content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _svd_classification(dataset='mnist_small'): """ svd on classificaiton dataset Inputs: dataset: (str) name of dataset Outputs: accuracy on predicted values """ if dataset=='rosenbrock': x_train, x_valid, x_test, y_train, y_valid, y_test = load_dataset('rosenbrock', n_train=5000, d=2) else: x_train, x_valid, x_test, y_train, y_valid, y_test = load_dataset(dataset) x_total = np.vstack([x_train, x_valid]) y_total = np.vstack([y_train, y_valid]) X = np.ones((len(x_total), len(x_total[0]) + 1)) X[:, 1:] = x_total U, S, Vh = np.linalg.svd(X) # Invert Sigma sig = np.diag(S) filler = np.zeros([len(x_total)-len(S), len(S)]) sig_inv = np.linalg.pinv(np.vstack([sig, filler])) # Compute weights w = Vh.T @ (sig_inv @ (U.T @ y_total)) # Make test predictions X_test = np.ones((len(x_test), len(x_test[0]) + 1)) X_test[:, 1:] = x_test predictions = np.argmax(X_test @ w, axis=1) y_test = np.argmax(1 * y_test, axis=1) return (predictions == y_test).sum() / len(y_test)
55eae147130a4552ba33f466f6127ab5df1323b9
30,420
def set_answer(set_number): """ get result answer >>> set_answer(600851475143) 6857 >>> set_answer(3000) 5 """ while True: prime_fac = prime_factorization(set_number) if prime_fac < set_number: set_number //= prime_fac else: return set_number
b601a764123b737993c1b822ff466f47ca5caea6
30,421
import torch def model_infer(model, test_images, test_affinities, test_beliefs, args): """ Parameters: model: object with the trained model test_images: batch of images (float32), size: (test_batch_size,3,x,y) test_affinities: batch of affinity maps (float32), size: (test_batch_size,16,x/8,y/8) test_beliefs: batch of belief maps (float32), size: (test_batch_size,9,x/8,y/8) Returns: loss: scalar belief: output belief maps, size: size: (test_batch_size,9,x/8,y/8) affinity: output affinity maps, size: (test_batch_size,16,x/8,y/8) """ if torch.cuda.is_available(): test_images_v = Variable(test_images.cuda(device=args.gpu_device)) test_beliefs_v = Variable(test_beliefs.cuda(device=args.gpu_device)) test_affinities_v = Variable(test_affinities.cuda(device=args.gpu_device)) else: test_images_v = Variable(test_images) test_beliefs_v = Variable(test_beliefs) test_affinities_v = Variable(test_affinities) # This shall be adjusted according to the specific model with torch.no_grad(): output_belief, output_affinity = model.forward(test_images_v) J = compute_loss(output_belief, output_affinity, test_beliefs_v, test_affinities_v) belief = output_belief[5].data.cpu().numpy() affinity = output_affinity[5].data.cpu().numpy() loss = J.data.cpu().numpy() return belief, affinity, loss
32534691056c96e3c96adaebfc112da7525ef6dd
30,422
import re def clean_value(value, suffix): """ Strip out copy suffix from a string value. :param value: Current value e.g "Test Copy" or "test-copy" for slug fields. :type value: `str` :param suffix: The suffix value to be replaced with an empty string. :type suffix: `str` :return: Stripped string without the suffix. """ # type: (str, str) -> str return re.sub(r"([\s-]?){}[\s-][\d]$".format(suffix), "", value, flags=re.I)
d2ec3b3affbf71411039f234c05935132205ae16
30,423
def list_devices_to_string(list_item): """Convert cfg devices into comma split format. Args: list_item (list): list of devices, e.g. [], [1], ["1"], [1,2], ... Returns: devices (string): comma split devices """ return ",".join(str(i) for i in list_item)
717f40d3fd0c24b93d5859491d3f9f16a2b0a069
30,424
def trace_module(no_print=True): """ Trace plot series module exceptions """ mname = 'series' fname = 'plot' module_prefix = 'putil.plot.{0}.Series.'.format(mname) callable_names = ( '__init__', 'data_source', 'label', 'color', 'marker', 'interp', 'line_style', 'secondary_axis' ) return docs.support.trace_support.run_trace( mname, fname, module_prefix, callable_names, no_print, ['putil.eng'] )
b46e69836257de525e55346872f01cb338e036c9
30,425
def get_ids(values): """Transform numeric identifiers, corpora shortcodes (slugs), and two-letter ISO language codes, into their corresponding numeric identifier as per the order in CORPORA_SOURCES. :return: List of indices in CORPORA_SOURCES :rtype: list """ if "all" in values: ids = list(range(len(CORPORA_SOURCES))) else: ids = [] for index, corpus_info in enumerate(CORPORA_SOURCES): corpus_id = index + 1 props = corpus_info["properties"] if (str(corpus_id) in values or props["slug"] in values or props["language"] in values): ids.append(index) return ids
482c3940a0a8492820d94d5a9af41c5891c82406
30,426
import click def quiet_option(func): """Add a quiet option.""" def _callback(ctx, unused_param, value): _set_verbosity(ctx, -value) return value return click.option('-q', '--quiet', count=True, expose_value=False, help='Decreases verbosity.', callback=_callback)(func)
b13dd670cd06136fbccfccff23ed27233efcb7bd
30,427
def _compute_gaussian_fwhm(spectrum, regions=None): """ This is a helper function for the above `gaussian_fwhm()` method. """ fwhm = _compute_gaussian_sigma_width(spectrum, regions) * gaussian_sigma_to_fwhm return fwhm
b5e83752141830911a3d1e26cce10c82b1414740
30,428
from re import T from typing import Optional from typing import Callable from typing import Any from typing import List async def sorted( iterable: AnyIterable[T], *, key: Optional[Callable[[T], Any]] = None, reverse: bool = False, ) -> List[T]: """ Sort items from an (async) iterable into a new list The optional ``key`` argument specifies a one-argument (async) callable, which provides a substitute for determining the sort order of each item. The special value and default :py:data:`None` represents the identity functions, i.e. compares items directly. The default sort order is ascending, that is items with ``a < b`` imply ``result.index(a) < result.index(b)``. Use ``reverse=True`` for descending sort order. .. note:: The actual sorting is synchronous, so a very large ``iterable`` or very slow comparison may block the event loop notably. It is guaranteed to be worst-case O(n log n) runtime. """ if key is None: try: return _sync_builtins.sorted(iterable, reverse=reverse) # type: ignore except TypeError: pass key = _awaitify(key) if key is not None else _identity keyed_items = [(await key(item), item) async for item in aiter(iterable)] keyed_items.sort(key=lambda ki: ki[0], reverse=reverse) return [item for key, item in keyed_items]
628336093c282f340f3ad2f750227e1286ceefef
30,429
def config_split(config): """ Splits a config dict into smaller chunks. This helps to avoid sending big config files. """ split = [] if "actuator" in config: for name in config["actuator"]: split.append({"actuator": {name: config["actuator"][name]}}) del(config["actuator"]) split.append(config) return split
2006534ece382c55f1ba3914300f5b6960323e53
30,430
def transl(x, y=None, z=None): """ Create or decompose translational homogeneous transformations. Create a homogeneous transformation =================================== - T = transl(v) - T = transl(vx, vy, vz) The transformation is created with a unit rotation submatrix. The translational elements are set from elements of v which is a list, array or matrix, or from separate passed elements. Decompose a homogeneous transformation ====================================== - v = transl(T) Return the translation vector """ if y==None and z==None: x=mat(x) try: if ishomog(x): return x[0:3,3].reshape(3,1) else: return concatenate((concatenate((eye(3),x.reshape(3,1)),1),mat([0,0,0,1]))) except AttributeError: n=len(x) r = [[],[],[]] for i in range(n): r = concatenate((r,x[i][0:3,3]),1) return r elif y!=None and z!=None: return concatenate((concatenate((eye(3),mat([x,y,z]).T),1),mat([0,0,0,1])))
d3b47af2ea8f130559f19dea269fbd1a50a8559c
30,431
def find_next_square2(sq: int) -> int: """ This version is just more compact. """ sqrt_of_sq = sq ** (1/2) return -1 if sqrt_of_sq % 1 != 0 else int((sqrt_of_sq + 1) ** 2)
62246b78cc065b629961a7283671e776481a8659
30,432
import colorsys def hex_2_hsv(hex_col): """ convert hex code to colorsys style hsv >>> hex_2_hsv('#f77f00') (0.08569500674763834, 1.0, 0.9686274509803922) """ hex_col = hex_col.lstrip('#') r, g, b = tuple(int(hex_col[i:i+2], 16) for i in (0, 2 ,4)) return colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)
a80e9c5470dfc64c61d12bb4b823411c4a781bef
30,433
from pathlib import Path def _drivers_dir() -> str: """ ドライバ格納ディレクトリのパスを返します :return: ドライバ格納ディレクトリのパス """ return str(Path(__file__).absolute().parent.parent.joinpath('drivers'))
45b173099f6df24398791ec33332072a7651fa4f
30,434
import types def create_list_response_value( *, authorization: types.TAuthorization, uri: types.TUri, auth_info: types.CredentialsAuthInfo, ) -> types.TResponseValue: """ Calculate the response for a list type response. Raises NotFoundError when the uri is not linked to a known spec. Args: uri: The requested uri. auth_info: Information about the user. Returns: The html to return to the user for the request. """ assert uri.startswith("/") assert uri.endswith("/") spec_id = uri[1:-1] try: version_infos = package_database.get().list_spec_versions( sub=auth_info.sub, name=spec_id ) except package_database.exceptions.NotFoundError as exc: raise exceptions.NotFoundError( f"could not find package with {spec_id=}" ) from exc host = "index.package.openalchemy.io" def package_name(version: str) -> str: """Calculate the name of the package.""" return f"{spec_id.replace('-', '_')}-{version}.tar.gz" install_links = list( map( lambda version_info: ( f'<a href="https://' f"{authorization.public_key}:{authorization.secret_key}" f"@{host}/{spec_id}/" f'{package_name(version_info["version"])}">' f'{package_name(version_info["version"])}</a><br>' ), version_infos, ) ) joined_install_links = "\n".join(install_links) return f""" <body> {joined_install_links} </body> """
492d5a93b7db393dafde48c66d323dda64c7e32c
30,435
