content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def invert_color(color: str, *, black_or_white: bool = False) -> str: """Return a color with opposite red, green and blue values. Example: ``invert_color('white')`` is ``'#000000'`` (black). This function uses tkinter for converting the color to RGB. That's why a tkinter root window must have been created, but *color* can be any Tk-compatible color string, like a color name or a ``'#rrggbb'`` string. The return value is always a ``'#rrggbb`` string (also compatible with Tk). If ``black_or_white=True`` is set, then the result is always ``"#000000"`` (black) or ``"#ffffff"`` (white), depending on whether the color is bright or dark. """ if black_or_white: return "#000000" if is_bright(color) else "#ffffff" widget = porcupine.get_main_window() # any widget would do # tkinter uses 16-bit colors, convert them to 8-bit r, g, b = (value >> 8 for value in widget.winfo_rgb(color)) return "#%02x%02x%02x" % (0xFF - r, 0xFF - g, 0xFF - b)
cf6a84957489cba046aebc01457bfd6453bc90b6
2,070
def pcaImageCube(ref, mask = None, pcNum = None, cube=True, ref3D=True, outputEval = False): """Principal Component Analysis, Input: ref: Cube of references, 3D; if ref3D==False, 2D (Flattened and Normalized, with maksked region excluded.) mask: mask, 2D or 1D; pcNum: how many principal components are needed; cube: output as a cube? Otherwise a flattend 2D component array will be returned. ref3D: Ture by default. outputEval: whether to return the eigen values, False by default. Output: The principal components, either cube (3D) or flattend (2D).""" if mask is None: mask = np.ones(ref[0].shape) if pcNum is None: pcNum = ref.shape[0] if ref3D: mask_flat = mask.flatten() ref_flat = np.zeros((ref.shape[0], np.where(mask_flat == 1)[0].shape[0])) for i in range(ref_flat.shape[0]): ref_flat[i], std = flattenAndNormalize(ref[i], mask) else: ref_flat = ref if np.shape(mask.shape)[0] == 1: #1D mask, already flattened mask_flat = mask elif np.shape(mask.shape)[0] == 2: #2D mask, need flatten mask_flat = mask.flatten() covMatrix = np.dot(ref_flat, np.transpose(ref_flat)) eVal, eVec = np.linalg.eig(covMatrix) index = (-eVal).argsort()[:pcNum] eVec = eVec[:,index] components_flatten = np.dot(np.transpose(eVec), ref_flat) pc_flat = np.zeros((pcNum, mask_flat.shape[0])) for i in range(pc_flat.shape[0]): pc_flat[i][np.where(mask_flat==1)] = components_flatten[i]/np.sqrt(np.dot(components_flatten[i], np.transpose(components_flatten[i]))) if cube == False: return pc_flat pc_cube = np.zeros((pcNum, mask.shape[0], mask.shape[1])) width = mask.shape[0] for i in range(pc_flat.shape[0]): pc_cube[i] = np.array(np.split(pc_flat[i], width)) if not outputEval: return pc_cube else: return pc_cube, eVal[index]
96a05ef8fd6a618af91903b9c0fc9fc49cfd8130
2,071
def get_cross_kerr_table(epr, swp_variable, numeric): """ Function to re-organize the cross-Kerr results once the quantum analysis is finished Parameters: ------------------- epr : Object of QuantumAnalysis class swp_variable : the variable swept in data according to which things will be sorted numeric : Whether numerical diagonalization of the data was performed Use notes: ------------------- * It is assumed the epr.analyze_all_variations has already been called and analysis is finished. """ if numeric: f1 = epr.results.get_frequencies_ND(vs=swp_variable) chis = epr.get_chis(numeric=numeric,swp_variable=swp_variable) else: f1 = epr.results.get_frequencies_O1(vs=swp_variable) chis = epr.get_chis(numeric=numeric,swp_variable=swp_variable) #print(f1) #print(chis) swp_indices = chis.index.levels[0] mode_indices = chis.index.levels[1] #print(mode_indices) mode_combinations = list(zip(mode_indices,mode_indices)) diff_mode_combinations = list(it.combinations_with_replacement(mode_indices,2)) mode_combinations.extend(diff_mode_combinations) organized_data = pd.DataFrame({swp_variable:swp_indices}) organized_data.set_index(swp_variable,inplace=True) for mode_indx in mode_indices: organized_data['f_'+str(mode_indx)+'(GHz)']=np.round(f1.loc[mode_indx].values/1000,3) for combo_indx in mode_combinations: temp_chi_list = [chis.loc[swp_indx].loc[combo_indx] for swp_indx in swp_indices] organized_data['chi_'+str(combo_indx[0])+str(combo_indx[1])+' (MHz)']=np.round(temp_chi_list,4) return organized_data
8dfa860f73c5453ee970f204d4e03d6cef93d010
2,072
def getSpectra(dataframe, indices): """ Returns the files for training and testing Inputs ----------- dataframe: pd.DataFrame object from which we need to get spectra indices: row values for which we need the spectra Returns ----------- spec_vals: pd.DataFrame object containing spectra values for given indices """ colList = dataframe.columns spec_inds = [index for index in range(len(colList)) if colList[index].startswith('Spectrum_')] spec_cols = colList[spec_inds] spec_vals = dataframe[spec_cols].iloc[indices] return spec_vals
606757ffdde39c0847dd0402342441931d66a081
2,073
def config2(): """Configure for one of the restart tests.""" return Config.load(f""" id: cbc_binary_toolkit version: 0.0.1 database: _provider: tests.component.persistor_fixtures.mock_persistor.MockPersistorFactory engine: _provider: tests.component.engine_fixtures.mock_engine.MockLocalEngineFactory name: {ENGINE_NAME} feed_id: {FEED_ID} type: local Test: TestPassed """)
ded0b43392e7e0308cca0f773d2ed687fd0818de
2,074
def diff_cases(couch_cases, log_cases=False): """Diff cases and return diff data :param couch_cases: dict `{<case_id>: <case_json>, ...}` :returns: `DiffData` """ assert isinstance(couch_cases, dict), repr(couch_cases)[:100] assert "_diff_state" in globals() data = DiffData() dd_count = partial(metrics_counter, tags={"domain": get_domain()}) case_ids = list(couch_cases) sql_case_ids = set() for sql_case in CaseAccessorSQL.get_cases(case_ids): case_id = sql_case.case_id sql_case_ids.add(case_id) couch_case, diffs, changes = diff_case(sql_case, couch_cases[case_id], dd_count) if diffs: dd_count("commcare.couchsqlmigration.case.has_diff") if changes: dd_count("commcare.couchsqlmigration.case.did_change") data.doc_ids.append(case_id) data.diffs.append((couch_case['doc_type'], case_id, diffs)) data.changes.append((couch_case['doc_type'], case_id, changes)) if log_cases: log.info("case %s -> %s diffs", case_id, len(diffs)) diffs, changes = diff_ledgers(case_ids, dd_count) data.diffs.extend(diffs) data.changes.extend(changes) add_missing_docs(data, couch_cases, sql_case_ids, dd_count) return data
545b35b7e37174f93df9e566bc0e1cd777948563
2,076
def rk4(a, b, x0, y0, nu=0, F=0, xdot = x_dot, ydot = y_dot): """rk(a, b, x0, y0, nu=0, F=0, xdot = x_dot, ydot = y_dot) Args: a (float) : Lower bound, t = a*2*pi b (float) : Upper bound, t = b*2*pi x0 (float) : Initial position of ball y0 (float) : Initial velocity of ball nu (float) : Constant damping coefficient F (float) : Constant force amplitude coefficient xdot (function) : Part of the differential equation ydot (function) : Part of the differential equation Returns: t (array) : Array over the time interval with equal dt = .001 x (array) : Array containing the position of the ball at each time in the time array y (array) : Array containing the velocity of the ball at each time in the time array """ dt = 0.001 start = 2*a*np.pi end = 2*b*np.pi n = int(np.ceil((end-start)/dt)) t = np.linspace(start,end,n) x = np.zeros(n) y = np.zeros(n) x_dot_vec = np.zeros(n) y_dot_vec = np.zeros(n) x[0] = x0 y[0] = y0 for k in range(n): x_dot_vec[k] = x_dot(y[k]) y_dot_vec[k] = ydot(t[k],y[k],x[k],nu,F) if k == n-1: break else: k1y = dt*ydot(t[k],y[k],x[k],nu,F) k2y = dt*ydot((t[k]+dt/2),(y[k]+k1y/2),x[k],nu,F) k3y = dt*ydot((t[k]+dt/2),(y[k]+k2y/2),x[k],nu,F) k4y = dt*ydot((t[k]+dt),(y[k]+k3y),x[k],nu,F) rky = (k1y+(2*k2y)+(2*k3y)+k4y)/6 y[k+1] = y[k]+rky k1x = dt*xdot(y[k]) k2x = dt*xdot(y[k]+k1x/2) k3x = dt*xdot(y[k]+k2x/2) k4x = dt*xdot(y[k]+k3x) rkx = (k1x+(2*k2x)+(2*k3x)+k4x)/6 x[k+1] = x[k]+rkx return (t,x,y)
acd97edb74bc27d03908962e52431bc3fdb7a571
2,077
from furious.async import Async def decode_callbacks(encoded_callbacks): """Decode the callbacks to an executable form.""" callbacks = {} for event, callback in encoded_callbacks.iteritems(): if isinstance(callback, dict): async_type = Async if '_type' in callback: async_type = path_to_reference(callback['_type']) callback = async_type.from_dict(callback) else: callback = path_to_reference(callback) callbacks[event] = callback return callbacks
0ff066a21bb2f0c0e0979898d218add1e46da544
2,078
def create_conv_block( use_depthwise, kernel_size, padding, stride, layer_name, conv_hyperparams, is_training, freeze_batchnorm, depth): """Create Keras layers for depthwise & non-depthwise convolutions. Args: use_depthwise: Whether to use depthwise separable conv instead of regular conv. kernel_size: A list of length 2: [kernel_height, kernel_width] of the filters. Can be an int if both values are the same. padding: One of 'VALID' or 'SAME'. stride: A list of length 2: [stride_height, stride_width], specifying the convolution stride. Can be an int if both strides are the same. layer_name: String. The name of the layer. conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object containing hyperparameters for convolution ops. is_training: Indicates whether the feature generator is in training mode. freeze_batchnorm: Bool. Whether to freeze batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to freeze batch norm update and use pretrained batch norm params. depth: Depth of output feature maps. Returns: A list of conv layers. """ layers = [] if use_depthwise: kwargs = conv_hyperparams.params() # Both the regularizer and initializer apply to the depthwise layer, # so we remap the kernel_* to depthwise_* here. kwargs['depthwise_regularizer'] = kwargs['kernel_regularizer'] kwargs['depthwise_initializer'] = kwargs['kernel_initializer'] layers.append( tf.keras.layers.SeparableConv2D( depth, [kernel_size, kernel_size], depth_multiplier=1, padding=padding, strides=stride, name=layer_name + '_depthwise_conv', **kwargs)) else: layers.append(tf.keras.layers.Conv2D( depth, [kernel_size, kernel_size], padding=padding, strides=stride, name=layer_name + '_conv', **conv_hyperparams.params())) layers.append( conv_hyperparams.build_batch_norm( training=(is_training and not freeze_batchnorm), name=layer_name + '_batchnorm')) layers.append( conv_hyperparams.build_activation_layer( name=layer_name)) return layers
08c45a1ca62ff290d5e34e1cb544618dababaad1
2,079
def select_eps_for_division(dtype): """Selects default values for epsilon to make divisions safe based on dtype. This function returns an epsilon slightly greater than the smallest positive floating number that is representable for the given dtype. This is mainly used to prevent division by zero, which produces Inf values. However, if the nominator is orders of magnitude greater than `1.0`, eps should also be increased accordingly. Only floating types are supported. Args: dtype: The `tf.DType` of the tensor to which eps will be added. Raises: ValueError: If `dtype` is not a floating type. Returns: A `float` to be used to make operations safe. """ return 10.0 * np.finfo(dtype.as_numpy_dtype).tiny
