content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def stopping_player(bot, state):
""" A Player that just stands still. """
return bot.position
|
72628e39d26760eedc9a0e85a8279ac530ab851d
| 24,461 |
def check_continue(transformer: transformer_class.Transformer, check_md: dict, transformer_md: dict, full_md: dict) -> tuple:
"""Checks if conditions are right for continuing processing
Arguments:
transformer: instance of transformer class
Return:
Returns a tuple containining the return code for continuing or not, and
an error message if there's an error
"""
have_file = False
for one_file in check_md['list_files']():
if one_file.endswith('.bin'):
have_file = True
break
return (0) if have_file else (-1, "Missing raw image bin file from list of files")
|
78348046acde489a129fc8a4426a9b11ee2e2238
| 24,462 |
def getFlatten(listToFlat):
"""
:param listToFlat: anything ,preferably list of strings
:return: flatten list (list of strings)
#sacred
"""
preSelect=mc.ls(sl=True,fl=True)
mc.select(cl=1)
mc.select(listToFlat)
flatten = mc.ls(sl=True, fl=True)
mc.select(preSelect)
return flatten
|
91d1376d81140fd258c80bcc23cb220ce0f99926
| 24,463 |
def can_exit_room(state: State, slot: int) -> bool:
"""
Return True if amphipod can escape a room because all amphipods are in their place
Not exhaustive! If there are amphipods above it, it may still be stuck
"""
amphipod = state[slot]
assert amphipod != EMPTY_SLOT
room = slot // 4
bottom_amphipod = state[room * 4 + 3]
if bottom_amphipod != room:
return True
assert bottom_amphipod != EMPTY_SLOT
for i in range(room * 4 + 2, room * 4 - 1, -1):
if state[i] == EMPTY_SLOT:
return False
if state[i] != bottom_amphipod:
return True
return False
|
914881e90c2e9b357d49fb44d56b7f864b4973c0
| 24,464 |
def square_matrix(square):
"""
This function will calculate the value x
(i.e blurred pixel value) for each 3*3 blur image.
"""
tot_sum = 0
# Calculate sum of all teh pixels in a 3*3 matrix
for i in range(3):
for j in range(3):
tot_sum += square[i][j]
return tot_sum//9
|
4f378736c19c33f104be462939b834ece403f713
| 24,465 |
def before_after_text(join_set, index, interval_list):
"""
Extracts any preceeding or following markup to be joined to an interval's text.
"""
before_text, after_text = '', ''
# Checking if we have some preceeding or following markup to join with.
if join_set:
if index > 0:
before_text = ''.join(character
for character in interval_list[index - 1][2]
if character in join_set)
if index < len(interval_list) - 1:
after_text = ''.join(character
for character in interval_list[index + 1][2]
if character in join_set)
return before_text, after_text
|
b2c63fe1e7ea5bb204e41b27bc79d2c81964369a
| 24,466 |
import socket
import ssl
def create_server_ssl(addr, port, backlog):
"""
"""
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((addr, port))
server.listen(backlog)
context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
context.load_default_certs()
wrap = context.wrap_socket(server,
do_handshake_on_connect=False, server_side=True)
sserver = SuperSocketSSL(wrap)
ServerSSL(sserver)
sserver.add_map(SSL_ACCEPT, handles_wrapper)
return sserver
|
3bcd3d8a157401f23c50e6c35fe9b8e45f4659d6
| 24,468 |
def other_ops(request):
"""
Other Operations View
"""
args = {
'pending': OtherOperation.objects.filter(status=0).count(),
'active': OtherOperation.objects.filter(status=1).count(),
'done': OtherOperation.objects.filter(status=2).count(),
'cancelled': OtherOperation.objects.filter(status=3).count(),
'passed': OtherOperation.objects.filter(status=4).count(),
'failed': OtherOperation.objects.filter(status=5).count(),
}
args['other_ops'] = OtherOperation.objects.all()
args['a'] = 'other-ops'
return render(request, 'operations/other-ops.html', args)
|
727e620d0ba5798eb0bcdc31e31a831a9332e802
| 24,469 |
def distance_point_2_line(point, seg):
"""Finds the minimum distance and closest point between a point and a line
Args:
point ([float, float]): (x,y) point to test
seg ([[float, float], [float, float]]): two points defining the line
Returns:
A list of two items:
* Distance between the point and line
* The (x,y) value on the line that is the closest point
"""
dseg = seg[1] - seg[0]
dpt = point - seg[0]
proj = (np.dot(dpt, dseg) / np.dot(dseg, dseg)) * dseg
dist = np.linalg.norm(dpt, proj)
return dist, seg[0] + proj
|
4627639f4b900b72a0b88104df44e498ef123cb4
| 24,470 |
def load_glove_from_file(glove_filepath):
"""
Load the GloVe embeddings
Args:
glove_filepath (str): path to the glove embeddings file
Returns:
word_to_index (dict), embeddings (numpy.ndarary)
"""
word_to_index = {}
embeddings = []
with open(glove_filepath, "r") as fp:
for index, line in enumerate(fp):
line = line.split(" ") # each line: word num1 num2 ...
word_to_index[line[0]] = index # word = line[0]
embedding_i = np.array([float(val) for val in line[1:]])
embeddings.append(embedding_i)
return word_to_index, np.stack(embeddings)
|
30d8a0fb8e1b0728ae9943dd0f5c2387dbcdb778
| 24,471 |
def make_pd(space: gym.Space):
"""Create `ProbabilityDistribution` from gym.Space"""
if isinstance(space, gym.spaces.Discrete):
return CategoricalPd(space.n)
elif isinstance(space, gym.spaces.Box):
assert len(space.shape) == 1
return DiagGaussianPd(space.shape[0])
elif isinstance(space, gym.spaces.MultiBinary):
return BernoulliPd(space.n)
else:
raise TypeError(space)
|
0849e947061221ba08bf113f6576c531ca2df2cd
| 24,472 |
import typing
import requests
def download_file_from_google_drive(
gdrive_file_id: typing.AnyStr,
destination: typing.AnyStr,
chunk_size: int = 32768
) -> typing.AnyStr:
"""
Downloads a file from google drive, bypassing the confirmation prompt.
Args:
gdrive_file_id: ID string of the file to download from google drive.
destination: where to save the file.
chunk_size: chunk size for gradual downloads.
Returns:
The path to the downloaded file.
"""
# taken from this StackOverflow answer: https://stackoverflow.com/a/39225039
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': gdrive_file_id}, stream=True)
token = None
for key, value in response.cookies.items():
if key.startswith('download_warning'):
token = value
if token:
params = {'id': gdrive_file_id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
with open(destination, "wb") as f:
for chunk in response.iter_content(chunk_size):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
return destination
|
29cdcc509aa21a6f2ae14ed18f2c0523bbdbd5a4
| 24,473 |
import inspect
import functools
def attach(func, params):
"""
Given a function and a namespace of possible parameters,
bind any params matching the signature of the function
to that function.
"""
sig = inspect.signature(func)
params = Projection(sig.parameters.keys(), params)
return functools.partial(func, **params)
|
35116b9b3be12f1e19789e2b1c36b7c34b6138ea
| 24,474 |
def question_route():
"""
題庫畫面
"""
# 取得使用者物件
useruid = current_user.get_id()
# 嘗試保持登入狀態
if not keep_active(useruid):
logout_user()
return question_page(useruid)
|
1b752709aa8264fdc19aaa44f2233b2e0382e1b5
| 24,475 |
import base64
def generate_qrcode(url: str, should_cache: bool = True) -> str:
"""
Generate a QR code (as data URI) to a given URL.
:param url: the url the QR code should reference
:param should_cache: whether or not the QR code should be cached
:return: a data URI to a base64 encoded SVG image
"""
if should_cache and url in qrcode_cache:
return qrcode_cache[url]
image = qrcode.make(url, image_factory=qrcode.image.svg.SvgPathFillImage)
image_stream = BytesIO()
image.save(image_stream)
image_stream.seek(0)
qrcode_url = 'data:image/svg+xml;base64,' + base64.b64encode(image_stream.read()).decode('utf-8')
if should_cache:
qrcode_cache[url] = qrcode_url
return qrcode_url
|
ab89cf09d7d50217960f48f75ff17b1d46513f52
| 24,476 |
def hz2mel(f):
"""Convert an array of frequency in Hz into mel."""
return 1127.01048 * np.log(f/700 +1)
|
84522419c972bf9b78c9931aef871f97a8a0d292
| 24,478 |
def figure(figsize=None, logo="iem", title=None, subtitle=None, **kwargs):
"""Return an opinionated matplotlib figure.
Parameters:
figsize (width, height): in inches for the figure, defaults to something
good for twitter.
dpi (int): dots per inch
logo (str): Currently, 'iem', 'dep' is supported. `None` disables.
title (str): Title to place on the figure.
subtitle (str): SubTitle to place on the figure.
"""
if figsize is None:
figsize = TWITTER_RESOLUTION_INCH
fig = plt.figure(figsize=figsize, **kwargs)
draw_logo(fig, logo)
titlebounds = [0.1, 0.9, 0.91, 0.98]
if subtitle is not None:
titlebounds[2] = 0.94
fitbox(fig, title, *titlebounds)
fitbox(fig, subtitle, 0.1, 0.9, 0.91, 0.935)
return fig
|
fd89e550a891ccf6f639f8c981215aa25fa0ad06
| 24,479 |
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
"accuracy":model.accuracy,
"y_new":model.y_new,
"y_target":model.y_target
}
accuracys = 0.0
if eval_op is not None:
fetches["eval_op"] = eval_op
output_y = []
for step in range(model.input.epoch_size):
feed_dict = {}
feed_dict[model.initial_state] = state
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
accuracy = vals["accuracy"]
y_new = vals["y_new"]
y_target = vals["y_target"]
costs += cost
accuracys += accuracy
#iters += model.input.num_steps
iters = iters + 1
for i in range(model.input.batch_size):
if y_new[i,0] == 0:
output_y.append(1)
else:
output_y.append(0)
return costs, accuracys / iters, output_y
|
a69ed33e930245118e0d4054a10d6c1fd61cc0da
| 24,480 |
from typing import Any
def is_scoo(x: Any) -> bool:
"""check if an object is an `SCoo` (a SAX sparse S-matrix representation in COO-format)"""
return isinstance(x, (tuple, list)) and len(x) == 4
|
96d3937d9884198b75440e3de75949c713b8e16a
| 24,481 |
def project_rename_folder(object_id, input_params={}, always_retry=False, **kwargs):
"""
Invokes the /project-xxxx/renameFolder API method.
