content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def cdgmm(A, B, inplace=False): """Complex pointwise multiplication. Complex pointwise multiplication between (batched) tensor A and tensor B. Parameters ---------- A : tensor A is a complex tensor of size (B, C, M, N, 2). B : tensor B is a complex tensor of size (M, N, 2) or real tensor of (M, N, 1). inplace : boolean, optional If set to True, all the operations are performed inplace. Returns ------- C : tensor Output tensor of size (B, C, M, N, 2) such that: C[b, c, m, n, :] = A[b, c, m, n, :] * B[m, n, :]. """ if not iscomplex(A): raise TypeError('The input must be complex, indicated by a last ' 'dimension of size 2.') if B.ndimension() != 3: raise RuntimeError('The filter must be a 3-tensor, with a last ' 'dimension of size 1 or 2 to indicate it is real ' 'or complex, respectively.') if not iscomplex(B) and not isreal(B): raise TypeError('The filter must be complex or real, indicated by a ' 'last dimension of size 2 or 1, respectively.') if A.size()[-3:-1] != B.size()[-3:-1]: raise RuntimeError('The filters are not compatible for multiplication!') if A.dtype is not B.dtype: raise TypeError('A and B must be of the same dtype.') if A.device.type != B.device.type: raise TypeError('A and B must be both on GPU or both on CPU.') if A.device.type == 'cuda': if A.device.index != B.device.index: raise TypeError('A and B must be on the same GPU!') if isreal(B): if inplace: return A.mul_(B) else: return A * B else: C = A.new(A.size()) A_r = A[..., 0].contiguous().view(-1, A.size(-2)*A.size(-3)) A_i = A[..., 1].contiguous().view(-1, A.size(-2)*A.size(-3)) B_r = B[...,0].contiguous().view(B.size(-2)*B.size(-3)).unsqueeze(0).expand_as(A_i) B_i = B[..., 1].contiguous().view(B.size(-2)*B.size(-3)).unsqueeze(0).expand_as(A_r) C[..., 0].view(-1, C.size(-2)*C.size(-3))[:] = A_r * B_r - A_i * B_i C[..., 1].view(-1, C.size(-2)*C.size(-3))[:] = A_r * B_i + A_i * B_r return C if not inplace else A.copy_(C)
c3a65ec03339edd0defe723fc860ff9f54495eda
29,125
def InvocationStartEncKeyVector(builder, numElems): """This method is deprecated. Please switch to Start.""" return StartEncKeyVector(builder, numElems)
c00609da890986ff4cf5c30f246459342b9d60bd
29,126
from functools import reduce def dynamic_partial_sum_product( sum_op, prod_op, factors, eliminate=frozenset(), plate_to_step=dict() ): """ Generalization of the tensor variable elimination algorithm of :func:`funsor.sum_product.partial_sum_product` to handle higer-order markov dimensions in addition to plate dimensions. Markov dimensions in transition factors are eliminated efficiently using the parallel-scan algorithm in :func:`funsor.sum_product.sarkka_bilmes_product`. The resulting factors are then combined with the initial factors and final states are eliminated. Therefore, when Markov dimension is eliminated ``factors`` has to contain initial factors and transition factors. :param ~funsor.ops.AssociativeOp sum_op: A semiring sum operation. :param ~funsor.ops.AssociativeOp prod_op: A semiring product operation. :param factors: A collection of funsors. :type factors: tuple or list :param frozenset eliminate: A set of free variables to eliminate, including both sum variables and product variable. :param dict plate_to_step: A dict mapping markov dimensions to ``step`` collections that contain ordered sequences of Markov variable names (e.g., ``{"time": frozenset({("x_0", "x_prev", "x_curr")})}``). Plates are passed with an empty ``step``. :return: a list of partially contracted Funsors. :rtype: list """ assert callable(sum_op) assert callable(prod_op) assert isinstance(factors, (tuple, list)) assert all(isinstance(f, Funsor) for f in factors) assert isinstance(eliminate, frozenset) assert isinstance(plate_to_step, dict) # process plate_to_step plate_to_step = plate_to_step.copy() prev_to_init = {} markov_to_sarkka = {} markov_sum_vars = set() for key, step in plate_to_step.items(): for chain in step: # map old markov step names to sarkka_bilmes format step names # Case 1 # x_slice(0, 5, None) -> _PREV__PREV_x_slice(2, 7, None) # x_slice(1, 6, None) -> _PREV_x_slice(2, 7, None) # x_slice(2, 7, None) -> x_slice(2, 7, None) # Case 2 # x_prev - > _PREV_x_curr # x_curr -> x_curr history = len(chain) // 2 base_name = chain[-1] for t, name in enumerate(reversed(chain[history:-1])): markov_to_sarkka[name] = _shift_name(base_name, t + 1) markov_sum_vars.add(base_name) markov_sum_vars.update(markov_to_sarkka) # map prev to init; works for any history > 0 init, prev = chain[: len(chain) // 2], chain[len(chain) // 2 : -1] prev = tuple(markov_to_sarkka[name] for name in prev) prev_to_init.update(zip(prev, init)) markov_sum_vars = frozenset(markov_sum_vars) plates = frozenset(plate_to_step.keys()) sum_vars = eliminate - plates prod_vars = eliminate.intersection(plates) markov_prod_vars = frozenset( k for k, v in plate_to_step.items() if v and k in eliminate ) markov_sum_to_prod = defaultdict(set) for markov_prod in markov_prod_vars: for chain in plate_to_step[markov_prod]: for name in chain[len(chain) // 2 :]: markov_sum_to_prod[name].add(markov_prod) var_to_ordinal = {} ordinal_to_factors = defaultdict(list) for f in factors: ordinal = plates.intersection(f.inputs) ordinal_to_factors[ordinal].append(f) for var in sum_vars.intersection(f.inputs): var_to_ordinal[var] = var_to_ordinal.get(var, ordinal) & ordinal ordinal_to_vars = defaultdict(set) for var, ordinal in var_to_ordinal.items(): ordinal_to_vars[ordinal].add(var) results = [] while ordinal_to_factors: leaf = max(ordinal_to_factors, key=len) leaf_factors = ordinal_to_factors.pop(leaf) leaf_reduce_vars = ordinal_to_vars[leaf] for (group_factors, group_vars) in _partition( leaf_factors, leaf_reduce_vars | markov_prod_vars ): # eliminate non markov vars nonmarkov_vars = group_vars - markov_sum_vars - markov_prod_vars f = reduce(prod_op, group_factors).reduce(sum_op, nonmarkov_vars) # eliminate markov vars markov_vars = group_vars.intersection(markov_sum_vars) if markov_vars: markov_prod_var = [markov_sum_to_prod[var] for var in markov_vars] assert all(p == markov_prod_var[0] for p in markov_prod_var) if len(markov_prod_var[0]) != 1: raise ValueError("intractable!") time = next(iter(markov_prod_var[0])) for v in sum_vars.intersection(f.inputs): if time in var_to_ordinal[v] and var_to_ordinal[v] < leaf: raise ValueError("intractable!") time_var = Variable(time, f.inputs[time]) # markov_to_sarkka renames variables in MarkovProduct format # to sarkka_bilmes_product format base_names = markov_vars.intersection( _shift_name(name, -_get_shift(name)) for name in markov_to_sarkka.values() ) f = f(**markov_to_sarkka) global_vars = frozenset( set(f.inputs) - {time_var.name} - set(markov_to_sarkka.values()) - base_names ) with funsor.terms.eager: f = funsor.optimizer.apply_optimizer(f) f = sarkka_bilmes_product(sum_op, prod_op, f, time_var, global_vars) f = f.reduce(sum_op, base_names) f = f(**prev_to_init) remaining_sum_vars = sum_vars.intersection(f.inputs) if not remaining_sum_vars: results.append(f.reduce(prod_op, leaf & prod_vars - markov_prod_vars)) else: new_plates = frozenset().union( *(var_to_ordinal[v] for v in remaining_sum_vars) ) if new_plates == leaf: raise ValueError("intractable!") f = f.reduce(prod_op, leaf - new_plates - markov_prod_vars) ordinal_to_factors[new_plates].append(f) return results
a08298f1440c212310cc3298629e27743325c9ca
29,127
def range_to_number(interval_str): """Converts "X-Y" -> "X".""" if not '-' in interval_str: return int(interval_str) # If first character is -, X is a negative number if interval_str.startswith('-'): number = '-' + interval_str.split('-')[1] else: number = interval_str.split('-')[0] if number[-1] == 'M': return int(round(float(number[:-1]) * 1000000)) elif number[-1] == 'B': return int(round(float(number[:-1]) * 1000000000)) elif '.' in number: return float(number) else: return int(number)
562031503241cc37b1b6df5dd657f2f2d90b79a3
29,128
import warnings def load_wav_file_with_wavio( file_path, sample_rate, mono=True, resample_type="kaiser_best" ): """Load a 24-bit wav audio file as a floating point time series. Significantly faster than load_sound_file.""" wavio_obj = wavio.read(str(file_path)) samples = wavio_obj.data actual_sample_rate = wavio_obj.rate if samples.dtype != np.float32: if wavio_obj.sampwidth == 3: samples = np.true_divide( samples, 8388608, dtype=np.float32 ) # ends up roughly between -1 and 1 elif wavio_obj.sampwidth == 2: samples = np.true_divide( samples, 32768, dtype=np.float32 ) # ends up roughly between -1 and 1 else: raise Exception("Unknown sampwidth") if mono and len(samples.shape) > 1: if samples.shape[1] == 1: samples = samples[:, 0] else: samples = np.mean(samples, axis=1) if sample_rate is not None and actual_sample_rate != sample_rate: if resample_type == "auto": resample_type = ( "kaiser_fast" if actual_sample_rate < sample_rate else "kaiser_best" ) samples = librosa.resample( samples, actual_sample_rate, sample_rate, res_type=resample_type ) warnings.warn( "{} had to be resampled from {} hz to {} hz. This hurt execution time.".format( str(file_path), actual_sample_rate, sample_rate ) ) actual_sample_rate = actual_sample_rate if sample_rate is None else sample_rate return samples, actual_sample_rate
a1b7896e8ac4b9b5833c3ca25776295deb56839e
29,129
def as_cidr(cr: CidrRepr) -> Cidr: """ Returns a strict network address expressed as in CIDR form: either a string, expressing the network address as ``"<network number><zeros>/<mask bits>"``, or as a ``Cidr`` object, which is returned unaltered. """ if isinstance(cr, _BaseNetwork): return cr return ip_network(cr)
7d6d40c7269619f6189ea1cee940ed4d33eadb1f
29,131
from vivofoundation import get_triples def get_authorship(authorship_uri): """ Given a URI, return an object that contains the authorship it represents """ authorship = {'authorship_uri':authorship_uri} triples = get_triples(authorship_uri) try: count = len(triples["results"]["bindings"]) except: count = 0 i = 0 while i < count: b = triples["results"]["bindings"][i] p = b['p']['value'] o = b['o']['value'] if p == "http://vivoweb.org/ontology/core#authorRank": authorship['author_rank'] = o if p == "http://vivoweb.org/ontology/core#linkedAuthor": authorship['author_uri'] = o if p == "http://vivoweb.org/ontology/core#linkedInformationResource": authorship['publication_uri'] = o if p == "http://vivoweb.org/ontology/core#isCorrespondingAuthor": authorship['corresponding_author'] = o i = i + 1 return authorship
83a1d6a763e16d43c7c83f65f7f3ad11afd5506e
29,132
def Init(): """ Инициализации важных переменных """ # Получаем список листов, их Id и название spreadsheet = service.spreadsheets().get(spreadsheetId = spreadsheet_id).execute() sheetList = spreadsheet.get('sheets') sheetUsers = sheetList[0]['properties']['sheetId'] sheetSW = sheetList[1]['properties']['sheetId'] #последняя строчка откуда можно присоединять новенького last_raw_in_SW = sorted( sheetList[1]['merges'], key = lambda x: x['endRowIndex'], reverse = True)[0]['endRowIndex'] # Узнаём последнюю заполненную строчку в таблице с очками return sheetUsers, sheetSW, last_raw_in_SW
917f2ec6f5d39260ed89c546695e7cd2839bc7b6
29,133
def Nlam_to_Flam(wave, zeropoint, zp_min=5.0, zp_max=30.0): """ The factor that when multiplied into N_lam converts to F_lam, i.e. S_lam where S_lam \equiv F_lam/N_lam Parameters ---------- wave (`numpy.ndarray`_): Wavelength vector for zeropoint zeropoint (`numpy.ndarray`_): zeropoint zp_min (float, optional): Minimum allowed value of the ZP. For smaller values the S_lam factor is set to zero zp_max (float, optional): Maximum allowed value of the ZP. For larger values the S_lam factor is set to zero Returns ------- """ gpm = (wave > 1.0) & (zeropoint > zp_min) & (zeropoint < zp_max) factor = np.zeros_like(wave) factor[gpm] = np.power(10.0, -0.4*(zeropoint[gpm] - ZP_UNIT_CONST))/np.square(wave[gpm]) return factor
843560dde9e4ec6d2781e4179ca047d00c5e3abc
29,134
def base64_values_validate(name, description, color_set): """Ensures the string wasn't maliciously fabricated to feed corrupted data into the app, even if the b64 code itself successfully decoded into a valid string.""" if custom_palette_name_validate(name) or custom_palette_description_validate(description) or \ custom_palette_color_set_validate(color_set): return {'error': True}