7204b2b694c6df98af4608562616655b3c198178
2,080
def bpm_to_mspt(bpm, res=480): """ Coverts an integer value of beats per minute to miliseconds per quarter note """ return 60000 / res / bpm
6b962b8253eac29f52c48ca89a6dce0417adb11b
2,082
import numpy as np def pseudorandom(n, p, key): """ Pseudorandom array of integer indexes >>> pseudorandom(5, [0.5, 0.5], key=123) array([1, 0, 0, 1, 1], dtype=int8) >>> pseudorandom(10, [0.5, 0.2, 0.2, 0.1], key=5) array([0, 2, 0, 3, 0, 1, 2, 1, 0, 0], dtype=int8) """ p = list(p) cp = np.cumsum([0] + p) assert np.allclose(1, cp[-1]) assert len(p) < 256 x = np.random.RandomState(key).random_sample(n) out = np.empty(n, dtype='i1') for i, (low, high) in enumerate(zip(cp[:-1], cp[1:])): out[(x >= low) & (x < high)] = i return out
5ec3dc8e66451a00d1f13f1df1df680879a16bc6
2,084
def next_hidden(s, A): """From a given state s, use the transition matrix A to generate the next hidden state. """ return choose_idx(A[s])
cc0b106ebeaa98ac2aeba947bd9ed0f653d233b5
2,085
import torch def create_network_rcnn(cls, opt): """Separate function for rcnn, which always loads weights first, no init.""" net = cls(opt) net.print_network() util.load_network_path(net, opt.fastercnn_loc, strict=True, rcnn_load=True) if len(opt.gpu_ids) > 0: assert(torch.cuda.is_available()) net.cuda() return net
d653aa9435435ace4f10b134d28ee474353805bb
2,086
import tkinter def get_board_frame(window, mqtt_sender): """Builds the chessboard GUI.""" frame = ttk.Frame(window, padding=10, borderwidth=5, relief="ridge") frame.grid() frame_label = ttk.Label(frame, text="Board") get_state = ttk.Button(frame, text="Get state") get_state["command"] = lambda: handle_get_state(mqtt_sender) mqtt_sender.state = [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] box = [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]] frame_label.grid() get_state.grid() hint = {"0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H"} for k in range(8): note = ttk.Label(frame, text=str(hint[str(k)])) note.grid(row=0, column=k + 2) for j in range(2): note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=1) for k in range(8): mqtt_sender.state[j][k] = tkinter.IntVar(value=1) box[j][k] = ttk.Checkbutton(frame, variable=mqtt_sender.state[j][k]) box[j][k].grid(row=j + 1, column=k + 2) note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=10) for j in range(2, 6): note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=1) for k in range(8): mqtt_sender.state[j][k] = tkinter.IntVar() box[j][k] = ttk.Checkbutton(frame, variable=mqtt_sender.state[j][k]) box[j][k].grid(row=j + 1, column=k + 2) note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=10) for j in range(6, 8): note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=1) for k in range(8): mqtt_sender.state[j][k] = tkinter.IntVar(value=1) box[j][k] = ttk.Checkbutton(frame, variable=mqtt_sender.state[j][k]) box[j][k].grid(row=j + 1, column=k + 2) note = ttk.Label(frame, text=str(j + 1)) note.grid(row=j + 1, column=10) for k in range(8): note = ttk.Label(frame, text=str(hint[str(k)])) note.grid(row=10, column=k + 2) return frame
d6f5a13312989613f8b945c8e73cedb9ee7e3851
2,087
import html def body(): """Get map page body. Returns: html.Div: dash layout """ graph_map = get_graph_map() if graph_map is None: return html.Div( dbc.Alert("Cannot retrieve data! Try again later!", color="danger") ) # Put everything in a dcc container and return body = dbc.Container( [ dbc.Row( dbc.Col( dbc.Card( dbc.CardBody( [ html.P( "A graph of the UK rail network generated from \ individual train movements captured from the Network Rail feeds and a subset of known fixed locations. \ Each node represents a train describer 'berth' which usually, but not always, represents a signal.\ Red nodes indicate the live locations of trains on the network, \ whilst the node size indicates the frequency of usage. Hovering over each node provides additional information.\ The graph is updated every 5 seconds. \ Only the west coast mainline central signal area (around Manchester) is considered for now." ), ] ), color="secondary", ), width={"size": 10, "offset": 1}, ) ), dbc.Row(dbc.Col(dcc.Graph(id="graph-map", figure=graph_map))), dcc.Interval( id="graph-page-interval", interval=1 * 5000, n_intervals=0, # in milliseconds ), ], fluid=True, ) return body
6474602d65f71dadce26e043c62f35ec0c489a0f
2,089
from datetime import datetime def custom_strftime(formatting: str, date: datetime.datetime) -> str: """Custom strftime formatting function, using fancy number suffixes (1st, 2nd, 3rd...)""" return date.strftime(formatting).replace("{S}", str(date.day) + suffix(date.day))
3199f6e0590f4bb01c1792976c75c7a0d4208831
2,090
def setup_twitter(config_file='config.py'): """Setup auth keys and session with Twitter client.""" config = {} execfile(config_file, config) twitter_obj = Twitter(auth=OAuth(config["access_key"], config["access_secret"], config["consumer_key"], config["consumer_secret"])) return twitter_obj
bb811f3b6cabbe5dbf8f77d8e5217078f9a57c22
2,092
from datetime import datetime def create_datediff_test_nulls_df(): """Create DataFrame with nulls only for DateDifferenceTransformer tests.""" df = pd.DataFrame( { "a": [ datetime.datetime(1993, 9, 27, 11, 58, 58), np.NaN, ], "b": [ np.NaN, datetime.datetime(2019, 12, 25, 11, 58, 58), ], }, index=[0, 1], ) return df
542fd3fdf6fcd93a208e3f1f9cd2a76a0c34e46b
2,093
def business_days_list(start_date: date, end_date: date) -> list[date]: """ business days """ us_holidays = holidays.UnitedStates() days: list[date] = [] for the_date in get_list_of_days(start_date, end_date): if (the_date.weekday() < 5) and (the_date not in us_holidays): days.append(the_date) return days
daa36fe5fda5fc0857c1b29c75d7e784cafefe93
2,094
def test_3d(): """Test FE in 3D""" def setone(arr): arr[0, :, (arr.shape[0] - 1) // 2] = 1.0 return arr assert pipe( 5, lambda x: np.zeros((1, x, x, x), dtype=int), setone, solve_fe(elastic_modulus=(1.0, 10.0), poissons_ratio=(0.0, 0.0)), lambda x: np.allclose( [np.mean(x["strain"][0, ..., i]) for i in range(6)], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0], ), )
32f3d5fc18a31f01b2e366a3540ec77dd0e6080f
2,095
from typing import List def get_xray_edges(elements: List[str], wmin: float, wmax: float): """ Using xraydb, return the absorbtion edges Parameters ---------- elements: List[str] A list of the element symbols from which to query absorption edges. wmin: float The smallest wavelength edge to return wmax: float The largest wavelength edge to return Returns ------- output_table: List[str] A table containing absorption edges. - Elem: the element - Energy: the photoionisation energy - Frequency: the frequency of the absorption edge - Wavelength: the wavelength of the absorption edge """ element_absortion_edges_dicts = [] for element in elements: edges = xraydb.xray_edges(element) element_absortion_edges_dicts.append(edges) output_table = [] output_table.append("Elem {:15s} {:15s} {:15s}\n".format("Energy eV", "Frequency Hz", "Wavelength AA")) for i, edges in enumerate(element_absortion_edges_dicts): print("-" * COL_LEN) print("{}: \n".format(elements[i])) print("{:15s} {:15s} {:15s}".format("Energy eV", "Frequency Hz", "Wavelength AA")) keys = edges.keys() prev_key = "K" for key in keys: # This bit will skip edges which have the same energy, I hope if prev_key != key: if edges[prev_key][0] == edges[key][0]: continue prev_key = key energy = edges[key][0] frequency = energy / HEV wavelength = C / frequency / ANGSTROM print("{:9.1f} {:1.12e} {:13.1f}".format(energy, frequency, wavelength)) if wmin < wavelength < wmax: output_table_line = "{:4s} {:9.1f} {:1.12e} {:13.1f}\n".format( elements[i], energy, frequency, wavelength ) output_table.append(output_table_line) print() print("-" * COL_LEN) with open("xray_edges.txt", "w") as f: f.writelines(output_table) return output_table
b78c0b999f4faf9e749b3b8388f0a581a5bff476
2,096
import urllib import json def get_mobility_link(): """Get Apple Mobility data link """ # get link with urllib.request.urlopen(index_url) as url: json_link = json.loads(url.read().decode()) base_path = json_link['basePath'] csv_path = json_link['regions']['en-us']['csvPath'] link = site_url + \ base_path + csv_path return link
a097e9c0b787a522283d31a8a13d4d13b824b77b
2,097
from datetime import datetime def active_shift(app, token, gqlClient): """returns the currently active shift if it exists""" with app.test_request_context(): request.headers = {'authorization': token} query = '''mutation CreateShift($Active: Boolean!, $StartTime: String) { createShift(active: $Active, startTime: $StartTime) { shift { id startTime active } } } ''' vars = { 'StartTime': (datetime.now() - timedelta(hours=5)).strftime('%Y-%m-%d %H:%M:%S'), 'Active': True } res = gqlClient.execute(query, context_value=request, variables=vars) print("query result:", res) assert res['data']['createShift']['shift']['active'] shift = res['data']['createShift']['shift'] return shift
345ba7f30421e28b879bc5b14409c437b9038d89
2,098
def get_batch_size(input): """ Infer the mini-batch size according to `input`. Args: input (tf.Tensor): The input placeholder. Returns: int or tf.Tensor: The batch size. """ if input.get_shape() is None: batch_size = tf.shape(input)[0] else: batch_size = int_shape(input)[0] if batch_size is None: batch_size = tf.shape(input)[0] return batch_size
66201a3a8223ad442f54ac9551060093ee828f9b
2,099
def _order_points(pts: np.ndarray) -> np.ndarray: """Extract top left. top right, bottom left, bottom right of region Args: pts (np.ndarray[Tuple]): The coordinate of points Returns: np.ndarray: The coordinate of points. """ x_sorted = pts[np.argsort(pts[:, 0]), :] left_most = x_sorted[:2, :] right_most = x_sorted[2:, :] left_most = left_most[np.argsort(left_most[:, 1]), :] (tl, bl) = left_most distance = dist.cdist(tl[np.newaxis], right_most, "euclidean")[0] (br, tr) = right_most[np.argsort(distance)[::-1], :] return np.array([tl, tr, br, bl], dtype="float32")
46dfb8a8e042929b2475bda2b01b39e5d871e02d
2,100