For more info, see: https://documentation.dnanexus.com/developer/api/data-containers/folders-and-deletion#api-method-class-xxxx-renamefolder
"""
return DXHTTPRequest('/%s/renameFolder' % object_id, input_params, always_retry=always_retry, **kwargs)
|
60bfe648eb9846bf06125fd65436e9c7cf5c2fd6
| 24,483 |
def is_seq(a):
"""Return `True` if `a` is a Z3 sequence expression.
>>> print (is_seq(Unit(IntVal(0))))
True
>>> print (is_seq(StringVal("abc")))
True
"""
return isinstance(a, SeqRef)
|
1429fb3fd800a3688700a62dd0665df7536b56d9
| 24,485 |
from re import T
def identity(__obj: T, /) -> T:
"""Identity function"""
return __obj
|
8c96839e48e1ec270bd57616abcc3234b6f0958f
| 24,486 |
def lines_in_file(filename: str) -> int:
"""
Count the number of lines in a file
:param filename: A string containing the relative or absolute path to a file
:returns: The number of lines in the file
"""
with open(filename, "r") as f:
return len(f.readlines())
|
d71b5c8de1b4eb9a45988e06c17a129f4a19f221
| 24,487 |
import click
def validate_input_parameters(live_parameters, original_parameters):
"""Return validated input parameters."""
parsed_input_parameters = dict(live_parameters)
for parameter in parsed_input_parameters.keys():
if parameter not in original_parameters:
click.echo(
click.style('Given parameter - {0}, is not in '
'reana.yaml'.format(parameter),
fg='red'),
err=True)
del live_parameters[parameter]
return live_parameters
|
226b95d0d9b42e586e395107def239d4e61c057a
| 24,489 |
def _upper_zero_group(match: ty.Match, /) -> str:
"""
Поднимает все символы в верхний
регистр у captured-группы `let`. Используется
для конвертации snake_case в camelCase.
Arguments:
match: Регекс-группа, полученная в результате `re.sub`
Returns:
Ту же букву из группы, но в верхнем регистре
"""
return match.group("let").upper()
|
311dbc41c17b1c6fde39b30d8126eb4c867d7a6f
| 24,490 |
def _concatenate_shapes(shapes, axis):
"""Given array shapes, return the resulting shape and slices prefixes.
These help in nested concatenation.
Returns
-------
shape: tuple of int
This tuple satisfies:
```
shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis)
shape == concatenate(arrs, axis).shape
```
slice_prefixes: tuple of (slice(start, end), )
For a list of arrays being concatenated, this returns the slice
in the larger array at axis that needs to be sliced into.
For example, the following holds:
```
ret = concatenate([a, b, c], axis)
_, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis)
ret[(slice(None),) * axis + sl_a] == a
ret[(slice(None),) * axis + sl_b] == b
ret[(slice(None),) * axis + sl_c] == c
```
These are called slice prefixes since they are used in the recursive
blocking algorithm to compute the left-most slices during the
recursion. Therefore, they must be prepended to rest of the slice
that was computed deeper in the recursion.
These are returned as tuples to ensure that they can quickly be added
to existing slice tuple without creating a new tuple every time.
"""
# Cache a result that will be reused.
shape_at_axis = [shape[axis] for shape in shapes]
# Take a shape, any shape
first_shape = shapes[0]
first_shape_pre = first_shape[:axis]
first_shape_post = first_shape[axis + 1 :]
if any(
shape[:axis] != first_shape_pre or shape[axis + 1 :] != first_shape_post
for shape in shapes
):
raise ValueError("Mismatched array shapes in block along axis {}.".format(axis))
shape = first_shape_pre + (sum(shape_at_axis),) + first_shape[axis + 1 :]
offsets_at_axis = _accumulate(shape_at_axis)
slice_prefixes = [
(slice(start, end),)
for start, end in zip([0] + offsets_at_axis, offsets_at_axis)
]
return shape, slice_prefixes
|
2ca93f3c656f1629fa3fdb7f5c8cb325abd40cf2
| 24,491 |
import re
def md_changes(seq, md_tag):
"""Recreates the reference sequence of a given alignment to the extent that the
MD tag can represent.
Note:
Used in conjunction with `cigar_changes` to recreate the
complete reference sequence
Args:
seq (str): aligned segment sequence
md_tag (str): MD tag for associated sequence
Returns:
ref_seq (str): a version of the aligned segment's reference sequence given \
the changes reflected in the MD tag
Raises:
ValueError: if MD tag is None
Example:
>>> md_changes('CTTATATTGGCCTT', '3C4AT4')
'CTTCTATTATCCTT'
"""
if md_tag is None:
raise ValueError('No MD tag found or given for sequence')
ref_seq = ''
last_md_pos = 0
for mo in re.finditer(r'(?P<matches>\d+)|(?P<del>\^\w+?(?=\d))|(?P<sub>\w)', md_tag):
mo_group_dict = mo.groupdict()
if mo_group_dict['matches'] is not None:
matches = int(mo_group_dict['matches'])
ref_seq += seq[last_md_pos:last_md_pos + matches]
last_md_pos += matches
elif mo_group_dict['del'] is not None:
deletion = mo_group_dict['del']
ref_seq += deletion[1:]
elif mo_group_dict['sub'] is not None:
substitution = mo_group_dict['sub']
ref_seq += substitution
last_md_pos += 1
else:
pass
return ref_seq
|
f8591d0084f6c10c9bbd1a39b3f9e13cfe952e68
| 24,492 |
def get_cs_token(accesskey="",secretkey="",identity_url="",tenant_id=""):
"""
Pass our accesskey and secretkey to keystone for tokenization.
"""
identity_request_json = json.dumps({
'auth' : {
'apiAccessKeyCredentials' : {
'accessKey' : accesskey,
'secretKey' : secretkey
},
"tenantId": tenant_id
}
})
identity_req = urllib2.Request(identity_url+"/tokens",
identity_request_json, {'Content-type':'application/json'})
try:
response = urllib2.urlopen(identity_req).read()
except urllib2.HTTPError, e:
log("HTTP Error: "+str(e))
return False
response_json = json.loads(response)
if response_json['access']['token']['tenant']['id'] == tenant_id:
return response_json['access']['token']['id']
return False
|
a14324651039687bb52e47f4068fcee74c34aa65
| 24,494 |
def get_auto_scaling_group(asg, asg_name: str):
"""Get boto3 Auto Scaling Group by name or raise exception"""
result = asg.describe_auto_scaling_groups(AutoScalingGroupNames=[asg_name])
groups = result["AutoScalingGroups"]
if not groups:
raise Exception("Auto Scaling Group {} not found".format(asg_name))
return groups[0]
|
07176e538cdb265ae86b16a5d36bf1b274f45c19
| 24,495 |
def guiraud_r(txt_len: int, vocab_size: int) -> np.float64:
"""
The TTR formula underwent simple corrections: RTTR (root type-token ratio), Guiraud, 1960.
"""
return vocab_size / np.sqrt(txt_len)
|
9c054d6d741fabb64ec0659b280474385b5cfa79
| 24,496 |
def serialize_dagster_namedtuple(nt: tuple, **json_kwargs) -> str:
"""Serialize a whitelisted named tuple to a json encoded string"""
check.tuple_param(nt, "nt")
return _serialize_dagster_namedtuple(nt, whitelist_map=_WHITELIST_MAP, **json_kwargs)
|
fbe6606d0001d425593c0f4f880a6b314f69b94b
| 24,497 |
def join_epiweek(year, week):
""" return an epiweek from the (year, week) pair """
return year * 100 + week
|
fdbc50f8a953ef7307e9558019b3c2b50bc65be4
| 24,498 |
def get_or_create_api_key(datastore: data_store.DataStore,
project_id: str) -> str:
"""Return API key of existing project or create a new project and API key.
If the project exists, return its API key, otherwise create a new project
with the provided project ID and return its API key.
Args:
datastore: The datastore used for reading / writing the project.
project_id: The ID of the project to get or write.
Returns:
The API key associated with the project.
"""
try:
return datastore.read_by_proto_ids(project_id=project_id).api_key
except data_store.NotFoundError:
# Project not found, create it.
api_key = unique_id.generate_base64_id()
project = data_store_pb2.Project(
project_id=project_id, name=project_id, api_key=api_key)
datastore.write(project)
return api_key
|
2cb5b04dcf44b0e39d171683a0bd184d582eaf34
| 24,499 |
def map_cosh(process):
"""
"""
return map_default(process, 'cosh', 'apply')
|
fe853e23f8008bc5e767ef5af8b4efc6a04de407
| 24,500 |
def cleanline(line):
"""去除讀入資料中的換行符與 ',' 結尾
"""
line = line.strip('\n')
line = line.strip(',')
return line
|
a4149663e2c3966c5d9be22f4aa009109e4a67ca
| 24,502 |
from onnx.helper import make_node
import logging
def convert_contrib_box_nms(node, **kwargs):
"""Map MXNet's _contrib_box_nms operator to ONNX
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
input_dtypes = get_input_dtypes(node, kwargs)
dtype = input_dtypes[0]
#dtype_t = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[dtype]
opset_version = kwargs['opset_version']
if opset_version < 11:
raise AttributeError('ONNX opset 11 or greater is required to export this operator')
overlap_thresh = float(attrs.get('overlap_thresh', '0.5'))
valid_thresh = float(attrs.get('valid_thresh', '0'))
topk = int(attrs.get('topk', '-1'))
coord_start = int(attrs.get('coord_start', '2'))
score_index = int(attrs.get('score_index', '1'))
id_index = int(attrs.get('id_index', '-1'))
force_suppress = attrs.get('force_suppress', 'True')
background_id = int(attrs.get('background_id', '-1'))
in_format = attrs.get('in_format', 'corner')
out_format = attrs.get('out_format', 'corner')
center_point_box = 0 if in_format == 'corner' else 1
if topk == -1:
topk = 2**31-1
if in_format != out_format:
raise NotImplementedError('box_nms does not currently support in_fomat != out_format')
if background_id != -1:
raise NotImplementedError('box_nms does not currently support background_id != -1')
if id_index != -1 or force_suppress == 'False':
logging.warning('box_nms: id_idex != -1 or/and force_suppress == False detected. '
'However, due to ONNX limitations, boxes of different categories will NOT '
'be exempted from suppression. This might lead to different behavior than '
'native MXNet')
create_tensor([coord_start], name+'_cs', kwargs['initializer'])
create_tensor([coord_start+4], name+'_cs_p4', kwargs['initializer'])
create_tensor([score_index], name+'_si', kwargs['initializer'])
create_tensor([score_index+1], name+'_si_p1', kwargs['initializer'])
create_tensor([topk], name+'_topk', kwargs['initializer'])
create_tensor([overlap_thresh], name+'_ot', kwargs['initializer'], dtype=np.float32)
create_tensor([valid_thresh], name+'_vt', kwargs['initializer'], dtype=np.float32)
create_tensor([-1], name+'_m1', kwargs['initializer'])
create_tensor([-1], name+'_m1_f', kwargs['initializer'], dtype=dtype)
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([2], name+'_2', kwargs['initializer'])
create_tensor([3], name+'_3', kwargs['initializer'])
create_tensor([0, 1, -1], name+'_scores_shape', kwargs['initializer'])
create_tensor([0, 0, 1, 0], name+'_pad', kwargs['initializer'])
create_tensor([0, -1], name+'_bat_spat_helper', kwargs['initializer'])
create_const_scalar_node(name+"_0_s", np.int64(0), kwargs)
create_const_scalar_node(name+"_1_s", np.int64(1), kwargs)
nodes = [
make_node('Shape', [input_nodes[0]], [name+'_shape']),
make_node('Shape', [name+'_shape'], [name+'_dim']),
make_node('Sub', [name+'_dim', name+'_2'], [name+'_dim_m2']),
make_node('Slice', [name+'_shape', name+'_dim_m2', name+'_dim'], [name+'_shape_last2']),
make_node('Concat', [name+'_m1', name+'_shape_last2'], [name+'_shape_3d'], axis=0),
make_node('Reshape', [input_nodes[0], name+'_shape_3d'], [name+'_data_3d']),
make_node('Slice', [name+'_data_3d', name+'_cs', name+'_cs_p4', name+'_m1'],
[name+'_boxes']),
make_node('Slice', [name+'_data_3d', name+'_si', name+'_si_p1', name+'_m1'],
[name+'_scores_raw']),
make_node('Reshape', [name+'_scores_raw', name+'_scores_shape'], [name+'_scores']),
make_node('Shape', [name+'_scores'], [name+'_scores_shape_actual']),
make_node('NonMaxSuppression',
[name+'_boxes', name+'_scores', name+'_topk', name+'_ot', name+'_vt'],
[name+'_nms'], center_point_box=center_point_box),
make_node('Slice', [name+'_nms', name+'_0', name+'_3', name+'_m1', name+'_2'],
[name+'_nms_sliced']),
make_node('GatherND', [name+'_data_3d', name+'_nms_sliced'], [name+'_candidates']),
make_node('Pad', [name+'_candidates', name+'_pad', name+'_m1_f'], [name+'_cand_padded']),
make_node('Shape', [name+'_nms'], [name+'_nms_shape']),
make_node('Slice', [name+'_nms_shape', name+'_0', name+'_1'], [name+'_cand_cnt']),
make_node('Squeeze', [name+'_cand_cnt'], [name+'_cc_s'], axes=[0]),
make_node('Range', [name+'_0_s', name+'_cc_s', name+'_1_s'], [name+'_cand_indices']),
make_node('Slice', [name+'_scores_shape_actual', name+'_0', name+'_3', name+'_m1',
name+'_2'], [name+'_shape_bat_spat']),
make_node('Slice', [name+'_shape_bat_spat', name+'_1', name+'_2'], [name+'_spat_dim']),
make_node('Expand', [name+'_cand_cnt', name+'_shape_bat_spat'], [name+'_base_indices']),
make_node('ScatterND', [name+'_base_indices', name+'_nms_sliced', name+'_cand_indices'],
[name+'_indices']),
make_node('TopK', [name+'_indices', name+'_spat_dim'], [name+'_indices_sorted', name+'__'],
largest=0, axis=-1, sorted=1),
make_node('Gather', [name+'_cand_padded', name+'_indices_sorted'], [name+'_gather']),
make_node('Reshape', [name+'_gather', name+'_shape'], [name+'0'])
]
return nodes
|
22bc975bc35ebe8e50f4749f981859460f695596
| 24,503 |
def fill76(text):
"""Any text. Wraps the text to fit in 76 columns."""
return fill(text, 76)
|
953ed87d8cfbee7a10c752082783469e866e8540
| 24,504 |
def current_object(cursor_offset, line):
"""If in attribute completion, the object on which attribute should be
looked up."""
match = current_word(cursor_offset, line)
if match is None:
return None
start, end, word = match
matches = current_object_re.finditer(word)
s = ""
for m in matches:
if m.end(1) + start < cursor_offset:
if s:
s += "."
s += m.group(1)
if not s:
return None
return LinePart(start, start + len(s), s)
|
cba608811a2081b382a2c522bb9d0651569739dd
| 24,505 |
def _is_match(option, useful_options, find_perfect_match):
"""
returns True if 'option' is between the useful_options
"""
for useful_option in useful_options:
if len(option) == sum([1 for o in option if o in useful_option]):
if not find_perfect_match or len(set(useful_option)) == len(set(option)):
return True
return False
|
bff60e1320744c16747926071afb3ee02022c55c
| 24,507 |
def pass_aligned_filtering(left_read, right_read, counter):
"""
Test if the two reads pass the additional filters such as check for soft-clipped end next to the variant region,
or overlapping region between the two reads.
:param left_read: the left (or 5') most read
:param right_read: the right (or 3') most read
:param counter: Counter to report the number of reads filtered.
:return: True or False
"""
# in CIGAR tuples the operation is coded as an integer
# https://pysam.readthedocs.io/en/latest/api.html#pysam.AlignedSegment.cigartuples
if left_read.cigartuples[-1][0] == pysam.CSOFT_CLIP or right_read.cigartuples[0][0] == pysam.CSOFT_CLIP:
counter['Soft-clipped alignments'] += 1
elif left_read.reference_end > right_read.reference_start:
counter['Overlapping alignment'] += 1
elif left_read.is_reverse != right_read.is_reverse:
counter['Unexpected orientation'] += 1
else:
return True
return False
|
78849f12541510216407b7b40fb29a0befc920d7
| 24,508 |
def detect_slow_oscillation(data: Dataset, algo: str = 'AASM/Massimini2004', start_offset: float = None) -> pd.DataFrame:
"""
Detect slow waves (slow oscillations) locations in an edf file for each channel
:param edf_filepath: path of edf file to load. Will maybe work with other filetypes. untested.
:param algo: which algorithm to use to detect spindles. See wonambi methods: https://wonambi-python.github.io/gui/methods.html
:param chans_to_consider: which channels to detect spindles on, must match edf channel names
:param bad_segments:
:param start_offset: offset between first epoch and edf - onset is measured from this
:return: returns dataframe of spindle locations, with columns for chan, start, duration and other spindle properties, sorted by onset
"""
detection = DetectSlowWave(algo)
sos_detected = detection(data)
sos_df = pd.DataFrame(sos_detected.events, dtype=float)
col_map = {'start': 'onset',
'end': None,
'trough_time': 'trough_time',
'zero_time': 'zero_time',
'peak_time': 'peak_time',
'trough_val': 'trough_uV',
'peak_val': 'peak_uV',
'dur': 'duration',
'ptp': None,
'chan': 'chan'}
cols_to_keep = set(sos_df.columns) - set([k for k, v in col_map.items() if v is None])
sos_df = sos_df.loc[:, cols_to_keep]
sos_df.columns = [col_map[k] for k in sos_df.columns]
if sos_df.shape[0] == 0:
return None #empty df
sos_df['peak_time'] = sos_df['peak_time'] - sos_df['onset']
sos_df['trough_time'] = sos_df['trough_time'] - sos_df['onset']
sos_df['zero_time'] = sos_df['zero_time'] - sos_df['onset']
sos_df['description'] = 'slow_osc'
if start_offset is not None:
sos_df['onset'] = sos_df['onset'] - start_offset
sos_df = sos_df.loc[sos_df['onset']>=0,:]
return sos_df.sort_values('onset')
|
a241196b56b6fb426fc9949ee82fca40c0c854f2
| 24,510 |
def _map_channels_to_measurement_lists(snirf):
"""Returns a map of measurementList index to measurementList group name."""
prefix = "measurementList"
data_keys = snirf["nirs"]["data1"].keys()
mls = [k for k in data_keys if k.startswith(prefix)]
def _extract_channel_id(ml):
return int(ml[len(prefix) :])
return {_extract_channel_id(ml): ml for ml in mls}
|
d6d83c01baec5f345d58fff8a0d0107a40b8db37
| 24,511 |
def is_not_applicable_for_questionnaire(
value: QuestionGroup, responses: QuestionnaireResponses
) -> bool:
"""Returns true if the given group's questions are not answerable for the given responses.
That is, for all the questions in the given question group, only not
applicable answers have been provided for the provided questionnaire
response.
