content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import importlib def load_attr(str_full_module): """ Args: - str_full_module: (str) correspond to {module_name}.{attr} Return: the loaded attribute from a module. """ if type(str_full_module) == str: split_full = str_full_module.split(".") str_module = ".".join(split_full[:-1]) str_attr = split_full[-1] module = importlib.import_module(str_module) return getattr(module, str_attr) else: return str_full_module
f96dd56c73745e76ccc9c48dda4ba8a6592ab54b
31,785
from typing import Dict from typing import List import math def conv(node: NodeWrapper, params: Dict[str, np.ndarray], xmap: Dict[str, XLayer]) -> List[XLayer]: """ONNX Conv to XLayer Conv conversion function""" logger.info("ONNX Conv -> XLayer Conv (+ BiasAdd)") assert len(node.get_outputs()) == 1 name = node.get_outputs()[0] bottoms = node.get_inputs() node_attrs = node.get_attributes() iX = xmap[bottoms[0]] # NCHW _, in_c, in_h, in_w = iX.shapes W_name = bottoms[1] wX = xmap[W_name] # OIHW B_name = bottoms[2] if len(bottoms) == 3 else None bX = xmap[B_name] if len(bottoms) == 3 else None auto_pad = node_attrs['auto_pad'] if 'auto_pad' in node_attrs\ else 'NOTSET' dilations = node_attrs['dilations'] if 'dilations' in node_attrs\ else [1, 1] dil_h, dil_w = dilations groups = node_attrs['group'] if 'group' in node_attrs\ else 1 kernel_shape = node_attrs['kernel_shape'] if 'kernel_shape' in node_attrs\ else wX.shapes[2:] kernel_h, kernel_w = kernel_shape pads = node_attrs['pads'] if 'pads' in node_attrs\ else None strides = node_attrs['strides'] if 'strides' in node_attrs\ else [1, 1] stride_h, stride_w = strides channels = wX.shapes[0] assert wX.shapes[1] == in_c // groups assert auto_pad == 'NOTSET' or pads is None if (auto_pad == 'NOTSET' and pads is None) or auto_pad == 'VALID': padding = [0, 0, 0, 0] # ht, hb, wl, wr elif auto_pad in ["SAME_UPPER", "SAME_LOWER"]: out_h, out_w = int(math.ceil(in_h / stride_h)), int(math.ceil(in_w / stride_w)) pad_h = (out_h - 1) * stride_h + (dil_h * (kernel_h - 1) + 1) - in_h pad_w = (out_w - 1) * stride_w + (dil_w * (kernel_w - 1) + 1) - in_w if auto_pad == "SAME_UPPER": pad_ht, pad_hb = pad_h // 2, pad_h - (pad_h // 2) pad_wl, pad_wr = pad_w // 2, pad_w - (pad_w // 2) else: pad_ht, pad_hb = pad_h - (pad_h // 2), pad_h // 2 pad_wl, pad_wr = pad_w - (pad_w // 2), pad_w // 2 padding = [pad_ht, pad_hb, pad_wl, pad_wr] else: assert len(pads) % 2 == 0 half = len(pads) // 2 padding = [] for i in range(half): padding.extend([pads[i], pads[i+half]]) # Quant_info (optional) vai_quant_in = node_attrs['vai_quant_in']\ if 'vai_quant_in' in node_attrs else [] vai_quant_out = node_attrs['vai_quant_out']\ if 'vai_quant_out' in node_attrs else [] vai_quant_weights = node_attrs['vai_quant_weights']\ if 'vai_quant_weights' in node_attrs else [] vai_quant_biases = node_attrs['vai_quant_biases']\ if 'vai_quant_biases' in node_attrs else [] vai_quant = node_attrs['vai_quant']\ if 'vai_quant' in node_attrs else [] conv_name = name if B_name is None else name + '_Conv' X = px.ops.conv2d( op_name=px.stringify(conv_name), input_layer=iX, weights_layer=wX, kernel_size=kernel_shape, strides=strides, padding_hw=padding, dilation=dilations, groups=groups, channels=channels, data_layout='NCHW', kernel_layout='OIHW', vai_quant=vai_quant, vai_quant_in=vai_quant_in, vai_quant_out=vai_quant_out, vai_quant_weights=vai_quant_weights, vai_quant_biases=vai_quant_biases, onnx_id=name ) res = [X] if B_name is not None: bias_add_X = xlf.get_xop_factory_func('BiasAdd')( op_name=px.stringify(name), axis=1, input_layer=X, bias_layer=bX, onnx_id=name ) res.append(bias_add_X) return res
7b004f41d103796ed01bc46e7dcff156171b35bd
31,786
def yices_bvconst_int32(n, x): """Conversion of an integer to a bitvector constant, returns NULL_TERM (-1) if there's an error. bvconst_int32(n, x): - n = number of bits - x = value The low-order bit of x is bit 0 of the constant. - if n is less than 32, then the value of x is truncated to n bits (i.e., only the n least significant bits of x are considered) - if n is more than 32, then the value of x is sign-extended to n bits. Error report: if n = 0 code = POS_INT_REQUIRED badval = n if n > YICES_MAX_BVSIZE code = MAX_BVSIZE_EXCEEDED badval = n. """ # let yices deal with int32_t excesses if n > MAX_INT32_SIZE: n = MAX_INT32_SIZE return libyices.yices_bvconst_int32(n, x)
b676ea0ea5b25f90b60f2efd67af553d835daa9b
31,787
from scipy.special import comb def combination(n, k): """ 组合数 n!/k!(n-k)! :param n: :param k: :return: """ return comb(n, k, exact=True)
b87f9037decd765680e0e2d5b5dfea336e014b61
31,788
def create_carray(h5file_uri, type, shape): """Creates an empty chunked array given a file type and size. h5file_uri - a uri to store the carray type - an h5file type shape - a tuple indicating rows/columns""" h5file = tables.openFile(h5file_uri, mode='w') root = h5file.root return h5file.createCArray( root, 'from_create_carray', type, shape=shape)
ca4c9605905a44b5f3027024f78cc855136472b0
31,790
def sort_dictionary_by_keys(input_dict): """ Sort the dictionary by keys in alphabetical order """ sorted_dict = {} for key in sorted(input_dict.keys()): sorted_dict[key] = input_dict[key] return sorted_dict
225df2c16d2b21740603c224319ad4b0eaa0899d
31,791
def sorted_instructions(binview): """ Return a sorted list of the instructions in the current viewport. """ addrs = [] instructions = [] for ii in binview.instructions: if ii[1] not in addrs: instructions.append(instr(ii)) addrs.append(ii[1]) del addrs instructions.sort(key=lambda x: x.address) return instructions
5f8602b80a73fc4b66bbb6d2e70070f2e9e35397
31,792
def quick_sort(seq): """ Реализация быстрой сортировки. Рекурсивный вариант. :param seq: любая изменяемая коллекция с гетерогенными элементами, которые можно сравнивать. :return: коллекция с элементами, расположенными по возрастанию. Examples: >>> quick_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> quick_sort([]) [] >>> quick_sort([-2, -5, -45]) [-45, -5, -2] """ length = len(seq) if length <= 1: return seq else: # В качестве pivot используется последний элемент. pivot = seq.pop() # lesser - часть коллекции, которая меньше pivot, будет тут. # greater - части коллекции, которая меньше pivot, будет тут. greater, lesser = [], [] for element in seq: if element > pivot: greater.append(element) else: lesser.append(element) # Рекурсивно вызывается функция сортировки отдельно для # greater и lesser. В конце все части объединяются в единую # коллекцию. Между ними вставляется pivot. return quick_sort(lesser) + [pivot] + quick_sort(greater)
46b56b5d29ca31a872e1805b66f4529a8bf48c6b
31,793
def _geocode(address): """ Like :func:`geocode` except returns the raw data instead. :param str address: A location (e.g., "Newark, DE") somewhere in the United States :returns: str """ key = _geocode_request(address) result = _get(key) if _CONNECTED else _lookup(key) if _CONNECTED and _EDITABLE: _add_to_cache(key, result) return result
f6cee8c606c5fe014c6c67787e0a9bcee70a0281
31,794
def easeOutBack(n, s=1.70158): """A tween function that overshoots the destination a little and then backs into the destination. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). """ _checkRange(n) n = n - 1 return n * n * ((s + 1) * n + s) + 1
bc5a0e34c2f7a16492c0456d8c28725888c6822c
31,795
def normalize_query_result(result, sort=True): """ Post-process query result to generate a simple, nested list. :param result: A QueryResult object. :param sort: if True (default) rows will be sorted. :return: A list of lists of RDF values. """ normalized = [[row[i] for i in range(len(row))] for row in result] return sorted(normalized) if sort else normalized
1df57ef889be041c41593766e1ce3cdd4ada7f66
31,796
from typing import List def count_jobpairs(buildpairs: List) -> int: """ :param buildpairs: A list of build pairs. :return: The number of job pairs in `buildpairs`. """ counts = [len(bp['jobpairs']) for bp in buildpairs] return sum(counts)
30c345698400fd134456abcf7331ca2ebbfec10f
31,797
def unravel_params(nn_params, input_layer_size, hidden_layer_size, num_labels, n_hidden_layers=1): """Unravels flattened array into list of weight matrices :param nn_params: Row vector of model's parameters. :type nn_params: numpy.array :param input_layer_size: Number of units in the input layer. :type input_layer_size: int :param hidden_layer_size: Number of units in a hidden layer. :type input_layer_size: int :param num_labels: Number of classes in multiclass classification. :type num_labels: int :param n_hidden_layers: Number of hidden layers in network. :type n_hidden_layers: int :returns: array with model's weight matrices. :rtype: numpy.array(numpy.array) """ input_layer_n_units = hidden_layer_size * (input_layer_size + 1) hidden_layer_n_units = hidden_layer_size * (hidden_layer_size + 1) theta = empty((n_hidden_layers + 1), dtype=object) # input layer to hidden layer theta[0] = nn_params[0:input_layer_n_units] theta[0] = reshape(theta[0], (hidden_layer_size, (input_layer_size + 1))) # hidden layer to hidden layer for i in range(1, n_hidden_layers): start = input_layer_n_units + (i - 1) * hidden_layer_n_units end = input_layer_n_units + i * hidden_layer_n_units theta[i] = nn_params[start:end] theta[i] = reshape( theta[i], (hidden_layer_size, (hidden_layer_size + 1))) # hidden layer to output layer start = input_layer_n_units + (n_hidden_layers - 1) * hidden_layer_n_units theta[n_hidden_layers] = nn_params[start:] theta[n_hidden_layers] = reshape(theta[n_hidden_layers], (num_labels, (hidden_layer_size + 1))) return theta
40703668ad74e4f6dbaf5c9c291da0c1c9528f60
31,798
def is_op_stack_var(ea, index): """ check if operand is a stack variable """ return idaapi.is_stkvar(idaapi.get_flags(ea), index)
b041cc56d8a0f772223b96cf5fa8bd6e338c777f
31,799
def get_circles(): """ Create 3 images each containing a circle at a different position. Returns: List([numpy array,]) of 3 circle images """ circles = [] x, y = np.meshgrid(range(256), range(256)) for d in range(30, 390, 120): img = np.zeros((256, 256), dtype=np.uint8) c = (np.sin(np.deg2rad(d)) * 50 + 128, -np.cos(np.deg2rad(d)) * 50 + 128) r = 70 y_ = y - c[0] x_ = x - c[1] img[np.sqrt(y_**2 + x_**2) < r] = 255 circles.append(img) return circles
4068c5eb028fd728596a1eddb7aa657993cc140b
31,800
def load_sequences( fasta_file ): """! @brief load candidate gene IDs from file """ sequences = {} assembly_seq_order = [] with open( fasta_file ) as f: header = f.readline()[1:].strip() if " " in header: header = header.split(' ')[0] seq = [] line = f.readline() while line: if line[0] == '>': sequences.update( { header: "".join( seq ) } ) assembly_seq_order.append( header ) header = line.strip()[1:] if " " in header: header = header.split(' ')[0] seq = [] else: seq.append( line.strip() ) line = f.readline() sequences.update( { header: "".join( seq ) } ) assembly_seq_order.append( header ) return sequences, assembly_seq_order