import logging import math def to_image(obj): """ allgemeine funktion zum anschauen von allen objekttypen (work in progress) gibt image (numpy arry),description zurück description sagt, was alles gemacht wurde um bild darzustellen """ descr = "" if (tf.is_tensor(obj)): obj = obj.numpy() logger = logging.getLogger() old_level = logger.level logger.setLevel(100) if obj.shape: #print(f"Max {max(obj)}") if len(obj.shape) == 2: # grayscale image obj = norm(obj) descr += f"Grayscale Image, mean:{obj.mean()}, var:{obj.var()} \n" if (obj.var() < 0.01): descr += f"Mean abgzogen {obj.mean()} \n" obj = obj - obj.mean() if (obj.mean() < 0.01): i = 0 while (obj.mean() < 0.1 and obj.shape[0] > 10): i += 1 obj = skimage.measure.block_reduce(obj, (2,2), np.max) descr += f"Sehr dunkles Bild, maxpooling ({i} mal)" # in "rgb" umwandeln obj = np.stack((obj,)*3, axis=-1) return obj,descr elif len(obj.shape) == 3: # könnte ein bild sein if obj.shape[0] == 3: obj = np.transpose(obj,(1,2,0)) descr += "channel first \n" if obj.shape[2] == 3: # normales bild obj = norm(obj) descr += f"Mean {obj.mean()}, Variance {obj.var()}\n" if (obj.var() < 0.1): obj = obj - obj.mean() descr += f"Mean abgezogen \n" if (obj.mean() < 0.1): i= 0 while (obj.mean() < 0.1 and obj.shape[0] > 10): i += 1 obj = skimage.measure.block_reduce(obj, (2,2,1), np.max) descr += f"Bild zu dunkel, maxpooling ({i} mal)" return obj,descr else : ## feature map ## zeige ein paar davon n = math.floor(math.sqrt(obj.shape[2]/3)) n = min(n,8) f, axs = plt.subplots(n,n,figsize=(15,15)) descr += f"{obj.shape[2]} Feature Maps mit Shape {obj.shape[0:2]}" print(f'Zeige {n*n*3} Feature Maps via RGB:') for i in range(n*n): r = norm(obj[:,:,i*3]) g = norm(obj[:,:,i*3+1]) b = norm(obj[:,:,i*3+2]) axs.flat[i].set_title(f'{i*3} - {i*3+3}') axs.flat[i].imshow(np.moveaxis(np.array([r,g,b]), 0, 2)) # channels first -> channels last #axs.flat[i].imshow(r,cmap='gray') axs.flat[i].axis('off') elif len(obj.shape) == 4 and obj.shape[0] == 3 and obj.shape[0] == 3: # convolution kernel descr += f"Convolution Kernel {obj.shape}" obj = np.transpose(obj,(2,3,0,1)) obj = np.reshape(obj,(obj.shape[0],-1,3)) #obj = obj[:,:,:3] return to_image(obj) else: print("Tensor ",obj.shape) print(obj) logger.setLevel(old_level) else: return None, "Object of type "+str(type(obj))
4ae3be9758a647bbe2d0d2fedc080992840ab124
2,101
import re def matchPP(a_string): """assumes a_string is a string returns re match object if it finds two consecutive words that start with P, else returns None""" pattern = "[P|p]\w+\s[P|p]\w+" result = re.search(pattern, a_string) return result
c46eb4e0380a54cc36db0dc8969d17d65a546bf3
2,103
def setBoth(s1, s2): """ Sets both servo motors to specified number of degrees Args: s1, s2 (number): degrees for left and right servos respectively must be between -90 and 90 and will be rounded Raises: Exception if s1 or s2 is not a number Returns: None """ s1 = restrictServoDegrees(s1) s2 = restrictServoDegrees(s2) return _setServos(s1, s2)
16385e9a8ad23011e9c10f66677afb703f6d19ed
2,104
import json def transfer_shfe_future_hq(date, file_path, columns_map): """ 将每天的数据统一标准 :return: pd.DataFrame 统一标准后的数据 """ ret = pd.DataFrame() data = json.loads(file_path.read_text()) hq_df = pd.DataFrame(data['o_curinstrument']) total_df = pd.DataFrame(data['o_curproduct']) bflag = hq_df.empty or len(hq_df.columns) < len(columns_map) or len(hq_df.columns) > 20 if bflag: # 原始数据文件为null,不重新下载,需要再运行一次程序 print('dce future hq data:{} is not exist, please rerun program!'.format(file_path.name)) return ret settle_name = columns_map['settle'] hq_df = hq_df[hq_df[settle_name] != ''] hq_df = data_type_conversion(hq_df, 0, list(columns_map.values()), list(columns_map.keys()), date, 'shfe') hq_df.loc[:, 'code'] = hq_df['code'].str.strip() # 商品字母缩写转换 hq_df['code'] = hq_df['code'].transform(lambda x: NAME2CODE_MAP['exchange'][x]) # 构建symbol hq_df['symbol'] = hq_df['code'] + hq_df['symbol'].transform(lambda x: convert_deliver(x, date)) # 计算amount total_df['PRODUCTNAME'] = total_df['PRODUCTNAME'].str.strip() total_df['AVGPRICE'] = pd.to_numeric(total_df['AVGPRICE'], downcast='float') total_df['VOLUME'] = pd.to_numeric(total_df['VOLUME'], downcast='integer') total_df['TURNOVER'] = pd.to_numeric(total_df['TURNOVER'], downcast='float') total_df = total_df[total_df['AVGPRICE'] > 0] total_df['code'] = total_df['PRODUCTNAME'].transform(lambda x: NAME2CODE_MAP['exchange'][x.strip()]) total_df['multiplier'] = total_df['TURNOVER'] / total_df['AVGPRICE'] / total_df['VOLUME'] * 100000000 total_df['multiplier'] = total_df['multiplier'].transform(round) hq_df = hq_df.join(total_df[['code', 'multiplier']].set_index('code'), on='code') hq_df['amount'] = hq_df['volume'] * hq_df['settle'] * hq_df['multiplier'] del hq_df['multiplier'] return hq_df
4e90164f96d4c5018774c0ad8d4deda7fa6dbeec
2,105
def comp_material_bsdf(arg_material_one:bpy.types.Material, arg_material_two:bpy.types.Material) -> bool: """指定マテリアルのBSDFノードを比較する 受け渡したマテリアルの出力ノードに接続されたプリシプルBSDFノードを比較する 比較対象の入力端子のデフォルト値が有効、かつ、全て同一の場合、Trueを返す Args: arg_material_one (bpy.types.Material): 比較マテリアル1 arg_material_two (bpy.types.Material): 比較マテリアル2 Returns: bool: 比較結果(一致:True) """ # マテリアルの出力ノードにプリンシプルBSDFノードが接続されているかチェックする if check_surface_bsdf(arg_material_one) == False: # プリシプルBSDF出なかった場合は処理を終了して False を返す return False # マテリアルの出力ノードにプリンシプルBSDFノードが接続されているかチェックする if check_surface_bsdf(arg_material_two) == False: # プリシプルBSDF出なかった場合、処理を終了して False を返す return False # プリンシプルBSDFノードを取得する get_node_one = get_node_linkoutput(arg_material_one) # プリンシプルBSDFノードを取得する get_node_two = get_node_linkoutput(arg_material_two) # 比較結果フラグ(デフォルトで一致判定) comp_result = True # 比較対象とする入力端子を全てチェックする for bsdfnode_inputname in def_comp_bsdfnode_input_list: # デフォルト値が有効なソケットの情報を取得する nodesocket_one = get_nodesocket_enabledefault(arg_node=get_node_one, arg_inputname=bsdfnode_inputname) nodesocket_two = get_nodesocket_enabledefault(arg_node=get_node_two, arg_inputname=bsdfnode_inputname) # デフォルト値が有効なソケット情報を取得できたか確認する if ((nodesocket_one == None) or (nodesocket_two == None)): # ソケット情報を取得できなかった場合は不一致としてチェックを終了する comp_result = False break # ソケットのタイプが同一か確認する if (type(nodesocket_one) != type(nodesocket_two)): # 同一でない場合は不一致としてチェックを終了する comp_result = False break # タイプ毎の値比較の実施済みフラグ checked_flg = False # NodeSocketFloatのソケットの比較 if isinstance(nodesocket_one, bpy.types.NodeSocketFloat): # 値が一致するか比較する if (nodesocket_one.default_value != nodesocket_two.default_value): # 値が一致しない場合は不一致としてチェックを終了する comp_result = False break else: # タイプ毎の値比較の実施済みフラグを設定する checked_flg = True # NodeSocketFloatFactorのソケットの比較 if isinstance(nodesocket_one, bpy.types.NodeSocketFloatFactor): # 値が一致するか比較する if (nodesocket_one.default_value != nodesocket_two.default_value): # 値が一致しない場合は不一致としてチェックを終了する comp_result = False break else: # タイプ毎の値比較の実施済みフラグを設定する checked_flg = True # NodeSocketVectorのソケットの比較 if isinstance(nodesocket_one, bpy.types.NodeSocketVector): # 値が一致するか比較する if ((nodesocket_one.default_value[0] != nodesocket_two.default_value[0]) or (nodesocket_one.default_value[1] != nodesocket_two.default_value[1]) or (nodesocket_one.default_value[2] != nodesocket_two.default_value[2])): # 値が一致しない場合は不一致としてチェックを終了する comp_result = False break else: # タイプ毎の値比較の実施済みフラグを設定する checked_flg = True # NodeSocketColorのソケットの比較 if isinstance(nodesocket_one, bpy.types.NodeSocketColor): # 値が一致するか比較する if ((nodesocket_one.default_value[0] != nodesocket_two.default_value[0]) or (nodesocket_one.default_value[1] != nodesocket_two.default_value[1]) or (nodesocket_one.default_value[2] != nodesocket_two.default_value[2]) or (nodesocket_one.default_value[3] != nodesocket_two.default_value[3])): # 値が一致しない場合は不一致としてチェックを終了する comp_result = False break else: # タイプ毎の値比較の実施済みフラグを設定する checked_flg = True # 値比較を実施済みか確認する if checked_flg == False: # 合致するタイプがない場合はBSDFでないと判断して不一致としてチェックを終了する comp_result = False break return comp_result
884c38c93ea4fd0c6907da0d2e5025a0980bed50
2,106
def run_filters(): """Runs filters ('PAINS', 'ZINC', 'BRENK', 'NIH')for molecule selected. Saves the information to the global molecule_info dict and returns the information as its own dict. Pass R Group IDs as queries: /filters?r1=A01&r2=B01 :returns: A json dictionary of the molecule, indexed by the concatenated string of its R Group IDs, with the values for each descriptor, with each key being its respective descriptor label. :rtype: json dict """ filter_names = ['PAINS', 'ZINC', 'BRENK', 'NIH'] r_group_1_id = request.args.get('r1') r_group_2_id = request.args.get('r2') drug_mol = FinalMolecule(r_group_1_id, r_group_2_id) drug_filters = drug_mol.filter_properties() molecule_key = tuple2str((r_group_1_id, r_group_2_id)) filt_dict = {} filt_dict[molecule_key] = {} for label in filter_names: if "filters" in molecule_info[molecule_key].keys(): pass else: molecule_info[molecule_key]["filters"] = {} molecule_info[molecule_key]["filters"][label] = drug_filters[label] filt_dict[molecule_key][label] = drug_filters[label] return jsonify({"filter_dict": filt_dict})
e1bc4719d412a73a7860f49978d47c459dc34d70
2,107
def read_template(engine, template_name): """Read template string from file and get path.""" template_file = get_template_file(engine, template_name) template_string = template_file.read_text() return template_string, template_file.parent
3dc55309df1575d2af2e4794e03e2ba4ccd166a2
2,108
def get_qbert_v3_url(qbert_url, project_id): """Keystone only hands out a v1 url I need v3.""" qbert_v3_url = "{0}/v3/{1}".format(qbert_url[0:-3], project_id) return qbert_v3_url
423e1f7a601f4ecafbc7d52d1f95fd59195f193e
2,109
def gen_all_holds(hand): """ Generate all possible choices of dice from hand to hold. hand: sorted full yahtzee hand Returns a set of tuples, where each tuple is sorted dice to hold """ # start off with the original hand in set set_holds = set([(hand)]) # now iterate with all sub hands with one element removed for item in hand: list_hand = list(hand) list_hand.remove(item) # add to set_holds this sub hand set_holds.add(tuple(list_hand)) # also add to set_holds the recursion of this sub hand # set functionality also takes care of repeated sub hands set_holds.update(gen_all_holds(tuple(list_hand))) return set_holds
5c8af5040f619fabef56918d399b5a1cab8893a4
2,110
def sndrcv(*args, **kwargs): # type: (*Any, **Any) -> Tuple[SndRcvList, PacketList] """Scapy raw function to send a packet and receive its answer. WARNING: This is an internal function. Using sr/srp/sr1/srp is more appropriate in many cases. """ sndrcver = SndRcvHandler(*args, **kwargs) return sndrcver.results()
6918dbf09bef672b95bab83126e6e4c0ec99e3bf
2,111
from typing import Optional def get_by_name(db_session: Session, *, name: str) -> Optional[Action]: """Return action object based on action name. Arguments: db_session {Session} -- SQLAlchemy Session object name {str} -- action name Returns: Optional[Action] -- Returns a Action object or nothing if it doesn't exist """ return db_session.query(Action).filter(Action.name == name).first()
fb8c758d401fe09a36b3d2687a0e8e886edac594
2,112
def langstring(value: str, language: str = "x-none") -> dict: """Langstring.""" return { "langstring": { "lang": language, "#text": value, } }
dca23a329cfc87d8cfa52cd2b009ce723b7d2270
2,113
