content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def read_key_value(file): """支持注释,支持中文""" return_dict = {} lines = readlines(file) for line in lines: line = line.strip().split(':') if line[0][0] == '#': continue key = line[0].strip() value = line[1].strip() return_dict[key] = value return return_dict
9fdac43783c066872a05cbd59488add7a2dc54c0
19,733
def binarize_image(image): """Binarize image pixel values to 0 and 255.""" unique_values = np.unique(image) if len(unique_values) == 2: if (unique_values == np.array([0., 255.])).all(): return image mean = image.mean() image[image > mean] = 255 image[image <= mean] = 0 return image
6e4a621b0a2ff06d6a6bf5c0eb45f1028e6d526f
19,734
from typing import Type def LineMatcher_fixture(request: FixtureRequest) -> Type["LineMatcher"]: """A reference to the :class: `LineMatcher`. This is instantiable with a list of lines (without their trailing newlines). This is useful for testing large texts, such as the output of commands. """ return LineMatcher
86c05df8f099ba66e62ae0bb071b2999cbb4f082
19,735
def Delay(opts, args): """Sleeps for a while @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the duration the sleep @rtype: int @return: the desired exit code """ delay = float(args[0]) op = opcodes.OpTestDelay(duration=delay, on_master=opts.on_master, on_nodes=opts.on_nodes, repeat=opts.repeat, interruptible=opts.interruptible, no_locks=opts.no_locks) SubmitOrSend(op, opts) return 0
c9ecd6cb3dbdcd5ae48c527f2f6769789b05664d
19,736
def logout(): """ Simply loading the logout page while logged in will log the user out """ logout_user() return render_template(f"{app_name}/logout.html")
33191c6870a0aac8fcdebb0349b93196e2ed0ba8
19,737
def duration_to_timedelta(obj): """Converts duration to timedelta >>> duration_to_timedelta("10m") >>> datetime.timedelta(0, 600) """ matches = DURATION_PATTERN.search(obj) matches = matches.groupdict(default="0") matches = {k: int(v) for k, v in matches.items()} return timedelta(**matches)
fcfa67e6667b232a6647cb71fff543a45a6d3475
19,739
async def create_mock_hlk_sw16_connection(fail): """Create a mock HLK-SW16 client.""" client = MockSW16Client(fail) await client.setup() return client
14589398e268a76637994f2883f2cd824a14a81b
19,740
def inv_dist_weight(distances, b): """Inverse distance weight Parameters ---------- distances : numpy.array of floats Distances to point of interest b : float The parameter of the inverse distance weight. The higher, the higher the influence of closeby stations. Returns ------- lambdas : numpy.array of floats The lambda parameters of the stations """ lambdas = 1/distances**b / np.sum(1/distances**b) return lambdas
c7e857bba312277b193ce5eda7467b8b0bf8bd75
19,741
import pytz def load_inferred_fishing(table, id_list, project_id, threshold=True): """Load inferred data and generate comparison data """ query_template = """ SELECT vessel_id, start_time, end_time, nnet_score FROM TABLE_DATE_RANGE([{table}], TIMESTAMP('{year}-01-01'), TIMESTAMP('{year}-12-31')) WHERE vessel_id in ({ids}) """ ids = ','.join('"{}"'.format(x) for x in id_list) ranges = defaultdict(list) for year in range(2012, 2018): query = query_template.format(table=table, year=year, ids=ids) print(query) for x in pd.read_gbq(query, project_id=project_id).itertuples(): score = x.nnet_score if threshold: score = score > 0.5 start = x.start_time.replace(tzinfo=pytz.utc) end = x.end_time.replace(tzinfo=pytz.utc) ranges[x.vessel_id].append(FishingRange(score, start, end)) print([(key, len(val)) for (key, val) in ranges.items()]) return ranges
fba7e007b38d141e91c0608cbd609a2d3b474b4b
19,742
from typing import Any def is_optional(value: Any) -> CheckerReturn: """ It is a rather special validator because it never returns False and emits an exception signal when the value is correct instead of returning True. Its user should catch the signal to short-circuit the validation chain. """ if value is None: raise exceptions.ValueNotRequired() return True
25e45617ca5584dc2470d9e76ef884596c465917
19,743
from typing import Union from typing import Tuple from typing import List def approximate_bounding_box_dyn_obstacles(obj: list, time_step=0) -> Union[ Tuple[list], None]: """ Compute bounding box of dynamic obstacles at time step :param obj: All possible objects. DynamicObstacles are filtered. :return: """ def update_bounds(new_point: np.ndarray, bounds: List[list]): """Update bounds with new point""" if new_point[0] < bounds[0][0]: bounds[0][0] = new_point[0] if new_point[1] < bounds[1][0]: bounds[1][0] = new_point[1] if new_point[0] > bounds[0][1]: bounds[0][1] = new_point[0] if new_point[1] > bounds[1][1]: bounds[1][1] = new_point[1] return bounds dynamic_obstacles_filtered = [] for o in obj: if type(o) == DynamicObstacle: dynamic_obstacles_filtered.append(o) elif type(o) == Scenario: dynamic_obstacles_filtered.extend(o.dynamic_obstacles) x_int = [np.inf, -np.inf] y_int = [np.inf, -np.inf] bounds = [x_int, y_int] shapely_set = None for obs in dynamic_obstacles_filtered: occ = obs.occupancy_at_time(time_step) if occ is None: continue shape = occ.shape if hasattr(shape, "_shapely_polygon"): if shapely_set is None: shapely_set = shape._shapely_polygon else: shapely_set = shapely_set.union(shape._shapely_polygon) elif hasattr(shape, 'center'): # Rectangle, Circle bounds = update_bounds(shape.center, bounds=bounds) elif hasattr(shape, 'vertices'): # Polygon, Triangle v = shape.vertices bounds = update_bounds(np.min(v, axis=0), bounds=bounds) bounds = update_bounds(np.max(v, axis=0), bounds=bounds) envelope_bounds = shapely_set.envelope.bounds envelope_bounds = np.array(envelope_bounds).reshape((2, 2)) bounds = update_bounds(envelope_bounds[0], bounds) bounds = update_bounds(envelope_bounds[1], bounds) if np.inf in bounds[0] or -np.inf in bounds[0] or np.inf in bounds[ 1] or -np.inf in bounds[1]: return None else: return tuple(bounds)
3a8fc28c2a47b50b9d0acc49f0818031e357fffa
19,744
def binary_class_accuracy_score(y_pred, data): """LightGBM binary class accuracy-score function. Parameters ---------- y_pred LightGBM predictions. data LightGBM ``'Dataset'``. Returns ------- (eval_name, eval_result, is_higher_better) ``'eval_name'`` : string is always 'accuracy' - the name of the metric ``'eval_result'`` : float is the result of the metric ``'is_higher_better'`` : bool is always 'True' because higher accuracy score is better See Also -------- * `sklearn.metrics.accuracy_score: <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html>` * `LightGBM Training API: <https://lightgbm.readthedocs.io/en/latest/Python-API.html#training-api>` """ y_true = data.get_label() y_pred = np.round(y_pred) return 'accuracy', accuracy_score(y_true, y_pred), True
53f68931a96e3d32bed622dae09239ee2b96d762
19,746
def is_prime(n): """Given an integer n, return True if n is prime and False if not. """ return True
17d2d7bdf95a9d3e037e911a3271688013413fb7
19,748
import logging def get_request_file(): """ Method to implement REST API call of GET on address /file """ try: content_file = open("html/file_get.html", "r") content = content_file.read() except: logging.info("Could not load source HTML file '%s'") raise return content
7a084d5455b1797d851388ac40de23c5c35fb381
19,752
from collections import Counter from typing import Iterable def sock_merchant(arr: Iterable[int]) -> int: """ >>> sock_merchant([10, 20, 20, 10, 10, 30, 50, 10, 20]) 3 >>> sock_merchant([6, 5, 2, 3, 5, 2, 2, 1, 1, 5, 1, 3, 3, 3, 5]) 6 """ count = Counter(arr).values() ret = sum(n // 2 for n in count) return ret
1b3b8d37ccb3494ed774e26a41ebba32c87a632c
19,753
def new_user_registration(email: str) -> dict: """Alert the CIDC admin mailing list to a new user registration.""" subject = "New User Registration" html_content = ( f"A new user, {email}, has registered for the CIMAC-CIDC Data Portal ({ENV}). If you are a CIDC Admin, " "please visit the accounts management tab in the Portal to review their request." ) email = { "to_emails": [CIDC_MAILING_LIST], "subject": subject, "html_content": html_content, } return email
ee4c57e45d15b8e65bd8e702633d527bc2f6db1f
19,754
def article_detail(): """文章详情""" id = request.form.get('id') if id is None: raise Exception('ARTICLE_NOT_EXIST') article = Article.find(id) if article is None: raise Exception('ARTICLE_NOT_EXIST') # 获取标签 if article.tags is None: article.tags = [] else: all_tags = Tag.find_all({'_id': {'$in': article.tags}}) all_tags = {str(tag._id): {'id': str(tag._id), 'name': tag.name} for tag in all_tags} article.tags = [all_tags[str(id)] for id in article.tags if str(id) in all_tags] return {'article': article.filter('title', 'draft', 'tags', img=lambda article: images.url(article.img) if article.img else '')}
534cb77384b65cb4b88bedd1a82daeb93766714a
19,755
def add_state_names_column(my_df): """ Add a column of corresponding state names to a dataframe Params (my_df) a DataFrame with a column called "abbrev" that has state abbreviations. Return a copy of the original dataframe, but with an extra column. """ new_df = my_df.copy() names_map = {"CA": "Cali", "CO": "Colorado", "CT": "Connecticut", "NJ": "New Jersey"} new_df = df["name"] = new_df["abbrev"].map(names_map) return my_df
4a9eb49ef2cda11d8135eb33ec43d99422e067b6
19,756
import glob def list_subdir_paths(directory): """ Generates a list of subdirectory paths :param directory: str pathname of target parent directory :return: list of paths for each subdirectory in the target parent directory """ subdir_paths = glob("{}/*/".format(directory)) return subdir_paths
df8ec80096b900ad8ceac3bc013fe47b21b4fd54
19,757