878a5cdf20bcc380a8e81afc47e40592eb4db030
29,135
def isIndepFromTarget(df, attr, x): """ Determiner si un attr est independant de target :df: dataframe choisit :attr: l'argument choisit a etudier :x: seuil :retourner true si n attr est independant de target """ obs=[[], []] ref=[] for t in df.itertuples(): dic=t._asdict() if dic[attr] not in ref: ref.append(dic[attr]) index=ref.index(dic[attr]) if(len(obs[0])<index+1): obs[0].append(0) obs[1].append(0) obs[dic['target']][index]+=1 a,b,c,d=chi2_contingency(obs) if b<x: return False return True
7bad7b227f3c7af5413ad9778870c44c7844bf6a
29,136
def read_docs_md(filename, root=None): """ Retrieves an apidoc markdown file to be implemented in swagger_auto_schema :param(str) root: root base dir, settings.BASE_DIR as default :param(str) filename: the filename to be retrieved without the .md file type :return: the content of the md file, None if not found """ base = root or settings.BASE_DIR try: f = open(f"{base}/apidocs/{filename}.md", "r") return f.read() except FileNotFoundError: return None
e888e1df91b4154fb9d67f6268da76ab2028f780
29,137
def unrotate(points, posor): """Rotate the matrix of column vectors points according to posor, i.e., from absolute coordinates to camera coordinates""" rot_matrix = calc_rot_matrix(posor) return rot_matrix.I * points
58066c958da982d035792997eaff00bfc573d2d1
29,138
def exp_tail(d, x): """Tail of the exponential series starting at d. Needed in the set sampler. Parameters ---------- d: int x: float Returns ------- float """ result = exp(x) # Subtract the _first _d terms. for i in range(d): result -= (pow(x, i) / factorial(i)) return result
48ac3da79e293451d42c5d55196863e27ed3b3e1
29,139
def check_projects_scores(request, hackathon_id): """ When a judge submits the score, check if all projects in the Hackathon were scored by all the judges in all the categories by comparing the number of objects in HackProjectScore for each projects to the required number of objects. If all projects weren't scored, render final_score.html without the score table. If all the projects were scored, calculate the total score for each team, sort the teams by scores and render final_score.html with the score table. """ hackathon = get_object_or_404(Hackathon, pk=hackathon_id) HackAwardFormSet = modelformset_factory( HackAward, fields=('id', 'hack_award_category', 'winning_project'), form=HackAwardForm, extra=0) if request.method == 'POST': hack_awards_formset = HackAwardFormSet( request.POST, form_kwargs={'hackathon_id': hackathon_id}, queryset=HackAward.objects.filter(hackathon=hackathon)) if hack_awards_formset.is_valid(): try: with transaction.atomic(): hack_awards_formset.save() except IntegrityError as e: if 'UNIQUE' in str(e): messages.error(request, ("Each award category can only be added " "once to a hackathon.")) else: logger.exception(e) messages.error(request, ("An unexpected error occurred. Please " "try again.")) else: messages.error(request, "An unexpected error occurred. Please try again.") return redirect(reverse('hackathon:final_score', kwargs={'hackathon_id': hackathon_id})) else: judges = [judge.slack_display_name for judge in hackathon.judges.all()] teams = [team.display_name for team in hackathon.teams.all() if team.project] scores = query_scores(hackathon_id) scores_table = create_judges_scores_table(scores, judges, teams) hack_awards_formset = HackAwardFormSet( form_kwargs={'hackathon_id': hackathon_id}, queryset=HackAward.objects.filter(hackathon=hackathon)) return render(request, 'hackathon/final_score.html', { 'hackathon': hackathon.display_name, 'hack_awards_formset': hack_awards_formset, 'scores_table': scores_table, 'teams_without_projects': '\n'+'\n'.join([ team.display_name for team in hackathon.teams.all() if not team.project]), })
edfb52db396a984e10a437a1b6561a3e493d9e0e
29,140
def get_path(obj, path, default=None): """Get the value at any depth of a nested object based on the path described by `path`. If path doesn't exist, `default` is returned. Args: obj (list|dict): Object to process. path (str|list): List or ``.`` delimited string of path describing path. Keyword Arguments: default (mixed): Default value to return if path doesn't exist. Defaults to ``None``. Returns: mixed: Value of `obj` at path. Example: >>> get_path({}, 'a.b.c') is None True >>> get_path({'a': {'b': {'c': [1, 2, 3, 4]}}}, 'a.b.c.1') 2 .. versionadded:: 2.0.0 .. versionchanged:: 2.2.0 Support escaping "." delimiter in single string path key. """ for key in path_keys(path): obj = get_item(obj, key, default=default) if obj is None: break return obj
c72cd428979a3f39214c57346aa345087a0248c7
29,144
def get_label_set_args(): """ Add arguments specific to the "Label Set" experiment. Return ArgParser object. """ cmd = get_general_args() cmd = get_explainer_args(cmd) cmd.add('--in_dir', type=str, default='output/influence_set/') cmd.add('--out_dir', type=str, default='output/label_set/') cmd.add('--val_frac', type=float, default=0.1) cmd.add('--edit_frac', type=float, nargs='+', default=[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]) return cmd
d08e59452ba7afdd8a478f589366e9ba219abb18
29,145
def literal_label(lit): """ Invent a nice label name for the given literal """ return '{}_{}'.format(lit.function.name, lit.name)
14a22d989ee9f07e00e66d1340b946d385d677fd
29,146
from typing import Optional def key(element: DOMElement) -> Optional[str]: """ Retrieve the key of a particular :class:`.DOMElement` in its parent element, if it can be referred to by a key (i.e. if it its parent element is a :class:`collections.abc.Mapping`). :param element: A DOM element :return: The key of that DOM element in its parent, or None if it has no key """ return dom(element).element_key
f7ac059faa2023f88bad386a3d28e44a44c4259d
29,147
def absolute_reverse(view_name, query_kwargs=None, args=None, kwargs=None): """Like django's `reverse`, except returns an absolute URL. Also add query parameters.""" relative_url = reverse(view_name, kwargs=kwargs) url = website_util.api_v2_url(relative_url, params=query_kwargs) return url
11fc1bdc7be40fbbd462570f70f9fe77a5b4777f
29,148
def convert(chinese): """converts Chinese numbers to int in: string out: string """ numbers = {'零':0, '一':1, '二':2, '三':3, '四':4, '五':5, '六':6, '七':7, '八':8, '九':9, '壹':1, '贰':2, '叁':3, '肆':4, '伍':5, '陆':6, '柒':7, '捌':8, '玖':9, '两':2, '廿':20, '卅':30, '卌':40, '虚':50, '圆':60, '近':70, '枯':80, '无':90} units = {'个':1, '十':10, '百':100, '千':1000, '万':10000, '亿':100000000, '拾':10, '佰':100, '仟':1000} number, pureNumber = 0, True for i in range(len(chinese)): if chinese[i] in units or chinese[i] in ['廿', '卅', '卌', '虚', '圆', '近', '枯', '无']: pureNumber = False break if chinese[i] in numbers: number = number * 10 + numbers[chinese[i]] if pureNumber: return number number = 0 for i in range(len(chinese)): if chinese[i] in numbers or chinese[i] == '十' and (i == 0 or chinese[i - 1] not in numbers or chinese[i - 1] == '零'): base, currentUnit = 10 if chinese[i] == '十' and (i == 0 or chinese[i] == '十' and chinese[i - 1] not in numbers or chinese[i - 1] == '零') else numbers[chinese[i]], '个' for j in range(i + 1, len(chinese)): if chinese[j] in units: if units[chinese[j]] >= units[currentUnit]: base, currentUnit = base * units[chinese[j]], chinese[j] number = number + base return number
c08b9e01f0981afd09d2d9537ec1e98f2af46c06
29,149
def method_not_raises(UnexpectedException): """A decorator that ensures that the underlying function does not raise the UnexpectedException""" @Decorators.decorator def method_not_raises(target, *args, **kwargs): return not_raises(UnexpectedException, target, *args, **kwargs) return method_not_raises
f5267acedcd7bebec7d0cae998635c03c95e2eb8
29,150
def create_random_data(n_randoms, stomp_map): """Function for creating randomly positioned unknown objects on the considerd geomometry. These is used for normalizing the output PDF and properly estimating the "zero point" of the correlation amplitude. The code returns a spatially searchable quad tree of the random points. ---------------------------------------------------------------------------- Args: n_randoms: int number of random points to generate stomp_map: STOMP.Map object specifying the survey geomometry Returns: STOMP::TreeMap object """ print("Creating %i randoms..." % n_randoms) random_vect = stomp.AngularVector() stomp_map.GenerateRandomPoints(random_vect, n_randoms) random_tree = stomp.TreeMap( int(np.max((128, stomp_map.RegionResolution()))), 200) print("\tLoading randoms into tree map...") for rand_ang in random_vect: random_tree.AddPoint(rand_ang, 1.0) return random_tree
c3c73e358d767e46064400d9b48e99a79b7bcfea
29,151
def mobilenetv1(): """Handler da página inicial do modelo de Mobilenet V1 :return: """ return render_template("mobilenetv1.html")
edf8cb04c715c4ce0d3c70883813fb11d0640a19
29,153
def move(board): """Queries the user to move. Returns false if the user puts in an invalid input or move, returns true if the move was successful""" start_input = input("MOVE WHICH PIECE? ") if not start_input.isdigit(): return False start = int(start_input) if start not in board or board[start] != "!": return False end_input = input("TO WHERE? ") if not end_input.isdigit(): return False end = int(end_input) if end not in board or board[end] != "O": return False difference = abs(start - end) center = (end + start) / 2 if ( (difference == 2 or difference == 18) and board[end] == "O" and board[center] == "!" ): board[start] = "O" board[center] = "O" board[end] = "!" return True else: return False
3377b4f349c9519eff4ede707d10e08038e9d7fc
29,154
import re def _read_reaction_kinetic_law_from_sbml(reaction, mass_reaction, f_replace, **kwargs): """Read the SBML reaction kinetic law and return it. Warnings -------- This method is intended for internal use only. """ mass_rid = mass_reaction.id sbml_species = ( list(reaction.getListOfReactants()) + list(reaction.getListOfProducts()) + list(reaction.getListOfModifiers()) ) sbml_species = [sref.getSpecies() for sref in sbml_species] local_parameters = {} if reaction.isSetKineticLaw(): sbml_rid = reaction.getIdAttribute() kinetic_law = reaction.getKineticLaw() # Get the kinetic law and the rate equation as a string. kinetic_law = reaction.getKineticLaw() rate_eq = _check_required(kinetic_law, kinetic_law.getFormula(), "formula") # Perform substitution for power law operations to sympify rate for match in _KLAW_POW_RE.finditer(rate_eq): old = match.group(0) new = "(({0})**{1})".format(match.group("arg"), match.group("exp")) rate_eq = rate_eq.replace(old, new) # Try to sympify the reaction rate try: rate_eq = sympify(rate_eq) except SympifyError as e: raise MassSBMLError(e) # If ID replacements were performed earlier then apply the ID # replacements for metabolite and parameter arguments in rate law also. id_subs = {} for arg in list(rate_eq.atoms(Symbol)): arg = str(arg) new_arg = arg # Check if reaction is in the name of the parameter if re.search(sbml_rid, arg) and sbml_rid != mass_rid: new_arg = _get_corrected_id( new_arg, (sbml_rid, mass_rid, arg), "Parameter", kwargs.get("remove_char"), ) elif arg in sbml_species: new_arg = _get_corrected_id( new_arg, (f_replace, F_SPECIE), None, kwargs.get("remove_char") ) else: if kwargs.get("remove_char"): new_arg = _remove_char_from_id(new_arg) id_subs[arg] = new_arg # Make rate equation rate_eq = rate_eq.subs(id_subs) for local_parameter in kinetic_law.getListOfLocalParameters(): pid = _check_required( local_parameter, local_parameter.getIdAttribute(), "id" ) value = local_parameter.getValue() if re.search(sbml_rid, pid) and sbml_rid != mass_rid: pid = _get_corrected_id( pid, (sbml_rid, mass_rid, pid), "Parameter", kwargs.get("remove_char"), ) elif kwargs.get("remove_char"): pid = _remove_char_from_id(pid) local_parameters[pid] = value else: LOGGER.warning( "No kinetic law found for SBML reaction '%s'. Therefore, assigning" " the MassReaction '%s' a rate law based on Mass Action Kinetics.", reaction, mass_rid, ) rate_eq = mass_reaction.get_mass_action_rate(1) return rate_eq, local_parameters
ea800e5b7ccde7dbc87c11066176f963e0367256
29,155