def get_variables(expr): """ Get variables of an expression """ if isinstance(expr, NegBoolView): # this is just a view, return the actual variable return [expr._bv] if isinstance(expr, _NumVarImpl): # a real var, do our thing return [expr] vars_ = [] # if list or Expr: recurse if is_any_list(expr): for subexpr in expr: vars_ += get_variables(subexpr) elif isinstance(expr, Expression): for subexpr in expr.args: vars_ += get_variables(subexpr) # else: every non-list, non-expression return vars_
6326ae90f0fa6daa04e0dedc95cf52f4081fa359
30,436
def tousLesIndices(stat): """ Returns the indices of all the elements of the graph """ return stat.node2com.keys() #s=stat.node2com.values() global globAuthorIndex global globTfIdfTab #pprint(globAuthorIndex) #pprint(stat.node2com.values()) #glob node->index return [globAuthorIndex[x] for x in stat.node2com] #return stat.node2com.values() #def varianceGroupe(): #def distanceListePointsCentre(indexsCommunaute, centre):
fa847ee3913d521778ee3462c8e946f0ff001c76
30,437
def edit_tx_sheet(request, sheet_id): """Allows the user to edit treatment sheet fields and updates the date of the sheet""" tx_sheet = get_object_or_404(TxSheet, id=sheet_id) form = TxSheetForm(instance=tx_sheet) if request.user == tx_sheet.owner: if request.method == 'POST': form = TxSheetForm(data=request.POST) if form.is_valid(): defaults = {'owner': request.user, 'name': request.POST['name'], 'comment': request.POST['comment'], 'date': date.today()} tx_sheet = form.update(sheet_id=sheet_id, defaults=defaults) return redirect(tx_sheet) return render(request, 'tx_sheet/tx_sheet_edit.html', {'navbar': 'tx_sheet', 'form': form}) else: raise PermissionDenied
04ef22e069cc329d4eceae5ae567867fb31f787c
30,438
import warnings def system( W, L_x, L_sc_up, L_sc_down, z_x, z_y, a, shape, transverse_soi, mu_from_bottom_of_spin_orbit_bands, k_x_in_sc, wraparound, infinite, sc_leads=False, no_phs=False, rough_edge=None, phs_breaking_potential=False): """Create zigzag system Parameters ---------- W : float Width of the semiconductor (or contact seperation of the junction.) L_x : float Length of the system (x-dimension). L_sc_up : float Minimum width of the top superconductor. L_sc_down : float Minimum width of the bottom superconductor. z_x : float Period of zigzag. z_y : float Amplitude of zigzag. a : float Lattice spacing. shape : string Can be either 'sawtooth' for zigzag shape, or 'parallel_curve' for a shape formed by curve parallel to a sine curve. transverse_soi : bool Toggle Rashba spin-orbit in the y-direction. mu_from_bottom_of_spin_orbit_bands : bool Toggle counting chemical potential from bottom of spin orbit band. k_x_in_sc : bool Toggle whether superconductor have hopping in the x-direction. wraparound : bool Toggle a wraparound system, such that the translational invariance is transformed into the momentum parameter k_x. infinite : bool Toggle whether the system contains a z_x periodic translational invariance. sc_leads : bool, optional Toggle superconducting leads in y-direction. no_phs : bool, optional Remove particle-hole symmetry by removing the electron-hole orbital. rough_edge : bool, optional Toggle roughened edges to shape. phs_breaking_potential : bool, optional Add particle-hole symmetry breaking potential to allow for a computationally cheaper way to calculate the Majorana decay length. Returns ------- kwant.builder.FiniteSystem or kwant.builder.InfiniteSystem """ if wraparound and not infinite: raise ValueError('If you want to use wraparound, infinite must be True.') if sc_leads and not infinite or sc_leads and not wraparound: raise ValueError('If you want to use sc_leads, infinite and wraparound must be True.') template_strings = get_template_strings( transverse_soi, mu_from_bottom_of_spin_orbit_bands, k_x_in_sc, False, no_phs, phs_breaking_potential) template = {k: discretize(v, coords=('x', 'y'), grid_spacing=a) for k, v in template_strings.items()} shapes = get_shapes(shape, a, z_x, z_y, W, L_x, L_sc_down, L_sc_up, rough_edge) syst = kwant.Builder(kwant.TranslationalSymmetry([L_x, 0]) if infinite else None) for y in np.arange(-W - L_sc_down, W + L_sc_up, a): # We're unsure about the location of the barrier # so we loop over all possible sites. with warnings.catch_warnings(): warnings.filterwarnings("ignore") sites = syst.fill(template['barrier'], shapes['edge'], (0, y)) syst.fill(template['normal'], *shapes['normal']) if L_sc_up > 0: syst.fill(template['sc_top'], *shapes['sc_top']) if L_sc_down > 0: syst.fill(template['sc_bot'], *shapes['sc_bot']) if infinite and wraparound: syst = kwant.wraparound.wraparound(syst) if sc_leads: lead_up = kwant.Builder(kwant.TranslationalSymmetry([L_x, 0], [0, a])) lead_down = kwant.Builder(kwant.TranslationalSymmetry([L_x, 0], [0, -a])) lead_up = kwant.wraparound.wraparound(lead_up, keep=1) lead_down = kwant.wraparound.wraparound(lead_down, keep=1) lead_up.fill(template_sc_top, lambda s: 0 <= s.pos[0] < L_x, (0, 0)) lead_down.fill(template_sc_bot, lambda s: 0 <= s.pos[0] < L_x, (0, 0)) syst.attach_lead(lead_up) syst.attach_lead(lead_down) return syst.finalized()
101f3fffeb333cb9c53c2ef930e17fa0f7e08966
30,439
def get_state_x1_pure_state_vector() -> np.ndarray: """Returns the pure state vector for :math:`|-\\rangle`. :math:`|-\\rangle := \\frac{1}{\\sqrt{2}} (|0\\rangle - |1\\rangle)` Returns ------- np.ndarray the pure state vector. """ vec = (1 / np.sqrt(2)) * np.array([1, -1], dtype=np.complex128) return vec
81d52d34492a0b57206d3cf55ceb9dd939a7cdf8
30,441
def user_create(user_data): """ Cria um usuário no banco de dados e retorna o objeto criado """ user_model = get_user_model() user = user_model.objects.create_user(**user_data) return user
163c742601d25a7b04e572ea6b32de6625b99de5
30,442
from typing import Counter def shannon_entropy(text: str) -> float: """ same definition as in feature processor for feature extraction calculates shannon entropy of a given string """ content_char_counts = Counter([ch for ch in text]) total_string_size = len(text) entropy: float = 0 for ratio in [char_count / total_string_size for char_count in content_char_counts.values()]: entropy -= ratio * log(ratio, 2) return entropy
e3092f8620b809a3d935ad16290d077122f6b1df
30,443
def solve(inputmatrix): """ This function contains a solution to the data in 4be741c5.json posed by the Abstraction and Reasoning Corpus (ARC). The problem presents an n x m grid, with some rows containing 0-m coloured squares with repetition over a row or colomuns. The solution requires the rows to be ordered such that it get color of all unique colors if it is either row-wise or colomun-wise. """ #Empty result list to return results result=[] #convert input to numpy array y = np.array([np.array(xi) for xi in inputmatrix]) if len(np.unique(y[:1][0]))>1:#if the count of unique colors is more than one indexes = np.unique(y[:1][0], return_index=True)[1] #Get the indexes of unique colour row=[y[:1][0][index] for index in sorted(indexes)]#Get the unique colors in unsorted list result.append(row)#append row to result else:#if colour are in colomun indexes = np.unique(y[:, 0], return_index=True)[1]#Get the indexes of unique colour colomun = [y[:, 0][index] for index in sorted(indexes)]#Get the unique colors in unsorted list for value in colomun: result.append([value])#Appending values to the result return (result)
33f27b9bd57ce00972d8c29e7ae3a0ac71dd2455
30,444
def compute_rewards(s1, s2): """ input: s1 - state before action s2 - state after action rewards based on proximity to each goal """ r = [] for g in TASKS: dist1 = np.linalg.norm(s1 - g) dist2 = np.linalg.norm(s2 - g) reward = dist1 - dist2 r.append(reward) return r
1a6ee67ce581dc07d735e15fe62d09561cf0453f
30,445
import ipaddress def decode(i_dunno): """ Decode an I-DUNNO representation into an ipaddress.IPv6Address or an ipaddress.IPv4Address object. A ValueError is raised if decoding fails due to invalid notation or resulting IP address is invalid. The output of this function SHOULD NOT be presented to humans, as recommended by RFC8771. """ bits = [] for char in i_dunno.decode('utf-8'): num = ord(char) for minimum, length in utf8_lengths: if num < (1 << length) and (minimum == 0 or num >= (1 << minimum)): bits += int_to_bits(num, length) break else: raise ValueError('invalid I-DUNNO') addr = bits_to_bytes(bits) if len(addr) == 16: cls = ipaddress.IPv6Address elif len(addr) == 4: cls = ipaddress.IPv4Address else: raise ValueError('invalid I-DUNNO') try: return cls(addr) except ipaddress.AddressValueError: raise ValueError('invalid IP address')
557da5af7b33d988754f67ecd4574be9bdc85784
30,446
def location_descriptors(): """Provide possible templated_sequence input.""" return [ { "id": "NC_000001.11:15455", "type": "LocationDescriptor", "location": { "sequence_id": "ncbi:NC_000001.11", "interval": { "start": { "type": "Number", "value": 15455 }, "end": { "type": "Number", "value": 15456 } }, "type": "SequenceLocation" }, "label": "NC_000001.11:15455", }, { "id": "NC_000001.11:15566", "type": "LocationDescriptor", "location": { "sequence_id": "ncbi:NC_000001.11", "interval": { "start": { "type": "Number", "value": 15565 }, "end": { "type": "Number", "value": 15566 } }, "type": "SequenceLocation" }, "label": "NC_000001.11:15566", }, { "id": "chr12:p12.1", "type": "LocationDescriptor", "location": { "species_id": "taxonomy:9606", "chr": "12", "interval": {"start": "p12.1", "end": "p12.1"} }, "label": "chr12:p12.1", }, { "id": "chr12:p12.2", "type": "LocationDescriptor", "location": { "species_id": "taxonomy:9606", "chr": "12", "interval": {"start": "p12.2", "end": "p12.2"} }, "label": "chr12:p12.2", }, { "id": "NC_000001.11:15455-15566", "type": "LocationDescriptor", "location": { "sequence_id": "ncbi:NC_000001.11", "interval": { "start": { "type": "Number", "value": 15455 }, "end": { "type": "Number", "value": 15566 } }, "type": "SequenceLocation" }, "label": "NC_000001.11:15455-15566", }, { "id": "chr12:p12.1-p12.2", "type": "LocationDescriptor", "location": { "species_id": "taxonomy:9606", "chr": "12", "interval": {"start": "p12.1", "end": "p12.2"} }, "label": "chr12:p12.1-p12.2", }, { "id": "fusor.location_descriptor:NP_001123617.1", "type": "LocationDescriptor", "location": { "sequence_id": "ga4gh:SQ.sv5egNzqN5koJQH6w0M4tIK9tEDEfJl7", "type": "SequenceLocation", "interval": { "start": { "type": "Number", "value": 171 }, "end": { "type": "Number", "value": 204 } } } }, { "id": "fusor.location_descriptor:NP_002520.2", "type": "LocationDescriptor", "location": { "sequence_id": "ga4gh:SQ.vJvm06Wl5J7DXHynR9ksW7IK3_3jlFK6", "type": "SequenceLocation", "interval": { "start": { "type": "Number", "value": 510 }, "end": { "type": "Number", "value": 781 } } } } ]
