content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def pattern(): """Start a pattern Expected arguments are: name, delay, pause """ if request.args.get('name') is None: return '' pattern = request.args.get('name') delay = float(request.args.get('delay', 0.1)) pause = float(request.args.get('pause', 0.5)) LightsController.start_pattern(pattern=pattern, delay=delay, pause=pause) return ''
13d1ff59dbd4521b157ab28bae75fed30378f8c5
30,881
def smow(t): """ Density of Standard Mean Ocean Water (Pure Water) using EOS 1980. Parameters ---------- t : array_like temperature [℃ (ITS-90)] Returns ------- dens(t) : array_like density [kg m :sup:`3`] Examples -------- >>> # Data from UNESCO Tech. Paper in Marine Sci. No. 44, p22. >>> import seawater as sw >>> t = T90conv([0, 0, 30, 30, 0, 0, 30, 30]) >>> sw.smow(t) array([ 999.842594 , 999.842594 , 995.65113374, 995.65113374, 999.842594 , 999.842594 , 995.65113374, 995.65113374]) References ---------- .. [1] Fofonoff, P. and Millard, R.C. Jr UNESCO 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. in Mar. Sci., No. 44, 53 pp. Eqn.(31) p.39. http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf .. [2] Millero, F.J. and Poisson, A. International one-atmosphere equation of state of seawater. Deep-Sea Res. 1981. Vol28A(6) pp625-629. doi:10.1016/0198-0149(81)90122-9 """ t = np.asanyarray(t) a = (999.842594, 6.793952e-2, -9.095290e-3, 1.001685e-4, -1.120083e-6, 6.536332e-9) T68 = T68conv(t) return (a[0] + (a[1] + (a[2] + (a[3] + (a[4] + a[5] * T68) * T68) * T68) * T68) * T68)
1f7ae913a1f4c71493d7d94d04bf543e6ffff72b
30,882
from typing import Optional from typing import Tuple import torch def generate_change_image_given_dlatent( dlatent: np.ndarray, generator: networks.Generator, classifier: Optional[MobileNetV1], class_index: int, sindex: int, s_style_min: float, s_style_max: float, style_direction_index: int, shift_size: float, label_size: int = 2, num_layers: int = 14 ) -> Tuple[np.ndarray, float, float]: """Modifies an image given the dlatent on a specific S-index. Args: dlatent: The image dlatent, with sape [dlatent_size]. generator: The generator model. Either StyleGAN or GLO. classifier: The classifier to visualize. class_index: The index of the class to visualize. sindex: The specific style index to visualize. s_style_min: The minimal value of the style index. s_style_max: The maximal value of the style index. style_direction_index: If 0 move s to it's min value otherwise to it's max value. shift_size: Factor of the shift of the style vector. label_size: The size of the label. Returns: The image after the style index modification, and the output of the classifier on this image. """ expanded_dlatent_tmp = torch.tile(dlatent.unsqueeze(1),[1, num_layers, 1]) network_inputs = generator.synthesis.style_vector_calculator(expanded_dlatent_tmp) style_vector = torch.cat(generator.synthesis.style_vector_calculator(expanded_dlatent_tmp)[1], dim=1).numpy() orig_value = style_vector[0, sindex] target_value = (s_style_min if style_direction_index == 0 else s_style_max) if target_value == orig_value: weight_shift = shift_size else: weight_shift = shift_size * (target_value - orig_value) layer_idx, in_idx = sindex_to_layer_idx_and_index(network_inputs[1], sindex) layer_one_hot = torch.nn.functional.one_hot(torch.Tensor([in_idx]).to(int), network_inputs[1][layer_idx].shape[1]) network_inputs[1][layer_idx] += (weight_shift * layer_one_hot) svbg_new = group_new_style_vec_block(network_inputs[1]) images_out = generator.synthesis.image_given_dlatent(expanded_dlatent_tmp, svbg_new) images_out = torch.maximum(torch.minimum(images_out, torch.Tensor([1])), torch.Tensor([-1])) change_image = torch.tensor(images_out.numpy()) result = classifier(change_image) change_prob = nn.Softmax(dim=1)(result).detach().numpy()[0, class_index] change_image = change_image.permute(0, 2, 3, 1) return change_image, change_prob
89ad94dd6f74c175ede27712046d3c46ba43143c
30,884
def _build_square(A, B, C, D): """Build a matrix from submatrices A B C D """ return np.vstack(( np.hstack((A, B)), np.hstack((C, D)) ))
510b39f433023339f977a665c055f60abe46a160
30,886
def DataFrame_to_AsciiDataTable(pandas_data_frame,**options): """Converts a pandas.DataFrame to an AsciiDataTable""" # Set up defaults and pass options defaults={} conversion_options={} for key,value in defaults.items(): conversion_options[key]=value for key,value in options.items(): conversion_options[key]=value conversion_options["column_names"]=pandas_data_frame.columns.tolist()[:] conversion_options["data"]=pandas_data_frame.values.tolist()[:] conversion_options["column_types"]=[str(x) for x in pandas_data_frame.dtypes.tolist()[:]] new_table=AsciiDataTable(None,**conversion_options) return new_table
2864440528324e00e5d7389b5cc2b04aecbb833b
30,888
def generate_fps_from_reaction_products(reaction_smiles, fp_data_configs): """ Generates specified fingerprints for the both reactive and non-reactive substructures of the reactant and product molecules that are the participating in the chemical reaction. """ # Generate the RDKit Mol representations of the product molecules and generate the reaction cores. reactants, _, products = parse_reaction_roles(reaction_smiles, as_what="mol_no_maps") reaction_cores = get_reaction_core_atoms(reaction_smiles) # Separate the reaction cores if they consist out of multiple non-neighbouring parts. separated_cores = get_separated_cores(reaction_smiles, reaction_cores) # Define variables which will be used for storing the results. total_reactive_fps, total_non_reactive_fps = [], [] # Iterate through the product molecules and generate fingerprints for all reactive and non-reactive substructures. for p_ind, product in enumerate(products): # Iterate through all of the dataset configurations. for fp_config in fp_data_configs: reactive_fps, non_reactive_fps = [], [] # Generate fingerprints from the reactive substructures i.e. the reaction core(s). for core in separated_cores[1][p_ind]: # Generate reactive EC fingerprints and add them to the list. if fp_config["type"] == "ecfp": reactive_fps.append(construct_ecfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=core, output_type="np_array", as_type="np_float")) # Generate reactive HS fingerprints and add them to the list. else: reactive_fps.append(construct_hsfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=core, neighbourhood_ext=fp_config["ext"])) # Generate the extended environment of the reaction core. extended_core_env = get_atom_environment(reaction_cores[1][p_ind], product, degree=1) # Generate fingerprints from the non-reactive substructures i.e. non-reaction core substructures. for bond in product.GetBonds(): # Generate the extended environment of the focus bond. extended_bond_env = get_bond_environment(bond, product, degree=1) # If the extended environment of the non-reactive substructure does not overlap with the extended # reaction core, generate a non-reactive fingerprint representation. if not extended_bond_env.intersection(extended_core_env): # Generate non-reactive EC fingerprints and add them to the list. if fp_config["type"] == "ecfp": non_reactive_fps.append( construct_ecfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=[bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()], output_type="np_array", as_type="np_float")) # Generate non-reactive HS fingerprints and add them to the list. else: non_reactive_fps.append( construct_hsfp(product, radius=fp_config["radius"], bits=fp_config["bits"], from_atoms=[bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()], neighbourhood_ext=fp_config["ext"])) # Append the generated fingerprints to the final list. total_reactive_fps.append(reactive_fps) total_non_reactive_fps.append(non_reactive_fps) # Return all of the generated fingerprints and labels. return total_reactive_fps, total_non_reactive_fps
42c4777dcf9c306cd45f9e94bbf18c0d1768c59b
30,891
import torch def count_acc(logits, label): """The function to calculate the . Args: logits: input logits. label: ground truth labels. Return: The output accuracy. """ pred = F.softmax(logits, dim=1).argmax(dim=1) if torch.cuda.is_available(): return (pred == label).type(torch.cuda.FloatTensor).mean().item() return (pred == label).type(torch.FloatTensor).mean().item()
2f34be0cfb52a438c66b36d1d653ecbd72d559e2
30,892
def cuda_argmin(a, axis): """ Location of minimum GPUArray elements. Parameters: a (gpu): GPUArray with the elements to find minimum values. axis (int): The dimension to evaluate through. Returns: gpu: Location of minimum values. Examples: >>> a = cuda_argmin(cuda_give([[1, 2, 3], [6, 5, 4]]), axis=1) array([[0], [2]], dtype=uint32) >>> type(a) <class 'pycuda.gpuarray.GPUArray'> """ return skcuda.misc.argmin(a, axis, keepdims=True)
25231969616e5c14736757a7b13f058ee218b6aa
30,893
def _process_columns(validated_data, context): """Process the used_columns field of a serializer. Verifies if the column is new or not. If not new, it verifies that is compatible with the columns already existing in the workflow :param validated_data: Object with the parsed column items :param context: dictionary with additional objects for serialization :return: List of new columns """ new_columns = [] for citem in validated_data: cname = citem.get('name') if not cname: raise Exception( _('Incorrect column name {0}.').format(cname)) # Search for the column in the workflow columns col = context['workflow'].columns.filter(name=cname).first() if not col: # Accumulate the new columns just in case we have to undo # the changes if citem['is_key']: raise Exception( _('Action contains non-existing key column "{0}"').format( cname)) new_columns.append(citem) continue # Processing an existing column. Check data type compatibility is_not_compatible = ( col.data_type != citem.get('data_type') or col.is_key != citem['is_key'] or set(col.categories) != set(citem['categories']) ) if is_not_compatible: # The two columns are different raise Exception(_( 'Imported column {0} is different from existing ' + 'one.').format(cname)) # Update the column categories (just in case the new one has a # different order) col.set_categories(citem['categories']) return _create_columns(new_columns, context)
cae79dda5e5121d4684e0995034050e9c6c45598
30,894