"""
return value.is_not_applicable_for_responses(responses)
|
a534ca5560193c81e18f4028bd032b4a8e5adf8a
| 24,512 |
def _chebnodes(a,b,n):
"""Chebyshev nodes of rank n on interal [a,b]."""
if not a < b:
raise ValueError('Lower bound must be less than upper bound.')
return np.array([1/2*((a+b)+(b-a)*np.cos((2*k-1)*np.pi/(2*n))) for k in range(1,n+1)])
|
4378468aac0642f15b64dcdee75dcb970aab11f7
| 24,513 |
def Rx_matrix(theta):
"""Rotation matrix around the X axis"""
return np.array([
[1, 0, 0],
[0, np.cos(theta), -np.sin(theta)],
[0, np.sin(theta), np.cos(theta)]
])
|
c7b689b9e6042aa84689003e2de6ffff2229eb69
| 24,515 |
def spawn_actor(world: carla.World, blueprint: carla.ActorBlueprint, spawn_point: carla.Transform,
attach_to: carla.Actor = None, attachment_type=carla.AttachmentType.Rigid) -> carla.Actor:
"""Tries to spawn an actor in a CARLA simulator.
:param world: a carla.World instance.
:param blueprint: specifies which actor has to be spawned.
:param spawn_point: where to spawn the actor. A transform specifies the location and rotation.
:param attach_to: whether the spawned actor has to be attached (linked) to another one.
:param attachment_type: the kind of the attachment. Can be 'Rigid' or 'SpringArm'.
:return: a carla.Actor instance.
"""
actor = world.try_spawn_actor(blueprint, spawn_point, attach_to, attachment_type)
if actor is None:
raise ValueError(f'Cannot spawn actor. Try changing the spawn_point ({spawn_point.location}) to something else.')
return actor
|
83d29b21e76f52f1928009e22cee6a635ef4d025
| 24,516 |
def partition(lst, size):
"""Partition list @lst into eveni-sized lists of size @size."""
return [lst[i::size] for i in range(size)]
|
af7071a5aac36a51f449f153df145d9218808a4a
| 24,517 |
def form_errors_json(form=None):
"""It prints form errors as JSON."""
if form:
return mark_safe(dict(form.errors.items())) # noqa: S703, S308
return {}
|
d9748d5ce4578855775af24d1a758030ad3fa432
| 24,518 |
def get_semantic_ocs_version_from_config():
"""
Returning OCS semantic version from config.
Returns:
semantic_version.base.Version: Object of semantic version for OCS.
"""
return get_semantic_version(config.ENV_DATA["ocs_version"], True)
|
346aa6aacff9a758cf06b4a3dc4977e98e9ca501
| 24,519 |
from typing import List
def get_non_ntile_cols(frame: pd.DataFrame) -> List[str]:
"""
:param frame: data frame to get columns of
:return: all columns in the frame that dont contain 'Ntile'
"""
return [col for col in frame.columns if 'Ntile' not in col]
|
93970b576381aa668ce75d77f03793380445d9e4
| 24,521 |
from typing import Any
from typing import Optional
from datetime import datetime
def deserialize_date(value: Any) -> Optional[datetime.datetime]:
"""A flexible converter for str -> datetime.datetime"""
if value is None:
return None
if isinstance(value, datetime.datetime):
return value
if isinstance(value, str):
# datetime.datetime.fromisoformat(...) can't parse Notion's dates,
# and, anyway, this is faster
return ciso8601.parse_datetime(value)
raise TypeError(f'Invalid type {type(value)} for date property')
|
15cdd07ad4bd5873d8ed01d3eb9ce3b4e780ca44
| 24,522 |
def intersect(x1, x2, y1, y2, a1, a2, b1, b2):
""" Return True if (x1,x2,y1,y2) rectangles intersect. """
return overlap(x1, x2, a1, a2) & overlap(y1, y2, b1, b2)
|
1e9c530b1d5e085df073b8c32d874ef457e2246a
| 24,523 |
from typing import List
def recording_to_chunks(fingerprints: np.ndarray,
samples_per_chunk: int) -> List[np.ndarray]:
"""Breaks fingerprints of a recording into fixed-length chunks."""
chunks = []
for pos in range(0, len(fingerprints), samples_per_chunk):
chunk = fingerprints[pos:pos + samples_per_chunk]
# exclude partial chunks (at end)
if chunk.shape[0] == samples_per_chunk:
chunks.append(chunk)
return chunks
|
eae1a3b882e545a8dc08f029ddb5113dcdf1bca4
| 24,525 |
def coset_enumeration_c(fp_grp, Y):
"""
>>> from sympy.combinatorics.free_group import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_c(f, [x])
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
"""
# Initialize a coset table C for < X|R >
C = CosetTable(fp_grp, Y)
X = fp_grp.generators
R = fp_grp.relators()
A = C.A
# replace all the elements by cyclic reductions
R_cyc_red = [rel.identity_cyclic_reduction() for rel in R]
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \
for rel in R_cyc_red))
R_set = set()
for conjugate in R_c:
R_set = R_set.union(conjugate)
# a list of subsets of R_c whose words start with "x".
R_c_list = []
for x in C.A:
r = set([word for word in R_set if word[0] == x])
R_c_list.append(r)
R_set.difference_update(r)
for w in Y:
C.scan_and_fill_f(0, w)
for x in A:
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
i = 0
while i < len(C.omega):
alpha = C.omega[i]
i += 1
for x in C.A:
if C.table[alpha][C.A_dict[x]] is None:
C.define_f(alpha, x)
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
return C
|
0efeacfeeb2b20275378c58a3aacaed07ade57be
| 24,526 |
def slr_pulse(
num=N, time_bw=TBW,
ptype=PULSE_TYPE, ftype=FILTER_TYPE,
d_1=PBR, d_2=SBR,
root_flip=ROOT_FLIP,
multi_band = MULTI_BAND,
n_bands = N_BANDS,
phs_type = PHS_TYPE,
band_sep = BAND_SEP
):
"""Use Shinnar-Le Roux algorithm to generate pulse"""
if root_flip is False:
complex_pulse = rf.dzrf(n=num, tb=time_bw, ptype=ptype, ftype=ftype, d1=d_1, d2=d_2)
amp_arr = complex_pulse
else:
amp_arr, b_rootflip = slr_rootflip(ROOT_FLIP_ANGLE)
phs_arr = np.zeros(num)
for idx in range(num):
if amp_arr[idx] < 0:
phs_arr[idx] = 180
else:
phs_arr[idx] = 0
if multi_band is True:
amp_arr = rf.multiband.mb_rf(amp_arr, n_bands, band_sep, phs_type)
# prepare pulse for instrument, which takes absolute only
# cast negative values to positive
amp_arr_abs = np.abs(amp_arr)
# shift amplitude such that the lowest value is 0
amp_arr_abs = amp_arr_abs - amp_arr_abs.min()
# fold back phase when it exceeds 360
phs_arr = phs_arr % 360
freq_arr = (np.diff(phs_arr)/num)/360
return amp_arr, freq_arr, phs_arr, amp_arr_abs
|
0986b6ea8adffd90c108308365ebf3172a6459d0
| 24,527 |
def policy_options(state, Q_omega, epsilon=0.1):
""" Epsilon-greedy policy used to select options """
if np.random.uniform() < epsilon:
return np.random.choice(range(Q_omega.shape[1]))
else:
return np.argmax(Q_omega[state])
|
66e36b81fdec06822ebb958611deca23bd64191b
| 24,528 |
import tempfile
import time
def test_ps_s3_creation_triggers_on_master():
""" test object creation s3 notifications in using put/copy/post on master"""
if skip_push_tests:
return SkipTest("PubSub push tests don't run in teuthology")
hostname = get_ip()
proc = init_rabbitmq()
if proc is None:
return SkipTest('end2end amqp tests require rabbitmq-server installed')
zones, _ = init_env(require_ps=False)
realm = get_realm()
zonegroup = realm.master_zonegroup()
# create bucket
bucket_name = gen_bucket_name()
bucket = zones[0].create_bucket(bucket_name)
topic_name = bucket_name + TOPIC_SUFFIX
# start amqp receiver
exchange = 'ex1'
task, receiver = create_amqp_receiver_thread(exchange, topic_name)
task.start()
# create s3 topic
endpoint_address = 'amqp://' + hostname
endpoint_args = 'push-endpoint='+endpoint_address+'&amqp-exchange=' + exchange +'&amqp-ack-level=broker'
topic_conf = PSTopicS3(zones[0].conn, topic_name, zonegroup.name, endpoint_args=endpoint_args)
topic_arn = topic_conf.set_config()
# create s3 notification
notification_name = bucket_name + NOTIFICATION_SUFFIX
topic_conf_list = [{'Id': notification_name,'TopicArn': topic_arn,
'Events': ['s3:ObjectCreated:Put', 's3:ObjectCreated:Copy']
}]
s3_notification_conf = PSNotificationS3(zones[0].conn, bucket_name, topic_conf_list)
response, status = s3_notification_conf.set_config()
assert_equal(status/100, 2)
# create objects in the bucket using PUT
key = bucket.new_key('put')
key.set_contents_from_string('bar')
# create objects in the bucket using COPY
bucket.copy_key('copy', bucket.name, key.name)
# create objects in the bucket using multi-part upload
fp = tempfile.TemporaryFile(mode='w')
fp.write('bar')
fp.close()
uploader = bucket.initiate_multipart_upload('multipart')
fp = tempfile.NamedTemporaryFile(mode='r')
uploader.upload_part_from_file(fp, 1)
uploader.complete_upload()
fp.close()
print('wait for 5sec for the messages...')
time.sleep(5)
# check amqp receiver
keys = list(bucket.list())
receiver.verify_s3_events(keys, exact_match=True)
# cleanup
stop_amqp_receiver(receiver, task)
s3_notification_conf.del_config()
topic_conf.del_config()
for key in bucket.list():
key.delete()
# delete the bucket
zones[0].delete_bucket(bucket_name)
clean_rabbitmq(proc)
|
bb0770cd80968d8878f0a3c379f5ce2da9863c8f
| 24,529 |
import math
def weights_init(init_type='gaussian'):
"""
from https://github.com/naoto0804/pytorch-inpainting-with-partial-conv/blob/master/net.py
"""
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find(
'Linear') == 0) and hasattr(m, 'weight'):
if init_type == 'gaussian':
nn.init.normal_(m.weight, 0.0, 0.02)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight, gain=math.sqrt(2))
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
return init_fun
|
d65dee3744daf59a2db832b5c4866bee2131b4d6
| 24,530 |
def title(default=None, level="header"):
"""
A decorator that add an optional title argument to component.
