
signed_diff = im.astype(int) - bkgd.astype(int)
# remove noise above 0 (*assumes object is darker than background)
if remove_positive_noise:
signed_diff[signed_diff > 0] = 0
# defines false-color mapping to range to max difference
max_diff = max(np.max(np.abs(signed_diff)), 1) # ensures >= 1
# normalizes image so -max_diff -> 0 and +max_diff -> 1
im_norm = (signed_diff + max_diff) / (2*max_diff)
# maps normalized image to color image (still as floats from 0 to 1)
color_mapped = cm.get_cmap(cmap)(im_norm)
# converts to OpenCV format (uint8 0 to 255)
im_false_color = basic.cvify(color_mapped)
# converts from RGBA to RGB
im = cv2.cvtColor(im_false_color, cv2.COLOR_RGBA2RGB)
return im | 10767c9d10e5d32af51a31f1f8eb85d8989bb5d4 | 3,650,550 |
def gen_s_linear(computed_data, param ):
"""Generate sensitivity matrix for wavelength dependent sensitivity modeled as line"""
mat=np.zeros((computed_data.shape[0],computed_data.shape[0]))
#print(mat.shape)
for i in range(computed_data.shape[0]):
for j in range(computed_data.shape[0]):
v1 = computed_data[i, 0] - scenter # col 0 has position
v2 = computed_data[j, 0] - scenter # col 0 has position
#print(v1, v2)
c1 = param[0]
mat [i,j]=(1+ (c1/scale1)*v1 )/ \
(1+ (c1/scale1)*v2)
return mat | c18c31e65804d65ac7419a2037f889a0f9de2f96 | 3,650,551 |
import numpy
def upsample2(x):
"""
Up-sample a 2D array by a factor of 2 by interpolation.
Result is scaled by a factor of 4.
"""
n = [x.shape[0] * 2 - 1, x.shape[1] * 2 - 1] + list(x.shape[2:])
y = numpy.empty(n, x.dtype)
y[0::2, 0::2] = 4 * x
y[0::2, 1::2] = 2 * (x[:, :-1] + x[:, 1:])
y[1::2, 0::2] = 2 * (x[:-1, :] + x[1:, :])
y[1::2, 1::2] = x[:-1, :-1] + x[1:, 1:] + x[:-1, 1:] + x[1:, :-1]
return y | 4eb23d668154ac12755c0e65eeff485ac5e5dd23 | 3,650,552 |
import six
def mark_safe(s):
"""
Explicitly mark a string as safe for (HTML) output purposes. The returned
object can be used everywhere a string or unicode object is appropriate.
Can be called multiple times on a single string.
"""
if isinstance(s, SafeData):
return s
if isinstance(s, bytes) or (isinstance(s, Promise) and s._delegate_bytes):
return SafeBytes(s)
if isinstance(s, (six.text_type, Promise)):
return SafeText(s)
return SafeString(str(s)) | dab8c0dfb78fd22fb35b5abc3680f74de8a1089a | 3,650,553 |
def index():
""" Root URL response """
return jsonify(name='Payment Demo REST API Service', version='1.0'), status.HTTP_200_OK | 2d370a9fdf1878f60af6de264d99193d06ff96d2 | 3,650,555 |
def unvoigt(A):
"""
Converts from 6x1 to 3x3
:param A: 6x1 Voigt vector (strain or stress)
:return: 3x3 symmetric tensor (strain or stress)
"""
a=np.zeros(shape=(3,3))
a[0,0]=A[0]
a[0,1]=A[5]
a[0,2]=A[4]
a[1,0]=A[5]
a[1,1]=A[1]
a[1,2]=A[3]
a[2,0]=A[4]
a[2,1]=A[3]
a[2,2]=A[2]
return (a) | 72b28fceedb5ae2d34c768d5c29b5924310ff2b3 | 3,650,556 |
def _calculate_rmsd(P, Q):
"""Calculates the root-mean-square distance between the points of P and Q.
The distance is taken as the minimum over all possible matchings. It is
zero if P and Q are identical and non-zero if not.