def module_of_callable(c): """Find name of module where callable is defined Arguments: c {Callable} -- Callable to inspect Returns: str -- Module name (as for x.__module__ attribute) """ # Ordinal function defined with def or lambda: if type(c).__name__ == 'function': return c.__module__ # Some callable, probably it's a class with __call_ method, so define module of declaration rather than a module of instantiation: return c.__class__.__module__
116e46a3e75fcd138e271a3413c62425a9fcec3b
30,895
def lung_seg(input_shape, num_filters=[16,32,128], padding='same') : """Generate CN-Net model to train on CT scan images for lung seg Arbitrary number of input channels and output classes are supported. Arguments: input_shape - (? (number of examples), input image height (pixels), input image width (pixels), input image features (1 for grayscale, 3 for RGB)) num_filters - number of filters (exactly 4 should be passed) padding - 'same' or 'valid' Output: CN-Net model expecting input shape (height, width, channels) and generates output with the same shape (height, width, channels). """ x_input = Input(input_shape) ### LUNG SEGMENTATION x = Conv2D(num_filters[0], kernel_size=3, activation='relu', padding=padding)(x_input) x = MaxPooling2D(pool_size=2, padding=padding)(x) x = Conv2D(num_filters[1], kernel_size=3, activation='relu', padding=padding)(x) x = MaxPooling2D(pool_size=2, padding=padding)(x) x = Conv2D(num_filters[2], kernel_size=3, activation='relu', padding=padding)(x) x = MaxPooling2D(pool_size=2, padding=padding)(x) x = Dense(num_filters[2], activation='relu')(x) x = UpSampling2D(size=2)(x) x = Conv2D(num_filters[2], kernel_size=3, activation='sigmoid', padding=padding)(x) x = UpSampling2D(size=2)(x) x = Conv2D(num_filters[1], kernel_size=3, activation='sigmoid', padding=padding)(x) x = UpSampling2D(size=2)(x) lung_seg = Conv2D(1, kernel_size=3, activation='sigmoid', padding=padding)(x) # identifying lungs lseg = Model(inputs=x_input, outputs=lung_seg, name='lung_seg') return lseg
67cf286122c40e7fa2f87fc1e0a2f57e97777e32
30,896
def set_cluster_status(event, context): """Set the status of a cluster, ie active, inactive, maintainance_mode, etc""" try: cluster_status = event['queryStringParameters']['cluster_status'] except: return { "statusCode": 500, "body": {"message": f'Must provide a status variable in uri query string'} } try: cluster_name = event['queryStringParameters']['cluster_name'] except: return { "statusCode": 500, "body": {"message": f'Must provide a cluster_name variable in uri query string'} } try: CLUSTER_TABLE.update_item( Key={ 'id': cluster_name, }, UpdateExpression="set cluster_status = :r", ExpressionAttributeValues={ ':r': cluster_status }, ReturnValues="UPDATED_NEW" ) return { "statusCode": 200, "body": {"message": f'Updated cluster status for {cluster_name} to {cluster_status}'} } except: print(f'Falied to update cluster status for {cluster_name}') return { "statusCode": 500, "body": {"message": f'Falied to update cluster status for {cluster_name}'} }
dbb4215c19b8a241d8d353f3567a19eca32190dc
30,897
import numpy def rep(x, n): """ interpolate """ z = numpy.zeros(len(x) * n) for i in range(len(x)): for j in range(n): z[i * n + j] = x[i] return z
97c2ba7e48ff365fb6b4cebcee3f753169cd4670
30,898
def insert_new_datamodel(database: Database, data_model): """Insert a new datamodel in the datamodels collection.""" if "_id" in data_model: del data_model["_id"] data_model["timestamp"] = iso_timestamp() return database.datamodels.insert_one(data_model)
b841e9e08e269cda60d261857bc8826b6a614814
30,899
async def infer_scatter_add( self, engine, input: lib.AbstractArray, dim: xtype.UInt[64], index: lib.AbstractArray, src: lib.AbstractArray, ): """Infer the return type of primitive `scatter_add`.""" return input
1ce75e1e7d79ca89a4b467d96a1eb8c70b75fbee
30,900
def eintr_retry(exc_type, f, *args, **kwargs): """Calls a function. If an error of the given exception type with interrupted system call (EINTR) occurs calls the function again. """ while True: try: return f(*args, **kwargs) except exc_type as exc: if exc.errno != EINTR: raise else: break
a4bf9e6ce3539226c1e963e59cce535ac57ac02c
30,902
def dot2string(dot): """Return a string repr of dots.""" return "*" * int(dot)
e2822bfe20dab5702ec4052445718398e66d993e
30,903
from typing import Optional from typing import Dict from typing import Any import random def generate_visited_place( user_email: Optional[str] = None, place_uid: Optional[str] = None, place_id: Optional[int] = None, latitude: Optional[float] = None, longitude: Optional[float] = None, ) -> Dict[str, Any]: """ Создает и возвращает пользовательское посещенное место, автоматически генерируя данные для не указанных полей. """ if user_email is None: user_email = fake.email() if place_uid is None: place_uid = f'ymapsbm1://org?oid={random.randint(0, (10 ** 11) - 1)}' if place_id is None: place_id = random.randint(0, (10 ** 10) - 1) if latitude is None: latitude = float(fake.latitude()) if longitude is None: longitude = float(fake.longitude()) return locals()
e58de94b838512c642ba2a9c23bf87a9e50227bd
30,904
def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) # Only use the labels that appear in the data classes = classes[unique_labels(y_true, y_pred)] if normalize: cm = cm.astype('float') /( cm.sum(axis=1)[:, np.newaxis] + 1e-16) # print("Normalized confusion matrix") else: pass # print('Confusion matrix, without normalization') # print(cm) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # ... and label them with the respective list entries xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() return ax
3054b6ffe04c5bef18657dfd8e00e9f798689533
30,906
def authenticate_key(api_key): """ Authenticate an API key against our database :param api_key: :return: authenticated username """ user_model = Query() user = db.search(user_model.api_key == api_key)[0] if user: return user["username"] return False
8d6e129e2e234730d629393b1398003eb7fa8361
30,907
def verify_ospf3_neighbor_number(device, expected_interface=None, expected_number=None, expected_state=None, extensive=False, max_time=60, check_interval=10): """ Verifies the number of ospf3 neighbors that meets the criteria Args: device ('obj'): device to use expected_interface ('str'): Interface to use expected_number ('str'): State occurrence expected_state ('str'): Interface state extensive('bool'): Flag to differentiate show commands. Defaults to False. max_time ('int'): Maximum time to keep checking check_interval ('int'): How often to check Returns: Boolean Raises: N/A """ timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: if not extensive: out = device.parse("show ospf3 neighbor") else: out = device.parse("show ospf3 neighbor extensive") except SchemaEmptyParserError: timeout.sleep() continue # { # "ospf3-neighbor-information": { # "ospf3-neighbor": [ # { # "interface-name": "ge-0/0/0.0", # "ospf-neighbor-state": "Full", # }, count = 0 for neighbor in out.q.get_values('ospf3-neighbor'): # check variables interface_name = neighbor.get('interface-name', None) if expected_interface and expected_interface != interface_name: continue neighbor_state = neighbor.get('ospf-neighbor-state', None) if expected_state and expected_state.lower( ) != neighbor_state.lower(): continue # if all variables exist, count plus 1 count += 1 if count == expected_number: return True timeout.sleep() return False
6540fa2425553672cd4b34fe0a112da3333d2c46
30,908
def create_and_clone_vcs_repo(orgname, reponame, tmpdir, testname=None): """ Creates a VCS org Create a repo in that org Clones that repo into a subdirectory of tmpdir Returns the cloned repo directory path """ if testname == None: description = "Created by CMS VCS test library" else: description = "Created by CMS %s test" % testname info("Creating VCS org %s" % orgname) create_vcs_org(description=description, orgname=orgname) info("Created VCS org %s" % orgname) info("Creating VCS repo %s in org %s" % (reponame, orgname)) create_vcs_repo(orgname=orgname, reponame=reponame, description=description) info("Created VCS repo %s in org %s" % (reponame, orgname)) repodir = clone_vcs_repo(orgname=orgname, reponame=reponame, tmpdir=tmpdir) return repodir
fc6009c8fa4a4d89cc85d14d65178b59cdfe06e0
30,909
def graph(x, y, xerr=None, yerr=None): """Create a ROOT TGraph from array-like input. Parameters ---------- x, y : float or array-like, shape (n, ) The data positions. xerr, yerr : float or array-like, shape (n, ), optional Error bar sizes in the *x* and *y* directions. The default is `None`, in which case no error bars are added in this direction. Returns ------- ROOT.TGraph or ROOT.TGraphErrors TGraph object created from input arrays. """ # Convert input arrays to flattened, double-precision, contiguous arrays x = np.ravel(x).astype(np.float64, order="C", copy=False) y = np.ravel(y).astype(np.float64, order="C", copy=False) if x.size != y.size: raise ValueError("x and y must be the same size") # Process x errors if xerr is not None: if not np.iterable(xerr): xerr = np.ones_like(x) * xerr xerr = np.ravel(xerr).astype(np.float64, order="C", copy=False) if xerr.size != x.size: raise ValueError("xerr must be same size as x") # Process y errors if yerr is not None: if not np.iterable(yerr): yerr = np.ones_like(y) * yerr yerr = np.ravel(yerr).astype(np.float64, order="C", copy=False) if yerr.size != y.size: raise ValueError("yerr must be same size as y") # Create graph object if xerr is None and yerr is None: graph = root.TGraph(x.size, x, y) elif xerr is not None and yerr is None: graph = root.TGraphErrors(x.size, x, y, xerr, root.nullptr) elif xerr is None and yerr is not None: graph = root.TGraphErrors(x.size, x, y, root.nullptr, yerr) elif xerr is not None and yerr is not None: graph = root.TGraphErrors(x.size, x, y, xerr, yerr) return graph
27222a556077e29a0240ae9bbc559639bbe5a041
30,910
def qUri(x): """Resolve URI for librdf.""" return resolve_uri(x, namespaces=RDF_NAMESPACES)
4a27ebcd57cd9937311b7086d69a5e819704de9b
30,911