import math def logic_method_with_bkg(plots_per_cycle, cycle_time, sigma_s=160, m=3, n=4): """ :param plots_per_cycle: :param cycle_time: :param sigma_s: :param m: :param n: :return: """ N = plots_per_cycle.shape[0] # number of cycles tracks = [] # ret track_cnt = 0 # 取滑动窗口 succeed = False for i in range(2, N - n): # cycle i if succeed: break # 取滑窗(连续5个cycle) window = slide_window(plots_per_cycle, n, start_cycle=i, skip_cycle=2) # ----------对窗口中进行m/n统计 # 构建mapping链 K = min([cycle_plots.shape[0] for cycle_plots in window]) # 最小公共点迹数 mappings = defaultdict(dict) for j in range(len(window) - 1, 0, -1): # ----- 构建相邻cycle的mapping mapping = matching_plots_nn(window[j], window[j - 1], K) # ----- if len(set(mapping.values())) != len(set(mapping.keys())): break else: mappings[j] = mapping if len(mappings) < m: # 至少有m个cycle有效数据, 对应m-1个mapping continue # 滑动到下一个window # 对mapping结果进行排序(按照key降序排列) mappings = sorted(mappings.items(), key=lambda x: x[0], reverse=True) # print(mappings) # 构建暂时航迹 for k in range(K): # 遍历每个暂时航迹 # ----- 航迹状态记录 # 窗口检出数计数: 每个暂时航迹单独计数 n_pass = 0 # 窗口运动状态记录: 每个航迹单独记录(速度, 加速度, 航向偏转角) window_states = defaultdict(dict) # ----- # ----- 构建暂时航迹组成的点迹(plots) plot_ids = [] id = -1 # 提取倒序第一个有效cycle的第k个plot id keys = mappings[0][1].keys() keys = sorted(keys, reverse=False) # 按照当前window最大的有效cycle的点迹序号升序排列 id = keys[k] plot_ids.append(id) # 按照mapping链递推其余cycle的plot id for (c, mapping) in mappings: # mapping已经按照cycle倒序排列过了 id = mapping[id] # 倒推映射链plot id plot_ids.append(id) # print(ids) # ids是按照cycle倒排的 # 根据ids链接构建plot链: 暂时航迹 cycle_ids = [c for (c, mapping) in mappings] # 按照cycle编号倒排 cycle_ids.extend([mappings[-1][0] - 1]) assert len(cycle_ids) == len(plot_ids) plots = [window[cycle][plot_id] for cycle, plot_id in zip(cycle_ids, plot_ids)] # print(plots) # window内逐一门限测试 # for l, (cycle_id, plot) in enumerate(zip(cycle_ids_to_test, plots_to_test)): for l in range(len(plots) - 2): cycle_id = cycle_ids[l] # 构建连续三个cycle的plots # plots_2 = [plots[l + 1], plots[l]] plots_3 = [plots[l + 2], plots[l + 1], plots[l]] # plot_plots(plots_2, [cycle_ids[l+1], cycle_ids[l]]) # plot_plots(plots_3, [cycle_ids[l+2], cycle_ids[l+1], cycle_ids[l]]) # 估算当前点迹的运动状态 v, a, angle_in_radians = get_v_a_angle(plots_3, cycle_time) # v = get_v(plots_2, cycle_time) # 航向偏移角度估算 angle_in_degrees = math.degrees(angle_in_radians) angle_in_degrees = angle_in_degrees if angle_in_degrees >= 0.0 else angle_in_degrees + 360.0 angle_in_degrees = angle_in_degrees if angle_in_degrees <= 360.0 else angle_in_degrees - 360.0 # 初始波门判定: j是当前判定序列的第二次扫描 if start_gate_check(cycle_time, plots[l + 2], plots[l + 1], v0=340): # --- 对通过初始波门判定的航迹建立暂时航迹, 继续判断相关波门 # 相关(跟踪)波门判定page71-72 if relate_gate_check(cycle_time, v, a, plots[l + 2], plots[l + 1], plots[l], sigma_s=sigma_s): n_pass += 1 # window运动状态记录 state_dict = { 'cycle': cycle_id, 'x': plots[l][0], 'y': plots[l][1], 'v': v, 'a': a, 'angle_in_degrees': angle_in_degrees } window_states[cycle_id] = state_dict ## ----- 记录window中最前面的两个点迹的运动状态 if l == len(plots) - 2 - 1: print('Add plot for the first 2 plots in the window...') plots_2 = [plots[l + 1], plots[l]] v = get_v(plots_2, cycle_time) # window第1号点迹运动状态记录 state_dict = { 'cycle': cycle_id - 1, 'x': plots[l + 1][0], 'y': plots[l + 1][1], 'v': v, 'a': -1, 'angle_in_degrees': -1 } window_states[cycle_id - 1] = state_dict # window第0号点迹运动状态记录 state_dict = { 'cycle': cycle_id - 2, 'x': plots[l + 2][0], 'y': plots[l + 2][1], 'v': -1, 'a': -1, 'angle_in_degrees': -1 } window_states[cycle_id - 2] = state_dict else: print('Track init failed @cycle{:d}, object(plot) is not in relating gate.'.format(i)) else: print('Track init failed @cycle{:d} @window{:d}, object(plot) is not in the starting gate.' .format(i, j)) # 判定是否当前航迹初始化成功 if n_pass >= m: print( 'Track {:d} inited successfully @cycle {:d}.'.format(k, i)) # -----初始化航迹对象 track = Track() track.id_ = track_cnt # 航迹编号 track.state_ = 2 # 航迹状态: 可靠航迹 track.init_cycle_ = i # 航迹起始cycle window_states = sorted(window_states.items( ), key=lambda x: x[0], reverse=False) # 升序重排 # 添加已初始化点迹 for k, v in window_states: # print(k, v) plot = Plot(v['cycle'], v['x'], v['y'], v['v'], v['a'], v['angle_in_degrees']) plot.state_ = 1 # 'Related' plot.correlated_track_id_ = track.id_ track.add_plot(plot) track.quality_counter_ += 1 # 航迹质量得分更新 tracks.append(track) # ----- # 更新航迹编号 track_cnt += 1 # 航迹起始成功标识 succeed = True # 清空窗口状态 window_states = defaultdict(dict) # 跳出当前航迹检测, 到下一个暂时航迹 continue return succeed, tracks
a77e8a9d116187dce674c33ca098012bb6b22363
19,758
from typing import Union def bias_scan( data: pd.DataFrame, observations: pd.Series, expectations: Union[pd.Series, pd.DataFrame] = None, favorable_value: Union[str, float] = None, overpredicted: bool = True, scoring: Union[str, ScoringFunction] = "Bernoulli", num_iters: int = 10, penalty: float = 1e-17, mode: str = "binary", **kwargs, ): """ scan to find the highest scoring subset of records :param data (dataframe): the dataset (containing the features) the model was trained on :param observations (series): ground truth (correct) target values :param expectations (series, dataframe, optional): pandas series estimated targets as returned by a model for binary, continuous and ordinal modes. If mode is nominal, this is a dataframe with columns containing expectations for each nominal class. If None, model is assumed to be a dumb model that predicts the mean of the targets or 1/(num of categories) for nominal mode. :param favorable_value(str, float, optional): Should be high or low or float if the mode in [binary, ordinal, or continuous]. If float, value has to be minimum or maximum in the observations column. Defaults to high if None for these modes. Support for float left in to keep the intuition clear in binary classification tasks. If mode is nominal, favorable values should be one of the unique categories in the observations. Defaults to a one-vs-all scan if None for nominal mode. :param overpredicted (bool, optional): flag for group to scan for. True means we scan for a group whose expectations/predictions are systematically higher than observed. In other words, True means we scan for a group whose observeed is systematically lower than the expectations. False means we scan for a group whose expectations/predictions are systematically lower than observed. In other words, False means we scan for a group whose observed is systematically higher than the expectations. :param scoring (str or class): One of 'Bernoulli', 'Gaussian', 'Poisson', or 'BerkJones' or subclass of :class:`aif360.metrics.mdss.ScoringFunctions.ScoringFunction`. :param num_iters (int, optional): number of iterations (random restarts). Should be positive. :param penalty (float,optional): penalty term. Should be positive. The penalty term as with any regularization parameter may need to be tuned for ones use case. The higher the penalty, the less complex (number of features and feature values) the highest scoring subset that gets returned is. :param mode: one of ['binary', 'continuous', 'nominal', 'ordinal']. Defaults to binary. In nominal mode, up to 10 categories are supported by default. To increase this, pass in keyword argument max_nominal = integer value. :returns: the highest scoring subset and the score or dict of the highest scoring subset and the score for each category in nominal mode """ # Ensure correct mode is passed in. modes = ["binary", "continuous", "nominal", "ordinal"] assert mode in modes, f"Expected one of {modes}, got {mode}." # Set correct favorable value (this tells us if higher or lower is better) min_val, max_val = observations.min(), observations.max() uniques = list(observations.unique()) if favorable_value == 'high': favorable_value = max_val elif favorable_value == 'low': favorable_value = min_val elif favorable_value is None: if mode in ["binary", "ordinal", "continuous"]: favorable_value = max_val # Default to higher is better elif mode == "nominal": favorable_value = "flag-all" # Default to scan through all categories assert favorable_value in [ "flag-all", *uniques, ], f"Expected one of {uniques}, got {favorable_value}." assert favorable_value in [ min_val, max_val, "flag-all", *uniques, ], f"Favorable_value should be high, low, or one of categories {uniques}, got {favorable_value}." # Set appropriate direction for scanner depending on mode and overppredicted flag if mode in ["ordinal", "continuous"]: if favorable_value == max_val: kwargs["direction"] = "negative" if overpredicted else "positive" else: kwargs["direction"] = "positive" if overpredicted else "negative" else: kwargs["direction"] = "negative" if overpredicted else "positive" # Set expectations to mean targets for non-nominal modes if expectations is None and mode != "nominal": expectations = pd.Series(observations.mean(), index=observations.index) # Set appropriate scoring function if scoring == "Bernoulli": scoring = Bernoulli(**kwargs) elif scoring == "BerkJones": scoring = BerkJones(**kwargs) elif scoring == "Gaussian": scoring = Gaussian(**kwargs) elif scoring == "Poisson": scoring = Poisson(**kwargs) else: scoring = scoring(**kwargs) if mode == "binary": # Flip observations if favorable_value is 0 in binary mode. observations = pd.Series(observations == favorable_value, dtype=int) elif mode == "nominal": unique_outs = set(sorted(observations.unique())) size_unique_outs = len(unique_outs) if expectations is not None: # Set expectations to 1/(num of categories) for nominal mode expectations_cols = set(sorted(expectations.columns)) assert ( unique_outs == expectations_cols ), f"Expected {unique_outs} in expectation columns, got {expectations_cols}" else: expectations = pd.Series( 1 / observations.nunique(), index=observations.index ) max_nominal = kwargs.get("max_nominal", 10) assert ( size_unique_outs <= max_nominal ), f"Nominal mode only support up to {max_nominal} labels, got {size_unique_outs}. Use keyword argument max_nominal to increase the limit." if favorable_value != "flag-all": # If favorable flag is set, use one-vs-others strategy to scan, else use one-vs-all strategy observations = observations.map({favorable_value: 1}) observations = observations.fillna(0) if isinstance(expectations, pd.DataFrame): expectations = expectations[favorable_value] else: results = {} orig_observations = observations.copy() orig_expectations = expectations.copy() for unique in uniques: observations = orig_observations.map({unique: 1}) observations = observations.fillna(0) if isinstance(expectations, pd.DataFrame): expectations = orig_expectations[unique] scanner = MDSS(scoring) result = scanner.scan( data, expectations, observations, penalty, num_iters, mode=mode ) results[unique] = result return results scanner = MDSS(scoring) return scanner.scan(data, expectations, observations, penalty, num_iters, mode=mode)
735ccc6c3054e981a7aee9681d892e226316ed41
19,759
def int_from_bin_list(lst): """Convert a list of 0s and 1s into an integer Args: lst (list or numpy.array): list of 0s and 1s Returns: int: resulting integer """ return int("".join(str(x) for x in lst), 2)
a41b2578780019ed1266442d76462fb89ba2a0fb
19,760
def validate_array_input(arr, dtype, arr_name): """Check if array has correct type and is numerical. This function checks if the input is either a list, numpy.ndarray or pandas.Series of numerical values, converts it to a numpy.ndarray and throws an error in case of incorrect data. Args: arr: Array of data dtype: One of numpy's dtypes arr_name: String specifing the variable name, so that the error message can be adapted correctly. Returns: A as numpy.ndarray converted array of values with a datatype specified in the input argument. Raises: ValueError: In case non-numerical data is passed TypeError: If the error is neither a list, a numpy.ndarray nor a pandas.Series """ # Check for correct data type if isinstance(arr, (list, np.ndarray, pd.Series)): # Try to convert as numpy array try: arr = np.array(arr, dtype=dtype).flatten() except: msg = ["The data in the parameter array '{}'".format(arr_name), " must be purely numerical."] raise ValueError("".join(msg)) else: msg = ["The array {} must be either a list, ".format(arr_name), "numpy.ndarray or pandas.Series"] raise TypeError("".join(msg)) # return converted array return arr