def _total_probe_count_without_interp(params, probe_counts): """Calculate a total probe count without interpolation. This assumes that params are keys in the datasets of probe_counts. The result of ic._make_total_probe_count_across_datasets_fn should give the same count as this function (if params are keys in the datasets of probe_counts). But this uses probe_counts directly and can be used as a sanity check -- i.e., it does not do any interpolation. Args: params: parameter values to use when determining probe counts; params[i] is the (i % N)'th parameter of the (i/N)'th dataset, where N is the number of datasets probe_counts: dict giving number of probes for each dataset and choice of parameters Returns: total number of probes across all datasets, according to the given values of params """ num_datasets = len(probe_counts) # The total number of parameters must be a multiple of the number # of datasets assert len(params) % num_datasets == 0 num_params = int(len(params) / num_datasets) s = 0 for i, dataset in enumerate(sorted(probe_counts.keys())): p = tuple(params[num_params * i + j] for j in range(num_params)) s += probe_counts[dataset][p] return s
0973e667dbf1fc3bdf476791cbf709549230f94b
29,156
from typing import Any import math def make_divisible(x: Any, divisor: int): """Returns x evenly divisible by divisor.""" return math.ceil(x / divisor) * divisor
bfbcfb334777a6c7214f16aa0fadd56906e2b7bc
29,158
def one_vehicle_xml(): """Emulates a XML response for 1 vehicle trajectory""" STREAM = b'<INST nbVeh="1" val="2.00"><CREATIONS><CREATION entree="Ext_In" id="1" sortie="Ext_Out" type="VL"/></CREATIONS><SORTIES/><TRAJS><TRAJ abs="25.00" acc="0.00" dst="25.00" id="0" ord="0.00" tron="Zone_001" type="VL" vit="25.00" voie="1" z="0.00"/></TRAJS><STREAMS/><LINKS/><SGTS/><FEUX/><ENTREES><ENTREE id="Ext_In" nb_veh_en_attente="1"/></ENTREES><REGULATIONS/></INST>' return STREAM
792cfb5895fd033c40a4cdbf6e79083c865d0093
29,160
def select_data(all_tetrode_data, index): """ Select tetrode data by trial indices. :param all_tetrode_data: (list of 4d numpy arrays) each of format [trial, 1, neuron + tetrode, time] :param index: (1d numpy array) trial indices :return: (list of 4d numpy arrays) selected subset of tetrode data """ current_data = [] for x in all_tetrode_data: current_data.append(x[index, :, :, :]) return current_data
5a883771ef499e0b82e0d3ac5b86550180760e13
29,161
from datetime import datetime def normalize(ds_train, ds_cv, ds_test): """ Normalization of datasets Parameters ---------- ds_train: Dataset Training set ds_cv: Dataset Cross-validation set ds_test: Dataset Test set Returns ------- norm_train: Dataset Normalized training set norm_cv: Dataset Normalized cross-validation set norm_test: Dataset Normalized test set """ t = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("[INFO] {} - Normalizing training set ... ".format(t)) normalizer = dl.Normalization() ds_train.data = normalizer.fit_and_transform(ds_train.data, method='z_score_std', per_col_scaler=True) t = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("[INFO] {} - Normalizing crossval set ... ".format(t)) ds_cv.data = normalizer.transform(ds_cv.data) t = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("[INFO] {} - Normalizing test set ... ".format(t)) ds_test.data = normalizer.transform(ds_test.data) return ds_train, ds_cv, ds_test
ad6731096e1081f3ff764ec055d4d3035a40ecbe
29,162
def generate_sequential(num_users=100, num_items=1000, num_interactions=10000, concentration_parameter=0.1, order=3, random_state=None): """ Generate a dataset of user-item interactions where sequential information matters. The interactions are generated by a n-th order Markov chain with a uniform stationary distribution, where transition probabilities are given by doubly-stochastic transition matrix. For n-th order chains, transition probabilities are a convex combination of the transition probabilities of the last n states in the chain. The transition matrix is sampled from a Dirichlet distribution described by a constant concentration parameter. Concentration parameters closer to zero generate more predictable sequences. Parameters ---------- num_users: int, optional number of users in the dataset num_items: int, optional number of items (Markov states) in the dataset num_interactions: int, optional number of interactions to generate concentration_parameter: float, optional Controls how predictable the sequence is. Values closer to zero give more predictable sequences. order: int, optional order of the Markov chain random_state: numpy.random.RandomState, optional random state used to generate the data Returns ------- Interactions: :class:`spotlight.interactions.Interactions` instance of the interactions class """ if random_state is None: random_state = np.random.RandomState() transition_matrix = _build_transition_matrix( num_items - 1, concentration_parameter, random_state) user_ids = np.sort(random_state.randint(0, num_users, num_interactions, dtype=np.int32)) item_ids = _generate_sequences(num_interactions, transition_matrix, order, random_state) + 1 timestamps = np.arange(len(user_ids), dtype=np.int32) ratings = np.ones(len(user_ids), dtype=np.float32) return Interactions(user_ids, item_ids, ratings=ratings, timestamps=timestamps, num_users=num_users, num_items=num_items)
1a9a23fda9c17d5b7085d860986aab78368a4408
29,163
def expand(fluid, pfinal, eta): """Adiabatically expand a fluid to pressure pfinal, using a turbine with isentropic efficiency eta.""" h0 = fluid.enthalpy_mass() s0 = fluid.entropy_mass() fluid.set(S = s0, P = pfinal) h1s = fluid.enthalpy_mass() isentropic_work = h0 - h1s actual_work = isentropic_work * eta h1 = h0 - actual_work fluid.set(H = h1, P = pfinal) return actual_work
acf8cd63684ccf3c41c38cc631d66b4bc143c5c6
29,164
def ADOSC( frame, fast=3, slow=10, high_col="high", low_col="low", close_col="close", vol_col="Volume", ): """Chaikin A/D oscillator""" return _frame_to_series( frame, [high_col, low_col, close_col, vol_col], talib.ADOSC, fast, slow )
61b4959407d68fce2023a135253e02aa7e3428fc
29,165
def op_scr( gep: pd.DataFrame, gross_tp: pd.DataFrame, ul_exp: float, bscr: float ): """ SCR Op Risk module Inputs: - Gross EP last 12m and 12m prior - Gross TP: BEL should be positive - BSCR """ op_premiums = 0.04 * (gep.at['life_all', 'gep_last12m'] - gep.at['life_ul', 'gep_last12m']) \ + 0.04 * max(0., (gep.at['life_all', 'gep_last12m'] - gep.at['life_ul', 'gep_last12m']) - 1.2 * (gep.at['life_all', 'gep_prior12m'] - gep.at['life_ul', 'gep_prior12m'])) \ + 0.03 * gep.at['nl', 'gep_last12m'] \ + 0.03 * max(0., gep.at['nl', 'gep_last12m'] - 1.2 * gep.at['nl', 'gep_prior12m']) op_provisions = 0.0045 * max(0., gross_tp.at['life_all'] - gross_tp.at['life_ul']) \ + 0.03 * max(0., gross_tp.at['nl']) op = max(op_premiums, op_provisions) scr_op = min(op, 0.3 * bscr) + 0.25 * ul_exp return scr_op, op
fc1455e5ad7d4da92068b18b80a0ce929b5a9a50
29,166
def parse_voyager_sclk(sclk, planet=None): """Convert a Voyager clock string (FDS) to a numeric value. Typically, a partition number is not specified for FDS counts. However, if it is, it must be compatible with the planetary flyby. The partition number is 2 for Jupiter and Saturn, 3 for Uranus, and 4 for Neptune. If the planet is not specified (planet = None), then any partition value in the range 2-4 is allowed and its value is ignored. If the planet is given as input (5 for Jupiter, 6 for Saturn, 7 for Uranus, 8 for Neptune), then an explicitly stated partition number must be compatible with the associated planetary flyby. """ assert planet in (None, 5, 6, 7, 8), 'Invalid planet value: ' + str(planet) # Check the partition number before ignoring it parts = sclk.split('/') if len(parts) > 2: raise ValueError('Invalid FDS format, extraneous "/": ' + sclk) if len(parts) == 2: try: partition = int(parts[0]) except ValueError: raise ValueError('Partition number is not an integer: ' + sclk) if planet is None: if partition not in VOYAGER_PLANET_PARTITIONS.values(): raise ValueError('Partition number out of range 2-4: ' + sclk) else: required_partition = VOYAGER_PLANET_PARTITIONS[planet] if partition != required_partition: name = VOYAGER_PLANET_NAMES[planet] raise ValueError('Partition number for %s flyby ' % name + 'must be %d: ' % required_partition + sclk) sclk = parts[1] # Separator can be '.' or ':' if '.' in sclk: parts = sclk.split('.') elif ':' in sclk: parts = sclk.split(':') else: parts = [sclk] if len(parts) > 3: raise ValueError('More than three fields in Voyager clock: ' + sclk) # Make sure field are integers ints = [] try: for part in parts: ints.append(int(part)) except ValueError: raise ValueError('Voyager clock fields must be integers: ' + sclk) # If we have just a single six- or seven-digit number, maybe the separator # was omitted. This is how Voyager image names are handled. if len(ints) == 1 and ints[0] >= 100000: ints = [ints[0] // 100, ints[0] % 100] # Append fields to make three if len(ints) == 1: ints.append(0) if len(ints) == 2: ints.append(1) # Check fields for valid ranges if ints[0] > 65535 or ints[0] < 0: raise ValueError('Voyager clock "hours" out of range 0-65535: ' + sclk) if ints[1] > 59 or ints[1] < 0: raise ValueError('Voyager clock "minutes" out of range 0-59: ' + sclk) if ints[2] > 800 or ints[2] < 1: raise ValueError('Voyager clock "seconds" out of range 1-800: ' + sclk) # Return in units of FDS hours return ints[0] + (ints[1] + (ints[2]-1) / 800.) / 60.
237695d43fe17af4f1d7fb704c01ab925099e663
29,167
def format_url(url): """ Formats url by adding 'http://' if necessary and deleting 'www.' :param url: ulr to article or domain :return: formatted url e.g. the following urls: 'http://www.google.pl/', 'google.pl/', 'google.pl/', 'www.google.pl/', 'http://google.pl/', 'https://www.google.pl/' will be all formatted to: http://google.pl/ """ parsed_url = urlparse(url, 'http') netloc = parsed_url.netloc or parsed_url.path path = parsed_url.path if parsed_url.netloc else '' netloc = netloc.replace('www.', '') parsed_url = ParseResult('http', netloc, path, *parsed_url[3:]) if not validators.url(parsed_url.geturl()): raise ValueError('Provided url=' + url + ' is not valid') return parsed_url.geturl()
a9d99b3ad73efb2d79931e9f0d75b1ea557fc6f4
29,168
def append(arr, values, axis=None): """Append to the end of an array along axis (ravel first if None) """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
9654f761bd7437840e355abc7b881e3dbe6dd260
29,169
def volo_d4_448(pretrained=False, **kwargs): """ VOLO-D4 model, Params: 193M """ model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) model = _create_volo('volo_d4_448', pretrained=pretrained, **model_args) return model
c7e51cf1af050d79d5c31ef1b7aa107d6eac9c27
29,170
from functools import reduce def rec_hasattr(obj, attr): """ Recursive hasattr. :param obj: The top-level object to check for attributes on :param attr: Dot delimited attribute name Example:: rec_hasattr(obj, 'a.b.c') """ try: reduce(getattr, attr.split('.'), obj) except AttributeError: return False else: return True
b1a9b12f54abb93202a5b41c950f761986307170
29,171
def find_svos(tokens): """ Extracts all the subject-verb objects in a list of tokens. :param tokens: the parsed list. :return: a list of the subject verb objects. """ svos = [] verbs = [tok for tok in tokens if tok.pos_ == "VERB" and tok.dep_ != "aux"] for verb in verbs: subs, verb_negated = get_all_subs(verb) # hopefully there are subs, if not, don't examine this verb any longer if subs: verb, objs = get_all_objs(verb) for sub in subs: for obj in objs: obj_negated = is_negated(obj) svos.append((sub.lower_, "!" + verb.lower_ if verb_negated or obj_negated else verb.lower_, obj.lower_)) return svos
1ece330f828dcf54d1a010127b583327b24aa682
29,172
def def_axiom(arg1): """ def-axiom rule prove propositional tautologies axioms. for reason that prove need propositional logic decision procedure, currently use proofterm.sorry """ # Ts = analyze_type(arg1) # if IntType in Ts: # pt = refl(arg1).on_rhs( # top_conv(rewr_conv('int_ite01')), # bottom_conv(rewr_conv('eq_mean_true')), # bottom_conv(integer.int_norm_eq()), # bottom_conv(integer.int_neq_false_conv()), # proplogic.norm_full() # ) # pt = pt.symmetric() # try: # basic.load_theory('sat') # pt_cnf = solve_cnf(pt.lhs) # basic.load_theory('smt') # return pt.equal_elim(pt_cnf) # except: # pass # try: # return solve_cnf(arg1) # except: return ProofTerm.sorry(Thm([], arg1))