"""
def decorator(fn):
loc = get_argument_default(fn, "where", None) or st
@wraps(fn)
def wrapped(
*args,
title=default,
level=level,
header=None,
subheader=None,
where=loc,
**kwargs,
):
if header:
where.header(str(header))
elif subheader:
where.subheader(str(subheader))
elif title:
if level == "header":
where.header(str(title))
elif level == "subheader":
where.subheader(str(title))
elif level == "bold":
where.markdown(f"**{title}**")
else:
raise ValueError(f"invalid title level: {level!r}")
kwargs["where"] = where
return fn(*args, **kwargs)
return wrapped
return decorator
|
c11a3ee7ccff5e6934fba857d438743464dd653e
| 24,531 |
def _rect_to_css(rect):
"""
Convert a dlib 'rect' object to a plain tuple in (top, right, bottom, left) order
:param rect: a dlib 'rect' object
:return: a plain tuple representation of the rect in (top, right, bottom, left) order
"""
return rect.top(), rect.right(), rect.bottom(), rect.left()
|
e3439cc0eb30186b8fc905f518ff21883175b3e2
| 24,533 |
def client():
"""Client Fixture."""
client_obj = Client(base_url=BASE_URL)
return client_obj
|
bac2ccd038eb587b4dd67ce0cc63bef63af9c365
| 24,534 |
def encode_one_hot(s):
"""One-hot encode all characters of the given string.
"""
all = []
for c in s:
x = np.zeros((INPUT_VOCAB_SIZE))
index = char_indices[c]
x[index] = 1
all.append(x)
return all
|
e4bc2b02cea4dbf74346cbd672cb58246abe4edc
| 24,535 |
from datetime import datetime
def date_to_datetime(date, time_choice='min'):
"""
Convert date to datetime.
:param date: date to convert
:param time_choice: max or min
:return: datetime
"""
choice = getattr(datetime.datetime, 'min' if time_choice == 'min' else 'max').time()
return timezone.make_aware(
datetime.datetime.combine(date, choice),
timezone.get_current_timezone(),
)
|
9e429bf71288ffc3bd56b682f2e24fceb0ff49d4
| 24,536 |
def standardize_cell(atoms, cell_type):
""" Standardize the cell of the atomic structure.
Parameters:
atoms: `ase.Atoms`
Atomic structure.
cell_type: { 'standard', 'standard_no_symmetries', 'primitive', None}
Starting from the input cell, creates a standard cell according to same standards
before the supercell generation. \n
`cell_type` = 'standard' creates a standard conventional cell.
See :py:mod:`ai4materials.utils.utils_crystals.get_conventional_std_cell`. \n
`cell_type` = 'standard_no_symmetries' creates a standard conventional cell without using symmetries.
See :py:mod:`ai4materials.utils.utils_crystals.get_conventional_std_cell_no_sym`. \n
`cell_type` = 'primitive' creates a standard primitive cell.
See :py:mod:`ai4materials.utils.utils_crystals.get_primitive_std_cell`. \n
`cell_type` = `None` does not creates any cell.
It simply uses the unit cell as input for the supercell generation.
Returns:
`ase.Atoms`
Atomic structure in the standard cell of the selected type.
.. codeauthor:: Angelo Ziletti <[email protected]>
"""
if cell_type == 'standard':
atoms = get_conventional_std_cell(atoms)
elif cell_type == 'standard_no_symmetries':
atoms = get_conventional_std_cell_no_sym(atoms)
elif cell_type == 'primitive':
atoms = get_primitive_std_cell(atoms)
elif cell_type is None:
pass
else:
raise ValueError("Unrecognized cell_type value.")
return atoms
|
4005cf7afd6f4992f3cc271608f0b8c84649d6b1
| 24,537 |
def get_biggan_stats():
""" precomputed biggan statistics """
center_of_mass = [137 / 255., 127 / 255.]
object_size = [213 / 255., 210 / 255.]
return center_of_mass, object_size
|
6576e13b7a68369e90b2003171d946453bafd212
| 24,538 |
def get_input_var_value(soup, var_id):
"""Get the value from text input variables.
Use when you see this HTML format:
<input id="wired_config_var" ... value="value">
Args:
soup (soup): soup pagetext that will be searched.
var_id (string): The id of a var, used to find its value.
Returns:
(string): The value of the variable
"""
try:
var_value = soup.find('input', {'id': var_id}).get('value')
return var_value
except AttributeError:
print('\nERROR: <' + var_id + '> not found!\nPagesoup:\n\n', soup)
raise LookupError
|
5a9dd65a285c62e0e5e79584858634cb7b0ece75
| 24,539 |
from typing import List
from typing import Any
import logging
def get_top(metric: str, limit: int) -> List[List[Any]]:
"""Get top stocks based on metric from sentimentinvestor [Source: sentimentinvestor]
Parameters
----------
metric : str
Metric to get top tickers for
limit : int
Number of tickes to get
Returns
-------
List[List[Any]]
List of tickers and scores
"""
data = sentipy.sort(metric, limit)
table: List[List[Any]] = []
for index, stock in enumerate(data):
if not hasattr(stock, "symbol") or not hasattr(stock, metric):
logging.warning("data for stock %s is incomplete, ignoring", index + 1)
table.append([])
else:
table.append([index + 1, stock.symbol, stock.__getattribute__(metric)])
return table
|
c203fcbe24ccf3d0c2253961d36ec7b556c8651c
| 24,541 |
def test_add_single_entities(
reference_data: np.ndarray,
upper_bound: np.ndarray,
lower_bound: np.ndarray,
ishan: Entity,
) -> None:
"""Test the addition of SEPTs"""
tensor1 = SEPT(
child=reference_data, entity=ishan, max_vals=upper_bound, min_vals=lower_bound
)
tensor2 = SEPT(
child=reference_data, entity=ishan, max_vals=upper_bound, min_vals=lower_bound
)
result = tensor2 + tensor1
assert isinstance(result, SEPT), "Addition of two SEPTs is wrong type"
assert (
result.max_vals == 2 * upper_bound
).all(), "Addition of two SEPTs results in incorrect max_val"
assert (
result.min_vals == 2 * lower_bound
).all(), "Addition of two SEPTs results in incorrect min_val"
# Try with negative values
tensor3 = SEPT(
child=reference_data * -1.5,
entity=ishan,
max_vals=upper_bound,
min_vals=lower_bound,
)
result = tensor3 + tensor1
assert isinstance(result, SEPT), "Addition of two SEPTs is wrong type"
assert (
result.max_vals == tensor3.max_vals + tensor1.max_vals
).all(), "SEPT + SEPT results in incorrect max_val"
assert (
result.min_vals == tensor3.min_vals + tensor1.min_vals
).all(), "SEPT + SEPT results in incorrect min_val"
return None
|
48531867a74d7267ae65d4350e82d26cae8bef44
| 24,542 |
def prob_get_expected_after_certain_turn(turns_later: int, turns_remain: int,
tiles_expect: int) -> float:
"""The probability of get expected tile after `turns_later` set of turns.
:param turns_later: Get the expected tile after `turns_after` set of turns
:param turns_remain: The remaining turns
:param tiles_expect: The number of expected tiles
:return: Probability
"""
tiles_remain = 4 * turns_remain + 14
if tiles_expect > turns_later:
greater = tiles_remain - turns_later
less = tiles_remain - tiles_expect
else:
greater = tiles_remain - tiles_expect
less = tiles_remain - turns_later
numerator, denominator = 1, 1
i, j = less, greater
while i > tiles_remain - turns_later - tiles_expect:
numerator = numerator * i
i = i - 1
while j > greater:
denominator = denominator * j
j = j - 1
return numerator / denominator
|
6575c22302b73b58b2bd9aad5068ffe723fb5fe3
| 24,543 |
def get_gpcr_calpha_distances(pdb, xtc, gpcr_name, res_dbnum,
first_frame=0, last_frame=-1, step=1):
"""
Load distances between all selected atoms.
Parameters
----------
pdb : str
File name for the reference file (PDB or GRO format).
xtc : str
File name for the trajectory (xtc format).
gpcr_name : str
Name of the GPCR as in the GPCRdb.
res_dbnum : list
Relative GPCR residue numbers.
first_frame : int, default=0
First frame to return of the features. Zero-based.
last_frame : int, default=-1
Last frame to return of the features. Zero-based.
step : int, default=1
Subsampling step width when reading the frames.
Returns
-------
feature_names : list of str
Names of all C-alpha distances.
feature_labels : list of str
Labels containing GPCRdb numbering of the residues.
features_data : numpy array
Data for all C-alpha distances [Å].
"""
# Select residues from relative residue numbers
resnums, reslabels = select_gpcr_residues(gpcr_name, res_dbnum)
# Create the selection string
selection = 'name CA and resid'
for rn in resnums:
selection += ' %i'%rn
# Create the GPCRdb distance labels
distlabels = []
k = -1
for i in range(len(reslabels)):
for j in range(i + 1, len(reslabels)):
k += 1
_dl = 'CA DIST: %s - %s'%(reslabels[i], reslabels[j])
distlabels.append(_dl)
# Calculate the distances and get the sequential names
names, data = get_atom_self_distances(pdb, xtc,
selection=selection,
first_frame=first_frame,
last_frame=last_frame,
step=step)
return names, distlabels, data
|
3465246d610510f2976813fcc69c394e98452292
| 24,544 |
def main(yumrepomap=None,
**kwargs):
"""
Checks the distribution version and installs yum repo definition files
that are specific to that distribution.
:param yumrepomap: list of dicts, each dict contains two or three keys.
'url': the url to the yum repo definition file
'dist': the linux distribution to which the repo should
be installed. one of 'amazon', 'redhat',
'centos', or 'all'. 'all' is a special keyword
that maps to all distributions.