72829dad46aa6e5054cd0d49ff0206083781bddd
19,761
from sklearn.manifold import TSNE from sklearn.cluster import AgglomerativeClustering from sklearn.preprocessing import StandardScaler def ClassifyBehavior(data, bp_1="snout",bp_2="ear_L", bp_3="ear_R", bp_4="tail", dimensions = 2,distance=28,**kwargs): """ Returns an array with the cluster by frame, an array with the embedding data in low-dimensional space and the clusterization model. Parameters ---------- data : pandas DataFrame The input tracking data. bp_1 : str Body part representing snout. bp_2 : str Body part representing left ear. bp_3 : str Body part representing right ear. bp_4 : str Body part representing tail. dimensions : int Dimension of the embedded space. distance : int The linkage distance threshold above which, clusters will not be merged. startIndex : int, optional Initial index. n_jobs : int, optional The number of parallel jobs to run for neighbors search. verbose : int, optional Verbosity level. perplexity : float, optional The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Returns ------- cluster_labels : array Array with the cluster by frame. X_transformed : array Embedding of the training data in low-dimensional space. model : Obj AgglomerativeClustering model. See Also -------- For more information and usage examples: https://github.com/pyratlib/pyrat Notes ----- This function was developed based on DLC outputs and is able to support matplotlib configurations.""" startIndex = kwargs.get('startIndex') n_jobs = kwargs.get('n_jobs') verbose = kwargs.get('verbose') perplexity = kwargs.get("perplexity") if type(startIndex) == type(None): startIndex = 0 if type(n_jobs) == type(None): n_jobs=-1 if type(verbose) == type(None): verbose=0 if type(perplexity) == type(None): perplexity=500 values = (data.iloc[2:,1:].values).astype(np.float) lista1 = (data.iloc[0][1:].values +" - " + data.iloc[1][1:].values).tolist() nose = np.concatenate(((values[:,lista1.index(bp_1+" - x")]).reshape(1,-1).T,(values[:,lista1.index(bp_1+" - y")]).reshape(1,-1).T), axis=1) earr = np.concatenate(((values[:,lista1.index(bp_2+" - x")]).reshape(1,-1).T,(values[:,lista1.index(bp_2+" - y")]).reshape(1,-1).T), axis=1) earl = np.concatenate(((values[:,lista1.index(bp_3+" - x")]).reshape(1,-1).T,(values[:,lista1.index(bp_3+" - y")]).reshape(1,-1).T), axis=1) tail = np.concatenate(((values[:,lista1.index(bp_4+" - x")]).reshape(1,-1).T,(values[:,lista1.index(bp_4+" - y")]).reshape(1,-1).T), axis=1) bodyparts = [nose, earr, earl, tail] distances = [] for k in range(len(bodyparts[0])): frame_distances = [] for i in range(len(bodyparts)): distance_row = [] for j in range( len(bodyparts) ): distance_row.append(np.linalg.norm(bodyparts[i][k] - bodyparts[j][k])) frame_distances.append(distance_row) distances.append(frame_distances) distances2 = np.asarray(distances) for i in range(4): for k in range(4): distances2[:, i, j] = distances2[:, i, j]/np.max(distances2[:, i, j]) d = [] for i in range(distances2.shape[0]): d.append(distances2[i, np.triu_indices(4, k = 1)[0], np.triu_indices(4, k = 1)[1]]) d = StandardScaler().fit_transform(d) embedding = TSNE(n_components=dimensions, n_jobs=n_jobs, verbose=verbose, perplexity=perplexity) X_transformed = embedding.fit_transform(d[startIndex:]) model = AgglomerativeClustering(n_clusters=None,distance_threshold=distance) model = model.fit(d[startIndex:]) cluster_labels = model.labels_ return cluster_labels, X_transformed, model
002e11bd0b6050fcfa8b50df0f0b24a3cc36bed7
19,762
def grab_inputs(board): """ Asks for inputs and returns a row, col. Also updates the board state. """ keepasking = True while keepasking: try: row = int(input("Input row")) col = int(input("Input column ")) except (EOFError, KeyboardInterrupt): print('Cya nerd') exit() except: print("That's not an integer you mongoloid.") else: # If it's an int valid_board = board.update_board(row, col) if valid_board == False: print("Your row or col is out of range. Try ranges 0-2 and make sure there's nothing there already.") else: # If it's a valid board keepasking = False return row, col
0fb840348ff645d9f2a48e1c028d99bff0bf31fe
19,763
def start_session(): """ This function is what initializes the application.""" welcome_msg = render_template('welcome') return question(welcome_msg)
ce666a48f078e49a0df98b5087c71cb1e548e905
19,764
def solve(filename): """ Run a sample, do the analysis and store a program to apply to a test case """ arc = Arc(filename) arc.print_training_outputs() return arc.solve()
2a23021bb31508fd67c4be178684bb2da7d1d7c9
19,765
from typing import Sequence def extract_item(item, prefix=None, entry=None): """a helper function to extract sequence, will extract values from a dicom sequence depending on the type. Parameters ========== item: an item from a sequence. """ # First call, we define entry to be a lookup dictionary if entry is None: entry = {} # Skip raw data elements if not isinstance(item, RawDataElement): header = item.keyword # If there is no header or field, we can't evaluate if header in [None, ""]: return entry if prefix is not None: header = "%s__%s" % (prefix, header) value = item.value if isinstance(value, bytes): value = value.decode("utf-8") if isinstance(value, Sequence): return extract_sequence(value, prefix=header) entry[header] = value return entry
a4c8c99bcd54baefdbaa95469bb3a289c2811cfc
19,766
def route_counts(session, origin_code, dest_code): """ Get count of flight routes between origin and dest. """ routes = session.tables["Flight Route"] # airports = session.tables["Reporting Airport"] # origin = airports["Reporting Airport"] == origin_code origin = SelectorClause( "Reporting Airport", REPORTING_AIRPORT_CODE, [origin_code], session=session ) dest = routes["Origin Destination"] == dest_code audience = routes * origin & dest return audience.select().count
ad35a36b6874bcf45107d7217acdb6bae097b305
19,767
from pathlib import Path def generate_master_bias( science_frame : CCDData, bias_path : Path, use_cache : bool=True ) -> CCDData: """ """ cache_path = generate_cache_path(science_frame, bias_path) / 'bias' cache_file = cache_path / 'master.fits' if use_cache and cache_file.is_file(): ccd = CCDData.read(cache_file) if ccd is not None: return ccd cache_path.mkdir(parents=True, exist_ok=True) ccd = calibrate_bias(science_frame, bias_path) if ccd is not None: ccd.write(cache_file) return ccd
207ca95109694d16e154088c7e3a12880f01d037
19,768
def RetryOnException(retry_checker, max_retries, sleep_multiplier=0, retry_backoff_factor=1): """Decorater which retries the function call if |retry_checker| returns true. Args: retry_checker: A callback function which should take an exception instance and return True if functor(*args, **kwargs) should be retried when such exception is raised, and return False if it should not be retried. max_retries: Maximum number of retries allowed. sleep_multiplier: Will sleep sleep_multiplier * attempt_count seconds if retry_backoff_factor is 1. Will sleep sleep_multiplier * ( retry_backoff_factor ** (attempt_count - 1)) if retry_backoff_factor != 1. retry_backoff_factor: See explanation of sleep_multiplier. Returns: The function wrapper. """ def _Wrapper(func): def _FunctionWrapper(*args, **kwargs): return Retry(retry_checker, max_retries, func, sleep_multiplier, retry_backoff_factor, *args, **kwargs) return _FunctionWrapper return _Wrapper
a721e14c7d5d98e2151f4108dcff18cb0de225e3
19,769
import csv import itertools def ParseCsvFile(fp): """Parse dstat results file in csv format. Args: file: string. Name of the file. Returns: A tuple of list of dstat labels and ndarray containing parsed data. """ reader = csv.reader(fp) headers = list(itertools.islice(reader, 5)) if len(headers) != 5: raise ValueError( 'Expected exactly 5 header lines got {}\n{}'.format( len(headers), headers)) if 'Dstat' not in headers[0][0]: raise ValueError( 'Expected first header cell to contain "Dstat"\n{}'.format( headers[0])) if 'Host:' not in headers[2][0]: raise ValueError(('Expected first cell in third line to be ' '"Host:"\n{}').format(headers[2])) categories = next(reader) # Categories are not repeated; copy category name across columns in the # same category for i, category in enumerate(categories): if not categories[i]: categories[i] = categories[i - 1] labels = next(reader) if len(labels) != len(categories): raise ValueError(( 'Number of categories ({}) does not match number of ' 'labels ({})\nCategories: {}\nLabels:{}').format( len(categories), len(labels), categories, labels)) # Generate new column names labels = ['%s__%s' % x for x in zip(labels, categories)] data = [] for i, row in enumerate(reader): # Remove the trailing comma if len(row) == len(labels) + 1: if row[-1]: raise ValueError(('Expected the last element of row {0} to be empty,' ' found {1}').format(row, row[-1])) row = row[:-1] if len(labels) != len(row): raise ValueError(('Number of labels ({}) does not match number of ' 'columns ({}) in row {}:\n{}').format( len(labels), len(row), i, row)) data.append(row) return labels, np.array(data, dtype=float)
39381d0f9eaab1ab139d4d660257aeaec6e765ca
19,770
def uid_to_device_name(uid): """ Turn UID into its corresponding device name. """ return device_id_to_name(uid_to_device_id(uid))
e4ec879bb1619fd1e215c94084117b3ce6b237bc
19,771
def zonal_convergence(u, h, dx, dy, dy_u, ocean_u): """Compute convergence of zonal flow. Returns -(hu)_x taking account of the curvature of the grid. """ res = create_var(u.shape) for j in range(u.shape[-2]): for i in range(u.shape[-1]): res[j, i] = (-1) * ( h[j, cx(i + 1)] * u[j, cx(i + 1)] * dy_u[j, cx(i + 1)] * ocean_u[j, cx(i + 1)] - h[j, i] * u[j, i] * dy_u[j, i] * ocean_u[j, i] ) / (dx[j, i] * dy[j, i]) return res
42a0ee78e0c4d8f78a600a9dd72aa03aa104f560
19,772
def filterPoints(solutions, corners): """Remove solutions if they are not whithin the perimeter. This function use shapely as the mathematical computaions for non rectangular shapes are quite heavy. Args: solutions: A list of candidate points. corners: The perimeter of the garden (list of LEDs). Returns: A list of points filtered. """ coords = [] for i in corners: if i.inPerimeter: coords.append((i.point.X, i.point.Y)) polygon = shapely.geometry.polygon.Polygon(coords) solutions_2 = [value.toShapely() for value in solutions if polygon.contains(value.toShapely())] return [Point(v.x, v.y) for v in solutions_2]