da13824ff6f91caa635700759a29fb1f36aae1be
30,448
from typing import Optional def positional_features_gamma(positions: tf.Tensor, feature_size: int, seq_length: Optional[int] = None, bin_size: Optional[int] = None, stddev=None, start_mean=None): """Positional features computed using the gamma distributions.""" del bin_size # Unused. if seq_length is None: seq_length = tf.reduce_max(tf.abs(positions)) + 1 if stddev is None: stddev = seq_length / (2 * feature_size) if start_mean is None: start_mean = seq_length / feature_size mean = tf.linspace(start_mean, seq_length, num=feature_size) mean = _prepend_dims(mean, positions.shape.rank) concentration = (mean / stddev)**2 rate = mean / stddev**2 probabilities = gamma_pdf( tf.abs(tf.cast(positions, dtype=tf.float32))[..., tf.newaxis], concentration, rate) probabilities += 1e-8 # To ensure numerical stability. outputs = probabilities / tf.reduce_max(probabilities) tf.TensorShape(outputs.shape).assert_is_compatible_with( positions.shape + [feature_size]) return outputs
20dc2154a194d99ec1a9931e10fca2b43d360a6e
30,449
from typing import List def _get_frame_data(mapAPI: MapAPI, frame: np.ndarray, agents_frame: np.ndarray, tls_frame: np.ndarray) -> FrameVisualization: """Get visualisation objects for the current frame. :param mapAPI: mapAPI object (used for lanes, crosswalks etc..) :param frame: the current frame (used for ego) :param agents_frame: agents in this frame :param tls_frame: the tls of this frame :return: A FrameVisualization object. NOTE: trajectory are not included here """ ego_xy = frame["ego_translation"][:2] ################# # plot lanes lane_indices = indices_in_bounds(ego_xy, mapAPI.bounds_info["lanes"]["bounds"], 50) active_tl_ids = set(filter_tl_faces_by_status(tls_frame, "ACTIVE")["face_id"].tolist()) lanes_vis: List[LaneVisualization] = [] for idx, lane_idx in enumerate(lane_indices): lane_idx = mapAPI.bounds_info["lanes"]["ids"][lane_idx] lane_tl_ids = set(mapAPI.get_lane_traffic_control_ids(lane_idx)) lane_colour = "gray" for tl_id in lane_tl_ids.intersection(active_tl_ids): lane_colour = COLORS[mapAPI.get_color_for_face(tl_id)] lane_coords = mapAPI.get_lane_coords(lane_idx) left_lane = lane_coords["xyz_left"][:, :2] right_lane = lane_coords["xyz_right"][::-1, :2] lanes_vis.append(LaneVisualization(xs=np.hstack((left_lane[:, 0], right_lane[:, 0])), ys=np.hstack((left_lane[:, 1], right_lane[:, 1])), color=lane_colour)) ################# # plot crosswalks crosswalk_indices = indices_in_bounds(ego_xy, mapAPI.bounds_info["crosswalks"]["bounds"], 50) crosswalks_vis: List[CWVisualization] = [] for idx in crosswalk_indices: crosswalk = mapAPI.get_crosswalk_coords(mapAPI.bounds_info["crosswalks"]["ids"][idx]) crosswalks_vis.append(CWVisualization(xs=crosswalk["xyz"][:, 0], ys=crosswalk["xyz"][:, 1], color="yellow")) ################# # plot ego and agents agents_frame = np.insert(agents_frame, 0, get_ego_as_agent(frame)) box_world_coords = get_box_world_coords(agents_frame) # ego ego_vis = EgoVisualization(xs=box_world_coords[0, :, 0], ys=box_world_coords[0, :, 1], color="red", center_x=agents_frame["centroid"][0, 0], center_y=agents_frame["centroid"][0, 1]) # agents agents_frame = agents_frame[1:] box_world_coords = box_world_coords[1:] agents_vis: List[AgentVisualization] = [] for agent, box_coord in zip(agents_frame, box_world_coords): label_index = np.argmax(agent["label_probabilities"]) agent_type = PERCEPTION_LABELS[label_index] agents_vis.append(AgentVisualization(xs=box_coord[..., 0], ys=box_coord[..., 1], color="#1F77B4" if agent_type not in COLORS else COLORS[agent_type], track_id=agent["track_id"], agent_type=PERCEPTION_LABELS[label_index], prob=agent["label_probabilities"][label_index])) return FrameVisualization(ego=ego_vis, agents=agents_vis, lanes=lanes_vis, crosswalks=crosswalks_vis, trajectories=[])
65f3733e858f595877af83e0574bb53c5568390c
30,450
def calculate_gc(x): """Calculates the GC content of DNA sequence x. x: a string composed only of A's, T's, G's, and C's.""" x = x.upper() return float(x.count('G') + x.count('C')) / (x.count('G') + x.count('C') + x.count('A') + x.count('T'))
aae64ff550ef26e75518bdad8a12b7cda9e060d2
30,451
def no_float_zeros(v): """ if a float that is equiv to integer - return int instead """ if v % 1 == 0: return int(v) else: return v
a33321408c43d164a8ca2c7f1d1bc6270e5708ec
30,453
import torch def quat_mult(q_1, q_2): """Multiplication in the space of quaternions.""" a_1, b_1, c_1, d_1 = q_1[:, 0], q_1[:, 1], q_1[:, 2], q_1[:, 3] a_2, b_2, c_2, d_2 = q_2[:, 0], q_2[:, 1], q_2[:, 2], q_2[:, 3] q_1_q_2 = torch.stack( ( a_1 * a_2 - b_1 * b_2 - c_1 * c_2 - d_1 * d_2, a_1 * b_2 + b_1 * a_2 + c_1 * d_2 - d_1 * c_2, a_1 * c_2 - b_1 * d_2 + c_1 * a_2 + d_1 * b_2, a_1 * d_2 + b_1 * c_2 - c_1 * b_2 + d_1 * a_2, ), dim=1, ) return q_1_q_2
dac82e246221f9af552f44ca26089443b8eaadd7
30,454
def _flip_dict_keys_and_values(d): """Switches the keys and values of a dictionary. The input dicitonary is not modified. Output: dict """ output = {} for key, value in d.items(): output[value] = key return output
b861fc3bd194d26ee05b9a56faad3394939064bf
30,455
from typing import Tuple from typing import Optional def set_dative_bonds( mol: Chem.rdchem.Mol, from_atoms: Tuple[int, int] = (7, 8) ) -> Optional[Chem.rdchem.Mol]: """Replaces some single bonds between metals and atoms with atomic numbers in fromAtoms with dative bonds. The replacement is only done if the atom has "too many" bonds. Arguments: mol: molecule with bond to modify from_atoms: List of atoms (symbol or atomic number) to consider for bond replacement. By default, only Nitrogen (7) and Oxygen (8) are considered. Returns: The modified molecule. """ rwmol = Chem.RWMol(mol) # type: ignore rwmol.UpdatePropertyCache(strict=False) metals = [at for at in rwmol.GetAtoms() if is_transition_metal(at)] for metal in metals: for nbr in metal.GetNeighbors(): if (nbr.GetAtomicNum() in from_atoms or nbr.GetSymbol() in from_atoms) and ( nbr.GetExplicitValence() > PERIODIC_TABLE.GetDefaultValence(nbr.GetAtomicNum()) and rwmol.GetBondBetweenAtoms(nbr.GetIdx(), metal.GetIdx()).GetBondType() == SINGLE_BOND ): rwmol.RemoveBond(nbr.GetIdx(), metal.GetIdx()) rwmol.AddBond(nbr.GetIdx(), metal.GetIdx(), DATIVE_BOND) return rwmol
8e67732e7f10ac273e51a0ae1b3f6c3cff27b291
30,456
from typing import Optional def _b2s(b: Optional[bool]) -> Optional[str]: """转换布尔值为字符串。""" return b if b is None else str(b).lower()
6030b7fd88b10c4bdccd12abd1f042c518e8a03f
30,457
from typing import Set def color_csq(all_csq: Set[str], mane_csq: Set[str]) -> str: """ takes the collection of all consequences, and MANE csqs if a CSQ occurs on MANE, write in bold, if non-MANE, write in red return the concatenated string NOTE: I really hate how I've implemented this :param all_csq: :param mane_csq: :return: the string filling the consequence box in the HTML """ csq_strings = [] for csq in all_csq: # bold, in Black if csq in mane_csq: csq_strings.append(STRONG_STRING.format(content=csq)) # bold, and red else: csq_strings.append(COLOR_STRING.format(color=COLORS['1'], content=csq)) return ', '.join(csq_strings)
1e6792bf446799a4c4c22770c7abfc1718c88516
30,458
def hasattrs(object, *names): """ Takes in an object and a variable length amount of named attributes, and checks to see if the object has each property. If any of the attributes are missing, this returns false. :param object: an object that may or may not contain the listed attributes :param names: a variable amount of attribute names to check for :return: True if the object contains each named attribute, false otherwise """ for name in names: if not hasattr(object, name): return False return True
f3a2fc308d041ed0de79e3389e30e02660a1d535
30,459
def pano_stretch_image(pano_img, kx, ky, kz): """ Note that this is the inverse mapping, which refers to Equation 3 in HorizonNet paper (the coordinate system in the paper is different from here, xz needs to be swapped) :param pano_img: a panorama image, shape must be [h,w,c] :param kx: stretching along left-right direction :param ky: stretching along up-down direction :param kz: stretching along front-back direction :return: """ w = pano_img.shape[1] h = pano_img.shape[0] sin_lon, cos_lon, tan_lat = prepare_stretch(w, h) n_lon = np.arctan2(sin_lon * kz / kx, cos_lon) n_lat = np.arctan(tan_lat[..., None] * np.sin(n_lon) / sin_lon * kx / ky) n_pu = lonlat2pixel(n_lon, w=w, axis=0, need_round=False) n_pv = lonlat2pixel(n_lat, h=h, axis=1, need_round=False) pixel_map = np.empty((h, w, 2), dtype=np.float32) pixel_map[..., 0] = n_pu pixel_map[..., 1] = n_pv map1 = pixel_map[..., 0] map2 = pixel_map[..., 1] # using wrap mode because it is continues at left or right of panorama new_img = cv2.remap(pano_img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP) return new_img
f5b151e3e124e3333304b8ff6c217971fb10ba35
30,460