def chinese_half2full(): """Convert all halfwidth Chinese characters to fullwidth . Returns: """ def string_op(input_str:str): rstring = "" for uchar in input_str: u_code = ord(uchar) if u_code == 32: u_code = 12288 elif 33 <= u_code <= 126: u_code += 65248 rstring += chr(u_code) return rstring return string_op
e89a6314a57192e62b32e1f7e044a09700b5bb73
2,114
def euclidean_distance(p1, p2): """ Returns the Euclidean Distance of a particular point from rest of the points in dataset. """ distance = 0 for i in range(len(p1)-1): distance += (p1[i]-p2[i])**(2) return sqrt(distance)
dd06e44659fdd06972bd6a660afeb313de81c6fe
2,115
def img_histogram(file): """ Returns an image's histogram in a combined RGB channel and each individual channel as an array of 256 values. A 0 means that a tonal value is the max and 255 means there are 0 pixels at that value. """ with Image.open(file) as img: histogram = img.histogram() red_histogram = histogram[0:256] red_max = max(red_histogram) green_histogram = histogram[256:512] green_max = max(green_histogram) blue_histogram = histogram[512:768] blue_max = max(blue_histogram) rgb_histogram = [] for i in range(256): rgb_histogram.append(red_histogram[i] + green_histogram[i] + blue_histogram[i]) rgb_max = max(rgb_histogram) for i in range(256): r = red_histogram[i] g = green_histogram[i] b = blue_histogram[i] rgb = rgb_histogram[i] rgb_histogram[i] = round(255 - (rgb * 255 / rgb_max), 2) red_histogram[i] = round(255 - (r * 255 / red_max), 2) green_histogram[i] = round(255 - (g * 255 / green_max), 2) blue_histogram[i] = round(255 - (b * 255 / blue_max), 2) return rgb_histogram, red_histogram, green_histogram, blue_histogram
1f210316e752328190978f908143dd40c9ef6ba4
2,117
def absModuleToDist(magApp, magAbs): """ Convert apparent and absolute magnitude into distance. Parameters ---------- magApp : float Apparent magnitude of object. magAbs : float Absolute magnitude of object. Returns ------- Distance : float The distance resulting from the difference in apparent and absolute magnitude [pc]. """ d = 10.0**(-(magAbs - magApp) / 5.0 + 1.0) return d
a7d98ff479114f08e47afefc97a1119f5e8ff174
2,118
import base64 def decoded_anycli(**kwargs): """ Return the decoded return from AnyCLI request - Do not print anything :param kwargs: keyword value: value to display :return: return the result of AnyCLI in UTF-8 :Example: result = cli(url=base_url, auth=s, command="show vlan") decoded_anycli(result) """ value = kwargs.get('value', None) return base64.b64decode(value['result_base64_encoded']).decode('utf-8')
223c4f9aabfef530896729205071e7fb8f9c8301
2,119
import pandas def open_mcrae_nature_cohort(): """ get proband details for McRae et al., Nature 2017 McRae et al Nature 2017 542:433-438 doi: 10.1038/nature21062 Supplementary table S1. """ data = pandas.read_excel(url, sheet_name='Supplementary Table 1') data['Individual ID'] += '|DDD' phenotype = ['HP:0001249'] study = ['10.1038/nature21062'] persons = set() for i, row in data.iterrows(): person = Person(row['Individual ID'], row.Sex, phenotype, study) persons.add(person) persons = add_mock_probands(persons, 4293, 'ddd', 'DDD', phenotype, study) return persons
8485fdc09c92bab20fc380a14f549f028be950b7
2,121
def copia_coords_alineadas(align1,align2,coords_molde,PDBname): """ Devuelve: 1) una lista con las coordenadas de coords_molde que se pueden copiar segun el alineamiento align1,align2. 2) una estimacion del RMSD segun la curva RMSD(A) = 0.40 e^{l.87(1-ID)} de Chothia & Lesk (1986) """ aanames = { "A":"ALA","C":"CYS","D":"ASP","E":"GLU","F":"PHE","G":"GLY", "H":"HIS","I":"ILE","K":"LYS","L":"LEU","M":"MET","N":"ASN","P":"PRO", "Q":"GLN","R":"ARG","S":"SER","T":"THR","V":"VAL","W":"TRP","Y":"TYR" } rmsd,identical = 0,0 total1,total2,total_model = -1,-1,0 length = len(align1) if(length != len(align2)): print "# copia_coords_alineadas: alineamientos tienen != longitud", return [] pdbfile = open(PDBname, 'w') print >> pdbfile, "HEADER comparative model\nREMARK alignment:\n", print >> pdbfile, "REMARK query : %s\n" % (align1), print >> pdbfile, "REMARK template: %s\n" % (align2), for r in range(0, length): conserved = False res1 = align1[r:r+1] res2 = align2[r:r+1] if(res1 != '-'): total1+=1 if(res2 != '-'): total2+=1 if(res1 == '-' or res2 == '-'): continue # salta los gaps total_model += 1.0; if(res1 == res2): conserved = True identical += 1.0 for atomo in coords_molde[total2].split("\n"): if(atomo == ''): break if(atomo[12:16] == ' CA ' or atomo[12:16] == ' C ' or \ atomo[12:16] == ' N ' or atomo[12:16] == ' O ' \ or conserved): print >> pdbfile, "%s%s%s%4d%s" % \ (atomo[0:17],aanames[res1],atomo[20:22],total1+1,atomo[26:]) print >> pdbfile, "TER\n", pdbfile.close() rmsd = 0.40 * exp(1.87*(1-(identical/total_model))) identical = (identical/total_model) return (total_model,identical,rmsd)
48c730b43dd7059b6a6d7a068d884ecd27d3820e
2,122
def get_amati_relationship(value='o'): """ Return the Amati relationship and it's 1 sigma dispersion as given by Tsutsui et al. (2009). :param value: a string that can be 'o', '+', or '-'. The default is set to 'o' for the actual Amati relationship. '+' gives the upper bound of uncertainty and '-' gives the lower bound of uncertainty. :return: returns arrays of the a and y values of the amati relation/ error in the relation """ #plot the amati relation given by: #http://iopscience.iop.org/article/10.1088/1475-7516/2009/08/015/pdf x=np.linspace(-3,3,100) #log(E_iso/10**52), for caluclation of E_p, add 52 to x @ end to get back normal values if value=='o': y=(1/2.01)*(x+3.87) #y is log(E_p/1keV) elif value=='+': y=(1/(2.01))*(x+(3.87+0.33)) elif value=='-': y=(1/(2.01))*(x+(3.87-0.33)) else: print('This isnt a correct option for value\n') return 1e52*10**x,10**y
f7618f812dca45640376177383af2443085b6246
2,123
def load(name, final=False, torch=False, prune_dist=None): """ Returns the requested dataset. :param name: One of the available datasets :param final: Loads the test/train split instead of the validation train split. In this case the training data consists of both training and validation. :return: A pair (triples, meta). `triples` is a numpy 2d array of datatype uint32 contianing integer-encoded triples. `meta` is an object of metadata containing the following fields: * e: The number of entities * r: The number of relations * i2r: """ if name == 'micro': return micro(final, torch) # -- a miniature dataset for unit testing if name in ['aifb', 'am1k', 'amplus', 'dblp', 'mdgenre', 'mdgender', 'dmgfull', 'dmg777k']: tic() data = Data(here(f'../datasets/{name}'), final=final, use_torch=torch) print(f'loaded data {name} ({toc():.4}s).') else: raise Exception(f'Dataset {name} not recognized.') if prune_dist is not None: tic() data = prune(data, n=prune_dist) print(f'pruned ({toc():.4}s).') return data
38f379076ba6f5562ab818113b319276f84bd081
2,124
def is_paragraph_debian_packaging(paragraph): """ Return True if the `paragraph` is a CopyrightFilesParagraph that applies only to the Debian packaging """ return isinstance( paragraph, CopyrightFilesParagraph ) and paragraph.files.values == ['debian/*']
726cd3d8c7cdfd14a55dc8bc9764cc9d037b1b63
2,125
def update_b(b, action_prob, yr_val, predict_mode): """Update new shape parameters b using the regression and classification output. Args: b: current shape parameters values. [num_examples, num_shape_params]. action_prob: classification output. [num_actions]=[num_examples, 2*num_shape_params] yr_val: values of db to regress. yr=b-b_gt. [num_examples, num_shape_params] predict_mode: 0: Hard classification. Move regressed distance only in the direction with maximum probability. 1: Soft classification. Multiply classification probabilities with regressed distances. 2: Regression only. 3: Classification only. Returns: b_new: new b after update. [num_examples, num_shape_params] """ if predict_mode == 0: # Hard classification. Move regressed distance only in the direction with maximum probability. ind = np.argmax(np.amax(np.reshape(action_prob, (b.shape[0], b.shape[1], 2)), axis=2), axis=1) # ind = [num_examples] row_ind = np.arange(b.shape[0]) b[row_ind, ind] = b[row_ind, ind] - yr_val[row_ind, ind] elif predict_mode == 1: # Soft classification. Multiply classification probabilities with regressed distances. b = b - yr_val * np.amax(np.reshape(action_prob, (b.shape[0], b.shape[1], 2)), axis=2) elif predict_mode == 2: # Regression only. b = b - yr_val elif predict_mode == 3: # Classification only step = 1 action_prob_reshape = np.reshape(action_prob, (b.shape[0], b.shape[1], 2)) ind = np.argmax(np.amax(action_prob_reshape, axis=2), axis=1) # ind=[num_examples] row_ind = np.arange(b.shape[0]) is_negative = np.argmax(action_prob_reshape[row_ind, ind], axix=1) # is_negative=[num_examples] # Move b in either positive or negative direction b[row_ind[is_negative], ind[is_negative]] = b[row_ind[is_negative], ind[is_negative]] + step b[row_ind[np.logical_not(is_negative)], ind[np.logical_not(is_negative)]] = b[row_ind[np.logical_not(is_negative)], ind[np.logical_not(is_negative)]] - step return b
ba8535d538ae0e0ac44c452f2fbe94a686b8e5a1
2,126
def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_config(args, cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.merge_from_list(['MODEL.BUA.EXTRACT_FEATS',True]) cfg.merge_from_list(switch_extract_mode(args.extract_mode)) cfg.merge_from_list(set_min_max_boxes(args.min_max_boxes, args.mode)) cfg.freeze() default_setup(cfg, args) return cfg
9dd4495a13c64d4832b889abdf94ffd01133c92a
2,127
def _earth_distance(time='now'): """ Return the distance between the Sun and the Earth at a specified time. Parameters ---------- time : {parse_time_types} Time to use in a parse_time-compatible format Returns ------- out : `~astropy.coordinates.Distance` The Sun-Earth distance """ return get_earth(time).radius
c8646b7e2aa9b821a9740235d5cc263623bd0ec0
2,128
async def DELETE_Link(request): """HTTP method to delete a link""" log.request(request) app = request.app group_id = request.match_info.get('id') if not group_id: msg = "Missing group id" log.warn(msg) raise HTTPBadRequest(reason=msg) if not isValidUuid(group_id, obj_class="Group"): msg = f"Invalid group id: {group_id}" log.warn(msg) raise HTTPBadRequest(reason=msg) link_title = request.match_info.get('title') validateLinkName(link_title) username, pswd = getUserPasswordFromRequest(request) await validateUserPassword(app, username, pswd) domain = getDomainFromRequest(request) if not isValidDomain(domain): msg = f"domain: {domain}" log.warn(msg) raise HTTPBadRequest(reason=msg) bucket = getBucketForDomain(domain) await validateAction(app, domain, group_id, username, "delete") req = getDataNodeUrl(app, group_id) req += "/groups/" + group_id + "/links/" + link_title params = {} if bucket: params["bucket"] = bucket rsp_json = await http_delete(app, req, params=params) resp = await jsonResponse(request, rsp_json) log.response(request, resp=resp) return resp