55c6e824d46e934eb30c6ecca45f516f09f0bff2
19,773
from typing import Set def get_migrations_from_old_config_key_startswith(old_config_key_start: str) -> Set[AbstractPropertyMigration]: """ Get all migrations where old_config_key starts with given value """ ret = set() for migration in get_history(): if isinstance(migration, AbstractPropertyMigration) and \ migration.old_config_key and \ migration.old_config_key.startswith(old_config_key_start): ret.add(migration) return ret
c8224af6e9a675ed940bf61de984a8dd01f634d5
19,774
def bbox_mapping(bboxes, img_shape, scale_factor, flip, flip_direction, # ='horizontal', tile_offset): """Map bboxes from the original image scale to testing scale.""" new_bboxes = bboxes * bboxes.new_tensor(scale_factor) if flip: new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction) # add by hui ############################################ assert tile_offset is None or (isinstance(tile_offset, (tuple, list)) and len(tile_offset) == 2), \ "tile_offset must be None or (dx, dy) or [dx, dy]" if tile_offset is not None: dx, dy = tile_offset new_bboxes[:, [0, 2]] -= dx new_bboxes[:, [1, 3]] -= dy h, w, c = img_shape new_bboxes[:, [0, 2]] = new_bboxes[:, [0, 2]].clamp(0, w - 1) new_bboxes[:, [1, 3]] = new_bboxes[:, [1, 3]].clamp(0, h - 1) W, H = new_bboxes[:, 2] - new_bboxes[:, 0], new_bboxes[:, 3] - new_bboxes[:, 1] keep = (W >= 2) & (H >= 2) new_bboxes = new_bboxes[keep] # ################################################################# return new_bboxes
a5fb8283eb6c379ef516db3a72c50d34c58ea8e6
19,775
import torch def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 # mask_c1 = mask_d2 * (1 - mask_d0_d1) mask_c1 = mask_d2 * (~mask_d0_d1) # mask_c2 = (1 - mask_d2) * mask_d0_nd1 mask_c2 = (~mask_d2) * mask_d0_nd1 # mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1) mask_c3 = (~mask_d2) * (~mask_d0_nd1) mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q
3198dcd9f7a058a54be0d607cc66f543ea8e46f8
19,777
import calendar from datetime import datetime def get_first_day_and_last_day_by_month(months=0): """获取某月份的第一天的日期和最后一天的日期 :param months: int, 负数表示过去的月数,正数表示未来的 :return tuple: (某月第一天日期, 某月最后一天日期) """ day = get_today() + relativedelta(months=months) year = day.year month = day.month # 获取某年某月的第一天的星期和该月总天数 _, month_range = calendar.monthrange(year, month) first = datetime.date(year=year, month=month, day=1) last = datetime.date(year=year, month=month, day=month_range) return first, last
1aea5aa0c1abcc8382212315f0e34cf0f33968b9
19,778
def kmeans(X, C): """The Loyd's algorithm for the k-centers problems. X : data matrix C : initial centers """ C = C.copy() V = np.zeros(C.shape[0]) for x in X: idx = np.argmin(((C - x)**2).sum(1)) V[idx] += 1 eta = 1.0 / V[idx] C[idx] = (1.0 - eta) * C[idx] + eta * x return C
3006c10bf9091a39f4808781e4b484fc24f2ae3f
19,779
def data_block(block_str): """ Parses all of the NASA polynomials in the species block of the mechanism file and subsequently pulls all of the species names and thermochemical properties. :param block_str: string for thermo block :type block_str: str :return data_block: all the data from the data string for each species :rtype: list(list(str/float)) """ thm_dstr_lst = data_strings(block_str) thm_dat_lst = tuple(zip( map(species_name, thm_dstr_lst), map(temperatures, thm_dstr_lst), map(low_coefficients, thm_dstr_lst), map(high_coefficients, thm_dstr_lst))) return thm_dat_lst
bfcf457e164002cd4ab8c6c852117ebe24f437ab
19,781
from functools import reduce from re import S def risch_norman(f, x, rewrite=False): """Computes indefinite integral using extended Risch-Norman algorithm, also known as parallel Risch. This is a simplified version of full recursive Risch algorithm. It is designed for integrating various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. The main difference between this algorithm and the recursive one is that rather than computing a tower of differential extensions in a recursive way, it handles all cases in one shot. That's why it is called parallel Risch algorithm. This makes it much faster than the original approach. Another benefit is that it doesn't require to rewrite expressions in terms of complex exponentials. Rather it uses tangents and so antiderivatives are being found in a more familliar form. Risch-Norman algorithm can also handle special functions very easily without any additional effort. Just differentiation method must be known for a given function. Note that this algorithm is not a decision procedure. If it computes an antiderivative for a given integral then it's a proof that such function exists. However when it fails then there still may exist an antiderivative and a fallback to recurrsive Risch algorithm would be necessary. The question if this algorithm can be made a full featured decision procedure still remains open. For more information on the implemented algorithm refer to: [1] K. Geddes, L.Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. [2] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. [3] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. [4] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. """ f = Basic.sympify(f) if not f.has(x): return f * x rewritables = { (sin, cos, cot) : tan, (sinh, cosh, coth) : tanh, } if rewrite: for candidates, rule in rewritables.iteritems(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.iterkeys(): if f.has(*candidates): break else: rewrite = True terms = components(f) for g in set(terms): h = g.diff(x) if not isinstance(h, Basic.Zero): terms |= components(h) terms = [ g for g in terms if g.has(x) ] V, in_terms, out_terms = [], [], {} for i, term in enumerate(terms): V += [ Symbol('x%s' % i) ] N = term.count_ops(symbolic=False) in_terms += [ (N, term, V[-1]) ] out_terms[V[-1]] = term in_terms.sort(lambda u, v: int(v[0] - u[0])) def substitute(expr): for _, g, symbol in in_terms: expr = expr.subs(g, symbol) return expr diffs = [ substitute(g.diff(x)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] denom = reduce(lambda p, q: lcm(p, q, V), denoms) numers = [ normal(denom * g, *V) for g in diffs ] def derivation(h): return Basic.Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def deflation(p): for y in p.atoms(Basic.Symbol): if not isinstance(derivation(p), Basic.Zero): c, q = p.as_polynomial(y).as_primitive() return deflation(c) * gcd(q, q.diff(y)) else: return p def splitter(p): for y in p.atoms(Basic.Symbol): if not isinstance(derivation(y), Basic.Zero): c, q = p.as_polynomial(y).as_primitive() q = q.as_basic() h = gcd(q, derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = splitter(c) if s.as_polynomial(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = splitter(normal(q / s, *V)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) else: return (S.One, p) special = [] for term in terms: if isinstance(term, Basic.Function): if isinstance(term, Basic.tan): special += [ (1 + substitute(term)**2, False) ] elif isinstance(term.func, tanh): special += [ (1 + substitute(term), False), (1 - substitute(term), False) ] #elif isinstance(term.func, Basic.LambertW): # special += [ (substitute(term), True) ] ff = substitute(f) P, Q = ff.as_numer_denom() u_split = splitter(denom) v_split = splitter(Q) s = u_split[0] * Basic.Mul(*[ g for g, a in special if a ]) a, b, c = [ p.as_polynomial(*V).degree() for p in [s, P, Q] ] candidate_denom = s * v_split[0] * deflation(v_split[1]) monoms = monomials(V, 1 + a + max(b, c)) linear = False while True: coeffs, candidate, factors = [], S.Zero, set() for i, monomial in enumerate(monoms): coeffs += [ Symbol('A%s' % i, dummy=True) ] candidate += coeffs[-1] * monomial candidate /= candidate_denom polys = [ v_split[0], v_split[1], u_split[0]] + [ s[0] for s in special ] for irreducibles in [ factorization(p, linear) for p in polys ]: factors |= irreducibles for i, irreducible in enumerate(factors): if not isinstance(irreducible, Basic.Number): coeffs += [ Symbol('B%s' % i, dummy=True) ] candidate += coeffs[-1] * Basic.log(irreducible) h = together(ff - derivation(candidate) / denom) numerator = h.as_numer_denom()[0].expand() if not isinstance(numerator, Basic.Add): numerator = [numerator] collected = {} for term in numerator: coeff, depend = term.as_independent(*V) if depend in collected: collected[depend] += coeff else: collected[depend] = coeff solutions = solve(collected.values(), coeffs) if solutions is None: if linear: break else: linear = True else: break if solutions is not None: antideriv = candidate.subs_dict(solutions) for C in coeffs: if C not in solutions: antideriv = antideriv.subs(C, S.Zero) antideriv = simplify(antideriv.subs_dict(out_terms)).expand() if isinstance(antideriv, Basic.Add): return Basic.Add(*antideriv.as_coeff_factors()[1]) else: return antideriv else: if not rewrite: return risch_norman(f, x, rewrite=True) else: return None
12dd2cbd724566344d73bff48ed46b33d2b84730
19,782
def preprocess_spectra(fluxes, interpolated_sn, sn_array, y_offset_array): """preprocesses a batch of spectra, adding noise according to specified sn profile, and applies continuum error INPUTS fluxes: length n 2D array with flux values for a spectrum interpolated_sn: length n 1D array with relative sn values for each pixel sn_array: 2d array dims (num examples, 1) with sn selected for each example y_offset_array: same as sn array but with y_offsets OUTPUTS fluxes: length n 2D array with preprocessed fluxes for a spectrum """ n_pixels = np.size(fluxes[0, :]) n_stars = np.size(fluxes[:, 1]) base_stddev = 1.0 / sn_array[:, 0] for i in range(n_stars): noise_array = np.random.normal(0.0, scale=base_stddev[i], size=n_pixels) fluxes[i, :] += noise_array*interpolated_sn fluxes += y_offset_array return fluxes
552d42b3835f3bc60930ae6f05f1544c924e940b
19,785
import json def read_config(path=None): """ Function for reading in the config.json file """ #create the filepath if path: if "config.json" in path: file_path = path else: file_path = f"{path}/config.json" else: file_path = "config.json" #load in config try: with open(file_path, "r") as json_file: config = json.load(json_file) except Exception: raise Exception("Your config file is corrupt (wrong syntax, missing values, ...)") return config
3e3612879645509acb74f184085f7e584afbf822
19,786