7dd6cb97f457fee371556ab49a95ad12d52ca8dd
31,801
def compute_distance_fields(params, canvas_size, df=distance_to_cuboids): """Compute distance fields of size (canvas_size+2)^3 to specified primitives. params -- [b, *] canvas_size df -- distance_to_* """ grid_pts = th.stack(th.meshgrid([th.linspace(-1/(canvas_size-1), 1+1/(canvas_size-1), canvas_size+2)]*3), dim=-1).permute(0, 2, 1, 3).reshape(-1, 3) if params.is_cuda: grid_pts = grid_pts.cuda() return df(grid_pts, params).view(params.size(0), params.size(1), 66, 66, 66)
4d6ab66f0d540e20b7f4b8782b9cce24e989be10
31,802
def view_user_posts(request, pk=None): """View your own posts or others posts""" if pk is None: pk = request.user.pk user = get_object_or_404(User, pk=pk) return render(request, 'home/view_user_posts.html', {"pk": user.username, "user": user})
20be478cc98c99afeace4188549ec3728fa4221a
31,803
def find_all_strobogrammatic_numbers(n: int): """ Returns all strobogrammatic numbers for a given number of digits. Args: int: number of digits Returns: A list of string with strobogrammatic numbers. """ result = numdef(n, n) return result
9923386d85de5110044488cf3e491d6602755d37
31,804
def get_deploy_size_bytes(deploy: Deploy) -> int: """Returns size of a deploy in bytes. :deploy: Deploy to be written in JSON format. :returns: Size of deploy in bytes. """ size: int = len(deploy.hash) for approval in deploy.approvals: size += len(approval.signature) size += len(approval.signer) size += len(serialisation.deploy_to_bytes(deploy.header)) size += len(serialisation.deploy_to_bytes( factory.create_deploy_body(deploy.payment, deploy.session)) ) return size
791c6ea249a9cdec39f4f02b9d88215868df6ebf
31,805
from typing import Any from typing import get_args def make_hetero_tuple_unstructure_fn(cl: Any, converter, unstructure_to=None): """Generate a specialized unstructure function for a heterogenous tuple.""" fn_name = "unstructure_tuple" type_args = get_args(cl) # We can do the dispatch here and now. handlers = [ converter._unstructure_func.dispatch(type_arg) for type_arg in type_args ] globs = {f"__cattr_u_{i}": h for i, h in enumerate(handlers)} if unstructure_to is not tuple: globs["__cattr_seq_cl"] = unstructure_to or cl lines = [] lines.append(f"def {fn_name}(tup):") if unstructure_to is not tuple: lines.append(" res = __cattr_seq_cl((") else: lines.append(" res = (") for i in range(len(handlers)): if handlers[i] == converter._unstructure_identity: lines.append(f" tup[{i}],") else: lines.append(f" __cattr_u_{i}(tup[{i}]),") if unstructure_to is not tuple: lines.append(" ))") else: lines.append(" )") total_lines = lines + [" return res"] eval(compile("\n".join(total_lines), "", "exec"), globs) fn = globs[fn_name] return fn
a1ffa13bcf6488a79c6aacafd6f1e12112f99bb2
31,807
from typing import Optional from typing import Mapping def get_dps(name: Optional[str] = None, resource_group_name: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDpsResult: """ Use this data source to access information about an existing IotHub Device Provisioning Service. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.iot.get_dps(name="iot_hub_dps_test", resource_group_name="iothub_dps_rg") ``` :param str name: Specifies the name of the Iot Device Provisioning Service resource. :param str resource_group_name: The name of the resource group under which the Iot Device Provisioning Service is located in. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:iot/getDps:getDps', __args__, opts=opts, typ=GetDpsResult).value return AwaitableGetDpsResult( allocation_policy=__ret__.allocation_policy, device_provisioning_host_name=__ret__.device_provisioning_host_name, id=__ret__.id, id_scope=__ret__.id_scope, location=__ret__.location, name=__ret__.name, resource_group_name=__ret__.resource_group_name, service_operations_host_name=__ret__.service_operations_host_name, tags=__ret__.tags)
cd258d299319c794fcb97a123b1f6265d8405d1c
31,808
from cacao_accounting.database import Modulos from typing import Union def obtener_id_modulo_por_nombre(modulo: Union[str, None]) -> Union[str, None]: """Devuelve el UUID de un modulo por su nombre.""" if modulo: MODULO = Modulos.query.filter_by(modulo=modulo).first() return MODULO.id else: return None
2b66b7dafbf45c251717b673bc75db1bf2b99683
31,809
def qg8_graph_get_chunk(graph: qg8_graph, idx: int): """ Get a chunk from the graph according to its index provided the second argument `idx` """ if not isinstance(graph, qg8_graph): raise TypeError("Argument is not a qg8_graph") if idx > len(graph.chunks) - 1: raise ValueError("Index exceeds the number of chunks in the graph") return graph.chunks[idx]
8000d04a0e657842b1c3a5e0510ed81e26cffbde
31,810
def InterruptStartForwardForVector(builder, numElems): """This method is deprecated. Please switch to Start.""" return StartForwardForVector(builder, numElems)
84cb4ffafc876554dfaded6c20bc08a00edc41ba
31,811
from .planning import Network # Imported here not to affect locals() at the top. return Network(*merge_set) def build_network( operations, cwd=None, rescheduled=None, endured=None, parallel=None, marshalled=None, node_props=None, renamer=None, excludes=None, ): """ The :term:`network` factory that does :term:`operation merging` before constructing it. :param nest: see same-named param in :func:`.compose` """ kw = { k: v for k, v in locals().items() if v is not None and k not in ("operations", "excludes") } def proc_op(op, parent=None): """clone FuncOperation with certain props changed""" ## Convey any node-props specified in the pipeline here # to all sub-operations. # if kw: op_kw = kw.copy() if node_props: op_kw["node_props"] = {**op.node_props, **node_props} if callable(renamer): def parent_wrapper(ren_args: RenArgs) -> str: # Provide RenArgs.parent. return renamer(ren_args._replace(parent=parent)) op_kw["renamer"] = parent_wrapper op = op.withset(**op_kw) ## Last minute checks, couldn't check earlier due to builder pattern. # if hasattr(op, "fn"): op.validate_fn_name() if not op.provides: TypeError(f"`provides` must not be empty!") return op merge_set = iset() # Preseve given node order. for op in operations: if isinstance(op, Pipeline): merge_set.update(proc_op(s, op) for s in op.ops) else: merge_set.add(proc_op(op)) if excludes is not None: excludes = {op for op in merge_set if op in asset(excludes, "excludes")} if excludes: merge_set = [op for op in merge_set if op not in excludes] log.info("Compose excluded %i operations %s.", len(excludes), excludes) assert all(bool(n) for n in merge_set)
f44ae5b68c7f2feb35b95b7e97d3ac5947e42933
31,812
def docker_volume_exist(volume): """Check if the docker-volume exists.""" cmd = "docker volume inspect {0}".format(volume) status = execute_subprocess(cmd) return status == 0
d96269dad83d594ae1c2eb5b04db1813699369e7
31,814
def get_embed_similarity(embed1, embed2, sim_measure="euclidean", num_top=None): """ Score alignments based on embeddings of two graphs """ if embed2 is None: embed2 = embed1 if num_top is not None and num_top != 0: # KD tree with only top similarities computed kd_sim = kd_align(embed1, embed2, distance_metric=sim_measure, num_top=num_top) return kd_sim # All pairwise distance computation if sim_measure == "cosine": similarity_matrix = sklearn.metrics.pairwise.cosine_similarity(embed1, embed2) else: similarity_matrix = sklearn.metrics.pairwise.euclidean_distances(embed1, embed2) similarity_matrix = np.exp(-similarity_matrix) return similarity_matrix
3f33f64f4dab3da42076956e083e7bd29e2909b1
31,815
from typing import get_args def preprocess_meta_data(): """ preprocess the config for specific run: 1. reads command line arguments 2. updates the config file and set gpu config 3. configure gpu settings 4. define logger. """ args = get_args() config = read_config(args) gpu_init() set_logger_and_tracker(config) save_scripts(config) return config
c7f4202fe3ccece2934999376af428ff5a72a164
31,818
def calc_water(scenario, years, days_in_year): """Calculate Water costs Function Args: scenario (object): The farm scenario years (int): The no. of years the simulation will analyse days_in_year (float): The number of days in a year Returns: cogs_water (list): Cost of Goods Sold expenditure on Water as a time series for each year water_consumption (list): The amount of water consumed each year """ water_consumption = [0] for y in range(years+1): if y == 1: water_consumption.append(scenario.system_quantity * 0.95 * days_in_year + (1900*12)) elif y > 1: water_consumption.append((scenario.system_quantity * 0.95 * days_in_year + (1900*12)) * scenario.growing_area_mulitplier) cogs_water = [i * scenario.water_price for i in water_consumption] return cogs_water, water_consumption
ed23060e64c928a545897edef008b8b020d84d3c
31,819
def vit_large_patch32_224_in21k(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=32, embed_dim=1024, depth=24, num_heads=16, representation_size=1024, **kwargs, ) model = _create_vision_transformer( "vit_large_patch32_224_in21k", pretrained=pretrained, **model_kwargs ) return model
51205d4fd518a1274f6ebc84916c0df968dc1eb2
31,820
def _check_template(hass, value_template): """ Checks if result of template is true """ try: value = template.render(hass, value_template, {}) except TemplateError: _LOGGER.exception('Error parsing template') return False return value.lower() == 'true'
9de8bc9207a17cdb9902cd0d804a3e33531a93fb
31,821
def _snr_single_region(spectrum, region=None): """ Calculate the mean S/N of the spectrum based on the flux and uncertainty in the spectrum. Parameters ---------- spectrum : `~specutils.spectra.spectrum1d.Spectrum1D` The spectrum object overwhich the equivalent width will be calculated. region: `~specutils.utils.SpectralRegion` Region within the spectrum to calculate the SNR. Returns ------- snr : `~astropy.units.Quantity` or list (based on region input) Signal to noise ratio of the spectrum or within the regions Notes ----- This is a helper function for the above `snr()` method. """ if region is not None: calc_spectrum = extract_region(spectrum, region) else: calc_spectrum = spectrum if hasattr(spectrum, 'mask') and spectrum.mask is not None: flux = calc_spectrum.flux[~spectrum.mask] uncertainty = calc_spectrum.uncertainty.quantity[~spectrum.mask] else: flux = calc_spectrum.flux uncertainty = calc_spectrum.uncertainty.quantity # the axis=-1 will enable this to run on single-dispersion, single-flux # and single-dispersion, multiple-flux return np.mean(flux / uncertainty, axis=-1)