def uninstall(): """Uninstaller for pimessage""" status = 0 try: shutil.rmtree(data_dir, ignore_errors=True) except OSError: print 'Error in removing ~/.pimessage' return 1 # Remove daemon from .profile try: _profile = os.path.join(utils.get_home_dir(), '.profile') with open(_profile, 'r') as fname: buf = fname.read() # process buffer lines = buf.split('\n') dir_path = os.path.abspath(os.path.dirname(sys.argv[0])) daemon_line0 = '#start pimessage daemon' daemon_line1 = dir_path+'/pmdaemon.py &' daemon_line2 = dir_path+'/pmdaemon.py -f' lines_to_append = [] for line in lines: if (line != daemon_line0 and line != daemon_line1 and line != daemon_line2): lines_to_append.append(line) buf = '\n'.join(lines_to_append) with open(_profile, 'w') as fname: fname.write(buf) except Exception as err: print 'Error in handling ~/.profile' print '%s' % str(err) status = 1 # Remove pimessage alias from .bashrc try: _bashrc = os.path.join(utils.get_home_dir(), '.bashrc') with open(_bashrc, 'r') as fname: buf = fname.read() # process buffer lines = buf.split('\n') alias_line0 = '# For PiMessage -- do not delete' alias_line1 = 'alias pimessage='+dir_path+'/pimessage.py' lines_to_append = [] for line in lines: if line != alias_line0 and line != alias_line1: lines_to_append.append(line) buf = '\n'.join(lines_to_append) with open(_bashrc, 'w') as fname: fname.write(buf) except Exception as err: print 'Error in handling ~/.bashrc' print '%s' % str(err) status = 1 if status != 0: print 'Error removing PiMessage.' else: print 'PiMessage has been successfully uninstalled.' return status
d4aac428d12304fa72a33ce7634a5b43f52a6ec8
30,912
import re def regex(pattern: str) -> Parser: """Regex function. Returns a function that parses the beginning of the received string with the regular expression pattern. Parameters ---------- pattern: str a regular expression string. Example ------- >>> from simpleparser import regex >>> num = regex("([1-9][0-9]*)") >>> num.exec('2014a') ['2014'] >>> num.exec('abc') parse error at (0): unexpected abc expecting ([1-9][0-9]*) (by regex) """ name: str = f"regex {pattern}" def f(self: PrimitiveParser, target: str, position: int = 0) -> ParseResult: m = re.match(pattern, target[position:]) if m: return Success([m.group()], position + len(m.group()), name=name) msg = (f"parse error at ({position}):" f" unexpected {target[position:position + 5]}" f" expecting {pattern} (by {self.parser_type})") return Failure(msg, position, name=name) return PrimitiveParser(f, pattern)
9db2bcff825a8f1a8662c34819796eb07816cd31
30,913
def get_name_scope_name(name): """Returns the input name as a unique `tf.name_scope` name.""" if name and name[-1] == '/': return name name = strip_invalid_chars(name) with tf.name_scope(name) as unique_name: pass return unique_name
4d745839d824646a0c43c8936428e8638dc267b3
30,914
def read_and_filter_wfdb(filename, length=None): """ Reads and filters a signal in Physionet format and returns a numpy array :param filename: the name of the file :param length: the length of the file to return or None for max length :return: the filtered and cut signal as a numpy array """ record = wfdb.rdrecord(filename) if length is None: signal = record.p_signal else: signal = record.p_signal[:length, :] filt = get_filter() signal = filter_signal(signal, filt) return signal
d617a9832d2093bc8f1fd41b24920a668fa50287
30,915
def true_thresholds_out(true_cde, z_delta, expected_prop): """ calculates thresholds for the cde to get desired HPD value Arguments: ---------- true_cde: numpy array (n, d) array of cde values for a range of y values conditional on a x value (the row value) z_delta : float, space between y values (assumed equally spaced y values) expected_prop : numpy vector (p, ) of proportion of mass values desired to be contained Returns: -------- threshold_mat : numpy array (n, p). For each row, we have the cde thresholds that would allow expected_prop[j] mass to be contained above this amount """ n_row = true_cde.shape[0] threshold_mat = -1 * np.ones((n_row, expected_prop.shape[0])) for r_idx in np.arange(n_row): threshold_mat[r_idx,:] = _true_thresholds_out(cdes = true_cde[r_idx,:].ravel(), z_delta = z_delta, expected_prop = expected_prop) return threshold_mat
14eba4fe24ed0e46df4ea0d6986ed870fb084d9e
30,918
def query_disc(nside, lon, lat, radius, **kwargs): """ Wrapper around healpy.query_disc to deal with old healpy implementation. nside : int The nside of the Healpix map. vec : float, sequence of 3 elements The coordinates of unit vector defining the disk center. radius : float The radius (in degrees) of the disk inclusive : bool, optional If False, return the exact set of pixels whose pixel centers lie within the disk; if True, return all pixels that overlap with the disk, and maybe a few more. Default: False fact : int, optional Only used when inclusive=True. The overlapping test will be done at the resolution fact*nside. For NESTED ordering, fact must be a power of 2, else it can be any positive integer. Default: 4. nest: bool, optional if True, assume NESTED pixel ordering, otherwise, RING pixel ordering """ vec = ang2vec(lon, lat) return healpy.query_disc(nside, vec, np.radians(radius), **kwargs)
fb987b327861acfa684a6ccabec745996d545e5d
30,920
def prepare_audio_file(uploaded_file): """ A function to prepare the audio file uploaded by the user. Input: uploaded file passed by st.file_uploader Output: float32 numpy """ # use pydub to quickly prepare audio segment a = pydub.AudioSegment.from_file(file=uploaded_file, format=uploaded_file.name.split(".")[-1]) # split channel sounds to mono channel_sounds = a.split_to_mono() samples = [s.get_array_of_samples() for s in channel_sounds] # convert to float32 so audiomentations can augment the file fp_arr = np.array(samples).T.astype(np.float32) fp_arr /= np.iinfo(samples[0].typecode).max return fp_arr[:, 0], a.frame_rate
688d326891cc0bfc7628cfcc5c636c181e714ad5
30,921
def get_item(obj,name): """Given a attribute item like 'robots[2].links[4].name', evaluates the value of the item in the object. Note: not secure! Uses eval() """ loc = {'_w':map(obj)} result = {} return eval('_w.'+name,globals(),loc)
a802b4cccda11b9a97be6a8bf0fd62024d636a74
30,922
def generate_bars_dict(H, neg_bars=False): """Generate a ground-truth dictionary W suitable for a std. bars test Creates H bases vectors with horizontal and vertival bars on a R*R pixel grid, (wth R = H // 2). The function thus returns a matrix storing H dictionaries of size D=R*R. :param H: Number of latent variables :type H: int :param neg_bars: Should half the bars have a negative value (-1)? :type neg_bars: bool :rtype: ndarray (D x H) Source: https://github.com/ml-uol/prosper/blob/master/prosper/utils/barstest.py:: generate_bars_dict For LICENSING and COPYRIGHT for this function see prosper's license at: https://github.com/ml-uol/prosper/blob/master/LICENSE.txt """ R = H // 2 D = R ** 2 W_gt = np.zeros((R, R, H)) for i in range(R): W_gt[i, :, i] = 1.0 W_gt[:, i, R + i] = 1.0 if neg_bars: sign = 1 - 2 * np.random.randint(2, size=(H,)) W_gt = sign[None, None, :] * W_gt return W_gt.reshape((D, H))
2d0f0ff96507d7fb826ea37467c81d16af37a768
30,923
def add_node(uuid, state, manage_boot=True, **attributes): """Store information about a node under introspection. All existing information about this node is dropped. Empty values are skipped. :param uuid: Ironic node UUID :param state: The initial state of the node :param manage_boot: whether to manage boot for this node :param attributes: attributes known about this node (like macs, BMC etc); also ironic client instance may be passed under 'ironic' :returns: NodeInfo """ started_at = timeutils.utcnow() with db.ensure_transaction() as session: _delete_node(uuid) version_id = uuidutils.generate_uuid() db.Node(uuid=uuid, state=state, version_id=version_id, started_at=started_at, manage_boot=manage_boot).save(session) node_info = NodeInfo(uuid=uuid, state=state, started_at=started_at, version_id=version_id, manage_boot=manage_boot, ironic=attributes.pop('ironic', None)) for (name, value) in attributes.items(): if not value: continue node_info.add_attribute(name, value, session=session) return node_info
0765177fdc0ec4acc1926fcfcb40f4d8cd96abee
30,924
def read_from_hdf5(hdfFile,label,dof_map=None): """ Just grab the array stored in the node with label label and return it If dof_map is not none, use this to map values in the array If dof_map is not none, this determines shape of the output array """ assert hdfFile is not None, "requires hdf5 for heavy data" vals = hdfFile.get_node(label).read() if dof_map is not None: dof = vals[dof_map] else: dof = vals return dof
92aa7da786e893d6477c2bcb3c6e3988cbc33558
30,925
def copy_planning_problem(planning_problem): """ Make a copy of a planning problem. Parameters: planning_problem (PlanningProblem): A planning problem. Returns: (PlanningProblem): A copy of the given planning problem. """ copy = PlanningProblem( initial=planning_problem.initial, goals=planning_problem.goals, actions=planning_problem.actions) return copy
03773086f067626c69eb44a319a48cd5c05dad27
30,926
def remove_pc(x, npc=1): """ Remove the projection on the principal components :param x: X[i,:] is a data point :param npc: number of principal components to remove :return: XX[i, :] is the data point after removing its projection """ pc = compute_pc(x, npc) if npc == 1: xx = x - x.dot(pc.transpose()) * pc else: xx = x - x.dot(pc.transpose()).dot(pc) return xx
797d538236f108a1710041c25aea3e88cc202c5f
30,927
import json def invocation_parameter(s) : """argparse parameter conversion function for invocation request parameters, basically these parameters are JSON expressions """ try : expr = json.loads(s) return expr except : return str(s)
cca1a9c3514def152295b10b17ef44480ccca5a9
30,928