193d6cb86a820a7492c768aad0a0e22fac76198f
2,129
def format_image(image): """ Function to format frame """ if len(image.shape) > 2 and image.shape[2] == 3: # determine whether the image is color image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: # Image read from buffer image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) cascade_classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') faces = cascade_classifier.detectMultiScale(image,scaleFactor = 1.3 ,minNeighbors = 5) if not len(faces) > 0: return None # initialize the first face as having maximum area, then find the one with max_area max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face face = max_area_face # extract ROI of face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] try: # resize the image so that it can be passed to the neural network image = cv2.resize(image, (48,48), interpolation = cv2.INTER_CUBIC) / 255. except Exception: print("----->Problem during resize") return None return image
1649814cddab0037f89936d1a39af44d8d5203d9
2,130
def cpu_stats(): """Return various CPU stats as a named tuple.""" ctx_switches, interrupts, syscalls, traps = cext.cpu_stats() soft_interrupts = 0 return _common.scpustats(ctx_switches, interrupts, soft_interrupts, syscalls)
afdc9e95ba5d0b7760a1bbdf505b85f3fb0a0b7d
2,131
def has_reacted(comment, user, reaction): """ Returns whether a user has reacted with a particular reaction on a comment or not. """ if user.is_authenticated: reaction_type = getattr(ReactionInstance.ReactionType, reaction.upper(), None) if not reaction_type: raise template.TemplateSyntaxError(ReactionError.TYPE_INVALID.format(reaction_type=reaction)) return ReactionInstance.objects.filter( user=user, reaction_type=reaction_type.value, reaction__comment=comment ).exists() return False
8cf537b204ae13c844e80a14b29f11e36d69097b
2,133
import requests def structure_query(compound, label='pyclassyfire'): """Submit a compound information to the ClassyFire service for evaluation and receive a id which can be used to used to collect results :param compound: The compound structures as line delimited inchikey or smiles. Optionally a tab-separated id may be prepended for each structure. :type compound: str :param label: A label for the query :type label: :return: A query ID number :rtype: int >>> structure_query('CCC', 'smiles_test') >>> structure_query('InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)') """ r = requests.post(url + '/queries.json', data='{"label": "%s", ' '"query_input": "%s", "query_type": "STRUCTURE"}' % (label, compound), headers={"Content-Type": "application/json"}) r.raise_for_status() return r.json()['id']
cd7c0558dd61f493187169cea3562c96f63634d2
2,134
def create(*, db_session, ticket_in: TicketCreate) -> Ticket: """Creates a new ticket.""" ticket = Ticket(**ticket_in.dict()) db_session.add(ticket) db_session.commit() return ticket
644bcccc56c8fd97ec3c888f6e38c1fc2afc3585
2,136
def blur(img): """ :param img: SimpleImage, an original image. :return: img: SimpleImage, image with blurred effect. """ blank_img = SimpleImage.blank(img.width, img.height) for y in range(img.height): for x in range(img.width): blurred = blank_img.get_pixel(x, y) if x == 0 and y == 0: """ For 4 corners. The new RGB values of original pixel is the average RGB values of the original pixel and the other pixels around it. """ avg_red1 = (img.get_pixel(x, y).red + img.get_pixel(x + 1, y).red + img.get_pixel(x, y + 1).red + img.get_pixel(x + 1, y + 1).red) / 4 avg_green1 = (img.get_pixel(x, y).green + img.get_pixel(x + 1, y).green + img.get_pixel(x, y + 1).green + img.get_pixel(x + 1, y + 1).green) / 4 avg_blue1 = (img.get_pixel(x, y).blue + img.get_pixel(x + 1, y).blue + img.get_pixel(x, y + 1).blue + img.get_pixel(x + 1, y + 1).blue) / 4 blurred.red = avg_red1 blurred.green = avg_green1 blurred.blue = avg_blue1 elif x == 0 and y == blank_img.height - 1: avg_red2 = (img.get_pixel(x, y).red + img.get_pixel(x, y - 1).red + img.get_pixel(x + 1, y - 1).red + img.get_pixel(x + 1, y).red) / 4 avg_green2 = (img.get_pixel(x, y).green + img.get_pixel(x, y - 1).green + img.get_pixel(x + 1, y - 1).green + img.get_pixel(x + 1, y).green) / 4 avg_blue2 = (img.get_pixel(x, y).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x + 1, y - 1).blue + img.get_pixel(x + 1, y).blue) / 4 blurred.red = avg_red2 blurred.green = avg_green2 blurred.blue = avg_blue2 elif x == blank_img.width - 1 and y == 0: avg_red3 = (img.get_pixel(x, y).red + img.get_pixel(x - 1, y).red + img.get_pixel(x - 1, y + 1).red + img.get_pixel(x, y + 1).red) / 4 avg_green3 = (img.get_pixel(x, y).green + img.get_pixel(x - 1, y).green + img.get_pixel(x - 1, y + 1).green + img.get_pixel(x, y + 1).green) / 4 avg_blue3 = (img.get_pixel(x, y).blue + img.get_pixel(x - 1, y).blue + img.get_pixel(x - 1, y + 1).blue + img.get_pixel(x, y + 1).blue) / 4 blurred.red = avg_red3 blurred.green = avg_green3 blurred.blue = avg_blue3 elif x == blank_img.width - 1 and y == blank_img.height - 1: avg_red4 = (img.get_pixel(x, y).red + img.get_pixel(x, y - 1).red + img.get_pixel(x - 1, y - 1).red + img.get_pixel(x - 1, y).red) / 4 avg_green4 = (img.get_pixel(x, y).green + img.get_pixel(x, y - 1).green + img.get_pixel(x - 1, y - 1).green + img.get_pixel(x - 1, y).green) / 4 avg_blue4 = (img.get_pixel(x, y).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x - 1, y - 1).blue + img.get_pixel(x - 1, y).blue) / 4 blurred.red = avg_red4 blurred.green = avg_green4 blurred.blue = avg_blue4 elif x == 0 and 0 < y < blank_img.height - 1: """ For 4 edges. The new RGB values of original pixel is the average RGB values of the original pixel and the other pixels around it. """ avg_red5 = (img.get_pixel(x, y).red + img.get_pixel(x, y - 1).red + img.get_pixel(x + 1, y - 1).red + img.get_pixel(x + 1, y).red + img.get_pixel(x + 1, y + 1).red + img.get_pixel(x, y + 1).red) / 5 avg_green5 = (img.get_pixel(x, y).green + img.get_pixel(x, y - 1).green + img.get_pixel(x + 1, y - 1).green + img.get_pixel(x + 1, y).green + img.get_pixel(x + 1, y + 1).green + img.get_pixel(x, y + 1).green) / 5 avg_blue5 = (img.get_pixel(x, y).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x + 1, y - 1).blue + img.get_pixel(x + 1, y).blue + img.get_pixel(x + 1, y + 1).blue + img.get_pixel(x, y + 1).blue) / 5 blurred.red = avg_red5 blurred.green = avg_green5 blurred.blue = avg_blue5 elif x == blank_img.width - 1 and 0 < y < blank_img.height - 1: avg_red6 = (img.get_pixel(x, y).red + img.get_pixel(x, y - 1).red + img.get_pixel(x - 1, y - 1).red + img.get_pixel(x - 1, y).red + img.get_pixel(x - 1, y + 1).red + img.get_pixel(x, y + 1).red) / 6 avg_green6 = (img.get_pixel(x, y).green + img.get_pixel(x, y - 1).green + img.get_pixel(x - 1, y - 1).green + img.get_pixel(x - 1, y).green + img.get_pixel(x - 1, y + 1).green + img.get_pixel(x, y + 1).green) / 6 avg_blue6 = (img.get_pixel(x, y).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x - 1, y - 1).blue + img.get_pixel(x - 1, y).blue + img.get_pixel(x - 1, y + 1).blue + img.get_pixel(x, y + 1).blue) / 6 blurred.red = avg_red6 blurred.green = avg_green6 blurred.blue = avg_blue6 elif y == 0 and 0 < x < blank_img.width - 1: avg_red7 = (img.get_pixel(x, y).red + img.get_pixel(x - 1, y).red + img.get_pixel(x - 1, y + 1).red + img.get_pixel(x, y + 1).red + img.get_pixel(x + 1, y + 1).red + img.get_pixel(x + 1, y).red) / 6 avg_green7 = (img.get_pixel(x, y).green + img.get_pixel(x - 1, y).green + img.get_pixel(x - 1, y + 1).green + img.get_pixel(x, y + 1).green + img.get_pixel(x + 1, y + 1).green + img.get_pixel(x + 1, y).green) / 6 avg_blue7 = (img.get_pixel(x, y).blue + img.get_pixel(x - 1, y).blue + img.get_pixel(x - 1, y + 1).blue + img.get_pixel(x, y + 1).blue + img.get_pixel(x + 1, y + 1).blue + img.get_pixel(x + 1, y).blue) / 6 blurred.red = avg_red7 blurred.green = avg_green7 blurred.blue = avg_blue7 elif y == blank_img.height - 1 and 0 < x < blank_img.width - 1: avg_red8 = (img.get_pixel(x, y).red + img.get_pixel(x - 1, y).red + img.get_pixel(x - 1, y - 1).red + img.get_pixel(x, y - 1).red + img.get_pixel(x + 1, y - 1).red + img.get_pixel(x + 1, y).red) / 6 avg_green8 = (img.get_pixel(x, y).green + img.get_pixel(x - 1, y).green + img.get_pixel(x - 1, y - 1).green + img.get_pixel(x, y - 1).green + img.get_pixel(x + 1, y - 1).green + img.get_pixel(x + 1, y).green) / 6 avg_blue8 = (img.get_pixel(x, y).blue + img.get_pixel(x - 1, y).blue + img.get_pixel(x - 1, y - 1).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x + 1, y - 1).blue + img.get_pixel(x + 1, y).blue) / 6 blurred.red = avg_red8 blurred.green = avg_green8 blurred.blue = avg_blue8 else: """ For other area except the corners and edges. The new RGB values of original pixel is the average RGB values of the other pixels around it. """ avg_red9 = (img.get_pixel(x, y).red + img.get_pixel(x - 1, y).red + img.get_pixel(x + 1, y).red + img.get_pixel(x - 1, y - 1).red + img.get_pixel(x, y - 1).red + img.get_pixel(x + 1, y - 1).red + img.get_pixel(x - 1, y + 1).red + img.get_pixel(x, y + 1).red + img.get_pixel(x + 1, y + 1).red) / 9 avg_green9 = (img.get_pixel(x, y).green + img.get_pixel(x - 1, y).green + img.get_pixel(x + 1, y).green + img.get_pixel(x - 1, y - 1).green + img.get_pixel(x, y - 1).green + img.get_pixel(x + 1, y - 1).green + img.get_pixel(x - 1, y + 1).green + img.get_pixel(x, y + 1).green + img.get_pixel(x + 1, y + 1).red) / 9 avg_blue9 = (img.get_pixel(x, y).blue + img.get_pixel(x - 1, y).blue + img.get_pixel(x + 1, y).blue + img.get_pixel(x - 1, y - 1).blue + img.get_pixel(x, y - 1).blue + img.get_pixel(x + 1, y - 1).blue + img.get_pixel(x - 1, y + 1).blue + img.get_pixel(x, y + 1).blue + img.get_pixel(x + 1, y + 1).blue) / 9 blurred.red = avg_red9 blurred.green = avg_green9 blurred.blue = avg_blue9 return blank_img
9a7ac5085aea610a26a626e1d53bd243de19ad9e
2,137
def trans_pressure(src, dest="bar"): """ >>> """ return trans_basic_unit(src, dest, "pressure")
120888c024e6158a6e26ab699f7f4b5583cbf243
2,138