1a87cad818c17aad3f098731d8a37d809176b92b
31,822
def squared_error( prediction: chex.Array, targets: chex.Array, weight: float = 1.0, # register_loss: bool = True, ) -> chex.Array: """Squared error loss.""" if prediction.shape != targets.shape: raise ValueError("prediction and targets should have the same shape.") # if register_loss: kfac_jax.register_squared_error_loss(prediction, targets, weight) return weight * jnp.sum(jnp.square(prediction - targets), axis=-1)
bf078eab1fd0578b8f28a2cdcef4a325ed3ef18a
31,824
def add_vqe_exact(params): """Add the ground states to the dict""" ex = run_exact(params["operator"]) vq = run_vqe(params["operator"]) return {**params, **vq, **ex}
548f347af1aff46b087d7abb6936a0fdf5556ca1
31,825
def post_demo(module_id): """ validation为数据验证装饰器,类似于wtf,这里做成yaml文件方便配置,易于阅读 返回值在tflask中有定制,这里使用字典也是为了更直观(不为了少些几个单词而牺牲可读性) :param module_id: :type module_id: :return: :rtype: """ post_form = parse_json_formdict('module_update') code = update_module(module_id, post_form) return {'code': code}
03c644cb4ea31a1e9c7bb0efea6a8e7194d12932
31,826
import logging def local_angle_2D(points, times=None): """ Calculates 2-dimensional absolute step angles in radians where step angle is deviation from a straight path when going from one time point to the next Parameters ---------- points: np.ndarray Array of track points in matrix coordinates (origin in TL, 0th coord increases going downward, 1st coord increases going rightward) times: iterable Iterable containing time when each point was measured. If not None, used to check for valid time intervals in autocorrelation calculation. Returns ------- features: dict Dictionary of features to add into the track's feature dict Includes: step_angle_mean: Mean angle deviation from straight (in radians) of each step step_angle_max: Maximum "" step_angle_stdev: Standard deviation of "" step_angle_autoCorr_lag1: Autocorrelation at 15 frame of "" step_angle_autoCorr_lag2: Autocorrelation at 30 frame of "" """ point_diffs = np.diff(points, axis=0) # Convert diffs to Cartesian X,Y coords (X increases going rightward, Y increases upwards) diff_x = point_diffs[:, 1] diff_y = -1 * point_diffs[:, 0] # Get angle of each particle step vec_angles = np.arctan2(diff_y, diff_x) # Convert from [-π, π] to [0, 2π] so diff calc works properly vec_angles = np.mod(vec_angles, 2 * np.pi) delta_angles = np.diff(vec_angles) # Convert back to [-π, π] and get absolute difference # Using [-π, π] interval ensures we pick the smaller of the two angle differences (i.e., diff will not be > π) delta_angles = np.abs(np.mod(delta_angles + np.pi, 2 * np.pi) - np.pi) if len(delta_angles) > 0: max_ang = np.max(delta_angles) mean_ang = np.mean(delta_angles) stdev_ang = np.std(delta_angles) else: logging.warning("Track is not long enough to extract step angle features.") max_ang = np.inf mean_ang = np.inf stdev_ang = np.inf # Autocorrelation time_diffs = None if times is not None: time_diffs = np.diff(times) ac_lag1, ac_lag2 = utils.normed_autocorr(delta_angles, lags=[15, 30], time_intervals=time_diffs) # Save the features features = { 'step_angle_mean' : mean_ang, 'step_angle_max' : max_ang, 'step_angle_stdev' : stdev_ang, 'step_angle_autoCorr_lag1': ac_lag1, 'step_angle_autoCorr_lag2': ac_lag2 } return features
d774061bf164bb3b835094fff5d4a0d20d449829
31,828
def calculate_geometry_stats(df): """Calculate total network miles, free-flowing miles (not in waterbodies), free-flowing unaltered miles (not in waterbodies, not altered), total perennial miles, total free-flowing unaltered perennial miles, and count of segments. Parameters ---------- df : DataFrame must have length, waterbody, altered, and perennial, and be indexed on networkID Returns ------- DataFrame contains total_miles, free_miles, *_miles, segments """ # total lengths used for upstream network total_length = df["length"].groupby(level=0).sum().rename("total") perennial_length = ( df.loc[~df.intermittent, "length"].groupby(level=0).sum().rename("perennial") ) intermittent_length = ( df.loc[df.intermittent, "length"].groupby(level=0).sum().rename("intermittent") ) altered_length = ( df.loc[df.altered, "length"].groupby(level=0).sum().rename("altered") ) unaltered_length = ( df.loc[~df.altered, "length"].groupby(level=0).sum().rename("unaltered") ) perennial_unaltered_length = ( df.loc[~(df.intermittent | df.altered), "length"] .groupby(level=0) .sum() .rename("perennial_unaltered") ) # free lengths used for downstream network; these deduct lengths in waterbodies free_length = df.loc[~df.waterbody, "length"].groupby(level=0).sum().rename("free") free_perennial = ( df.loc[~(df.intermittent | df.waterbody), "length"] .groupby(level=0) .sum() .rename("free_perennial") ) free_intermittent = ( df.loc[df.intermittent & (~df.waterbody), "length"] .groupby(level=0) .sum() .rename("free_intermittent") ) free_altered_length = ( df.loc[df.altered & (~df.waterbody), "length"] .groupby(level=0) .sum() .rename("free_altered") ) free_unaltered_length = ( df.loc[~(df.waterbody | df.altered), "length"] .groupby(level=0) .sum() .rename("free_unaltered") ) free_perennial_unaltered = ( df.loc[~(df.intermittent | df.waterbody | df.altered), "length"] .groupby(level=0) .sum() .rename("free_perennial_unaltered") ) lengths = ( pd.DataFrame(total_length) .join(perennial_length) .join(intermittent_length) .join(altered_length) .join(unaltered_length) .join(perennial_unaltered_length) .join(free_length) .join(free_perennial) .join(free_intermittent) .join(free_altered_length) .join(free_unaltered_length) .join(free_perennial_unaltered) .fillna(0) * METERS_TO_MILES ).astype("float32") lengths.columns = [f"{c}_miles" for c in lengths.columns] # calculate percent altered lengths["pct_unaltered"] = ( 100 * (lengths.unaltered_miles / lengths.total_miles) ).astype("float32") # Note: if there are no perennial miles, this should be 0 lengths["pct_perennial_unaltered"] = 0 lengths.loc[lengths.perennial_miles > 0, "pct_perennial_unaltered"] = 100 * ( lengths.perennial_unaltered_miles / lengths.perennial_miles ) lengths["pct_perennial_unaltered"] = lengths.pct_perennial_unaltered.astype( "float32" ) segments = df.groupby(level=0).size().astype("uint32").rename("segments") return lengths.join(segments)
0e5a32aab297d23fcf77eec7649c662e03ee9bb5
31,829
def unshelve(ui, repo, *shelved, **opts): """restore a shelved change to the working directory This command accepts an optional name of a shelved change to restore. If none is given, the most recent shelved change is used. If a shelved change is applied successfully, the bundle that contains the shelved changes is deleted afterwards. Since you can restore a shelved change on top of an arbitrary commit, it is possible that unshelving will result in a conflict between your changes and the commits you are unshelving onto. If this occurs, you must resolve the conflict, then use ``--continue`` to complete the unshelve operation. (The bundle will not be deleted until you successfully complete the unshelve.) (Alternatively, you can use ``--abort`` to abandon an unshelve that causes a conflict. This reverts the unshelved changes, and does not delete the bundle.) """ abortf = opts['abort'] continuef = opts['continue'] if not abortf and not continuef: cmdutil.checkunfinished(repo) if abortf or continuef: if abortf and continuef: raise util.Abort(_('cannot use both abort and continue')) if shelved: raise util.Abort(_('cannot combine abort/continue with ' 'naming a shelved change')) try: state = shelvedstate.load(repo) except IOError, err: if err.errno != errno.ENOENT: raise raise util.Abort(_('no unshelve operation underway')) if abortf: return unshelveabort(ui, repo, state, opts) elif continuef: return unshelvecontinue(ui, repo, state, opts) elif len(shelved) > 1: raise util.Abort(_('can only unshelve one change at a time')) elif not shelved: shelved = listshelves(repo) if not shelved: raise util.Abort(_('no shelved changes to apply!')) basename = util.split(shelved[0][1])[1] ui.status(_("unshelving change '%s'\n") % basename) else: basename = shelved[0] if not shelvedfile(repo, basename, 'files').exists(): raise util.Abort(_("shelved change '%s' not found") % basename) oldquiet = ui.quiet wlock = lock = tr = None try: lock = repo.lock() wlock = repo.wlock() tr = repo.transaction('unshelve', report=lambda x: None) oldtiprev = len(repo) pctx = repo['.'] tmpwctx = pctx # The goal is to have a commit structure like so: # ...-> pctx -> tmpwctx -> shelvectx # where tmpwctx is an optional commit with the user's pending changes # and shelvectx is the unshelved changes. Then we merge it all down # to the original pctx. # Store pending changes in a commit m, a, r, d = repo.status()[:4] if m or a or r or d: ui.status(_("temporarily committing pending changes " "(restore with 'hg unshelve --abort')\n")) def commitfunc(ui, repo, message, match, opts): hasmq = util.safehasattr(repo, 'mq') if hasmq: saved, repo.mq.checkapplied = repo.mq.checkapplied, False try: return repo.commit(message, 'shelve@localhost', opts.get('date'), match) finally: if hasmq: repo.mq.checkapplied = saved tempopts = {} tempopts['message'] = "pending changes temporary commit" tempopts['date'] = opts.get('date') ui.quiet = True node = cmdutil.commit(ui, repo, commitfunc, [], tempopts) tmpwctx = repo[node] ui.quiet = True shelvedfile(repo, basename, 'hg').applybundle() nodes = [ctx.node() for ctx in repo.set('%d:', oldtiprev)] phases.retractboundary(repo, phases.secret, nodes) ui.quiet = oldquiet shelvectx = repo['tip'] # If the shelve is not immediately on top of the commit # we'll be merging with, rebase it to be on top. if tmpwctx.node() != shelvectx.parents()[0].node(): ui.status(_('rebasing shelved changes\n')) try: rebase.rebase(ui, repo, **{ 'rev' : [shelvectx.rev()], 'dest' : str(tmpwctx.rev()), 'keep' : True, }) except error.InterventionRequired: tr.close() stripnodes = [repo.changelog.node(rev) for rev in xrange(oldtiprev, len(repo))] shelvedstate.save(repo, basename, pctx, tmpwctx, stripnodes) util.rename(repo.join('rebasestate'), repo.join('unshelverebasestate')) raise error.InterventionRequired( _("unresolved conflicts (see 'hg resolve', then " "'hg unshelve --continue')")) # refresh ctx after rebase completes shelvectx = repo['tip'] if not shelvectx in tmpwctx.children(): # rebase was a no-op, so it produced no child commit shelvectx = tmpwctx mergefiles(ui, repo, pctx, shelvectx) shelvedstate.clear(repo) # The transaction aborting will strip all the commits for us, # but it doesn't update the inmemory structures, so addchangegroup # hooks still fire and try to operate on the missing commits. # Clean up manually to prevent this. repo.unfiltered().changelog.strip(oldtiprev, tr) unshelvecleanup(ui, repo, basename, opts) finally: ui.quiet = oldquiet if tr: tr.release() lockmod.release(lock, wlock)