'epel_version': optional. match the major version of the
epel-release that applies to the
system. one of '6' or '7'. if not
specified, the repo is installed to all
systems.
Example: [ {
'url' : 'url/to/the/yum/repo/definition.repo',
'dist' : 'amazon' or 'redhat' or 'centos' or 'all',
'epel_version' : '6' or '7',
},
]
"""
scriptname = __file__
print('+' * 80)
print('Entering script -- {0}'.format(scriptname))
print('Printing parameters...')
print(' yumrepomap = {0}'.format(yumrepomap))
if not yumrepomap:
print('`yumrepomap` is empty. Nothing to do!')
return None
if not isinstance(yumrepomap, list):
raise SystemError('`yumrepomap` must be a list!')
# Read first line from /etc/system-release
release = None
try:
with open(name='/etc/system-release', mode='rb') as f:
release = f.readline().strip()
except Exception as exc:
raise SystemError('Could not read /etc/system-release. '
'Error: {0}'.format(exc))
# Search the release file for a match against _supported_dists
m = _match_supported_dist.search(release.lower())
if m is None:
# Release not supported, exit with error
raise SystemError('Unsupported OS distribution. OS must be one of: '
'{0}.'.format(', '.join(_supported_dists)))
# Assign dist,version from the match groups tuple, removing any spaces
dist,version = (x.translate(None, ' ') for x in m.groups())
# Determine epel_version
epel_version = None
if 'amazon' == dist:
epel_version = _amazon_epel_versions.get(version, None)
else:
epel_version = version.split('.')[0]
if epel_version is None:
raise SystemError('Unsupported OS version! dist = {0}, version = {1}.'
.format(dist, version))
for repo in yumrepomap:
# Test whether this repo should be installed to this system
if repo['dist'] in [dist, 'all'] and repo.get('epel_version', 'all') \
in [epel_version, 'all']:
# Download the yum repo definition to /etc/yum.repos.d/
url = repo['url']
repofile = '/etc/yum.repos.d/{0}'.format(url.split('/')[-1])
download_file(url, repofile)
print('{0} complete!'.format(scriptname))
print('-' * 80)
|
1caed81f53cd0dc2e1963aa1b53bc48c1ef71dd3
| 24,545 |
def zero_pad1d(inputs, padding=0):
"""Zero padding for 1d tensor
Args:
-----------------------------
inputs : tvm.te.tensor.Tensor
shape [batch, channel, length]
padding: (optional:0) int or tuple
-----------------------------
Returns:
-----------------------------
tvm.te.tensor.Tensor
shape [batch, channel, padded_length]
-----------------------------
"""
padding = (padding, padding) if isinstance(padding, (int, tvm.tir.IntImm)) else padding
assert_print(isinstance(padding, tuple), "type(padding)={}".format(type(padding)))
assert_print(len(padding) == 2)
padding_zero = tvm.tir.expr.const(0, inputs.dtype)
batch_size, in_channel, in_len = inputs.shape
return tvm.te.compute(
(batch_size, in_channel, in_len + padding[0] + padding[1]),
lambda b, c, l: tvm.te.if_then_else(
tvm.te.all(l >= padding[0], l < in_len + padding[0]),
inputs[b, c, l - padding[0]],
padding_zero
)
)
|
8135ffd8447d5fbc84988953a2bfca14b51d3f83
| 24,546 |
import torch
import math
def gelu(x):
"""gelu activation function copied from pytorch-pretrained-BERT."""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
35c0f45f904b2381acc95f5a2b4f28cec9fa924b
| 24,547 |
import requests
def stock_fund_stock_holder(stock: str = "600004") -> pd.DataFrame:
"""
新浪财经-股本股东-基金持股
https://vip.stock.finance.sina.com.cn/corp/go.php/vCI_FundStockHolder/stockid/600004.phtml
:param stock: 股票代码
:type stock: str
:return: 新浪财经-股本股东-基金持股
:rtype: pandas.DataFrame
"""
url = f"https://vip.stock.finance.sina.com.cn/corp/go.php/vCI_StockStructure/stockid/{stock}.phtml"
r = requests.get(url)
temp_df = pd.read_html(r.text)[13].iloc[:, :5]
temp_df.columns = [*range(5)]
big_df = pd.DataFrame()
need_range = temp_df[temp_df.iloc[:, 0].str.find("截止日期") == 0].index.tolist() + [len(temp_df)]
for i in range(len(need_range)-1):
truncated_df = temp_df.iloc[need_range[i]: need_range[i + 1], :]
truncated_df = truncated_df.dropna(how="all")
temp_truncated = truncated_df.iloc[2:, :]
temp_truncated.reset_index(inplace=True, drop=True)
concat_df = pd.concat([temp_truncated, truncated_df.iloc[0, 1:]], axis=1)
concat_df.columns = truncated_df.iloc[1, :].tolist() + ["截止日期"]
concat_df["截止日期"] = concat_df["截止日期"].fillna(method="ffill")
concat_df["截止日期"] = concat_df["截止日期"].fillna(method="bfill")
big_df = pd.concat([big_df, concat_df], axis=0, ignore_index=True)
big_df.dropna(inplace=True)
big_df.reset_index(inplace=True, drop=True)
return big_df
|
acde3d06b9fabd9a22223401b6b9b947a1e248ff
| 24,548 |
def set_to_available(request, slug, version):
"""
Updates the video status.
Sets the version already encoded to available.
"""
video = get_object_or_404(Video, slug=slug)
status, created = VideoStatus.objects.get_or_create(video_slug=slug)
if version == 'web':
status.web_available = True
elif version == 'cocreate':
status.cocreate_available = True
else:
status.mobile_available = True
status.is_encoding = False
status.encode_duration = Decimal(str(status.encode_duration))
status.save()
# If the video is part of a cocreate project, auto-compile the cocreate project.
try:
if video.section and video.section.cocreate:
cocreate_obj = video.section.cocreate
init_cocreate(cocreate_obj, generate_slug)
except Section.DoesNotExist:
pass
return HttpResponse("OK")
|
ead832327d733b82b0d1bc38efd241baab039ed2
| 24,549 |
def generate_solve_c():
"""Generate C source string for the recursive solve() function."""
piece_letters = 'filnptuvwxyz'
stack = []
lines = []
add = lines.append
add('#define X_PIECE_NUM {}'.format(piece_letters.index('x')))
add("""
void solve(char* board, int pos, unsigned int used) {
if (used == (1 << NUM_PIECES) - 1) {
display_solution(board);
return;
}
while (board[pos]) {
pos++;
}
""")
indent = ' ' * 4
for c in ORIENTATIONS:
if c == '.':
indent = indent[:-4]
add(indent + '}')
stack.pop()
elif c > 'a':
# Found a piece that fits: if it's not yet used, place it and
# solve rest of board recursively
piece_num = piece_letters.index(c)
add(indent + 'if ((used & (1<<{})) == 0) {{'.format(piece_num))
add(indent + ' _num_tries++;')
add(indent + ' used ^= 1<<{};'.format(piece_num))
for offset in stack:
add(indent + ' board[pos + {}] = {!r};'.format(offset, c))
add(indent + ' solve(board, pos, used);')
for offset in stack:
add(indent + ' board[pos + {}] = 0;'.format(offset))
add(indent + ' used ^= 1<<{};'.format(piece_num))
add(indent + '}')
indent = indent[:-4]
add(indent + '}')
stack.pop()
else:
i = ord(c) - ord('A') + 3
x, y = i % 8, i // 8
offset = y * TOTAL_WIDTH + x - 3
add(indent + 'if (board[pos + {}] == 0) {{'.format(offset))
indent += ' ' * 4
stack.append(offset)
add('}')
return '\n'.join(lines)
|
dde70d4cdbeb8b691c1ffcb61ba524b2c1df9b2c
| 24,551 |
def get_permission_info(room):
"""
Fetches permissions about the room, like ban info etc.
# Return Value
dict of session_id to current permissions,
a dict containing the name of the permission mapped to a boolean value.
"""
return jsonify({k: addExtraPermInfo(v) for k, v in room.permissions.items()})
|
aab7aa691e1e34e1bf20e3de744f8d4352a2421e
| 24,552 |
def ravel(m):
"""ravel(m) returns a 1d array corresponding to all the elements of it's
argument.
"""
return reshape(m, (-1,))
|
728204f77737750783fef9818c102522f17c472e
| 24,553 |
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
# My additions
print ("Printing this unstripped text:", line)
index.append(int(line.strip()))
return index
|
a76c4e94c593a234fd858d369f0133a5170ec8bf
| 24,554 |
import click
import socket
def init():
"""Top level command handler."""
@click.command()
@click.option('--port', type=int, help='Port to listen.', default=0)
@click.option('--tun-dev', type=str, required=True,
help='Device to use when establishing tunnels.')
@click.option('--tun-addr', type=str, required=False,
help='Local IP address to use when establishing tunnels.')
@click.option('--tun-cidrs', type=cli.LIST, required=True,
help='CIDRs block assigned to the tunnels.')
@click.option('--policies-dir', type=str, required=True,
help='Directory where to look for policies')
@click.option('--state-dir', type=str, required=False,
default='/var/run/warpgate',
help='Directory where running state is kept')
def warpgate_policy_server(port, tun_dev, tun_addr, tun_cidrs,
policies_dir, state_dir):
"""Run warpgate policy server."""
myhostname = socket.getfqdn()
policy_server.run_server(
admin_address=myhostname,
admin_port=port,
tun_devname=tun_dev,
tun_address=(
tun_addr if tun_addr else socket.gethostbyname(myhostname)
),
tun_cidrs=tun_cidrs,
policies_dir=policies_dir,
state_dir=state_dir
)
return warpgate_policy_server
|
ba660e7f6698457951e766ce402857a6a5e4bc86
| 24,555 |
def check_collision(bird_rect:object, pipes:list, collide_sound:object):
""" Checks for collision with the Pipe and the Base """
for pipe in pipes:
if bird_rect.colliderect(pipe):
collide_sound.play()
return False
if bird_rect.bottom >= gv.BASE_TOP:
return False
return True
|
080c8a6142397e3c1b91b0e3a4dfbd3ed7f1acde
| 24,556 |
def compute_ranking_scores(ranking_scores,
global_ranks_to_save,
rank_per_query):
""" Compute ranking scores (MRR and MAP) and a bunch of interesting ranks to save to file from a list of ranks.