def blue_process(infile, masterbias=None, error=False, rdnoise=None, oscan_correct=False): """Process a blue frame """ # check to make sure it is a blue file ccd = ccdproc.CCDData.read(infile, unit=u.adu) try: namps = ccd.header['CCDAMPS'] except KeyError: namps = ccd.header['CCDNAMPS'] # reduce file try: blueamp = [ccd.header['AMPSEC'].strip()] if oscan_correct: bluescan = [ccd.header['BIASSEC'].strip()] else: bluescan = [None] bluetrim = [ccd.header['DATASEC'].strip()] #ugly hack for when two amps if namps>1: raise Exception() except: blueamp = ['[1:1050,:]', '[1051:2100,:]'] if oscan_correct: bluescan = ['[1:26,:]', '[1025:1050,:]'] else: bluescan = [None, None] bluetrim = ['[27:1050,:]', '[1:1024,:]'] flip = True ccd = hrs_process(infile, ampsec=blueamp, oscansec=bluescan, trimsec=bluetrim, masterbias=masterbias, error=error, rdnoise=None, flip=flip) #this is in place to deal with changes from one amp to two if namps == 1: ccd.data = ccd.data[:, ::-1] if (ccd.mask is not None): ccd.mask = ccd.mask[:, ::-1] if (ccd.uncertainty is not None): ccd.uncertainty = ccd.uncertainty[:, ::-1] return ccd
c3b251a3ae99031b54e8dc5af4d5c95511f31c75
30,461
def _rand_sparse(m, n, density, format='csr'): """Helper function for sprand, sprandn""" nnz = max(min(int(m*n*density), m*n), 0) row = np.random.random_integers(low=0, high=m-1, size=nnz) col = np.random.random_integers(low=0, high=n-1, size=nnz) data = np.ones(nnz, dtype=float) # duplicate (i,j) entries will be summed together return sp.sparse.csr_matrix((data, (row, col)), shape=(m, n))
08221cdc9798e0ddf9266b5bf2ca3dfe21451278
30,462
import random def _generate_trace(distance): """ 生成轨迹 :param distance: :return: """ # 初速度 v = 0 # 位移/轨迹列表,列表内的一个元素代表0.02s的位移 tracks_list = [] # 当前的位移 current = 0 while current < distance - 3: # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细 a = random.randint(10000, 12000) # 加速运动 # 初速度 v0 = v t = random.randint(9, 18) s = v0 * t / 1000 + 0.5 * a * ((t / 1000) ** 2) # 当前的位置 current += s # 速度已经达到v,该速度作为下次的初速度 v = v0 + a * t / 1000 # 添加到轨迹列表 if current < distance: tracks_list.append(round(current)) # 减速慢慢滑 if round(current) < distance: for i in range(round(current) + 1, distance + 1): tracks_list.append(i) else: for i in range(tracks_list[-1] + 1, distance + 1): tracks_list.append(i) y_list = [] zy = 0 for j in range(len(tracks_list)): y = random.choice( [0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0]) zy += y y_list.append(zy) j += 1 base_y = str(-random.randint(330, 350)) trace = [['0', base_y], ['0', base_y], ['0', base_y]] for index, x in enumerate(tracks_list): trace.append([str(x), str(y_list[index])]) t_last = trace[-1] for _ in range(random.randint(4, 6)): trace.append(t_last) return trace
6ce298de2a1977c7662f83346e7554c546b41131
30,464
import sqlite3 def update_nt_uid_acc(cachepath, uid, accession): """Update nt UID GenBank accession.""" # Path must be string, not PosixPath, in Py3.6 conn = sqlite3.connect(str(cachepath)) results = [] with conn: cur = conn.cursor() cur.execute(SQL_UPDATE_UID_ACC, (accession, uid)) results.append(cur.fetchone()) return results
45c9514ffeca9281269c8f27ac09b3b863de2eff
30,465
def bool_env(env_val): """ check for boolean values """ if env_val: if env_val in TRUE_LIST: return True if env_val in FALSE_LIST: return False # print("Return:%s" % env_val) return env_val else: if env_val in FALSE_LIST: return False # print("Returning:%s" % env_val) return
afb9d2f35c6469a1fd6f32250376b94a05db1de0
30,466
import json def try_parse_json(json_): """Converts the string representation of JSON to JSON. :param str json_: JSON in str representation. :rtype: :class:`dict` if converted successfully, otherwise False. """ if not json_: return False try: return json.loads(json_) except ValueError: return False
077819cf82e307aacf3e56b11fbba26a79559968
30,467
def svn_ra_get_file(*args): """ svn_ra_get_file(svn_ra_session_t session, char path, svn_revnum_t revision, svn_stream_t stream, apr_pool_t pool) -> svn_error_t """ return _ra.svn_ra_get_file(*args)
2e887ace5ed3538ac7f3e401be9fa71ddfc100cc
30,468
def version_microservices(full=True): """ Display Zoomdata microservice packages version. CLI Example: full : True Return full version. If set False, return only short version (X.Y.Z). .. code-block:: bash salt '*' zoomdata.version_microservices """ ms_version = '' ms_pkgs = list_pkgs_microservices() for pkg in ms_pkgs: # pylint: disable=undefined-variable ms_version = __salt__['pkg.version'](pkg) if not full: return ms_version.split('-')[0] break return ms_version
aff0ece640e33e2d880c3e4a13ad7e13911aaa68
30,469
def KGCOVID19( directed = False, preprocess = "auto", load_nodes = True, load_node_types = True, load_edge_weights = True, auto_enable_tradeoffs = True, sort_tmp_dir = None, verbose = 2, cache = True, cache_path = None, cache_sys_var = "GRAPH_CACHE_DIR", version = "current", **kwargs ) -> Graph: """Return kg-covid-19 graph Parameters ---------- directed = False preprocess = "auto" Preprocess for optimal load time & memory peak. Will preprocess in Linux/macOS but not Windows. load_nodes = True Load node names or use numeric range auto_enable_tradeoffs = True Enable when graph has < 50M edges cache_path = None Path to store graphs Defaults either to `GRAPH_CACHE_DIR` sys var or `graphs` cache_sys_var = "GRAPH_CACHE_DIR" version = "current" Version to retrieve The available versions are: - 20200925 - 20200927 - 20200929 - 20201001 - 20201012 - 20201101 - 20201202 - 20210101 - 20210128 - 20210201 - 20210218 - 20210301 - 20210412 - 20210725 - 20210726 - 20210727 - 20210823 - 20210902 - 20211002 - 20211102 - 20211202 - 20220102 - 20220202 - 20220217 - 20220223 - 20220225 - 20220228 - 20220328 - 20220330 - 20220402 - 20220502 - current References ---------- Please cite: ```bib @article{reese2021kg, title={KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response}, author={Reese, Justin T and Unni, Deepak and Callahan, Tiffany J and Cappelletti, Luca and Ravanmehr, Vida and Carbon, Seth and Shefchek, Kent A and Good, Benjamin M and Balhoff, James P and Fontana, Tommaso and others}, journal={Patterns}, volume={2}, number={1}, pages={100155}, year={2021}, publisher={Elsevier} } ``` """ return AutomaticallyRetrievedGraph( "KGCOVID19", version, "kghub", directed, preprocess, load_nodes, load_node_types, load_edge_weights, auto_enable_tradeoffs, sort_tmp_dir, verbose, cache, cache_path, cache_sys_var, kwargs )()
24e419d80cd9634f5dab352f37db1fd6a19661d2
30,473
def is_gh_online(): """ Check if GitHub is online. The different services of GitHub are running in seperat services and thus just being GitHub online does not mean, that required parts are online. """ return _is_online("github.com", "/", 200, "OK")
8c5dc7090f9d851e5b5c303ffa376da5f926202a
30,475
import math def get_items_with_pool( source_key: str, count: int, start_index: int = 0, workers: int = 4 ) -> Items: """Concurrently reads items from API using Pool Args: source_key: a job or collection key, e.g. '112358/13/21' count: a number of items to retrieve start_index: an index to read from workers: the number of separate processors to get data in Returns: A list of items """ active_connections_limit = 10 processes_count = min(max(helpers.cpus_count(), workers), active_connections_limit) batch_size = math.ceil(count / processes_count) items = [] with Pool(processes_count) as p: results = p.starmap( partial(get_items, source_key, batch_size, child=True), zip([i for i in range(start_index, start_index + count, batch_size)]), ) for items_batch in results: items.extend(items_batch) return items
cbf07015872fc72bfa0e70be5c6a4553e5bef363
30,476
from typing import Tuple def calc_portfolio_holdings(initial_investment: int, weights: pd.DataFrame, prices: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Calculate the initial portfolio holdings given am amount of cash to invest. :param initial_investment: The initial investment used to purchase the portfolio (no partial shares) :param weights: a data frame containing the the weights for each asset as symbol: fraction :param prices: the share prices :return: the dollar value of the share holdings and the number of shares """ weights_np: np.array = np.zeros(weights.shape[1]) prices_np: np.array = np.zeros(weights.shape[1]) for ix, col in enumerate(weights.columns): weights_np[ix] = weights[col] prices_np[ix] = prices[col] budget_np = weights_np * float(initial_investment) shares = budget_np // prices_np holdings = shares * prices_np holdings_df: pd.DataFrame = pd.DataFrame(holdings).transpose() holdings_df.columns = weights.columns shares_df: pd.DataFrame = pd.DataFrame(shares).transpose() shares_df.columns = weights.columns return holdings_df, shares_df
7adf46894b27c679eec16f94a80bcad3c7539c88
30,478