6656db08227788f216620651727213ad9eab9800
31,830
def SyntaxSpec(lang_id=0): """Syntax Specifications @param lang_id: used for selecting a specific subset of syntax specs """ if lang_id == synglob.ID_LANG_JAVA: return SYNTAX_ITEMS else: return list()
0de3ec2386efedc1472a977c1338759c61d70e8f
31,831
from bids import BIDSLayout from ..utils import collect_participants from nipype import logging as nlogging, config as ncfg from ..__about__ import __version__ from ..workflow.base import init_xcpabcd_wf from niworkflows.utils.misc import clean_directory from yaml import load as loadyml import uuid from pathlib import Path def build_workflow(opts, retval): """ Create the Nipype Workflow that supports the whole execution graph, given the inputs. All the checks and the construction of the workflow are done inside this function that has pickleable inputs and output dictionary (``retval``) to allow isolation using a ``multiprocessing.Process`` that allows fmriprep to enforce a hard-limited memory-scope. """ build_log = nlogging.getLogger('nipype.workflow') INIT_MSG = """ Running xcp_abcd version {version}: * fMRIPrep directory path: {fmriprep_dir}. * Participant list: {subject_list}. * Run identifier: {uuid}. """.format fmriprep_dir = opts.fmriprep_dir.resolve() output_dir = opts.output_dir.resolve() work_dir = opts.work_dir.resolve() if opts.clean_workdir: build_log.info("Clearing previous xcp_abcd working directory: %s" % work_dir) if not clean_directory(work_dir): build_log.warning("Could not clear all contents of working directory: %s" % work_dir) retval['return_code'] = 1 retval['workflow'] = None retval['fmriprep_dir'] = str(fmriprep_dir) retval['output_dir'] = str(output_dir) retval['work_dir'] = str(work_dir) if output_dir == fmriprep_dir: build_log.error( 'The selected output folder is the same as the input fmriprep output. ' 'Please modify the output path (suggestion: %s).', fmriprep_dir / 'derivatives' / ('xcp_abcd-%s' % __version__.split('+')[0])) retval['return_code'] = 1 return retval if fmriprep_dir in work_dir.parents: build_log.error( 'The selected working directory is a subdirectory of fmriprep directory. ' 'Please modify the output path.') retval['return_code'] = 1 return retval # Set up some instrumental utilities run_uuid = '%s_%s' % (strftime('%Y%m%d-%H%M%S'), uuid.uuid4()) retval['run_uuid'] = run_uuid # First check that fmriprep_dir looks like a BIDS folder layout = BIDSLayout(str(fmriprep_dir),validate=False, derivatives=True) subject_list = collect_participants( layout, participant_label=opts.participant_label) retval['subject_list'] = subject_list # Load base plugin_settings from file if --use-plugin if opts.use_plugin is not None: with open(opts.use_plugin) as f: plugin_settings = loadyml(f) plugin_settings.setdefault('plugin_args', {}) else: # Defaults plugin_settings = { 'plugin': 'MultiProc', 'plugin_args': { 'raise_insufficient': False, 'maxtasksperchild': 1, } } nthreads = plugin_settings['plugin_args'].get('n_procs') # Permit overriding plugin config with specific CLI options if nthreads is None or opts.nthreads is not None: nthreads = opts.nthreads if nthreads is None or nthreads < 1: nthreads = cpu_count() plugin_settings['plugin_args']['n_procs'] = nthreads if opts.mem_gb: plugin_settings['plugin_args']['memory_gb'] = opts.mem_gb omp_nthreads = opts.omp_nthreads if omp_nthreads == 0: omp_nthreads = min(nthreads - 1 if nthreads > 1 else cpu_count(), 8) if 1 < nthreads < omp_nthreads: build_log.warning( 'Per-process threads (--omp-nthreads=%d) exceed total ' 'threads (--nthreads/--n_cpus=%d)', omp_nthreads, nthreads) retval['plugin_settings'] = plugin_settings # Set up directories log_dir = output_dir / 'xcp_abcd' / 'logs' # Check and create output and working directories output_dir.mkdir(exist_ok=True, parents=True) log_dir.mkdir(exist_ok=True, parents=True) work_dir.mkdir(exist_ok=True, parents=True) # Nipype config (logs and execution) ncfg.update_config({ 'logging': { 'log_directory': str(log_dir), 'log_to_file': True }, 'execution': { 'crashdump_dir': str(log_dir), 'crashfile_format': 'txt', 'get_linked_libs': False, }, 'monitoring': { 'enabled': opts.resource_monitor, 'sample_frequency': '0.5', 'summary_append': True, } }) if opts.resource_monitor: ncfg.enable_resource_monitor() # Build main workflow build_log.log(25, INIT_MSG( version=__version__, fmriprep_dir=fmriprep_dir, subject_list=subject_list, uuid=run_uuid) ) retval['workflow'] = init_xcpabcd_wf ( layout=layout, omp_nthreads=omp_nthreads, fmriprep_dir=str(fmriprep_dir), lower_bpf=opts.lower_bpf, upper_bpf=opts.upper_bpf, contigvol=opts.contigvol, bpf_order=opts.bpf_order, motion_filter_order=opts.motion_filter_order, motion_filter_type=opts.motion_filter_type, band_stop_min=opts.band_stop_min, band_stop_max=opts.band_stop_min, subject_list=subject_list, work_dir=str(work_dir), task_id=opts.task_id, despike=opts.despike, smoothing=opts.smoothing, params=opts.nuissance_regressors, cifti=opts.cifti, output_dir=str(output_dir), head_radius=opts.head_radius, brain_template=opts.brain_template, custom_conf=opts.custom_conf, dummytime=opts.dummytime, fd_thresh=opts.fd_thresh, name='xcpabcd_wf' ) retval['return_code'] = 0 logs_path = Path(output_dir) / 'xcp_abcd' / 'logs' boilerplate = retval['workflow'].visit_desc() if boilerplate: citation_files = { ext: logs_path / ('CITATION.%s' % ext) for ext in ('bib', 'tex', 'md', 'html') } # To please git-annex users and also to guarantee consistency # among different renderings of the same file, first remove any # existing one for citation_file in citation_files.values(): try: citation_file.unlink() except FileNotFoundError: pass citation_files['md'].write_text(boilerplate) build_log.log(25, 'Works derived from this xcp execution should ' 'include the following boilerplate:\n\n%s', boilerplate) return retval
0158606b916b35607480637275a2abda5eb53774
31,832
def handler404(request): """ Utility handler for people wanting EXCEPTIONAL_INVASION, since we can't trap the Http404 raised when the URLconf fails to recognise a URL completely. Just drop this in as handler404 in your urls.py. (Note that if you subclass ExceptionalMiddleware to override its render() method, you won't be able to use this.) Don't reference this from here, it's imported into exceptional_middleware directly. """ em = ExceptionalMiddleware() return em.process_exception(request, HttpNotFound())
65c952f8c6f25b2e625fb27ebdcd054ea3ea76c8
31,833
def get_pipeline(name, outfolder): """ Build and return pipeline instance associated with given name. :param str name: Name of the pipeline to build. :param str outfolder: Path to output folder for use by pipeline instance. :return SafeTestPipeline: A test-session-safe instance of a Pipeline. """ if name == read_aligner.__name__: return get_read_aligner(outfolder) elif name == call_peaks.__name__: return get_peak_caller(outfolder) else: raise ValueError("Unknown pipeline request: '{}'".format(name))
539d0485e8bdfa679bc7901f2e2174a2fab0d161
31,834
def get_idw_interpolant(distances, p=2): """IDW interpolant for 2d array of distances https://pro.arcgis.com/en/pro-app/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm Parameters ---------- distances : array-like distances between interpolation point and grid point p : float, optional power of inverse distance weighting, default=2 Returns ------- np.array weights """ is_1d = distances.ndim == 1 if is_1d: distances = np.atleast_2d(distances) MIN_DISTANCE = 1e-8 weights = np.zeros(distances.shape) match = distances[:, 0] < MIN_DISTANCE weights[match, 0] = 1 weights[~match, :] = 1 / distances[~match, :] ** p denom = weights[~match, :].sum(axis=1).reshape(-1, 1) # *np.ones((1,n_nearest)) weights[~match, :] = weights[~match, :] / denom if is_1d: weights = weights[0] return weights
fefc53b590ee083c176bb339ad309b285dfe1a1a
31,835
from typing import Iterable def _render_html_attributes(attributes): """ Safely renders attribute-value pairs of an HTML element. """ if attributes and isinstance(attributes, dict): def map_key(key): # Map and case converts keys return _kebab(ALIASES.get(key, key)) def map_value(key, value): if key == CLASS: # Reduce class values if not isinstance(value, str) and isinstance(value, Iterable): return _render_html_class(*value) elif key == STYLE: # Reduce style values if isinstance(value, dict): return _render_html_style(value) # Reduce boolean values if isinstance(value, bool): if value: return None # Nothing to do return value def reduce_attributes(): return [render_attribute(map_key(k), v) for k, v in attributes.items() if not should_skip(v)] def render_attribute(key, value): return _render_html_attribute(key, map_value(key, value)) def should_skip(value): return isinstance(value, bool) and not value return SPACE + SPACE.join(reduce_attributes()) return EMPTY
c86d03c4fb316b1a3d74f377867d8a8609d55ff8
31,836
def interpolate_force_line2(form, x, tol=1E-6): """Interpolates a new point in a form polyline Used by the `add_force_line` function (I think it is assumed that the ) """ if len(form) < 1: raise ValueError('interpolate_force_line2 : form must not be an empty list') form_out1 = [form[0]] form_out2 = [] for pt1, pt2 in zip(form[:-1], form[1:]): if (x - pt1[0] > 0.5 * tol and pt2[0] - x > 0.5 * tol): y = pt1[1] + (x - pt1[0]) * (pt2[1] - pt1[1]) / (pt2[0] - pt1[0]) form_out1.extend([[x, y]]) form_out2.extend([[x, y]]) if x - pt2[0] >= 0.5 * tol: form_out1.append(pt2) else: form_out2.append(pt2) # problems arise if form_out2 is an empty list return form_out1, form_out2
82a0eac9132b7e631fd395bddf87595385cae574
31,837
def load_hdf5(infile): """ Load a numpy array stored in HDF5 format into a numpy array. """ with h5py.File(infile, "r", libver='latest') as hf: return hf["image"][:]
3a9a83f03a32a029a0dda5e86ac9432c96ff62c6
31,838
import json def enqueue_crawling_job(delegate_or_broadcast_svc, job_id, urls, depth): """ Used to enqueue a crawling job (or delegate a sub-url on a current job) to the worker pool. :type delegate_or_broadcast_svc: ZeroMQDelegatorService or ZeroMQBroadcastService. :param delegate_or_broadcast_svc: The web API service uses a ZeroMQBroadcastService to announce new crawling jobs. The crawler service uses ZeroMQDelegatorService to delegate any sub-links found while scouring a page. :param int job_id: The job ID that these URLs fall under. :param set urls: The URLs to crawl. We'll send out one announcement per URL. :param int depth: The depth that this crawl will be at. 0 being initial. :rtype: int :returns: The number of crawler announcements made. One per URL. """ message_dict = { 'job_id': job_id, 'depth': depth } for url in urls: message_dict['url'] = url message_str = json.dumps(message_dict) delegate_or_broadcast_svc.send_message(message_str) return len(urls)