ccf2b1a4ca57a96a09772d1f17c11ba345e62a31
29,173
def not_shiptoast_check(self, message): """Checks whether the message object is not in a shiptoast chat.""" if (message.channel.id in self.settings["shiptoast"]) or (message.channel.name in self.settings["shiptoast"]): return False else: return True
b951ee6be9d9173065f340eda08e997b83964fe4
29,174
def jaccard_distance_loss(y_true, y_pred, smooth=100): """ Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|) = sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|)) """ intersection = tf.reduce_sum(tf.math.abs(y_true * y_pred), axis=-1) sum_ = tf.reduce_sum(tf.math.abs(y_true) + tf.math.abs(y_pred), axis=-1) jac = (intersection + smooth) / (sum_ - intersection + smooth) return tf.reduce_sum((1 - jac) * smooth)
3ed1236856bc911210f19882a03c107f82450996
29,175
def unshare_document(token, docid, userid): """ Unshares a document from another user. :param token: The user JWT token. :type token: str :param docid: The DocID of the document. :type docid: str :param userid: The UserID of the user to be unshared from. :type userid: str :raises grpc.RpcError: Raised by the gRPC library to indicate non-OK-status RPC termination. :returns: The number of users unshared with. :rtype: int """ with client.connect_to_server_with_auth(token) as auth_conn: client_stub = strongdoc_pb2_grpc.StrongDocServiceStub(auth_conn) request = document_pb2.UnshareDocumentReq(docID=docid, userID=userid) response = client_stub.UnshareDocument(request, timeout=constants.GRPC_TIMEOUT) return response.count
c79479d93ee687dece0d60137d8837a17c306fca
29,177
import copy import torch def AlterNChannels(layer2alter_id, new_n_channels, old_model): """ Function to increase number of channels Args: layer2alter_id: layer to change new_n_channels: number of channels for the altered layer old_model: model before mutation Returns: Returns mutated model """ new_model_descriptor = copy.deepcopy(old_model['model_descriptor']) old_pytorch_model = old_model['pytorch_model'] # Get layer where altering number of channels and also subsequent layers (as input of subsequent layer is changed) layer2alter_conv = [layer for layer in new_model_descriptor['layers'] if layer['id'] == layer2alter_id][0] layer2alter_bn = [layer for layer in new_model_descriptor['layers'] if layer['input'] == [layer2alter_id]][0] layer2alter_acti = [layer for layer in new_model_descriptor['layers'] if layer['input'] == [layer2alter_bn['id']]][0] subsequentlayer2alter = [layer for layer in new_model_descriptor['layers'] if layer2alter_acti['id'] in layer['input']] layer_type = layer2alter_conv['type'] # Check some constraints assert ((layer2alter_conv['type'] == 'conv') or (layer2alter_conv['type'] == 'sep')), 'Error: Layer hast to be conv or sepconv layer.' assert layer2alter_conv['params']['channels'] < new_n_channels, 'Error: Can only increase number of channels.' assert len(subsequentlayer2alter) == 1, 'Error, more than one outgoing connection not allowed' assert ((subsequentlayer2alter[0]['type'] == 'conv') or ( subsequentlayer2alter[0]['type'] == 'dense')), 'Error, subsequent layer has to be conv or dense layer' # Make necessary changes to new descriptor layer2alter_conv['params']['channels'] = new_n_channels # For new architecture layer2alter_bn['params']['in_channels'] = new_n_channels old_id_conv = layer2alter_conv['id'] old_id_bn = layer2alter_bn['id'] old_id_sub = subsequentlayer2alter[0]['id'] new_id_conv = utils.GetUnusedID(new_model_descriptor) new_id_bn = new_id_conv + 1 new_id_acti = new_id_conv + 2 new_id_sub = new_id_conv + 3 layer2alter_conv['id'] = new_id_conv layer2alter_bn['id'] = new_id_bn layer2alter_bn['input'] = [new_id_conv] layer2alter_acti['id'] = new_id_acti layer2alter_acti['input'] = [new_id_bn] subsequentlayer2alter[0]['input'] = [new_id_acti] subsequentlayer2alter[0]['id'] = new_id_sub subsubsequentlayers = [layer for layer in new_model_descriptor['layers'] if old_id_sub in layer['input']] # For new architecture for layer in subsequentlayer2alter: layer['params']['in_channels'] = new_n_channels utils.ReplaceInput(subsubsequentlayers, old_id_sub, new_id_sub) new_pytorch_model = ConvNet(new_model_descriptor) new_pytorch_model.cuda() new_pytorch_model = utils.InheritWeights(old_model['pytorch_model'], new_pytorch_model) # Modify weights of changed layers if layer_type == 'conv': # Conv layer where number of channels have been changed new_weights_conv = copy.deepcopy(new_pytorch_model._modules[str(new_id_conv)].weight) new_bias_conv = copy.deepcopy(new_pytorch_model._modules[str(new_id_conv)].bias) old_weights_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].weight) old_bias_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].bias) # Recalculate new_weights_conv[0:old_weights_conv.shape[0], :, :, :] = nn.Parameter(old_weights_conv) new_bias_conv[0:old_bias_conv.shape[0]] = nn.Parameter(old_bias_conv) state_dict = {"weight": new_weights_conv.cuda(), "bias": new_bias_conv.cuda()} new_pytorch_model._modules[str(new_id_conv)].load_state_dict(state_dict) elif layer_type == 'sep': # Depthwise old_weights_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].depthwise.weight) old_bias_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].depthwise.bias) state_dict = {"weight": nn.Parameter(old_weights_conv).cuda(), "bias": nn.Parameter(old_bias_conv).cuda()} new_pytorch_model._modules[str(new_id_conv)].depthwise.load_state_dict(state_dict) # Pointwise new_weights_conv = copy.deepcopy(new_pytorch_model._modules[str(new_id_conv)].pointwise.weight) new_bias_conv = copy.deepcopy(new_pytorch_model._modules[str(new_id_conv)].pointwise.bias) old_weights_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].pointwise.weight) old_bias_conv = copy.deepcopy(old_pytorch_model._modules[str(old_id_conv)].pointwise.bias) # Recalculate new_weights_conv[0:old_weights_conv.shape[0], :, :, :] = nn.Parameter(old_weights_conv) new_bias_conv[0:old_bias_conv.shape[0]] = nn.Parameter(old_bias_conv) state_dict = {"weight": new_weights_conv.cuda(), "bias": new_bias_conv.cuda()} new_pytorch_model._modules[str(new_id_conv)].pointwise.load_state_dict(state_dict) # Copy old weights for BN layer new_weights_bn = [] new_weights_bn.append(copy.deepcopy(new_pytorch_model._modules[str(new_id_bn)].weight)) new_weights_bn.append(copy.deepcopy(new_pytorch_model._modules[str(new_id_bn)].bias)) new_weights_bn.append(copy.deepcopy(new_pytorch_model._modules[str(new_id_bn)].running_mean)) new_weights_bn.append(copy.deepcopy(new_pytorch_model._modules[str(new_id_bn)].running_var)) old_weights_bn = [] old_weights_bn.append(copy.deepcopy(old_pytorch_model._modules[str(old_id_bn)].weight)) old_weights_bn.append(copy.deepcopy(old_pytorch_model._modules[str(old_id_bn)].bias)) old_weights_bn.append(copy.deepcopy(old_pytorch_model._modules[str(old_id_bn)].running_mean)) old_weights_bn.append(copy.deepcopy(old_pytorch_model._modules[str(old_id_bn)].running_var)) for weight_idx, weight in enumerate(new_weights_bn): if weight_idx < 2: new_weights_bn[weight_idx][0:old_weights_bn[weight_idx].shape[0]] = nn.Parameter( old_weights_bn[weight_idx]) else: new_weights_bn[weight_idx][0:old_weights_bn[weight_idx].shape[0]] = old_weights_bn[weight_idx] state_dict = {"weight": new_weights_bn[0].cuda(), "bias": new_weights_bn[1].cuda(), "running_mean": new_weights_bn[2].cuda(), "running_var": new_weights_bn[3].cuda()} new_pytorch_model._modules[str(new_id_bn)].load_state_dict(state_dict) new_weights_sub = copy.deepcopy(new_pytorch_model._modules[str(new_id_sub)].weight) old_weights_sub = copy.deepcopy(old_pytorch_model._modules[str(old_id_sub)].weight) old_bias_sub = copy.deepcopy(old_pytorch_model._modules[str(old_id_sub)].bias) # Copy old weights new_weights_sub[:, 0:old_weights_sub.shape[1], :, :] = old_weights_sub # Fill up new channels with 0's new_weights_sub[:, old_weights_sub.shape[1]:, :, :] = torch.from_numpy( np.zeros(shape=new_weights_sub[:, old_weights_sub.shape[1]:, :, :].shape)) new_bias_sub = copy.deepcopy(old_bias_sub) state_dict = {"weight": nn.Parameter(new_weights_sub.cuda()), "bias": nn.Parameter(new_bias_sub.cuda())} new_pytorch_model._modules[str(new_id_sub)].load_state_dict(state_dict) new_model = {'pytorch_model': new_pytorch_model, 'model_descriptor': new_model_descriptor, 'topo_ordering': new_pytorch_model.topo_ordering} return new_model
a6e02739eddd5c1de572f303b580bcd9c72a272a
29,178
def generate_bins(bins, values=None): """Compute bin edges for numpy.histogram based on values and a requested bin parameters Unlike `range`, the largest value is included within the range of the last, largest value, so generate_bins(N) with produce a sequence with length N+1 Arguments: bins (int or 2-tuple of floats or sequence of floats) s or the first pair of bin edges >>> generate_bins(0, []) [0] >>> generate_bins(3, []) [0, 1, 2, 3] >>> generate_bins(0) [0] >>> generate_bins(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> generate_bins(10, range(21)) [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0] >>> generate_bins((0, 3), range(21)) [0, 3, 6, 9, 12, 15, 18, 21] """ if isinstance(bins, int): bins = (bins,) if isinstance(bins, float): bins = (0, bins) if not len(bins) in (1, 2): return bins if values is None or not hasattr(values, '__iter__') or not any(values) or not hasattr(values, '__len__') or len(values) < 1: values = [0] value_min, value_max = pd.np.min(values), pd.np.max(values) value_range = value_max - value_min if len(bins) == 1: if not value_range: return range(int(bins[0]) + 1) bins = (0, value_range / float(bins[0])) if len(bins) == 2: if not value_range: return bins binwidth = ((bins[1] - bins[0]) or 1) bin0 = bins[0] or pd.np.min(values) if (bin0 / value_range) <= .3: bin0 = 0 numbins = int(value_range / float(binwidth)) bins = list(pd.np.arange(numbins + 1) * binwidth + bin0) else: binwidth = pd.np.min(pd.np.diff(bins)) or pd.np.mean(pd.np.diff(bins)) or 1. bins = list(bins) while bins[-1] < value_max: bins.append(bins[-1] + binwidth) return bins
2d448746658193b8dd6c3ac3ef27418b37116a93
29,179
def makeRollAnswerStr( roll_res, mention_str ): """Formats an answer string depending on the roll result. If provided with an invalid roll result, returns 'None'.""" answer = None if roll_res == None: answer = "Invalid dice expression !" elif len(roll_res)==2: #either threshold or success roll res,aux = roll_res if isinstance(res,bool): #threshold roll #care, bool apparently extand from int in python if res: answer = "{} succeeded ! (Roll value was: `{}`)".format(mention_str,aux) else: answer = "{} failed ! (Roll value was: `{}`)".format(mention_str,aux) elif isinstance(res,int): #success roll answer = "{} succeeded `{}` times ! (Number of attempts: `{}`)".format(mention_str,res,aux) elif len(roll_res)==3: #default roll res,minVal,maxVal = roll_res answer = "{} rolled a `{}`! (Possible values between `{}` and `{}`)".format(mention_str,res,minVal,maxVal) if answer == None: loc_log.warning("makeRollAnswerStr: The 'roll_res' argument '{}' is invalid !".format(roll_res)) return answer
940f43b5592ff0da6d941bcb13b100c8fb2a590e
29,180
import math def ECSPower(min, max, size): """ on modélise l'eau du réseau comme une fonction sinusoidale de période annuelle cette fonction est complètement calée sur un fichier météo qui commence au 1er janvier mais qui peut être pluriannuel min : température minimale d'injection de l'eau du réseau dans le ballon max : température maximale d'injection de l'eau du réseau dans le ballon """ T_water=np.zeros(size) ## période w = 2*math.pi/npy for i in range(size): # numéro de step dans l'année siy = i - npy*(i//npy) T_water[i]= 0.5 * ( (min-max)* math.cos(w*siy) + max + min ) # le besoin s'entend pour une journée, ie 24*3600 secondes # il faut donc diviser par 24*3600 pour convertir de J à W, Cpf étant exprimée en J/kg/K return Volume_ballon*Npers*(Tballon-T_water)*Cpf/(24*3600)
c8f2422bfc066fc2e87caa3d2d87b07d0f1e4335
29,181
from typing import Dict from typing import Any def __create_notification(title: str, content: str) -> Dict[str, Any]: """ Creates a notification "object" from the given title and content. :params title: The title of the notification. :params content: The content of the notification. :returns A dictionary representing a notification "object". """ return {"title": title, "content": content}