def ford_fulkerson(G, s, t, capacity='capacity'): """Find a maximum single-commodity flow using the Ford-Fulkerson algorithm. This is the legacy implementation of maximum flow. See Notes below. This algorithm uses Edmonds-Karp-Dinitz path selection rule which guarantees a running time of `O(nm^2)` for `n` nodes and `m` edges. Parameters ---------- G : NetworkX graph Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity. s : node Source node for the flow. t : node Sink node for the flow. capacity : string Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. Returns ------- R : NetworkX DiGraph The residual network after computing the maximum flow. This is a legacy implementation, se Notes and Examples. Raises ------ NetworkXError The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised. NetworkXUnbounded If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded. See also -------- :meth:`maximum_flow` :meth:`minimum_cut` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` Notes ----- This is a legacy implementation of maximum flow (before 1.9). This function used to return a tuple with the flow value and the flow dictionary. Now it returns the residual network resulting after computing the maximum flow, in order to follow the new interface to flow algorithms introduced in NetworkX 1.9. Note however that the residual network returned by this function does not follow the conventions for residual networks used by the new algorithms introduced in 1.9. This residual network has edges with capacity equal to the capacity of the edge in the original network minus the flow that went throught that edge. A dictionary with infinite capacity edges can be found as an attribute of the residual network. Examples -------- >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_edge('x','a', capacity=3.0) >>> G.add_edge('x','b', capacity=1.0) >>> G.add_edge('a','c', capacity=3.0) >>> G.add_edge('b','c', capacity=5.0) >>> G.add_edge('b','d', capacity=4.0) >>> G.add_edge('d','e', capacity=2.0) >>> G.add_edge('c','y', capacity=2.0) >>> G.add_edge('e','y', capacity=3.0) This function returns the residual network after computing the maximum flow. This network has graph attributes that contain: a dictionary with edges with infinite capacity flows, the flow value, and a dictionary of flows: >>> R = nx.ford_fulkerson(G, 'x', 'y') >>> # A dictionary with infinite capacity flows can be found as an >>> # attribute of the residual network >>> inf_capacity_flows = R.graph['inf_capacity_flows'] >>> # There are also attributes for the flow value and the flow dict >>> flow_value = R.graph['flow_value'] >>> flow_dict = R.graph['flow_dict'] You can use the interface to flow algorithms introduced in 1.9 to get the output that the function ford_fulkerson used to produce: >>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y', ... flow_func=nx.ford_fulkerson) """ flow_value, R = ford_fulkerson_impl(G, s, t, capacity=capacity) flow_dict = _create_flow_dict(G, R, capacity=capacity) R.graph['flow_value'] = flow_value R.graph['flow_dict'] = flow_dict R.graph['algorithm'] = 'ford_fulkerson_legacy' return R
dd8e8e351829feb98cd144f4148f8c9bf62cb239
30,479
def index(): """ Show the main page of Stream4Flow :return: Empty dictionary """ # Do not save the session session.forget(response) return dict()
531c10ca17406086fcf14a5dfcdcecce5cc60119
30,480
from typing import Type def create_temporary_table_sql(model: Type[Model]) -> str: """ Get the SQL required to represent the given model in the database as a temporary table. We cache the results as this will be called for each request, but the model should never change (outside of tests), so we can use a very small cache. """ # Need to use _meta, so disable protected property access checks # pylint: disable=protected-access # For each field, generate the required SQL to add that field to the table definition = ", ".join( _column_sql(field) for field in model._meta.get_fields() # noqa if isinstance(field, Field) ) sql = f'CREATE TEMPORARY TABLE "{model._meta.db_table}" ({definition})' return sql
3074b4e6bb0c9147faa9da3243d0d66a3fee7517
30,481
def field_paths(h5, key='externalFieldPath'): """ Looks for the External Fields """ if key not in h5.attrs: return [] fpath = h5.attrs[key].decode('utf-8') if '%T' not in fpath: return [fpath] path1 = fpath.split('%T')[0] tlist = list(h5[path1]) paths = [path1+t for t in tlist] return paths
578e1a2d0971a94afa665f368e9b72c8f6e449d3
30,482
def get_quantifier(ch, input_iter): """ Parse a quantifier from the input, where "ch" is the first character in the quantifier. Return the minimum number of occurrences permitted by the quantifier and either None or the next character from the input_iter if the next character is not part of the quantifier. """ if ch in '*?+': try: ch2, escaped = next(input_iter) except StopIteration: ch2 = None if ch2 == '?': ch2 = None if ch == '+': return 1, ch2 return 0, ch2 quant = [] while ch != '}': ch, escaped = next(input_iter) quant.append(ch) quant = quant[:-1] values = ''.join(quant).split(',') # Consume the trailing '?', if necessary. try: ch, escaped = next(input_iter) except StopIteration: ch = None if ch == '?': ch = None return int(values[0]), ch
36dea445aa416be79e86bb1e7c6f9dbe454c6c2a
30,483
from typing import List def get_defined_vars( operation: "OperationDefinitionNode", ) -> List["VariableNode"]: """ Retrieve a list of VariableNode defined inside the variableDefinitionNode list of an OperationDefinitionNode :param operation: the operation definition node to look through :type operation: "OperationDefinitionNode" :return: The List of VariableNode that was buried in the list of VariableDefinitionNode of the given OperationDefinitionNode :rtype: List["VariableNode"] """ return [x.variable for x in operation.variable_definitions]
f39cd2b205bdfba5347884e9b675949e08877a5f
30,484
def snv(img): """ standard normal variates (SNV) transformation of spectral data """ mean = np.mean(img, axis=0) std = np.std(img, axis=0) return (img - mean[np.newaxis, ...])/std[np.newaxis, ...]
63c549f1e319ab4cc4b4beb4ea602b136d71168f
30,485
def fredkin(cell: int, live_count: int, neighbors: Neighbors = None) -> int: """\"Fredkin\" Game of Life rule This rule can be specified using these strings: - ``B1357/S02468`` - ``2468/1357`` - ``fredkin`` Parameters ---------- cell: int Value of the current cell. Can be ``1`` (alive) or ``0`` (dead) live_count: int Count of cells alive (``1``) around the current cell. neighbors: Iterator[Tuple[int, int, int]], optional Iterator yielding the value, the x- and the y-coordinate of the individual neighbors. This parameters might only be required by very few rules and is present in every game rule for consistency. Returns ------- int Computed value of the current cell. Can be ``1`` (alive) or ``0`` (dead). Notes ----- The value of ``live_count`` depends on the type of neighborhood you use. PyGoL uses the Moore neighborhood by default. See the LifeWiki for more information on types of neighborhood: https://www.conwaylife.com/wiki/Cellular_automaton#Common_dimensions_and_neighborhoods References ---------- Find this rule in the LifeWiki: https://www.conwaylife.com/wiki/OCA:Replicator#Replicator_2 """ if (live_count + cell) % 2 == 1: return 1 return 0
ef08d99fa90c6d615bf3aabd6a4fe72903ecfb62
30,486
def mad(arr): """ Median Absolute Deviation: a "Robust" version of standard deviation. Indices variabililty of the sample. https://en.wikipedia.org/wiki/Median_absolute_deviation """ arr = np.ma.array(arr).compressed() # should be faster to not use masked arrays. med = np.median(arr) return np.median(np.abs(arr - med))
f02919fcb082c815602d8b57cb59d5c71cb6a219
30,487
def get_logs_directory(): """Return path of logs directory""" LDAModel_directory = get_LDAModel_directory() logs_directory = LDAModel_directory / 'logs' if not logs_directory.is_dir(): create_directory(logs_directory) return logs_directory
eb37ca64a07280d55584ac0146b6babc02051b3d
30,488
def svn_ra_rev_proplist(*args): """ svn_ra_rev_proplist(svn_ra_session_t session, svn_revnum_t rev, apr_hash_t props, apr_pool_t pool) -> svn_error_t """ return apply(_ra.svn_ra_rev_proplist, args)
2f6c1f25f6b62d1306aa746dc0dc04f39370aa0e
30,489
from datetime import datetime def parse_date(s): """ Given a string matching the 'full-date' production above, returns a datetime.date instance. Any deviation from the allowed format will produce a raised ValueError. >>> parse_date("2008-08-24") datetime.date(2008, 8, 24) >>> parse_date(" 2008-08-24 ") datetime.date(2008, 8, 24) >>> parse_date("2008-08-00") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "rfc3339.py", line 134, in parse_date return datetime.date(int(y), int(m), int(d)) ValueError: day is out of range for month >>> parse_date("2008-06-31") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "rfc3339.py", line 134, in parse_date return datetime.date(int(y), int(m), int(d)) ValueError: day is out of range for month >>> parse_date("2008-13-01") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "rfc3339.py", line 134, in parse_date return datetime.date(int(y), int(m), int(d)) ValueError: month must be in 1..12 >>> parse_date("22008-01-01") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "rfc3339.py", line 136, in parse_date raise ValueError('Invalid RFC 3339 date string', s) ValueError: ('Invalid RFC 3339 date string', '22008-01-01') >>> parse_date("2008-08-24").isoformat() '2008-08-24' """ m = date_re.match(s) if m: (y, m, d) = m.groups() return datetime.date(int(y), int(m), int(d)) else: raise ValueError('Invalid RFC 3339 date string', s)
d21ab8b08d52bf155d5e8af192f19036307568b5
30,491
def setup_config(quiz_name): """Updates the config.toml index and dataset field with the formatted quiz_name. This directs metapy to use the correct files Keyword arguments: quiz_name -- the name of the quiz Returns: True on success, false if fials to open file """ try: conf_file = open("config.toml", 'r') lines = conf_file.readlines() conf_file.close() for i in range(len(lines)): if lines[i].startswith("index"): lines[i] = "index = 'idx-{0}'\n".format(quiz_name.replace(" ", "_")) if lines[i].startswith("dataset"): lines[i] = "dataset = '{0}'\n".format(quiz_name.replace(" ", "_")) conf_file = open("config.toml", 'w') with conf_file: conf_file.writelines(lines) except Exception as e: print(e) return False return True
28aba9399926f27da89953c8b0c6b41d95a12d96
30,492
def unitary_connection(h_pre, h_post, n_pre, n_post, X): """ Gives the connectivity value between the n_pre unit in the h_pre hypercolumn and the n_post unit in the h_post column """ hits_pre = X[:, h_pre] == n_pre hits_post = X[:, h_post] == n_post return np.sum(hits_pre * hits_post)
d272b92abfed50d7f89c2d4b40ff3c4e5a417d5e
30,493
def mase(y, y_hat, y_train, seasonality=1): """Calculates the M4 Mean Absolute Scaled Error. MASE measures the relative prediction accuracy of a forecasting method by comparinng the mean absolute errors of the prediction and the true value against the mean absolute errors of the seasonal naive model. Parameters ---------- y: numpy array actual test values y_hat: numpy array predicted values y_train: numpy array actual train values for Naive1 predictions seasonality: int main frequency of the time series Hourly 24, Daily 7, Weekly 52, Monthly 12, Quarterly 4, Yearly 1 Return ------ scalar: MASE """ scale = np.mean(abs(y_train[seasonality:] - y_train[:-seasonality])) mase = np.mean(abs(y - y_hat)) / scale mase = 100 * mase return mase