6a211346edd6f921bf26ed08adcee98cff066764
31,839
def show_control_sidebar_tabs(): """Show the control sidebar tabs""" # Default the show recent activity tab to true default_dict = { 'SHOW_RECENT_ACTIVITY_TAB': True, } # Pull the settings for the control sidebar from settings. # It is possible that the show recent activity will be # overridden by the settings control_sidebar_tabs = { **default_dict, **getattr( settings, 'ADMINLTE2_ADMIN_CONTROL_SIDEBAR_TABS', {} ), } # Get the number of tabs that should be shown. This sums up the values # of the dictionary representing the control sidebar. Each value is a # boolean. Despite the fact that they values are booleans, the sum operation # will work since False = 0 and True = 1. Therefore, one setting set to # true will yield True, and 3 settings set to try will yield 3. number_of_tabs = sum(control_sidebar_tabs.values()) # If the number of tabs is greater than 1, we will turn the control sidebar # into tabs. If it is 0 or 1 tab, it will not render the tabs part. show_tabs = number_of_tabs > 1 return { 'show_csb_tabs': show_tabs, 'show_csb_recent_tab': control_sidebar_tabs.get( 'SHOW_RECENT_ACTIVITY_TAB', False ), 'show_csb_settings_tab': control_sidebar_tabs.get( 'SHOW_SETTINGS_TAB', False ), 'show_csb_extra_tab': control_sidebar_tabs.get( 'SHOW_EXTRA_TABS', False ), }
f30147c39c507effa92e2cd6c5bc8f9dd84438b6
31,840
def unsubscribe(login, rec): """Unsubscribe from user """ try: if login == env.user.login: raise SubscribeError if rec: if users.check_subscribe_to_user_rec(login): fn = users.unsubscribe_rec else: return xmpp_template('sub_rec_not', login=login) else: if users.check_subscribe_to_user(login): fn = users.unsubscribe else: return xmpp_template('sub_not', login=login) if not fn(login): if rec: return xmpp_template('sub_unsub_rec_ok', login=login) else: return xmpp_template('sub_unsub_ok', login=login) except UserNotFound: return xmpp_template('user_not_found', login=login) except SubscribeError: if rec: return xmpp_template('sub_unsub_rec_error', login=login) else: return xmpp_template('sub_unsub_error', login=login)
c0d79eb011734de3a06c5d50e187e4ecaa7a6319
31,841
def build_script(configurators): """ Loops over configurators, calling gather_input on them and then renders the script sections in a template. """ def gather_input(configurator): cfg = configurator.Config() dialog.set_background_title(cfg.description) return {"config": cfg, "input": cfg.gather_input()} def generate_script(input_data): cfg = input_data["config"] return {"name": cfg.description, "content": cfg.generate_script(input_data["input"])} sections = map(generate_script, map(gather_input, configurators)) return render_template(__file__, "install", {"sections": sections, "shared_globals": shared_globals})
4a332c3c0ebb55074babb1872a586dd43276f63a
31,842
def fix_source_eol( path, is_dry_run = True, verbose = True, eol = '\n' ): """Makes sure that all sources have the specified eol sequence (default: unix).""" if not os.path.isfile( path ): raise ValueError( 'Path "%s" is not a file' % path ) try: f = open(path, 'rb') except IOError, msg: print >> sys.stderr, "%s: I/O Error: %s" % (file, str(msg)) return False try: raw_lines = f.readlines() finally: f.close() fixed_lines = [line.rstrip('\r\n') + eol for line in raw_lines] if raw_lines != fixed_lines: print '%s =>' % path, if not is_dry_run: f = open(path, "wb") try: f.writelines(fixed_lines) finally: f.close() if verbose: print is_dry_run and ' NEED FIX' or ' FIXED' return True
e435e9856d14fdcaf1d833be4e8df7414d4c92eb
31,843
import logging def truew(crse=None, cspd=None, hd=None, wdir=None, wspd=None, zlr=DEFAULT_ZRL, wmis=DEFAULT_MISSING_VALUES, ): """ FUNCTION truew() - calculates true winds from vessel speed, course and relative wind INPUTS crse real Course TOWARD WHICH the vessel is moving over the ground. Referenced to true north and the fixed earth. cspd real Speed of vessel over the ground. Referenced to the fixed earth. hd real Heading toward which bow of vessel is pointing. Referenced to true north. zlr real Zero line reference -- angle between bow and zero line on anemometer. Direction is clockwise from the bow. (Use bow=0 degrees as default when reference not known.) wdir real Wind direction measured by anemometer, referenced to the ship. wspd real Wind speed measured by anemometer,referenced to the vessel's frame of reference. wmis real Five element array containing missing values for crse, cspd, wdir, wspd, and hd. In the output, the missing value for tdir is identical to the missing value specified in wmis for wdir. Similarly, tspd uses the missing value assigned to wmis for wspd. *** WDIR MUST BE METEOROLOGICAL (DIRECTION FROM)! CRSE AND CSPD MUST BE RELATIVE TO A FIXED EARTH! *** OUTPUT VALUES: tdir real True wind direction - referenced to true north and the fixed earth with a direction from which the wind is blowing (meteorological). tspd real True wind speed - referenced to the fixed earth. adir real Apparent wind direction (direction measured by wind vane, relative to true north). IS REFERENCED TO TRUE NORTH & IS DIRECTION FROM WHICH THE WIND IS BLOWING. Apparent wind direction is the sum of the ship relative wind direction (measured by wind vane relative to the bow), the ship's heading, and the zero-line reference angle. NOTE: The apparent wind speed has a magnitude equal to the wind speed measured by the anemometer. """ # INITIALIZE VARIABLES adir = 0 dtor = pi / 180 # Check course, ship speed, heading, wind direction, and # wind speed for valid values (i.e. neither missing nor # outside physically acceptable ranges). err_mesg = [] if crse is None or crse < 0 or crse > 360 or crse == wmis[0]: err_mesg.append('Bad or missing course: %g' % crse) if cspd is None or cspd < 0 or cspd == wmis[1]: err_mesg.append('Bad or missing cspd: %g' % cspd) if wdir is None or wdir < 0 or wdir > 360 or wdir == wmis[2]: err_mesg.append('Bad or missing wind dir: %g' % wdir) if wspd is None or wspd < 0 or wspd == wmis[3]: err_mesg.append('Bad or missing wind speed: %g' % wspd) if hd is None or hd < 0 or hd > 360 or hd == wmis[4]: err_mesg.append('Bad or missing heading: %g' % hd) if zlr < 0.0 or zlr > 360.0: err_mesg.append('Bad or missing zero line reference: %g' % zlr) zlr = 0.0 if err_mesg: logging.warning('TrueWinds: %s', '; '.join(err_mesg)) return (None, None, None) # Convert from navigational coordinates to # angles commonly used in mathematics mcrse = 90 - crse # Keep the value between 0 and 360 degrees if (mcrse <= 0.0): mcrse = mcrse + 360.0 # Calculate apparent wind direction adir = hd + wdir + zlr # Keep adir between 0 and 360 degrees while adir >= 360.0: adir = adir - 360.0 # Convert from meteorological coordinates to angles # commonly used in mathematics mwdir = 270.0 - adir # Keep mdir between 0 and 360 degrees if (mwdir <= 0.0): mwdir = mwdir + 360.0 if (mwdir > 360.0): mwdir = mwdir - 360.0 # Determine the east-west vector component and the # north-south vector component of the true wind x = wspd * cos(mwdir * dtor) + cspd * cos(mcrse * dtor) y = wspd * sin(mwdir * dtor) + cspd * sin(mcrse * dtor) # Use the two vector components to calculate the true wind # speed tspd = sqrt(x * x + y * y) calm_flag = 1 # Determine the angle for the true wind if (abs(x) > 1e-05): mtdir = (atan2(y, x)) / dtor else: if (abs(y) > 1e-05): mtdir = 180.0 - (90.0 * y) / abs(y) else: # The true wind speed is essentially zero: winds # are calm and direction is not well defined mtdir = 270.0 calm_flag = 0 # Convert from the common mathematical angle coordinate to # the meteorological wind direction tdir = 270.0 - mtdir # Make sure that the true wind angle is between # 0 and 360 degrees while tdir < 0.0: tdir = (tdir + 360.0) * calm_flag while tdir > 360.0: tdir = (tdir - 360.0) * calm_flag # Ensure wmo convention for tdir = 360 for win # from north and tspd > 0 if (calm_flag == 1 and (tdir < 0.0001)): tdir = 360.0 return (tdir, tspd, adir)
b3a97b126ba9bc32bd1452c3278ec72512dc6dd8
31,844
def ascii_encode(string): """Return the 8-bit ascii representation of `string` as a string. :string: String. :returns: String. """ def pad(num): binary = baseN(num, 2) padding = 8 - len(binary) return "0"*padding + binary return "".join(pad(ord(c)) for c in string)
1a06c49514e5c320d299a93aa683f249470b26f7
31,845
import chunk def print_statement(processor, composer, searcher): # type: (Parser, Compiler, scanner.Scanner) -> Tuple[Parser, Compiler] """Evaluates expression and prints result.""" processor, composer = expression(processor, composer, searcher) processor = consume( processor, searcher, scanner.TokenType.TOKEN_SEMICOLON, "Expect ';' after expression.", ) return emit_byte(processor, composer, chunk.OpCode.OP_PRINT)
ecb930fb90c7cb88e874d85df42ba3d28225031d
31,846
def gmm_sky(values, **extras): """Use a gaussian mixture model, via expectation maximization. of course, there's only one gaussian. could add another for faint sources, bad pixels, but...""" gmm = sklearn.mixture.GMM() r = gmm.fit(values) return r.means_[0, 0], np.sqrt(r.covars_[0, 0])
a41a386b931c2eaa71dd5927f5060548dac5dc33
31,847
import pytz def getLocalTime(utc_dt, tz): """Return local timezone time """ local_tz = pytz.timezone(tz) local_dt = utc_dt.replace(tzinfo=pytz.utc).astimezone(local_tz) return local_dt
70789f61a90d991714fafe3c15917d1f1113fe8f
31,848
def SyncSleep(delay, name=None): """Pause for `delay` seconds (which need not be an integer). This is a synchronous (blocking) version of a sleep op. It's purpose is to be contrasted with Examples>AsyncSleep. Args: delay: tf.Tensor which is a scalar of type float. name: An optional name for the op. Returns: The `delay` value. """ return examples_sync_sleep(delay=delay, name=name)
7015a756cc670efcafce9952269e3a7f2465e3fb
31,849
def admin(): """ Adminページ """ return redirect(url_for('rooms'))
090d00f84204f58b22e83c468d368d928ea92e03
31,850
def timer(interval): """ Decorator for registering a function as a callback for a timer thread. Timer object deals with delegating event to callback function. """ def decorator(f): timers = timer.__dict__.setdefault('*timers', []) timers.append(Timer(f, interval)) return f return decorator
773fd5d072d7cc83eaf7512a6b6722b9df9ca1b1
31,851