484abcc2afcb8f726811e36516572bc5c302a415
29,182
def readme(): """Read and patch README.""" readme_text = read('README.rst') # PyPI does not accept :class: references. return readme_text.replace(':class:`base64io.Base64IO`', '``base64io.Base64IO``')
bad97b377022ec15e0dc0c0c3bcb984924dce216
29,183
def generator_dcgan(noise_dim, img_source_dim,img_dest_dim, bn_mode,deterministic,pureGAN,inject_noise,wd, model_name="generator_dcgan"): """DCGAN generator based on Upsampling and Conv2D Args: noise_dim: Dimension of the noise input img_dim: dimension of the image output bn_mode: keras batchnorm mode model_name: model name (default: {"generator_upsampling"}) dset: dataset (default: {"mnist"}) Returns: keras model """ s = img_source_dim[1] f = 512 # shp = np.expand_dims(img_dim[1:],1) # to make shp= (None, 1, 28, 28) but is not working start_dim = int(s / 4) nb_upconv = 2 nb_filters = 64 if K.image_dim_ordering() == "th": bn_axis = 1 input_channels = img_source_dim[0] output_channels = img_dest_dim[0] reshape_shape = (input_channels, s, s) shp=reshape_shape else: bn_axis = -1 input_channels = img_source_dim[-1] output_channels = img_dest_dim[-1] reshape_shape = (s, s, input_channels) shp=reshape_shape gen_noise_input = Input(shape=noise_dim, name="generator_input") gen_image_input = Input(shape=shp, name="generator_image_input") start_dim = int(s / 16) n_fc_filters = 16 x = Dense(n_fc_filters * 16 * 16, input_dim=noise_dim, weight_norm=True,init="he_normal")(gen_noise_input) #WN = True in AFFINE x = Activation("relu")(x) # x = Dense(n_fc_filters * 16 * 16, input_dim=noise_dim)(x) # x = BatchNormalization(mode=bn_mode, axis=bn_axis)(x) # x = Activation("relu")(x) x = Reshape((n_fc_filters,16,16))(x) # Upscaling blocks: Upsampling2D->Conv2D->ReLU->BN->Conv2D->ReLU for i in range(nb_upconv): x = UpSampling2D(size=(2, 2))(x) nb_filters = int(f / (2 ** (i + 1))) x = Convolution2D(nb_filters, 3, 3, border_mode="same",weight_norm=True, kernel_initializer="he_normal")(x) # x = BatchNormalization(mode=bn_mode, axis=bn_axis)(x) x = Activation("relu")(x) x = Convolution2D(nb_filters, 3, 3, border_mode="same",weight_norm=True, kernel_initializer="he_normal")(x) x = Activation("relu")(x) # Last Conv to get the output image x = Convolution2D(output_channels, 3, 3, name="gen_conv2d_final", border_mode="same", activation='tanh', kernel_initializer="he_normal")(x) #W_constraint=unitnorm() generator_model = Model(input=[gen_noise_input,gen_image_input], output=[x], name=model_name) visualize_model(generator_model) return generator_model
9d8d481fc9688b30fd3b9ffdb5914a61291b56b7
29,184
def emg21(peak_index, x_pos, amp, init_pars=pars_dict, vary_shape_pars=True, index_first_peak=None): """ Hyper-EMG(2,1) lmfit model (single-peak fit model with two exponential tails on the left and one exponential tail on the right) Parameters ---------- peak_index : int Index of peak to fit. x_pos : float Initial guess of peak centroid. amp : float Initial guess of peak amplitude. init_pars : dict Initial parameters for fit ('amp' and 'mu' parameters in `init_pars` dictionary are overwritten by the given `amp` and `x_pos` arguments) vary_shape_pars : bool Whether to vary or fix peak shape parameters (i.e. sigma, theta, eta's and tau's). index_first_peak : int Index of the first peak to be fit in a multi-peak-fit. Only use this during peak shape determination to enforce common shape parameters for all peaks to be fitted. (For a regular fit with ``vary_shape_pars = False`` this is irrelevant.) Returns ------- :class:`lmfit.model.Model` `lmfit` model object """ # Define model function def emg21(x, amp, mu, sigma, theta, eta_m1,eta_m2,tau_m1,tau_m2,tau_p1): return amp*h_emg(x, mu, sigma, theta, (eta_m1,eta_m2),(tau_m1,tau_m2),(1,),(tau_p1,)) # from emg_funcs.py pref = 'p{0}_'.format(peak_index) # set prefix for respective peak (e.g. 'p0' for peak with index 0) model = fit.Model(emg21, prefix = pref, nan_policy='propagate') # Add parameters bounds or restrictions and define starting values model.set_param_hint(pref+'amp', value=amp, min=1e-20) model.set_param_hint(pref+'mu', value=x_pos, min=x_pos*(1-rel_var_mus), max=x_pos*(1+rel_var_mus)) model.set_param_hint(pref+'sigma', value= init_pars['sigma'], min=0, max=init_pars['sigma']+0.005, vary=vary_shape_pars) model.set_param_hint(pref+'theta', value= init_pars['theta'], min=0, max=1, vary=vary_shape_pars) model.set_param_hint(pref+'eta_m1', value= init_pars['eta_m1'], min=0, max=1, vary=vary_shape_pars) model.set_param_hint(pref+'eta_m2', value= init_pars['eta_m2'], min=0, max=1, expr='1-'+pref+'eta_m1') # ensures normalization of eta_m's model.set_param_hint(pref+'tau_m1', value= init_pars['tau_m1'], min=1e-12, max=upper_bound_taus, vary=vary_shape_pars) model.set_param_hint(pref+'tau_m2', value= init_pars['tau_m2'], min=1e-12, max=upper_bound_taus, vary=vary_shape_pars) model.set_param_hint(pref+'tau_p1', value= init_pars['tau_p1'], min=1e-12, max=upper_bound_taus, vary=vary_shape_pars) # Enfore common shape parameters for all peaks # (only needed during peak shape calibration) if index_first_peak != None and (peak_index != index_first_peak): first_pref = 'p{0}_'.format(index_first_peak) model.set_param_hint(pref+'sigma', value= init_pars['sigma'], min=0, max=init_pars['sigma']+0.005, expr=first_pref+'sigma') model.set_param_hint(pref+'theta', value= init_pars['theta'], min=0, max=1, expr=first_pref+'theta') model.set_param_hint(pref+'eta_m1', value= init_pars['eta_m1'], min=0, max=1, expr=first_pref+'eta_m1' ) model.set_param_hint(pref+'eta_m2', value= init_pars['eta_m2'], min=0, max=1, expr='1-'+pref+'eta_m1') # ensures normalization of eta_m's model.set_param_hint(pref+'tau_m1', value= init_pars['tau_m1'], min=1e-12, max=upper_bound_taus, expr=first_pref+'tau_m1') model.set_param_hint(pref+'tau_m2', value= init_pars['tau_m2'], min=1e-12, max=upper_bound_taus, expr=first_pref+'tau_m2') model.set_param_hint(pref+'tau_p1', value= init_pars['tau_p1'], min=1e-12, max=upper_bound_taus, expr=first_pref+'tau_p1') return model
9e35deb35806aa1da1c70080a0eb0e5af022fe53
29,186
def _wait_and_retry(provider, job_id, poll_interval, retries, job_descriptor, summary): """Wait for job and retry any tasks that fail. Stops retrying an individual task when: it succeeds, is canceled, or has been retried "retries" times. This function exits when there are no tasks running and there are no tasks eligible to be retried. Args: provider: job service provider job_id: a single job ID (string) to wait for poll_interval: integer seconds to wait between iterations retries: number of retries job_descriptor: job descriptor used to originally submit job summary: whether to output summary messages Returns: Empty list if there was no error, a list containing an error message from a failed task otherwise. """ while True: formatted_tasks = [] tasks = provider.lookup_job_tasks({'*'}, job_ids=[job_id]) running_tasks = set() completed_tasks = set() canceled_tasks = set() fully_failed_tasks = set() task_fail_count = dict() # This is an arbitrary task that is either fully failed or canceled (with # preference for the former). message_task = None task_dict = dict() for t in tasks: task_id = t.get_field('task-id') if task_id is not None: task_id = int(task_id) task_dict[task_id] = t status = t.get_field('task-status') if status == 'FAILURE': # Could compute this from task-attempt as well. task_fail_count[task_id] = task_fail_count.get(task_id, 0) + 1 if task_fail_count[task_id] > retries: fully_failed_tasks.add(task_id) message_task = t elif status == 'CANCELED': canceled_tasks.add(task_id) if not message_task: message_task = t elif status == 'SUCCESS': completed_tasks.add(task_id) elif status == 'RUNNING': running_tasks.add(task_id) if summary: formatted_tasks.append( output_formatter.prepare_row(t, full=False, summary=True)) if summary: formatter = output_formatter.TextOutput(full=False) formatter.prepare_and_print_table(formatted_tasks, summary) retry_tasks = ( set(task_fail_count).difference(fully_failed_tasks) .difference(running_tasks).difference(completed_tasks) .difference(canceled_tasks)) # job completed. if not retry_tasks and not running_tasks: # If there are any fully failed tasks, return the completion message of an # arbitrary one. # If not, but there are canceled tasks, return the completion message of # an arbitrary one. if message_task: return [provider.get_tasks_completion_messages([message_task])] # Otherwise successful completion. return [] for task_id in retry_tasks: identifier = '{}.{}'.format(job_id, task_id) if task_id else job_id print(' {} (attempt {}) failed. Retrying.'.format( identifier, task_fail_count[task_id])) msg = task_dict[task_id].get_field('status-message') print(' Failure message: ' + msg) _retry_task(provider, job_descriptor, task_id, task_fail_count[task_id] + 1) SLEEP_FUNCTION(poll_interval)
fc0f78d1ceb9d4d26dbf7b92fedc2de33a4ac4e9
29,187
def summarize_2_dual_3(package_list): """ Given list of packages, return counts of (py3-only, dual-support, py2-only) """ py3 = 0 dual = 0 py2 = 0 for pkg in package_list: if pkg['status'] == 'py3-only': py3 += 1 elif pkg['status'] in PY2_STATUSES: dual += 1 else: py2 += 1 return py3, dual, py2
6a863b456a71fd51e1ac2744424a42495413778f
29,188
def isPTSF(p, T=[]): """ >>> from common.production import Production >>> p = Production(['A'], [['\\"a\\"', '\\"b\\"'],['\\"cde\\"']]) >>> isPTSF(p) True >>> p = Production(['A'], [['\\"a\\"', '\\"b\\"'],['\\"cde\\"']]) >>> isPTSF(p, ['a', 'b', 'c', 'd', 'e']) True >>> p = Production(['A'], [['\\"a\\"', '\\"b\\"'],['\\"cde\\"']]) >>> isPTSF(p, ['a']) False >>> p = Production(['A'], [['a', 'b'],['Ade']]) >>> isPTSF(p) False """ for opt in p.right: for symbol in opt: if not isLiteralValue(symbol, T): return False return True
13f1ed36bb93035490fde33dad3840fe8b98c263
29,191
def new_getvalue( state, name, p): """ Called every time a node value is used in an expression. It will override the value for the current step only. Returns random values for the node states """ global TARGETS value = util.default_get_value( state, name, p ) if name in TARGETS: # pick at random from True, False and original value return choice( [True, False, value] ) else: return value
30b6abacaf478936663b94c45fc2bb3951706299
29,192
def informe_ministerios(): """ Listado de personas """ check_edit_or_admin() roles = db.session.query(Rol).filter(Rol.tipo_rol == 'M')\ .join(relacion_miembros_roles, relacion_miembros_roles.c.id_rol == Rol.id)\ .join(Miembro, Miembro.id == relacion_miembros_roles.c.id_miembro)\ .add_columns( Miembro.id, Rol.nombre_rol) query = db.session.query(Miembro)\ .outerjoin(relacion_miembros_roles, Miembro.id == relacion_miembros_roles.c.id_miembro)\ .outerjoin(Rol, Rol.id == relacion_miembros_roles.c.id_rol)\ .outerjoin(Direccion, Miembro.id_direccion == Direccion.id)\ .outerjoin(TipoMiembro, Miembro.id_tipomiembro == TipoMiembro.id)\ .outerjoin(EstadoCivil, Miembro.id_estadocivil == EstadoCivil.id)\ .filter(Rol.tipo_rol == 'M')\ .add_columns( Miembro.id, Miembro.fullname, Miembro.email, Miembro.telefono_fijo, Miembro.telefono_movil, EstadoCivil.nombre_estado, TipoMiembro.nombre_tipomiembro, Direccion.tipo_via, Direccion.nombre_via, Direccion.nro_via, Direccion.portalescalotros_via, Direccion.cp_via, Direccion.ciudad_via, Direccion.provincia_via, Direccion.pais_via) query_miembros = query.all() return render_template('informes/informe_ministerios.html', informes=query_miembros, roles=roles)
3dddb4756a092faaa8b6f191f93e22787fb7e38d
29,194
def merge_regions_and_departments(regions, departments): """Merge regions and departments in one DataFrame. The columns in the final DataFrame should be: ['code_reg', 'name_reg', 'code_dep', 'name_dep'] """ return pd.merge(left=regions[["code", "name"]], right=departments[['region_code', "code", "name"]], left_on='code', right_on='region_code', suffixes=('_reg', '_dep'), how='left').drop('region_code', axis=1)
0852df4d8ace31a74397ad88140336dbdf9488d2
29,195