def test_accelerated_bypass_method_against_old(c_ctrl_rr): """Confirm that my changes to the bypass method maintain the same result as the old method""" OLD_HTCONSTS = dassh.region_rodded.calculate_ht_constants(c_ctrl_rr) def _calc_coolant_byp_temp_old(self, dz): """Calculate the coolant temperatures in the assembly bypass channels at the axial level j+1 Parameters ---------- self : DASSH RoddedRegion object dz : float Axial step size (m) Notes ----- The coolant in the bypass channels is assumed to get no power from neutron/gamma heating (that contribution to coolant in the assembly interior is already small enough). """ # Calculate the change in temperature in each subchannel dT = np.zeros((self.n_bypass, self.subchannel.n_sc['bypass']['total'])) # self._update_coolant_byp_params(self.avg_coolant_byp_temp) for i in range(self.n_bypass): # This factor is in many terms; technically, the mass flow # rate is already accounted for in constants defined earlier # mCp = self.coolant.heat_capacity # starting index to lookup type is after all interior # coolant channels and all preceding duct and bypass # channels start = (self.subchannel.n_sc['coolant']['total'] + self.subchannel.n_sc['duct']['total'] + i * self.subchannel.n_sc['bypass']['total'] + i * self.subchannel.n_sc['duct']['total']) # end = start + self.subchannel.n_sc['bypass']['total'] for sci in range(0, self.subchannel.n_sc['bypass']['total']): # The value of sci is the PYTHON indexing # type_i = self.subchannel.type[sci + start] - 1 type_i = self.subchannel.type[sci + start] # Heat transfer to/from adjacent subchannels for adj in self.subchannel.sc_adj[sci + start]: # if adj == 0: if adj == -1: continue # type_a = self.subchannel.type[adj - 1] - 1 type_a = self.subchannel.type[adj] # Convection to/from duct wall # if type_a in [3, 4]: if 3 <= type_a <= 4: if sci + start > adj: # INTERIOR adjacent duct wall byp_conv_const = \ OLD_HTCONSTS[type_i][type_a][i][0] byp_conv_dT = \ (self.temp['duct_surf'][i, 1, sci] - self.temp['coolant_byp'][i, sci]) else: # EXTERIOR adjacent duct wall byp_conv_const = \ OLD_HTCONSTS[type_i][type_a][i][1] byp_conv_dT = \ (self.temp['duct_surf'][i + 1, 0, sci] - self.temp['coolant_byp'][i, sci]) dT[i, sci] += \ (self.coolant_byp_params['htc'][i, type_i - 5] * dz * byp_conv_const * byp_conv_dT / self.coolant.heat_capacity) # Conduction to/from adjacent coolant subchannels else: # sc_adj = adj - start - 1 sc_adj = adj - start dT[i, sci] += \ (self.coolant.thermal_conductivity * dz * OLD_HTCONSTS[type_i][type_a][i] * (self.temp['coolant_byp'][i, sc_adj] - self.temp['coolant_byp'][i, sci]) / self.coolant.heat_capacity) return dT dT = np.zeros(c_ctrl_rr.temp['coolant_byp'].shape) dT_old = dT.copy() dz = 0.01 start_temp = 623.15 for i in range(50): duct_surf_temp = \ (np.random.random(c_ctrl_rr.temp['duct_surf'].shape) + (start_temp + i * 1.0)) c_ctrl_rr.temp['duct_surf'] = duct_surf_temp dT_old += _calc_coolant_byp_temp_old(c_ctrl_rr, dz) dT += c_ctrl_rr._calc_coolant_byp_temp(dz) print(np.average(dT)) print(np.average(dT_old)) print('max abs diff: ', np.max(np.abs(dT - dT_old))) assert np.allclose(dT, dT_old)
db6660b8ddc2f7ea409f7b334e4e161fceb743b2
2,140
import logging def vraec18(pretrained=False, **kwargs): """Constructs a _ResAE-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = _VRAEC(_VariationalBasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: try: model.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False) except Exception as exp: logging.warning(exp) return model
6b5e5a5d812b20c30bac3f81289a553bdc4884d4
2,142
import zlib def encode_zip(data): """Zip-compress data. Implies base64 encoding of zip data.""" zipped = zlib.compress(data) return encode_b64(zipped)
aa048125edd67a411715bf748bf832a6e6d7104f
2,143
def create_class_mask(img, color_map, is_normalized_img=True, is_normalized_map=False, show_masks=False): """ Function to create C matrices from the segmented image, where each of the C matrices is for one class with all ones at the pixel positions where that class is present img = The segmented image color_map = A list with tuples that contains all the RGB values for each color that represents some class in that image is_normalized_img = Boolean - Whether the image is normalized or not If normalized, then the image is multiplied with 255 is_normalized_map = Boolean - Represents whether the color map is normalized or not, if so then the color map values are multiplied with 255 show_masks = Wherether to show the created masks or not """ if is_normalized_img and (not is_normalized_map): img *= 255 if is_normalized_map and (not is_normalized_img): img = img / 255 mask = [] hw_tuple = img.shape[:-1] for color in color_map: color_img = [] for idx in range(3): color_img.append(np.ones(hw_tuple) * color[idx]) color_img = np.array(color_img, dtype=np.uint8).transpose(1, 2, 0) mask.append(np.uint8((color_img == img).sum(axis = -1) == 3)) return np.array(mask)
97452e568d0a29b438a61fc96d90231a318e919b
2,144
import itertools def reconstruct_grid(mask, ds_dl): """ Reconstruction of 2d grid. Args: mask (ndarray): land mask used. ds_dl (ndarray): trained model prediction. """ landmask = np.argwhere(np.isnan(mask)) empty = np.zeros((ds_dl.shape[0], mask.shape[0], mask.shape[1])) counter = 0 for i, j in itertools.product(list(range(mask.shape[0])),list(range(mask.shape[1]))): if np.argwhere(np.logical_and(np.isin(landmask[:,0], i), np.isin(landmask[:,1], j))).shape[0] > 0: empty[:, i, j] = np.nan else: empty[:, i, j] = ds_dl[:, counter] counter += 1 return empty
4d220e0d4ae96ee1ddc55e53f21f2a35d920b03e
2,145
def conv_kernel_initializer(shape, dtype=None): """卷积核初始化 和 tf.variance_scaling_initializer最大不同之处就是在于,tf.variance_scaling_initializer 使用的是 truncated norm, 但是却具有未校正的标准偏差,而这里使用正态分布。类似地,tf.initializers.variance_scaling使用带有校正后的标准偏差。 Args: shape: 卷积核的shape dtype: 卷积核的dtype Returns: 经过初始化后的卷积核 """ kernel_height, kernel_width, input_filters, out_filters = shape fan_out = int(kernel_height * kernel_width * out_filters) return tf.random.normal(shape, mean=0.0, stddev=np.sqrt(2.0 / fan_out), dtype=dtype)
f7fd5665aeb8eb592a5f1f0f1785dfd84c9d8d98
2,146
def prediction_func(data, g_data, grid_search, param_list): """Function for using dataset to train a model and predicting prices for a generated data. Parameter search is done using RandomizedSearchCV since it is computationally more efficientcompared to GridSearchCV. In param_list, learning_rate, subsample and max_depth, min_child_weight, gamma and colsample_bytree can be included. Args: | data (pd.Dataframe): the dataset including house features and prices | g_data (pd.Dataframe): randomly generated house features for prediction purposes | grid_search (bool): indicates whether model is trained with parameter search(True) or use default values(False) | param_list (list): the list of parameters to be included in parameter search Returns: the predicted prices for houses in g_data (np.array) """ # Base Model xgb_reg = xgb.XGBRegressor(n_treads=-1) if grid_search: # Search for best parameters in model params = { "learning_rate": [i / 20 for i in range(1, 11)], "min_child_weight": [i for i in range(3, 12)], "gamma": [i / 10.0 for i in range(3, 8)], "subsample": [i / 10.0 for i in range(7, 11)], "colsample_bytree": [i / 10.0 for i in range(6, 11)], "max_depth": [i for i in range(3, 8)], } # Only includes selected parameters params = {key: params[key] for key in param_list} xgb_reg = RandomizedSearchCV( estimator=xgb_reg, param_distributions=params, n_iter=5, cv=3, random_state=23, iid=False, ) xgb_reg.fit(data.drop("price", axis=1), data.price) return xgb_reg.predict(g_data)
b747578879054947e91e5285b82cf3e07fa313da
2,147
def thv_to_zxy(theta, h): """Convert coordinates from (theta, h, v) to (z, x, y) space.""" cos_p = np.cos(theta) sin_p = np.sin(theta) srcx = +RADIUS * cos_p - h * sin_p srcy = +RADIUS * sin_p + h * cos_p detx = -RADIUS * cos_p - h * sin_p dety = -RADIUS * sin_p + h * cos_p return srcx, srcy, detx, dety
64370dc6c4060a718506a243414afdd698881147
2,148
from datetime import datetime def get_most_stale_file(logpath=DEFAULT_PATH): """ returns the filename of the file in the fileset that was least recently backed up and the time of the last backup """ oldest_name = "" oldest_date = datetime.max for fstat in get_fileset_statlist(): last_backup = datetime.strptime( get_last_upload_times(fstat[STAT_KEYS.SOURCE], n_times=1)[0], TIME_FORMAT ) if last_backup < oldest_date: oldest_date = last_backup oldest_name = fstat[STAT_KEYS.SOURCE] return oldest_name, oldest_date
e0000847513ffeb97b8df0c26941ca4e3380f09d
2,149
from typing import Mapping from typing import Dict import re import logging def get_instances(context: models.Context) -> Mapping[str, Instance]: """Get a list of Instance matching the given context, indexed by instance id.""" instances: Dict[str, Instance] = {} if not apis.is_enabled(context.project_id, 'compute'): return instances gce_api = apis.get_api('compute', 'v1', context.project_id) requests = [ gce_api.instances().list(project=context.project_id, zone=zone) for zone in get_gce_zones(context.project_id) ] items = apis_utils.batch_list_all( api=gce_api, requests=requests, next_function=gce_api.instances().list_next, log_text=f'listing gce instances of project {context.project_id}') for i in items: result = re.match( r'https://www.googleapis.com/compute/v1/projects/[^/]+/zones/([^/]+)/', i['selfLink']) if not result: logging.error('instance %s selfLink didn\'t match regexp: %s', i['id'], i['selfLink']) continue zone = result.group(1) labels = i.get('labels', {}) if not context.match_project_resource(location=zone, labels=labels): continue instances[i['id']] = Instance(project_id=context.project_id, resource_data=i) return instances
10f4eae30b0a5c752c45378574ba4620bd859320
2,150
def svn_fs_delete_fs(*args): """svn_fs_delete_fs(char const * path, apr_pool_t pool) -> svn_error_t""" return _fs.svn_fs_delete_fs(*args)
6e1f34d82899fc257c723990c55853b35f0b06d3
2,152
from re import T def translate_output(_output, n_classes, is_binary_classification=False): """ Gets matrix with one hot encoding where the 1 represent index of class. Parameters ---------- _output : theano.tensor.matrix Output sample. n_classes : int Number of classes (or size of one hot encoding rows) is_binary_classification : bool This flag means that model is for binary classification. Returns ------- theano.tensor.matrix Returns one hot encoding. """ if is_binary_classification: return T.sgn(_output) else: return to_one_hot(T.argmax(_output, axis=-1), n_classes)
03137e6b0704477a69211d454ee5e05a5ab02636
2,153
def _sphere_point_to_uv(point: Point) -> Vec2d: """Convert a 3D point on the surface of the unit sphere into a (u, v) 2D point""" u = atan2(point.y, point.x) / (2.0 * pi) return Vec2d( u=u if u >= 0.0 else u + 1.0, v=acos(point.z) / pi, )
c0eb4abb1ebc55f74b908a85f0cb94f71a528c32
2,155
import tqdm def generate_formula_dict(materials_store, query=None): """ Function that generates a nested dictionary of structures keyed first by formula and then by task_id using mongo aggregation pipelines Args: materials_store (Store): store of materials Returns: Nested dictionary keyed by formula-mp_id with structure values. """ props = ["pretty_formula", "structure", "task_id", "magnetic_type"] results = list(materials_store.groupby("pretty_formula", properties=props, criteria=query)) formula_dict = {} for result in tqdm.tqdm(results): formula = result['_id']['pretty_formula'] task_ids = [d['task_id'] for d in result['docs']] structures = [d['structure'] for d in result['docs']] formula_dict[formula] = dict(zip(task_ids, structures)) return formula_dict
ae232c806972262029966307e489df0b12d646f5