import json def ema_incentive(ds): """ Parse stream name 'incentive--org.md2k.ema_scheduler--phone'. Convert json column to multiple columns. Args: ds: Windowed/grouped DataStream object Returns: ds: Windowed/grouped DataStream object. """ schema = StructType([ StructField("timestamp", TimestampType()), StructField("localtime", TimestampType()), StructField("user", StringType()), StructField("version", IntegerType()), StructField("incentive", FloatType()), StructField("total_incentive", FloatType()), StructField("ema_id", StringType()), StructField("data_quality", FloatType()) ]) @pandas_udf(schema, PandasUDFType.GROUPED_MAP) def parse_ema_incentive(user_data): all_vals = [] for index, row in user_data.iterrows(): ema = row["incentive"] if not isinstance(ema, dict): ema = json.loads(ema) incentive = ema["incentive"] total_incentive = ema["totalIncentive"] ema_id = ema["emaId"] data_quality = ema["dataQuality"] all_vals.append([row["timestamp"],row["localtime"], row["user"],1,incentive,total_incentive,ema_id,data_quality]) return pd.DataFrame(all_vals,columns=['timestamp','localtime', 'user', 'version','incentive','total_incentive','ema_id','data_quality']) # check if datastream object contains grouped type of DataFrame if not isinstance(ds._data, GroupedData): raise Exception( "DataStream object is not grouped data type. Please use 'window' operation on datastream object before running this algorithm") data = ds._data.apply(parse_ema_incentive) return DataStream(data=data, metadata=Metadata())
ad6d6a08906dc5aab5a1ea2d0895eb84eac44f44
19,787
def read_fingerprint(finger_name: str) -> np.ndarray: """ Given the file "x_y_z" name this function returns a vector with the fingerprint data. :param finger_name: A string with the format "x_y_z". :return: A vector (1x256) containing the fingerprint data. """ base_path = "rawData/QFM16_" path = base_path + finger_name + ".txt" return read_finger_file(path)
21b88afffdb016699ad6a0ed635931096ebe8bc1
19,788
def read_data(data_path): """This function reads in the histogram data from the provided path and returns a pandas dataframe """ histogram_df = None # Your code goes here return histogram_df
5b927246c9298743c22d8a9fc497175aa9600c24
19,790
def get_number_of_tickets(): """Get number of tickets to enter from user""" num_tickets = 0 while num_tickets == 0: try: num_tickets = int(input('How many tickets do you want to get?\n')) except: print ("Invalid entry for number of tickets.") return num_tickets
3703a4ed64867a9884328c09f0fd32e763265e95
19,792
def scrape(file): """ scrapes rankings, counts from agg.txt file""" D={} G={} with open(file,'r') as f: for line in f: L = line.split(' ') qid = L[1][4:] if qid not in D: D[qid]=[] G[qid]=[] #ground truth G[qid].append(int(L[0])) #extract ranks ranks=[] for i in range(2,27): [l,rank]=L[i].split(':') if rank != 'NULL': ranks.append(int(rank)) else: ranks.append(0) D[qid].append(ranks) C={};N={} for qid in D: C[qid]=[] N[qid] = len(D[qid]) A= np.array(D[qid]) assert A.shape[1] == 25 for i in range(25): l = A[:,i] ranked = np.where(l>0)[0] ranking = ranked[np.argsort(l[ranked])] C[qid].append(ranking) #pickle.dump(C,open('MQ-lists.p','wb')) return C,N,G
cad6525a9ae43f8366ae7e0efec14dd8b2921d27
19,793
import hashlib import binascii def private_key_to_WIF(private_key): """ Convert the hex private key into Wallet Import Format for easier wallet importing. This function is only called if a wallet with a balance is found. Because that event is rare, this function is not significant to the main pipeline of the program and is not timed. """ digest = hashlib.sha256(binascii.unhexlify('80' + private_key)).hexdigest() var = hashlib.sha256(binascii.unhexlify(digest)).hexdigest() var = binascii.unhexlify('80' + private_key + var[0:8]) alphabet = chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' value = pad = 0 result = '' for i, c in enumerate(var[::-1]): value += 256**i * c while value >= len(alphabet): div, mod = divmod(value, len(alphabet)) result, value = chars[mod] + result, div result = chars[value] + result for c in var: if c == 0: pad += 1 else: break return chars[0] * pad + result
20e7a767fdfb689f586fc566a94ec37f86a88e52
19,794
def woodbury_solve_vec(C, v, p): """ Vectorzed woodbury solve --- overkill Computes the matrix vector product (Sigma)^{-1} p where Sigma = CCt + diag(exp(a)) C = D x r real valued matrix v = D dimensional real valued vector The point of this function is that you never have to explicitly represent the full DxD matrix to do this multiplication --- hopefully that will cut down on memory allocations, allow for better scaling in comments below, we write Sigma = CCt + A, where A = diag(exp(v)) """ # set up vectorization if C.ndim == 2: C = np.expand_dims(C, 0) assert v.ndim == 1, "v shape mismatched" assert p.ndim == 1, "p shape mismatched" v = np.expand_dims(v, 0) p = np.expand_dims(p, 0) bsize, D, r = np.shape(C) # compute the inverse of the digaonal copmonent inv_v = np.exp(-v) # A^{-1} aC = C*inv_v[:, :, None] # A^{-1} C # low rank, r x r term: (Ir + Ct A^{-1} C) r_term = np.einsum('ijk,ijh->ikh', C, aC) + \ np.eye(r) # compute inverse term (broadcasts over first axis) # (Ir + Ct A^{-1} C)^{-1} (Ct A^{-1}) # in einsum notation: # - i indexes minibatch (vectorization) # - r indexes rank dimension # - d indexes D dimension (obs dimension) inv_term = np.linalg.solve(r_term, np.swapaxes(aC, 1, 2)) back_term = np.einsum('idr,id->ir', aC, p) # (Ct A^{-1} p) Sigvs = inv_v*p - np.einsum('ird,ir->id', inv_term, back_term) return Sigvs
875ab6709b82cd8865a4396b88cbd10a2847e608
19,795
def subsample(inputs, factor, scope=None): """Subsamples the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
7e0cbcd5d709405b32ba79c93cbf1ef6e98195f6
19,796
def pvfactors_engine_run(data, pvarray_parameters, parallel=0, mode='full'): """My wrapper function to launch the pvfactors engine in parallel. It is mostly for Windows use. In Linux you can directly call run_parallel_engine. It uses MyReportBuilder to generate the output. Args: data (pandas DataFrame): The data to fit the model. pvarray_parameters (dict): The pvfactors dict describing the simulation. parallel (int, optional): Number of threads to launch. Defaults to 0 (just calls PVEngine.run_all_timesteps) mode (str): full or fast depending on the type of back irraadiances. See pvfactors doc. Returns: pandas DataFrame: The results of the simulation, as desired in MyReportBuilder. """ n, row = _get_cut(pvarray_parameters['cut']) rb = Report(n, row) if parallel>1: report = run_parallel_engine(rb, pvarray_parameters, data.index, data.dni, data.dhi, data.zenith, data.azimuth, data.surface_tilt, data.surface_azimuth, data.albedo, n_processes=parallel) else: pvarray = OrderedPVArray.init_from_dict(pvarray_parameters) engine = PVEngine(pvarray) engine.fit(data.index, data.dni, data.dhi, data.zenith, data.azimuth, data.surface_tilt, data.surface_azimuth, data.albedo, data.ghi) if mode == 'full': report = engine.run_full_mode(rb.build) else: report = engine.run_fast_mode(rb.build, pvrow_index=0, segment_index=0) df_report = pd.DataFrame(report, index=data.index).fillna(0) return df_report
1118838fed39e19e31997db9102fdba70283bed8
19,797
def get_service_button(button_text, service, element="#bottom_right_div"): """ Generate a button that calls the std_srvs/Empty service when pressed """ print "Adding a service button!" return str(render.service_button(button_text, service, element))
ce8e2a0ec029762c4e19210c9986aef7e78b55d9
19,798
def create_train_test_set(data, labels, test_size): """ Splits dataframe into train/test set Inputs: data: encoded dataframe containing encoded name chars labels: encoded label dataframe test_size: percentage of input data set to use for test set Returns: data_train: Subset of data set for training data_test : Subset of data set for test label_train: Subset of label set for training label_test: Subset of label set for testing """ data_train, data_test, label_train, label_test = skMS.train_test_split(data, labels, test_size=test_size) return [data_train, data_test, label_train, label_test]
ffeedf0cf4b7b8b1ffa552f0573d33263d216d99
19,799
def hdf_diff(*args, **kwargs): """:deprecated: use `diff_blocks` (will be removed in 1.1.1)""" return diff_blocks(*args, **kwargs)
3c05a908cc32c2ba4e481ff0de41f78249e2ef02
19,801
import glob def determine_epsilon(): """ We follow Learning Compact Geomtric Features to compute this hyperparameter, which unfortunately we didn't use later. """ base_dir = '../dataset/3DMatch/test/*/03_Transformed/*.ply' files = sorted(glob.glob(base_dir), key=natural_key) etas = [] for eachfile in files: pcd = o3d.io.read_point_cloud(eachfile) pcd = pcd.voxel_down_sample(0.025) pcd_tree = o3d.geometry.KDTreeFlann(pcd) distances = [] for i, point in enumerate(pcd.points): [count, vec1, vec2] = pcd_tree.search_knn_vector_3d(point, 2) distances.append(np.sqrt(vec2[1])) etai = np.median(distances) etas.append(etai) return np.median(etas)
a6af243ebeb37e046e9f23c86080822bff4f490d
19,802
def sort_ipv4_addresses_with_mask(ip_address_iterable): """ Sort IPv4 addresses in CIDR notation | :param iter ip_address_iterable: An iterable container of IPv4 CIDR notated addresses | :return list : A sorted list of IPv4 CIDR notated addresses """ return sorted( ip_address_iterable, key=lambda addr: ( int(addr.split('.')[0]), int(addr.split('.')[1]), int(addr.split('.')[2]), int(addr.split('.')[3].split('/')[0]), int(addr.split('.')[3].split('/')[1]) ) )
97517b2518b81cb8ce4cfca19c5512dae6bae686
19,803
def _subattribute_from_json(data: JsonDict) -> SubAttribute: """Make a SubAttribute from JSON data (deserialize) Args: data: JSON data received from Tamr server. """ cp = deepcopy(data) d = {} d["name"] = cp["name"] d["is_nullable"] = cp["isNullable"] d["type"] = from_json(cp["type"]) return SubAttribute(**d)
4fde9e1eb456fd42b8ad8e49ad893a62ba01eba4
19,804
def compare_asts(ast1, ast2): """Compare two ast trees. Return True if they are equal.""" # import leo.core.leoGlobals as g # Compare the two parse trees. try: _compare_asts(ast1, ast2) except AstNotEqual: dump_ast(ast1, tag='AST BEFORE') dump_ast(ast2, tag='AST AFTER') if g.unitTesting: raise return False except Exception: g.warning(f"Unexpected exception") g.es_exception() return False return True
32ab70f1fa31f9ae6cab4e9f5ba91ff71a9e79f8
19,805
import json def shit(): """Ready to go deep into the shit? Parse --data from -X POST -H 'Content-Type: application/json' and send it to the space background """ try: body = json.loads(request.data) except Exception as e: abort(400, e) if not body: abort(400, "Missing data") if "title" not in body: abort(400, "Missing `title` param") if "artist" not in body: abort(400, "Missing `artist` param") if "client_id" not in body: """client_id is used to send back the lyriks through the Notifier aka Flash. """ abort(400, "Missing `client_id` param") # send data to our Background Worker aka Iron Rogue rogue(body["title"], body["artist"], body["client_id"]) return make_response(jsonify({ "code": 202, "message": "request accepted and send into the shit" }), 202)
bdc435566aeaafac8144775188478cb28724802b
19,806