def build_bhp(bhm, dt_bin_edges, num_fissions = None, pair_is = 'all', type_is = 'all', print_flag = False): """ Build the bicorr_hist_plot by selecting events from bhm and applying normalization factor. The normalization factor is only applied if norm_factor is provided. If not, norm_factor remains at default value 1 and the units are in number of counts. Parameters ---------- bhm : ndarray Master histogram of bicorrelation histograms across all detector pairs and interaction types. Dimension 0: detector pair, use dictionary `dict_pair_to_index` where pair is (100*det1ch+det2ch) Dimension 1: interaction type, length 4. (0=nn, 1=np, 2=pn, 3=pp) Dimension 2: dt bin for detector 1 Dimension 3: dt bin for detector 2 dt_bin_edges : ndarray One-dimensional array of time bin edges num_fissions : float, optional Number of fissions for normalization. If provided, then proceed with normalization. If not provided, then no normalization performed pair_is : list, optional Indices of selected detector pairs in bhm type_is : list, optional Indices of selected interaction types in bhm (0=nn, 1=np, 2=pn, 3=pp) print_flag : bool, optional If set to True, print out some information about array size and selections Returns ------- bicorr_hist_plot : ndarray Array to plot. Two-dimensional with axes sizes corresponding to dt_bin_edges x dt_bin_edges. norm_factor : float Normalization factor to translate to counts per fission-pair """ if print_flag: print('Creating bicorr_hist_plot for...') print('pair_is = ',pair_is) print('type_is = ',type_is) # If plotting all indices for pair_is or type_is, generate those indices if pair_is is 'all': pair_is = np.arange(0,bhm.shape[0]) if type_is is 'all': type_is = np.arange(0,bhm.shape[1]) # If normalizing, calculate normalization factor if num_fissions is None: norm_factor = 1 # No normalization else: # Normalize by number fissions, detector pairs, and time bin size norm_factor = num_fissions * len(pair_is) * np.power((dt_bin_edges[1]-dt_bin_edges[0]),2) # Produce bicorr_hist_plot bicorr_hist_plot = np.sum(bhm[pair_is,:,:,:][:,type_is,:,:],axis=(0,1)) / norm_factor if print_flag: print('time bin width (ns) = ', (dt_bin_edges[1]-dt_bin_edges[0])) print('length of pair_is = ', len(pair_is)) print('norm_factor = ',norm_factor) return bicorr_hist_plot, norm_factor
083a959755b0c81567af236226c7a321fefdb8b9
30,929
def env_builder(env_name, env_info, **kwargs): """ the interface func for creating environment :param env_name:the name of environment :param env_info: the config info of environment :return:environment instance """ return Registers.env[env_name](env_info, **kwargs)
ca5f8267bfac46407cd39e3464ff95d765274634
30,930
def filter_functions(input_set, filter_set): """ Keeps only elements in the filter set :param input_set: :param filter_set: :return: """ ns = {} filter_low = {x.lower() for x in filter_set} for x in input_set: xl = x.lower() if xl in filter_low: ns[x] = input_set[x] return ns
cabc321b6730df4a0c7987b83c6a2c3d6fb69c02
30,932
from .scattering1d.filter_bank import morlet_1d, gauss_1d from scipy.fft import ifftshift, ifft def make_jtfs_pair(N, pair='up', xi0=4, sigma0=1.35): """Creates a 2D JTFS wavelet. Used in `wavespin.visuals`.""" morl = morlet_1d(N, xi=xi0/N, sigma=sigma0/N).squeeze() gaus = gauss_1d(N, sigma=sigma0/N).squeeze() if pair in ('up', 'dn'): i0, i1 = 0, 0 elif pair == 'phi_f': i0, i1 = 1, 0 elif pair in ('phi_t', 'phi_t_dn'): i0, i1 = 0, 1 elif pair == 'phi': i0, i1 = 1, 1 else: supported = {'up', 'dn', 'phi_f', 'phi_t', 'phi', 'phi_t_dn'} raise ValueError("unknown pair %s; supported are %s" % ( pair, '\n'.join(supported))) pf_f = (morl, gaus)[i0] pt_f = (morl, gaus)[i1] pf_f, pt_f = pf_f.copy(), pt_f.copy() if pair in ('dn', 'phi_t_dn'): # time reversal pf_f[1:] = pf_f[1:][::-1] pf, pt = [ifftshift(ifft(p)) for p in (pf_f, pt_f)] Psi = pf[:, None] * pt[None] return Psi
9a3e9c5d5a4a81c62f1ac3a5c7b0d5922eefdb78
30,933
def convert(your_text): """ Changes foot-notes into numbered foot-notes Args: your_text (str): a certain text Returns: str """ # print(f"Hello world, I plan to convert the following text: {your_text}") ### Terminology # Given a four-line text that looks like the (somewhat mal-formed) # following: # === # Hola mundo [^1]. Hello world. [^2]. # # [^a]: Spanish # [^b]: English # === # I refer to [^1] and [^2] as Pre Footnotes, and # [^a] and [^b] as Post Footnotes pre = h.getAllPreFootnotes(your_text) post = h.getAllPostFootnotes(your_text) h.ensureAllUnique(pre) # make sure no duplicates occur h.ensureAllUnique(post) h.ensureAllPreHasCounterpartAmongPostFootnotes(pre, post) # defensive coding a_map = h.mapFootnotesToNumbers(pre) # I suppose either Pre Footnotes or Post Footnotes would work as an argument, given the checks above converted_text = h.replaceFootnotesWithNumbers(your_text, a_map) return converted_text
82f926a3366ff29d65160ac9d09f5e72cf37b8cd
30,934
def categorical(cum_weights): """ Sample from a discrete distribution :param cum_weights: list of cumulative sums of probabilities (should satisfy cum_weights[-1] = 1) :return: sampled integer from `range(0,len(cum_weights))` """ p = _rand.random() i = 0 while p > cum_weights[i]: i += 1 return i
c14009b98d5f683fc92cdeed64db0ca8276cd868
30,935
def floodfill(image, *args, **kwargs): """ Performs a floodfill on the given image :Parameters: image : `Image` or `numpy.array` or `basestring` The image object we would like to operate on as a numpy array, url, filepath, or image object keycolor : `tuple` The color to key out in the floodfill. If `None` specified, this is detected automatically. Default=None channel : `basestring` The channel we wish to be replaced with `replacevalue` for all pixels contiguous with the seeded pixel. Valid values are 'r','g','b', and 'a'. Default='a' replacevalue : `float` The value to replace the given channel with for the pixels that match the keycolor and are contiguous with the seeded pixel. Default=0.0 tol : `float` The threshold tolerance to allow in the difference of squares between pixels contiguous with the seed pixel and the key color. The the difference of squared norms exceeds tol, the pixel is not treated as equal for the purpose of floodfilling. Default=.04 seedpixel : `tuple` Any iterable of (row, col) indices for where to begin the floodfill. Note that this is assumed to be the same as keycolor. If not, the floodfill may end up being a no-op. If seedpixel is None, the seed is determined procedurally by spiraling inward clockwise from the upper righthand pixel of the image. Default=None :Returns: A copy of the image after floodfill has been performed :Rtype: `Image` """ image = Image.from_any(image) return FloodfillOperation(image, *args, **kwargs).run()
1f8ce1bd87c3ecbd36b32524676208357ccefa78
30,936
def get_words_per_sentence(content): """ Get words per sentance average :content: str :returns: int """ words = get_words(content) sentences = get_sentences(content) return words / sentences
b3b4e8858f531723fee97d1cc3ba18c85ff16f92
30,937
def timeout_soft_cmd(cmd, timeout): """Same as timeout_cmd buf using SIGTERM on timeout.""" if not timeout: return cmd return 'timeout %us stdbuf -o0 -e0 %s' % (timeout, cmd)
79491bf29a80678381e06ee1e9fe1feda858faf2
30,938
from typing import List from typing import Tuple def get_all_links_and_port_names_of_equipment( client: SymphonyClient, equipment: Equipment ) -> List[Tuple[Link, str]]: """Returns all links and port names in equipment. Args: equipment ( `pyinventory.common.data_class.Equipment` ): could be retrieved from - `pyinventory.api.equipment.get_equipment` - `pyinventory.api.equipment.get_equipment_in_position` - `pyinventory.api.equipment.add_equipment` - `pyinventory.api.equipment.add_equipment_to_position` Returns: List[Tuple[ `pyinventory.common.data_class.Link` , str]]: - `pyinventory.common.data_class.Link` - link object - str - port definition name Raises: `pyinventory.exceptions.EntityNotFoundError`: if link not found FailedOperationException: for internal inventory error Example: ``` location = client.get_location({("Country", "LS_IND_Prod_Copy")}) equipment = client.get_equipment(name="indProdCpy1_AIO", location=location1) client.get_all_links_and_port_names_of_equipment(equipment=equipment) ``` """ equipment_data = EquipmentPortsQuery.execute(client, id=equipment.id) if equipment_data is None: raise EntityNotFoundError(entity=Entity.Equipment, entity_id=equipment.id) ports = equipment_data.ports result = [] for port in ports: port_link = port.link if port_link is not None: link = Link( id=port_link.id, properties=port_link.properties, service_ids=[s.id for s in port_link.services if port_link.services] if port_link.services is not None else [], ) result.append((link, port.definition.name)) return result
a1cbf02744630fa4e7e72799f351e4befdb5737e
30,939
def get_model_input(image): """Function to perform the preprocessing required so that it can be passed to the model for prediction Args: image (PIL image object): image that has to be transformed Returns: tensor (4D torch tensor): transformed image to torch 4D tensor (B, C, H, W) """ transformer = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.476, 0.452, 0.392], std=[0.235, 0.231, 0.229])]) image = transformer(image) image = image.unsqueeze(0) return image
cad77ab6c43a486838748cd1e8be39561171ac58
30,940
def extract_api_tree(): """ Generates a tree of command group names and function signatures in leaves from API function names in Master """ api_funcs = {} for i in dir(session['master'])+dir(public_api(None)): if (i.startswith('api_') or i.startswith('admin_api_') or i.startswith('public_api_')): is_public = False # Get function names and signatures if i.startswith('api_'): func_str = i[4:] elif i.startswith('admin_'): func_str = i[10:] else: # is public api func_str = i[11:] is_public = True cmd_groups = func_str.split('_') func_sig = session['master'].get_api_signature( i) if not is_public else public_api(None).get_api_signature(i) func_doc = session['master'].get_api_doc( i) if not is_public else public_api(None).get_api_doc(i) # Build hierarchy of command groups api_root = api_funcs for j in cmd_groups: if (j not in api_root.keys()): api_root[j] = {} api_root = api_root[j] api_root['leaf'] = [i, func_sig, is_public, func_doc] return api_funcs
c5fe7aacf5a4b6aad1e187307662d5d7f8601b98
30,941
def dataset_names_csv(): """Returns the expected dataset names included in the tool.""" return resource_loader("dataset_names.csv")
cbb038d08982327a99657e1820136386ed3da4e4
30,943
def is_subtree(cls_name): """Determine whether 'cls_name' is a subtree.""" if cls_name == "SequentialCell": return True if cls_name in _ms_common_ns or cls_name in _ms_nn_ns or cls_name in _ms_ops_ns: return False return True
46728b25d9098f6561861fa1f182f53567d5ece9
30,944