7373ef660ae9784ecd83a83457c143debb721685
30,494
def _resize_along_axis(inputs, size, axis, **kwargs): """ Resize 3D input tensor to size along just one axis. """ except_axis = (axis + 1) % 3 size, _ = _calc_size_after_resize(inputs, size, axis) output = _resize_except_axis(inputs, size, except_axis, **kwargs) return output
a7cc206171ffe1cf6df22da3756cefcc6c5fcd86
30,495
def getTournamentMatches(tourneyId): """ Return a dictionary from match id to match data for a tournament. """ if tourneyId not in matchDatas: refreshMatchIndex(tourneyId) return matchDatas[tourneyId]
a6d5386e9034b126405aedee75ba36b1718c3dc9
30,496
def compute_protien_mass(protien_string): """ test case >>> compute_protien_mass('SKADYEK') 821.392 """ p={'A':'71.03711','C':'103.00919','D':'115.02694','E':'129.04259','F':'147.06841','G':'57.02146','H':'137.05891','I':'113.08406','K':'128.09496','L':'113.08406','M':'131.04049','N':'114.04293','P':'97.05276','Q':'128.05858','R':'156.10111','S':'87.03203','T':'101.04768','V':'99.06841','W':'186.07931','Y':'163.06333'} mass=0 for x in protien_string: mass=mass+float(p[x]) #to change number of values after decimel point to 3 mass=round(mass,3) return mass
86a3ffd0ce3e95fcdf6d510d2865b35aeb93d779
30,497
import logging def find_duration(data): """Finds the duration of the ECG data sequence Finds the duration by looking at the last time value as the first value is always at time = 0 seconds :param data: 2D array of time sequences and voltage sequences :return: Time duration of data sequence """ logging.info("Detecting Duration of Data Stream...\n") return data[:, 0][-1]
e65135457e23886c402e0671d720fe9c5ed257a1
30,498
def response(data, **kwd): """Returns a http response""" return HttpResponse(data, **kwd)
8d88295751ee5f53f99ea8a134d01e1df7cb1fd5
30,499
from typing import List def load_actions(action_file: str) -> List[str]: """ Load unique actions from an action file """ return load_uniq_lines(action_file)
a5ffe3ccac462bc8277da6174a5eb81071a6fb84
30,500
def ConvertFile(filename_in, filename_out, loglevel='INFO'): """ Converts an ANSYS input file to a python pyansys script. Parameters ---------- filename_in : str Filename of the ansys input file to read in. filename_out : str Filename of the python script to write a translation to. Returns ------- clines : list List of lines translated """ clines = [] with open(filename_in) as file_in: with open(filename_out, 'w') as file_out: file_out.write('import pyansys\n') file_out.write('ansys = pyansys.ANSYS(loglevel="%s")\n' % loglevel) for line in file_in.readlines(): cline = ConvertLine(line) file_out.write(cline) clines.append(cline) cline = 'ansys.Exit()\n' file_out.write(cline) clines.append(cline) return clines
b044b565193ca0d78edd77706cdeb1711d95f063
30,502
from typing import Optional def get_metadata_saml(idp_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetMetadataSamlResult: """ Use this data source to retrieve SAML IdP metadata from Okta. ## Example Usage ```python import pulumi import pulumi_okta as okta example = okta.idp.get_metadata_saml(id="<idp id>") ``` :param str idp_id: The id of the IdP to retrieve metadata for. """ __args__ = dict() __args__['idpId'] = idp_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('okta:idp/getMetadataSaml:getMetadataSaml', __args__, opts=opts, typ=GetMetadataSamlResult).value return AwaitableGetMetadataSamlResult( assertions_signed=__ret__.assertions_signed, authn_request_signed=__ret__.authn_request_signed, encryption_certificate=__ret__.encryption_certificate, entity_id=__ret__.entity_id, http_post_binding=__ret__.http_post_binding, http_redirect_binding=__ret__.http_redirect_binding, id=__ret__.id, idp_id=__ret__.idp_id, metadata=__ret__.metadata, signing_certificate=__ret__.signing_certificate)
5b4e1fdf72d7e11d7f4eee878e88e174b452cfa5
30,503
from typing import Dict def _average_latency(row: Dict): """ Calculate average latency for Performance Analyzer single test """ avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum(int(row.get(f, 0)) for f in avg_sum_fields) return avg_latency
f321cb4d55af605298225f2f0146a9a71ee7895b
30,504
def _(expr, assumptions): """ Integer**Integer -> !Prime """ if expr.is_number: return _PrimePredicate_number(expr, assumptions) if ask(Q.integer(expr.exp), assumptions) and \ ask(Q.integer(expr.base), assumptions): return False
da1b018ef6fdb6987666806ce34ee784d03cff9b
30,506
import tqdm import torch def train(model, trainLoader, optimizer, loss_function, device, trainParams): """ Function to train the model for one iteration. (Generally, one iteration = one epoch, but here it is one step). It also computes the training loss, CER and WER. The CTC decode scheme is always 'greedy' here. """ trainingLoss = 0 trainingCER = 0 trainingWER = 0 for batch, (inputBatch, targetBatch, inputLenBatch, targetLenBatch) in enumerate(tqdm(trainLoader, leave=False, desc="Train", ncols=75)): inputBatch, targetBatch = (inputBatch.float()).to(device), (targetBatch.int()).to(device) inputLenBatch, targetLenBatch = (inputLenBatch.int()).to(device), (targetLenBatch.int()).to(device) optimizer.zero_grad() model.train() outputBatch = model(inputBatch) with torch.backends.cudnn.flags(enabled=False): loss = loss_function(outputBatch, targetBatch, inputLenBatch, targetLenBatch) loss.backward() optimizer.step() trainingLoss = trainingLoss + loss.item() predictionBatch, predictionLenBatch = ctc_greedy_decode(outputBatch.detach(), inputLenBatch, trainParams["eosIx"]) trainingCER = trainingCER + compute_cer(predictionBatch, targetBatch, predictionLenBatch, targetLenBatch) trainingWER = trainingWER + compute_wer(predictionBatch, targetBatch, predictionLenBatch, targetLenBatch, trainParams["spaceIx"]) trainingLoss = trainingLoss/len(trainLoader) trainingCER = trainingCER/len(trainLoader) trainingWER = trainingWER/len(trainLoader) return trainingLoss, trainingCER, trainingWER
f2726ad6f63997abd670c5f4614b1cef1e35dec7
30,507
def reorder(A, B): """Change coefficient order from y**2 xy x**2 to x**2 xy y**2 in both A and B. Parameters ---------- A : array polynomial coefficients B : array polynomial coefficients Returns ------- A2, B2: numpy arrays coefficients with changed order """ poly_degree = polynomial_degree(len(A)) A2 = np.zeros((len(A))) B2 = np.zeros((len(B))) for i in range(poly_degree + 1): ti = i * (i + 1) // 2 for j in range(i + 1): A2[ti + j] = A[ti + i - j] B2[ti + j] = B[ti + i - j] return A2, B2
6a4740a0423bc3a804e66b0cda4a444a7f58072e
30,508
import functools import collections def collate_revs(old, new, key=lambda x: x, merge=lambda old, new: new): """ Given revision sets old and new, each containing a series of revisions of some set of objects, collate them based on these rules: - all items from each set are yielded in stable order - items in old are yielded first - items in new are yielded last - items that match are yielded in the order in which they appear, giving preference to new Items match based on the 'key' parameter (identity by default). Items are merged using the 'merge' function, which accepts the old and new items to be merged (returning new by default). This algorithm requires fully materializing both old and new in memory. >>> rev1 = ['a', 'b', 'c'] >>> rev2 = ['a', 'd', 'c'] >>> result = list(collate_revs(rev1, rev2)) 'd' must appear before 'c' >>> result.index('d') < result.index('c') True 'b' must appear before 'd' because it came chronologically first. >>> result.index('b') < result.index('d') True >>> result ['a', 'b', 'd', 'c'] >>> list(collate_revs(['a', 'b', 'c'], ['d'])) ['a', 'b', 'c', 'd'] >>> list(collate_revs(['b', 'a'], ['a', 'b'])) ['a', 'b'] >>> list(collate_revs(['a', 'c'], ['a', 'b', 'c'])) ['a', 'b', 'c'] Given two sequences of things out of order, regardless of which order in which the items are merged, all keys should always be merged. >>> from more_itertools import consume >>> left_items = ['a', 'b', 'c'] >>> right_items = ['a', 'c', 'b'] >>> consume(collate_revs(left_items, right_items, merge=print)) a a c c b b >>> consume(collate_revs(right_items, left_items, merge=print)) a a b b c c The merge should not suppress non-True items: >>> consume(collate_revs([0, 1, 2, None, ''], [0, None, ''], merge=print)) None None <BLANKLINE> 0 0 """ missing = object() def maybe_merge(*items): """ Merge any non-null items """ def not_missing(ob): return ob is not missing return functools.reduce(merge, filter(not_missing, items)) new_items = collections.OrderedDict((key(el), el) for el in new) old_items = collections.OrderedDict((key(el), el) for el in old) # use the old_items as a reference for old_key, old_item in _mutable_iter(old_items): if old_key not in new_items: yield old_item continue # yield all new items that appear before the matching key before, match_new, new_items = _swap_on_miss(partition_dict(new_items, old_key)) for new_key, new_item in before.items(): # ensure any new keys are merged with previous items if # they exist yield maybe_merge(new_item, old_items.pop(new_key, missing)) yield merge(old_item, match_new) # finally, yield whatever is leftover # yield from new_items.values() for item in new_items.values(): yield item
06f37d895fd906513aa3b85fb2ff48e0f2f2b625
30,509
from typing import Tuple from typing import List def load_conversation( filename: str, dictionary: corpora.Dictionary, with_symbol: bool=True ) -> (Tuple[List[int], List[int]]): """対話コーパスをロードする。 Args: filename (str): コーパスファイル コーパスファイルの一行は 何 が 好き です か ?,Python が 好き です 。 のように、(source string, separator, target string) が単語ごとに スペースで分割された文字列が格納されている必要がある。 dictionary: with_symbol: Returns: Tuple[List[int], List[int]] ([1, 2, 3], [4, 5, 6]) """ # load conversation sentences if with_symbol: tokens = [( # [config.START_SYMBOL] + src.split() + [config.END_SYMBOL], # [config.START_SYMBOL] + dst.split() + [config.END_SYMBOL] list(src.split()) + [config.END_SYMBOL], [config.END_SYMBOL] + dst.split() + [config.END_SYMBOL] ) for src, dst in (sent.split(config.SEPARATOR) for sent in open(filename)) ] else: tokens = [ (list(src.split()), dst.split()) for src, dst in (sent.split(config.SEPARATOR) for sent in open(filename)) ] print("loaded sentences from {}".format(filename)) return tokens