import json def updateResourceJsons(swagger,examplesDict,dirName): """ Update the Resource JSON file to include examples in other folder """ try: # Iterate through all resources in the output folder for id in range(len(swagger['tags'])): resourceName = swagger['tags'][id]['name'] if resourceName == 'CapabilityStatement': continue # create swagger subset which was initially created in 'AnnotateFiles.py' with open('./output/'+resourceName+'.json',encoding='utf8') as f: swaggerSubset = json.load(f) resourceExamples = {} # Iterate through all examples for the resource for example in examplesDict[resourceName]: with open(dirName+"/"+example,encoding='utf8') as f: exampleContents = json.load(f) # Add the example keyed by the file name resourceExamples[example] = {"value":exampleContents} swaggerSubset['paths']['/'+resourceName]['post']['requestBody']['content']['application/fhir+json']['examples'] = resourceExamples swagger['paths']['/'+resourceName]['post']['requestBody']['content']['application/fhir+json']['examples'] = resourceExamples # Save the file with 'w' to overwrite current outputted file with open('./output/'+resourceName+'.json','w',encoding='utf8') as f: json.dump(swaggerSubset,f) # Return status with open('./output/openapi3.json','w',encoding='utf8') as f: json.dump(swagger,f) return "SUCCESS" except Exception as e: print("Error duing saving") print(e) return "ERROR"
3d9a7a31e3875bb7c56d8dfbd26ca5b73039101b
29,196
def sign(x): """Sign function. :return -1 if x < 0, else return 1 """ if x < 0: return -1 else: return 1
aae4fcf8fcfafca63593e908c264c08107640ec6
29,197
def set_default_dataseg(*args): """ set_default_dataseg(ds_sel) Set default value of DS register for all segments. @param ds_sel (C++: sel_t) """ return _ida_segregs.set_default_dataseg(*args)
e1f988537cb9eb0518fe5467d07d5487f3f8c440
29,198
def get_sms_history(key: str): """ Get SMS history. :param str key: Authentication key. :return: List of SMSHistoryItems. """ session = get_session(key) url = f"{SITE_BASE_URL}/index.php?page=10&lang=en" response = session.get(url) pages = bs(response.text, "html.parser").find_all("span", {"class": "page_number"}) items = _parse_sms_history_items(response) if len(pages) != 0: del pages[0] for page in pages: items = items + _parse_sms_history_items( session.post(url, {"cur_page": page.text}) ) return items
ed6f4a4a63d90fc91e25baa92179c220783f78b2
29,199
def core_rotd(sym_factor, flux_file_name, stoich): """ Writes the string that defines the `Core` section for a variational reaction-coordinate transition-state theory model of a transition state for a MESS input file by formatting input information into strings a filling Mako template. :param sym_factor: symmetry factor of transition state :type sym_factor: float :param flux_file_name: :type flux_file_name: str :param stoich: combined stoichiometry of dissociation species 1 and 2 :type stoich: str :rtype: str """ # Create dictionary to fill template core_keys = { 'sym_factor': sym_factor, 'flux_file_name': flux_file_name, 'stoich': stoich } return build_mako_str( template_file_name='core_rotd.mako', template_src_path=SPEC_INFO_PATH, template_keys=core_keys)
6213ec9da79340738142ccd76ffbab3d30470d36
29,200
def last_gen(genobj): """ 迭代一个生成器对象,返回最后一个元素 :param genobj: :return: """ for i in genobj: last_e = i return last_e
04e7cc57bf6406832cacaa04aa01b2ec877307df
29,201
def get_section_name_mapping(lattice): """.""" lat = lattice[:] section_map = ['' for i in range(len(lat))] # find where the nomenclature starts counting and shift the lattice: start = _pyaccel.lattice.find_indices(lat, 'fam_name', 'start')[0] b1 = _pyaccel.lattice.find_indices(lat, 'fam_name', 'B') if b1[0] > start: ind_shift = (b1[-1] + 1) # Next element of last b1 else: for i in b1[::-1]: # except there is a b1 before start if i < start: ind_shift = i + 1 break lat = _pyaccel.lattice.shift(lat, ind_shift) # Find indices important to define the change of the names of # the subsections b = _pyaccel.lattice.find_indices(lat, 'fam_name', 'B') qf = _pyaccel.lattice.find_indices(lat, 'fam_name', 'QF') b_nrsegs = len(b)//50 # divide the ring in 50 sectors defined by the b1 dipoles: Sects = [] ini = 0 for i in range(len(b)//b_nrsegs): fim = b[(i+1)*b_nrsegs-1] + 1 Sects.append(list(range(ini, fim))) ini = fim # Names of the subsections: sub_secs = ['U', 'D'] for i, sec in enumerate(Sects, 1): # conditions that define change in subsection name: # define changes to '' sec_b = [x for x in b if sec[0] <= x <= sec[-1]] relev_inds = [sec_b[-1]] # define changes to '' and D sec_qf = [x for x in qf if sec[0] <= x <= sec[-1]] relev_inds += [sec_qf[-1]] relev_inds.sort() # fill the section_map variable ref = 0 for j in sec: section_map[(ind_shift+j) % len(lat)] = "{0:02d}".format(i) section_map[(ind_shift+j) % len(lat)] += sub_secs[ref] if j >= relev_inds[ref]: ref += 1 return section_map
52a8352f6e8747ee6f6f9a1c85b34f551fd04dad
29,202
import math def from_quaternion(quaternions, name=None): """Converts quaternions to Euler angles. Args: quaternions: A tensor of shape `[A1, ..., An, 4]`, where the last dimension represents a normalized quaternion. name: A name for this op that defaults to "euler_from_quaternion". Returns: A tensor of shape `[A1, ..., An, 3]`, where the last dimension represents the three Euler angles. """ def general_case(r00, r10, r21, r22, r20, eps_addition): """Handles the general case.""" theta_y = -tf.asin(r20) sign_cos_theta_y = safe_ops.nonzero_sign(tf.cos(theta_y)) r00 = safe_ops.nonzero_sign(r00) * eps_addition + r00 r22 = safe_ops.nonzero_sign(r22) * eps_addition + r22 theta_z = tf.atan2(r10 * sign_cos_theta_y, r00 * sign_cos_theta_y) theta_x = tf.atan2(r21 * sign_cos_theta_y, r22 * sign_cos_theta_y) return tf.stack((theta_x, theta_y, theta_z), axis=-1) def gimbal_lock(r01, r02, r20, eps_addition): """Handles Gimbal locks.""" sign_r20 = safe_ops.nonzero_sign(r20) r02 = safe_ops.nonzero_sign(r02) * eps_addition + r02 theta_x = tf.atan2(-sign_r20 * r01, -sign_r20 * r02) theta_y = -sign_r20 * tf.constant(math.pi / 2.0, dtype=r20.dtype) theta_z = tf.zeros_like(theta_x) angles = tf.stack((theta_x, theta_y, theta_z), axis=-1) return angles with tf.compat.v1.name_scope(name, "euler_from_quaternion", [quaternions]): quaternions = tf.convert_to_tensor(value=quaternions) shape.check_static( tensor=quaternions, tensor_name="quaternions", has_dim_equals=(-1, 4)) x, y, z, w = tf.unstack(quaternions, axis=-1) tx = safe_ops.safe_shrink(2.0 * x, -2.0, 2.0, True) ty = safe_ops.safe_shrink(2.0 * y, -2.0, 2.0, True) tz = safe_ops.safe_shrink(2.0 * z, -2.0, 2.0, True) twx = tx * w twy = ty * w twz = tz * w txx = tx * x txy = ty * x txz = tz * x tyy = ty * y tyz = tz * y tzz = tz * z # The following is clipped due to numerical instabilities that can take some # enties outside the [-1;1] range. r00 = safe_ops.safe_shrink(1.0 - (tyy + tzz), -1.0, 1.0, True) r10 = safe_ops.safe_shrink(txy + twz, -1.0, 1.0, True) r21 = safe_ops.safe_shrink(tyz + twx, -1.0, 1.0, True) r22 = safe_ops.safe_shrink(1.0 - (txx + tyy), -1.0, 1.0, True) r20 = safe_ops.safe_shrink(txz - twy, -1.0, 1.0, True) r01 = safe_ops.safe_shrink(txy - twz, -1.0, 1.0, True) r02 = safe_ops.safe_shrink(txz + twy, -1.0, 1.0, True) eps_addition = asserts.select_eps_for_addition(quaternions.dtype) general_solution = general_case(r00, r10, r21, r22, r20, eps_addition) gimbal_solution = gimbal_lock(r01, r02, r20, eps_addition) # The general solution is unstable close to the Gimbal lock, and the gimbal # solution is not toooff in these cases. is_gimbal = tf.less(tf.abs(tf.abs(r20) - 1.0), 1.0e-6) gimbal_mask = tf.stack((is_gimbal, is_gimbal, is_gimbal), axis=-1) return tf.where(gimbal_mask, gimbal_solution, general_solution)
4f00f734599699aaadf5c66a1f8e1457321bd689
29,203
def is_polygonal(n, num): """ Predicate for if num is a n-gonal number. Works for all n >= 3 and num >= 1. """ if n < 3 or num < 1: return False t = int((sqrt(8*num*(n-2) + (n-4)**2) + (n-4)) / (2 * (n-2))) return poly(n, t) == num
f3abde644544c05da17faeb9891916428b265602
29,204
def map2pix(geoTransform, x, y): """ transform map coordinates to local image coordinates Parameters ---------- geoTransform : tuple, size=(6,1) georeference transform of an image. x : np.array, size=(m), ndim={1,2,3}, dtype=float horizontal map coordinate. y : np.array, size=(m), ndim={1,2,3}, dtype=float vertical map coordinate. Returns ------- i : np.array, ndim={1,2,3}, dtype=float row coordinate(s) in local image space j : np.array, ndim={1,2,3}, dtype=float column coordinate(s) in local image space See Also -------- pix2map Notes ----- Two different coordinate system are used here: .. code-block:: text indexing | indexing ^ y system 'ij'| system 'xy' | | | | i | x --------+--------> --------+--------> | | | | image | j map | based v based | """ if isinstance(x, np.ndarray): assert x.shape==y.shape, ('arrays should be of the same size') assert isinstance(geoTransform, tuple), ('geoTransform should be a tuple') # # offset the center of the pixel # x -= geoTransform[1] / 2.0 # y -= geoTransform[5] / 2.0 # ^- this messes-up python with its pointers.... j = x - geoTransform[0] i = y - geoTransform[3] if geoTransform[2] == 0: j = j / geoTransform[1] else: j = (j / geoTransform[1] + i / geoTransform[2]) if geoTransform[4] == 0: i = i / geoTransform[5] else: i = (j / geoTransform[4] + i / geoTransform[5]) return i, j
bd044a4ec6d1b97f304086c21d18485b70afbee2
29,205
def checkmarkers(tubemarker, tubechecker): """Check for required markers in each tube The tube-specific markers that are to be merged are desceribed in constants.py Args: tubemarker: required markers for that tube tubechecker: markers in the given tube that needs to be validated Returns: True if all the required markers are found, False otherwise """ check = True marker_list = list(map(map_elements, tubemarker)) tubechecker = list(map(map_elements, tubechecker)) for m in marker_list: if m not in tubechecker: if any(xs in m for xs in EMPTY_MARKER_NAMES): continue else: return False return check
5004a9158db93164dbcf024d6e06d832bf35cf30
29,207
def _in_Kexp(z): """ Returns true if z is in the exponential cone """ alpha, beta, delta = z if ((beta > 0) and (delta > 0) and (np.log(delta) >= np.log(beta) + alpha / beta)) \ or ((alpha <= 0) and (np.abs(beta) < 1e-12) and (delta >= 0)): return True else: return False
19e57dbb10e420ead5ce02e9801cd1e087f3afad
29,208
def split_blocks(bytestring, block_size): """Splits bytestring in block_size-sized blocks. Raises an error if len(string) % blocksize != 0. """ if block_size == 1: return map(b_chr, bytearray(bytestring)) rest_size = len(bytestring) % block_size if rest_size: raise ValueError("Input 'bytestring' must be a multiple of " "block_size / segment_size (CFB mode) in length") block_count = len(bytestring) // block_size return ( bytestring[i * block_size:((i + 1) * block_size)] for i in range(block_count))
f85caf419de35c75d5d920d531519b2f641cc7b3
29,209
def put_newest_oldest_files(f, author, path_earliest_latest, n_files, is_newest): """Write a report of files that were least recently changed by `author` (`is_newest` is False), or was first most least recently changed by `author` in current revision. f: file handle to write to path_earliest_latest: {path: (earliest, latest)} n_files: Max number of files to write is_newest: Write newest commits if True, otherwise oldest commits """ def put(s): f.write('%s\n' % s) if is_newest: def date_key(path): return path_earliest_latest[path][0] else: def date_key(path): return path_earliest_latest[path][1] paths_by_date = sorted(path_earliest_latest.keys(), key=date_key) if is_newest: paths_by_date.reverse() put('=' * 80) put('%s: %d files' % (author, len(path_earliest_latest))) for i, path in enumerate(paths_by_date[:n_files]): earliest, latest = path_earliest_latest[path] put('%3d: %s %s %s' % (i, date_str(earliest), date_str(latest), path))
19aa6a9f45d41f04d72b5699ac1599a2b8c2aa28
29,210