import re def relevancy_to_adjust(relevancy): """ Convert the old test case relevancy into adjust rules Expects a string or list of strings with relevancy rules. Returns a list of dictionaries with adjust rules. """ rules = list() rule = dict() if isinstance(relevancy, list): relevancy = '\n'.join(str(line) for line in relevancy) for line in re.split(r'\s*\n\s*', relevancy.strip()): # Extract possible comments try: line, rule['because'] = re.search(RELEVANCY_COMMENT, line).groups() except Exception: pass # Nothing to do with empty lines if not line: continue # Split rule try: condition, decision = re.search(RELEVANCY_RULE, line).groups() except Exception: raise tmt.utils.ConvertError( f"Invalid test case relevancy rule '{line}'.") # Handle the decision if decision.lower() == 'false': rule['enabled'] = False else: try: rule['environment'] = tmt.utils.shell_to_dict(decision) except tmt.utils.GeneralError: raise tmt.utils.ConvertError( f"Invalid test case relevancy decision '{decision}'.") # Adjust condition syntax expressions = list() for expression in re.split(r'\s*&&?\s*', condition): try: left, operator, right = re.match( RELEVANCY_EXPRESSION, expression).groups() except Exception: raise tmt.utils.ConvertError( f"Invalid test case relevancy expression '{expression}'.") # Always use double == for equality comparison if operator == '=': operator = '==' # Basic operators if operator in ['==', '!=', '<', '<=', '>', '>=']: # Use the special comparison for product and distro # when the definition specifies a minor version if left in ['distro', 'product'] and '.' in right: operator = '~' + ('=' if operator == '==' else operator) # Special operators else: try: operator = { 'contains': '==', '!contains': '!=', 'defined': 'is defined', '!defined': 'is not defined', }[operator] except KeyError: raise tmt.utils.ConvertError( f"Invalid test case relevancy operator '{operator}'.") # Special handling for the '!=' operator with comma-separated # values (in relevancy this was treated as 'no value equals') values = re.split(r'\s*,\s*', right) if operator == '!=' and len(values) > 1: for value in values: expressions.append(f"{left} != {value}") continue # Join 'left operator right' with spaces expressions.append( ' '.join([item for item in [left, operator, right] if item])) # Finish the rule definition rule['when'] = ' and '.join(expressions) rule['continue'] = False rules.append(rule) rule = dict() return rules
960be0ef1fa0cce57dcd039e95fb031383ab25b5
30,945
def create_bcs(dim, H, Hmin, inlet_velocity, inlet_velocityOil, V_0, solutes, subdomains_file, WaterOilInlet, concentration_left, interface_thickness, enable_NS, enable_PF, enable_EC, mesh, boundaries_Facet, contact_angle, **namespace): """ The boundaries and boundary conditions are defined here. """ mvc = df.MeshValueCollection("size_t", mesh, dim-1) with df.XDMFFile(subdomains_file) as infile: infile.read(mvc, "name_to_read") facet_domains = df.cpp.mesh.MeshFunctionSizet(mesh, mvc) # Re-create boundaries with facet_domain for mesh relevance boundaries = dict( inlet = [facet_domains, boundaries_Facet["inlet"]], inletT = [facet_domains, boundaries_Facet["inletT"]], inletB = [facet_domains, boundaries_Facet["inletB"]], outlet = [facet_domains, boundaries_Facet["outlet"]], wallLR = [facet_domains, boundaries_Facet["wallLR"]], wallRL = [facet_domains, boundaries_Facet["wallRL"]] ) # Alocating the boundary dicts bcs = dict() bcs_pointwise = dict() for boundary in boundaries: bcs[boundary] = dict() ### Velocity has 3 inlets in this example due # to the flow focusing pinching aspect ## Velocity Phase Flow In #length inlet, water inflow, X or Y, Positive/neg flow along axis if not WaterOilInlet == 2: velocity_expr = velocity_init(H[0], inlet_velocity, 0, 1, Hmin[0]) velocity_in = Fixed(velocity_expr) if enable_NS: bcs["inlet"]["u"] = velocity_in if WaterOilInlet == 1: bcs["inletT"]["u"] = NoSlip() bcs["inletB"]["u"] = NoSlip() ## Velocity Top In #length inlet, water inflow, X or Y, Positive/neg flow along axis if not WaterOilInlet == 1: velocity_expr = velocity_init(H[1], inlet_velocityOil, 1, -1, Hmin[1]) velocity_inT = Fixed(velocity_expr) ## Velocity Bottom In #length inlet, water inflow, X or Y, Positive/neg flow along axis if not WaterOilInlet == 1: velocity_expr = velocity_init(H[1], inlet_velocityOil, 1, 1, Hmin[1]) velocity_inB = Fixed(velocity_expr) if enable_NS: bcs["inletT"]["u"] = velocity_inT bcs["inletB"]["u"] = velocity_inB if WaterOilInlet == 2: bcs["inlet"]["u"] = NoSlip() pressure_out = Pressure(0.0) noslip = NoSlip() V_left = Fixed(V_0) V_right = Fixed(0.) ## Define boundaries # Note we have one outlet and two sets of walls # from experience (FEniCS), opposite boundaries can # behave badly when all grouped if enable_NS: bcs["outlet"]["p"] = pressure_out bcs["wallLR"]["u"] = noslip bcs["wallRL"]["u"] = noslip # Phase field uses an expersion `tanH` which defines PF drop off if enable_PF: phi_expr = df.Expression( "tanh((abs((x[1]-Hmin)-H/2)-H/16)/(sqrt(2)*eps))", H=H[0], Hmin = Hmin[0], eps=interface_thickness, degree=2) phi_inlet = Fixed(phi_expr) ## PF Fixed across boundary # as no water can enter oil inlet # and vice-versa bcs["inlet"]["phi"] = Fixed(df.Constant(-1.)) bcs["inletT"]["phi"] = Fixed(df.Constant(1.)) bcs["inletB"]["phi"] = Fixed(df.Constant(1.)) ## Add contact angle to NS No-Slip Boudnaries bcs["wallLR"]["phi"] = ContactAngle(contact_angle) bcs["wallRL"]["phi"] = ContactAngle(contact_angle) return boundaries, bcs, bcs_pointwise
d69db7ec4adbcddbaa3f6ffd95a2cff9333fd647
30,946
def get_parameter_values(parameter, Grid, selectedmodels, noofind): """ Get parameter values from grid Parameters ---------- parameter : str Grid, hdf5 object selectedmodels : models to return noofind : number of parameter values Returns ------- x_all : array parameter values """ x_all = np.zeros(noofind) i = 0 for modelpath in selectedmodels: N = len(selectedmodels[modelpath].logPDF) try: x_all[i : i + N] = selectedmodels[modelpath].paramvalues[parameter] except Exception: x_all[i : i + N] = Grid[modelpath + "/" + parameter][ selectedmodels[modelpath].index ] i += N return x_all
5e5dbfe3d810cb40e55c9e8cc1b6f33841212584
30,947
def dumpj(game): """Dump a game to json""" return game.to_json()
bac5480ea2b3136cbd18d0690af27f94e4a2b6a3
30,948
def __add_statement2issue(statement_uid: int, issue_uid: int) -> StatementToIssue: """ Adds a new statement to issue link to the database :param statement_uid: id of the related statement :param issue_uid: id of the related issue :return: New statement to issue object """ db_statement2issue = StatementToIssue(statement=statement_uid, issue=issue_uid) DBDiscussionSession.add(db_statement2issue) DBDiscussionSession.flush() return db_statement2issue
415ab377f048a6f0a490606853e38c57b2d00e45
30,949
def CreateInnerMaskBmapFromOuterMask( srcBmap ) : """ Derive the inner mask wxBitmap from the Outer mask wxBitmap. The srcBmap must be "well behaved" in that a continuous border must present so that a floodfill to the perimeter area will not reach into the inner area. The border color must be >=128. So, the srcBmap consists of a transparent/BLACK perimeter, an white/opaque frame border and a transparent/BLACK inner area. When completed, the outer_area+border will be transparent/BLACK, the parent's frame border will be transparent/BLACK and the inner area will be opaque/WHITE. 1. outer perimeter (black) --> Floodfill to white/255 Now both perimeter and border are white). 2. Invert the image and return as a wxBitmap.. """ # Start with an 'L' Pil copy of the RGB input wxBitmap. dstPilImage = ImgConv.PilImageFromWxBitmap( srcBmap ).convert( 'L' ) # Make sure the image is quantized to binary. dstPilImage = dstPilImage.point(lambda i: (i / 128) * 255) size = dstPilImage.size ImageDraw.floodfill( dstPilImage, (0, 0), (255) ) return ImgConv.WxBitmapFromPilImage( ImageChops.invert( dstPilImage ) )
76b17d0d3d252bf316ba42c77e3b203f8e80a474
30,950
def generate_fake_example(w: int, h: int, identifier: int): """Generate a random COCO example.""" num_objects = 8 return { 'image': np.random.randint(0, 256, size=(w, h, 3), dtype=np.uint8), 'image/filename': f'{identifier:012}.jpg', 'image/id': identifier, 'objects': { 'area': np.arange(num_objects, dtype=np.int64) * 50, 'bbox': np.stack([np.array([0., 0., 1., 1.])] * num_objects), 'id': np.arange(num_objects), 'is_crowd': np.full((num_objects,), False, dtype=np.bool), 'label': np.random.randint( 0, 81, size=(num_objects,), dtype=np.int32), } }
38256e8de420a1a81875138936331e7fb914e72c
30,951
from ..learn.optim import SGDW from ..learn.optim import NesterovSGD from ..learn.optim import NesterovSGDW from ..learn.optim import AMSGrad import torch def get_optim(name: str): """ get an optimizer by name """ if name.lower() == 'adam': optimizer = torch.optim.Adam elif name.lower() == 'adamw': optimizer = torch.optim.AdamW elif name.lower() == 'sgd': optimizer = torch.optim.SGD elif name.lower() == 'sgdw': optimizer = SGDW elif name.lower() == 'nsgd': optimizer = NesterovSGD elif name.lower() == 'nsgdw': optimizer = NesterovSGDW elif name.lower() == 'rmsprop': optimizer = torch.optim.rmsprop elif name.lower() == 'adagrad': optimizer = torch.optim.adagrad elif name.lower() == 'amsgrad': optimizer = AMSGrad else: raise SynthtorchError(f'Optimizer: "{name}" not a valid optimizer routine or not supported.') return optimizer
22c77840cffc8f6d5bd89bd190c8b912728cf6fa
30,952
import types def _get_functions_names(module): """Get names of the functions in the current module""" return [name for name in dir(module) if isinstance(getattr(module, name, None), types.FunctionType)]
581384740dc27c15ac9710d66e9b0f897c906b96
30,953
import ast def ex_rvalue(name): """A variable store expression.""" return ast.Name(name, ast.Load())
4afff97283d96fd29740de5b7a97ef64aad66efe
30,954
def roll(input, shifts, dims=None): """Roll elements along the given dimension. :attr:`dims` could be negative or ``None``: ```python x = torch.tensor([[1, 2, 3], [4, 5, 6]]) # A negative dimension is the last-k dimension print(torch.roll(x, shifts=1, dims=1)) # [[3, 1, 2], [6, 4, 5]] print(torch.roll(x, shifts=1, dims=-1)) # Equivalent # If dimension is None, roll input as a vector print(torch.roll(x, shifts=1)) # [[6, 1, 2], [3, 4, 5]] # Also, dimension could be a sequence of integers print(torch.roll(x, shifts=(1, 1), dims=(0, 1))) # [[6, 4, 5], [3, 1, 2]] print(torch.roll(x, shifts=(1, -1), dims=(0, 1))) # [[5, 6, 4], [2, 3, 1]] ``` Parameters ---------- input : dragon.vm.torch.Tensor The input tensor. shifts : Union[int, Sequence[int]] The rolling offset of each dimension. dims : Union[int, Sequence[int]], optional The dimension to roll. Returns ------- dragon.vm.torch.Tensor The output tensor. """ shifts = nest.flatten(shifts) dims = nest.flatten(dims) if dims is not None else dims return Function.apply( 'Roll', input.device, [input], num_shifts=len(shifts), shifts=shifts, axes=dims)