def common_start(stra, strb): """ returns the longest common substring from the beginning of stra and strb """ def _iter(): for a, b in zip(stra, strb): if a == b: yield a else: return "" return ''.join(_iter())
365daf9e43a01e8a1871fbe88775880adba940a9
31,852
def auto_weight(X, Y, model, resolution=0.01, limits=0.05, **kwargs): """Automatically determine the weight to use in the CPD algorithm. Parameters ---------- X : ndarray (N, D) Fixed point cloud, an N by D array of N original observations in an n-dimensional space Y : ndarray (M, D) Moving point cloud, an M by D array of N original observations in an n-dimensional space model : str or BaseCPD child class The transformation model to use, available types are: Translation Rigid Euclidean Similarity Affine resolution : float the resolution at which to sample the weights limits : float or length 2 iterable The limits of weight to search kwargs : dictionary key word arguments to pass to the model function when its called. """ # test inputs model = choose_model(model) try: # the user has passed low and high limits limit_low, limit_high = limits except TypeError: # the user has passed a single limit limit_low = limits limit_high = 1 - limits # generate weights to test ws = np.arange(limit_low, limit_high, resolution) # container for various registrations regs = [] # iterate through weights for w in ws: kwargs.update(weight=w) reg = model(X, Y) reg(**kwargs) regs.append(reg) # if the dimension of the data is less than 3 use the 1 norm # else use the frobenius norm. This is a heuristic based on simulated data. if reg.D < 3: norm_type = 1 else: norm_type = "fro" # look at all the norms of the match matrices (The match matrix should be sparse # and the norms we've chosen maximize sparsity) norm = np.asarray([np.linalg.norm(reg.p_old, norm_type) for reg in regs]) # find the weight that maximizes sparsity w = ws[norm.argmax()] # update and run the model kwargs.update(weight=w) reg = model(X, Y) reg(**kwargs) # return the model to the user return reg
3eb18c38725f434d2a2756acfe4ade01e5964b93
31,853
def max(self, parameter_max): """ It returns the maximum value of a parameter and the value's indexes. Parameters ---------- parameter_max: str Name of the parameter. Returns ------- max_dict: dict Dictionary with the following format: { '<name of index 1>': <value of index 1>, '<name of index n>': <value of index n>, 'name of parameter': < maximum value of parameter> } If max_dict is None, all the values of the parameter are NaN. """ df = self.data[parameter_max] df = df.reset_index() try: max_dict = df.loc[ df[parameter_max] == df[parameter_max].max(skipna=True)].to_dict('records')[0] except IndexError: max_dict = None return max_dict
8acf9c645a7c427d543c9087d66318ddf4765330
31,854
import json def search(query): """ Searches your bucket. query can contain plaintext, and can also contain clauses like $key:"$value" that search for exact matches on specific keys. Returns either the request object (in case of an error) or a list of objects with the following keys: key: key of the object version_id: version_id of object version operation: Create or Delete meta: metadata attached to object size: size of object in bytes text: indexed text of object source: source document for object (what is actually stored in ElasticSeach) time: timestamp for operation """ es = _create_es() payload = {'query': {'query_string': { 'default_field': 'content', 'query': query, 'quote_analyzer': 'keyword', }}} r = es.search(index=es_index, body=payload) try: results = [] for result in r['hits']['hits']: key = result['_source']['key'] vid = result['_source']['version_id'] op = result['_source']['type'] meta = json.dumps(result['_source']['user_meta']) size = str(result['_source']['size']) text = result['_source']['text'] time = str(result['_source']['updated']) results.append({ 'key': key, 'version_id': vid, 'operation': op, 'meta': meta, 'size': size, 'text': text, 'source': result['_source'], 'time': time }) results = list(sorted(results, key=lambda x: x['time'], reverse=True)) return results except KeyError as e: return r
7844e503eb65a97d5729498fad4119d7b78606cd
31,855
import re def camel_to_snake(text: str) -> str: """ A helper function to convert `camelCase` to `snake_case`. - e.g. `bestBigBrawlerTime` -> `best_big_brawler_time` ### Parameters text: `str` The text to restructure from `camelCase` to `snake_case`. ### Returns `str` The restructured `snake_case` text. """ return re.compile(r"(?<!^)(?=[A-Z])").sub("_", text).lower()
b9ac748bf0cc345c7cfb0bade1e4b1e9cbdf712c
31,857
def get_stats(distance_results): """ list order: median, mean, min, max :param distance_results: :return: dictionary of stats """ if len(distance_results) == 0: return {'median': 0, 'mean': 0, 'min': 0, 'max': 0} else: return {'median': median(distance_results), 'mean': mean(distance_results), 'min': min(distance_results), 'max': max(distance_results)}
429a6b984f080fa351888177dd3d3f26e30d4a6e
31,858
from typing import Mapping def create(collection_id): """Create a mapping. --- post: summary: Create a mapping parameters: - description: The collection id. in: path name: collection_id required: true schema: minimum: 1 type: integer example: 2 requestBody: content: application/json: schema: $ref: '#/components/schemas/MappingCreate' responses: '200': content: application/json: schema: $ref: '#/components/schemas/Mapping' description: OK tags: - Collection - Mapping """ collection = get_db_collection(collection_id, request.authz.WRITE) data = parse_request("MappingCreate") mapping = Mapping.create( load_query(), get_table_id(data), collection, request.authz.id, entityset_id=get_entityset_id(data), ) db.session.commit() return MappingSerializer.jsonify(mapping)
b0283e174ccc0ba2f50cad2d7f416d0f6b570025
31,861
def get_arc_proxy_lifetime(proxy_file=None): """ Returns the remaining lifetime of the arc proxy in seconds. When *proxy_file* is *None*, it defaults to the result of :py:func:`get_arc_proxy_file`. Otherwise, when it evaluates to *False*, ``arcproxy`` is queried without a custom proxy file. """ out = _arc_proxy_info(args=["--infoitem=validityLeft"], proxy_file=proxy_file)[1].strip() try: return int(out) except: raise Exception("no valid lifetime found in arc proxy: {}".format(out))
08c46e3f25db792ae4553a4670487f04d27e9898
31,863
def LLR_alt2(pdf, s0, s1): """ This function computes the approximate generalized log likelihood ratio (divided by N) for s=s1 versus s=s0 where pdf is an empirical distribution and s is the expectation value of the true distribution. pdf is a list of pairs (value,probability). See http://hardy.uhasselt.be/Fishtest/GSPRT_approximation.pdf """ s, var = stats(pdf) return (s1 - s0) * (2 * s - s0 - s1) / var / 2.0
cb56260a390d1e9233e96e430835f851c222e30a
31,864
def load_configs(ex_dir): """ Loads all configuration files into a list from the given experiment directory. """ configs = [] run_nums = get_run_nums(ex_dir) for run_num in run_nums: loc = ex_dir + '/' + run_num try: configs.append(extract_config(loc)) except: raise Exception("Cannot load config in {}. Please remove this from the directory to proceed".format(loc)) return configs, run_nums
7413f3a310684c47b87bfc912fae39ab0e6067eb
31,865
from typing import Type def create_app(item_model: Type[Item], db_session: Session) -> StacApi: """Create application with a custom sqlalchemy item""" api = StacApi( settings=ApiSettings(indexed_fields={"datetime", "foo"}), extensions=[ TransactionExtension( client=TransactionsClient(item_table=item_model, session=db_session) ) ], client=CoreCrudClient(item_table=item_model, session=db_session), ) return api
80407ff030569bc4df23296e1e156b3d116f0cdc
31,866
from typing import Dict def reducemin(node: NodeWrapper, params: Dict[str, np.ndarray], xmap: Dict[str, XLayer]): """ ONNX ReduceMin to XLayer AnyOp conversion function """ return generic_reduce("ReduceMin", node, params, xmap)
f8f6c84d9aa0a1f5f3f53a21e65938f939806f57
31,867
def mass(query,ts): """Calculates Mueen's ultra-fast Algorithm for Similarity Search (MASS) between a query and timeseries. MASS is a Euclidian distance similarity search algorithm.""" #query_normalized = zNormalize(np.copy(query)) m = len(query) q_mean = np.mean(query) q_std = np.std(query) mean, std = movmeanstd(ts,m) dot = slidingDotProduct(query,ts) return np.sqrt(2*m*(1-(dot-m*mean*q_mean)/(m*std*q_std)))
89dc6b5da2e2197f3e96606d17912868a112b5f7
31,868
def concept_categories(): """概念类别映射{代码:名称}""" db = get_db() collection = db['同花顺概念'] pipeline = [ { '$project': { '_id': 0, '概念编码': 1, '概念名称': 1, } } ] ds = collection.aggregate(pipeline) df = pd.DataFrame.from_records(ds) try: df.columns = ['code', 'name'] except ValueError: raise NotImplementedError('本地数据库中"股票概念数据"为空,请运行`stock thsgn`') df.sort_values('code', inplace=True) return df.set_index('code').to_dict()['name']
0fd38a54ccfec50fbfeab438496a80b63bdf8a7f
31,869
def schema_validate(stack, schema_json): """Check that the schema is valid. .. warning: TidyWidget index is hardcoded! Parameters ---------- stack: pd.DataFrame The stacked data. schema_json: json Full description Returns ------- """ # Import library # Check if stack index has duplicates... # Should this be done outside in case our # reports might be useful in a way probably not. # Ensure that no index is repeated in stack stack = stack.reset_index() # Create schema schema = schema_from_json(schema_json) # Common columns cols_schema = set([c.name for c in schema.columns]) cols_stack = set(stack.column.dropna().unique()) columns = cols_schema.intersection(cols_stack) # Create report report = ValidationReport() report.add(1, "Processing schema validation...") # Loop for c in columns: aux = stack[stack.column.isin([c])].rename(columns={'result': c}) # Validate schema errors = schema.validate(aux, columns=[c]) # Complete report if len(errors): report.add(1, "\nTotal errors found in <{0}>: {1}".format(c, len(errors))) # for e in errors: # print(e) report.add(2, stack.iloc[[error.row for error in errors]]) # Return return True, report
5ad66d87c6ff09fecbc99338bd8e1fd1dc8a1ff9
31,870