def pearson_correlation(trajectory_data): """ Calculates the Pearson Correlation Matrix for node pairs Usage: node_correlation, node_variance, node_average = pearson_correlation(trajectory_data) Arguments: trajectory_data: multidimensional numpy array; first index (rows) correspond to timestep, second index correspond to positions of each node; Returns: node_correlation: a nNodes x nNodes square matrix (numpy array) filled with the Pearson Correlation Coefficients for all node pairs node_variance: one dimensional numpy array containing the variances of the data node_average: one dimensional numpy array containing the averages of the data """ # ---------------------------------------- # CALCULATING THE AVERAGE OF TRAJECTORY DATA # ---------------------------------------- nSteps = len(trajectory_data) nSteps_range = range(nSteps) nNodes = len(trajectory_data[0]) nNodes_range = range(nNodes) for ts in nSteps_range: # removing center of geometry translational motion center_of_geometry = np.mean(trajectory_data[ts]) trajectory_data[ts] -= center_of_geometry # no rotations to worry about... node_average = np.sum(trajectory_data,axis=0)/nSteps # ---------------------------------------- # PREPARE NUMPY ARRAYS # ---------------------------------------- node_variance = np.zeros(nNodes,dtype=np.float64) node_covariance = np.zeros((nNodes,nNodes),dtype=np.float64) node_correlation = np.zeros((nNodes,nNodes),dtype=np.float64) # ---------------------------------------- # CALCULATING PEARSON CORRELATION COEFFICIENT MATRIX # ---------------------------------------- for ts in nSteps_range: for i in nNodes_range: node_variance[i] += trajectory_data[ts,i]**2 for j in nNodes_range[i:]: node_covariance[i,j] += trajectory_data[ts,i]*trajectory_data[ts,j] node_variance /= nSteps node_variance -= node_average**2 node_covariance /= nSteps for i in nNodes_range: for j in nNodes_range[i:]: node_covariance[i,j] -= node_average[i]*node_average[j] node_correlation[i,j] = node_covariance[i,j]/np.sqrt(node_variance[i]*node_variance[j]) node_correlation[j,i] = node_correlation[i,j] # ---------------------------------------- # OUTPUT OF AVERAGE, VARIANCE, COVARIANCE, AND CORRELATION MATRICES # ---------------------------------------- np.savetxt('node_positional_average.dat',node_average) np.savetxt('node_positional_variance.dat',node_variance) np.savetxt('node_positional_covariance.dat',node_covariance) np.savetxt('node_positional_correlation.dat',node_correlation) # ---------------------------------------- # PLOTTING VARIANCE # ---------------------------------------- plt.plot(nNodes_range,node_variance,'k') plt.xlabel('Node Index',size=14) plt.ylabel(r'Node Variance ($\AA^{2})',size=14) plt.tight_layout() plt.savefig('node_positional_variance.png',dpi=600,transparent=True) plt.close() # ---------------------------------------- # PLOTTING COVARIANCE # ---------------------------------------- fig, ax = plt.subplots() temp = plt.pcolormesh(nNodes_range,nNodes_range,node_covariance,cmap='Blues') cb1 = plt.colorbar() cb1.set_label(r'Node-Node Covariance ($AA^{2}$)') xlabels = [str(int(x)) for x in temp.axes.get_xticks()[:]] ylabels = [str(int(y)) for y in temp.axes.get_yticks()[:]] temp.axes.set_xticks(temp.axes.get_xticks(minor=True)[:]+0.5,minor=True) temp.axes.set_xticks(temp.axes.get_xticks()[:]+0.5) temp.axes.set_yticks(temp.axes.get_yticks(minor=True)[:]+0.5,minor=True) temp.axes.set_yticks(temp.axes.get_yticks()[:]+0.5) temp.axes.set_xticklabels(xlabels) temp.axes.set_yticklabels(ylabels) plt.xlim((-0.5,nNodes+0.5)) plt.ylim((-0.5,nNodes+0.5)) plt.xlabel('Node Index',size=14) plt.ylabel('Node Index',size=14) ax.set_aspect('equal') plt.tight_layout() plt.savefig('node_positional_covariance.png',dpi=600,transparent=True) plt.close() # ---------------------------------------- # PLOTTING CORRELATION # ---------------------------------------- fig, ax = plt.subplots() temp = plt.pcolormesh(nNodes_range,nNodes_range,node_correlation,cmap='bwr',vmin=-1.0,vmax=1.0) cb1 = plt.colorbar() cb1.set_label('Node-Node Correlation') xlabels = [str(int(x)) for x in temp.axes.get_xticks()[:]] ylabels = [str(int(y)) for y in temp.axes.get_yticks()[:]] temp.axes.set_xticks(temp.axes.get_xticks(minor=True)[:]+0.5,minor=True) temp.axes.set_xticks(temp.axes.get_xticks()[:]+0.5) temp.axes.set_yticks(temp.axes.get_yticks(minor=True)[:]+0.5,minor=True) temp.axes.set_yticks(temp.axes.get_yticks()[:]+0.5) temp.axes.set_xticklabels(xlabels) temp.axes.set_yticklabels(ylabels) plt.xlim((-0.5,nNodes+0.5)) plt.ylim((-0.5,nNodes+0.5)) plt.xlabel('Node Index',size=14) plt.ylabel('Node Index',size=14) ax.set_aspect('equal') plt.tight_layout() plt.savefig('node_positional_correlation.png',dpi=600,transparent=True) plt.close() return node_correlation, node_variance, node_average
c12f4a4fd0959424e6ccfd66c55046a0bcc93cdb
29,211
from typing import Optional def upper_band(df: 'Dataframe', metric_col: str, rolling_window: Optional[int] = 20) -> pd.DataFrame: """Calculates the lower bound of a stock's price movements. Args: df: the dataframe to append a column onto metric_col: the column to calculate over (usually the 'Close' price) rolling_window: the time window to calculate over Returns: the original dataframe with the lower bound appended **Example** .. code-block:: python from wsbtrading import maths df_mapped = maths.upper_band(df=df, metric_col='Close') """ rolling_window_string = str(rolling_window) df = sma(df=df, metric_col=metric_col, rolling_window=rolling_window) df = rolling_stddev(df=df, metric_col=metric_col, rolling_window=rolling_window) df['upper_band'] = df[f'{rolling_window_string}sma'] + (2 * df[f'{rolling_window_string}stddev']) return df
f831e95ca2027ccedf787178dc630e7e60403ce3
29,214
import torch def reparametisation_trick(mu, log_var, device): """ :param mu: The mean of the latent variable to be formed (nbatch, n_z) :param log_var: The log variance of the latent variable to be formed (nbatch, n_z) :param device: CPU or GPU :return: latent variable (nbatch, n_z) """ noise = torch.normal(mean=0, std=1.0, size=log_var.shape).to(torch.device(device)) z = mu + torch.mul(torch.exp(log_var / 2.0), noise) return z
9cb646132f49fa79b6a8690d10fd188968931978
29,215
async def prefix_wrapper_async_callable(prefix_factory, re_flags, message): """ Function to execute asynchronous callable prefix. This function is a coroutine. Parameters ---------- prefix_factory : `async-callable` Async callable returning the prefix. re_flags : `int` Regex matching flags. message : ``Message`` The received message to parse the prefix from. Returns ------- prefix : `None`, `str` The prefix used by the user. Returned as `None` of parsing failed. end : `int` The start of the content after the prefix. Returned as `-1` if parsing failed. """ prefix = await prefix_factory(message) if isinstance(prefix, str): escaped_prefix = re_escape(prefix) elif isinstance(prefix, tuple) and (len(prefix) > 0): escaped_prefix = '|'.join(re_escape(prefix_part) for prefix_part in prefix) else: return None, -1 content = message.content if content is None: prefix = None end = -1 else: parsed = re_match(escaped_prefix, content, re_flags) if parsed is None: prefix = None end = -1 else: prefix = parsed.group(0) end = parsed.end() return prefix, end
d09499b4808a24bb643ae904a46049e89c77b7f3
29,217
def draw_mask(img0, img1, mask, size=14, downscale_ratio=1): """ Args: img: color image. mask: 14x28 mask data. size: mask size. Returns: display: image with mask. """ resize_imgs = [] resize_imgs.append(cv2.resize( img0, (int(img0.shape[1] * downscale_ratio), int(img0.shape[0] * downscale_ratio)))) resize_imgs.append(cv2.resize( img1, (int(img1.shape[1] * downscale_ratio), int(img1.shape[0] * downscale_ratio)))) masks = [] masks.append(ndimage.binary_fill_holes(np.reshape(mask[:size * size], (size, size)))) masks.append(ndimage.binary_fill_holes(np.reshape(mask[size * size:], (size, size)))) for idx, val in enumerate(masks): h_interval = np.ceil(float(resize_imgs[idx].shape[0]) / val.shape[0]) w_interval = np.ceil(float(resize_imgs[idx].shape[1]) / val.shape[1]) for i in range(resize_imgs[idx].shape[0]): for j in range(resize_imgs[idx].shape[1]): p = int(np.floor(i / h_interval)) q = int(np.floor(j / w_interval)) if val[p, q]: resize_imgs[idx][i, j, 0] = 255 display = np.concatenate(resize_imgs, axis=1) return display
82149bd4fb9a313f76e029fb3234e6aff32cad2e
29,218
def sine_data_generation(no, seq_len, dim): """Sine data generation. Args: - no: the number of samples - seq_len: sequence length of the time-series - dim: feature dimensions Returns: - data: generated data """ # Initialize the output data = list() # Generate sine data for i in range(no): # Initialize each time-series temp = list() # For each feature for k in range(dim): # Randomly drawn frequency and phase freq = np.random.uniform(0, 0.1) phase = np.random.uniform(0, 0.1) # Generate sine signal based on the drawn frequency and phase temp_data = [np.sin(freq * j + phase) for j in range(seq_len)] temp.append(temp_data) # Align row/column temp = np.transpose(np.asarray(temp)) # Normalize to [0,1] temp = (temp + 1) * 0.5 # Stack the generated data data.append(temp) return data
1d363cce8788b62f84ab3fd05b11ff98cf5719a3
29,220
def apply_wilcoxon_test(wide_optimal, dep_var, OVRS_NAMES, alpha): """Performs a Wilcoxon signed-rank test""" pvalues = [] for ovr in OVRS_NAMES: mask = np.repeat(True, len(wide_optimal)) pvalues.append( wilcoxon( wide_optimal.loc[mask, ovr], wide_optimal.loc[mask, dep_var] ).pvalue ) wilcoxon_results = pd.DataFrame( { "Oversampler": OVRS_NAMES, "p-value": pvalues, "Significance": np.array(pvalues) < alpha, } ) return wilcoxon_results
a1a219c7b1bb6f917da11e5fe35c6992ccc60a8c
29,221
import torch def get_accuracy(targets, outputs, k=1, ignore_index=None): """ Get the accuracy top-k accuracy between two tensors. Args: targets (1 - 2D :class:`torch.Tensor`): Target or true vector against which to measure saccuracy outputs (1 - 3D :class:`torch.Tensor`): Prediction or output vector ignore_index (int, optional): Specifies a target index that is ignored Returns: :class:`tuple` consisting of accuracy (:class:`float`), number correct (:class:`int`) and total (:class:`int`) Example: >>> import torch >>> from torchnlp.metrics import get_accuracy >>> targets = torch.LongTensor([1, 2, 3, 4, 5]) >>> outputs = torch.LongTensor([1, 2, 2, 3, 5]) >>> accuracy, n_correct, n_total = get_accuracy(targets, outputs, ignore_index=3) >>> accuracy 0.8 >>> n_correct 4 >>> n_total 5 """ n_correct = 0.0 for target, output in zip(targets, outputs): if not torch.is_tensor(target) or is_scalar(target): target = torch.LongTensor([target]) if not torch.is_tensor(output) or is_scalar(output): output = torch.LongTensor([[output]]) predictions = output.topk(k=min(k, len(output)), dim=0)[0] for prediction in predictions: if torch_equals_ignore_index( target.squeeze(), prediction.squeeze(), ignore_index=ignore_index): n_correct += 1 break return n_correct / len(targets), int(n_correct), len(targets)
df7f60f37abd9e85b63ca616fb086b84a6ae17d9
29,222
def cameraPs2Ts(cameraPOs): """ convert multiple POs to Ts. ---------- input: cameraPOs: list / numpy output: cameraTs: list / numpy """ if type(cameraPOs) is list: N = len(cameraPOs) else: N = cameraPOs.shape[0] cameraT_list = [] for _cameraPO in cameraPOs: cameraT_list.append(__cameraP2T__(_cameraPO)) return cameraT_list if type(cameraPOs) is list else np.stack(cameraT_list)
10d6fb11a244eded26b4c9b989e88c131832357b
29,223
def dimerization_worker(primer_1, primer_2): """ Returns the total number of complementary bases and the longest run of complementary bases (weighted by HYBRID_SCORES), the median length of all runs and the array of complementary bases. """ p1 = [set(AMB[i]) for i in primer_1] p2 = [set(AMB[i]) for i in primer_2] complementary = [ max( [HYBRID_SCORES[base] for base in s1.intersection(s2)], default=0) for s1, s2 in zip(p1, p2)] total = sum(complementary) complementary_runs = [list(comp) for run, comp in groupby( complementary, key=lambda x: x > 0)] max_run = sum(max(complementary_runs, key=sum)) run_lens = [sum(c) for c in complementary_runs if sum(c) > 0] if run_lens: run_lens.append(0) median = np.median(run_lens) if run_lens else 0 return (total, max_run, median, complementary)
6bd1fd8a990c35f8cd0cde134714c9d4a19cfdb1
29,224
from skimage import img_as_ubyte def load_dataset(ds, elsize=[], axlab='', outlayout='', dtype='', dataslices=None, uint8conv=False): """Load data from a proxy and select/transpose/convert/....""" slices = get_slice_objects(dataslices, ds.shape) data = slice_dataset(ds, slices) if list(axlab) != list(outlayout): in2out = [axlab.index(l) for l in outlayout] data = np.transpose(data, in2out) elsize = np.array(elsize)[in2out] axlab = outlayout slices = [slices[i] for i in in2out] if dtype: data = data.astype(dtype, copy=False) if uint8conv: data = normalize_data(data)[0] data = img_as_ubyte(data) return data, elsize, axlab, slices