9ad3f85a3313be66fed358894d9fd105aa3c1c32
30,955
def gsl_eigen_genhermv_free(*args, **kwargs): """gsl_eigen_genhermv_free(gsl_eigen_genhermv_workspace w)""" return _gslwrap.gsl_eigen_genhermv_free(*args, **kwargs)
738832672277da7d6b8780a501aff36d740e3eba
30,957
def model3(): """ PyMC configuration with Model 1. preevac_alpha vs theta[0] + theta[1]*type + theta[2]*eff_wid + theta[3]*tread """ # Priors theta = mc.Uniform('theta', lower=[-10.0, -10.0], upper=[ 10.0, 10.0], value=[ 0.1, 0.1]) sigma = mc.Uniform('sigma', lower=0., upper=100., value=1.) # Model @mc.deterministic def y_mean(theta=theta, beta = data_evac.data_alphabeta['beta']): return theta[0]*beta + theta[1] # Likelihood # The likelihood is N(y_mean, sigma^2), where sigma # is pulled from a uniform distribution. y_obs = mc.Normal('y_obs', value=data_evac.data_alphabeta['alpha'], mu=y_mean, tau=sigma**-2, observed=True) return vars()
c79aa2edbd1cff864a48b5476106afaf49d74975
30,959
def getVTGui(): """Small wrapper to hide the fact that vtapp object contains gui. :return: main window object """ return vtutils.getVTApp().gui
08ac978c35a6530cddc154ef1df925ea339559f3
30,960
def ksd_parametric_custom(ksd_value, alpha, B_parametric): """ Compute KSD test using a parametric bootstrap with kernel matrix inputs: ksd_values: (N,) array consisting of KSD values for N bandwidths for inputs X and score_X alpha: real number in (0,1) (level of the test) B_parametric: (N, B) array of ksd values computed with the reference bandwidth using samples from the model output: result of KSD test (1 for "REJECT H_0" and 0 for "FAIL TO REJECT H_0") """ B = B_parametric.shape[0] if ksd_value > B_parametric[int(np.ceil(B * (1 - alpha))) - 1]: return 1 return 0
4c4cf6ae1edde41cb519bf7459950f1f1dd42c8a
30,961
def freehand(img, depth=10., el=np.pi / 2.2, az=np.pi / 4): """ 手绘风格图像生成 :param img: :param depth: 深度,取值在0-100 :param el: 光源的俯视角度,弧度值 :param az: 光源的方位角度,弧度值 :return: """ img = rgb2grey(img) img = img * 255 if np.max(img) <= 1.1 else img grad = np.gradient(img) # 取图像灰度的梯度值 grad_x, grad_y = grad # 分别取横纵图像梯度值 grad_x = grad_x * depth / 100. grad_y = grad_y * depth / 100. A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.) uni_x = grad_x / A uni_y = grad_y / A uni_z = 1. / A dx = np.cos(el) * np.cos(az) # 光源对x轴的影响 dy = np.cos(el) * np.sin(az) # 光源对y轴的影响 dz = np.sin(el) # 光源对z轴的影响 gd = (dx * uni_x + dy * uni_y + dz * uni_z) # 光源归一化 gd = gd.clip(0, 1) # 避免数据越界,将生成的灰度值裁剪至0-1之间 return gd
06874581c622a671ed6e0cbb3a33dfed020902f5
30,962
def batch_compute_ic(trajs, params, *, weights=None, method="fft"): """Compute a batch of integrated correlated matrices. Parameters ---------- trajs : list of (n_frames[i], n_features) ndarray List of featurized trajectories. params : 1d array-like or list of 1d array-like If a 1d array-like, list of VAC lag times. If a list of 1d array-like, list of IVAC lag times. weights : int or list of (n_frames[i],) ndarray Weight of trajectory starting at each configuration. If int, assume uniform weights except for the last int frames, which have zero weight. method : str, optional Method to compute integrated correlation matrices. Must be 'direct', 'fft', or 'fft-all'. Methods 'direct' and 'fft' compute the matrices one by one using the compute_ic function. Method 'fft-all' computes all of the correlation matrices at once using a FFT convolution between each pair of features. Returns ------- iterable of (n_features, n_features) ndarray Iterable of integrated correlation matrices. """ if np.asarray(params[0]).ndim == 0: params = np.asarray(params) assert params.ndim == 1 flag = True else: params = [np.asarray(param) for param in params] assert np.all([param.ndim == 1 for param in params]) flag = False if method == "fft-all": if weights is None: if flag: return batch_ct_all(trajs, params) else: return batch_ic_all(trajs, params) else: if flag: return batch_ct_rt(trajs, params, weights) else: return batch_ic_rt(trajs, params, weights) # compute each matrix one by one return ( compute_ic(trajs, param, weights=weights, method=method) for param in params )
c6a931820eb1d17477143e615b942551e1c6369f
30,963
def genTrainFeatures(dimension=128): """ Input: dimension: desired dimension of the features Output: X: n feature vectors of dimensionality d (nxd) Y: n labels (-1 = girl, +1 = boy) (n) """ # Load in the data Xgirls = name2features("data/girls.train", B=dimension) Xboys = name2features("data/boys.train", B=dimension) X = np.concatenate([Xgirls, Xboys]) # Generate Labels Y = np.concatenate([-np.ones(len(Xgirls)), np.ones(len(Xboys))]) # shuffle data into random order ii = np.random.permutation([i for i in range(len(Y))]) return X[ii, :], Y[ii]
f5c9838f81caf1cc9641de450e6eb9a844e47ccd
30,965
def stateDiff(start, end): """Calculate time difference between two states.""" consumed = (end.getTimestamp() - start.getTimestamp()).total_seconds() return consumed
1f76903e2486e2c378f338143461d1d15f7993a6
30,966
import copy import random def staticDepthLimit(max_depth): """Implement a static limit on the depth of a GP tree, as defined by Koza in [Koza1989]. It may be used to decorate both crossover and mutation operators. When an invalid (too high) child is generated, it is simply replaced by one of its parents. This operator can be used to avoid memory errors occuring when the tree gets higher than 90-95 levels (as Python puts a limit on the call stack depth), because it ensures that no tree higher than *max_depth* will ever be accepted in the population (except if it was generated at initialization time). :param max_depth: The maximum depth allowed for an individual. :returns: A decorator that can be applied to a GP operator using \ :func:`~deap.base.Toolbox.decorate` .. note:: If you want to reproduce the exact behavior intended by Koza, set the *max_depth* param to 17. .. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992) """ def decorator(func): def wrapper(*args, **kwargs): keep_inds = [copy.deepcopy(ind) for ind in args] new_inds = list(func(*args, **kwargs)) for i, ind in enumerate(new_inds): if ind.height > max_depth: new_inds[i] = random.choice(keep_inds) return new_inds return wrapper return decorator
cdcb1e58a681b622ced58e9aa36562e1fedb6083
30,967
def rotate(coor, alpha, beta, gamma): """Rotate 'coor' by the angles alpha, beta, gamma. """ R1 = getD(alpha) R2 = getC(beta) R3 = getD(gamma) M = R3 * R2 * R1 return np.dot(coor, M)
fc7348dfd65012239841949da82a188299305e97
30,968
import requests def get_content(url): """get content - cfscrape""" request = requests.get(url) content = request.text if request.status_code == 503: scraper = cfscrape.create_scraper() content = scraper.get(url).content return content
4f6db08c2cc393f2ac6a1447f6bd9a44535de12a
30,970
import re def titlecase(string): """Turn string of words into titlecased words. :type string: str :param string: A string of words. """ return re.sub( r"[A-Za-z]+('[A-Za-z]+)?", lambda mo: mo.group(0)[0].upper() + mo.group(0)[1:].lower(), string, )
77976d2ccad5b6b924b76d587a6883cf660497d0
30,971
import re from datetime import datetime def youdao_definition(wrapped_word): """ get word meaning from youdao.com, thanks for their great work. """ word = wrapped_word[:-2].strip() url = constants.YOUDAO_URL_PREFIX + word content = utility.get_content_of_url(url) soup = bs4.BeautifulSoup(markup=content, features='lxml') word_meaning_dict = dict() # ----------------------basic----------------------- basic = soup.find('div', attrs={'class': 'baav'}) basic_str = '' if basic is not None: basic_str += ' '.join(list(basic.stripped_strings)) + '\n' basic = soup.find("div", id="phrsListTab") if basic is not None: result = basic.find('div', attrs={'class': 'trans-container'}) if result is not None: basic_str += result.ul.get_text().strip('\n') # if basic_str of word is '', we can make sure that this word or phrase does not exist. if basic_str == '': return None word_meaning_dict['basic'] = basic_str # -------------------词组短语--------------------- result = soup.find('div', id='transformToggle') if result is not None: phrase = result.find('div', id='wordGroup') if phrase is not None: phrase_str = '' for i, s in enumerate(phrase.stripped_strings): r = s.replace('\n', '') if r.find(word) >= 0: if i + 1 >= len(list(phrase.stripped_strings)): break phrase_str += r + ' ' + \ re.sub('\s*', '', list(phrase.stripped_strings) [i + 1]) + '\n' phrase_str = re.sub("\s+,", ",", phrase_str.strip()) phrase_str = re.sub("\s+◎", "◎", phrase_str.strip()) # print(phrase_str) if len(phrase_str) != 0: word_meaning_dict['phrase'] = phrase_str.strip('\n') # -------------------同近义词--------------------- result = soup.find('div', id='transformToggle') if result is not None: synonyms = result.find('div', id='synonyms') if synonyms is not None: synonyms_str = '' lst = [] for s in synonyms.stripped_strings: lst.append(s) i_next_index = 0 for i, s in enumerate(lst): if i < i_next_index: continue if is_start_word_type(s): synonyms_str += s + '\n' j_next_index = 0 j_begin = i + 1 for j, d in enumerate(lst[j_begin:]): if j < j_next_index: continue if is_start_word_type(d): i_next_index = j_begin + j synonyms_str += '\n' break if d == ',': synonyms_str += ', ' else: synonyms_str += d word_meaning_dict['synonyms'] = synonyms_str.strip('\n') # -------------------同根词--------------------- result = soup.find('div', id='transformToggle') if result is not None: rel_word_tab = result.find('div', id='relWordTab') if rel_word_tab is not None: rel_word_tab_str = '' is_found = False for i, s in enumerate(rel_word_tab.stripped_strings): if s == u'词根:': rel_word_tab_str += s + ' ' + \ list(rel_word_tab.stripped_strings)[i + 1] + '\n' is_found = True continue if is_found: is_found = False continue if s.find('.') >= 0: rel_word_tab_str += s + '\n' elif s.encode( 'utf-8').isalpha(): # without "encode('utf-8')", the Chinese symbol is recognized as alpha rel_word_tab_str += s + ' ' else: if len(rel_word_tab_str) > 0: rel_word_tab_str += s + '\n' else: rel_word_tab_str += s word_meaning_dict['rel_word_tab'] = rel_word_tab_str.strip('\n') # -------------------词语辨析--------------------- result = soup.find('div', id='transformToggle') if result is not None: discriminate = result.find('div', id='discriminate') if discriminate is not None: discriminate_str = '' is_found = False for i, s in enumerate(discriminate.stripped_strings): if is_found: is_found = False continue if is_alpha_and_x(s, ','): discriminate_str += '\n' + s + '\n' attach = list(discriminate.stripped_strings)[i + 1] + '\n' is_found = True if whether_start_with_alpha(attach): continue else: discriminate_str += attach continue if whether_only_alpha(s): discriminate_str += s + ' ' if whether_has_non_alpha_symbol(s) and s != u'以上来源于' and s != u'网络': discriminate_str += s + '\n' word_meaning_dict['discriminate'] = discriminate_str.strip('\n') # ---------------------collins--------------------- collins = soup.find('div', id="collinsResult") if collins is not None: text_list = [] for i, s in enumerate(collins.stripped_strings): # tackle special formation problem text_list.append(' '.join(s.split())) line = ' '.join(text_list[3:]) collins_str = re.sub('例:', '\n例:', line) collins_str = re.sub("\d+\.", "\n*", collins_str) collins_str = collins_str[collins_str.find('*'):] if len(collins_str.strip()) > 1: word_meaning_dict['collins'] = collins_str.encode('utf-8') word_meaning_dict['word'] = wrapped_word word_meaning_dict['date'] = str(datetime.datetime.now())[:-7] return word_meaning_dict