def dict_to_config_str(config_dict): """Produces a version of a dict with keys (and some values) replaced with shorter string version to avoid problems with over long file names in tensorboard""" key_abrv = { "embedding_dimension": "ed", "loss_type": "lt", "initialize_uniform": "iu", "k_negative_samples": "ns", "distance_measure": "dm", "margin": "mrgn", "sample_negative_relations": "snr", "bias": "b", "feature_map_dimension": "fmd", "fix_conv_layers": "fcl", "fix_structure_embeddings": "fse", "fix_word_embeddings": "fwd", "pretrained_word_embeddings": "pwe", "max_words_per_sentence": "mwps", "vocab_dim": "vd", "filter_sizes": "fs", "dropout_keep_prob": "dkp", "description_mode": "dm", "l1_kernel_size": "l1ks", "l2_kernel_size": "l2ks", "entity_wd_type": "eWDt", "rel_wd_type": "rWDt", "type_wd": "tWD", "type_rel_wd": "trWD", "filt_top_t": "ftt", "filt_btm_t": "fbt", "emb_dropout": "edp" } val_abrv = { None: "X", False: "F", True: "T", "softplus": "sp" } entries = [] for name, value in config_dict.items(): key = key_abrv[name] if name in key_abrv else name if type(value) == str or type(value) == bool: value = val_abrv[value] if value in val_abrv else value if type(value) == list: value = "L" + "-".join([str(v) for v in value]) + "L" # Skip (='delete') variable_device, no ones cares and the escape symbol messes # with the generated file path if key == "variable_device": continue entries.append((key, value)) return entries
da7d4ae8a58c2dab2d07616ae25438c8c0e0252d
31,871
import time import json def wait_erased(fout, prog, erased_threshold=20., interval=3.0, prog_time=None, passn=0, need_passes=0, timeout=None, test=False, verbose=False): """ erased_threshold: stop when this percent contiguous into a successful erase Ex: if 99 iterations wasn't fully erased but 100+ was, stop at 120 iterations interval: how often, in seconds, to read the device """ tstart = time.time() # Last iteration timestamp. Used to "frame lock" reads at set interval tlast = None # Timestamp when EPROM was first half erased dt_50 = None dt_100 = None iter = 0 nerased = 0 while True: if tlast is not None: while time.time() - tlast < interval: time.sleep(0.1) tlast = time.time() dt_this = tlast - tstart iter += 1 if timeout and dt_this >= timeout: j = { "type": "timeout", 'iter': iter, 'seconds': dt_this, } fout.write(json.dumps(j) + '\n') fout.flush() raise Exception("Timed out") read_buf = prog.read()["code"] erased, erase_percent = is_erased(read_buf, prog_dev=prog.device) if erased or test: nerased += 1 if not dt_100: dt_100 = tlast - tstart else: nerased = 0 dt_100 = None # Declare done when we've been erased for some percentage of elapsed time complete_percent = 100.0 * nerased / iter # Convert to more human friendly 100% scale end_check = 100. * complete_percent / erased_threshold j = { "type": "read", 'iter': iter, 'seconds': dt_this, 'read': fw2str(read_buf), 'read_meta': "zlib", 'complete_percent': complete_percent, 'erase_percent': erase_percent, 'erased': erased } fout.write(json.dumps(j) + '\n') fout.flush() signature = hash8(read_buf) print( "pass %u / %u, iter % 3u @ %s: is_erased %u w/ erase_percent % 8.3f%%, sig %s, end_check: %0.1f%%" % ( passn, need_passes, iter, util.time_str_sec(dt_this), erased, erase_percent, signature, # end_check)) if dt_50 is None and erase_percent >= 50 or test: dt_50 = tlast - tstart print("50%% erased after %0.1f sec" % (dt_50, )) if end_check >= 100.0 or test: break dt_120 = tlast - tstart print("Erased 100%% after %0.1f sec" % (dt_100, )) print("Erased 120%% after %0.1f sec" % (dt_120, )) j = { "type": "footer", "erase_time": dt_100, "run_time": dt_120, "half_erase_time": dt_50 } if prog_time is not None: j["prog_time"] = prog_time fout.write(json.dumps(j) + '\n') fout.flush() return dt_100, dt_50
8ce4e6739d1d911353039c59ac8177f0733ea64d
31,872
def settle(people, rates, bills, decimal_places=2): """Calculate the smallest set of transactions needed to settle debts. For each person we sum the money spent for her and subtract the money she paid. We get the amount she should pay (it does not matter to whom from her point of view). After she does, she should get 0 and pay 0, therefore she is solved. The person who got her money now should pay more (or get less). So in each step we choose one yet unsolved person, give the money she should pay to someone else who has not been solved yet and update the money he is due. In n-1 steps we settle all debts (n is the number of people). Arguments people: list of strings - names of all the people. (Needed for All shortcut in csv) rates: dict of str -> float - exchange rates of currencies to the currency in which debts should be paid. Exchange rate for each currency (other than final_currency) that appears in filename should be specified. bills: pd.DataFrame - bills. Should have columns Name (of the person who paid), What (has been paid), Amount (of money paid), Currency (in which it has been paid; for example "EUR"), For (whom it has been paid; either ["All"] or list of names or ["AllBut"] + list of names, for example ["AllBut", "Adam", "David"]). decimal_places: int - number of decimal places to which the amounts to be paid should be rounded. Default 2. Return list of tuples (who:str, whom:str, how_much_should_pay:float) """ df = bills.copy() # add column to df - amount of money in the final currency try: df["AmountInCUR"] = df.Currency.map(lambda x: rates[x]) * df.Amount except KeyError as k: raise ValueError("Exchange rate for %s not specified" % (k.args[0])) # add lines to df for each person paying nothing for all df_people = pd.DataFrame({ "Name": people, "AmountInCUR": [0] * len(people), "For": ["All"] * len(people) }) df = df.append(df_people) # dict {"person": money spent for her, regardless who paid} money_spent = {} for person in people: money_spent.setdefault(person, 0) for amount, fw in zip(df.AmountInCUR, df.For): if fw[0] == "All": money_spent[person] += amount / len(people) elif fw[0] == "AllBut" and person not in fw[1:]: money_spent[person] += amount / (len(people) - (len(fw)-1)) elif fw[0] != "AllBut" and person in fw: money_spent[person] += amount / len(fw) # just creating pd.DataFrame from dict tmp = pd.DataFrame.from_records(list(money_spent.items())) tmp.columns = ["Name", "MoneySpent"] # create pd.DataFrame with columns "Name", "MoneySpent", "MoneyPaid", # "ShouldPay"; one row for each person sums = df.filter(["Name", "AmountInCUR"]).groupby("Name").sum() sums.columns = ["MoneyPaid"] sums = pd.merge(tmp, sums, left_on="Name", right_index=True) sums["ShouldPay"] = sums.MoneySpent - sums.MoneyPaid howto = sums.sort("ShouldPay") # set of tuples (who, whom, how_much_should_pay) payments = set() # topay - list of lists [how_much_should_pay, "who"] topay = [[p, w] for p, w in zip(howto.ShouldPay, howto.Name) if p != 0] # Keep people sorted by the amount of money they should pay. # At each step take all the money the last one in the list should pay (it # is the one who should pay most) and give it to the first one -> the last # one is solved and removed from the list. Because the overall amount of # money that should be paid is equal to the overall amount of money that # should be received, in at most n-1 steps all the debts are settled (where # n is the number of people involved). while len(topay) > 1: pay, who = topay.pop() topay[0][0] += pay if pay > 0: payments.add((who, topay[0][1], round(pay, decimal_places))) topay.sort() return set(payments)
25890a647a492999fe44e668d2270f359fbc3863
31,874
import ast def extract_ast_class_def_by_name(ast_tree, class_name): """ Extracts class definition by name :param ast_tree: AST tree :param class_name: name of the class. :return: class node found """ class ClassVisitor(ast.NodeVisitor): """ Visitor. """ def __init__(self): self.found_class_node = None def visit_ClassDef(self, node): # pylint: disable=invalid-name """ Visit class definition. :param node: node. :return: """ if node.name == class_name: self.found_class_node = node visitor = ClassVisitor() visitor.visit(ast_tree) return visitor.found_class_node
011f1cb8d965db8e30e6f4281704a6140103946b
31,875
def getAttribute(v, key): """ This function is mainly for retrive @@transducer/xxx property, and fantasy-land/xxx property. We assume dict/object in Python may own such properties. dict case: d = {'@@transducer/init': lambda: True} init_fn = getAttribute(d, '@@transducer/init') obj case: class T: def init(self): return True def get(self, type): if type == '@@transducer/init': return self.init t = T() init_fn = getAttribute(t, '@@transducer/init') method case 1: class Mapper: def map(fn): return fn m = Mapper() map_fn = getAttribute(m, 'map') method case 2: class Mapper: def map(self, fn): return fn m = Mapper() map_fn = getAttribute(m, 'map') return: function got from key, otherwise None """ if isinstance(v, dict) and key in v: return v[key] if _has(v, key): return getattr(v, key, None) if _has(v, 'get'): try: # Case that get is (key, default) -> value signature return v.get(key, default=None) except TypeError: try: # Case that get is a instance method with (self, key, default) -> value signature return v.get(v, key, default=None) except TypeError: # Unknown signature return None
d44d31bb6734637c56554e040d93620bb2d617e0
31,876
def getdata(mca): """ Extract the data contained in spectrum files INPUT: mca; path OUTPUT: Data; 1D-array """ name = str(mca) name = name.split("\\")[-1] name = name.replace('_',' ') # custom MC generated files if 'test' in name or 'obj' in name or 'newtest' in name: Data = [] datafile = open(mca) lines = datafile.readlines() for line in lines: line = line.split() try: counts = float(line[1]) except: counts = float(line[0]) counts = counts * 10e3 Data.append(counts) Data = np.asarray(Data) # this works for mca extension files else: ObjectData=[] datafile = open(mca) line = datafile.readline() line = line.replace("\r","") line = line.replace("\n","") # AMPTEK files start with this tag if "<<PMCA SPECTRUM>>" in line: while "<<DATA>>" not in line: line = datafile.readline() if line == "": break line = datafile.readline() while "<<END>>" not in line: try: ObjectData.append(int(line)) except ValueError as exception: datafile.close() raise exception.__class__.__name__ line = datafile.readline() if line == "": break # Works if file is just counts per line elif line.isdigit(): while "<<END>>" not in line: ObjectData.append(int(line)) line = datafile.readline() if line == "": break # if file has two columns separated by space or tab elif "\t" in line or " " in line: while "<<END>>" not in line: counts = line.split("\t")[-1] if counts.isdigit(): ObjectData.append(int(counts)) else: counts = line.split(" ")[-1] ObjectData.append(int(counts)) line = datafile.readline() if line == "": break Data = np.asarray(ObjectData) datafile.close() return Data
4b89f6a6d93cf174c6791fb908482958d7651220
31,877
def merge_dicts(dict_a, dict_b): """Recursively merge dictionary b into dictionary a. If override_nones is True, then """ def _merge_dicts_(a, b): for key in set(a.keys()).union(b.keys()): if key in a and key in b: if isinstance(a[key], dict) and isinstance(b[key], dict): yield (key, dict(_merge_dicts_(a[key], b[key]))) elif b[key] is not None: yield (key, b[key]) else: yield (key, a[key]) elif key in a: yield (key, a[key]) elif b[key] is not None: yield (key, b[key]) return dict(_merge_dicts_(dict_a, dict_b))