def clear_settings(site_name): # untested - do I need/want this? """update settings to empty dict instead of initialized) """ return update_settings(site_name, {})
a6cbd9bc43ce5bc7159bc75d4cab8c703d73e8cd
19,807
def reorder_jmultis_det_terms(jmulti_output, constant, seasons): """ In case of seasonal terms and a trend term we have to reorder them to make the outputs from JMulTi and sm2 comparable. JMulTi's ordering is: [constant], [seasonal terms], [trend term] while in sm2 it is: [constant], [trend term], [seasonal terms] Parameters ---------- jmulti_output : ndarray (neqs x number_of_deterministic_terms) constant : bool Indicates whether there is a constant term or not in jmulti_output. seasons : int Number of seasons in the model. That means there are seasons-1 columns for seasonal terms in jmulti_output Returns ------- reordered : ndarray (neqs x number_of_deterministic_terms) jmulti_output reordered such that the order of deterministic terms matches that of sm2. """ if seasons == 0: return jmulti_output constant = int(constant) const_column = jmulti_output[:, :constant] season_columns = jmulti_output[:, constant:constant + seasons - 1].copy() trend_columns = jmulti_output[:, constant + seasons - 1:].copy() return np.hstack((const_column, trend_columns, season_columns))
91fd48e14addf264f00a6e898af8d934bcd84cca
19,808
def test_require_gdal_version_param_values(): """Parameter values are allowed for all versions >= 1.0""" for values in [('bar',), ['bar'], {'bar'}]: @require_gdal_version('1.0', param='foo', values=values) def a(foo=None): return foo assert a() is None assert a('bar') == 'bar' assert a(foo='bar') == 'bar'
de11d8f6f0720c1b3ef6aa957f8386e8436b1e73
19,809
def nav_get_element(nav_expr, side, dts, xule_context): """Get the element or set of elements on the from or to side of a navigation expression' This determines the from/to elements of a navigation expression. If the navigation expression includes the from/to component, this will be evaluated. The result can be a qname, concept or a set/list of qname or concepts. Arguments: nav_expr (dictionary): The navigation expression AST node side (string): Either 'from' or 'to'. xule_context (XuleRuleContext): The processing context Returns: None - indicates that the side is not in the navigation expression set of concepts - the set of the concepts if the side evaluates to a set or list of concept/concepts """ if side in nav_expr: side_value = evaluate(nav_expr[side], xule_context) if side_value.type == 'qname': concept = XuleProperties.get_concept(dts, side_value.value) if concept is None: return set() else: return {concept, } elif side_value.type == 'concept': return {side_value.value, } elif side_value.type in ('set', 'list'): concepts = set() for item in side_value.value: if item.type == 'qname': concept = XuleProperties.get_concept(dts, item.value) if concept is not None: concepts.add(concept) elif item.type == 'concept': concepts.add(item.value) else: raise XuleProcessingError(_( "In navigation, expecting a collection of concepts or concepts, but found {}.".format( item.type))) return concepts else: raise XuleProcessingError( _("In navigation, expecting a concept or qname, but found {}.".format(side_value.type))) else: return None
db29b0c2e7832c2b386dd602c77d18a37c2c1307
19,810
def do_pivot(df: pd.DataFrame, row_name: str, col_name: str, metric_name: str): """ Works with df.pivot, except preserves the ordering of the rows and columns in the pivoted dataframe """ original_row_indices = df[row_name].unique() original_col_indices = df[col_name].unique() pivoted = df.pivot(index=row_name, columns=col_name, values=metric_name) pivoted = pivoted[original_col_indices] pivoted = pivoted.reindex(original_row_indices).reset_index() pivoted.columns.name = None return pivoted
70df87eb7d1ca19116ec04854bee635a66f02908
19,811
def batch_norm_for_fc(inputs, is_training, bn_decay, scope): """ Batch normalization on FC data. Args: inputs: Tensor, 2D BxC input is_training: boolean tf.Varialbe, true indicates training phase bn_decay: float or float tensor variable, controling moving average weight scope: string, variable scope Return: normed: batch-normalized maps """ return batch_norm_template(inputs, is_training, scope, [0,], bn_decay)
e6a13c50b021785ddcb278c449ba6f9be9271106
19,812
def stat(file_name): """ Read information from a FreeSurfer stats file. Read information from a FreeSurfer stats file, e.g., `subject/stats/lh.aparc.stats` or `aseg.stats`. A stats file is a text file that contains a data table and various meta data. Parameters ---------- file_name: string The path to the stats file. Returns ------- dictionary of strings (includes nested sub dicts) The result dictionary, containing the following 4 keys: - 'ignored_lines': list of strings. The list of lines that were not parsed in a special way. This is raw data. - 'measures': string list of dimension (n, m) if there are n measures with m properties each stored in the stats file. - 'table_data': string list of dimension (i, j) when there are i lines containing j values each in the table stored in the stats file. You may want to convert the columns to the proper data types and put the result into several numpy arrays or a single Pandas data frame. - 'table_column_headers': string list. The names for the columns for the table_data. This information is parsed from the table_meta_data and given here for convenience. - 'table_meta_data': dictionary. The full table_meta_data. Stores properties in key, value sub dictionaries. For simple table properties, the dictionaries are keys of the returned dictionary. The only exception is the information on the table columns (header data). This information can be found under the key `column_info_`, which contains one dictionary for each column. In these dictionaries, data is stored as explained for simple table properties. Examples -------- Read the `aseg.stats` file for a subject: >>> import brainload as bl >>> stats = bl.stats('/path/to/study/subject1/stats/aseg.stats') Collect some data, just to show the data structures. >>> print(len(stats['measures'])) # Will print the number of measures. >>> print("|".join(stats['measures'][0])) # Print all data on the first measure. Now lets print the table_data: >>> num_data_rows = len(stats['table_data']) >>> num_entries_per_row = len(stats['table_data'][0]) And get some information on the table columns (the table header): >>> print stats['table_meta_data']['NTableCols'] # will print "10" (from a simple table property stored directly in the dictionary). Get the names of all the data columns: >>> print ",".join(stats['table_column_headers']) Get the name of the first column: >>> first_column_name = stats['table_column_headers'][0] More detailed information on the individual columns can be found under the special `column_info_` key if needed: >>> column2_info_dict = stats['table_meta_data']['column_info_']['2'] >>> print(column2_info_dict['some_key']) # will print the value Note that all data is returned as string type, you will need to covert it to float (or whatever) yourself. """ lines = nit._read_text_file_lines(file_name) return _parse_stats_lines(lines)
bf64bf488d34a32eebcb66472a3fa567bf5a368d
19,813
def _r_long(int_bytes): """Convert 4 bytes in little-endian to an integer. XXX Temporary until marshal's long function are exposed. """ x = int_bytes[0] x |= int_bytes[1] << 8 x |= int_bytes[2] << 16 x |= int_bytes[3] << 24 return x
7b40bf05c9d47c7921b1377f0d2235c483e6ba2e
19,814
from typing import Union from typing import Dict from typing import Any from typing import Iterable from typing import Type from typing import Optional import dataclasses from typing import TypeVar from typing import cast def parse_model(data: Union[Dict[str, Any], Iterable[Any], Any], cls: Union[Type[TModel], Type[Any]], rename_keys: Optional[Dict[str, str]] = None) \ -> Union[TModel, Any]: """Instantiates an object of the provided class cls for a provided mapping. Instantiates an object of a class specifying a model for the provided mapping. An entry in the mapping must be provided for all non-optional attribute of the class. Keys are expected to be in CapsWords, matching the snake_case corresponding class attributes. Any additional entries found in the mapping that do not correspond to class attributes are ignored. Args: data: Dictionary containing pairs with the names of the attributes and their respective values provided to instantiate the model class. cls: The model class to instantiate. rename_keys: Key names to rename to match model attribute names, used when an automated translation of the name from CapsWords to snake_case is to sufficient. Renaming must provide the name in CapsWords. Returns: The instantiated model class object. Raises: TypeError: Cannot parse the value of a class attribute to the appropriate type. NotImplementedError: The type of a class attribute is not supported. """ if cls is not NoneType and dataclasses.is_dataclass(cls) \ and isinstance(data, dict): if rename_keys: for k, r, in rename_keys.items(): if k in data: data[r] = data.pop(k) field_names = set(f.name for f in dataclasses.fields(cls)) field_types = {f.name: f.type for f in dataclasses.fields(cls)} parsed_data: Dict[str, Any] = {} for key, value in data.items(): key = _to_snake_case(key) if key in field_names: field_type = field_types[key] parsed_data[key] = parse_model(value, field_type) args = [] for f in dataclasses.fields(cls): if f.name in parsed_data: a = parsed_data[f.name] elif f.default is not dataclasses.MISSING: a = f.default else: fc = getattr(f, 'default_factory') if fc is not dataclasses.MISSING: a = fc() else: raise TypeError(f'Cannot initialize class {cls}. ' f'Missing required parameter {f.name}') args.append(a) return cls(*args) field_type_origin = getattr(cls, '__origin__', None) if field_type_origin is Union: for candidate_cls in getattr(cls, '__args__', []): try: return parse_model(data, candidate_cls) except (TypeError, ValueError): pass raise ValueError(f'Cannot parse value {data} as {cls}') if field_type_origin is list and isinstance(data, Iterable): list_field_type = getattr(cls, '__args__', [])[0] if type(list_field_type) is TypeVar: return list(data) return [parse_model(v, list_field_type) for v in data] if field_type_origin is tuple and isinstance(data, Iterable): tuple_field_types = getattr(cls, '__args__', []) if not tuple_field_types: return tuple(data) return tuple(parse_model(v, tuple_field_types[0]) for v in data) parsable_classes = tuple(getattr(ParsableClass, '__args__', [])) if cls in parsable_classes: return _parse_class(data, cast(Type[ParsableClass], cls)) raise NotImplementedError(f'Cannot parse data {data} as {cls}.')