207a0777122bb1a0945037e18a916217f6c084cb
30,972
from operator import mod def bahai_from_fixed(date): """Return Bahai date [major, cycle, year, month, day] corresponding to fixed date, date.""" g_year = gregorian_year_from_fixed(date) start = gregorian_year_from_fixed(BAHAI_EPOCH) years = (g_year - start - (1 if (date <= fixed_from_gregorian( gregorian_date(g_year, MARCH, 20))) else 0)) major = 1 + quotient(years, 361) cycle = 1 + quotient(mod(years, 361), 19) year = 1 + mod(years, 19) days = date - fixed_from_bahai(bahai_date(major, cycle, year, 1, 1)) # month if (date >= fixed_from_bahai(bahai_date(major, cycle, year, 19, 1))): month = 19 elif (date >= fixed_from_bahai( bahai_date(major, cycle, year, AYYAM_I_HA, 1))): month = AYYAM_I_HA else: month = 1 + quotient(days, 19) day = date + 1 - fixed_from_bahai(bahai_date(major, cycle, year, month, 1)) return bahai_date(major, cycle, year, month, day)
bf31da3d961fc00abd764e06bae70094cb81af23
30,973
def create_or_update_record(tableName, record): """ Function to create or update a record in DynamoDB Params: tableName::str The table name to get the record record::dict The object to store Returns: bool If the record was inserted or not """ if not tableName or not record: return False if not {'username', 'index'}.issubset(record): return False try: res = ddb.Table(tableName).get_item( Key = { "username": record['username'], "index": record['index'] } ) record = { **res['Item'], **record } if 'Item' in res else record ddb.Table(tableName).put_item( Item = record ) return True except client.exceptions.ResourceNotFoundException: print("Table does not exist") return False except Exception as e: print("Exception @ create_or_update_record\n{}".format(e)) return None
4b1fbec40b404d93aefa2da728b5966917b2264a
30,974
import http import json def get_service_status(fledge_url): """ Return ping status from fledge. Args: fledge_url: The URL of Fledge. Returns: A json string that contains ping status. """ _connection = http.client.HTTPConnection(fledge_url) _connection.request("GET", '/fledge/service') r = _connection.getresponse() assert 200 == r.status r = r.read().decode() jdoc = json.loads(r) return jdoc
5c0381acba98dc4ff060f36671ec6f15595e8afb
30,976
def png_to_jpeg(image_bytes: bytes, quality: int = 100) -> np.ndarray: """Converts PNG image (bytes or str) to JPEG (bytes).""" runner = _get_runner() decode_fn = lambda img: tf.image.decode_png(img, channels=3) image = runner.run(decode_fn, image_bytes) fn = lambda img: tf.image.encode_jpeg(img, format='rgb', quality=quality) return runner.run(fn, image)
fa9cde555f2f2bba6375ecdb195a42ba6d753497
30,977
import urllib def get_object_metadata(sess, bucket_name, blob_name): """ get object metadata """ url = "https://www.googleapis.com/storage/v1/b/{}/o/{}".format( bucket_name, urllib.quote(blob_name, safe="") ) return sess.request(method="GET", url=url)
37fc44216e61e876c426b66a53054e59847bdbc6
30,978
def j2_pert(s): """Returns the J2 acceleration for a given state. Args: s(1x6 numpy array): the state vector [rx,ry,rz,vx,vy,vz] Returns: 1x3 numpy array: the J2 acceleration [ax,ay,az] """ r = np.linalg.norm(s[0:3]) K = -3*mu_Earth*J2*(Re**2)/2/r**5 comp = np.array([1,1,3]) comp = comp - 5*(s[2]/r)**2 comp = np.multiply(comp,s[0:3]) comp = np.multiply(K,comp) return comp
fc9561521d55e4f6f300dd9a7cdfc52ba49c9473
30,979
import scipy def bootstrap(v): """ Constructs Monte Carlo simulated data set using the Bootstrap algorithm. Usage: >>> bootstrap(x) where x is either an array or a list of arrays. If it is a list, the code returns the corresponding list of bootstrapped arrays assuming that the same position in these arrays map the same "physical" object. Rodrigo Nemmen, http://goo.gl/8S1Oo """ if type(v)==list: vboot=[] # list of boostrapped arrays n=v[0].size iran=scipy.random.randint(0,n,n) # Array of random indexes for x in v: vboot.append(x[iran]) else: # if v is an array, not a list of arrays n=v.size iran=scipy.random.randint(0,n,n) # Array of random indexes vboot=v[iran] return vboot
7d6a194e68ad9833ef0cbef6de0b8ff6f5a7cd62
30,980
def html_table_header(): """Return the HTML row with header cells used in all tables.""" markup = ("<tr>" + "<th>Column name</th>" + "<th>DataType</th>" + "<th><abbr title='Primary Key'>PK</abbr></th>" + "<th><abbr title='Foreign Key'>FK</abbr></th>" + "<th><abbr title='Not Null'>NN</abbr></th>" + "<th><abbr title='Unique'>UQ</abbr></th>" + "<th><abbr title='Binary'>BIN</abbr></th>" + "<th><abbr title='Unsigned'>UN</abbr></th>" + "<th><abbr title='Zero Fill'>ZF</abbr></th>" + "<th><abbr title='Auto Increment'>AI</abbr></th>" + "<th>Default</th>" + "<th>Comment</th>" + "</tr>") return markup
0fc65ca33cf23594dad007a3b0b16f1244ace62e
30,981
import glob def load_images(input_files): """ Flattens each image in a folder into a 1D numpy array. Next, each 1D numpy array is stacked into a 2D numpy array, where each row of the image is the flattened version of the image """ imgfiles = glob.glob(input_files) arr = [] for i, imgfile in enumerate(imgfiles): arr.append(img2array(imgfile).reshape(-1,1)) return np.hstack(arr).T
06894e87f66a25ba195563a7a7ff961c365691db
30,982
def hpat_pandas_series_iloc(self): """ Pandas Series operators :attr:`pandas.Series.at`, :attr:`pandas.Series.iat`, :attr:`pandas.Series.iloc`, :attr:`pandas.Series.loc` implementation. .. only:: developer Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_iloc2 Parameters ---------- series: :class:`pandas.Series` input series Returns ------- :obj:`pandas.Series` returns an object of :obj:`pandas.Series` """ _func_name = 'Operator at/iat/iloc/loc().' if not isinstance(self, SeriesType): raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self)) def hpat_pandas_series_iloc_impl(self): return self return hpat_pandas_series_iloc_impl
56ec60440b540b2b15a38a730aad3f4cba4563f3
30,983
def checkLoggedIn(session): """ checks if any player has logged in yet """ try: return session["roll"] is not None except KeyError: session["roll"] = None return False
436f51212abc9fe00abf11266cb90159a7f60bd4
30,984
import typing import logging def push_docker_image_buildah(external_docker_name, push_connection: typing.Optional[Connection]) -> str: """ Push the docker image using buildah :param external_docker_name: external docker image target name, without host :param push_connection: connection for pushing Docker images to """ if not push_connection: return external_docker_name remote_tag = f'{push_connection.spec.uri}/{external_docker_name}' logging.info('Starting pushing of image') tag_args = [ BUILDAH_BIN, 'tag', external_docker_name, remote_tag ] run(*tag_args) logging.info('Starting pushing of image') push_args = [ BUILDAH_BIN, 'push', *_extract_buildah_credentials(push_connection, remote_tag), remote_tag ] run(*push_args, sensitive=True) return remote_tag
950fd26d65de99f035ea5d39e3f708b0173298f6
30,985
def _match(patspec, tree): """Test if a tree matches the given pattern statement; return the matches >>> _match(b'f(_)', parse(b'f()')) >>> _match(b'f(_)', parse(b'f(1)')) [('func', ('symbol', 'f'), ('symbol', '1')), ('symbol', '1')] >>> _match(b'f(_)', parse(b'f(1, 2)')) """ pattern = _cachedtree(patspec) return parser.matchtree(pattern, tree, ('symbol', '_'), {'keyvalue', 'list'})
1b0fd2ef103bc2e9a6e1ee3df855b736ff24c162
30,986
from typing import List def list_methods(client: Client) -> List[str]: """Lists the methods which are available on the server. Args: client: A client instance. Returns: List of method names. """ return client._client.ListMethods()
a005113b9142f6de929b6c7accc4b0150041742c
30,987
import re def MakeLocal(start, end, location, name): """ Create a local variable @param start: start of address range for the local variable @param end: end of address range for the local variable @param location: the variable location in the "[bp+xx]" form where xx is a number. The location can also be specified as a register name. @param name: name of the local variable @return: 1-ok, 0-failure @note: For the stack variables the end address is ignored. If there is no function at 'start' then this function. will fail. """ func = idaapi.get_func(start) if not func: return 0 # Find out if location is in the [bp+xx] form r = re.compile("\[([a-z]+)([-+][0-9a-fx]+)", re.IGNORECASE) m = r.match(location) if m: # Location in the form of [bp+xx] register = idaapi.str2reg(m.group(1)) offset = int(m.group(2), 0) frame = idaapi.get_frame(func) if register == -1 or not frame: return 0 offset += func.frsize member = idaapi.get_member(frame, offset) if member: # Member already exists, rename it if idaapi.set_member_name(frame, offset, name): return 1 else: return 0 else: # No member at the offset, create a new one if idaapi.add_struc_member(frame, name, offset, idaapi.byteflag(), None, 1) == 0: return 1 else: return 0 else: # Location as simple register name return idaapi.add_regvar(func, start, end, location, name, None)