Args:
ranking_scores: Ranking scores previously computed
global_ranks_to_save: Global interesting ranks to save to file
rank_per_query: List of ranks computed by the model evaluation procedure
Returns:
ranking scores (in a dict) and a dict of global interesting ranks to save to file
"""
# compute binarized (0/1) relevance scores
rs = [np.asarray([i == rank['ground_truth_label'] for i in rank['rank_labels']], dtype=np.dtype(int))
for rank in rank_per_query]
# compute and log MRR and MAP scores
ranking_scores['MRR'].append(mean_reciprocal_rank(rs))
ranking_scores['MAP'].append(mean_average_precision(rs))
# compute a bunch of indexes for interesting queries to save in csv files as examples
max_rr, max_rr_idx = max_reciprocal_rank(rs)
min_rr, min_rr_idx = min_reciprocal_rank(rs)
max_ap, max_ap_idx = max_average_precision(rs)
min_ap, min_ap_idx = min_average_precision(rs)
# save indexes (and values) just computed to a dict
queries_indexes = {
'max_rr': {'value': max_rr, 'index': max_rr_idx},
'min_rr': {'value': min_rr, 'index': min_rr_idx},
'max_ap': {'value': max_ap, 'index': max_ap_idx},
'min_ap': {'value': min_ap, 'index': min_ap_idx}
}
# get interesting queries
ranks_to_save = {
key: {
'value': scores['value'],
'rank': rank_per_query[scores['index']]
}
for key, scores in queries_indexes.items()
}
# if the global ranks to save dict is none set it to the current ranks to save
if global_ranks_to_save is None:
global_ranks_to_save = ranks_to_save
else:
# otherwise select from the current ranks to save the ones that are more 'interesting' than those
# already in the global ranks to save dict
if ranks_to_save['max_rr']['value'] > global_ranks_to_save['max_rr']['value']:
global_ranks_to_save['max_rr']['value'] = ranks_to_save['max_rr']['value']
global_ranks_to_save['max_rr']['rank'] = ranks_to_save['max_rr']['rank']
if ranks_to_save['min_rr']['value'] < global_ranks_to_save['min_rr']['value']:
global_ranks_to_save['min_rr']['value'] = ranks_to_save['min_rr']['value']
global_ranks_to_save['min_rr']['rank'] = ranks_to_save['min_rr']['rank']
if ranks_to_save['max_ap']['value'] > global_ranks_to_save['max_ap']['value']:
global_ranks_to_save['max_ap']['value'] = ranks_to_save['max_ap']['value']
global_ranks_to_save['max_ap']['rank'] = ranks_to_save['max_ap']['rank']
if ranks_to_save['min_ap']['value'] < global_ranks_to_save['min_ap']['value']:
global_ranks_to_save['min_ap']['value'] = ranks_to_save['min_ap']['value']
global_ranks_to_save['min_ap']['rank'] = ranks_to_save['min_ap']['rank']
# return computed ranking scores and global ranks to save dict
return ranking_scores, global_ranks_to_save
|
a25a664b67e35ff9b35327b364e84eaf9ae37aaa
| 24,557 |
def AirAbsorptionRelaxationFrequencies(T,p,H,T0, p_r):
"""
Calculates the relaxation frequencies for air absorption conforming to
ISO 9613-1. Called by :any:`AirAbsorptionCoefficient`.
Parameters
----------
T : float
Temperature in K.
p : float
Pressure in Pa.
H : float
Humidity as molar conentration in percent.
T0 : float
Reference temperature in K, 293.15 K.
p_r : float
Reference sound pressure in Pa, 101.325*10³ Pa.
Returns
-------
f_rO : float
Relaxation frequency of oxygen.
f_rN : float
Relaxation frequency of nitrogen.
"""
f_rO = p / p_r * (24 + 4.04 * 10**4 * H * (0.02+H) / (0.391+H))
f_rN = p / p_r * (T/T0)**(-0.5) * (9+280*H*np.exp(-4.17*((T/T0)**(-1/3)-1)))
return f_rO, f_rN
|
c8c047ed4d9a7fc62b2cdb6d19f0d3c8b1b4c570
| 24,558 |
def table_from_bool(ind1, ind2):
"""
Given two boolean arrays, return the 2x2 contingency table
ind1, ind2 : array-like
Arrays of the same length
"""
return [
sum(ind1 & ind2),
sum(ind1 & ~ind2),
sum(~ind1 & ind2),
sum(~ind1 & ~ind2),
]
|
497ce6ad1810386fedb6ada9ba87f0a5baa6318a
| 24,559 |
def preprocess_skills(month_kpi_skills: pd.DataFrame, quarter_kpi_skills: pd.DataFrame) -> pd.DataFrame:
"""
Функция принимает на вход два DataFrame:
- с данными по KPI сотрудников ВЭД за последний месяц
- с данными по KPI сотрудников ВЭД за последний квартал
Возвращает объединенный DataFrame по двум таблицам с дополнительными признаками отношений выполненных работ
к нормам сотрудников
:param month_kpi_skills: pd.DataFrame
:param quarter_kpi_skills: pd.DataFrame
:return: pd.DataFrame
"""
month_kpi_skills.fillna(0, inplace=True)
quarter_kpi_skills.fillna(0, inplace=True)
# Переносим данные по месячным скилам в один дата-фрейм
month_kpi_skills.columns = month_skills_columns
quarter_kpi_skills.columns = quarter_skills_columns
assert sorted(month_kpi_skills['ВЭД'].unique()) == sorted(quarter_kpi_skills['ВЭД'].unique()), 'В таблицах KPI за месяц из за квартал содержатся разные ВЭД'
kpi_skills = month_kpi_skills.merge(quarter_kpi_skills, on='ВЭД', how='inner')
# Считаем отношения между результатами за 3 мес и нормами
kpi_skills['Звонки / Норма'] = kpi_skills['Звонки (3 мес)'] / kpi_skills['Звонки норма (3 мес)']
kpi_skills['Обработанные заявки / Норма'] = kpi_skills['Обработанные заявки (3 мес)'] / kpi_skills['Норма 88% (3 мес)']
kpi_skills['48 часов / Норма'] = kpi_skills['Обработка не позднее 48 часов (3 мес)'] / kpi_skills['Норма 85% (3 мес)']
kpi_skills['Полнота сбора / Норма'] = kpi_skills['Полнота сбора (3 мес)'] / kpi_skills['Норма 95% (3 мес)']
kpi_skills['Встречи / Норма'] = kpi_skills['Встречи (3 мес)'] / kpi_skills['Встречи норма (3 мес)']
kpi_skills.fillna(0.0, inplace=True) # Заполняем NaN там, где возникло деление на 0
kpi_skills.drop(['Звонки норма', 'Встречи норма', 'Звонки норма (3 мес)', 'Встречи норма (3 мес)'], axis=1, inplace=True)
kpi_skills = kpi_skills.reindex(columns=skills_final_columns)
return kpi_skills
|
6bcbc1b93c99acbef04bf0962678c35a3abd3faa
| 24,560 |
def bias_col_spline(im, overscan, dymin=5, dymax=2, statistic=np.mean, **kwargs):
"""Compute the offset by fitting a spline to the mean of each row in the
serial overscan region.
Args:
im: A masked (lsst.afw.image.imageLib.MaskedImageF) or unmasked
(lsst.afw.image.imageLib.ImageF) afw image.
overscan: A bounding box for the parallel overscan region.
dymin: The number of rows to skip at the beginning of the parallel
overscan region.
dymax: The number of rows to skip at the end of the parallel overscan region.
statistic: The statistic to use to calculate the offset for each columns.
Keyword Arguments:
k: The degree of the spline fit. The default is: 3.
s: The amount of smoothing to be applied to the fit. The default is: 18000.
t: The number of knots. If None, finds the number of knots to use
for a given smoothing factor, s. The default is: None.
Returns:
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients,
and the degree of the spline.
"""
try:
imarr = im.Factory(im, overscan).getArray()
except AttributeError: # Dealing with a MaskedImage
imarr = im.Factory(im, overscan).getImage().getArray()
ny, nx = imarr.shape
cols = np.arange(nx)
values = np.array([statistic(imarr[dymin:-dymax,j]) for j in cols])
rms = 7 # Expected read noise per pixel
weights = np.ones(nx) * (rms / np.sqrt(nx))
return interpolate.splrep(cols, values, w=1/weights, k=kwargs.get('k', 3),
s=kwargs.get('s', 18000), t=kwargs.get('t', None))
|
d157275dd8337b81c9f4c67efe1c033512f963d3
| 24,561 |
def read_config():
""" Returns the decoded config data in 'db_config.json'
Will return the decoded config file if 'db_config.json' exists and is a valid JSON format.
Otherwise, it will return a False.
"""
# Check if file exists
if not os.path.isfile('db_config.json'):
return False
# Check if file is a valid JSON format.
try:
with open('db_config.json') as json_data:
config = json.load(json_data)
except ValueError:
print '[WARN] Error Decoding config.json'
return False
return config
|
36b0ccdbd653b654663c7a3c6cf47cb3f68bc399
| 24,562 |
import pandas
def get_sub_title_from_series(ser: pandas.Series, decimals: int = 3) -> str:
"""pandas.Seriesから、平均値、標準偏差、データ数が記載されたSubTitleを生成する。"""
mean = round(ser.mean(), decimals)
std = round(ser.std(), decimals)
sub_title = f"μ={mean}, α={std}, N={len(ser)}"
return sub_title
|
45c227e7ddd203872f015e4a95532c8acb80d54f
| 24,563 |
import numpy
def atand2(delta_y: ArrayLike, delta_x: ArrayLike) -> ArrayLike:
"""Return the arctan2 of an angle specified in degrees.
Returns
-------
float
An angle, in degrees.