1ce3d253ceb467ead2bee8efb2652b81191147d0
31,878
import torch def adjust_contrast(inp, contrast_factor): """ Adjust Contrast of an image. This implementation aligns OpenCV, not PIL. Hence, the output differs from TorchVision. The inp image is expected to be in the range of [0, 1]. """ if not isinstance(inp, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(inp)}") if not isinstance(contrast_factor, (float, torch.Tensor,)): raise TypeError(f"The factor should be either a float or torch.Tensor. " f"Got {type(contrast_factor)}") if isinstance(contrast_factor, float): contrast_factor = torch.tensor([contrast_factor]) contrast_factor = contrast_factor.to(inp.device).to(inp.dtype) if (contrast_factor < 0).any(): raise ValueError(f"Contrast factor must be non-negative. Got {contrast_factor}") for _ in inp.shape[1:]: contrast_factor = torch.unsqueeze(contrast_factor, dim=-1) # Apply contrast factor to each channel x_adjust = inp * contrast_factor # Truncate between pixel values out = torch.clamp(x_adjust, 0.0, 1.0) return out
9e98f1b0cf11efd6c9aa14b4ff35701605690134
31,879
def default_tiling(): """Return default tiling options for GeoTIFF driver. Returns ------- dict GeoTIFF driver tiling options. """ return {"tiled": True, "blockxsize": 256, "blockysize": 256}
c2d78f2d87478121cc52124d0b33edde5850a10a
31,880
import importlib def read_template(): """Loads a html template for jinja. Returns: str: The loaded template. """ html = 'image_template.html' package = '.'.join([__name__, 'templates']) return importlib.resources.read_text(package, html)
f6288076ed32c2ed6db86e91595c4a635c9ce5b0
31,881
def parse_training_labels(train_box_df, train_image_dirpath): """ Reads and parses CSV file into a pandas dataframe. Example: { 'patientId-00': { 'dicom': path/to/dicom/file, 'label': either 0 or 1 for normal or pnuemonia, 'boxes': list of box(es) }, 'patientId-01': { 'dicom': path/to/dicom/file, 'label': either 0 or 1 for normal or pnuemonia, 'boxes': list of box(es) }, ... } """ # Define lambda to extract coords in list [x, y, width, height] def extract_box(row): return [row['x'], row['y'], row['width'], row['height']] parsed = {} for n, row in train_box_df.iterrows(): # Initialize patient entry into parsed pid = row['patientId'] if pid not in parsed: parsed[pid] = { 'dicom': train_image_dirpath + '/%s.dcm' % pid, 'label': row['Target'], 'boxes': []} # Add box if opacity is present if parsed[pid]['label'] == 1: parsed[pid]['boxes'].append(extract_box(row)) return parsed
1b6765c6c3ffe261cd6d796fd1f97154008a5126
31,882
from typing import Optional from typing import Union def retryable_request(retries: Optional[Union[int, Retry]] = 1, *, session: Session = None, backoff_factor: float = None) -> Session: """Возвращает объект Session, который способен повторять запрос указанное число раз. :param retries: Количество повторов. :param session: Объект сессии. :param backoff_factor: Увеличивающаяся задержка между повторами. """ assert retries is None or isinstance(retries, (int, Retry)) retries = 1 if retries is None else retries backoff_factor = 0 if backoff_factor is None else backoff_factor session = Session() if session is None else session if isinstance(retries, int): retry = Retry(total=retries, read=retries, connect=retries, backoff_factor=backoff_factor) else: retry = retries adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session
eb2396d9284eb9693643339477ab2dbb5aadcb8c
31,883
def get_timeouts(timeout=None): """Ensures that both read and connect timeout are passed in final patched requests call. In case any of it is missing in initial call by the caller, default values are added""" if timeout: return timeout return (Config.connect_timeout(), Config.read_timeout())
f2545334efdf0e1c740cffa5554a8ee8c91eda0c
31,884
import math def populateDayOverview(excelDataConsolidated:ExcelDataConsolidation, overviewSheetData) -> DayOverview: """Populates the Day Overview Object Arguments: excelDataConsolidated {ExcelDataConsolidation} -- [description] overviewSheetData {[type]} -- [description] Returns: DayOverview -- [description] """ if (math.isnan(overviewSheetData["Prayer"][0])): prayer = PRAYER_DEFAULT else: prayer = not PRAYER_DEFAULT return DayOverview(excelDataConsolidated.getDateRecorded(), excelDataConsolidated.getStartTime(), excelDataConsolidated.getLeavingTime(), excelDataConsolidated.getWorkHours(), excelDataConsolidated.getBreakHours(), excelDataConsolidated.getLunchDuration(), getMorningScheduleId(overviewSheetData["Morning"][0]), prayer)
6969e9c047d1206df059c687f4d9b2e13ab6cc61
31,885
async def get_loading_images(mobi_app: str = "android", platform: str = "android", height: int = 1920, width: int = 1080, build: int = 999999999, birth: str = "", credential: Credential = None): """ 获取开屏启动画面 Args: build (int, optional) : 客户端内部版本号 mobi_app (str, optional) : android / iphone / ipad platform (str, optional) : android / ios / ios height (int, optional) : 屏幕高度 width (int, optional) : 屏幕宽度 birth (str, optional) : 生日日期(四位数,例 0101) credential (Credential, optional): 凭据 Returns: API 调用返回结果 """ credential = credential if credential is not None else Credential() api = API["splash"]["list"] params = { "build": build, "mobi_app": mobi_app, "platform": platform, "height": height, "width": width, "birth": birth } return await request('GET', api['url'], params, credential=credential)
032f7ab911dc48dfbec2b09b33863230c4295c67
31,886
def cross_energy(sig, eps, mesh): """ Calcul de l'energie croisée des champs de contrainte sig et de deformation eps. """ return fe.assemble(fe.inner(sig, eps) * fe.dx(mesh))
b6bcf3a9c2885e1d3bf6b8c0f3e30454854ed474
31,887
import requests def login(): """ 登录API :return: True: 登录成功; False: 登录失败 """ ctrl.BEING_LOG = True if check_login_status(): ctrl.BEING_LOG = False return True error_times = 0 while True: try: update_proxy() update_cookies() username = change_to_base64(account.username) password = change_to_base64(account.password) captcha = get_captcha() logger.info('验证码识别结果:%s' % captcha) form_data = url_login.get('form_data') form_data.__setitem__('j_validation_code', captcha) form_data.__setitem__('j_username', username) form_data.__setitem__('j_password', password) resp = requests.post(url=url_login.get('url'), headers=url_login.get('headers'), data=form_data, cookies=ctrl.COOKIES, proxies=ctrl.PROXIES, timeout=TIMEOUT) if resp.text.find(account.username + ',欢迎访问') != -1: # 网站调整了逻辑,下面这句不用了 # ctrl.COOKIES.__delitem__('IS_LOGIN') # ctrl.COOKIES.set('IS_LOGIN', 'true', domain='www.pss-system.gov.cn/sipopublicsearch/patentsearch') jsession = ctrl.COOKIES.get('JSESSIONID') ctrl.COOKIES = resp.cookies ctrl.COOKIES.set('JSESSIONID', jsession, domain='www.pss-system.gov.cn') # logger.info(jsession) update_cookies(ctrl.COOKIES) ctrl.BEING_LOG = False logger.info('登录成功') return True else: if error_times > 5: break logger.error('登录失败') error_times += 1 except: pass ctrl.BEING_LOG = False return False
a34ed7b8f44680b826d648193150c0387af18e7a
31,888
def logout(): """Logout""" next_url = request.args.get('next') if 'next' in request.args else None # status = request.args.get('status') if 'status' in request.args else None # client_id = request.args.get('client_id') if 'client_id' in request.args else None logout_user() return redirect(next_url if next_url else '/')
0cb55a1845386e655f313ee519a84b1ab548b971
31,889
from operator import and_ def find_all(query, model, kwargs): """ Returns a query object that ensures that all kwargs are present. :param query: :param model: :param kwargs: :return: """ conditions = [] kwargs = filter_none(kwargs) for attr, value in kwargs.items(): if not isinstance(value, list): value = value.split(',') conditions.append(get_model_column(model, attr).in_(value)) return query.filter(and_(*conditions))
84e24214d21cb70a590af395451f250002de21bf
31,890
def ot1dkl(x, y, M, epsilon, log=True, **kwargs): """General OT 2d function.""" if log: ot = ot1dkl_log else: ot = ot1dkl_ output = ot(x, y, M, epsilon, **kwargs) return output
6c56ca504b5cfffdc45f0a1931ae33cfe8b5fe8c
31,891
def normalize_element_without_regex(filter, field): """ mongomock does not support regex... """ if len(filter) > 0: filters = {field: { "$in": filter}} else: filters = {} print filters return filters
55fa5d108891819d9e8ee208b6475aed95b49b2a
31,892
def _pad_random(m, new_rows, rand): """Pad a matrix with additional rows filled with random values.""" rows, columns = m.shape low, high = -1.0 / columns, 1.0 / columns suffix = rand.uniform(low, high, (new_rows, columns)).astype(REAL) return vstack([m, suffix])
9ac694ae0f8451f2b18f75acfa414f07c5a1fbf9
31,893
def quantize_sequences(sequences, alphabet): """Giving prescribing alphabet, quantize each caracter using index in alphabet in each sequence. input: sequences: [str] return: [[int]] """ print("quantizing sequences...") new_sequences = [] for sequence in sequences: new_sequence = [] # add width to fit the conv2D of TF for character in sequence.lower(): if character in alphabet: new_sequence.append(alphabet.index(character)) else: new_sequence.append(len(alphabet)) new_sequences.append(new_sequence) return new_sequences
7b8a870d72d6b0a9568fba8d96a1d3c2e422ff59
31,894
def search(context, mpd_query): """ *musicpd.org, music database section:* ``search {TYPE} {WHAT} [...]`` Searches for any song that contains ``WHAT``. Parameters have the same meaning as for ``find``, except that search is not case sensitive. *GMPC:* - does not add quotes around the field argument. - uses the undocumented field ``any``. - searches for multiple words like this:: search any "foo" any "bar" any "baz" *ncmpc:* - does not add quotes around the field argument. - capitalizes the field argument. *ncmpcpp:* - also uses the search type "date". - uses "file" instead of "filename". """ try: query = _query_from_mpd_search_format(mpd_query) except ValueError: return results = context.core.library.search(**query).get() artists = [_artist_as_track(a) for a in _get_artists(results)] albums = [_album_as_track(a) for a in _get_albums(results)] tracks = _get_tracks(results) return translator.tracks_to_mpd_format(artists + albums + tracks)
c24881b3298c444f6f80fe690f71ed8f504d78f1
31,896
def get_camera_pose(camera_info): """ :param camera_info: :return: """ camera_pose = list() for sbj in camera_info.keys(): for i, cam in enumerate(camera_info[sbj]): camera_pose.append(cam.cam_orig_world.reshape(3)) return np.array(camera_pose)
a371ce035b51b8c01775152bd5bb7355040f1cb6
31,897