"""
distance_matrix = cdist(P, Q, metric='sqeuclidean')
matching = linear_sum_assignment(distance_matrix)
return np.sqrt(distance_matrix[matching].sum()) | 22261e75edf3edf378fa30daa5c33abc68ff93cd | 3,650,558 |
def initialize_parameters():
"""
Initializes weight parameters to build a neural network with tensorflow. The shapes are:
W1 : [4, 4, 3, 8]
W2 : [2, 2, 8, 16]
Note that we will hard code the shape values in the function to make the grading simpler.
Normally, functions should take values as inputs rather than hard coding.
Returns:
parameters -- a dictionary of tensors containing W1, W2
"""
tf.set_random_seed(1) # so that your "random" numbers match ours
### START CODE HERE ### (approx. 2 lines of code)
W1 = tf.get_variable("W1",[4,4,3,8],initializer=tf.contrib.layers.xavier_initializer(seed = 0))
W2 = tf.get_variable("W2",[2,2,8,16],initializer=tf.contrib.layers.xavier_initializer(seed = 0))
### END CODE HERE ###
parameters = {"W1": W1,
"W2": W2}
return parameters | 43481172a70ea88bcf5cfbc95792365c5af2ea52 | 3,650,559 |
import time
import random
import string
import hashlib
def generate_dynamic_secret(salt: str) -> str:
"""Creates a new overseas dynamic secret
:param salt: A ds salt
"""
t = int(time.time())
r = "".join(random.choices(string.ascii_letters, k=6))
h = hashlib.md5(f"salt={salt}&t={t}&r={r}".encode()).hexdigest()
return f"{t},{r},{h}" | 2a9bdf00daea91f13f34724d1c744c17e9b4d6cf | 3,650,560 |
def is_sim_f(ts_kname):
""" Returns True if the TSDist is actually a similarity and not a distance
"""
return ts_kname in ('linear_allpairs',
'linear_crosscor',
'cross_correlation',
'hsdotprod_autocor_truncated',
'hsdotprod_autocor_cyclic') | 11c18983d8d411714ba3147d4734ad77c40ceedf | 3,650,562 |
import pika
from typing import Union
def initialise_pika_connection(
host: Text,
username: Text,
password: Text,
port: Union[Text, int] = 5672,
connection_attempts: int = 20,
retry_delay_in_seconds: float = 5,
) -> "BlockingConnection":
"""Create a Pika `BlockingConnection`.
Args:
host: Pika host
username: username for authentication with Pika host
password: password for authentication with Pika host
port: port of the Pika host
connection_attempts: number of channel attempts before giving up
retry_delay_in_seconds: delay in seconds between channel attempts
Returns:
Pika `BlockingConnection` with provided parameters
"""
parameters = _get_pika_parameters(
host, username, password, port, connection_attempts, retry_delay_in_seconds
)
return pika.BlockingConnection(parameters) | 7364547a4836aea0b277098bed75b8c5ec874522 | 3,650,563 |
def units(arg_name, unit):
"""Decorator to define units for an input.
Associates a unit of measurement with an input.
Parameters
----------
arg_name : str
Name of the input to attach a unit to.
unit : str
Unit of measurement descriptor to use (e.g. "mm").
Example
--------
Create an operation where its `x` parameter has its units defined in microns.
>>> @OperationPlugin
>>> @units('x', '\u03BC'+'m')
>>> def op(x: float = -1) -> float:
>>> return x *= -1.0
"""
def decorator(func):
_quick_set(func, 'units', arg_name, unit, {})
return func
return decorator | 45bd1695cada5612e2ce9e39632ed1357556535f | 3,650,564 |
from typing import Callable
async def to_thread_task(func: Callable, *args, **kwargs) -> Task:
"""Assign task to thread"""
coro = to_thread(func, *args, **kwargs)
return create_task(coro) | ad666a91588a670be7babf84294f338f0148b8e1 | 3,650,565 |
from typing import Dict
from typing import Any
from typing import Optional
from typing import Union
from pathlib import Path
def combo2fname(
combo: Dict[str, Any],
folder: Optional[Union[str, Path]] = None,
ext: Optional[str] = ".pickle",
sig_figs: int = 8,
) -> str:
"""Converts a dict into a human readable filename.