8ccbc4d3c42bcf0861daec23b7b2410b91b89c5c
29,225
import copy def _interpret_err_lines(err_specs, ncols, names=None): """Give list of column names from the READ SERR and TERR commands Parameters ---------- err_specs : dict ``{'serr': [n0, n1, ...], 'terr': [n2, n3, ...]}`` Error specifications for symmetric and two-sided errors ncols : int Number of data columns Other parameters ---------------- names : list of str Name of data columns (defaults to ['col1', 'col2', ...]), _not_ including error columns. Returns ------- colnames : list List containing the column names. Error columns will have the name of the main column plus ``_err`` for symmetric errors, and ``_perr`` and ``_nerr`` for positive and negative errors respectively Examples -------- >>> col_in = ['MJD', 'Rate'] >>> cols = _interpret_err_lines(None, 2, names=col_in) >>> cols[0] 'MJD' >>> err_specs = {'terr': [1], 'serr': [2]} >>> ncols = 5 >>> cols = _interpret_err_lines(err_specs, ncols, names=col_in) >>> cols[0] 'MJD' >>> cols[2] 'MJD_nerr' >>> cols[4] 'Rate_err' >>> _interpret_err_lines(err_specs, 6, names=col_in) Traceback (most recent call last): ... ValueError: Inconsistent number of input colnames """ colnames = ["" for i in range(ncols)] if err_specs is None: serr_cols = terr_cols = [] else: # I don't want to empty the original one when using `pop` below err_specs = copy.deepcopy(err_specs) serr_cols = err_specs.pop("serr", []) terr_cols = err_specs.pop("terr", []) if names is not None: all_error_cols = len(serr_cols) + len(terr_cols) * 2 if all_error_cols + len(names) != ncols: raise ValueError("Inconsistent number of input colnames") shift = 0 for i in range(ncols): col_num = i + 1 - shift if colnames[i] != "": continue colname_root = f"col{col_num}" if names is not None: colname_root = names[col_num - 1] colnames[i] = f"{colname_root}" if col_num in serr_cols: colnames[i + 1] = f"{colname_root}_err" shift += 1 continue if col_num in terr_cols: colnames[i + 1] = f"{colname_root}_perr" colnames[i + 2] = f"{colname_root}_nerr" shift += 2 continue assert not np.any([c == "" for c in colnames]) return colnames
a3ba0960a3711b30c46e8fc75237786d5297f5eb
29,226
def mro_hasattr(cls: type, attr: str) -> bool: """Check if an attribute exists in a type's class hierarchy Args: cls (type): The type attr (str): The attribute Returns: bool: True if has the attribute. Raises: TypeError: Not called on a type """ if not isinstance(cls, type): raise TypeError(f"mro_getattr can only be used on types, got {type(cls)}") for klass in cls.mro()[1:]: if hasattr(klass, attr): return True return False
cfc41693e3d3321bcb63dae079abf2e768f97905
29,227
def get_channel_number_from_frequency(frequency): """gets the 802.11 channel for a corresponding frequency in units of kilohertz (kHz). does not support FHSS.""" try: return _20MHZ_CHANNEL_LIST.get(frequency, "Unknown") except KeyError: return "Unknown"
0867a458e98a5a97b3d8925aeeee14f6f5af58a5
29,228
def fetch_single_minutely_equity(code, start, end): """ 从本地数据库读取单个股票期间分钟级别交易明细数据 **注意** 交易日历分钟自9:31~11:30 13:01~15:00 在数据库中,分钟级别成交数据分日期存储 Parameters ---------- code : str 要获取数据的股票代码 start_date : datetime-like 自开始日期(包含该日) end_date : datetime-like 至结束日期 return ---------- DataFrame: OHLCV列的DataFrame对象。 Examples -------- >>> stock_code = '000333' >>> start = '2020-06-29' >>> end = pd.Timestamp('2020-06-30') >>> df = fetch_single_minutely_equity(stock_code, start, end) >>> df.tail() close high low open volume 2018-04-19 14:56:00 51.55 51.56 51.50 51.55 376400 2018-04-19 14:57:00 51.55 51.55 51.55 51.55 20000 2018-04-19 14:58:00 51.55 51.55 51.55 51.55 0 2018-04-19 14:59:00 51.55 51.55 51.55 51.55 0 2018-04-19 15:00:00 51.57 51.57 51.57 51.57 353900 """ calendar = get_calendar('XSHG') fmt = r"%Y-%m-%d" dates = calendar.sessions_in_range( start.strftime(fmt), end.strftime(fmt)).tz_localize(None) cols = ['open', 'high', 'low', 'close', 'volume'] # 指数分钟级别数据 if len(code) == 7: return _index_minute_data(code, dates) db = get_db('wy_quotes') func = partial(_fetch_single_minutely_equity, stock_code=code, db=db, is_index=False) with ThreadPoolExecutor(MAX_WORKER) as executor: dfs = executor.map(func, dates) return pd.concat(dfs).sort_index()
cc125997fe2f0313295732235b1df2e886d3fcad
29,230
def method2(): """Provide an examples of doc strings that are too long. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. """ # noqa W505: doc line too long (127 > 100 characters) (auto-generated noqa) return 7
689c50c2cfb62d39cd35eec125813830c6068fdb
29,232
def get_parent_compartment_ocid(teamname): """ Retrieves the OCID for the compartment based on the team name (assuming the model of root -- team -- individual structure of compartments. Args: teamname (str): name of the team level compartment Returns: str: The OCId or None - None is only returned in the event of an internal error """ global logger parent_compartment_ocid = None try: if (teamname != None): parent_compartment_ocid = find (teamname, QRY_CONST.COMPARTMENT) if (parent_compartment_ocid == None): raise LookupError ("No compartment found") else: parent_compartment_ocid = config_props[CONFIG_CONST.TENANCY] except LookupError as le: logger.error ("Compartment lookup failed", le) return parent_compartment_ocid
bec0bb1d98bb8da0c4e670efebcaa6adcfb8d494
29,233
def set_recommended_watch_points(session_id): """Set recommended watch points.""" body = _read_post_request(request) request_body = body.get('requestBody') if request_body is None: raise ParamMissError('requestBody') set_recommended = request_body.get('set_recommended') reply = _wrap_reply(_session_manager.get_session(session_id).set_recommended_watch_points, set_recommended) return reply
81f37e60ba108c2b59c79271342153ea8879697a
29,235
def epochJulian2JD(Jepoch): """ ---------------------------------------------------------------------- Purpose: Convert a Julian epoch to a Julian date Input: Julian epoch (nnnn.nn) Returns: Julian date Reference: See JD2epochJulian Notes: e.g. 1983.99863107 converts into 2445700.5 Inverse of function JD2epochJulian ---------------------------------------------------------------------- """ return (Jepoch-2000.0)*365.25 + 2451545.0
2738940ad390f979317177984c9120b34fa7d2af
29,236
def GetHighlightColour(): """ Gets the default highlight color. :rtype: :class:`wx.Colour` """ if wx.Platform == '__WXMAC__': if CARBON: if wx.VERSION < (2, 9, 0, 0, ''): # kThemeBrushButtonPressedLightHighlight brush = wx.Brush(wx.BLACK) brush.MacSetTheme(Carbon.Appearance.kThemeBrushFocusHighlight) return brush.GetColour() else: color = wx.MacThemeColour(Carbon.Appearance.kThemeBrushFocusHighlight) return color # Fallback to text highlight color return wx.SystemSettings.GetColour(wx.SYS_COLOUR_HIGHLIGHT)
1654393d9b5f3d5ea610c9dae9706d04d7f37d54
29,238
import inspect def get_classes(mod): """Return a list of all classes in module 'mod'""" return [ key for key, _ in inspect.getmembers(mod, inspect.isclass) if key[0].isupper() ]
be04546650a6243a3abfe4053a4dcaa9d71f85d7
29,241
import struct def ustring_to_string(ptr, length=None): """Convert a pointer to UTF-16 data into a Python string encoded with utf-8. ptr and length are both gdb.Value objects. If length is unspecified, will guess at the length.""" error_message = '' if length is None: length, error_message = guess_string_length(ptr) else: length = int(length) char_vals = [int((ptr + i).dereference()) for i in range(length)] string = struct.pack('H' * length, *char_vals).decode('utf-16', 'replace').encode('utf-8') return string + error_message
9981d15eb26816fbc7f2cb0e3cac99b4d738c25a
29,242
import logging def handle_outgoing(msg): """ Should return a requeue flag, so if it returns True, the message will be requeued and processed again immediately, and if it returns False, it will not be queued again. """ def onerror(): logging.exception("Exception while processing SMS %s" % msg._id) backend = msg.outbound_backend sms_interval = backend.get_sms_interval() use_rate_limit = sms_interval is not None use_load_balancing = (isinstance(backend, SMSLoadBalancingMixin) and len(backend.phone_numbers) > 1) if use_rate_limit or use_load_balancing: client = cache_core.get_redis_client() lbi = None orig_phone_number = None if use_load_balancing: lbi = backend.get_next_phone_number(client) orig_phone_number = lbi.phone_number elif (isinstance(backend, SMSLoadBalancingMixin) and len(backend.phone_numbers) == 1): # If there's only one phone number, we don't need to go through the # load balancing algorithm. But we should always pass an # orig_phone_number if it's an instance of SMSLoadBalancingMixin. orig_phone_number = backend.phone_numbers[0] if use_rate_limit: if use_load_balancing: lock_key = "sms-backend-%s-rate-limit-phone-%s" % (backend._id, lbi.phone_number) else: lock_key = "sms-backend-%s-rate-limit" % backend._id lock = client.lock(lock_key, timeout=30) if not use_rate_limit or (use_rate_limit and lock.acquire(blocking=False)): if use_load_balancing: lbi.finish(save_stats=True) result = send_message_via_backend(msg, backend=backend, orig_phone_number=orig_phone_number, onerror=onerror) if use_rate_limit: wait_and_release_lock(lock, sms_interval) if result: handle_successful_processing_attempt(msg) else: handle_unsuccessful_processing_attempt(msg) return False else: # We're using rate limiting, but couldn't acquire the lock, so # another thread is sending sms with this backend. Rather than wait, # we'll just put this message at the back of the queue. if use_load_balancing: lbi.finish(save_stats=False) return True
4b189ef37965ff5725a77af615b52bc019df5910
29,243
def add_entry(ynew: float, s: float, s2: float, n: int, calc_var: bool): """Adds an entry to the metrics, s, s2, and n. s: previous value of sum of y[] s2: previous value of sum of y[]*y[] n: previous number of entries in the metric """ n = n + 1 s = s + ynew s2 = s2 + ynew * ynew if calc_var: var = (s2 - s * s / n) / n # This is sigma**2 else: var = None return s, s2, n, var
8aed2d9f5acb85273b1a152b0747156e49f1ebdc
29,244
def get_conversion_dict(conversion_name): """Retrieves a hard-coded label conversion dictionary. When coarsening the label set of a task based on a predefined conversion scheme like Penn Treebank tags to Universal PoS tags, this function provides the map, out of a fixed list of known maps addressed by a keyword string. """ if conversion_name == PTB_UNIVERSAL_CONVERSION_STRING: return ptb_to_univ_map elif conversion_name == WSD_COARSENING_CONVERSION_STRING: return coarse_wsd_map else: raise ValueError("Unknown conversion name: {}".format(conversion_name))
9137a50e2f9900abf6d60b51c8bc44e67f13df86
29,245
import scipy def discount_cumsum(x, discount): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]
82bcb686840191b7cef650b30e14308393331fa2
29,246
def compute_rgb_scales(alpha_thres=0.9): """Computes RGB scales that match predicted albedo to ground truth, using just the first validation view. """ config_ini = configutil.get_config_ini(FLAGS.ckpt) config = ioutil.read_config(config_ini) # First validation view vali_dir = join(config_ini[:-4], 'vis_vali') data_root = config.get('DEFAULT', 'data_root') epoch_dirs = xm.os.sortglob(vali_dir, 'epoch?????????') epoch_dir = epoch_dirs[-1] batch_dirs = xm.os.sortglob(epoch_dir, 'batch?????????') batch_dir = batch_dirs[0] # Find GT path metadata_path = join(batch_dir, 'metadata.json') metadata = xm.io.json.load(metadata_path) view = metadata['id'] pred_path = join(batch_dir, 'pred_albedo.png') gt_path = join(data_root, view, 'albedo.png') # Load prediction and GT pred = xm.io.img.read(pred_path) # gamma corrected gt = xm.io.img.read(gt_path) # linear pred = xm.img.normalize_uint(pred) gt = xm.img.normalize_uint(gt) pred = pred ** 2.2 # undo gamma gt = xm.img.resize(gt, new_h=pred.shape[0], method='tf') alpha = gt[:, :, 3] gt = gt[:, :, :3] # Compute color correction scales, in the linear space is_fg = alpha > alpha_thres opt_scale = [] for i in range(3): x_hat = pred[:, :, i][is_fg] x = gt[:, :, i][is_fg] scale = x_hat.dot(x) / x_hat.dot(x_hat) opt_scale.append(scale) opt_scale = tf.convert_to_tensor(opt_scale, dtype=tf.float32) return opt_scale
44341b8c878ca02179ded0a3cc1c173f1eaea009
29,247