fb7aec9ea228fe528d6744564c1a2b298a33575c
30,510
def close_incons_reduction(incons: list): """ Two step: 0. under the same backends pair 1. the same input, choose largest.(done before) * 2. different inputs with small distance. Do not update(not used) """ def is_duplicate(t: tuple, li: list): """unique inconsistency""" for l in li: if abs(t[1] - l[1]) <= distance_threshold: return True,l return False,None result = list() relation_dict = dict() for incon in incons: status, l = is_duplicate(incon, result) if not status: result.append(incon) else: relation_dict[incon] = l return result,relation_dict
5fd581471ff361d2351b2dd8285d606399667e21
30,511
def mf2tojf2(mf2): """I'm going to have to recurse here""" jf2={} items = mf2.get("items",[]) jf2=flattenProperties(items,isOuter=True) #print jf2 return jf2
399fa35f592bb6ec042003ed2884f94078ac01fd
30,512
def import_all(filename): """ Imports file contents from user with parameters from nueral net and later calculations currently not robust to missing or incorrect arguments from file currently does not convert values to int; done in later functions inputs: filename - name of input file, currently as inputs.csv output: file_list - list of parameters specified by user""" with open(filename,'r') as file: file_read = csv.reader(file) file_list = [] for line in file_read: file_list.append(line) print "Imported file: " + str(filename) return file_list
ab5b2fecb6cadd2754d52cc9333d110955ca10c7
30,513
from typing import Union from pathlib import Path from typing import Dict from typing import Tuple from typing import Any def fill_database(path: Union[str, Path], settings: SettingsConfig, inputs: MeasurementInputs, alchemy: Alchemy, parent_location_id: int, sex_id: int, child_prior: Dict[str, Dict[str, np.ndarray]], mulcov_prior: Dict[Tuple[str, str, str], _Prior], options: Dict[str, Any]) -> DismodFiller: """ Fill a DisMod database at the specified path with the inputs, model, and settings specified, for a specific parent and sex ID, with options to override the priors. """ df = DismodFiller( path=path, settings_configuration=settings, measurement_inputs=inputs, grid_alchemy=alchemy, parent_location_id=parent_location_id, sex_id=sex_id, child_prior=child_prior, mulcov_prior=mulcov_prior, ) df.fill_for_parent_child(**options) return df
39836b397a7cf384bf3ca493914f9d024baf9f6f
30,514
def ydhms2dt(year,doy,hh,mm,ss): """ ydhms2dt Take a year, day-of-year, etc and convert it into a date time object Usage: dto = ydhms2dt(year,day,hh,mm,ss) Input: year - 4 digit integer doy - 3 digit, or less integer, (1 <= doy <= 366) hh - 2 digit, or less int, (0 <= hh < 24) mm - 2 digit, or less int,(0 <= ss < 60) ss - float Output: 'dto' a date time object """ # # need to split seconds into two components # sec => 2 digit, or less int, (0 <= ss < 60) # ms => int 0 <= ms < 1,000,000 ms,sec = modf(float(ss)) ms = ms * 10e5 dto = dt.datetime(int(year),01,01,int(hh),int(mm),int(sec),int(ms)) dto = dto + dt.timedelta(days=(int(doy) - 1)) return dto
3d8fd1a6086f3dd35c80c2d862e820b7aecc5e5b
30,515
def create_test_db(verbosity=1, autoclobber=False): """ Creates a test database, prompting the user for confirmation if the database already exists. Returns the name of the test database created. """ # If the database backend wants to create the test DB itself, let it creation_module = get_creation_module() if hasattr(creation_module, "create_test_db"): creation_module.create_test_db(settings, connection, verbosity, autoclobber) return if verbosity >= 1: print "Creating test database..." # If we're using SQLite, it's more convenient to test against an # in-memory database. Using the TEST_DATABASE_NAME setting you can still choose # to run on a physical database. if settings.DATABASE_ENGINE == "sqlite3": if settings.TEST_DATABASE_NAME and settings.TEST_DATABASE_NAME != ":memory:": TEST_DATABASE_NAME = settings.TEST_DATABASE_NAME # Erase the old test database if verbosity >= 1: print "Destroying old test database..." if os.access(TEST_DATABASE_NAME, os.F_OK): if not autoclobber: confirm = raw_input("Type 'yes' if you would like to try deleting the test database '%s', or 'no' to cancel: " % TEST_DATABASE_NAME) if autoclobber or confirm == 'yes': try: if verbosity >= 1: print "Destroying old test database..." os.remove(TEST_DATABASE_NAME) except Exception, e: sys.stderr.write("Got an error deleting the old test database: %s\n" % e) sys.exit(2) else: print "Tests cancelled." sys.exit(1) if verbosity >= 1: print "Creating test database..." else: TEST_DATABASE_NAME = ":memory:" else: suffix = { 'postgresql': get_postgresql_create_suffix, 'postgresql_psycopg2': get_postgresql_create_suffix, 'mysql': get_mysql_create_suffix, 'mysql_old': get_mysql_create_suffix, }.get(settings.DATABASE_ENGINE, lambda: '')() if settings.TEST_DATABASE_NAME: TEST_DATABASE_NAME = settings.TEST_DATABASE_NAME else: TEST_DATABASE_NAME = TEST_DATABASE_PREFIX + settings.DATABASE_NAME qn = connection.ops.quote_name # Create the test database and connect to it. We need to autocommit # if the database supports it because PostgreSQL doesn't allow # CREATE/DROP DATABASE statements within transactions. cursor = connection.cursor() _set_autocommit(connection) try: cursor.execute("CREATE DATABASE %s %s" % (qn(TEST_DATABASE_NAME), suffix)) except Exception, e: sys.stderr.write("Got an error creating the test database: %s\n" % e) if not autoclobber: confirm = raw_input("Type 'yes' if you would like to try deleting the test database '%s', or 'no' to cancel: " % TEST_DATABASE_NAME) if autoclobber or confirm == 'yes': try: if verbosity >= 1: print "Destroying old test database..." cursor.execute("DROP DATABASE %s" % qn(TEST_DATABASE_NAME)) if verbosity >= 1: print "Creating test database..." cursor.execute("CREATE DATABASE %s %s" % (qn(TEST_DATABASE_NAME), suffix)) except Exception, e: sys.stderr.write("Got an error recreating the test database: %s\n" % e) sys.exit(2) else: print "Tests cancelled." sys.exit(1) connection.close() settings.DATABASE_NAME = TEST_DATABASE_NAME call_command('syncdb', verbosity=verbosity, interactive=False) if settings.CACHE_BACKEND.startswith('db://'): cache_name = settings.CACHE_BACKEND[len('db://'):] call_command('createcachetable', cache_name) # Get a cursor (even though we don't need one yet). This has # the side effect of initializing the test database. cursor = connection.cursor() return TEST_DATABASE_NAME
87659029e01399f6d46780dbd3e2809bc809b70c
30,516
import _ctypes def key_import(data, key_type=KEY_TYPE.SYMMETRIC, password=b''): """Imports a key or key generation parameters.""" key = _ctypes.c_void_p() _lib.yaca_key_import(key_type.value, _ctypes.c_char_p(password), data, len(data), _ctypes.byref(key)) return Key(key)
9cbe8dfcab3e854b096a5628c6be52d6873e8ca1
30,517
def test_training_arguments_timestamp(monkeypatch, grim_config): """Test TrainingWrapperArguments correctly applies a timestamp.""" def mock_return(): return '2019-06-29_17-13-41' monkeypatch.setattr(grimagents.common, "get_timestamp", mock_return) grim_config['--timestamp'] = True arguments = TrainingWrapperArguments(grim_config) arguments_string = arguments.get_arguments_as_string() assert '--run-id 3DBall-2019-06-29_17-13-41' in arguments_string
391b2fdbf716bfdc22f8449a3692679d6018f200
30,518
def to_vsizip(zipfn, relpth): """ Create path from zip file """ return "/vsizip/{}/{}".format(zipfn, relpth)
6f5baf380bd7ab8a4ea92111efbc0f660b10f6f8
30,519
def flw3i8e(ex, ey, ez, ep, D, eq=None): """ Compute element stiffness (conductivity) matrix for 8 node isoparametric field element. Parameters: ex = [x1,x2,x3,...,x8] ey = [y1,y2,y3,...,y8] element coordinates ez = [z1,z2,z3,...,z8] ep = [ir] Ir: Integration rule D = [[kxx,kxy,kxz], [kyx,kyy,kyz], [kzx,kzy,kzz]] constitutive matrix eq heat supply per unit volume Output: Ke element 'stiffness' matrix (8 x 8) fe element load vector (8 x 1) """ ir = ep[0] ngp = ir*ir*ir if eq == None: q = 0 else: q = eq if ir == 2: g1 = 0.577350269189626 w1 = 1 gp = np.mat([ [-1, -1, -1], [1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1] ])*g1 w = np.mat(np.ones((8, 3)))*w1 elif ir == 3: g1 = 0.774596669241483 g2 = 0. w1 = 0.555555555555555 w2 = 0.888888888888888 gp = np.mat(np.zeros((27, 3))) w = np.mat(np.zeros((27, 3))) I1 = np.array([-1, 0, 1, -1, 0, 1, -1, 0, 1]) I2 = np.array([0, -1, 0, 0, 1, 0, 0, 1, 0]) gp[:, 0] = np.mat([I1, I1, I1]).reshape(27, 1)*g1 gp[:, 0] = np.mat([I2, I2, I2]).reshape(27, 1)*g2+gp[:, 0] I1 = abs(I1) I2 = abs(I2) w[:, 0] = np.mat([I1, I1, I1]).reshape(27, 1)*w1 w[:, 0] = np.mat([I2, I2, I2]).reshape(27, 1)*w2+w[:, 0] I1 = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1]) I2 = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0]) gp[:, 1] = np.mat([I1, I1, I1]).reshape(27, 1)*g1 gp[:, 1] = np.mat([I2, I2, I2]).reshape(27, 1)*g2+gp[:, 1] I1 = abs(I1) I2 = abs(I2) w[:, 1] = np.mat([I1, I1, I1]).reshape(27, 1)*w1 w[:, 1] = np.mat([I2, I2, I2]).reshape(27, 1)*w2+w[:, 1] I1 = np.array([-1, -1, -1, -1, -1, -1, -1, -1, -1]) I2 = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]) I3 = abs(I1) gp[:, 2] = np.mat([I1, I2, I3]).reshape(27, 1)*g1 gp[:, 2] = np.mat([I2, I3, I2]).reshape(27, 1)*g2+gp[:, 2] w[:, 2] = np.mat([I3, I2, I3]).reshape(27, 1)*w1 w[:, 2] = np.mat([I2, I3, I2]).reshape(27, 1)*w2+w[:, 2] else: info("Used number of integration points not implemented") return wp = np.multiply(np.multiply(w[:, 0], w[:, 1]), w[:, 