2,156
def truncate(wirevector_or_integer, bitwidth): """ Returns a wirevector or integer truncated to the specified bitwidth :param wirevector_or_integer: Either a wirevector or and integer to be truncated :param bitwidth: The length to which the first argument should be truncated. :return: Returns a tuncated wirevector or integer as appropriate This function truncates the most significant bits of the input, leaving a result that is only "bitwidth" bits wide. For integers this is performed with a simple bitmask of size "bitwidth". For wirevectors the function calls WireVector.truncate and returns a wirevector of the specified bitwidth. Examples: :: truncate(9,3) # returns 3 (0b101 truncates to 0b101) truncate(5,3) # returns 3 (0b1001 truncates to 0b001) truncate(-1,3) # returns 7 (-0b1 truncates to 0b111) y = truncate(x+1, x.bitwidth) # y.bitwdith will equal x.bitwidth """ if bitwidth < 1: raise PyrtlError('bitwidth must be a positive integer') x = wirevector_or_integer try: return x.truncate(bitwidth) except AttributeError: return x & ((1 << bitwidth)-1)
7ff6d22061944f4202bc69dfde109c1cead20972
2,158
def pcoef(xte, yte, rle, x_cre, y_cre, d2ydx2_cre, th_cre, surface): # Docstrings """evaluate the PARSEC coefficients""" # Initialize coefficients coef = np.zeros(6) # 1st coefficient depends on surface (pressure or suction) if surface.startswith('p'): coef[0] = -sqrt(2*rle) else: coef[0] = sqrt(2*rle) # Form system of equations A = np.array([ [xte**1.5, xte**2.5, xte**3.5, xte**4.5, xte**5.5], [x_cre**1.5, x_cre**2.5, x_cre**3.5, x_cre**4.5, x_cre**5.5], [1.5*sqrt(xte), 2.5*xte**1.5, 3.5*xte**2.5, 4.5*xte**3.5, 5.5*xte**4.5], [1.5*sqrt(x_cre), 2.5*x_cre**1.5, 3.5*x_cre**2.5, 4.5*x_cre**3.5, 5.5*x_cre**4.5], [0.75*(1/sqrt(x_cre)), 3.75*sqrt(x_cre), 8.75*x_cre**1.5, 15.75*x_cre**2.5, 24.75*x_cre**3.5] ]) B = np.array([ [yte - coef[0]*sqrt(xte)], [y_cre - coef[0]*sqrt(x_cre)], [tan(th_cre*pi/180) - 0.5*coef[0]*(1/sqrt(xte))], [-0.5*coef[0]*(1/sqrt(x_cre))], [d2ydx2_cre + 0.25*coef[0]*x_cre**(-1.5)] ]) # Solve system of linear equations # X = np.linalg.solve(A,B) X = np.linalg.lstsq(A,B)[0] # Gather all coefficients coef[1:6] = X[0:5,0] # Return coefficients return coef
43cc56ec7f29267678ebbc3572633e5073cda117
2,159
def iscircular(linked_list): """ Determine whether the Linked List is circular or not Args: linked_list(obj): Linked List to be checked Returns: bool: Return True if the linked list is circular, return False otherwise """ slow_runner = linked_list.head fast_runner = linked_list.head while slow_runner != None and fast_runner.next != None: slow_runner = slow_runner.next fast_runner = fast_runner.next.next if slow_runner == fast_runner: return True return False
04f86497dae2a2ee77afd37f13bdba8e18ae52b9
2,162
def shape_extent_to_header(shape, extent, nan_value=-9999): """ Create a header dict with shape and extent of an array """ ncols = shape[1] nrows = shape[0] xllcorner = extent[0] yllcorner = extent[2] cellsize_x = (extent[1]-extent[0])/ncols cellsize_y = (extent[3]-extent[2])/nrows if cellsize_x != cellsize_y: raise ValueError('extent produces different cellsize in x and y') cellsize = cellsize_x header = {'ncols':ncols, 'nrows':nrows, 'xllcorner':xllcorner, 'yllcorner':yllcorner, 'cellsize':cellsize, 'NODATA_value':nan_value} return header
957b59e7f464901a5430fd20ab52f28507b55887
2,163
def build_encoder(opt, embeddings): """ Various encoder dispatcher function. Args: opt: the option in current environment. embeddings (Embeddings): vocab embeddings for this encoder. """ if opt.encoder_type == "transformer": return TransformerEncoder(opt.enc_layers, opt.rnn_size, opt.heads, opt.transformer_ff, opt.dropout, embeddings) elif opt.encoder_type == "cnn": return CNNEncoder(opt.enc_layers, opt.rnn_size, opt.cnn_kernel_width, opt.dropout, embeddings) elif opt.encoder_type == "mean": return MeanEncoder(opt.enc_layers, embeddings) else: # "rnn" or "brnn" return RNNEncoder(opt.wals_model, opt.rnn_type, opt.brnn, opt.enc_layers, opt.rnn_size, opt.wals_size, opt.dropout, embeddings, opt.bridge)
73b379545aeeb3226ea019cad0a692b00cd7630b
2,164
def efficientnet_b3b(in_size=(300, 300), **kwargs): """ EfficientNet-B3-b (like TF-implementation) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (300, 300) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b3", in_size=in_size, tf_mode=True, bn_epsilon=1e-3, model_name="efficientnet_b3b", **kwargs)
1d7e0bffe67f9d2f340563b21e1f995201877165
2,166
import logging def logged(class_): """Class-level decorator to insert logging. This assures that a class has a ``.log`` member. :: @logged class Something: def __init__(self, args): self.log(f"init with {args}") """ class_.log= logging.getLogger(class_.__qualname__) return class_
cd58e355151ab99aa1694cbd9fb6b710970dfa19
2,167
def TableInFirstNSStart(builder): """This method is deprecated. Please switch to Start.""" return Start(builder)
5ea3cf66842eaf026a36bb241c277076cc8650b8
2,168
def dicom_to_nifti(dicom_input, output_file=None): """ This is the main dicom to nifti conversion function for ge images. As input ge images are required. It will then determine the type of images and do the correct conversion :param output_file: filepath to the output nifti :param dicom_input: directory with dicom files for 1 scan """ assert common.is_siemens(dicom_input) # remove duplicate slices based on position and data dicom_input = convert_generic.remove_duplicate_slices(dicom_input) # remove localizers based on image type dicom_input = convert_generic.remove_localizers_by_imagetype(dicom_input) # remove_localizers based on image orientation (only valid if slicecount is validated) dicom_input = convert_generic.remove_localizers_by_orientation(dicom_input) if _is_4d(dicom_input): logger.info('Found sequence type: MOSAIC 4D') return _mosaic_4d_to_nifti(dicom_input, output_file) grouped_dicoms = _classic_get_grouped_dicoms(dicom_input) if _is_classic_4d(grouped_dicoms): logger.info('Found sequence type: CLASSIC 4D') return _classic_4d_to_nifti(grouped_dicoms, output_file) logger.info('Assuming anatomical data') return convert_generic.dicom_to_nifti(dicom_input, output_file)
0b77d190c2379e9b2ad5fbf9217e1604a7df8bc9
2,169
def lot_vectors_dense_internal( sample_vectors, sample_distributions, reference_vectors, reference_distribution, metric=cosine, max_distribution_size=256, chunk_size=256, spherical_vectors=True, ): """Efficiently compute linear optimal transport vectors for a block of data provided as a list of distributions and a corresponding list of arrays of vectors. Parameters ---------- sample_vectors: numba.typed.List of ndarrays A set of vectors for each distribution. sample_distributions: numba.typed.List of ndarrays A set of distributions (1d arrays that sum to one). The ith element of a given distribution is the probability mass on the ith row of the corresponding entry in the ``sample_vectors`` list. reference_vectors: ndarray The reference vector set for LOT reference_distribution: ndarray The reference distribution over the set of reference vectors metric: function(ndarray, ndarray) -> float The distance function to use for distance computation max_distribution_size: int (optional, default=256) The maximum size of a distribution to consider; larger distributions over more vectors will be truncated back to this value for faster performance. chunk_size: int (optional, default=256) Operations will be parallelised over chunks of the input. This specifies the chunk size. spherical_vectors: bool (optional, default=True) Whether the vectors live on an n-sphere instead of euclidean space and thus require some degree of spherical correction. Returns ------- lot_vectors: ndarray The raw linear optimal transport vectors correpsonding to the input. """ n_rows = len(sample_vectors) result = np.zeros((n_rows, reference_vectors.size), dtype=np.float64) n_chunks = (n_rows // chunk_size) + 1 for n in range(n_chunks): chunk_start = n * chunk_size chunk_end = min(chunk_start + chunk_size, n_rows) for i in range(chunk_start, chunk_end): row_vectors = sample_vectors[i].astype(np.float64) row_distribution = sample_distributions[i] if row_vectors.shape[0] > max_distribution_size: best_indices = np.argsort(-row_distribution)[:max_distribution_size] row_vectors = row_vectors[best_indices] row_distribution = row_distribution[best_indices] row_sum = row_distribution.sum() if row_sum > 0.0: row_distribution /= row_sum if row_vectors.shape[0] > reference_vectors.shape[0]: cost = chunked_pairwise_distance( row_vectors, reference_vectors, dist=metric ) else: cost = chunked_pairwise_distance( reference_vectors, row_vectors, dist=metric ).T current_transport_plan = transport_plan( row_distribution, reference_distribution, cost ) transport_images = ( current_transport_plan * (1.0 / reference_distribution) ).T @ row_vectors if spherical_vectors: l2_normalize(transport_images) transport_vectors = transport_images - reference_vectors if spherical_vectors: tangent_vectors = project_to_sphere_tangent_space( transport_vectors, reference_vectors ) l2_normalize(tangent_vectors) scaling = tangent_vectors_scales( transport_images, reference_vectors ) transport_vectors = tangent_vectors * scaling result[i] = transport_vectors.flatten() # Help the SVD preserve spherical data by sqrt entries if spherical_vectors: for i in range(result.shape[0]): for j in range(result.shape[1]): result[i, j] = np.sign(result[i, j]) * np.sqrt(np.abs(result[i, j])) return result
d7f9eaad6b7292f2c28621f361094a88e7deb8a6
2,170
import rasterio as rio def load( filename, rsc_file=None, rows=None, cols=None, band=1, **kwargs, ): """Load a file, either using numpy or rasterio""" if rsc_file: rsc_data = load_rsc(rsc_file) return load_stacked_img(filename, rsc_data=rsc_data, rows=rows, cols=cols) else: try: except ImportError: raise ValueError("Need to `conda install rasterio` to load gdal-readable") with rio.open(filename) as src: return src.read(band)
873933b80b7e87f64b10ad74cc8ed25238a93fb3
2,171
def simple_scan_network(): """ Do a simple network scan, which only works if your network configuration is 192.168.1.x """ base_ip = "192.168.1." addresses = ['127.0.0.1'] for index in range(1, 255): addresses.extend([base_ip + str(index)]) return addresses
b0f19ae1c98678e87d270b308b5359df9a6a4d30
2,172