85ba92ac4c3e9df8e96612017b94db73ea53d19e
19,815
def findTopEyelid(imsz, imageiris, irl, icl, rowp, rp, ret_top=None): """ Description: Mask for the top eyelid region. Input: imsz - Size of the eye image. imageiris - Image of the iris region. irl - icl - rowp - y-coordinate of the inner circle centre. rp - radius of the inner circle centre. ret_top - Just used for returning result when using multiprocess. Output: mask - Map of noise that will be masked with NaN values. """ topeyelid = imageiris[0: rowp - irl - rp, :] lines = findline(topeyelid) mask = np.zeros(imsz, dtype=float) if lines.size > 0: xl, yl = linecoords(lines, topeyelid.shape) yl = np.round(yl + irl - 1).astype(int) xl = np.round(xl + icl - 1).astype(int) yla = np.max(yl) y2 = np.arange(yla) mask[yl, xl] = np.nan grid = np.meshgrid(y2, xl) mask[grid] = np.nan # Return if ret_top is not None: ret_top[0] = mask return mask
9c01e0966a1800ed76f5370cbc382a801af08d67
19,816
def script_with_queue_path(tmpdir): """ Pytest fixture to return a path to a script with main() which takes a queue and procedure as arguments and adds procedure process ID to queue. """ path = tmpdir.join("script_with_queue.py") path.write( """ def main(queue, procedure): queue.put(procedure.pid) """ ) return f"file://{str(path)}"
7c2c2b4c308f91d951496c53c9bdda214f64c776
19,817
import configparser def readini(inifile): """ This function will read in data from a configureation file. Inputs inifile- The name of the configuration file. Outputs params - A dictionary with keys from INIOPTIONS that holds all of the plotting parameters. """ if inifile is None: return config =configparser() config.read(inifile) params={i:None for i in INIOPTIONS} # Read in data from ini file for ip in config.options('params'): # get the original param name rname = config.get('paramsnames',ip) # get the parameter and split it up params[rname] = config.get('params',ip) params[rname]=params[rname].split(" ") # If its a single object try to if len(params[rname])==1: params[rname]=params[rname][0] try: params[rname]=float(params[rname]) except Exception: pass else: for a in range(len(params[rname])): try: params[rname][a]=float(params[rname][a]) except Exception: pass # turn the time bounds to time stamps if not params['timebounds']is None: timelist = params['timebounds'] params['timebounds']=str2posix(timelist) # which times will have names if params['TextList'] is None: params['TextList']=[] # change param height to a list of lists if not params['paramheight'] is None: l1 = params['paramheight'][::2] l2 = params['paramheight'][1::2] params['paramheight']=[[i,j] for i,j in zip(l1,l2)] if not params['paramlim'] is None: l1 = params['paramlim'][::2] l2 = params['paramlim'][1::2] params['paramlim']=[[i,j] for i,j in zip(l1,l2)] # Default for reinterp is false if params['reinterp']is None: params['reinterp']=False else: params['reinterp'] = params['reinterp'].lower()=='yes' return params
eb5800f00cc8e58557e11fb9ff525e7f407c9eab
19,818
def get_param_store(): """ Returns the ParamStore """ return _PYRO_PARAM_STORE
d71ab10f2029fab735268956590094d8c94dd150
19,819
def secret_add(secret): """ Return a lambda that adds the argument from the lambda to the argument passed into secret_add. :param secret: secret number to add (integer) :return: lambda that takes a number and adds it to the secret """ return lambda addend: secret + addend
151f1cff9f0e0bbb43650d63592ba0c2cb05611e
19,820
def morseToBoolArr(code, sps, wpm, fs=None): """ morse code to boolean array Args: code (str): morse code sps: Samples per second wpm: Words per minute fs: Farnsworth speed Returns: boolean numpy array """ dps = wpmToDps(wpm) # dots per second baseSampleCount = sps / dps samplesPerDot = int(round(baseSampleCount)) samplesPerDash = int(round(baseSampleCount * DASH_WIDTH)) samplesBetweenElements = int(round(baseSampleCount)) farnsworthScale = farnsworthScaleFactor(wpm, fs) samplesBetweenLetters = int(round(baseSampleCount * CHAR_SPACE * farnsworthScale)) samplesBetweenWords = int(round(baseSampleCount * WORD_SPACE * farnsworthScale)) dotArr = np.ones(samplesPerDot, dtype=np.bool) dashArr = np.ones(samplesPerDash, dtype=np.bool) eGapArr = np.zeros(samplesBetweenElements, dtype=np.bool) cGapArr = np.zeros(samplesBetweenLetters, dtype=np.bool) wGapArr = np.zeros(samplesBetweenWords, dtype=np.bool) pieces = [] prevWasSpace = False prevWasElement = False for c in code: if (c == DOT or c == DASH) and prevWasElement: pieces.append(eGapArr) if c == DOT: pieces.append(dotArr) prevWasSpace, prevWasElement = False, True elif c == DASH: pieces.append(dashArr) prevWasSpace, prevWasElement = False, True else: # Assume the char is a space otherwise if prevWasSpace: pieces[-1] = wGapArr else: pieces.append(cGapArr) prevWasSpace, prevWasElement = True, False return np.concatenate(pieces)
90b4225a2a9979ac7f813a1f964b64ef9310ee23
19,821
import csv import array def LaserOptikMirrorTransmission(interpolated_wavelengths,refractive_index = "100", shift_spectrum=7,rescale_factor=0.622222): """ Can be used for any wavelengths in the range 400 to 800 (UNITS: nm) Uses supplied calculation from LaserOptik Interpolate over selected wavelengths: returns a function which takes wavelength (nm) as argument Shifts transmission spectrum with calibration still to come, likewise for "rescale_factor" "refractive_index" argument is only for backwards compatibility """ reflectivity_folder = data_root_folder + folder_separator+ "calibration_data" + folder_separator #reflectivity_folder = "./" reflectivity_filename = "LaserOptik20160129_Theorie_T.DAT" fname = reflectivity_folder+reflectivity_filename res = csv.reader(open(fname), delimiter='\t') refl_text = [x for x in res][1:] #removes column headings original_wavelengths = array([float(l[0]) for l in refl_text]) original_transmissions = array([float(l[1]) for l in refl_text]) original_reflectivities = 1-original_transmissions # wavelength_shift = 0 if shift_spectrum == "planar": #shift to be measured wavelength_shift = 0 elif shift_spectrum == "spherical": wavelength_shift = 0 # shift to be measured elif isinstance(shift_spectrum,Number): wavelength_shift = shift_spectrum # interpolated_transmission_func = interp1d(original_wavelengths,original_transmissions) interpolated_transmissions = interpolated_transmission_func(interpolated_wavelengths + wavelength_shift) #Transmission to be calibrated at at least one narrow wavelength #Assume transmission scales with this factor at all wavelengths [not well justified assumption] interpolated_transmissions = interpolated_transmissions / rescale_factor return interpolated_transmissions
a3eafd7a788ddcfdedd8e25081f6e7cc1fd03cc5
19,822
import math def menu(prompt, titles, cols=1, col_by_col=True, exc_on_cancel=None, caption=None, default=None): """Show a simple menu. If the input is not allowed the prompt will be shown again. The input can be cancelled with EOF (``^D``). The caller has to take care that the menu will fit in the terminal. :: def update(): ... def sort(desc=True, duration=True): ... items = ( ('Update', update), ('Sort duration desc', sort), ('Sort duration asc', sort, False), ('Sort size desc', sort, True, False), ('Sort size asc', sort, False, False), ) i = menu('> ', tuple(x[0] for x in items)) print() if i is not None: items[i][1](*items[i][2:]) .. raw:: html <pre style="color:#FFFFFF;background-color:#000000">[1] Update [2] Sort duration desc [3] Sort duration asc [4] Sort size desc [5] Sort size asc &gt; </pre> :param str prompt: the prompt :param tuple titles: the titles of the menu options :param int cols: number of columns :param bool col_by_col: if ``True`` the menu will be filled column-by-column, otherwise row-by-row :param bool exc_on_cancel: if ``True`` an EOF will cause an Exception; if ``None`` the value of ``exception_on_cancel`` will be used :param str caption: caption for the menu :param int default: number of the default menu option :return: index of the selected option in ``titles`` or None if cancelled and ``exc_on_cancel=False`` :rtype: int or None :raises EOFError: if input was cancelled and ``exc_on_cancel=True`` :raises TypeError: if ``titles`` is not a tuple or ``default`` is not an integer .. versionadded:: 0.4.0 .. versionchanged:: 0.6.0 Add parameter ``caption`` .. versionchanged:: 0.17.0 Add parameter ``default`` """ if default is not None: check_type(default, int, 'default') if not (0 < default <= (len(titles))): raise ValueError( f'default must be > 0 and <= {len(titles)}, got {default}') check_type(titles, tuple, 'titles') rows = math.ceil(len(titles) / cols) num_width = len(str(len(titles))) title_width = max(map(len, titles)) if col_by_col: indices = (x + rows * y for x in range(rows) for y in range(cols)) else: indices = range(len(titles)) lines = [] row = [] for cnt, idx in enumerate(indices, 1): if idx < len(titles): row.append(f'[{idx + 1:{num_width}}] {titles[idx]:{title_width}}') if cnt % cols == 0: lines.append(' '.join(row)) lines.append('\n') row.clear() if row: lines.append(' '.join(row)) lines.append('\n') if caption: width = max(len(caption), max(map(len, lines))) text = caption.center(width) + '\n' + '-' * width + '\n' else: text = '' text += ''.join(lines) + prompt def f(s): i = int(s) if 0 < i <= len(titles): return i - 1 raise ValueError return read(text, check=f, exc_on_cancel=exc_on_cancel, default=str(default))
d4d24cddf40f314c31415685c4eecdc51da2aca2
19,823
from typing import Dict from typing import Any def dict_to_annotation(annotation_dict: Dict[str, Any], ignore_extra_keys = True) -> Annotation: """Calls specific Category object constructor based on the structure of the `annotation_dict`. Args: annotation_dict (Dict[str, Any]): One of COCO Annotation dictionaries. ignore_extra_keys (bool, optional): Ignore the fact dictionary has more fields than specified in dataset. Defaults to True. Raises: ValueError: If `annotation_dict` has unspecified structure. Returns: Annotation: Dataclass category generated from the `annotation_dict`. """ if set(DICT_TO_ANNOTATION_MAP['object_detection']).issubset(annotation_dict.keys()): return ObjectDetectionAnnotation.from_dict(annotation_dict, ignore_extra_keys) elif set(DICT_TO_ANNOTATION_MAP['keypoint_detection']).issubset(annotation_dict.keys()): return KeypointDetectionAnnotation.from_dict(annotation_dict, ignore_extra_keys) elif set(DICT_TO_ANNOTATION_MAP['panoptic_segmentation']).issubset(annotation_dict.keys()): return PanopticSegmentationAnnotation.from_dict(annotation_dict, ignore_extra_keys) elif set(DICT_TO_ANNOTATION_MAP['image_captioning']).issubset(annotation_dict.keys()): return ImageCaptioningAnnotation.from_dict(annotation_dict, ignore_extra_keys) elif set(DICT_TO_ANNOTATION_MAP['dense_pose']).issubset(annotation_dict.keys()): return DensePoseAnnotation.from_dict(annotation_dict, ignore_extra_keys) raise ValueError( "Unexpected annotation structure. Consider manually creating COCO dataset." "\nAnd extending one of existing objects or create new following one of the Protocols structure." )
846c353ab4d15a0558c5cabced30e14a57b5ed64
19,824
def getAggregation(values): """ Produces a dictionary mapping raw states to aggregated states in the form {raw_state:aggregated_state} """ unique_values = list(set(values)) aggregation = {i:unique_values.index(v) for i, v in enumerate(values)} aggregation['n'] = len(unique_values) return aggregation
606bee7c7055b8f2a95bc061dc1883713198b506
19,825
def create_anonymous_client(): """Creates an anonymous s3 client. This is useful if you need to read an object created by an anonymous user, which the normal client won't have access to. """ return boto3.client('s3', config=Config(signature_version=UNSIGNED))
1c321d2c42b41b19a4fad66e67199f63c2b04338
19,826
def predictionTopK(pdt, k): """预测值中topk @param pdt 预测结果,nupmy数组格式 @param k 前k个结果 @return topk结果,numpy数组格式 """ m, n = np.shape(pdt) ret = [] for i in range(m): curNums = pdt[i] tmp = topK(curNums.tolist()[0], k) ret.append(tmp) return np.mat(ret)
57740bb3e2f4521d14273194dc024e8a91347241