Improved version of `combo_to_fname`."""
name_parts = [f"{k}_{maybe_round(v, sig_figs)}" for k, v in sorted(combo.items())]
fname = Path("__".join(name_parts) + ext)
if folder is None:
return fname
return str(folder / fname) | 9951171647167e39753546645f8e1f185d9fa55a | 3,650,567 |
def cls_from_str(name_str):
"""
Gets class of unit type from a string
Helper function for end-users entering the name of a unit type
and retrieving the class that contains stats for that unit type.
Args:
name_str: str
Returns:
UnitStats
"""
name_str = name_str.lower()
for cls in _UNIT_TYPES.values():
if cls.name.lower() == name_str:
return cls | 4dc26f8586065319a25f8965a5267308bd8dbfea | 3,650,568 |
def convert_to_github_url_with_token(url, token):
"""
Convert a Github URL to a git+https url that identifies via an Oauth token. This allows for installation of
private packages.
:param url: The url to convert into a Github access token oauth url.
:param token: The Github access token to use for the oauth url.
:return: A git+https url with Oauth identification.
"""
for prefix in [GIT_SSH_PREFIX, GIT_GIT_PREFIX, GIT_HTTPS_PREFIX]:
if url.startswith(prefix):
return 'git+https://{}:[email protected]/{}'.format(token, url[len(prefix):])
return url | 9b9c5e17cb389eb938af1221518a6838e65712bc | 3,650,569 |
from datetime import datetime
import numpy
def get_numbers_of_papers(metrics):
"""
Convert the metrics into a format that is easier to work with. Year-ordered
numpy arrays.
"""
publications = metrics['histograms']['publications']
year, total, year_refereed, refereed = [], [], [], []
y = list(publications['all publications'].keys())
y.sort()
for i in range(len(y)):
k = y[i]
year.append(datetime.strptime(k, '%Y'))
total.append(publications['all publications'][k])
refereed.append(publications['refereed publications'][k])
year, total, refereed = \
numpy.array(year), numpy.array(total), numpy.array(refereed)
return year, total, refereed | ce8b079ea416ff01b4974ea7ae7aa82080321cbb | 3,650,570 |
import json
from typing import Dict
def test_base_provider_get_transform_json_exception(mock_name, mock_value):
"""
Test BaseProvider.get() with a json transform that raises an exception
"""
mock_data = json.dumps({mock_name: mock_value}) + "{"
class TestProvider(BaseProvider):
def _get(self, name: str, **kwargs) -> str:
assert name == mock_name
return mock_data
def _get_multiple(self, path: str, **kwargs) -> Dict[str, str]:
raise NotImplementedError()
provider = TestProvider()
with pytest.raises(parameters.TransformParameterError) as excinfo:
provider.get(mock_name, transform="json")
assert "Extra data" in str(excinfo) | abb81b142a34f264466b808867bc3a7cc4460fcf | 3,650,571 |
def load_check_definitions(lang):
"""
Retrieve Trust Advisor check definitions
"""
retval = {}
resp = TA_C.describe_trusted_advisor_checks(language=lang)
if resp:
try:
checks = resp['checks']
retval = {a['id']:a for a in checks}
except ValueError:
LOGGER.error('Received invalid check definitions: %s', str(resp))
else:
LOGGER.error('No response from check definitions')
return retval | 43bca091506d33270a7e0fa3ec6ca84e4c342bf6 | 3,650,572 |
def filter_phrase(comments, phrase):
"""Returns list of comments and replies filtered by substring."""
results = []
for comment in comments:
if phrase.lower() in comment.message.lower():
results.append(comment)
for reply in comment.replies:
if phrase.lower() in reply.message.lower():
results.append(reply)
if not results:
return None
return results | 0865163f117550e36b2c21608739649b7b99f825 | 3,650,573 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.