1950cd443bb4a4618638943256ed602412133ca7
30,988
def accuracy(y, t): """ y: baredl.Tensor or np.ndarray (n, c) n: number of samples c: number of classes Assuming it contains probabilities for each class e.g. [[0.1,0.3,0.6], [0.1,0.8,0.1], ...] t: baredl.Tensor or np.array (n,) n: number of samples Assuming it contains the true class label as index e.g. [2,1,1,0,2,0,...] """ y, t = as_tensor(y), as_tensor(t) pred = y.data.argmax(axis=1).reshape(t.shape) result = (pred == t.data) acc = result.mean() return Tensor(as_array(acc))
7f810190ee0a3c36ab3f8f51a2d7869309614a75
30,989
from typing import Type def get_config() -> Type[Config]: """Get the global spines configuration Returns ------- Config The global configuration settings for the current spines project. """ if _GLOBAL_CONFIG is None: load_config() return _GLOBAL_CONFIG.copy()
628337a2669237df265aafb7ad07746e075690c7
30,990
from typing import Optional def prompt_yes_or_no( question: str, yes_text: str = 'Yes', no_text: str = 'No', has_to_match_case: bool = False, enter_empty_confirms: bool = True, default_is_yes: bool = False, deselected_prefix: str = ' ', selected_prefix: str = '\033[31m>\033[0m ', char_prompt: bool = True) -> Optional[bool]: """Prompt the user to input yes or no. Args: question (str): The prompt asking the user to input. yes_text (str, optional): The text corresponding to 'yes'. no_text (str, optional): The text corresponding to 'no'. has_to_match_case (bool, optional): Does the case have to match. enter_empty_confirms (bool, optional): Does enter on empty string work. default_is_yes (bool, optional): Is yes selected by default (no). deselected_prefix (str, optional): Prefix if something is deselected. selected_prefix (str, optional): Prefix if something is selected (> ) char_prompt (bool, optional): Add a [Y/N] to the prompt. Returns: Optional[bool]: The bool what has been selected. """ is_yes = default_is_yes is_selected = enter_empty_confirms current_message = '' yn_prompt = f' ({yes_text[0]}/{no_text[0]}) ' if char_prompt else ': ' print() while True: yes = is_yes and is_selected no = not is_yes and is_selected print('\033[K' f'{selected_prefix if yes else deselected_prefix}{yes_text}') print('\033[K' f'{selected_prefix if no else deselected_prefix}{no_text}') print('\033[3A\r\033[K' f'{question}{yn_prompt}{current_message}', end='', flush=True) keypress = readchar.readkey() if keypress in DefaultKeys.down or keypress in DefaultKeys.up: is_yes = not is_yes is_selected = True current_message = yes_text if is_yes else no_text elif keypress in DefaultKeys.delete: if current_message: current_message = current_message[:-1] elif keypress in DefaultKeys.interrupt: raise KeyboardInterrupt elif keypress in DefaultKeys.confirm: if is_selected: break elif keypress in '\t': if is_selected: current_message = yes_text if is_yes else no_text else: current_message += keypress match_yes = yes_text match_no = no_text match_text = current_message if not has_to_match_case: match_yes = match_yes.upper() match_no = match_no.upper() match_text = match_text.upper() if match_no.startswith(match_text): is_selected = True is_yes = False elif match_yes.startswith(match_text): is_selected = True is_yes = True else: is_selected = False print() print('\033[K\n\033[K\n\033[K\n\033[3A') return is_selected and is_yes
754659d5ab28715002d1a5d47a80e87a64d3b79f
30,991
import oci.object_storage import mysqlsh import re import threading def delete_bucket_object(name=None, **kwargs): """Deletes an object store bucket objects Args: name (str): The name of the object, can include * to match multiple objects **kwargs: Additional options Keyword Args: bucket_name (str): The name of the bucket. compartment_id (str): OCID of the parent compartment. config (object): An OCI config object or None. interactive (bool): If set to false, function returns true on success Returns: None or True """ bucket_name = kwargs.get('bucket_name') compartment_id = kwargs.get('compartment_id') config = kwargs.get('config') interactive = kwargs.get('interactive', True) # Get the active config and compartment try: config = configuration.get_current_config(config=config) compartment_id = configuration.get_current_compartment_id( compartment_id=compartment_id, config=config) bucket_name = configuration.get_current_bucket_name( bucket_name=bucket_name, config=config) bucket = get_bucket( bucket_name=bucket_name, compartment_id=compartment_id, config=config) if bucket is None: if interactive: print("Operation Cancelled.\n") return # Initialize the Object Store client os_client = core.get_oci_object_storage_client(config=config) # Get Object Store namespace namespace_name = get_object_store_namespace(config) # If the user specified * as name, delete all if name and (name == '*' or '*' in name): # Get object list objects = oci.pagination.list_call_get_all_results( os_client.list_objects, namespace_name=namespace_name, bucket_name=bucket.name, limit=1000).data.objects # Filter list if name != '*': name = name.lower() # Filter list if PARs if '*' in name: name_pattern = '^' + name.replace('*', '.+') objects = [obj for obj in objects if re.search(name_pattern, obj.name.lower())] else: objects = [obj for obj in objects if name == obj.name.lower()] # Get object count obj_count = len(objects) if obj_count == 0: print("No objects to delete in this bucket.") return # Prompt the user for confirmation if interactive: prompt = mysqlsh.globals.shell.prompt( f"Are you sure you want to delete {obj_count} object" f"{'s' if obj_count > 1 else ''} from {bucket.name} " f"[yes/NO]: ", {'defaultValue': 'no'}).strip().lower() if prompt != "yes": print("Deletion aborted.\n") return # Delete all objects print(f"Deleting {obj_count} " f"object{'s' if obj_count > 1 else ''}.") thread_count = NTHREAD if obj_count > NTHREAD else obj_count ths = [threading.Thread( target=delete_file_from_list_from_bucket, args=(i, os_client, objects, namespace_name, bucket.name, thread_count)) for i in range(thread_count)] for th in ths: th.daemon = True th.start() for th in ths: th.join() if interactive: print(f"Bucket object{'s' if '*' in name else ''} " f"deleted successfully.") elif name: os_client.delete_object( namespace_name=namespace_name, bucket_name=bucket.name, object_name=name) print(f"Bucket object '{name}' deleted successfully.") elif interactive: # Get object list bucket_objects = oci.pagination.list_call_get_all_results( os_client.list_objects, namespace_name=namespace_name, bucket_name=bucket.name, limit=1000).data.objects print(format_bucket_objects_listing(bucket_objects=bucket_objects)) obj_summary = core.prompt_for_list_item( item_list=bucket_objects, prompt_caption="Please enter the index or name of an object: ", item_name_property="name") if obj_summary is None: print("Operation cancelled.") return name = obj_summary.name os_client.delete_object( namespace_name=namespace_name, bucket_name=bucket.name, object_name=name) print(f"Bucket object '{name}' deleted successfully.") else: print('No Object name given.') if not interactive: return True except oci.exceptions.ServiceError as e: print(f'ERROR: {e.message}. (Code: {e.code}; Status: {e.status})') return except Exception as e: print(f'ERROR: {e}') return
95e15c98f5c11cb55b6036305ab8fc0b440fcfa0
30,992
def _create_input_dict(function_graph, func_arg_placeholders, initial_value=None): """Create a mapping from graph tensor names to function tensor names.""" if initial_value is None: input_dict = {} else: input_dict = dict(initial_value) for op in function_graph.get_operations(): if _is_in_placeholders(op, func_arg_placeholders): input_dict[op.name] = op.name else: op_def = _get_op_def(op) attrs = _get_node_def(op).attr o = 0 for arg_def in op_def.output_arg: if arg_def.number_attr: num = attrs[arg_def.number_attr].i elif arg_def.type_list_attr: num = len(attrs[arg_def.type_list_attr].list.type) else: num = 1 for i in range(num): result = "%s:%s:%d" % (op.name, arg_def.name, i) input_dict[op.values()[o].name] = result if o == 0: input_dict[op.name] = result o += 1 return input_dict
8db84c7ba4cb13c13bf5ef54fe1ecff79b5765fc
30,993
def process(document, rtype=None, api=None): """ Extracts spelling-corrected tokens in specified format from given texterra-annotated text. """ corrected_tokens = [] if annotationName in document['annotations']: if rtype == 'annotation': for token in document['annotations'][annotationName]: corrected_tokens.append((token['start'], token['end'], token['value'])) elif rtype == 'token': for token in document['annotations'][annotationName]: corrected_tokens.append((document['text'][token['start']: token['end']], token['value'])) else: # rtype == 'full' for token in document['annotations'][annotationName]: corrected_tokens.append((token['start'], token['end'], document['text'][token['start']: token['end']], token['value'])) return corrected_tokens
bbd2de604bcf9c280bd2fac8e5e0d0975a905bc9
30,994
from pathlib import Path import hashlib import base64 def get_hashed_path (path: Path, *, algorithm=hashlib.sha256, stretching_count: int=256) -> bytes: """ obfuscate a filename. I recommend this function, if you want to hide from anybody guess a file information from file-name. """ p = Path(path) return p.with_name(base64.urlsafe_b64encode(generate_hash_by_path(p, algorithm=algorithm, stretching_count=stretching_count)).decode("ascii"))
1981477e975465a23f73931d9496a71c8cf26e34
30,995
def quantile(values, q): """ Returns q-th quantile. """ values = sorted(values) size = len(values) idx = int(round(size * q)) - 1 if idx == 0: raise ValueError("Sample size too small: %s" % len(values)) return values[idx]
614f6d9dbdf586b802d6380e2880df3659faa0c2
30,996
def parse_child_text(parent, selector, parser, index=0): """Parse the text content of the child element of parent as specified by the given CSS selector If index is specified, parse the text content of the matching child element at the specified zero-based index; otherwise, parse the text content of the first matching child element. """ text = get_child_text(parent, selector, index) if text is not None: try: return parser(text) except ValueError: return None
b10ec463dd572b4e6e256302d8db6e599638b1be
30,997