19,827
import re def parseCsv(file_content): """ parseCsv ======== parser a string file from Shimadzu analysis, returning a dictonary with current, livetime and sample ID Parameters ---------- file_content : str shimadzu output csv content Returns ------- dic dic with irradiation parameters """ irradiation_parameters = {} irradiation_parameters['sample'] = file_content.split(',')[0].split(':')[1].replace("\"", "").strip() irradiation_parameters['current'] = re.sub(' +',' ',file_content.split(',')[12]).split(' ')[3] irradiation_parameters['current'] = int(re.findall('\d+', irradiation_parameters['current'])[0]) irradiation_parameters['livetime'] = int(re.sub(' +',' ',file_content.split(',')[12]).split(' ')[13]) return(irradiation_parameters)
cc20a906c23093994ce53358d92453cd4a9ab459
19,831
def s_from_v(speed, time=None): """ Calculate {distance} from {speed} The chosen scheme: speed at [i] represents the distance from [i] to [i+1]. This means distance.diff() and time.diff() are shifted by one index from speed. I have chosen to extrapolate the position at the first index by assuming we start at a cumulative distance of 0. Args: {speed_arg} {time_arg} Default None. Returns: {distance_returns} """ if time is None: time = pd.Series([i for i in range(len(speed))]) # Should this assume the index at position 0 is 0, or should this # assume the only NaN is at position 0? Assumpts either way... return (speed.shift(1) * time.diff()).cumsum().fillna(0)
42fa996371af55c97235c2260f1c7c873e7e9e5b
19,833
def fake_categorize_file(tmpdir_factory): """Creates a simple categorize for testing.""" file_name = tmpdir_factory.mktemp("data").join("categorize.nc") root_grp = netCDF4.Dataset(file_name, "w", format="NETCDF4_CLASSIC") n_points = 7 root_grp.createDimension('time', n_points) var = root_grp.createVariable('time', 'f8', 'time') var[:] = np.arange(n_points) var = root_grp.createVariable('category_bits', 'i4', 'time') var[:] = [0, 1, 2, 4, 8, 16, 32] var = root_grp.createVariable('quality_bits', 'i4', 'time') var[:] = [0, 1, 2, 4, 8, 16, 32] root_grp.close() return file_name
17b8e106f19200291bf2a77805542ecf2bb395fe
19,834
def load_unpack_npz(path): """ Simple helper function to circumvent hardcoding of keyword arguments for NumPy zip loading and saving. This assumes that the first entry of the zipped array contains the keys (in-order) for the rest of the array. Parameters ---------- path : string Path to load the NumPy zip file Returns ---------- data : dict Unpacked dictionary with specified keys inserted """ # Load the NumPy zip file at the path data = dict(np.load(path, allow_pickle=True)) # Extract the key names stored in the dictionary keys = data.pop(list(data.keys())[0]) # Obtain the names of the saved keys old_keys = list(data.keys()) # Re-add all of the entries of the data with the specified keys for i in range(len(keys)): data[keys[i]] = data.pop(old_keys[i]) return data
ae5d573a480a87d3c09e8de783d9b94558870c15
19,836
import re def is_valid_email(email): """ Check if a string is a valid email. Returns a Boolean. """ try: return re.match(EMAIL_RE, email) is not None except TypeError: return False
736b3f141e6f3a99644d51c672738d63d64d604e
19,837
import re def _create_matcher(utterance): """Create a regex that matches the utterance.""" # Split utterance into parts that are type: NORMAL, GROUP or OPTIONAL # Pattern matches (GROUP|OPTIONAL): Change light to [the color] {name} parts = re.split(r'({\w+}|\[[\w\s]+\] *)', utterance) # Pattern to extract name from GROUP part. Matches {name} group_matcher = re.compile(r'{(\w+)}') # Pattern to extract text from OPTIONAL part. Matches [the color] optional_matcher = re.compile(r'\[([\w ]+)\] *') pattern = ['^'] for part in parts: group_match = group_matcher.match(part) optional_match = optional_matcher.match(part) # Normal part if group_match is None and optional_match is None: pattern.append(part) continue # Group part if group_match is not None: pattern.append( r'(?P<{}>[\w ]+?)\s*'.format(group_match.groups()[0])) # Optional part elif optional_match is not None: pattern.append(r'(?:{} *)?'.format(optional_match.groups()[0])) pattern.append('$') return re.compile(''.join(pattern), re.I)
ecf126488f827c65379efc58794136499dfa87dd
19,838
def top_compartment_air_CO2(setpoints: Setpoints, states: States, weather: Weather): """ Equation 2.13 / 8.13 cap_CO2_Top * top_CO2 = mass_CO2_flux_AirTop - mass_CO2_flux_TopOut """ cap_CO2_Top = Coefficients.Construction.greenhouse_height - Coefficients.Construction.air_height # Note: line 46 / setDepParams / GreenLight mass_CO2_flux_AirTop = greenhouse_air_and_above_thermal_screen_CO2_flux(states, setpoints, weather) mass_CO2_flux_TopOut = above_thermal_screen_and_outdoor_CO2_flux(states, setpoints, weather) return (mass_CO2_flux_AirTop - mass_CO2_flux_TopOut) / cap_CO2_Top
7f294de2f669c2224ccbd09d8200e9b91ddd6ebe
19,840
def coning_sculling(gyro, accel, order=1): """Apply coning and sculling corrections to inertial readings. The algorithm assumes a polynomial model for the angular velocity and the specific force, fitting coefficients by considering previous time intervals. The algorithm for a linear approximation is well known and described in [1]_ and [2]_. The accelerometer readings are also corrected for body frame rotation during a sampling period. Parameters ---------- gyro : array_like, shape (n_readings, 3) Gyro readings. accel : array_like, shape (n_readings, 3) Accelerometer readings. order : {0, 1, 2}, optional Angular velocity and specific force polynomial model order. Note that 0 means not applying non-commutative corrections at all. Default is 1. Returns ------- theta : ndarray, shape (n_readings, 3) Estimated rotation vectors. dv : ndarray, shape (n_readings, 3) Estimated velocity increments. References ---------- .. [1] P. G. Savage, "Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms", Journal of Guidance, Control, and Dynamics 1998, Vol. 21, no. 2. .. [2] P. G. Savage, "Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms", Journal of Guidance, Control, and Dynamics 1998, Vol. 21, no. 2. """ if order not in [0, 1, 2]: raise ValueError("`order` must be 1, 2 or 3.") gyro = np.asarray(gyro) accel = np.asarray(accel) if order == 0: coning = 0 sculling = 0 elif order == 1: coning = np.vstack((np.zeros(3), np.cross(gyro[:-1], gyro[1:]) / 12)) sculling = np.vstack((np.zeros(3), (np.cross(gyro[:-1], accel[1:]) + np.cross(accel[:-1], gyro[1:])) / 12)) elif order == 2: coning = (-121 * np.cross(gyro[2:], gyro[1:-1]) + 31 * np.cross(gyro[2:], gyro[:-2]) - np.cross(gyro[1:-1], gyro[:-2])) / 720 sculling = (-121 * np.cross(gyro[2:], accel[1:-1]) + 31 * np.cross(gyro[2:], accel[:-2]) - np.cross(gyro[1:-1], accel[:-2]) - 121 * np.cross(accel[2:], gyro[1:-1]) + 31 * np.cross(accel[2:], gyro[:-2]) - np.cross(accel[1:-1], gyro[:-2])) / 720 coning = np.vstack((np.zeros((2, 3)), coning)) sculling = np.vstack((np.zeros((2, 3)), sculling)) else: assert False rc = 0.5 * np.cross(gyro, accel) return gyro + coning, accel + sculling + rc
61f57383488d2d42cb6d63fec5d6d99faa8e2cf2
19,841
def add(): """Add a task. :url: /add/ :returns: job """ job = scheduler.add_job( func=task2, trigger="interval", seconds=10, id="test job 2", name="test job 2", replace_existing=True, ) return "%s added!" % job.name
88ef667e05a37ec190ba6e01df23fd617821afe0
19,842
def magnitude(x: float, y: float, z: float) -> float: """ Magnitude of x, y, z acceleration √(x²+y²+z²) Dispatch <float> Args: x (float): X-axis of acceleration y (float): Y-axis of acceleration z (float): Z-axis of acceleration Returns: float: Magnitude of acceleration Dispatch <pd.DataFrame> Args: df (pd.DataFrame): Dataframe containing acceleration columns xcol (str): X-axis column name, default 'x' ycol (str): Y-axis column name, default 'y' zcol (str): Z-axis column name, default 'z' Returns: float: Magnitude of acceleration """ return np.sqrt(x**2 + y**2 + z**2)
ecb0543b52c385a9b294e87e4b17346b9705f3f8
19,843
def dauth( bot, input ): """Toggle whether channel should be auth enabled by default""" if not input.admin: return False if not input.origin[0] == ID.HON_SC_CHANNEL_MSG: bot.reply("Run me from channel intended for the default auth!") else: cname = bot.id2chan[input.origin[2]] authed = False if cname in bot.config.default_auth: bot.config.set_del( 'default_auth', cname ) else: bot.config.set_add( 'default_auth', cname ) authed = True bot.reply( "Default auth in this channel is now " + ( authed and "enabled" or "disabled" ) )
a031e1feb45956503c30ddacd40d59a5f65f30ca
19,844
import json def write_to_disk(func): """ decorator used to write the data into disk during each checkpoint to help us to resume the operation Args: func: Returns: """ def wrapper(*args, **kwargs): func(*args, **kwargs) with open("checkpoint.json", "r") as f: f.write(json.dumps(args[0])) return wrapper
d3614b7b75adf40021c31263fbbcdfdda025d1a3
19,845
def get_hourly_total_exchange_volume_in_period_from_db_trades(tc_db, start_time, end_time): """ Get the exchange volume for this exchange in this period from our saved version of the trade history. """ # Watch this query for performance. results = tc_db.query( func.hour(EHTrade.timestamp), func.sum(EHTrade._volume), )\ .filter(EHTrade.timestamp >= start_time)\ .filter(EHTrade.timestamp < end_time)\ .group_by(func.hour(EHTrade.timestamp))\ .all() formatted_results = [] for row in results: hour = row[0] timestamp = Delorean(start_time, 'UTC').next_hour(hour).datetime volume = Money(row[1], 'BTC') formatted_results.append([ timestamp, volume, ]) formatted_results = sorted(formatted_results, key=lambda r: r[0]) return formatted_results
7d46327e8c89d928d7e208d9a00d7b199345e636
19,847
import typing def descending(sorting_func: typing.Any) -> typing.Any: """ Modify a sorting function to sort in descending order. :param sorting_func: the original sorting function :return: the modified sorting function """ def modified_sorting_func(current_columns, original_columns, sorting_func=sorting_func): return sqlalchemy.sql.desc(sorting_func(current_columns, original_columns)) modified_sorting_func.require_original_columns = getattr(sorting_func, 'require_original_columns', False) return modified_sorting_func
30afe7202648950af5d415f3a2da3af5e9ab9d8f
19,848
def circleColor(renderer, x, y, rad, color): """Draws an unfilled circle to the renderer with a given color. If the rendering color has any transparency, blending will be enabled. Args: renderer (:obj:`SDL_Renderer`): The renderer to draw on. x (int): The X coordinate of the center of the circle. y (int): The Y coordinate of the center of the circle. rad (int): The radius (in pixels) of the circle. color (int): The color to draw with as a 32-bit ``0xRRGGBBAA`` integer (e.g. ``0xFF0000FF`` for solid red). Returns: int: 0 on success, or -1 on failure. """ return _funcs["circleColor"](renderer, x, y, rad, color)
6b3475f918cfb0867799710e5c53e5eea326a2c2
19,849
def _get_ref_init_error(dpde, error, **kwargs): """ Function that identifies where the continuous gyro begins, initiates and then carries the static errors during the continuous modes. """ temp = [0.0] for coeff, inc in zip(dpde[1:, 2], error.survey.inc_rad[1:]): if inc > kwargs['header']['XY Static Gyro']['End Inc']: temp.append(temp[-1]) else: temp.append(coeff) dpde[:, 2] = temp return dpde
45f4072139f007f65872223c624581b7433ea2aa
19,850
def parse_internal_ballot(line): """ Parse an internal ballot line (with or without a trailing newline). This function allows leading and trailing spaces. ValueError is raised if one of the values does not parse to an integer. An internal ballot line is a space-delimited string of integers of the form-- "WEIGHT CHOICE1 CHOICE2 CHOICE3 ...". """ ints = parse_integer_line(line) weight = next(ints) choices = tuple(ints) return weight, choices
9433a496f26dd3511ff343686402e941a617f775
19,853
def get_fratio(*args): """ """ cmtr = get_cmtr(*args) cme = get_cme(*args) fratio = cmtr / cme return fratio
2a93d1211929346fc333837b711ed0eb01f34b2b
19,854