"""
return numpy.degrees(numpy.arctan2(delta_y, delta_x))
|
14d825d9886a2a62e36748eb9660ee27e6ba6827
| 24,564 |
from typing import Union
def adjust_doy_calendar(
source: xr.DataArray, target: Union[xr.DataArray, xr.Dataset]
) -> xr.DataArray:
"""Interpolate from one set of dayofyear range to another calendar.
Interpolate an array defined over a `dayofyear` range (say 1 to 360) to another `dayofyear` range (say 1
to 365).
Parameters
----------
source : xr.DataArray
Array with `dayofyear` coordinate.
target : xr.DataArray or xr.Dataset
Array with `time` coordinate.
Returns
-------
xr.DataArray
Interpolated source array over coordinates spanning the target `dayofyear` range.
"""
doy_max_source = source.dayofyear.max()
doy_max = max_doy[get_calendar(target)]
if doy_max_source == doy_max:
return source
return _interpolate_doy_calendar(source, doy_max)
|
d55da217c6b6e3b2947e992611da4e1fdacf7f5f
| 24,565 |
def iou(box_a, box_b):
"""Calculates intersection area / union area for two bounding boxes."""
assert area(box_a) > 0
assert area(box_b) > 0
intersect = np.array(
[[max(box_a[0][0], box_b[0][0]),
max(box_a[0][1], box_b[0][1])],
[min(box_a[1][0], box_b[1][0]),
min(box_a[1][1], box_b[1][1])]])
return area(intersect) / (area(box_a) + area(box_b) - area(intersect))
|
9722673c7cc5b636d698453224cf3f06d1aa3678
| 24,566 |
def poll():
"""
The send buffer is flushed and any outstanding CA background activity is processed.
.. note:: same as pend_event(1e-12)
"""
status = libca.ca_pend_event(1e-12)
return ECA(status)
|
96052229179a0188a3bb63a6e3ab35aa3d6cc5f7
| 24,567 |
def TopLevelWindow_GetDefaultSize(*args):
"""TopLevelWindow_GetDefaultSize() -> Size"""
return _windows_.TopLevelWindow_GetDefaultSize(*args)
|
e9a04052461bf64b7b3e4962a7df052e1f63de4b
| 24,568 |
def human_size(numbytes):
"""converts a number of bytes into a readable string by humans"""
KB = 1024
MB = 1024*KB
GB = 1024*MB
TB = 1024*GB
if numbytes >= TB:
amount = numbytes / TB
unit = "TiB"
elif numbytes >= GB:
amount = numbytes / GB
unit = "GiB"
elif numbytes >= MB:
amount = numbytes / MB
unit = "MiB"
elif numbytes >= KB:
amount = numbytes / KB
unit = "KiB"
else:
amount = numbytes
unit = "B"
return "%.3f%s" % (amount, unit)
|
733fdff47350072b9cfcaf72a2de85f8a1d58cc6
| 24,569 |
from typing import Callable
from typing import Any
def node_definitions(
id_fetcher: Callable[[str, GraphQLResolveInfo], Any],
type_resolver: GraphQLTypeResolver = None,
) -> GraphQLNodeDefinitions:
"""
Given a function to map from an ID to an underlying object, and a function
to map from an underlying object to the concrete GraphQLObjectType it
corresponds to, constructs a `Node` interface that objects can implement,
and a field object to be used as a `node` root field.
If the type_resolver is omitted, object resolution on the interface will be
handled with the `is_type_of` method on object types, as with any GraphQL
interface without a provided `resolve_type` method.
"""
node_interface = GraphQLInterfaceType(
"Node",
description="An object with an ID",
fields=lambda: {
"id": GraphQLField(
GraphQLNonNull(GraphQLID), description="The id of the object."
)
},
resolve_type=type_resolver,
)
# noinspection PyShadowingBuiltins
node_field = GraphQLField(
node_interface,
description="Fetches an object given its ID",
args={
"id": GraphQLArgument(
GraphQLNonNull(GraphQLID), description="The ID of an object"
)
},
resolve=lambda _obj, info, id: id_fetcher(id, info),
)
nodes_field = GraphQLField(
GraphQLNonNull(GraphQLList(node_interface)),
args={
"ids": GraphQLArgument(
GraphQLNonNull(GraphQLList(GraphQLNonNull(GraphQLID))),
description="The IDs of objects",
)
},
resolve=lambda _obj, info, ids: [id_fetcher(id_, info) for id_ in ids],
)
return GraphQLNodeDefinitions(node_interface, node_field, nodes_field)
|
4e041edacbd7e5d6c82dd7df8616a694aa00181a
| 24,571 |
def get_image_from_request(request):
"""
This function is used to extract the image from a POST or GET request.
Usually it is a url of the image and, in case of the POST is possible
to send it as a multi-part data.
Returns a tuple with (ok:boolean, error:string, image:ndarray)
"""
if request.method == 'POST':
content_type = parse_content_type(request)
if content_type == "multipart/form-data":
if 'image' in request.files:
try:
image = read_image_from_stream(request.files['image'])
return (True, '', image)
except:
return (False, "Unable to read uploaded file", None)
else:
return (False, "No image provided in form-data request", None)
elif content_type == 'application/json':
try:
input_params = request.get_json(True)
except:
return (False, 'No valid JSON present', None)
if 'imageUrl' in input_params:
image_url = input_params['imageUrl']
try:
image = read_image_from_url(image_url)
return (True, '', image)
except:
return (False, 'Unable to read image from url', None)
elif 'imageB64' in input_params:
image_b64 = input_params['imageB64']
try:
image = read_image_b64(image_b64)
return (True, '', image)
except:
return (False, 'Unable to read base 64 image', None)
else:
return (False, 'Image url or base 64 string not informed', None)
elif request.method == 'GET':
if request.args.get('imageUrl') == None:
return (False, 'Image url not informed', None)
else:
image_url = request.args.get('imageUrl')
try:
image = read_image_from_url(image_url)
return (True, '', image)
except:
return (False, 'Unable to read image from url', None)
|
0af18d65664e1c7dc264ac112b42e001ac293fd6
| 24,572 |
def con_external():
"""Define a connection fixture.
Returns
-------
ibis.omniscidb.OmniSciDBClient
"""
omnisci_client = ibis.omniscidb.connect(
user=EXT_OMNISCIDB_USER,
password=EXT_OMNISCIDB_PASSWORD,
host=EXT_OMNISCIDB_HOST,
port=EXT_OMNISCIDB_PORT,
database=EXT_OMNISCIDB_DATABASE,
protocol=EXT_OMNISCIDB_PROTOCOL
)
return omnisci_client
|
e5a57ebdf8640bd96a2e28678fe4d0b285fe8408
| 24,573 |
def parse_risk(data_byte_d):
"""Parse and arrange risk lists.
Parameters
----------
data_byte_d : object
Decoded StringIO object.
Returns
-------
neocc_lst : *pandas.Series* or *pandas.DataFrame*
Data frame with risk list data parsed.
"""
# Read data as csv
neocc_lst = pd.read_csv(data_byte_d, sep='|', skiprows=[3],
header=2)
# Remove redundant white spaces
neocc_lst.columns = neocc_lst.columns.str.strip()
neocc_lst = neocc_lst.replace(r'\s+', ' ', regex=True)
df_obj = neocc_lst.select_dtypes(['object'])
neocc_lst[df_obj.columns] = df_obj.apply(lambda x:
x.str.strip())
# Rename columns
col_dict = {"Num/des. Name": 'Object Name',
"m": 'Diameter in m',
"Vel km/s": 'Vel in km/s'}
neocc_lst.rename(columns=col_dict, inplace=True)
# Remove last column
neocc_lst = neocc_lst.drop(neocc_lst.columns[-1], axis=1)
# Convert column with date to datetime variable
neocc_lst['Date/Time'] = pd.to_datetime(neocc_lst['Date/Time'])
# Split Years into 2 columns to avoid dashed between integers
# Check dataframe is not empty (for special list)
if len(neocc_lst.index.values) != 0:
neocc_lst[['First year', 'Last year']] = neocc_lst['Years']\
.str.split("-",
expand=True)\
.astype(int)
# Drop split column
neocc_lst = neocc_lst.drop(['Years'], axis=1)
# Reorder columns
neocc_lst = neocc_lst[['Object Name', 'Diameter in m', '*=Y',
'Date/Time', 'IP max', 'PS max', 'TS',
'Vel in km/s', 'First year', 'Last year',
'IP cum', 'PS cum']]
# Adding metadata
neocc_lst.help = ('Risk lists contain a data frame with the '
'following information:\n'
'-Object Name: name of the NEA\n'
'-Diamater in m: approximate diameter in meters\n'
'-*=Y: recording an asterisk if the value has '
'been estimated from the absolute magnitude\n'
'-Date/Time: predicted impact date in datetime '
'format\n'
'-IP max: Maximum Impact Probability\n'
'-PS max: Palermo scale rating\n'
'-Vel in km/s: Impact velocity at atmospheric entry'
' in km/s\n'
'-First year: first year of possible impacts\n'
'-Last year: last year of possible impacts\n'
'-IP cum: Cumulative Impact Probability\n'
'-PS cum: Cumulative Palermo Scale')
return neocc_lst
|
cf8761e46df621ffcf69dba9e2c359c25da02234
| 24,574 |
def plot_step_w_variable_station_filters(df, df_stations=None, options=None):
"""
"""
p = PlotStepWithControls(df, df_stations, options)
return p.plot()
|
a1faa31c90f4c00103148aa50648f040849984b1
| 24,575 |
def pick_random_element(count):
"""
Parameters
----------
count: {string: int}
A dictionary of all transition
counts from some state
we're in to all other states
Returns
-------
The next character, randomly sampled
from the empirical probabilities
determined from the counts
"""
keys = list(count.keys())
counts = np.array(list(count.values()))
counts = np.cumsum(counts)
r = np.random.rand()*counts[-1]
idx = np.searchsorted(counts, r)
return keys[idx]
|
90388526b0a3a663f4f8d2ef6530484ddcf6fde2
| 24,576 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.