def channel_lvlv_2jet(): """ Mostly based on table 8 of the combination paper for the uncertainties and table 9 for the event counts. """ channel = ROOT.RooStats.HistFactory.Channel( "HWWlvlv2Jet" ) container.append(channel) channel.SetData(55) background = ROOT.RooStats.HistFactory.Sample("background") background.SetValue(36*1.1) # background.AddOverallSys("ATLAS_LUMI_2012", 1.0-0.036, 1.0+0.036) # background.AddOverallSys("JES", 0.93, 1.07) channel.AddSample(background) container.append(background) signalGGFttH = ROOT.RooStats.HistFactory.Sample("signalGGFttH") signalGGFttH.SetValue(10.9*1.00*0.19) # increase by a factor for better agreement with ATLAS contour signalGGFttH.AddNormFactor("mu", 1, 0, 6) signalGGFttH.AddNormFactor("mu_XS8_ggF", 1, -5, 10) signalGGFttH.AddNormFactor("muT_lvlv", 1, -5, 10) signalGGFttH.AddOverallSys("ATLAS_LUMI_2012", 1.0-0.036, 1.0+0.036) signalGGFttH.AddOverallSys("QCDscale_Higgs_ggH", 0.87, 1.13) signalGGFttH.AddOverallSys("QCDscale_Higgs_ggH2in", 0.96, 1.04) signalGGFttH.AddOverallSys("QCDscale_Higgs_ggH3in", 0.96, 1.04) signalGGFttH.AddOverallSys("QCDscale_Higgs_acceptance_2jet", 0.97, 1.03) signalGGFttH.AddOverallSys("UE_2jet", 0.95, 1.05) signalGGFttH.AddOverallSys("JES", 0.94, 1.06) channel.AddSample(signalGGFttH) container.append(signalGGFttH) signalVBFVH = ROOT.RooStats.HistFactory.Sample("signalVBFVH") signalVBFVH.SetValue(10.9*1.000*0.81) # increase by a factor for better agreement with ATLAS contour signalVBFVH.AddNormFactor("mu", 1, 0, 6) signalVBFVH.AddNormFactor("mu_XS8_VBF", 1, -5, 10) signalVBFVH.AddNormFactor("muW_lvlv", 1, -5, 10) signalVBFVH.AddOverallSys("ATLAS_LUMI_2012", 1.0-0.036, 1.0+0.036) signalVBFVH.AddOverallSys("UE_2jet", 0.95, 1.05) signalVBFVH.AddOverallSys("JES", 0.94, 1.06) channel.AddSample(signalVBFVH) container.append(signalVBFVH) return channel
f60609a0bf6f22dc850fcb52c4a19b6bae737abc
2,174
def vtkVariantStrictEquality(s1, s2): """ Check two variants for strict equality of type and value. """ s1 = vtk.vtkVariant(s1) s2 = vtk.vtkVariant(s2) t1 = s1.GetType() t2 = s2.GetType() # check based on type if t1 != t2: return False v1 = s1.IsValid() v2 = s2.IsValid() # check based on validity if (not v1) and (not v2): return True elif v1 != v2: return False # extract and compare the values r1 = getattr(s1, _variant_method_map[t1])() r2 = getattr(s2, _variant_method_map[t2])() return (r1 == r2)
cb529c35f6dfc7e20fcff79d5c38b41bd43f1292
2,175
def is_network_failure(error): """Returns True when error is a network failure.""" return ((isinstance(error, RETRY_URLLIB_EXCEPTIONS) and error.code in RETRY_HTTP_CODES) or isinstance(error, RETRY_HTTPLIB_EXCEPTIONS) or isinstance(error, RETRY_SOCKET_EXCEPTIONS) or isinstance(error, RETRY_REQUESTS_EXCEPTIONS) or is_retriable_requests_httperror(error))
647d10b257b1cb7f78243629edd2b425104f1787
2,176
import torch def predict(model, X, threshold=0.5): """Generate NumPy output predictions on a dataset using a given model. Args: model (torch model): A Pytroch model X (dataloader): A dataframe-based gene dataset to predict on """ X_tensor, _ = convert_dataframe_to_tensor(X, []) model.eval() with torch.no_grad(): y_pred = (model(X_tensor) >= threshold).int().numpy() return y_pred
57b6137cc8f7e0753e6438432f56b471717a5d88
2,177
def color_image( img: np.ndarray, unique_colors=True, threshold=100, approximation_accuracy=150 ) -> np.ndarray: """ This function detects simple shapes in the image and colors them. Detected figures will be also subscribed in the final image. The function can detect triangles, quadrilateral, and circles; any other figure will be marked "UNEXPECTED". The algorithm uses OpenCV to find contours on a grayscale version of the image. Then it uses a polygon approximation algorithm to reduce the number of vertices in contours. The resulted polygons are used to identify and color figures in the image. parameters: img - image with figures to color unique_colors - flag to color all figures in unique colores independent of the number of vertices. The default behavior is coloring all the figures of the same type in one color threshold - background threshold for a grayscale image, using that the algo will separate figures from the background approximation_accuracy - accuracy of polygon approximation for detected contours output: the image with colored and subscribed figures """ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # apply threshold thresholded_im = np.zeros(img.shape[:2], dtype=np.uint8) thresholded_im[gray > threshold] = 255 contours, _ = cv2.findContours( thresholded_im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) if unique_colors: colors = gen_colors(len(contours)) for i, contour in enumerate(contours): # find positions of vertices to count them # we need some value to estimate approximation accuracy - let it be perimeter object_perimeter = cv2.arcLength(contour, closed=True) approx = cv2.approxPolyDP( contour, epsilon=object_perimeter / approximation_accuracy, closed=True ) n_vertices = len(approx) # find object centers # M = cv2.moments(contour) x, y = approx.squeeze().mean(axis=0).astype(int) # offset to the left for x x = (x + 2 * approx[:, 0, 0].min()) // 3 # COLORING PART # highlight contours cv2.drawContours(img, [contour], 0, (255, 255, 255), 4) # fill the object if unique_colors: color = colors[i].tolist() else: color = get_color_for_figure(n_vertices) cv2.fillPoly(img, pts=[contour], color=color) # subscribe the figure print_figure_name(img, n_vertices, (x, y)) return img
5637febc69dcc2b3e641f0d79f2e21c6dc7d04ec
2,178
from pathlib import Path def restore_model(pb_path): """Restore the latest model from the given path.""" subdirs = [x for x in Path(pb_path).iterdir() if x.is_dir() and 'temp' not in str(x)] latest_model = str(sorted(subdirs)[-1]) predict_fn = predictor.from_saved_model(latest_model) return predict_fn
bded95b196081e19ca1c70127871abb99d3526d0
2,179
import math def _generate_resolution_shells(low, high): """Generate 9 evenly spaced in reciprocal space resolution shells from low to high resolution, e.g. in 1/d^2.""" dmin = (1.0 / high) * (1.0 / high) dmax = (1.0 / low) * (1.0 / low) diff = (dmin - dmax) / 8.0 shells = [1.0 / math.sqrt(dmax)] for j in range(8): shells.append(1.0 / math.sqrt(dmax + diff * (j + 1))) return shells
52fa4309f2f34a39a07d8524dd7f226e3d1bae6a
2,180
from typing import Optional from typing import Tuple def add_ports_from_markers_square( component: Component, pin_layer: Layer = (69, 0), port_layer: Optional[Layer] = None, orientation: Optional[int] = 90, min_pin_area_um2: float = 0, max_pin_area_um2: float = 150 * 150, pin_extra_width: float = 0.0, port_names: Optional[Tuple[str, ...]] = None, port_name_prefix: str = "o", ) -> Component: """add ports from markers center in port_layer squared Args: component: to read polygons from and to write ports to pin_layer: for port markers port_layer: for the new created port orientation: in degrees 90: north, 0: east, 180: west, 270: south min_pin_area_um2: ignores pins with area smaller than min_pin_area_um2 max_pin_area_um2: ignore pins for area above certain size pin_extra_width: 2*offset from pin to straight port_names: names of the ports (defaults to {i}) """ port_markers = read_port_markers(component, [pin_layer]) port_names = port_names or [ f"{port_name_prefix}{i+1}" for i in range(len(port_markers.polygons)) ] layer = port_layer or pin_layer for port_name, p in zip(port_names, port_markers.polygons): dy = snap_to_grid(p.ymax - p.ymin) dx = snap_to_grid(p.xmax - p.xmin) x = p.x y = p.y if dx == dy and max_pin_area_um2 > dx * dy > min_pin_area_um2: component.add_port( port_name, midpoint=(x, y), width=dx - pin_extra_width, orientation=orientation, layer=layer, ) return component
68858a17b5187e064232f0c101ddf9c4e812c233
2,181
def P(Document, *fields, **kw): """Generate a MongoDB projection dictionary using the Django ORM style.""" __always__ = kw.pop('__always__', set()) projected = set() omitted = set() for field in fields: if field[0] in ('-', '!'): omitted.add(field[1:]) elif field[0] == '+': projected.add(field[1:]) else: projected.add(field) if not projected: # We only have exclusions from the default projection. names = set(getattr(Document, '__projection__', Document.__fields__) or Document.__fields__) projected = {name for name in (names - omitted)} projected |= __always__ if not projected: projected = {'_id'} return {unicode(traverse(Document, name, name)): True for name in projected}
d88a428f5eae1e57bd3b5ddf0d31e6e7c122c27d
2,182
def get_page_url(skin_name, page_mappings, page_id): """ Returns the page_url for the given page_id and skin_name """ fallback = '/' if page_id is not None: return page_mappings[page_id].get('path', '/') return fallback
6ead4824833f1a7a002f54f83606542645f53dd6
2,183
def create_form(erroneous_form=None): """Show a form to create a guest server.""" party_id = _get_current_party_id_or_404() setting = guest_server_service.get_setting_for_party(party_id) form = erroneous_form if erroneous_form else CreateForm() return { 'form': form, 'domain': setting.domain, }
2d8e9cd6597e4ccb1b9f39d77cca45b354d99371
2,185
def apply(task, args, kwargs, **options): """Apply the task locally. This will block until the task completes, and returns a :class:`celery.result.EagerResult` instance. """ args = args or [] kwargs = kwargs or {} task_id = options.get("task_id", gen_unique_id()) retries = options.get("retries", 0) task = tasks[task.name] # Make sure we get the instance, not class. default_kwargs = {"task_name": task.name, "task_id": task_id, "task_retries": retries, "task_is_eager": True, "logfile": None, "delivery_info": {"is_eager": True}, "loglevel": 0} supported_keys = fun_takes_kwargs(task.run, default_kwargs) extend_with = dict((key, val) for key, val in default_kwargs.items() if key in supported_keys) kwargs.update(extend_with) trace = TaskTrace(task.name, task_id, args, kwargs, task=task) retval = trace.execute() return EagerResult(task_id, retval, trace.status, traceback=trace.strtb)
600bc142ca8d96bd020db5cb82103169d255d970
2,186
from typing import Optional from typing import Callable def exp_post_expansion_function(expansion: Expansion) -> Optional[Callable]: """Return the specified post-expansion function, or None if unspecified""" return exp_opt(expansion, 'post')
6d49f5e40b7c900470a5c84b37d9da1666b217c2
2,187
def return_(x): """Implement `return_`.""" return x
6557a37db2020bdbb0f9dcf587f2bd42509ff937
2,188
def create(platformDetails): """ This function creates a new platform in the platform list based on the passed in platform data :param platform: platform to create in platform structure :return: 201 on success, 406 on platform exists """ # Remove id as it's created automatically if "id" in platformDetails: del platformDetails["id"] # Does the platform exist already? existing_platform = ( db.session.query(Platform) .filter(Platform.value == platformDetails["value"]) .one_or_none() ) if existing_platform is None: schema = PlatformSchema() new_platform = schema.load(platformDetails, session=db.session) db.session.add(new_platform) db.session.commit() # Serialize and return the newly created deployment # in the response data = schema.dump(new_platform) return data, 201 # Otherwise, it already exists, that's an error else: abort(406, "Platform already exists")
a6b27d6b530ccc11134a001ac3b49c6cb89475a3
2,190