2]) xsi = gp[:, 0] eta = gp[:, 1] zet = gp[:, 2] r2 = ngp*3 N = np.multiply(np.multiply((1-xsi), (1-eta)), (1-zet))/8. N = np.append(N, np.multiply(np.multiply( (1+xsi), (1-eta)), (1-zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1+xsi), (1+eta)), (1-zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1-xsi), (1+eta)), (1-zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1-xsi), (1-eta)), (1+zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1+xsi), (1-eta)), (1+zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1+xsi), (1+eta)), (1+zet))/8., axis=1) N = np.append(N, np.multiply(np.multiply( (1-xsi), (1+eta)), (1+zet))/8., axis=1) dNr = np.mat(np.zeros((r2, 8))) dNr[0:r2:3, 0] = np.multiply(-(1-eta), (1-zet)) dNr[0:r2:3, 1] = np.multiply((1-eta), (1-zet)) dNr[0:r2:3, 2] = np.multiply((1+eta), (1-zet)) dNr[0:r2:3, 3] = np.multiply(-(1+eta), (1-zet)) dNr[0:r2:3, 4] = np.multiply(-(1-eta), (1+zet)) dNr[0:r2:3, 5] = np.multiply((1-eta), (1+zet)) dNr[0:r2:3, 6] = np.multiply((1+eta), (1+zet)) dNr[0:r2:3, 7] = np.multiply(-(1+eta), (1+zet)) dNr[1:r2+1:3, 0] = np.multiply(-(1-xsi), (1-zet)) dNr[1:r2+1:3, 1] = np.multiply(-(1+xsi), (1-zet)) dNr[1:r2+1:3, 2] = np.multiply((1+xsi), (1-zet)) dNr[1:r2+1:3, 3] = np.multiply((1-xsi), (1-zet)) dNr[1:r2+1:3, 4] = np.multiply(-(1-xsi), (1+zet)) dNr[1:r2+1:3, 5] = np.multiply(-(1+xsi), (1+zet)) dNr[1:r2+1:3, 6] = np.multiply((1+xsi), (1+zet)) dNr[1:r2+1:3, 7] = np.multiply((1-xsi), (1+zet)) dNr[2:r2+2:3, 0] = np.multiply(-(1-xsi), (1-eta)) dNr[2:r2+2:3, 1] = np.multiply(-(1+xsi), (1-eta)) dNr[2:r2+2:3, 2] = np.multiply(-(1+xsi), (1+eta)) dNr[2:r2+2:3, 3] = np.multiply(-(1-xsi), (1+eta)) dNr[2:r2+2:3, 4] = np.multiply((1-xsi), (1-eta)) dNr[2:r2+2:3, 5] = np.multiply((1+xsi), (1-eta)) dNr[2:r2+2:3, 6] = np.multiply((1+xsi), (1+eta)) dNr[2:r2+2:3, 7] = np.multiply((1-xsi), (1+eta)) dNr = dNr/8. Ke1 = np.mat(np.zeros((8, 8))) fe1 = np.mat(np.zeros((8, 1))) JT = dNr*np.mat([ex, ey, ez]).T for i in range(ngp): indx = np.array([3*(i+1)-2, 3*(i+1)-1, 3*(i+1)]) detJ = np.linalg.det(JT[indx-1, :]) if detJ < 10*np.finfo(float).eps: info("Jacobi determinant == 0") JTinv = np.linalg.inv(JT[indx-1, :]) B = JTinv*dNr[indx-1, :] Ke1 = Ke1+B.T*D*B*detJ*np.asscalar(wp[i]) fe1 = fe1+N[i, :].T*detJ*wp[i] if eq != None: return Ke1, fe1*q else: return Ke1
90377f5ba6205e0f3bf1bc4f1fa0b84a4c69eec9
30,522
def cidr_to_netmask(value): """ Converts a CIDR prefix-length to a network mask. Examples: >>> "{{ '24'|cidr_to_netmask }}" -> "255.255.255.0" """ return str(netaddr.IPNetwork("1.1.1.1/{}".format(value)).netmask)
232f4fb65be712bfb040d75ada40ed0450d84e2d
30,523
def rgb_to_name(rgb_triplet: IntTuple, spec: str = CSS3) -> str: """ Convert a 3-tuple of integers, suitable for use in an ``rgb()`` color triplet, to its corresponding normalized color name, if any such name exists. The optional keyword argument ``spec`` determines which specification's list of color names will be used. The default is CSS3. If there is no matching name, ``ValueError`` is raised. """ return hex_to_name(rgb_to_hex(normalize_integer_triplet(rgb_triplet)), spec=spec)
fdce9304c4d16d348fe37a920ae7cf44f3c3f56b
30,524
def get_rr_Lix(N, Fmat, psd, x): """ Given a rank-reduced decomposition of the Cholesky factor L, calculate L^{-1}x where x is some vector. This way, we don't have to built L, which saves memory and computational time. @param N: Vector with the elements of the diagonal matrix N @param Fmat: (n x m) matrix consisting of the reduced rank basis @param psd: PSD of the rank-reduced approximation @param x: Vector we want to process as Lx @return L^{-1}x """ n = N.shape[0] m = Fmat.shape[1] y = np.zeros(n) t = np.zeros(m) Z, B, D = get_rr_cholesky_rep(N, Fmat, psd) BD = (B.T * np.sqrt(D)).T for ii in range(n): y[ii] = (x[ii] - np.dot(Z[ii,:], t)) / np.sqrt(D[ii]) t = t + y[ii] * BD[ii,:] return y
3658342296f18f3afdedf2cc790e1d0062e6c49d
30,525
def ParameterSet_Create(*args): """ Create() -> ParameterSet ParameterSet_Create(std::string const & publicID) -> ParameterSet """ return _DataModel.ParameterSet_Create(*args)
c6d6ef68505119b1b146d2be267a416341e09271
30,526
def generate_html_from_cli_args(cli_dict_for_command): """ Turn the dict into an html representation of the cli args and options. :param cli_dict_for_command: :return str: """ # def arg_md(opt, long_opt, default, help): # return f"*) {opt}, {long_opt}, {help}\n" text = "" # eval_output = "" if "usage" in cli_dict_for_command: text += "\n<em>usage: " + str(cli_dict_for_command["usage"]) + "</em><br>\n" if "epilog" in cli_dict_for_command: pass # text += "\n" + cli_dict_for_command["epilog"] if "args" in cli_dict_for_command: # text += "\n\n<h4>Command Line Options</h4>\n" text += "<ul>\n" for arg in cli_dict_for_command["args"]: text += f"<li>{arg[0]}</li>\n" # eval_cmd = f"arg_md({arg[0]})" # eval_output = eval(eval_cmd) + "\n" # print("EVAL_OUT: " + eval_output) text += "</ul>\n" # eval(eval_text) return "\n\n" + text
15c3b6f98141ab989cbe229a2b30778d5c664c9a
30,527
def conical_sigma_Mach_walldeflection(Mach, deflection, gamma=defg._gamma): """computes shock angle sigma from upstream Mach number and wall deflection Args: Mach: param deflection: gamma: Default value = defg._gamma) deflection: Returns: """ def local_def(sig): """internal wrapping function to iterative solve """ return conical_deflection_Mach_sigma(Mach, sig, gamma) return ITS.secant_solve(local_def, deflection, degree.asin(1./Mach)+deflection)
97fc3ac999f4a598860dcf25b4fd537bfcaf9326
30,528
def get_hashrate_info(results, miner, algo): """ Get Hashrate Information for a particular Miner and Algo Returns: dict """ # do the lookup hashrate_info = results.get_hashrate_info(miner, algo) if hashrate_info is None: logger.warning("Model/Algo combination does not exist for " "miner model '{}' and algo '{}'".format(miner.model.model, algo)) return hashrate_info
e94d0d7345a54181a9d5547afd1209419a92b497
30,529
import hashlib def verify_verification_code(doctype, document_name, verification_code): """This method verfies the user verification code by fetching the originally sent code by the system from cache. Args: doctype (str): Name of the DocType. document_name (str): Name of the document of the DocType. verification_code (int): User verification code Returns: boolean: True/False upon verification code being verified. """ try: employee_user_email = frappe.session.user cache_search_key = hashlib.md5((employee_user_email + doctype + document_name).encode('utf-8')).hexdigest() verification_hash = hashlib.md5((employee_user_email + doctype + document_name + str(verification_code)).encode('utf-8')).hexdigest() if not frappe.cache().get(cache_search_key): return False if verification_hash != frappe.cache().get(cache_search_key).decode('utf-8'): return False frappe.cache().delete(cache_search_key) return True except Exception as e: frappe.throw(e)
4013d2c2ff3eb318c16af8d43ca8b50af53379ea
30,530
def orient1(ppos, apos, bpos): """ ORIENT1 return orientation of PP wrt. the line [PA, PB]. """ #---------------------------------------------- calc. det(S) smat = np.empty( (2, 2, ppos.shape[0]), dtype=ppos.dtype) smat[0, 0, :] = \ apos[:, 0] - ppos[:, 0] smat[0, 1, :] = \ apos[:, 1] - ppos[:, 1] smat[1, 0, :] = \ bpos[:, 0] - ppos[:, 0] smat[1, 1, :] = \ bpos[:, 1] - ppos[:, 1] sign = \ smat[0, 0, :] * smat[1, 1, :] - \ smat[0, 1, :] * smat[1, 0, :] return np.reshape(sign, (sign.size))
705a27bde14c31262471b5d6a3621a695d8c091d
30,531
def get_storm_data(storm_path): """ Obtain raster grid of the storm with rasterio Arguments: *storm_path* (string) -- path to location of storm """ with rio.open(storm_path) as src: # Read as numpy array array = src.read(1) array = np.array(array,dtype='float32') affine_storm = src.affine return array,affine_storm
6db69cbd6970da467021a186f3062beaa6ed7387
30,532
import functools def wrap_with_spectral_norm(module_class, sn_kwargs=None, pow_iter_collection=None): """Returns a constructor for the inner class with spectral normalization. This function accepts a Sonnet AbstractModule class as argument (the class, *not* an instance of that class) alongside an optional dictionary of keyword arguments for the spectral_norm function, and returns a constructor which can be treated identically to the constructor of the input class, but with spectral normalization applied to the weights created by the class. Internally, this is just a partially evaluated SpectralNormWrapper module. `pow_iter_collection`, if not None, is treated as the name of a TensorFlow global collection. Each time the module's weight matrix is accessed ops are built for performing one step of power iteration to approximate that weight's first singular follow and ops are created for saving this new approximation in an internal variable. At build-time the resulting object takes a special boolean 'enable_power_iteration' keyword argument. If this is True (the default), a control dependency on the operation for updating this internal variable is attached to the returned weight. Otherwise, the update is *not* attached as a control dependency, but an op is placed into the `pow_iter_collection` global collection which causes the internal variable to be updated. It is then up to the user to choose whether to run this update. Args: module_class: A constructor/class reference for a Sonnet module you would like to wrap and automatically apply spectral normalization. sn_kwargs: Keyword arguments to be passed to the spectral_norm function in addition to the weight tensor. pow_iter_collection: The name of a global collection for potentially storing ops for updating internal variables. Returns: An snt.AbstractModule class representing the original with spectral norm. """ sn_kwargs = sn_kwargs or {} return functools.partial( SpectralNormWrapper, module_class, sn_kwargs, pow_iter_collection)
5c849f2ee4dd8cd818ff7bebfb0564857bbb18de
30,533